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Abstract. In an anonymous credential system, users collect credentials
from issuers, and can use their credentials to generate privacy-preserving
identity proofs that can be shown to third-party verifiers. Since the in-
troduction of anonymous credentials by Chaum in 1985, there has been
promising advances with respect to system design, security analysis and
real-world implementations of anonymous credential systems.
In this paper, we examine Hyperledger AnonCreds, an anonymous cre-
dential system that was introduced in 2017 and is currently undergoing
specification. Despite being implemented in deployment-ready identity
system platforms, there is no formal security analysis of the Hyperledger
AnonCreds protocol. We rectify this, presenting syntax and a security
model for, and a first security analysis of, the Hyperledger AnonCreds
protocol. In particular, we demonstrate that Hyperledger AnonCreds is
correct, and satisfies notions of unforgeability and anonymity. We con-
clude with a discussion on the implications of our findings, highlighting
the importance of rigorous specification efforts to support security eval-
uation of real-world cryptographic protocols.

1 Introduction

Anonymous credential systems [16, 23] enable users to collect credentials from
issuers and show their credentials to third-party verifiers. Crucially, credentials
are anonymous, meaning that different credential showings cannot be linked.
In particular, issuers cannot determine when credentials are shown by users
to third-parties. Since their introduction, a considerable number of anonymous
credential systems have been designed e.g., [5, 19, 38, 48, 43]. One such system
is the Hyperledger AnonCreds (HLAC) protocol, which first appeared in 2017
and is currently hosted by the Linux Foundation Decentralized Trust [30], and
undergoing specification [26] by the Hyperledger AnonCreds Working Group [47].

The HLAC protocol has been used in the design and implementation of real-
world credential systems. Notably, the Hyperledger Aries library [28], a toolkit
for building decentralised identity management systems, embeds the HLAC pro-
tocol. The Hyperledger Aries library, and subsequently the HLAC protocol, has
been used in several deployed identity management systems. In particular, the



Government of British Columbia used Hyperledger Aries to create OrgBook [40],
a public directory of registered organisations and related data. Moreover, the
International Air Transport Association (IATA) launched a pilot scheme for a
travel pass in 2021 that enabled travellers to collect documentation related to
their flight and vaccination status in one place, simplifying the airport process.

Despite the specification, and the real-world implementations, of the HLAC
protocol, it has not undergone any formal security analysis. Accordingly, in this
paper, we provide a first formal description of the protocol in the literature,
and introduce syntax and a formal security model for the HLAC protocol. We
demonstrate security of the HLAC protocol, with the aim that our work will
be a first step towards demonstrating the utility and security of this promising
protocol.

1.1 Related Work

We provide an overview of related work, namely anonymous credentials. As
the anonymous credentials literature is very wide and varied, we focus on the
literature most relevant to the HLAC protocol, and refer the reader to [39] for
a detailed and systematic review of anonymous credentials.

Anonymous Credential Systems. Anonymous credentials were first introduced
in [23] and, in [16], Camenisch and Lysyanskaya introduced the first practical
anonymous credential scheme. This scheme uses a signature scheme that has
since been generalised [18] to the RSA-based CL signature scheme [18], Pedersen
commitments [42] and a series of non-interactive zero-knowledge (NIZK) proof
systems. Though other approaches to anonymous credential system design exist,
for example, the use of self-blindable credentials [2, 25, 48] and attribute-based
signature [45, 49], the design of [16] is the basis for IBM’s Idemix protocol [37,
43] and many other anonymous credential systems, e.g., [19, 20, 38]. Moreover,
the Hyperledger AnonCreds protocol is based on the design in [16], with NIZK
proofs as described in [43].

Many variations on anonymous credential systems exist, including creden-
tials that enable revocation of anonymity [16], delegatable credentials [4, 9, 21],
updatable credentials [10] and issuer-hiding credentials [11, 24]. One other fea-
ture that many anonymous credential systems aim to achieve, and which is a key
feature of the HLAC protocol is revocation of credentials. There are a number of
approaches to the provision of revocation mechanisms in anonymous credential
systems. The most common approach, and the one used in the HLAC protocol,
makes use of a cryptographic accumulator scheme [7, 41], which provides an ef-
ficient way to maintain a set, and for users to prove membership of it, without
disclosing the individual members of the set, thus preserving anonymity [17].
Other approaches to revocation include the use of Credential-Revocation Lists
[12, ?] and the use of issuer-controlled attributes within anonymous credentials,
specifically validity time [15]. The HLAC protocol adopts the cryptographic ac-
cumulator in [14] that is designed for revocation of anonymous credentials.
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Security of Anonymous Credential Systems. Early security models for anony-
mous credential systems presented a real-ideal world paradigm that captures a
single notion of security [5, 16], but, more recently, the literature has focused on
game-based security models, e.g., [22, 25, 36], providing individual security ex-
periments for each security requirement. Security models have typically defined
two key properties of anonymous credential systems: anonymity [4, 9, 24, 31, 38,
45] and unforgeability [1, 4, 9, 11, 16, 22, 24, 39]. Further properties have been de-
fined, including all-or-nothing transferability [16], unlinkability [1, 11, 16, 38, 39,
45] and soundness [9].

The game-based approach to security definitions has been used in the anal-
ysis of anonymous credential systems, e.g., [11, 32, 44], and facilitates the clear
mapping of intuitive security notions to formal definitions of security. As this
paper is a first look at the HLAC protocol, we adopt the approach of [11, 32, 44],
focusing on foundational properties for anonymous credential systems. Specif-
ically, we present a game-based security model that captures anonymity and
unforgeability.

Verifiable Credentials. As specified in a W3C Recommendation [46], verifiable
credentials enable holders to collect credentials that can be used to produce
identity proofs that can be verified by third-party verifiers. While they share
similarities with anonymous credentials, verifiable credentials need not generate
privacy-preserving proofs, though they do support the use of anonymity mech-
anisms such as zero-knowledge proofs. The HLAC protocol, often considered a
verifiable credential system, embeds many of the concepts of verifiable credentials
as set out in the W3C Recommendation, but does not currently comply with
the data model of the W3C Recommendation. Accordingly, in this paper, we
refer to the HLAC protocol as an anonymous credential system, not a verifiable
credential system.

1.2 Our Contributions

In this paper, we present the first formalisation and security analysis of the HLAC
protocol. Though the protocol and its security goals were described in [8], the
description was informal. In contrast, in this paper, we present formal definitions
of unforgeability and anonymity, and full security proofs. Namely, in Section 2.1,
we introduce syntax for the HLAC protocol and provide full technical details of
our security model. Our informal notions of security align with the underlying
intuition of existing game-based definitions of security for anonymous credential
protocols, e.g., [11, 32, 44], but are adapted to the HLAC syntax. We describe the
building blocks used in the protocol in Section 3 and describe the HLAC protocol
in Section 4. We then demonstrate that the HLAC protocol satisfies correctness,
unforgeability and anonymity, presenting full security proofs in Section 5. We
provide concluding remarks in Section 6.

Looking forward, we believe that the results presented in this work are mean-
ingful to the real-world security guarantees of the HLAC protocol. We prove that
HLAC satisfies key security properties that any anonymous credential system
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should achieve, building confidence in the security of HLAC. Furthermore, evalu-
ation of the cryptographic protocol outlined in the specification ensures that our
analysis applies to the design of the protocol rather than a specific implementa-
tion. Hence, our analysis is relevant to the security of any future implementation.
We also hope that the formalisation presented in this paper can support comple-
tion of the specification. In particular, we note that, as specification efforts are
ongoing, several details, particularly those related to revocation of credentials,
are missing from the specification. To address this, we consulted the reference
implementation [26] and academic literature outlining the primitives used in the
HLAC protocol.

2 Syntax and Security Model

In this section we present a formal framework for the analysis of the Hyperledger
AnonCreds (HLAC) protocol [26]. Specifically, we introduce the syntax for the
HLAC protocol, and a formal security model for our syntax. First, we provide a
high-level overview of the actors and phases of the protocol.

The HLAC protocol involves three actors as follows:

1. Issuers: issue credentials to holders. They generate AnonCreds objects, e.g.,
credential schemas and related cryptographic data, to support the issuance
and revocation of credentials.

2. Holders: collect and manage their credentials in a digital wallet. Holders
obtain credentials from issuers in an interactive process, and can use issued
credentials to generate identity proofs that can be shared with verifiers.

3. Verifiers: request identity proofs from holders and verify the validity of iden-
tity proofs, including the revocation status of credentials used to generate
the identity proof.

To support credential issuance and identity proof verification, the HLAC protocol
is supported by a ledger, a verifiable data registry that stores AnonCreds objects
(i.e., credential schemas, credential definitions and revocation registries) that all
actors have read access to. Additionally, issuers can write to the ledger, posting
AnonCreds objects. In this way, any actor, including holders and verifiers, can
obtain data about credentials that is crucial to support the issuance of credentials
and verification of identity proofs.

The HLAC protocol typically proceeds in three phases, as shown in Figure 1.
In the setup phase, the ledger is initialised as empty, and holders initialise an
empty credential list and generate a master secret. Issuer setup usually requires
the creation, and posting to the ledger, of three AnonCreds objects. That is, the
issuer creates a schema and credential definition for each credential that they
wish to issue. To issue revocable credentials, an issuer must additionally create
a revocation registry for each credential definition. Briefly, a credential schema
defines the credential attributes and the credential definition (resp., revocation
registry) defines the cryptographic key pair and related data used to issue (resp.,
demonstrate the revocation status of) a credential. The protocol then proceeds
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to the credential issuance phase, an interactive process in which a holder
provides the issuer with attribute values, and the issuer generates and issues a
credential, and updates the revocation status of the credential. Finally, in the
proof presentation phase, holders can use their issued credentials to construct
identity proofs. In this phase, verifiers can specify the (types of) credentials
that holders can use to satisfy the proof request and can, accordingly, designate
the issuers that they are willing to accept credentials from. As is typical in
an anonymous credential system, holders in the HLAC protocol do not need to
reveal their entire credentials to verifiers. Rather, holders can reveal a subset of
attribute values or reveal facts (i.e., a predicate) about their attribute values,
without revealing the attributes themselves. For example, a holder that has a
credential stating their date of birth can generate an identity proof that reveals
their date of birth without revealing any other credential attributes, or prove
that they are over 18 years of age without revealing their date of birth attribute.

Note that, though we describe the HLAC protocol in three consecutive phases,
new actors can join the system at any time, creating, issuing, storing and verify-
ing data as required by their role. In addition, actors may execute the credential
issuance and proof presentation phases out of order, for example, when an issuer
wishes to convince themselves of the accuracy and validity of a holder’s attribute
values before issuing a credential.

Send Credential Offer

Publish Schema

Publish Credential Definition 

Ledger HolderIssuer

Create Credential Definition

Create Schema

Create and Store 
Master Secret

Create Credential Offer

Create Credential Request

Send Credential Request

Issue Credential

Send Credential

Verify and Store Credential

Verifier

Create Revocation Registry

Publish Revocation Registry 

Update Revocation Registry

Publish Revocation Registry 

Request Credential  Definitions

Send Credential  Definitions

Create Presentation Request

Send Presentation Request

Create Presentation Proof

Send Presentation Proof

Verify Proof

Setup 

Credential 
Issuance 

Proof  
Presentation

Fig. 1: A typical data flow between a single issuer, holder and verifier in the
HLAC protocol.
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2.1 Syntax

We now introduce the formal syntax for the HLAC protocol. We first define
setup algorithms, and then introduce syntax for the credential issuance and
proof presentation phases. We also define algorithms that enable entities to read
from, and write to, the ledger L.

Notation. In our syntax, the empty set is written as ∅ and the cardinality of
set S is written as |S|. We denote the set of integers as Z and let Zp denote
the set {1, . . . , p − 1}. We write [n] to denote the set {1, . . . , n}. We denote an
empty list as (), write L← L||y to denote appending y to the list L, and write
L[i] to denote the value of list L at position i. We write x ← X to denote
assignment of X to x. We write y←$Y to denote choosing an element from set
Y uniformly at random and assigning it to the variable y. Moreover, we denote
y ← A(x1, . . . , xn) as the result of running deterministic algorithm A on inputs
x1, . . . , xn. We denote failure of an algorithm as ⊥. We write AO to denote
algorithm A with access to an oracle O. We say that a function f : N → R is
negligible if, for every positive polynomial p, there exists an N such that for all
integers n > N , f(n) < 1/p(n). We denote an arbitrary negligible function as
negl(λ) for some security parameter λ.

Setup. We define LSetup that initialises an empty ledger as follows.

– LSetup() : Algorithm LSetup outputs an empty ledger L = ().

Holders run algorithm HSetup to initialise an empty credential list and gen-
erate a master secret.

– HSetup() : Algorithm HSetup generates a master secret ms and initialises an
empty list of credentials W, outputting (ms, W).

We define algorithms Schema and DSetup that are run by issuers to create a
schema and a credential definition respectively. In a typical use case, the issuer
generates both the schema and credential definition, with the schema simply
being a precursor to the credential definition. However, issuers can reuse an
existing schema (i.e., one created by a different issuer) to create a credential
definition. However, the issuer must run DSetup for each credential that they
want to issue.

– Schema({a2, . . . , aL}) : On input a set of L − 1 attributes {a2, . . . , aL}, al-
gorithm Schema generates a schema ID IDS and a credential schema S, and
outputs (IDS, S).

– DSetup(IDS, S, b) : On input a Schema ID IDS, schema S, and revocation
flag b, algorithm DSetup generates a public/private credential definition pair
(pDef, sDef) and a credential definition ID IDD. If b = 1, the credential pair
includes material used in the revocation of credentials. Algorithm DSetup
outputs (IDD, pDef, sDef).
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Note that, in the HLAC protocol, the first attribute of any credential is reserved.
Accordingly, in our syntax, algorithm Schema takes as input L − 1 attributes
that are defined by the issuer. We will provide further details on the reserved
attribute in our description of the HLAC protocol (Section 4), but, briefly, the
first attribute in any credential is a blinded version of the holder’s master secret,
tying the holder to the issued credential.

To issue revocable credentials, an issuer must create a revocation registry
and revocation list for each credential definition. We define algorithm RSetup
for this purpose. We also define algorithm RUpdate that is used to update the
revocation list, which typically occurs when credentials are issued or revoked.

– RSetup(IDD, max) : On input a credential definition ID IDD and a limit on the
number of revocable credentials that can be issued max, algorithm RSetup
generates a public/private revocation registry pair (pReg, sReg), a revocation
list A, and IDs for the public revocation registry IDR and list IDA, and outputs
(IDR, pReg, sReg, IDA, A).

– RUpdate(A, pReg, sReg, CI, CR) : On input a revocation registry list A, public
revocation registry pReg, private revocation registry sReg and sets CI ∈
{0, 1}max and CR ∈ {0, 1}max that indicate credentials that must be issued and
revoked respectively, algorithm RUpdate generates a new revocation list A′

and a new list ID IDA and outputs (IDA, A
′).

Credential Issuance. We define four algorithms to capture the interactive cre-
dential issuance process between an issuer and a holder as follows.

– Offer(IDS, IDD, sDef) : Run by the issuer, on input a schema ID IDS, cre-
dential definition ID IDD and a private credential definition sDef, algorithm
Offer outputs a credential offer Offer.

– Request(Offer, ms, {v2, . . . , vL}) : Run by the holder, on input a credential
offer Offer, a master secret ms and a set of attribute values {v2, . . . , vL}, al-
gorithm Request outputs a public/private credential request pair (pReq, sReq).

– Issue(pReq, Offer, pDef, sDef, pReg, sReg, IDA, A, S, i) : Run by the issuer, on
input a credential request pReq, credential offer Offer, public/private cre-
dential definition pair (pDef, sDef), public/private revocation registry pair
(pReg, sReg), ID of a revocation list IDA, revocation list A, schema S and
index i, algorithm Issue outputs a credential cred.

– Store(cred, pReq, sReq, W) : Run by the holder, on input a credential cred, a
credential request pReq, a private credential request pReq and a credential list
W, algorithm Store outputs the updated credential list such that W← W∥cred.

Proof Presentation. We capture a verifier that requests and verifies identity
proofs, and a holder that generates identity proofs in our syntax as follows.

– Propose(R, P) : Run by the verifier, on input a set of attributes to be revealed
R and a set of predicates P, algorithm Propose outputs a presentation request
PReq.
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– Present(PReq,CP, ms) : Run by the holder, on input a presentation request
PReq, a list of credentials that will be used in the proof CP, and a master
secret ms, algorithm Present outputs an identity proof Proof.

– Verify(Proof, PReq) : On input the identity proof Proof and the presentation
request PReq, algorithm Verify returns 1 if the proof verifies and 0 otherwise.

Ledger Functions. We define functions LPost and LRetrieve to respectively write
to and read from the ledger. In practice, algorithms Schema, DSetup, RSetup and
RUpdate internally run algorithm LPost to generate IDs for AnonCreds objects.

– LPost(L,m) : On input a verifiable data registry L and a message m, algo-
rithm LPost generates an ID for message m, IDm, updates L with m such
that L← L∥m, and returns IDm.

– LRetrieve(IDm) : On input an ID for a message m, algorithm LRetrieve re-
turns the entry associated with IDm from the verifiable data registry L.

Correctness. An anonymous credentials system must satisfy correctness, which
requires that, if credentials are issued by executing the setup and credential is-
suance phase honestly, algorithm Store will update the holder’s credential list
with the issued credential. Moreover, it must be possible to use credentials stored
in the credential list to construct verifiable identity proofs, if the stored creden-
tials “satisfy” a presentation request PReq. To formalise this second requirement,
we introduce function ψ : (PReq,X )→ {0, 1} and say that credential list X can
be used to construct an identity proof that will satisfy PReq, if ψ(PReq,X ) = 1.
Otherwise, X does not satisfy PReq. We now provide a formal definition of cor-
rectness that captures this intuition.

Definition 1 (Correctness). Let {a2, . . . , aL} be a set of attributes and
{v2, . . . , vL} be a set of corresponding attribute values. Let R and P be sets, and
PReq be a presentation request such that ψ(PReq, W) = 1 for an honestly gener-
ated credential list W that encodes {(ai, vi)}i∈[2,L]. Then, a HLAC construction
satisfies correctness if there exists a negligible function negl such that
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L←LSetup()
(ms,W)←$HSetup()

(IDS,S)←$ Schema({a2,...,aL})
(IDD,pDef,sDef)←$DSetup(IDS,S,1)

(IDR,pReg,sReg,IDA,A)←$RSetup(IDD,max)
Offer←$Offer(IDS,IDD,sDef)

(pReq,sReq)←$Request(Offer,ms,{v2,...,vL})
cred←$ Issue(pReq,Offer,pDef,sDef,pReg,sReg,IDA,A,S,i)

(IDA,A
′)←$RUpdate(A,pReg,sReg,{i},∅)
W←Store(cred,pReq,sReq,W)

PReq←$Propose(R,P)
Proof←$Present(PReq,W,ms)

return (cred ∈ W ∧ Verify(Proof,PReq)=1)


≥ 1− negl.

2.2 Security Model

We now define a security model for our syntax that captures unforgeability
and anonymity. Informally, unforgeability requires that an identity proof must
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pertain to credentials issued by the issuers that registered the corresponding
credential definitions (i.e., posted the credential definitions to the ledger). In ad-
dition, the identity proof must be created by the holder to whom the credentials
were issued. Anonymity requires that a verifier should not learn which holder
generated an identity proof.

Our security definitions are inspired by existing security notions for anony-
mous credential schemes that are captured in the well-established game-based
model of security, e.g., [10, 31, 43]. In this setting, we consider the following threat
model.

– Issuers: malicious issuers may attempt to break anonymity of holders, and
may collude with other issuers and verifiers to do so.

– Holders: malicious holders may try to generate identity proofs not supported
by their issued credentials.

– Verifiers: verifiers may collude with other actors to break holder anonymity
or forge credentials.

We now define oracles for our security experiments, and then describe our un-
forgeability and anonymity experiments.

Oracles. We define several oracles for our security experiments in Figures 2, 3
and 4. At the beginning of each experiment, an oracle OSetup is run to initialise
several sets and list for the experiments, and to initialise the ledger. For example,
we define list H to be the list of holder master secrets and write that H[i] is
the master secret of holder registered at index i. We similarly define lists L,
D, R and C to respectively store credential lists, credential definition data,
revocation indices and credential request data. Additionally, OSetup initialises
sets QH, QCH and QP to keep track of registered holders, corrupt holders and
queries to the proof oracle respectively.

The adversary can perform setup operations by calling oracles ORegH and
ORegCDef. In particular, oracle ORegCDef runs algorithms Schema and DSetup
to create a schema and credential definition for a set of attributes {a2, . . . , aL}
input to the oracle. If input flag b = 1, the oracle also runs RSetup to create
a revocation registry for the credential. The IDs for all algorithm outputs is
returned by the oracle. Oracle ORegH performs holder setup operations. That
is, on input an index i, ORegH runs algorithm HSetup and returns ⊤ if setup was
successful. We also provide an oracle OCorruptH that can be used to corrupt
holders, returning the master secret and credential list for holder i. We define
oracle OProof to model the proof presentation phase of the HLAC protocol. In
particular, OProof runs algorithm Present to generate and return an identity
proof Proof for a presentation request PReq on behalf of holder i.

We then define three oracles in Figure 3 to model the credential issuance
process: OCredIssuance, OOffer and OIssue. Oracle OCredIssuance simulates
the full credential issuance process, running algorithms Offer, Request, Issue and
Store to issue a credential corresponding to IDD to holder j for a set of attribute
values Vj . In this way, the experiment models credential issuance where both
the holder and credential issuer are honest. In our unforgeability and anonymity
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OSetup()

1 : QH← ∅; QCH← ∅; QP← ∅;
2 : H← (); L← (); D← ()

3 : R← ();C← (); L← LSetup()

4 : return ⊤

OCorruptH(i)

1 : if i /∈ QH

2 : (H[i],L[i])←$HSetup()

3 : QH← QH ∪ {i}
4 : QCH← QCH ∪ {i}
5 : return (H[i],L[i])

ORegH(i)

1 : if i ∈ QH return ⊥
2 : (H[i],L[i])←$HSetup()

3 : QH← QH ∪ {i}
4 : return ⊤

OProof(PReq, i)

1 : if i /∈ QH return ⊥
2 : Proof←$Present(PReq,L[i],H[i])

3 : QP← QP ∪ {Proof}
4 : return Proof

ORegCDef({a2, . . . , aL}, b,max)

1 : (IDS, S)←$Schema({a1, . . . , aL})
2 : (IDD, pDef, sDef)←$DSetup(IDS, S, b)

3 : if b = 1

4 : (IDR, pReg, sReg, IDA, A)←$RSetup(IDD,max)

5 : M← {1, . . . ,max}
6 : else (IDR, pReg, sReg, IDA, A,M)← (⊥,⊥,⊥,⊥,⊥,⊥)
7 : D[IDD]← (IDS, IDR, IDA, sDef, pReg, sReg, A,M)

8 : return (IDS, IDD, IDR, IDA)

ORevoke(j, IDD)

1 : if R[j, IDD] = ⊥ return ⊥
2 : i← R[j, IDD]

3 : (IDS, IDR, IDA, sDef, pReg, sReg, A,M)← D[IDD]

4 : (ID′A, A
′)←$RUpdate(A, pReg, sReg,⊥, i)

5 : M← M ∪ {i}; R[j, IDD]← ⊥
6 : D[IDD]← (IDS, IDR, ID

′
A, sDef, pReg, sReg, A

′,M)

7 : L[j]← L[j]− cred

8 : return ⊤
Fig. 2: Oracles used in the unforgeability and anonymity experiments.

experiments, we model an attacker that can corrupt holders, running algorithms
Request and Store on behalf of corrupt holders. Accordingly, we define oracles
OOffer and OIssue to model an attacker that obtains credential offers and issued
credentials from an honest issuer, on behalf of a corrupt holder. As expected,
OOffer and OIssue run algorithms Offer and Issue respectively. We also define
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OOffer(IDD)

1 : (IDS, IDR, IDA, sDef, pReg, sReg, A,M)← D[IDD]

2 : Offer←$Offer(IDS, IDD, sDef)

3 : return Offer

OCredIssuance(IDD,Vj , j)

1 : if j /∈ QH return ⊥
2 : (IDS, IDR, IDA, sDef, pReg, sReg, A,M)← D[IDD]

3 : Offer←$Offer(IDS, IDD, sDef)

4 : (pReq, sReq)←$Request(Offer,H[j],Vj)

5 : if IDR ̸= ⊥
6 : i←$M; M← M \ {i}
7 : (ID′A, A

′)←$RUpdate(A, pReg, sReg, i,⊥)
8 : D[IDD]← (IDS, IDR, ID

′
A, sDef, pReg, sReg, A

′,M)

9 : R[j, IDD]← i

10 : else i← ⊥
11 : cred←$ Issue(pReq, Offer, pDef, sDef, pReg, sReg, IDA, A, S, i)

12 : L[j]← Store(cred, pReq, sReq,L[j])

13 : return ⊤

OIssue(IDD, pReq, Offer, j)

1 : if j /∈ QCH return ⊥
2 : (IDS, IDR, IDA, sDef, pReg, sReg, A,M)← D[IDD]

3 : if IDR ̸= ⊥
4 : i←$M; M← M \ {i}; R[j, IDD]← i

5 : (ID∗A , A
∗)←$RUpdate(IDA, sReg, i,⊥)

6 : D[IDD]← (IDS, IDR, ID
′
A, sDef, pReg, sReg, A

′,M)

7 : else i← ⊥
8 : cred←$ Issue(pReq, Offer, pDef, sDef, pReg, sReg, IDA, A, S, i)

9 : L[j]← L[j]∥cred
10 : return cred

Fig. 3: Additional oracles used in the unforgeability and anonymity experiments.

an oracle ORevoke that runs algorithm RUpdate to revoke a credential issued to
holder j and corresponding to IDD.

Our anonymity experiment captures an attacker that can corrupt issuers, in
addition to holders. To model this, we define three further oracles, formalised in
Figure 4. Firstly, oracle OCorruptCDef models corruption of an issuer, return-
ing a private credential definition sDef and private revocation registry sReg for
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a credential definition input to the oracle. Oracles ORequest and OStore run
algorithms Request and Store respectively. Together, these oracles enable an ad-
versary to play the role of a corrupt issuer, obtaining credential requests from,
and storing credentials on behalf of, honest holders.

ORequest(Offer, {v2, . . . , vL}, j)

1 : if j /∈ QH return ⊥
2 : (pReq, sReq)←$Request(Offer,H[j], {v2, . . . , vL})
3 : C[j]← (pReq, sReq)

4 : return pReq

OStore(cred, j)

1 : (pReq, sReq)← C[j]

2 : L[j]← Store(cred, pReq, sReq,L[j])

3 : return ⊤

OCorruptCDef(IDD)

1 : (IDS, IDR, IDA, sDef, pReg, sReg, A,M)← D[IDD]

2 : return (sDef, sReg)

Fig. 4: Additional oracles used in the anonymity experiment.

Unforgeability. Unforgeability requires that a holder can only construct iden-
tity proofs for credentials issued to the holder by issuers that posted associated
credential definitions to the ledger. In other words, an attacker cannot forge cre-
dentials on behalf of an honest issuer that can be used to construct valid identity
proofs, even if the attacker can corrupt credential holders. Formally, we define
an experiment (Definition 2) in which an adversary attempts to output a presen-
tation request PReq∗ and a proof Proof∗ such that algorithm Verify returns 1. In
the experiment, the adversary can query the oracles defined in Figure 2. We say
that the HLAC protocol satisfies unforgeability if the adversary outputs a valid
identity proof with negligible probability and the following two conditions hold.
Firstly, the identity proof Proof∗ output by the adversary cannot be the output
of oracle OProof. This is crucial to ensure that the adversary does not trivially
succeed in the experiment. Secondly, for every corrupt holder j ∈ QCH, the cre-
dential list L[j] cannot satisfy the presentation request. This condition ensures
that the adversary does not succeed by returning an identity proof pertaining
to credentials held by a single corrupt holder, which the adversary can trivially
do as they have the corrupt holder’s credential list and master secret.

Definition 2 (Unforgeability). The HLAC protocol satisfies unforgeability if,
for any probabilistic polynomial time adversary A, there exists a negligible func-

12



tion negl such that

Pr

 ⊤←OSetup(); (PReq∗,Proof∗)←$AO()

return
(
Verify(PReq∗,Proof∗)=1 ∧ Proof∗ /∈QP

∧ {ψ(PReq∗,L[j])=0}j∈QCH

)
 ≤ negl

where O = {ORegH,OCorruptH,ORegCDef,OCredIssuance,OOffer,OIssue,
OProof,ORevoke} are the oracles defined in Figures 2 and 3.

Our unforgeability experiment captures a property known as consistency of
credentials [16, 39] from the anonymous credentials literature. Consistency of
credentials requires that a set of holders cannot collaborate to generate a valid
identity proof that one holders alone cannot generate. In our unforgeability ex-
periment, the adversary can output an identity proof Proof∗ that uses credentials
issued to several (corrupt) holders. Such a strategy can satisfy the two condi-
tions of our unforgeability experiment. In particular, the credentials used in the
identity proof are not contained in the credential list of a single corrupt holder,
satisfying the second condition. If the identity proof is valid, the adversary suc-
ceeds in our unforgeability experiment. Accordingly, if unforgeability holds, the
adversary cannot adopt this attack to succeed.

Anonymity. In an anonymous credential system, a verifier should be unable to
determine which holder generated an identity proof, even if the verifier colludes
with credential issuers. We capture this intuition in an anonymity experiment
(Definition 3). In our experiment, the adversary outputs two challenge holder
indices i∗0 and i∗1 and a presentation request PReq∗, and obtains a challenge iden-
tity proof Proof∗ on behalf of holder i∗b for a bit b chosen randomly from the
set {0, 1} in the experiment. As in our unforgeability experiment, the adversary
can query any oracles defined in Figure 2, and also has access to the oracles
in Figure 4. The adversary then outputs a ‘guess’ at bit b and we say that the
HLAC protocol satisfies anonymity if the adversary succeeds in outputting a bit
b′ = b with probability at most negligibly greater than 1/2. We also require that
the following conditions hold. Firstly, i∗0 and i∗1 must not be queried to the ora-
cle OCorruptH (i.e., both challenge holders must be honest). This prevents the
adversary from learning, for example, master secrets that may provide the ad-
versary with some distinguishing advantage. Secondly, the presentation request
PReq∗ output by the adversary must be satisfiable by the credential lists of both
challenge holders. Otherwise, the adversary can output a presentation request
that can only be satisfied by one of the challenge holders and trivially succeed in
the experiment. Finally, the set of revealed attributes R contained in PReq∗ must
be identical for both challenge holders. Else, the adversary can request revealed
attributes in the presentation request such that the two challenge holders will
reveal different values, and the adversary can trivially distinguish.

Definition 3 (Anonymity). The HLAC protocol satisfies anonymity if, for any
probabilistic polynomial time adversary A = (A1,A2), there exists a negligible
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function negl such that

Pr


b←$ {0,1}; ⊤←OSetup()

(st,PReq∗,i∗0 ,i
∗
1)←$A

O
1 ()

Proof∗ ←$Present(PReq∗,L[i∗b ],H[i∗b ])

b′ ←$A2(st,Proof
∗)

return
(
b′=b ∧ {i∗0 ,i

∗
1}⊆QH\QCH ∧ R⊆V0∩V1

∧ {ψ(PReq∗,L[i∗j ])=1}j∈{0,1}

)

 ≤ 1

2
+ negl

where O = {ORegH,OCorruptH,ORegCDef,OCorruptCDef,OCredIssuance,
OOffer,ORequest,OIssue,OStore,OProof,ORevoke} are the oracles defined in
Figures 2, 3 and 4, and Vb is the set of attribute values in L[ib] for b ∈ {0, 1}.

3 Preliminaries

In this section, we introduce the building blocks for the HLAC protocol. We
also state the hardness assumptions and other details that are required for
the security analysis of the protocol. The HLAC protocol employs Camenisch-
Lysyanskaya (CL) signatures [18], non-interactive zero-knowledge proofs de-
scribed in [43], the Pedersen commitment scheme [42], and the Camenisch-
Kohlweiss-Soriente (CKS) cryptographic accumulator and associated
zero-knowledge proof of knowledge from [14]. HLAC also requires a hash function
H : X → {0, 1}ℓ that takes as input some element from domain X and outputs
a string of fixed length ℓ. We assume that all building blocks and algorithms in
the HLAC protocol have access to a cyclic group G with generators g and h of
prime order q.

3.1 Assumptions and Definitions

Definition 4 (Bilinear Group). We define a type 3 bilinear pairing as follows.
Let G1 = E(Fp) and G2 = E(Fp2) where E is the BN254 curve defined over a
254-bit prime p. Let e : G1 × C2 → GT where GT is the group of qth roots of
unity in Fp12 where q1 = |E(Fp)| and q1 is also a 254-bit prime. That is, G1 and
G2 are cyclic additive groups of prime order q1, and Gt is a multiplicative cyclic
group of order q1 with a pairing e.

Definition 5 (Quadratic Residue). We say that an integer q is a quadratic
residue mod n if there exists an integer x such that x2 ≡ q mod n. We write
that q ∈ QRn.

Definition 6 (Strong RSA Assumption [3, 33]). The strong RSA assump-
tion holds if, for a random RSA modulus n, element u ∈ Zn and any probabilistic
polynomial time adversary A, there exists a negligible function negl such that

Pr[(v, e)←$A(n, u) : ve ≡ u mod n] ≤ negl.
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Definition 7 (Discrete Logarithm Assumption). The discrete logarithm
assumption holds in group (G, p, g) if, for any probabilistic polynomial time ad-
versary A, there exists a negligible function negl such that

Pr[y←$G; x←$A(G, p, g, y) : gx ≡ y] ≤ negl.

Definition 8 (Diffie-Hellman Exponent assumption [14]). Let G be a
cyclic group with prime order p and generator g ∈ G. The Diffie-Hellman Expo-
nent (DHE) assumption holds if, for any probabilistic polynomial time adversary
A there exists a negligible function negl such that

Pr
[
γ←$Zq; {for i ∈ {1, . . . , n, n+ 2, . . . , 2n} : gi = gγ

i

} :

gn+1 ← A({g, g1, . . . , gn, gn+2, . . . , g2n})
]
≤ negl.

Definition 9 (Hidden Strong Diffie-Hellman Exponent assumption [14]).
Let G be a cyclic group with prime order p and generator g ∈ G. The Hidden
Strong Diffie-Hellman Exponent (HSDHE) assumption holds if, for any proba-
bilistic polynomial time adversary A there exists a negligible function negl such
that

Pr
[
g, gx, u←$G; {for i ∈ [n] : g1/(x+γ

i), gγ
i

, uγ
i

}; {for i ∈ [n+2, 2n] : gγ
i

, }

(g1/(x+c),g
c,uc

)← A(g, gx, u, g1/(x+γ
i), gγ

i

, uγ
i

, gγ
i

)
]
≤ negl.

3.2 Camenisch-Lysyanskaya Signature Scheme [18]

The CL signature scheme is used to generate a signature over all attribute
values in a credential during the credential issuance phase. The Camenisch-
Lysyanskaya (CL) signature scheme CL [18] is typically defined as a tuple of
algorithms (CL.KGen,CL.Sign,CL.Verify). However, in the HLAC construction,
algorithm CL.Verify is not used. Therefore, we define the CL signature scheme in
Figure 5 as a pair of algorithms (CL.KGen,CL.Sign). Algorithm CL.KGen outputs
a public/private key pair (ppk, psk) and key metadata pmd. Algorithm CL.Sign
produces a signature σ over a set of messages m1, . . . ,mL (i.e., the attribute val-
ues in the HLAC protocol) and outputs signature σ and some signing metadata
Q. Rather than define algorithm CL.Verify, the HLAC protocol requires gener-
ation of a proof of correct signing, verification of which includes verification of
the signature. The private key and signing metadata are used to generate a
zero-knowledge proof of correct signing.

For the security of the HLAC construction, we require that the CL signature
scheme satisfies security against adaptive chosen message attacks.

Definition 10 (Security against adaptive chosen message attacks [34]).
A signature scheme satisfies security against adaptive chosen message attacks
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CL.KGen(L)

p← 2p′ + 1 s.t. p, p′ ∈ P ∧ p′ ←$ {0, 1}1536

q ← 2q′ + 1 s.t. q, q′ ∈ P ∧ q′ ←$ {0, 1}1536

n← p · q
S ←$QRn

for i ∈ 1, . . . , L

xi ←$ [2, p′q′ − 1]

Ri ← Sxi mod n

xz ←$ [2, p′q′ − 1]

Z ← Sxz mod n

psk← (p, q)

ppk← (n, S, Z, {R0, . . . , RL})
pmd = (xz, x1, . . . , xL)

return (ppk, psk, pmd)

CL.Sign(ppk, psk, {v1, . . . , vL})

parse ppk as (n, S, Z, {R0, . . . , RL})
parse psk as (p, q)

v′′ ←$ {0, 1}2724

e←$
[
2596, 2596 + 2119

]
s.t. e ∈ P

Q← Z

v1 · Sv′′ ∏
[2,L] R

vi
i mod n

A← Q(e−1 mod p′q′) mod n

σ ← (A, e, v′′)

return (σ,Q)

ZKσ.Prove((σ, n1), (Q, psk))

parse σ as (A, e, v′′)

parse psk as (p, q)

r←$Zp′q′

Ã← Qr mod n

cσ ← H(Q∥A∥Ã∥n1)

se ← r − cσ · e−1 mod p′q′

return ρσ ← (se, cσ)

ZKσ.Verify((σ, n1), ppk, (sReq, {v1, . . . , vL}), ρσ)

parse ppk as (n, S, Z, {R1, . . . , RL})
parse σ as (A, e, v′′)

parse ρσ as (se, cσ)

if e /∈
[
2596, 2596 + 2119

]
∨ e /∈ P return 0

Q′ ← Z

Sv
∏

i∈[L] R
vi
i

mod n

if Q′ ̸= Ae mod n return 0

Ã′ ← Acσ+se·e mod n

if cσ ̸= H(Q′∥A∥Ã′∥n1) return 0

return 1

Fig. 5: The CL signature scheme (CL.KGen,CL.Sign) and the NIZK proof system
for correct key construction (ZKσ.Prove,ZKσ.Verify).
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if, for any probabilistic polynomial time adversary A, there exists a negligible
function negl such that

Pr


Q←∅; (ppk,psk,pmd)←$CL.KGen()

(m∗=(m1,...,mL),σ∗=(A,e,v′′))←$AOSign(ppk)

return
(
Ae= Z

Sv′′ ∏
i∈[L] R

mi
i

∧ m∗ /∈Q
)

 ≤ negl

where OSign(m) computes and outputs σ ← CL.Sign(ppk, psk,m), and updates
set Q to include message m.

Theorem 1. The CL signature scheme satisfies security against adaptive cho-
sen message attacks if the strong RSA assumption holds [18].

3.3 Pedersen Commitments [42]

As mentioned in Section 2.1, the first attribute of every issued credential is a
blinded version of the holder’s master secret. In the HLAC protocol, the master
secret is blinded during credential issuance by constructing a Pedersen commit-
ment to the master secret. The Pedersen commitment scheme Comm is a tuple
of algorithms (KGen,Commit,Open) defined as follows.

Key Generation Choose a commitment key h←$G where G is a cyclic
group with prime order p with generator g ∈ G.

Commit To commit to a message m, choose r←$Zp and return the com-
mitment c = gr · hm.

Open On input a message m, commitment c and randomness r, output 1 if
c commits to message m, and 0 otherwise.

Security of the HLAC protocol requires that the Pedersen commitment scheme
satisfies binding and hiding.

Definition 11 (Binding [42]). The Pedersen commitment scheme satisfies
binding if, for any probabilistic polynomial time adversary A, there exists a neg-
ligible function negl such that

Pr

[ h←$Comm.KGen(); (m0,m1,r0,r1)←$A(h)

return
(
Commit(h,m0;r0)=Commit(h,m1;r1)

∧ m0 ̸=m1

)
]
≤ negl.

Definition 12 (Hiding [42]). The Pedersen commitment scheme satisfies hid-
ing if, for any probabilistic polynomial time adversary A, there exists a negligible
function negl such that

Pr

[
b←$ {0,1}; h←$Comm.KGen(); (m0,m1,st)←$A1(h)

c←$Commit(h,mb); b
′ ←$A2(st,c)

return b′=b

]
≤ 1

2
+ negl.

Theorem 2. The Pedersen commitment scheme is perfectly hiding and compu-
tationally binding if the discrete logarithm assumption holds with respect to the
cyclic group G of prime order p with group generator g [42].
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3.4 Cryptographic Accumulator [14]

Cryptographic accumulators generate a hash of a list of values (an accumulator)
and a witness that can be used to demonstrate that a value is included in the
accumulator. They are used in anonymous credential systems to support revo-
cation of credentials. Indeed, issuers can compute an accumulator that contains
values associated with each non-revoked credential to issue revocable credentials,
and holders can use a witness generated during credential issuance (and included
in their credential) to demonstrate that the value associated with their creden-
tial is included in the accumulator. In this way, the holder can demonstrate that
their credential is not revoked.

The HLAC protocol uses a modified version of the CKS cryptographic accu-
mulator [14] that is defined as a tuple of algorithms (RevKGen,AccKGen,AccAdd,
AccUpd,Acc.WUpd), as in Figure 6. In particular, the HLAC protocol uses type-3
bilinear pairings, rather than type-1 pairings used in the original construction.
Accordingly, we assume that each algorithm in the HLAC protocol and the CKS
protocol has access to a set of public parameters pp = (G1, G2, GT , e, q1, g, g

′)
where G1, G2 and GT are groups of prime order q1, e is a map such that
e : G1 × G2 → GT , g is a generator of G1 and g′ is a generator of G2. Algo-
rithms RevKGen and AccKGen are used during setup to generate keys and initial
revocation lists. When a new credential is issued, algorithms AccAdd and AccUpd
are run to update the cryptographic accumulator and revocation list, and to gen-
erate a witness for the credential. Finally, algorithm Acc.WUpd is used by the
holder to update their witness when generating an identity proof, in order to
demonstrate that their credential is included in the most recent accumulator
generated by the issuer and posted to the ledger.

3.5 Zero-Knowledge Proofs [14, 43]

Non-interactive zero-knowledge proofs of knowledge (NIZKs) are used in the
HLAC protocol to generate identity proofs, to prove correct issuer key construc-
tion during setup, and to prove correct blinding of the master secret and correct
credential signing during credential issuance. For these purposes, the HLAC pro-
tocol uses NIZK proofs described in [43].

Generically, a proof system ZK is a protocol between a prover and a ver-
ifier where the prover attempts to prove that a statement s is in some lan-
guage L. To achieve this, the prover demonstrates knowledge of a witness w
such that the tuple (s, w) ∈ R for some binary relation R. The proof systems
used in the HLAC protocol are all Σ-protocols, which are interactive protocols
wherein the prover sends a commitment to a verifier, who generates a chal-
lenge. The prover then sends a response to the challenger. Σ-protocols can be
transformed into non-interactive zero-knowledge (NIZK) proof system using the
Fiat-Shamir transform [27], which replaces the verifier’s challenge with the out-
put of a random oracle, usually instantiated with a hash function, on input of
the protocol transcript. We define NIZK proof systems to be a pair of algorithms
(ZK.Prove,ZK.Verify) where ZK.Prove takes as input a statement s and witness
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RevKGen(pp)

parse pp as (G1, G2, GT , e, q1, g, g
′)

h, h0, h1, h2, h̃←$ (G1)
5

sk←$Zq1

pk ← gsk

u, ĥ←$ (G2)
2

x←$Zq1

y ← ĥx

rpk← (pp, g, g′, h, h0, h1, h2, h̃, ĥ, u, pk, y)

rsk← (x, sk)

return (rpk, rsk)

AccKGen(pp, max)

parse pp as (G1, G2, GT , e, q1, g, g
′)

ask←$Zq1

apk← (e(g, g′))ask
max+1

T← ()

for i ∈ 1, . . . , 2 · max

T[i]← g′ask
i

T[max+ 1]← g′ask

Acc← 0

RL← 1

return (apk, ask,T,Acc,RL)

AccAdd(rpk, rsk, ask, max, i,RL,m2, ur, pp)

parse pp as (G1, G2, GT , e, q1, g, g
′)

parse rpk as (pp, g, g′, h, h0, h1, h2, h̃, ĥ, u, pk, y)

parse rsk as (x, sk)

c, v′′r ←$ (G2)
2 mod q1

gi ← gask
i

σ ← (h0 · hm2
1 · ur · gi · hv′′

r
2 )

1
x+c

σi ← g
′ 1
sk+aski

ui ← uaski

w←
j ̸=i∏

j : RL[j]=0

g′max+1−j+i

wσ ← (σi, ui, gi)

σr ← (σ, c, v′′r ,wσ, gi, i,m2)return (σr,w)

AccUpd(Acc, max, CI, CR,RL, ask)

pw← 0

∀ i ∈ CI : pw← pw + askmax+1−i

∀ i ∈ CR : pw← pw − askmax+1−i

Accnew ← g′pw · Acc
∀ i ∈ CI : RL[i]← 0

∀ i ∈ CR : RL[i]← 1

return (Accnew,RL)

Acc.WUpd(w,RL,RL′,T)

a =

∏
j∈RL′\RL T[max+ 1− j + i]∏
j∈RL\RL′ T[max+ 1− j + i]

w′ = w · a
return w′

Fig. 6: The CKS cryptographic accumulator (RevKGen,AccKGen,AccAdd,
AccUpd,Acc.WUpd).
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w and outputs a proof ρ, and ZK.Verify takes as input s and ρ and outputs a bit
that is 1 if the proof verifies and 0 otherwise.

For our security analysis, we recall definitions of soundness and zero-knowledge
for a NIZK proof system from [35]. Intuitively, soundness states that an adver-
sary cannot output a verifiable proof unless there exists an algorithm that can
extract a witness w, and zero-knowledge is the property that a NIZK proof re-
veals nothing about the witness. More formally, we recall the following definitions
from [35].

Definition 13 (Soundness [35]). A NIZK proof system satisfies soundness if,
for all polynomial time adversaries A, there exists a negligible function negl such
that

Pr
[
(s, ρ)←$A() : (s,w) ∈ R

∨ ZK.Verify(s,ρ) := 0

]
≥ 1− negl.

Definition 14 (Zero-knowledge [35]). A NIZK proof system satisfies zero-
knowledge if, for all probabilistic polynomial time adversaries A, there exists a
negligible function negl such that,∣∣∣Pr[AOProve() = 1

]
− Pr[AOSim()=1]

∣∣∣ ≤ negl

where OProve(s, w) returns ZK.Prove(s, w) and OSim(s, w) returns ZK.Prove(s, τ)
on input of query (s, w) ∈ R, for some trapdoor τ output by a simulated setup.

Definition 15 (Secure NIZK Proof System). A NIZK proof system is se-
cure if it satisfies soundness and zero-knowledge.

We now formally define the non-interactive zero-knowledge proof systems
used in the HLAC protocol, and note that the NIZK protocols presented here are
all secure. We provide references to formal proofs and further details on these
proofs where relevant.

Correct Key Construction. Algorithm DSetup outputs a NIZK proof of cor-
rect key construction for the CL signature key pair ppk = (n, S, {R1, . . . , RL},
Z) and psk = (p, q), we define a NIZK proof system (ZKppk.Prove,ZKppk.Verify)
in Figure 7. The NIZK proof system (ZKppk.Prove,ZKppk.Verify) is secure if Z
and {Ri}i∈[L] are elements of the subgroup generated by S [43].

Blinding of the Master Secret. To request a credential, the holder must blind
their master secret and generate a zero-knowledge proof of correct blinding. To
facilitate this, we define NIZK proof system (ZKms.Prove,ZKms.Verify) in Figure 8.
The NIZK proof system (ZKms.Prove,ZKms.Verify) is a secure NIZK proof for
equality of discrete logarithms [43].
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ZKppk.Prove((ppk, {a1, . . . , aL}), (psk, pmd))

parse ppk as (n, S, Z, {R1, . . . , RL})
parse pmd as (xz, x1, . . . , xL)

parse psk as (p, q)

αz ←$ [2, p′q′ − 1]

Z̃ ← Sαz

for i ∈ 1, . . . , L

αi ←$ [2, p′q′ − 1]

R̃i ← Sαi

cppk ← H(Z∥{R1, . . . , RL}∥Z̃∥{R̃1, . . . R̃L})
x̃z ← αz + cppk · xz mod p′q′

for i ∈ 1, . . . , L

x̃i ← αi + cppk · xi mod p′q′

return ρpDef = (cppk, x̃z, {(x̃i, ai)}i∈[L])

ZKppk.Verify((ppk, {a1, . . . , aL}), ρpDef)

parse ppk as (n, S, Z, {R1, . . . , RL})
parse ρpDef as (cppk, x̃z, {(x̃i, a

′
i)}i∈[L])

if {a1, . . . , aL} ≠ {a′1, . . . , a′L} return 0

for i ∈ 1, . . . , L

R̃′
i ← R

−cppk
i Sx̃i s.t. R−1

i Ri = 1 mod n

Z̃′ ← Z−cppkSx̃z s.t. Z−1Z = 1 mod n

if cppk ̸= H(Z∥{R1, . . . , RL}∥Z̃′∥{R̃′
i}i∈[L]) return 0

return 1

Fig. 7: The NIZK proof system (ZKppk.Prove,ZKppk.Verify).
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ZKms.Prove((ppk,U, n0), (v
′, ms))

parse ppk as (n, S, Z, {R1, . . . , RL})
ṽ←$ {0, 1}3488

m̃s←$ {0, 1}593

Ũ← (Sṽ)Rm̃s
1 mod n

cU ← H(U∥Ũ∥n0)

ṽ′ ← ṽ + cU · v′

m̃s
′ ← m̃s+ cU · ms

return ρU ← (cU, ṽ
′, m̃s′)

ZKms.Verify((ppk,U, n0), ρU)

parse ppk as (n, S, Z, {R1, . . . , RL})
parse ρU as (cU, ṽ

′, m̃s′)

Ũ′ ← U−cU ·Rm̃s′
1 · Sṽ′

s.t. U−1U = 1 mod n

if cU ̸= H(U∥Ũ′∥n0) return 0

return 1

Fig. 8: The NIZK proof system (ZKms.Prove,ZKms.Verify).

Correct Credential Signing. To generate a credential, algorithm Issue gener-
ates a NIZK proof of correct signing using NIZK proof system (ZKσ.Prove,
ZKσ.Verify), defined in Figure 5. This NIZK protocol is an example of Schnorr’s
signature scheme, which is a secure NIZK proof system [43] in the random oracle
model [6]. The zero-knowledge verification algorithms also acts as a CL signature
verification algorithm.

Credential Issuance. To generate an identity proof, algorithm Present generates
a NIZK proof that each credential used in the identity proof was signed by an is-
suer. We define NIZK proof system (ZKcred.Prove1,ZKcred.Prove2,ZKcred.Verify)
in Figure 9. The above protocol is a secure NIZK proof [43] as it is a variation
of the Schnorr protocol modulo a composite.

Predicate Proofs. To generate an identity proof, algorithm Present also generates
a NIZK proof for each predicate. We define NIZK proof system (ZKpred.Prove1,
ZKpred.Prove2,ZKpred.Verify) in Figure 10. As expected, the above NIZK proof
protocol is a secure NIZK proof [43].

Non-Revocation Proof. In addition to a credential proof and predicate proof,
holders must present a non-revocation proof to demonstrate that their cre-
dential is currently active. We present the NIZK proof system (ZKrev.Prove1,
ZKrev.Prove2,ZKrev.Verify) from [14] in Figures 11 and 12. This system is secure
if the n-DHE and n-HSDHE assumptions hold [14].
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ZKcred.Prove1((Ar̄, ppk), (σ, {v̂j}j∈Ar̄ ))

parse ppk as (n, S, Z, {R1, . . . , RL})
parse σ as (A, e, v′′)

r←$ {0, 1}3152

Ā← A · Sr mod n

v̄ ← v′′ − e · r
Ccred ← (Ā, v̄)

ē← e− 2596

ē′ ←$ {0, 1}456

v̄′ ←$ {0, 1}3748

Z̄ ← (Ā)ē
′
· (S)v̄

′
· (
∏

j∈Ar̄

R
v̂j
j )

Tcred ← (ē, ē′, v̄′, Z̄)

return (Ccred,Tcred)

ZKcred.Prove2((Ccred, Ar̄, cH), (Tcred, {v̂j , vj}j∈Ar̄ )

parse Ccred as (Ā, v̄)

parse Tcred as (ē, ē′, v̄′, Z̄)

ẽ← ē′ + cH · ē
ṽ ← v̄′ + cH · v̄
∀ j ∈ 1, . . . , |Ar̄|

ṽj ← v̂j + cH · vj
m̃2 ← v̂2 + cH ·m2

return ρcred ← (Ā, ẽ, ṽ, {ṽj}j∈Ar̄ , m̃2)

ZKcred.Verify((Ar̄, Ar, cH , {vj}j∈Ar ), ppk, ρcred)

parse ρcred as (Ā, ẽ, ṽ, {ṽj}j∈Ar̄ , m̃2)

parse ppk as (n, S, Z, {R1, . . . , RL})

T̂ ←

(
Z

(
∏

j∈Ar
R

vj
j )(Ā)2596

)−cH

· (Ā)ẽ
( ∏

j∈Ar̄

R
ṽj
j

)
(Sṽ) mod n

T̂cred ← T̂

return T̂cred

Fig. 9: The NIZK proof system (ZKcred.Prove1,ZKcred.Prove2,ZKcred.Verify).
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ZKpred.Prove1((ppk, p, z), (v, v̂))

parse ppk as (n, S, Z, {R1, . . . , RL})
∆← z − v if p =≤

z − v − 1 p =<

v − z p =≥
v − z − 1 p =>

a← −1 if p =≤ or <

1 p =≥ or >

Find u1, u2, u3, u4 s.t.

∆ = u2
1 + u2

2 + u2
3 + u2

4

r1, r2, r3, r4, r∆ ←$ ({0, 1}2128)5

for k = 1, . . . , 4

Tk ← Zuk · Srk mod n

T∆ ← Z∆ · Sr∆ mod n

Cpred ← (T1, T2, T3, T4, T∆)

α̃←$ {0, 1}2787

ũ1, ũ2, ũ3, ũ4 ←$ ({0, 1}592)4

r̃1, r̃2, r̃3, r̃4, r̃∆ ←$ ({0, 1}672)5

Q← (Sα̃) ·
4∏

k=1

T
ũk
k mod n

for k = 1, . . . , 4

T̃k ← Zũk · Sr̃k mod n

T̃∆ ← Z v̂ · (Sa·r̃∆) mod n

Tpred ← (T̃1, T̃2, T̃3, T̃4, T̃∆, Q)

Mpred ← ({uk, ũk, rk, r̃k}k∈[4], r∆, r̃∆, α̃)

return (Cpred,Tpred,Mpred)

ZKpred.Verify((ppk, p, z),Cpred, cH), ρpred, ṽ)

parse ppk as (n, S, Z, {R1, . . . , RL})
parse Cpred as (T1, T2, T3, T4, T∆)

parse ρpred as ({ûk}k∈[4], {r̂k}k∈[4], r̂∆, α̂)

∆′ ← z if p =≤ or ≥
z − 1 p =<

z + 1 p =>

a← −1 if p =≤ or <

1 p =≥ or >

for k = 1, . . . , 4

T̂k ← T−cH
k Zûk · Sr̂k mod n

T̂∆ ←
(
T a
∆ · Z∆′)−cH

· Z ṽ · (Sa·r̂∆) mod n

Q̂← (T∆)−cH ·

(
4∏

k=1

T
ûk
k

)
· (Sα̂) mod n

T̂pred ← ({T̂k}k∈[4], T̂∆, Q̂)

return T̂pred

ZKpred.Prove2(cH ,Mpred)

parse Mpred as ({uk, ũk, rk, r̃k}k∈[4], r∆, r̃∆, α̃)

r̂∆ ← r̃∆ + cH · r∆
for k = 1, . . . , 4

ûk ← ũk + cH · uk

r̂k ← r̃k + cH · rk

α̂← α̃+ cH · (r∆ −
4∑

k=1

uk · rk)

return ρpred ← ({ûk}k∈[4], {r̂k}k∈[4], r̂∆, α̂)

Fig. 10: The NIZK proof system (ZKpred.Prove1,ZKpred.Prove2,ZKpred.Verify).
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ZKrev.Prove1(rcred, pp, rpk,Acc)

parse pp as (G1, G2, GT , e, q1, g, g
′)

parse rpk as (pp, g, g′, h, h0, h1, h2, h̃, ĥ, u, pk, y)

parse rcred as (σ, c, v′′r ,wσ, gi, i,m2)

parse wσ as (σi, ui, gi)

p, e′, r, r′, r′′, r′′′, o, o′, t, t,m,m′ ←$ (Zq1)
12

V1 ← (p, e′, r, r′, r′′, r′′′, o, o′, t, t,m,m′)

E ← hph̃o

D ← grh̃o′

A← σh̃p

G← gih̃
r

W ← wĥr′

S ← σiĥ
r′′

U ← uiĥ
r′′′

m← p · c mod q1

m′ ← r · r′′ mod q1

t← o · c mod q1

t′ ← o′ · r′′ mod q1

Crev ← (E,D,A,G,W, S, U,m,m′, t, t′)

ẽ, õ, õ′, c̃, m̃, m̃′, t̃, t̃′, m̃2, s̃, r̃, r̃
′, r̃′′, r̃′′′ ←$ (Zq1)

14

V2 ← (ẽ, õ, õ′, c̃, m̃, m̃′, t̃, t̃′, m̃2, s̃, r̃, r̃
′, r̃′′, r̃′′′)

T̄1 ← hẽh̃õ

T̄2 ← E c̃h−m̃h̃−t̃

T̄3 ← e(A, ĥ)c̃e(h̃, ĥ)r̃e(h̃, y)−ẽe(h̃, ĥ)−m̃e(h1, ĥ)
−m̃2e(h2, ĥ)

−s̃

T̄4 ← e(h̃,Acc)r̃e(1/g, ĥ)r̃
′

T̄5 ← gr̃h̃õ′

T̄6 ← Dr̃′′g−m̃′
h̃−t̃′

T̄7 ← e(pk ·G, ĥ)r̃
′′
e(h̃, ĥ)−m̃′

e(h̃, S)r̃

T̄8 ← e(h̃, u)r̃e(1/g, ĥ)r̃
′′′

Trev ← (T̄1, T̄2, T̄3, T̄4, T̄5, T̄6, T̄7, T̄8)

Mrev ← {V1,V2}
return (Crev,Trev,Mrev)

Fig. 11: The NIZK proof system (ZKrev.Prove1,ZKrev.Prove2,ZKrev.Verify).
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ZKrev.Prove2(rcred,Mrev, cH)

parse rcred as (σ, c, v′′r ,wσ, gi, i,m2)

ê← ẽ− cH · p mod q1

ô← õ− cH · o mod q1

ĉ← c̃− cH · c mod q1

ô′ ← õ′ − cH · o′ mod q1

m̂← m̃− cH ·m mod q1

m̂′ ← m̃′ − cH ·m′ mod q1

t̂← t̃− cH · t mod q1

t̂′ ← t̃′ − cH · t′ mod q1

m̂2 ← m̃2 − cH ·m2 mod q1

ŝ← s̃− cH · v′′r mod q1

r̂ ← r̃ − cH · r mod q1

r̂′ ← r̃′ − cH · r′ mod q1

r̂′′ ← r̃′′ − cH · r′′ mod q1

r̂′′′ ← r̃′′′ − cH · r′′′ mod q1

ρrev ← (ê, ô, ĉ, ô′, m̂, m̂′, t̂, t̂′, m̂2, ŝ, r̂, r̂
′, r̂′′, r̂′′′)

return ρrev

ZKrev.Verify(rpk,Crev, ρrev, cH ,Acc)

T̂1 ← EcHhêh̃ô

T̂2 ← E ĉh−m̂h̃−t̂

T̂3 ← (
e(h0G, ĥ)

e(A, y)
)cH e(A, ĥ)ĉe(h̃, ĥ)r̂e(h̃, y)−êe(h̃, ĥ)−m̂

e(h1, ĥ)
−m̂2e(h2, ĥ)

−ŝ

T̂4 ← (
e(G,Acc)

e(g,W ) · z )
cH e(h̃,Acc)r̂e(1/g, ĥ)r̂

′

T̂5 ← DcH gr̂h̃ô′

T̂6 ← Dr̂′′g−m̂′
h̃−t̂′

T̂7 ← (
e(pkG, S)

e(g, g′)
)cH e(pk ·G, ĥ)r̂

′′
e(h̃, ĥ)−m̂′

e(h̃, S)r̂

T̂8 ← (
e(G, u)

e(g, U)
)cH e(h̃, u)r̂e(1/g, ĥ)r̂

′′′

T̂rev ← (T̂1, T̂2, T̂3, T̂4, T̂5, T̂6, T̂7, T̂8)

return T̂rev

Fig. 12: More alogorithms for the NIZK proof system
(ZKrev.Prove1,ZKrev.Prove2,ZKrev.Verify).
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4 The HLAC Protocol

In this section, we describe the Hyperledger AnonCreds (HLAC) protocol, as
defined in the AnonCreds specification [26], describing the setup, credential is-
suance and proof presentation phases in turn.

4.1 Setup

The ledger for the HLAC protocol is normally instantiated as an instance of
the Hyperledger Indy blockchain [29], a permissioned, append-only ledger that
anyone with permission can write to. We capture this in our modelling as follows.
We define the ledger as an append-only list and facilitate the initialisation of an
empty ledger via algorithm LSetup, as described in Section 2.1. We assume that
any entity can setup as an issuer by running algorithm LPost to write AnonCreds
objects to the ledger. Additionally, any entity can retrieve the contents of the
ledger by running algorithm LRetrieve. We now describe issuer and holder setup,
where issuer setup consists of both credential setup and revocation setup. We
define formal algorithms for these steps in Figures 13 and 14.

Holder Setup. Holders run algorithm HSetup to generate an empty credential list
and a master secret that is used (during credential issuance) to bind credentials
to the holder. More specifically, when constructing identity proofs, the holder can
prove, in zero-knowledge, that they know the master secret for each credential
used in the proof, and that all credentials used in an identity proof are linked
to the same master secret. Note that the HLAC protocol does not prevent users
from creating multiple master secrets. However, a holder cannot later prove that
credentials issued with respect to different master secrets are linked to the same
holder.

Credential Setup. Issuers run algorithm Schema to construct a credential schema,
which defines the set of attributes that will be used as the basis of a credential
definition. On input a list of attributes {a2, . . . , aL}, algorithm Schema assigns
the set {a1, . . . , aL} to S, where a1 is reserved as a blinded version of the holder’s
master secret. Algorithm Schema then runs LPost to write the schema to the
ledger and generate a Schema ID IDS, and outputs (IDS, S).

After a schema is posted to the ledger, an issuer can proceed to generate a
credential definition by running algorithm DSetup, which proceeds in the follow-
ing way. Firstly, algorithm DSetup runs CL.KGen to generate a CL signature key
pair (ppk, psk), which we will refer to as the primary key pair, and associated
metadata pmd. The primary public key ppk = (n, S, Z, {R1, . . . , RL}), the pri-
mary secret key psk = (p, q) and the metadata pmd = (xz, {xi}i∈L), i.e., a set
of random values from the interval [2, p′q′ − 1] used to construct the primary
public key values Z and {R1, . . . , RL}. Secondly, if the issuer sets revocation flag
b = 1, algorithm DSetup runs algorithm RevKGen to generate a cryptographic
accumulator key pair (rpk, rsk), which we will call the revocation key pair. In

particular, rpk = (pp, g, g′, h, h0, h1, h2, h̃, ĥ, u, pk, y). Thirdly, algorithm DSetup
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runs algorithm ZKppk.Prove to generate a NIZK proof of correct key construction
ρpDef, proving the following relation:

R =
{
(xz, {xi}i∈L) : Z = Sxz , {Ri = Sxi}i∈L

}
.

Algorithm DSetup then constructs a public credential definition pDef = (IDS, ppk, rpk)
that includes the schema ID, ensuring a link to the schema and, specifically, the
attributes included in the credential. A corresponding private credential defini-
tion sDef = (psk, rsk, ρpDef). Finally, the public credential definition is posted to
the ledger and a credential definition ID IDD is created by running algorithm
LPost. Algorithm DSetup returns the tuple (IDD, pDef, sDef).

Schema({a2, . . . , aL})

1 : S← {a1, . . . , aL}
2 : IDS ← LPost(S)

3 : return (IDS, S)

HSetup()

1 : ms←$ {0, 1}256

2 : W← ∅
3 : return (ms, W)

DSetup(IDS, S, b)

1 : (ppk, psk, pmd)← CL.KGen(|S|)
2 : if b = 0 : (rpk, rsk)← (⊥,⊥)
3 : if b = 1 : (rpk, rsk)←$RevKGen()

4 : ρpDef ←$ZKppk.Prove((ppk, S), (psk, pmd))

5 : pDef← (IDS, ppk, rpk)

6 : sDef← (psk, rsk, ρpDef)

7 : IDD ← LPost(pDef)

8 : return (IDD, pDef, sDef)

Fig. 13: Issuer and holder setup algorithms.

Revocation Setup. If revocation is enabled for a credential, i.e., algorithm DSetup
generated a revocation key pair, the issuer must run algorithm RSetup to gener-
ate a public and private revocation registry and an accumulator tuple. On input
a credential definition ID IDD and a maximum number of credentials that can
be issued max, algorithm RSetup runs algorithm AccKGen to obtain the tuple
(apk, sReg,T,Acc,RL), where the elements of the tuple are defined as follows.
RL is an initial revocation list of length max where a 1 at position i indicates
that the credential indexed at position i is revoked, and 0 indicates that the
credential is active. Initially, all credentials are revoked and RL = 1. An accu-
mulator Acc is initialised as 0, and a tails file T is generated that contains a static
value for each of the max credentials that can be issued. Additionally, algorithm
AccKGen generates a public/private accumulator key pair (apk, sReg) where apk
is used to generate the tails file and sReg is used to add and remove credentials
from the revoked credentials list. Algorithm RSetup then defines the public revo-
cation registry pReg as the tuple (IDD, max, apk,T,HT) where HT is a hash of the
tails file. Usually, the public revocation registry includes a URL location for the
tails file, rather than the tails file itself. For simplicity in our syntax, we include
the tails file in the public revocation registry. The public revocation registry is
posted to the ledger, creating a revocation registry ID IDR, and an accumulator
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tuple A = (IDR,Acc,RL) is also posted, creating accumulator ID IDA. Algorithm
RSetup outputs the tuple (IDR, pReg, sReg, IDA, A).

When issuing and revoking credentials, the issuer must update the crypto-
graphic accumulator and post the updated accumulator to the ledger. Doing so
ensures that, when verifying identity proofs, a verifier can check that the cre-
dentials used in the identity proof are valid with respect to the most recent and
up-to-date accumulator, or, indeed, any accumulator of the verifier’s choosing.
To facilitate this, issuers run algorithm RUpdate, which runs algorithm AccUpd
to update the revocation list and accumulator. In particular, AccUpd updates
the revocation list to set issued credentials to status ‘active’ and revoked cre-
dentials to status ‘revoked’. In other words, if issued credentials list CI[i] = 1,
indicating that the credential indexed at position i has been issued since the last
accumulator update, then revocation list RL[i]← 0. Correspondingly, if revoked
list CR[i] = 1, then RL[i] ← 1. A new accumulator tuple that contains the up-
dated cryptographic accumulator and revocation list is posted to the ledger. The
algorithm returns the ID of the updated accumulator IDA and new accumulator
tuple A′.

RSetup(IDD, max)

1 : (apk, sReg,T,Acc,RL)← AccKGen(max)

2 : HT ← H(T)
3 : pReg← (IDD, max, apk,T,HT)

4 : IDR ← LPost(pReg)

5 : A← (IDR,Acc,RL)

6 : IDA ← LPost(A)

7 : return (IDR, pReg, sReg, IDA, A)

RUpdate(A, pReg, sReg, CI, CR)

1 : parse A as (IDR,Acc,RL)

2 : (Acc′,RL)← AccUpd(Acc, max, CI, CR, sReg)

3 : A
′ ← (IDR,Acc

′,RL)

4 : IDA ← LPost(A′)

5 : return (IDA, A
′)

Fig. 14: Revocation registry algorithms.

4.2 Credential Issuance

The credential issuance phase is a process between an issuer and a holder, in
which the issuer generates a credential for the holder. The issuer initiates the
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credential issuance phase by generating a credential offer, which states the cre-
dential the issuer is willing to offer and includes the zero-knowledge proof of
correct key construction output by algorithm DSetup. The holder responds with
a credential request, which comprises a Pedersen commitment to the holder’s
master secret and a zero-knowledge proof of correct blinding. The issuer then
issues the credential and the holder stores the credential in their credential list.
We now describe each step in the credential issuance protocol in detail, and
formally define the algorithms in Figures 15 and 16.

Offer(IDS, IDD, sDef)

1 : parse sDef as (psk, rsk, ρpDef)

2 : n0 ←$ {0, 1}80

3 : return Offer← (IDS, IDD, n0, ρpDef)

Request(Offer, ms, {v2, . . . , vL})

1 : parse Offer as (IDS, IDD, n0, ρpDef)

2 : parse pp as (G1, G2, GT , e, q1, g, g
′)

3 : pDef← LRetrieve(IDD)

4 : parse pDef as (IDS, ppk, rpk)

5 : parse ppk as (n, S, Z, {R1, . . . , RL})
6 : S← LRetrieve(IDS)

7 : if ZKppk.Verify((ppk, S), ρpDef) ̸= 1 return ⊥
8 : n1 ←$ {0, 1}80

9 : ent← {0, 1}256

10 : U← Commit(S,R1)(ms; v
′)

11 : ρU ←$ZKms.Prove((ppk,U, n0), (v
′, ms))

12 : if rpk = ⊥ : ur ← ⊥
13 : if rpk ̸= ⊥
14 : parse rpk as (pp, g, g′, h, h0, h1, h2, h̃, ĥ, u, pk, y)

15 : s′r ← QRq1

16 : ur ← h
s′r
2

17 : BlindMS← (U, ur)

18 : pReq← (IDD, {v2, . . . , vL},BlindMS, ρU, ent, n1)

19 : sReq← (v′, s′r)

20 : return (pReq, sReq)

Fig. 15: Algorithms in the Credential Issuance phase.
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Issue(pReq, Offer, pDef, sDef, pReg, sReg, IDA, A, S, i)

1 : parse pReq as (IDD, {v2, . . . , vL},BlindMS, ρU, ent, n1)

2 : parse Offer as (IDS, IDD, n0, ρpDef)

3 : parse BlindMS as (U, ur)

4 : parse pDef = (IDS, ppk, rpk)

5 : parse sDef as (psk, rsk)

6 : parse pReg as (IDD, max, apk,T,HT)

7 : parse A as (IDR,Acc,RL)

8 : parse S as {a1, . . . , aL}
9 : if ZKms.Verify((ppk,U, n0), ρU) ̸= 1 return ⊥

10 : v1 ← U

11 : m2 ← H(i∥ent)
12 : (σ,Q)← CL.Sign(ppk, psk, {v1, . . . , vL})
13 : σp ← (m2, σ)

14 : ρσ ←$ZKσ.Prove((σ, n1), (Q, psk))

15 : (rcred,w)←$AccAdd(rpk, rsk, sReg, max, i,RL,m2, ur)

16 : (IDA, A
′)← RUpdate(A, pReg, sReg, i,⊥)

17 : cred← (IDS, IDD, IDR, {(ai, vi)}i∈[L], σp, ρσ, rcred, IDA,w)

18 : return cred

Credential.Store(cred, pReq, sReq, W)

1 : parse cred as (IDS, IDD, IDR, {(ai, vi)}i∈[L], σp, ρσ, rcred, IDA,w)

2 : parse pReq as (IDD, {v2, . . . , vL},BlindMS, ρU, ent, n1)

3 : pDef← LRetrieve(IDD)

4 : parse pDef = (IDS, ppk, rpk)

5 : parse sReq as (v′, s′r)

6 : parse σp as (m2, σ)

7 : if ZKσ.Verify((σ, n1), (ppk, sReq, {vi}i∈[L]), ρσ) ̸= 1 return ⊥
8 : W← W ∪ cred

Fig. 16: Algorithms in the Credential Issuance phase.

Credential Offer. The issuer runs algorithm Offer, which takes as input a creden-
tial definition and schema ID (IDS and IDD) and the private credential definition
sDef. Algorithm Offer generates a nonce n0 that is used to generate a zero-
knowledge proof for the credential request, tying the credential request to the
offer and preventing replay attacks. The algorithm returns an offer Offer =
(IDS, IDD, n0, ρpDef) where ρpDef is the proof of correct key construction in sDef.

Credential Request. The holder responds to a credential offer by creating a cre-
dential request, the main purpose of which is to create a blinded version of the
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master secret that will be set as the first, reserved, attribute of the credential v1.
Formally, the issuer runs algorithm Request, which takes as input a credential
offer Offer, a master secret ms and a set of attribute values {v2, . . . , vL}. Algo-
rithm Request first runs algorithm ZKppk.Verify to verify the proof of correct key
construction ρpDef included in Offer. If the proof verifies, a credential request
is generated. Firstly, a Pedersen commitment to the master secret ms is gener-
ated by running algorithm Commit, which outputs a blinded master secret U.
Algorithm Request also generates a NIZK proof of correct blinding by running
algorithm ZKms.Prove, which proves the relation:

R =
{
(ms, v′) : U = Sv

′
·Rms

1

}
where v′ is the randomness used to generate the commitment, and elements S
and R1 are drawn from the primary public key ppk. Then, if revocation is enabled

for the credential, a blinded revocation secret ur is computed as h
s′r
2 where s′r is

chosen uniformly at random from the set of quadratic residues mod q1, denoted
QRq1 , and h2 is an element in the revocation public key rpk.

Algorithm Request outputs a public/private request pair (pReq, sReq) that
is constructed in the following way. The public credential request, transmitted
to the issuer is pReq = (IDD, {v2, . . . , vL},BlindMS, ρU, ent, n1), where IDD is
obtained from the credential offer and BlindMS contains the blinded master secret
and the blinded revocation secret. That is, BlindMS = (U, ur). Moreover, n1 and
ent are random strings used during credential issuance, with n1 used to tie the
request to the issued credential, and ent used to form the credential signature.
The private credential request contains the randomness used to generate the
blinded master secret and blinded revocation secret (i.e., sReq = (v′, s′r)), and
is stored by the holder and used to store the credential issued in the next stage.

Issue Credential. The issuer can now issue credentials. To run algorithm Issue,
the issuer must collect the credential offer Offer, public credential request pReq,
the public and private credential definition (pDef, sDef), the public and private
revocation registry (pReg, sReg), the accumulator A, corresponding accumulator
ID IDA, and the schema S. The issuer must also select an index i that determines
the revocation registry index of the credential. Specifically, the issued credential
will be associated with the i’th static element of the tails fails T constructed
during revocation setup. Taking these values as input, algorithm Issue first runs
algorithm ZKms.Verify to verify the NIZK proof of correct blinding in the cre-
dential request. If the proof verifies, algorithm Issue computes the credential.
Algorithm Issue assigns attribute value v1 as the blinded master secret U , and
computes the credential context m2 as the hash of index i concatenated with the
string ent included in the credential request. Then, a CL signature σ = (A, e, v′′)
and signing metadata Q are generated by running algorithm CL.Sign. Algorithm
ZKσ.Prove then generates a NIZK proof of correct signing ρσ, proving the fol-
lowing relation:

R =
{
(e−1) : A = Qe

−1}
.
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The signature for the credential σp = (σ,m2). Algorithm Issue then proceeds
to update the revocation status of the credential by running algorithm AccAdd
to obtain a revocable credential rcred and witness w. Then, algorithm RUpdate
updates the accumulator, returning an ID for the new accumulator tuple IDA.
Algorithm Issue returns a credential cred = (IDS, IDD, IDR, {(ai, vi)}i∈[L], σp, ρσ,
rcred, IDA,w).

Store Credential. The holder can now store the credential in their credential
list. Algorithm Store facilitates this by running algorithm ZKσ.Verify to verify
the NIZK proof of correct signing ρσ. If the proof verifies, algorithm Store adds
the credential to the list W.

4.3 Credential Presentation

The credential presentation phase allows a holder to generate privacy-preserving
identity proofs pertaining to their credentials that can be verified by third party
verifiers. Specifically, holders generate NIZK proofs on their credentials that
reveal only a subset of attributes and/or predicates based on their attribute
values. The verifier initiates the credential presentation phase by issuing a pre-
sentation request that defines the desired identity proof. The holder responds
with a proof presentation message, which contains an identity proof that the ver-
ifier can verify. We now provide details of these steps, formalising the algorithms
in Figures 17 and 18.

Identity Proof Request. To generate an identity proof request, the verifier must
construct sets R and P that are input to algorithm Propose. These sets define
the data that the holder must collect in order to generate their identity proof.
They detail the attributes and predicates that the identity proof should reveal,
restrictions on the credential definitions to be used, and limitations on fresh-
ness of revocation status. More specifically, set R consists of tuples of the form
(a, IDD, IDA) where a is an attribute that the verifier wants the holder to reveal,
IDD is the ID for a credential definition that contains attribute a and should be
used to generate the identity proof, and IDA is the ID for the accumulator tuple
that should be used to provide the proof of non-revocation. The set P is a set of
tuples of the form (a, p, z, IDD, IDA). Here, a, IDD and IDA are defined as for set
R. Additionally, p ∈ {<,≤, >,≥} is a predicate that the holder must prove for
attribute a and z is an integer for which the predicate must hold. For example,
if p =<, attribute value v corresponding to attribute a must be less than z.
On input sets R and P, algorithm Propose generates a random nonce n2 that is
used by the holder to generate the identity proof, and outputs the presentation
proposal PReq = (R, P, n2).

In the HLAC protocol, the verifier can request multiple revealed attributes
and predicates from a single credential. We capture this in our modelling, re-
quiring that the verifier defines a new tuple in R or P for each attribute and
predicate. Moreover, according to the HLAC specification, verifiers can define a
number of restrictions on the tuples contained in sets R and P. For example, the
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Propose(R, P)

1 : n2 ←$ {0, 1}80

2 : return PReq = (R, P, n2)

Present(PReq,CP, ms)

1 : parse PReq as (R, P, n2)

2 : parse CP as ({(credi, Ar,i, Ar̄,i, Vr,i, P
′
i, ID

′
A1 , A

′
i, Ai, pDefi, pRegi)}i∈[|CP|])

3 : for i ∈ 1, . . . , |CP|
4 : for j ∈ Ar̄,i : v̂i,j ←$ {0, 1}592

5 : parse credi as (IDSi , IDDi , IDRi , {(ai,j , vi,j)}j∈[L], σpi , ρσi , rcredi , , IDAi ,wi)

6 : parse σpi as (m2i , σi)

7 : parse pDefi as (IDSi , ppki, rpki) ∧ sReg as (IDDi , maxi, apki,Ti,HTi)

8 : parse P
′
i as ({(ki,j , pi,j , zi,j , vi,ki,j )}j∈[|P′i|]

)

9 : parse A
′
i as (IDRi ,Acc

′
i,RL

′
i) ∧ Ai as (IDRi ,Acci,RLi)

10 : (Ccredi ,Tcredi)←$ZKcred.Prove1((Ar̄,i, ppki), (σi, {v̂i,j}j∈Ar̄,i))

11 : for j ∈ 1, . . . , |P′i|
12 : (Cpredi,j ,Tpredi,j ,Mpredi,j )←$ZKpred.Prove1((ppki, pi,j , zi,j), (vi,ki,j , v̂i,ki,j ))

13 : w′
i ← Acc.WUpd(wi,RLi,RL

′
i,Ti)

14 : (Crevi ,Trevi ,Mrevi)←$ZKrev.Prove1(rcredi , pp, rpki,Acc
′
i)

15 : Ci ← (Ccredi , {Cpredi,j}j∈[|P′i|]
,Crevi); Ti ← (Tcredi , {Tpredi,j}j∈[|P′i|]

,Trevi)

16 : P
′′
i ← ({(ki,j , pi,j , zi,j , ṽi,kj )}j∈[|P′i|]

)

17 : C← (C1, . . . ,C|CP|); T← (T1, . . . ,T|CP|); cH ← H(T ∥C∥n2)

18 : for i ∈ 1, . . . , |CP|
19 : ρcredi ← ZKcred.Prove2((Ccredi , Ar̄,i, cH), (Tcredi , {v̂i,j , vi,j}j∈Ar̄,i))

20 : for j ∈ 1, . . . , |P′i| : ρpredi,j ←$ZKpred.Prove2(cH ,Mpredi,j )

21 : ρrevi ←$ZKrev.Prove2(cH ,Mrevi , rcredi)

22 : ρi ← (ρcredi , ({ρpredi,j}j∈[|P′i|]
), ρrevi)

23 : return Proof← (C, cH , ({(ρi, Ar,i, Ar̄,i, Vr,i, IDSi , IDDi , IDRi , ID
′
Ai
, P′i)}i∈[|CP|]))

Fig. 17: Algorithms in the Proof Presentation phase.

verifier can request that the credential is linked to a particular schema, or define
an interval in which a credential must be shown to be active (i.e., not revoked).
For clarity and simplicity in our modelling, we set IDA and IDD as restriction,
noting that they are sufficient to capture other restrictions.

Present Identity Proof. The holder generates an identity proof by running algo-
rithm Present. Ahead of this, the holder must collect credentials and related data
to be used in the identity proof from their credential list W. For each credential
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Verify(Proof, PReq)

1 : parse Proof as (C, cH , ({(ρi, Ar,i, Ar̄,i, Vr,i, IDSi , IDDi , IDRi , ID
′
Ai
, P′i)}i∈[|CP|]))

2 : parse C as (C1, . . . ,C|CP|) ∧ PReq as (R, P)

3 : for i ∈ 1, . . . , |CP|
4 : parse ρi as (ρcredi , ({ρpredi,j}j∈[|P′i|]

), ρrevi)

5 : pDefi ← LRetrieve(IDDi); parse pDefi as (IDSi , ppki, rpki)

6 : parse Ci as (Ccredi , {Cpredi,j}j∈[|P′i|]
,Crevi)

7 : parse P
′′
i as ({(ki,j , pi,j , zi,j , ṽi,kj )}j∈[|P′i|]

)

8 : Ai ← LRetrieve(ID′Ai); parse Ai as (IDRi ,Acci,RLi)

9 : T̂credi ←$ZKcred.Verify((Ar̄,i, Ar,i, cH , Vr,i), ppki, ρcredi)

10 : for j = 1, . . . , |P′′i |
11 : T̂predi ←$ZKpred.Verify((ppki, pi,j , zi,j ,Cpredi,j ), cH , ρpredi,j , ṽi,kj )

12 : T̂revi ←$ZKrev.Verify(rcredi ,Crevi , ρrevi , cH ,Acci)

13 : T̂i ← (T̂credi , {T̂predi,j}j∈[|P′i|]
, T̂revi)

14 : T̂← (T̂1, . . . , T̂|CP|)

15 : if cH ̸= H(T̂∥C∥n2) return 0

16 : return 1

Fig. 18: Algorithms in the Proof Presentation phase.

to be used in the identity proof, the holder constructs a tuple of the form

(cred, Ar, Ar̄, Vr, P
′, ID′A , A

′, A, pDef, pReg).

Here, cred is a credential output by algorithm Issue. Sets Ar and Ar̄ are disjoint
sets that contain the indices of attributes from cred such that |Ar∪Ar̄| = L. Set
Ar contains the indices of attributes that will be revealed in the identity proof,
and set Ar̄ contains the indices of hidden attributes. Set Vr contains the attribute
values from credential cred for the revealed attributes. For each credential, the
holder also extracts tuples from set P that pertains to credential cred and col-
lects the tuples in a set P′. Additionally, set P′ includes the attribute value and
index of the attribute value that will be used to prove the predicate. The holder
then collects the public credential definition pDef and revocation registry pReg,
the accumulator tuple used to construct the credential A, and the accumulator
tuple A′ corresponding to ID′A included in the presentation request. The creden-
tial tuples are collected in set CP and input to algorithm Present alongside the
holder’s master secret ms and the presentation request PReq. Algorithm Present
then proceeds to construct an identity proof as follows.

Algorithm Present proves ownership of each credential used in the proof, i.e.,
knowledge of the master secret included in blinded form in the credential (lines
7 and 15), that each predicate in set P is true (lines 8 and 16), and demonstrates
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the non-revocation status of each credential used in the proof (lines 9, 10 and
17).

Rather than running a NIZK proving algorithm for each of these three
steps to generate a commitment, challenge and response individually, algorithm
Present generates an aggregate proof. In an aggregate proof, a commitment is gen-
erated for each proof system, running algorithms ZKcred.Prove1, ZKpred.Prove1
and ZKrev.Prove1. Each of these algorithms outputs a list of C and T elements
that are required to compute the hash included in the proof. Additionally, al-
gorithms ZKpred.Prove1 and ZKrev.Prove1 return a set of metadata M that is re-
quired to generate the identity proof. An aggregate challenge is then computed.
As is usual in a NIZK proof system, the challenge is computed as a hash of the
protocol transcript. That is, the C and T values output by all commitment algo-
rithms are collected and hashed along with the nonce n2 generated by the verifier
running algorithm Propose(line 13). The response values for the proof are then
computed by running algorithms ZKcred.Prove2, ZKpred.Prove2 and ZKrev.Prove2.
Outputs of these algorithms are included in the identity proof Proof returned
by algorithm Present, which also includes the set of C values and other data
input to algorithm Present that the verifier requires to verify the identity proof.
In particular, the identity proof includes the IDs for all AnonCreds objects used
to construct the proof, and includes the sets Ar, Ar̄ and Vr for each credential
used in the proof.

We now present more details on the NIZK proof systems included in the ag-
gregate proof. To demonstrate ownership of each credential, Present generates a
random value v̂ for each hidden attribute (line 3) and generates the commitment
for the following relation:

R =
{
(e, {vi : i ∈ Ar̄}) :

Z∏
i∈Ar

Rvii
= Ae · Sv

′′ ∏
i∈Ar̄

Rvii mod n

∧ {vi ∈ {0, 1}592}i∈Ar̄
∧ e− 2596 ∈ {0, 1}458

}
where values used in the proof are drawn from the primary public key ppk, the
CL signature σ and the attribute value set {v1, . . . , vL}.

Then, for each predicate, create a commitment for relation:

R =
{
(v, r∆, {u1, . . . , u4}, {r1, . . . , r4}, a) : T a∆ · Z∆ = Zv(Sa)r∆ mod n

∧ {for j ∈ [4] : Tj = Zuj · Srj mod n}
∧ T∆ = Tu1

1 · · · · · T
u4
4 · Sa mod n

}
where v is the attribute value for the predicate, Z and S are drawn from ppk
and all other values are generated by running algorithm ZKpred.Prove1.

The witness used to demonstrate non-revocation must then be updated in
order to demonstrate that the credential used in the identity proof is currently
active (line 9). A non-revocation commitment, taking as input the updated wit-
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ness proves the following relation:

R =
{
(c, p, o,m, t,m2, v

′′
r , r, o

′,m′, t′, r′, r′′, r′′′) :

E = hp · h̃o ∧ Ec · h−m · h̃−t = 1 ∧ D = gr · h̃o
′

∧ e(h0 ·G, ĥ)
e(A, y)

= e(A, ĥ)c · e(h̃, ĥ)r · e(h̃, y)−e · e(h̃, ĥ)−m · e(h1, ĥ)−m2 · e(h2, ĥ)−s

∧ e(G,Acc)

e(g,W ) · z
= e(h̃,Acc)r · e(1

g
, ĥ)r

′

∧ e(pk ·G,S)
e(g, g′)

= e(pk ·G, ĥ)r
′′
· e(h̃, ĥ)−m

′
· e(h̃, S)r

∧ e(G, u)

e(g, U)
= e(h̃, u)r · e(1

g
, ĥ)r

′′′}
where values used in this proof system are taken from the public parameters pp =
(G1, G2, GT , e, q1, g, g

′), the revocation public key rpk =

(pp, g, g′, h, h0, h1, h2, h̃, ĥ, u, pk, y), or are generated when running algorithm
ZKrev.Prove1.

The hash is then computed and algorithm Present runs ZKcred.Prove2,
ZKpred.Prove2 and ZKrev.Prove2 to complete the identity proof.

Verify Identity Proof. To verify the identity proof, the verifier runs algorithm
Verify which runs algorithms ZKcred.Verify, ZKpred.Verify and ZKrev.Verify to re-
compute the T values for the identity proof. The holder then recomputes the
hash included in the identity proof, using the C values included in the proof, the
re-computed T values and the nonce n2 included in the presentation request. If
the recomputed hash is equal to the hash included in the identity proof, algo-
rithm Verify returns 1 and the identity proof is said to be valid.

5 Security Analysis

We demonstrate that the HLAC protocol described in Section 4 is correct and
satisfies unforgeability and anonymity, as defined in Section 2.2. We obtain the
result in Theorem 3, which we prove via a series of Lemmata.

Theorem 3. Let the NIZK proof systems for correct credential signing and
master secret blinding, and the aggregate NIZK proof system, satisfy the zero-
knowledge and soundness properties [14, 43]. Let the Pedersen commitment scheme
satisfy the hiding and binding properties [42], and let the CL signature scheme
satisfy unforgeability [34]. Then, the HLAC protocol satisfies correctness, unforge-
ability and anonymity.

Lemma 1 (Credential Correctness). HLAC satisfies correctness.
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Proof. Consider a credential cred = (IDS, IDD, IDR, {(ai, vi)}i∈[L], σp, ρσ, rcred,
IDA,w) output by algorithm Issue, and a proof Proof = (C, cH , {(ρi, Ar,i, Ar̄,i,
Vr,i, IDSi , IDDi , IDRi , ID

′
Ai
,P′i)}i∈[|CP|]) be an identity proof output by algorithm

Present in the correctness experiment.
By definition, HLAC satisfies credential correctness if algorithm Store adds

cred to list W and algorithm Verify returns 1 with overwhelming probability. We
prove by contradiction that these events occur with overwhelming probability,
and therefore conclude that HLAC satisfies presentation correctness.

Event 1: cred is added to list W.
Assume that algorithm Store does not add cred to W. Then it must be the case
that the primary signature on the credential σ does not verify, i.e., algorithm
ZKσ.Verify returns 0. Recall that ZKσ.Verify, defined in Figure 5, returns 0 if
e /∈ [2596, 2596+2119], e is not prime, Q′ ̸= Ae or cσ ̸= H(Q′∥A, ∥Ã′∥n1). Firstly,
e is generated by algorithm Issue (and, more specifically, algorithm CL.Sign) such
that e is prime and is selected from the given interval. Therefore, the first two
conditions are satisfied. We now consider the other two conditions in turn.

Let’s assume that Q′ ̸= Ae. From algorithm CL.Sign, A = Qe
−1 mod p′q′

mod n. Accordingly, Ae = Q mod n. It remains to show that Q′ = Q.

Q′ =
Z

Sv ·
∏
i∈[L]R

vi
i

mod n

=
Z

Sv′+v′′ ·Rms
1 ·
∏
i∈[2,L]R

vi
i

=
Z

v1 · Sv′′
∏
i∈[2,L]R

vi
i

= Q.

(1)

Therefore, Q′ = Q if all values input to CL.Sign and ZKσ.Verify are computed
correctly.

Finally, we assume that cσ ̸= H(Q′∥A, ∥Ã′∥n1). From algorithm Issue cσ =
H(Q∥A∥Ã∥n1). Therefore, we require that Q′ ̸= Q or Ã′ ̸= Ã. As per Equation
1, Q′ = Q. We also have that

Ã′ = Acσ+se·e mod n

= Acσ+(r−cσ·e−1)·e

= Are = Qr = Ã.

(2)

Therefore, cσ = H(Q′∥A, ∥Ã′∥n1). Then, by contradiction, algorithm Store adds
cred to credential list W.

Event 2: Verify returns 1.
Assume that algorithm Verify does not return 1. Then we require that cH ̸=
H(T̂∥C∥n2).That is, T̂ ̸= T. Recall that T = (T1, . . . ,T|CP|) is a tuple gen-
erated by algorithm Present where each Ti for i ∈ [|CP|] is a tuple (Tcredi ,
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{Tpredi,j}j∈[|P′
i|],Trevi) and T̂ is a complementary tuple generated by algorithm

Verify. In particular, Tcred = Z̄ is generated for each credential used in the
proof by running algorithm ZKcred.Prove1; Tpred = (T̃1, T̃2, T̃3, T̃4, T̃∆, Q) is gen-
erated for each predicate by algorithm ZKpred.Prove1; and Trev = (T̄1, T̄2, T̄3, T̄4,
T̄5, T̄6, T̄7, T̄8) are values generated for the non-revocation proof by algorithm

ZKrev.Prove1. Similarly, a verifier running algorithm Verify generates T̂ that con-
sists of tuples generated by running algorithms ZKcred.Verify, ZKpred.Verify and

ZKrev.Verify. We now show that T̂ = T as required.

T̂ =

(
Z

(
∏
j∈Ar

R
vj
j )(Ā)2596

)−cH
· (Ā)ẽ ·

∏
j∈Ar̄

R
ṽj
j

 · (Sṽ) mod n

= Z̄ ·

Z−1 · ∏
j∈[L]

R
vj
j ·A

e · Sv
cH

= Z̄ · (Q ·Q−1)cH = Z̄

(3)

T̂i = T−cHi · Z ûi · S r̂i

= (Zui · Sri)−cH · Z(ũi+cH ·ui) · S(r̃i+cH ·ri) = T̃i
(4)

T̂∆ = (T a∆ · Z∆
′
)−cH · Z ṽ · Sar̂∆

= (Z∆·a · Sr∆·a · Z∆
′
)−cH · Z v̂+cH ·v · Sa·(r̃∆+cH ·r∆)

= Z v̂ · Sa·r̃∆Z(−a·∆−∆′+v)cH

= Z v̂ · Sa·r̃∆ = T̃∆

(5)

Q̂ = T−cH∆ ·
∏
i∈[4]

T ûi
i · S

α̂ mod n

= Z−(∆·cH) · S−(cH ·r∆) ·
∏
i∈[4]

(
T

(ũi+cH ·ui)
i · S(α̃+cH ·(r∆−

∑
i∈[4] ui·ri))

)
= Sα̃ ·

∏
i∈[4]

T ũi
i · Z

−(∆·cH) · S−(cH ·r∆) ·
∏
i∈[4]

(
T cH ·ui
i · ScH(r∆−

∑
i∈[4] uiri)

)
= Q

(6)

T̂1 = EcH · hê · h̃ô

= (hp · h̃o)cH · hẽ−CH ·p · h̃õ−cH ·o

= hẽ · h̃õ = T̄1

(7)
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T̂2 = E ĉ · h−m̂ · h̃−t̂

= T̄2 · hcH ·(m−c·p) · h̃cH ·(t−c·o) = T̄2
(8)

T̂3 =

(
e(h0 ·G, ĥ)
e(A, y)

)cH
· e(A, ĥ)ĉ · e(h̃, ĥ)r̂ · e(h̃, y)−ê

· e(h̃, ĥ)−m̂ · e(h1, ĥ)m̂2 · e(h2, ĥ)−ŝ

= e(h0 ·G, ĥ)cH · e(A, y)−cH · e(A, ĥ)c̃−cH ·c

· e(h̃, ĥ)r̃−cH ·r · e(h̃, y)−ẽ−cH ·p · e(h̃, ĥ)−m̂+cH ·m

· e(h1, ĥ)−m̃2+cH ·m2 · e(h2, ĥ)−s̃+cH ·v
′′
r

= T̄3 · e(h0 ·G, ĥ)cH · e(A, y)−cH · e(A, ĥ)−cH ·c

· e(h̃, ĥ)−cH ·r · e(h̃, y)cH ·p · e(h̃, ĥ)cH ·m

· e(h1, ĥ)cH ·m2 · e(h2, ĥ)cH ·v
′′
r

= T̄3

(9)

T̂4 =

(
e(G,Acc)

e(g,W ) · z

)cH
· e(h̃,Acc)r̂ · e(1

g
, ĥ)r̂

′

= e(G,Acc)cH · e(g,W )−cH · z−cH · e(h̃,Acc)r̃−cH ·r · e(g, ĥ)−r̃
′+cH ·r′

= T̄4 · e(G,Acc)cH · e(g,W )−cH · z−cH · e(h̃,Acc)−cH ·r · e(g, ĥ)cH ·r
′

= T̄4

(10)

T̂5 = Dr̂′′ · gr̂ · h̃ô
′

= (gr · h̃o
′
)cH · g(r̃−cH ·r) · h̃(õ

′−cH ·o′)

= gr̃ · h̃õ
′
= T̄5

(11)

T̂6 = Dr̂′′ · g−m̂
′
· h̃−t̂

′

= T̄6 · g−cH ·r·r
′′
· h̃−cH ·o

′·r′′ · gcH ·m
′
· h̃cH ·t

′

= T̄6

(12)

T̂7 =

(
e(pk ·G,S)
e(g, g′)

)cH
· (pk ·G, ĥ)r̂

′′
· e(h̃, ĥ)−m̂

′
· e(h̃, S)r̂

= T̄7 · e(pk ·G,S)cH · e(g, g′)−cH

· e(pk ·G, ĥ)−cH ·r
′′
· e(h̃, ĥ)cH ·m

′
· e(h̃, S)−cH ·r

= T̄7

(13)
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T̂8 =

(
e(G, u)

e(g, U)

)cH
· e(h̃, u)r̂ · e(1

g
, ĥ)r̂

′′′

= T̄8 · e(gi, u)cH · e(h̃, u)cH ·r · e(g, ui)−cH

· e(g, ĥ)−cH ·r
′′′
· e(h̃, u)−cH ·r · e(g, ĥ)cH ·r

′′′

= T̄8

(14)

Therefore, T = T̂ as required and the HLAC protocol satisfies correctness.

Lemma 2 (Unforgeability). Let the aggregate proof system used in algorithm
Present satisfy soundness [14, 43], the CL signature scheme satisfy unforgeabil-
ity [34], and let the Pedersen commitment scheme satisfy the binding prop-
erty [42]. Then, HLAC satisfies unforgeability.

Proof. To prove unforgeability, we define an adversary A in the unforgeabil-
ity experiment for the HLAC construction, and show that A cannot output an
identity proof Proof∗ for a proof request PReq∗ such that the proof verifies.
In particular, we show that A cannot output an identity proof on behalf of a
corrupt holder that is not supported by credentials held by the holder, or is a
proof output on behalf of a coalition of corrupt holders that no one holder can
generate on their own. Indeed, if A can do this, then A can produce an aggre-
gate proof without knowledge of a witness and we can therefore construct an
adversary that succeeds in the soundness experiment for the aggregate proof.
Else, A can output a valid credential forgery that is used in an identity proof
and we can define an adversary that succeeds in the unforgeability experiment
for the CL signature scheme. Moreover, we show that A cannot output a valid
forgery of an identity proof on behalf of an honest holder, or we can construct
an adversary that succeeds in the soundness experiment for the aggregate proof,
or can construct a false master secret that can be used to construct the proof,
breaking the binding property of the Pedersen commitment scheme.

More formally, let A be an adversary that succeeds in the unforgeability
experiment for the HLAC construction. By definition, A succeeds if they output
an identity proof Proof∗ for a proof request PReq∗ such that the proof verifies.
We require that the proof request cannot be satisfied by any corrupt holders and
that the proof is not the output of oracle OProof. Accordingly, A must succeed
in one the following ways.

1. A outputs an identity proof on behalf of a corrupt holder that is not sup-
ported by credentials held by the holder (i.e., using revoked credentials or
attribute values that differ from those in issued credentials), or is a proof
output on behalf of a coalition of corrupt holders that no one holder can
generate on their own.

2. A outputs a valid forgery of an identity proof on behalf of an honest holder.

Let Success denote the event that the adversary succeeds in the unforgeability
experiment, Invalid be the event that the adversary outputs an identity proof
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on behalf of a corrupt holder and Forge be the event that the adversary generates
an identity proof forgery on behalf of an honest holder. Then,

Pr[Success] ≤ Pr[Invalid] + Pr[Forge].

We show that Pr[Invalid] and Pr[Forge] are negligible. The result then follows.
Event 1: consider the event Invalid. If A can output an identity proof on

behalf of corrupt holders, then we can construct an adversary A′ that succeeds
in the soundness experiment for the aggregate proof. Indeed, A′ can simulate
the role of the challenger and all oracles to A in the unforgeability experiment.
In particular, A′ can query its proof oracle when A queries oracle OProof, and
the challenge proof Proof∗ output by A in the experiment is the one input to
the adversary A′ in the soundness experiment. Moreover, if A succeeds in the
unforgeability experiment, then A′ can succeed in the soundness experiment.

Else, A can output a valid forgery of a credential on behalf of an issuer
that contains attribute values not signed by the issuer. In this case, we can
construct an adversary A′′ that succeeds in the unforgeability experiment for
the CL signature scheme. Indeed, A′′ can simulate the role of the challenger
and all oracles to A, and the challenge proof Proof∗ output by A must use a
forged credential that adversary A′′ can output in the unforgeability experiment
against the CL signature scheme. Therefore, by contradiction, A cannot output
an identity proof on behalf of corrupt holders and so Pr[Invalid] is negligible
as required.

Event 2: we now consider the event Forge. ThenA generates an identity proof
Proof∗ forgery on behalf of an honest holder. This means that the adversary
does not have access to a credential list and master secret such that the proof is
satisfied. Thus, Amust either output an identity proof that breaks the soundness
property of the NIZK proof system as above, or A can prove knowledge of the
master secret of an honest holder. We show that, in this event, we can construct
an adversary A′ that succeeds in the binding property against the Pedersen
commitment scheme. By assumption, the Pedersen commitment scheme satisfies
the binding property and, accordingly, Pr[Forge] is negligible as required.

Lemma 3 (Anonymity). Let the aggregate proof system satisfy the
zero-knowledge property [14, 43] and the Pedersen commitment scheme satisfy
the hiding property [42]. Then, HLAC satisfies anonymity.

Proof. To prove anonymity, we define an adversary in the anonymity experiment
and proceed through a series of game hops, arriving at a game which is identi-
cal regardless of the bit b chosen in the anonymity experiment. We show that
the adversary can detect the game hops with negligible probability, and that
the adversary in the final game hop can output bit b with probability 1

2 . We
briefly describe our game hops here. Firstly, we simulate the NIZK proof of cor-
rect master secret blinding when calling oracles ORequest and OCredIssuance.
This game hop is indistinguishable if the NIZK proof system satisfies the zero-
knowledge property. Then, we simulate the aggregate NIZK proof when the
adversary queries oracle OProof, which is indistinguishable if the NIZK proof
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system satisfies the zero-knowledge property. Finally, when b = 1, we return an
identity proof for holder i∗0 in the experiment. This game hop is indistinguish-
able if the Pedersen commitment scheme satisfies the hiding property. In the
final game, the inputs to the adversary are identical for b = 0 and b = 1 and the
result holds.

More formally, let A = (A1,A2) be an adversary in the anonymity experi-
ment for the HLAC construction. We proceed through a series of game hops that
we show are indistinguishable to the adversary A. In the final game, the view
of A will be identical for b = 0 and b = 1. We define Game 0 as the anonymity
experiment with bit b chosen uniformly at random. Let Si be the event that A
correctly guesses b in Game i.

Game 1 : Game 1 is identical to game 0 except that, when A queries oracles
ORequest or OCredIssuance, we simulate the NIZK proof of correct master
secret blinding. Game 0 and Game 1 are indistinguishable if the NIZK proof
system for correct master secret blinding satisfies the zero-knowledge property.
Indeed, let D1 be a distinguishing algorithm that attempts to output a bit b′

in the zero-knowledge experiment. If b′ = 0, D1 is provided with a real zero-
knowledge proof as in Game 0. If b′ = 1 D1 is provided with a simulated zero-
knowledge proof as in Game 1. Note that, with the exception of queries to
oracles ORequest or OCredIssuance, the view of A is identical in Games 0 and
1. Moreover, if b′ = 0 (resp., b′ = 1), inputs to A are identical to Game 0 (resp.,
Game 1). Therefore,

|Pr[S0]− Pr[S1]| ≤ negl1.

Game 2 : Game 2 is identical to game 1 except that, when A queries oracle
OProof, we simulate the aggregate NIZK proof for the identity proof. Further-
more, we simulate the challenge aggregate NIZK proof input to A2 in the exper-
iment. Game 1 and Game 2 are indistinguishable if the aggregate NIZK proof
system satisfies the zero-knowledge property. Indeed, let D2 be a distinguishing
algorithm that attempts to output a bit b′ in the zero-knowledge experiment.
As in the previous game hop, if b′ = 0, D is provided with a real zero-knowledge
proof and, if b′ = 1, D is provided with a simulated zero-knowledge proof. The
view of A is identical in Games 0, except for queries to oracle OProof and the
challenge identity proof. Moreover, if b′ = 0 (resp., b′ = 1), inputs to A are
identical to Game 0 (resp., Game 1). Therefore,

|Pr[S1]− Pr[S2]| ≤ negl2.

Game 3 : Game 3 is identical to game 2 but, when b = 1, the experiment
computes the challenge identity proof as Proof∗←$Present(PReq∗,L[i∗0],H[i∗0]).
That is, regardless of b, the experiment always returns an identity proof for
holder i∗0. As holders i∗0 and i∗1 both have the same attribute values and use
the same credentials in the proof, the only distinguishing feature is the blinded
master secret used in the proof. Therefore, we show that Game 2 and Game
3 are indistinguishable if the Pedersen commitment scheme satisfies the hiding
property. Let D3 be a distinguishing algorithm that attempts to output a bit b′

in the hiding experiment. If b′ = 0 and b = 1, D3 is provided with a commitment
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for a message m0 (i.e., the master secret of holder i∗0) as in Game 3. If b′ = 1
and b = 1, D3 is provided with a commitment to a message m1 (i.e., the master
secret of holder i∗1) as in Game 2. Note that, with the exception of the challenge
identity proof, the view of A is identical in Games 2 and 3. Moreover, if b′ = 0
(resp., b′ = 1), inputs to A are identical to Game 3 (resp., Game 2). Therefore,

|Pr[S2]− Pr[S3]| ≤ negl3.

In Game 3, the inputs to A are identical for b = 0 and b = 1. Therefore
Pr[S3] =

1
2 .

We have that,

Pr

[
S0 −

1

2

]
≤ negl1 + negl2 + negl3

which is negligible as required. We conclude that HLAC satisfies anonymity.

6 Concluding Remarks

In this paper, we presented a first formal description and analysis of the Hy-
perledger AnonCreds protocol specified in [26]. We introduced a security model
for the protocol that captures notions of unforgeability and anonymity from the
anonymous credentials literature. As our work is a first security analysis of the
HLAC protocol, we believe that our findings provide valuable insight into the
protocol’s security, and can be used as a springboard for future research. We
now conclude by discussing the challenges of analysing the HLAC protocol, and
highlight potential extensions to our modelling.

Following completion of the HLAC specification, work will begin on v2.0
of Hyperledger AnonCreds, which uses Boneh-Boyen-Shachum (BBS) signa-
tures [13] in place of CL signatures. A comparison of these two approaches
and security analysis of Hyperledger AnonCreds v2.0 are potential directions
for future work. We are confident that our syntax and security model will be
straightforward to adapt to v2.0 of the specification. However, because the signa-
tures and proofs used in the BBS construction vary widely from CL signatures,
the protocol description and security proofs presented in this paper will likely
need fairly significant changes. We therefore consider an extension to v2.0 of the
specification to be a substantial and important piece of future work.

One of the greatest challenges in formal analysis of real-world protocols is
accurately capturing the design of the protocol in the formal modelling. In this
respect, specification of a protocol is invaluable. Though the HLAC specifica-
tion [26] provides an overview of the protocol and link to a reference imple-
mentation, the specification is, at the time of writing, incomplete. A complete
specification will allow us to verify our findings. We see it as potential future
work to modify our modelling to capture any future changes to the HLAC spec-
ification.
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