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Abstract. An interactive aggregate signature scheme allows n signers, each with their own
secret/public key pair (ski, pki) and message mi, to jointly produce a short signature that
simultaneously witnesses that mi has been signed under pki for every i ∈ {1, . . . , n}. Despite
the large potential for savings in terms of space and verification time, which constitute the
two main bottlenecks for large blockchain systems such as Bitcoin, aggregate signatures have
received much less attention than the other members of the multi-party signature family,
namely multi-signatures such as MuSig2 and threshold signatures such as FROST.
In this paper, we propose DahLIAS, the first aggregate signature scheme with constant-size
signatures—a signature has the same shape as a standard Schnorr signature—directly based
on discrete logarithms in pairing-free groups. The signing protocol of DahLIAS consists of two
rounds, the first of which can be preprocessed without the message, and verification (for a
signature created by n signers) is dominated by one multi-exponentiation of size n + 1, which
is asymptotically twice as fast as batch verification of n individual Schnorr signatures.
DahLIAS is designed with real-world applications in mind. Besides the aforementioned benefits
of space savings and verification speedups, DahLIAS offers key tweaking, a technique commonly
used in Bitcoin to derive keys in hierarchical deterministic wallets and to save space as well as
enhance privacy on the blockchain. We prove DahLIAS secure in the concurrent setting with
key tweaking under the (algebraic) one-more discrete logarithm assumption in the random
oracle model.

1 Introduction

Multiparty Signatures. Multiparty variants of digital signatures, while having been studied
for decades, have recently attracted much renewed attention due to their increasing applications
in the blockchain realm. In particular, threshold signatures and multi-signatures have proven to
be essential tools for securing digital wallets, reaching consensus among members of a federation,
and realizing efficient smart contracts. To keep implementations and cryptographic assumptions
compatible with existing ecosystems rooted in Bitcoin’s original choice of using ECDSA, there is
often a particular interest in schemes based on the discrete logarithm problem on elliptic curves
without pairings. For example, this aspect made it feasible to add support for Schnorr signatures to
Bitcoin [WNR20], which are much more amenable to the distributed setting than ECDSA due to
their linearity, whereas a proposal to add BLS signatures [BLS01, BLS04] to Bitcoin would have
arguably sparked much more controversy.

Aggregate Signatures. In contrast, the design of modern aggregate signatures has received
much less attention despite them being just as applicable in practice as threshold signatures and
multi-signatures. An aggregate signature is short (ideally constant-size) and simultaneously attests
that multiple messages m1, . . . , mn have been signed by users under their respective public keys
pk1, . . . , pkn. The verification algorithm for an aggregate signature scheme takes the entire list of
public key/message pairs ((pk1, m1), . . . , (pkn, mn)) of all signers who took part in generating the
aggregate signature and either accepts or rejects it.



This distinguishes aggregate signatures from threshold signature and multi-signature schemes, in
which all involved parties sign the same message m and—in schemes that support key aggregation—
the signature is verified against a single public key. In other words, whereas a threshold signature
or a multi-signature expresses that a group of n parties authorizes a single message (e.g., a joint
cryptocurrency payment), an aggregate signature expresses that each party i authorizes their
message mi (and the forming of a group may be incidental and not necessarily carry any meaning).

As a result, an aggregate signature can be seen as an optimized, compact representation of a list
of n individual single-party signatures. Aggregate signatures can lead to large bandwidth and storage
savings when many signatures have to be transmitted or recorded. Moreover, aggregate signatures
can reduce the computational cost of verification by replacing multiple individual signature checks
with a single aggregate signature verification. While this verification speedup is comparable in
spirit to batch verification of (normal) signatures [Fia90, NMVR95, BGR98, CHP07]—in fact, the
concatenation of n single-signer signatures is a trivial signature aggregation scheme which allows
batch verification—the ability of signers to interact during aggregate signing has the potential to
enable even larger speedups, i.e., an aggregate signature of size n may be faster to verify than a
batch of n single-signer signatures.

Aggregate signatures were introduced by Boneh, Gentry, Lynn, and Shacham in 2003 [BGLS03].
The specific scheme they proposed relies on the pairing-based BLS signature scheme [BLS01, BLS04]
and allows any third party to condense an arbitrary number of signatures into a constant-size
aggregate. Moreover, aggregation can be performed after signatures have been generated and
without any further interaction with signers. Due to its simplicity and efficiency, BLS (and more
generally, pairing-based) aggregate signatures have garnered most of the scrutiny in follow-up
works [BGLS03, GR06, LOS+06, BNN07, CHKM10, Lac18].

State of the Art. Despite this large potential for practical space savings, the state of the art of
discrete logarithm-based signature schemes in pairing-free groups is much scarcer and limited to
non-interactive “half-aggregation” of Schnorr signatures [CGKN21, CZ22], meaning n signatures,
each consisting of a group element R and a scalar s, can be compressed to roughly half their native
size, namely to n group elements (R1, . . . , Rn) along with a single scalar s. While non-interactive
aggregation is clearly preferable over an interactive aggregation protocol in terms of flexibility,
constructing non-interactive, constant-size aggregate signatures directly from pairing-free groups,
i.e., without resorting to generic techniques such as SNARKs and accepting the overhead they
incur, seems currently out of reach.3

In this work, we consider the opposite trade-off to that of Schnorr half-aggregation, i.e., we
prefer size savings over non-interactivity, and address the following question:

Assuming an interactive protocol, is it possible to construct an aggregate signature scheme
with constant-size signatures directly from pairing-free groups?

1.1 Our Contribution

We solve the open question above by presenting DahLIAS, a Discrete Logarithm-based Interactive
Aggregate Signature scheme with the following properties:

– the signature protocol consists of two rounds, where the first communication round does not
depend on the messages being signed and can be pre-preprocessed;

– an aggregate signature has the same shape as a Schnorr signature [Sch90, Sch91], meaning it
consists of a pair (R, s) where R is a group element and s is an element of the scalar field of
the group;

– each public key is a single group element, and the list of the signers’ public key/message pairs
is unrestricted (i.e., duplicate entries are allowed);

3 For the specific case of non-interactive aggregation of n Schnorr signatures, Chalkias, Garillot, Kondi,
and Nikolaenko [CGKN21, Section 6] show that any scheme with aggregation signature size ω(nλ) must
treat the hash function used in the Schnorr signature scheme in a non-black box way, e.g., by using a
SNARK to prove statements about hash evaluations. In this case, the SNARK will depend on the circuit
of the hash function.
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– verification is dominated by a single multi-scalar multiplication of size n + 1 (where n is the
number of signers and messages), which is asymptotically twice as fast as batch verification of
n individual Schnorr signatures;

– the scheme is compatible with key tweaking, where the signer derives new keys from the original
key pair using tweaks (possibly adversarially chosen) and signs under the resulting tweaked key
pairs;

– security is proven in the concurrent setting under the algebraic one-more discrete logarithm
(AOMDL) assumption in the random oracle model;

– the scheme provides strong binding security, making it infeasible to generate a signature that is
valid for two distinct lists of public key/message pairs.

Although signatures produced by our interactive aggregate signature (IAS) scheme DahLIAS have
the same shape as a standard Schnorr signature, the different syntaxes of an IAS and a standard
signature scheme prevent us from reusing the exact Schnorr signature verification algorithm in
DahLIAS: Recall that the verification algorithm of an IAS takes a list of public key/message pairs
((pk1, m1), . . . , (pkn, mn)) rather than a single public key and a single message. Nevertheless, we
manage to keep signature format and verification as close as possible to a standard Schnorr signature.

A Security Model for Interactive Aggregation: Cosigners-Aware Security. Before
elaborating on the design of DahLIAS, let us discuss the security model for aggregate signatures.
Since BLS aggregate signatures are non-interactive, the security notion proposed by Boneh, Gentry,
Lynn, and Shacham [BGLS03] and used in all subsequent works is tailored to the non-interactive
setting. It is a straightforward adaptation of the standard EUF-CMA security notion for a standard
signature scheme. The adversary is given a target public key pk and has access to a signing oracle
for the corresponding secret key. No adversary should be able to forge a signature σ that is valid
for a list of public key/message pairs containing at least one pair (pk, m) whose message m was not
queried to the signing oracle.

With a non-interactive aggregate signature scheme (such as BLS), where aggregation can be
done by a third party after the signatures have been computed, parties sign their message separately
and might not even be aware that signatures will be aggregated later on. As a result, they have no
control over how the aggregation is performed. In contrast, interaction yields the opportunity for
signers to control who the other signers participating in the protocol are and which message they
sign. This makes it possible for every signer to ensure that either all messages are signed, or none.

To understand the utility of this feature, consider atomic swaps on a blockchain as a motivational
example. In an atomic swap between two distrustful users A and B, user A would like to send a
units of coin α to user B, but only if A receives b units of coin β in return, and vice-versa. For the
purpose of this example, we assume that in the blockchain a transaction is simply a message of the
form “A sends a units of coin α to B”. To realize an atomic swap, A and B can create two separate
transactions for the two payments (in both directions), and use an aggregate signature scheme to
sign the transactions. If each user checks that the transaction submitted by the other user pays
the correct amount and type of token before participating in the signing protocol, and crucially,
the aggregate signature scheme is “all-or-nothing”, then they can ensure that the swap is indeed
atomic as desired.4

This motivates cosigners-aware EUF-CMA (co-EUF-CMA for short) security, a notion we
introduce in this work (Section 3.3). In co-EUF-CMA, each signer is given, at some point before
finalizing the protocol, the entire list of public key/message pairs ((pk1, m1), . . . , (pkn, mn)) for
which the aggregate signature will be computed, allowing them to vet the list before finalizing their
protocol output. More formally, the signing oracle takes, in addition to the message being signed
by the honest signer, the list of all cosigners’ public key/message pairs. The adversary’s goal is to
produce a valid signature forgery for a list L of public key/message pairs that contains at least one
pair (pk, m) such that the signing oracle was never queried with (L, m).

Jumping ahead, DahLIAS meets the stronger co-EUF-CMA notion “natively” (Section 5).
Nevertheless, we provide a simple generic conversion method turning any EUF-CMA-secure IAS
4 One may be tempted to realize the same functionality via a multi-signature scheme by letting A and

B sign a single combined message that contains both payments, but this approach will suffer from the
weaknesses we describe further below in this subsection.
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scheme into a co-EUF-CMA-secure one, which may be of interest for future work on IAS schemes
(Section 3.4).

Security with Key Tweaking. Key tweaking is the process of generating a new key pair (s̃k, p̃k)
from an existing key pair (sk, pk) using a pair of algorithms, TweakSK and TweakPK, and a “tweak”
τ as

(s̃k, p̃k) := (TweakSK(sk, τ), TweakPK(pk, τ)).

A key tweaking scheme for a signature scheme should allow a user to generate valid signatures for
the tweaked public key p̃k using the corresponding tweaked secret key s̃k.

Depending on the specific tweaking algorithms and the method used to select the tweak, key
tweaking has a variety of applications. For example, key tweaking is fundamental in hierarchical
deterministic (HD) Bitcoin wallets [Wui12, DEF+21]. Generally, the task of any Bitcoin wallet is
to generate fresh, unlinkable key pairs for each payment, thereby enhancing privacy. An HD wallet
stores a parent key pair (sk, pk) along with a chaincode. The wallet uses the parent key pair and
the chaincode to deterministically derive tweaks, which in turn are used to compute child key pairs
via key tweaking. The main feature of HD wallets is that they can share the parent public key pk
and the chaincode with external systems handling incoming payments, giving them the ability to
create fresh public keys. For example, a webshop that receives pk and the chaincode can derive
a new public key for each incoming payment with TweakPK(pk, τ). When it comes time to spend
the received funds, the HD wallet can derive the same tweak and compute TweakSK(sk, τ) for the
corresponding secret key.

Another prominent application of key tweaking is Taproot commitments [WNT20], used in
Bitcoin transactions. A Taproot commitment is a tweaked public key that commits to both a
public key and a message. Given a key pair (sk, pk) and a message m, the user computes a Taproot
commitment to (pk, m) by deriving a tweak τ from (pk, m), computing the tweaked public key
p̃k := TweakPK(pk, τ), and publishing p̃k. Now, the user has two options: either sign for p̃k using
s̃k = TweakSK(sk, τ) (without needing to reveal pk or m); or open the commitment p̃k to (pk, m)
and sign under pk using sk.

We formalize the security of an IAS scheme when used with key tweaking as (co-)EUF-CMA-TK
(Section 3.3), which extends (co-)EUF-CMA by allowing the adversary both to request signatures
for any valid tweak and to output a forgery on a tweaked public key. In more detail, the differences
are as follows (where (sk, pk) denotes the honest signer’s “main” key pair generated by the security
game):

1. The signing oracle takes, in addition to the message and the list of all cosigners’ public
key/message pairs, a tweak τ as input and outputs a signature generated by using TweakSK(sk, τ)
as the secret key.

2. The adversary is required to output a tweak τ along with the list L of public key/message pairs
and the signature. The adversary wins if the signature is valid for L and L contains at least
one pair (TweakPK(pk, τ), m) such that (τ, m) (or, in the case of co-EUF-CMA-TK, the tuple
(L, τ, m)) was not queried to the signing oracle before.

A Generic Conversion from Multi-Signatures. Given the similarities between the syntax
and the security notion for aggregate signatures and multi-signatures (where all parties sign the
same message m), it is tempting to try to build one from the other. Obviously, an aggregate
signature scheme can be turned into a multi-signature scheme by setting the messages of all parties
to the message m of the multi-signature scheme. Conversely, Bellare and Neven [BN06] suggested
that one can transform a multi-signature scheme into an aggregate signature scheme by simply
setting the message m of the multi-signature scheme to the concatenation of the individual public
key/message pairs of all parties of the aggregate signature scheme. In other words, given a list
L = ((pk1, m1), . . . , (pkn, mn)), the IAS signers would run the multi-signature algorithms using the
public keys (pk1, . . . , pkn) and the message given by an appropriate encoding of L.

However, there is a pitfall: As pointed out in Maxwell et al. [MPSW18, Appendix A.2], this
transformation fails to achieve EUF-CMA security for the resulting aggregate signature scheme.
Let pk be the honest signer’s public key and suppose the adversary calls the signing oracle with
message m1 and L = ((pk, m1), (pk, m2)). Because the generic transformation merely concatenates
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the public key/message pairs in L and uses it as the input message to the multi-signature scheme
algorithms, the output of the signing oracle is independent of the actual message being signed.
Consequently, the adversary can perfectly emulate the cosigner (signing m2 with the same key pair
as the honest signer) by copying the oracle’s output. This allows the adversary to produce a valid
signature for L, which constitutes a forgery because L contains (pk, m2) and the signing oracle was
never queried with m2. We give a more detailed description of the attack in Appendix A.1.

Extending Bellare and Neven’s idea, we formally prove in Appendix A.1 that a modification of
their generic conversion method yields a co-EUF-CMA-secure IAS scheme, namely if each signer
additionally checks that its own public key appears exactly once, paired with the message the
signer intends to sign, in the list L = ((pki, mi))i∈[n]. In Appendix A.2, we take a closer look at
MuSig2-IAS and MuSig2∗-IAS, the IAS schemes obtained by applying this enhanced conversion
method to respectively MuSig2 and its optimized variant MuSig2∗ [NRS21]. We observe that,
although they are co-EUF-CMA-secure, they fail to achieve EUF-CMA-TK security when used
with reasonable tweaking schemes (such as the one used in HD wallets and Taproot). In contrast,
DahLIAS achieves co-EUF-CMA-TK security for such tweaking schemes.

Unrestrictedness. A downside of the (secure) generic conversion is that the resulting scheme is
restricted to producing aggregate signatures for a list without duplicate keys. However, the ability
to accept any list (regardless of public key or message repetitions), called unrestrictedness [BNN07]
in the context of BLS aggregate signatures, is important for applications to cryptocurrencies. In
Bitcoin, a recipient typically provides a public key to the sender, who creates a coin that includes
this public key along with an amount. To spend a coin, the transaction must contain a signature
that is valid for the coin’s public key. Since transactions often spend multiple coins simultaneously,
it would be natural to modify Bitcoin’s protocol rules to allow transactions to contain only a
single aggregate signature. However, if the aggregate signature scheme were to disallow duplicate
public keys, then such a transaction could not spend coins that use the same public key. Because
recipients have no control over which public keys are used—since senders might reuse a public key
across multiple coins—unrestricted aggregate signature schemes are more efficient and simpler to
implement in wallet software.

Binding Security. A standard signature scheme is said to be binding (to the message) if no p.p.t.
adversary can find a public key pk, a signature σ, and two distinct messages m ≠ m′ such that σ is
valid for both (pk, m) and (pk, m′). It is strongly binding if it binds to the public key in addition
to the message, meaning no p.p.t. adversary can find two distinct pairs (pk, m) ̸= (pk ′, m′) and a
signature σ such that σ is valid for both (pk, m) and (pk ′, m′) [CGN20, BCJZ21]. Binding security
is related to non-repudiation in that it ensures that no malicious signer can later claim to have
signed a different message [ZG96].

It is natural to extend binding security to multiparty signatures. For example, Fujita et
al. [FSYH24] studied the weak and strong binding security5 of BLS aggregate signatures [BGLS03],
Bellare-Neven multi-signatures [BN06], and MuSig2 [NRS21]. Binding security is important in prac-
tice for consensus protocols, as shown for example by Quan for the Ethereum beacon chain [Qua21a,
Qua21b].

In Section 6, we formalize the following definition of strong binding for aggregate signatures: no
p.p.t. adversary can find two distinct lists of public key/message pairs L and L′ and a signature σ
such that σ is valid for both L and L′. We prove that DahLIAS is strongly binding-secure according
to this definition.

Comparison of Aggregate Signature Schemes. We compare different non-interactive and
interactive aggregate signature schemes based on DL without pairings in Table 1. Since the primary
motivation for signature aggregation is space savings, we restrict ourselves to schemes in which a
public key is a single group element as in normal Schnorr signatures; accordingly, key generation
requires one group exponentiation for all listed schemes.

For a baseline, we include the two schemes “Concat.”, the trivial non-interactive scheme in
which an aggregate signature is simply the concatenation of single-signer Schnorr signatures and
5 Fujita et al. [FSYH24] call these notions weak non-key substitutability and non-key substitutability,

respectively.
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Table 1. Comparison of non-interactive (upper part) and interactive (lower part) aggregate signature
schemes based on DL in a group G of order p without pairings. “Rounds” indicates the total number of
signing rounds and the number of those which cannot be preprocessed. “Ur.” indicates unrestrictedness
(i.e., messages and public keys are not required to be distinct). Gm denotes a multi-exponentiation of size
m, and n denotes the number of signers. For interactive schemes, the security notion is one of those defined
in Section 3.3. For non-interactive schemes, we consider the straightforward adaptation of the EUF-CMA
notion of Section 3.3 to the non-interactive setting (called CK-AEUF-CMA in [CGKN21]). Note that
cosigners-aware security is unachievable in the non-interactive setting. For X ∈ {EUF-CMA, co-EUF-CMA},
we write “X(-TK?)” if a scheme is X-secure, but it is unknown whether it is X-TK-secure. MuSig2∗-IAS is
not co-EUF-CMA-TK (Section A.2).

Scheme
Rounds

Ur.
Multi-Exponentiations Sig.

Domain
Assumption
(ROM+. . . ) Security

tot. pp. Sign Ver

Concat. 1 1 ✓ 1G nG2 Gn × Zn
p DL EUF-CMA(-TK?)

Concat. (batch verification) 1 1 ✓ 1G 1G2n Gn × Zn
p DL EUF-CMA(-TK?)

Half-aggregation [CGKN21] 1 1 ✓ 1G 1G2n Gn × Zp DL EUF-CMA(-TK?)

BN-IAS-unrestricted [BN06] 3 2 ✓ 1G 1Gn+1 G1 × Zp (forgery against EUF-CMA)
BN-IAS (A.1)/[BN06] 3 2 ✗ 1G 1Gn+1 G1 × Zp DL co-EUF-CMA(-TK?)
MuSig2∗-IAS (A.1)/[NRS21] 2 1 ✗ 3G+1Gn−1 1G2 +1Gn−1 G1 × Zp AGM+AOMDL co-EUF-CMA
DahLIAS (4) 2 1 ✓ 3G 1Gn+1 G1 × Zp AOMDL co-EUF-CMA-TK

verification is performed in a loop, and “Concat. (batch verification)”, the same scheme with batch
verification (see also Section 1.4).

DahLIAS is the only aggregate signature scheme for which tweaking security has been proven,
as well as the only known (secure) IAS scheme based on DL without pairings which is unrestricted.
Moreover, in the pairing-free setting, it has the least number of rounds among all IAS schemes
and the smallest signatures and the best verification performance among all aggregate signature
schemes.

1.2 Case Study: Space Savings in Bitcoin

Our primary motivation for signature aggregation is savings in terms of signature size, e.g., on
the Bitcoin blockchain where storage space is typically precious because the entire blockchain
needs to be downloaded by every fully-validating node in the network. In Bitcoin, aggregation
could be applied at the transaction level, aiming to replace the multiple individual signatures
typically required within a transaction with a single, compact aggregate signature covering the
entire transaction.

To understand why Bitcoin transactions typically have multiple signatures today, consider the
basic structure of Bitcoin transactions. Transactions consist of outputs, which specify payment
destinations, and inputs. Each input consumes a prior transaction output and contains a signature
to authorize the spending. Since the signatures in a transaction are, in general, for distinct messages
derived from the transaction, this application scenario suits signature aggregation rather than
standard multi-signatures. Moreover, in the common case that all inputs of a transaction are
owned by a single user, even an interactive aggregation scheme like DahLIAS does not actually need
interactivity because the different “signers” controlled by the user may run on the same device.67

In Table 2, we provide an estimate of the potential byte-size reductions achievable with DahLIAS
compared to non-interactive Schnorr signature half-aggregation. An advantage for practical deploy-
6 However, this constitutes a potential drawback for users’ privacy. If local “interaction” is used more often

than real interaction between different users, than the fact whether some inputs in a transaction are
covered by an aggregated signature provides a passive observer of the blockchain with a hint on whether
these inputs belong to the same user.

7 In fact, the entire signing protocol could be turned into a non-interactive algorithm in this case, but
while this will make signing more efficient, we are not convinced that these speedups are worth the added
complexity of having two signing procedures and leave this for future work; note that for cryptocurrencies,
the performance of verification is more important than that of signing because each node needs to verify
the entire blockchain.
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Table 2. Estimated relative byte savings from applying aggregate signature schemes to Bitcoin transactions.
Savings are relative to a baseline transaction following the SegWit v1 [WNT20] transaction format, with
2.26 inputs and 2.69 outputs (the average between 2024-02-25 and 2025-02-26). The “Average Transaction”
column shows savings for a transaction with the same input/output count as the baseline. The “CoinJoin
Transaction (sup)” column shows the possible savings of an asymptotically large CoinJoin transaction, i.e.,
the supremum of savings for a large collaborative transaction aggregating the baseline’s inputs/outputs
from n users where n → ∞. We make the script and references to the data source used to compute the
numbers available [est].

Scheme Average Transaction CoinJoin Transaction (sup)
Half-aggregation [CGKN21] 10.9% 19.6%
DahLIAS (4) 21.8% 39.1%

ment of either scheme is that these two schemes only rely on (variants of) the discrete logarithm
assumption in pairing-free groups, introducing no substantially new cryptographic assumptions
beyond those already underpinning Bitcoin’s existing signatures (ECDSA and Schnorr signatures,
both on the secp256k1 elliptic curve).

While aggregation offers significant savings for average-size transactions, the savings are even
greater for large collaboratively created transactions (also called “CoinJoins”). In Bitcoin, mul-
tiple users can construct a single, joint transaction where each user contributes their respective
inputs and outputs. With signature aggregation, this combined transaction still requires only one
aggregate signature. Consequently, its space cost is effectively amortized across all participants
of the transaction. This significantly reduces the per-participant overhead and thus transaction
fee compared to each user creating a separate transaction, providing a strong incentive for such
collaboration.

We remark that, in the Bitcoin protocol, the metric that determines the storage costs of a
transaction in the blockchain (and thereby also the required transaction fee) is not its raw byte size
but rather its transaction weight [LLW15]. Transaction weight is calculated as a weighted sum of
the byte sizes of different transaction parts. Because signatures are part of the transaction data
that is discounted by the weight metric, the relative savings of signature aggregation in terms of
transaction weight are lower than relative savings in terms of byte size.

For additional background on leveraging signature aggregation in Bitcoin, including a detailed
discussion of their feasibility, we refer the reader to the report by Jahr [Jah25].

1.3 Technical Overview

In this section, we give an informal account of the considerations that guided the design of DahLIAS.
Let us recall the standard Schnorr signature scheme first. Let G be a group (denoted multiplicatively)
of prime order p with a generator g and Hsig : {0, 1}∗ → Zp be a cryptographic hash function. A
secret/public key pair is a pair (x, X = gx) ∈ Zp×G. Given a message m, the signer draws r ←$ Zp

and computes R := gr, c := Hsig(X, R, m), and s := r + cx and returns the signature σ := (R, s). A
signature σ = (R, s) is valid for a public key X and a message m if gs = RXHsig(X,R,m) holds.

A key pair for DahLIAS has the same form as for Schnorr signatures. A signature also has the
same form, namely σ = (R, s) ∈ G× Zp. Let us explain how verification works first. Given a list of
public key/message pairs L = ((X1, m1), . . . , (Xn, mn)), a signature σ = (R, s) is valid for L if

gs = R

n∏
i=1

X
Hsig(L,R,Xi,mi)
i . (1)

This verification equation can be seen as a natural adaptation of the one of the Bellare-Neven
multi-signature scheme [BN06] to the setting of aggregate signatures.8

8 It is essential to include L in the input to Hsig. Otherwise, an adversary which is given the honest signer’s
public key X can draw r ←$ Zp, set R := gr and s := r, and solve the generalized birthday problem
of finding n = 2

√
λ−1 messages m1, . . . , mn such that

∑n

i=1 Hsig(R, X, mi) = 0, e.g., using Wagner’s
algorithm [Wag02] in time O

(
22

√
λ
)
. Then (R, s) is a valid forgery for L = ((X, m1), . . . , (X, mn)).
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At a high level, this aggregate signature is collectively computed by having each signer (holding
the secret key xi corresponding to public key Xi = gxi) contribute a partial signature

si := ri + cixi (2)

where ri is a secret nonce,
ci := Hsig(L, R, Xi, mi) (3)

is a so-called “challenge”, and

R :=
n∏

i=1
gri . (4)

The aggregate signature is then (R, s) with s =
∑n

i=1 si. Correctness is straightforward as

gs =
n∏

i=1
gsi =

n∏
i=1

gri+cixi = R

n∏
i=1

X
Hsig(L,R,Xi,mi)
i ,

meaning Equation (1) defining a valid signature is satisfied.
One key question is how the signers should generate their secret nonce ri and compute R in

Equation (4). Just having the signers draw ri ←$ Zp and exchange Ri := gri does not work. Indeed,
this yields a scheme vulnerable to an attack in the concurrent setting based on Wagner’s algorithm
for the generalized birthday problem or Benhamouda et al.’s polynomial time algorithm for the
ROS problem [BLL+21]. This kind of attack (which we will colloquially call a ROS attack) was
originally discovered by Drijvers et al. [DEF+19] and used to break several multi-signature schemes.

It generally applies as soon as the following condition is fulfilled: given the first-round output
outi of the honest signer, the adversary can efficiently compute two different signing queries such
that the “effective” nonces computed by the signer (the value ri in Equation (2)) are the same but
the challenges ci computed in Equation (3) are different. We give a detailed and general description
of the attack applying to a large family of two-round IAS schemes in Appendix B.

We could in principle rely on the same technique as in Bellare-Neven [BN06] or MuSig1 [MPSW19]
multi-signature schemes and have signers commit to Ri = gri first and then reveal Ri and compute
R =

∏n
i=1 Ri, but this results in a three-round scheme, whereas we aim for a two-round scheme

(where additionally the first round does not depend on the messages signed by the parties).
In order to thwart the ROS attack and achieve a secure two-round protocol, we borrow a

technique from MuSig2 [NRS21] (independently discovered in the contexts of FROST [KG20] and
DWMS [AB21]). In the first round of a signing session, each signer generates two secret nonces
r1,i, r2,i ←$ Zp and sends (R1,i, R2,i) = (gr1,i , gr2,i) to other signers. Once all necessary public values
for the signing session (including all participants’ public keys, messages, and public nonces) have
been shared, we can define the session context, which we denote by ctx . While the precise definition
of ctx in DahLIAS includes optimizations, for the purpose of this overview we let the session context
be simply given by

ctx := ((Xi, mi, R1,i, R2,i))i∈[n].

With the context ctx determined, each signer computes its “effective” nonce as ri := r1,i + br2,i

where b is computed as
b := Hnon(ctx),

where Hnon is some hash function. The common public nonce R (see Equation (4)) is then equal to

R =
n∏

i=1
gri =

n∏
i=1

gr1,i+br2,i =
n∏

i=1
R1,iR

b
2,i,

which can be computed by all signers, allowing them to compute their challenge ci as per Equation (3)
and their partial signature si as per Equation (2).

However, this straightforward adaptation of the MuSig2 two-round technique does not yield a
secure IAS scheme. In particular, it is vulnerable to the ROS attack mentioned above. Indeed, it is
possible, given a signer’s first-round output, to craft two different signing queries that cause the
signer to internally compute the same b (and hence the same effective secret nonce) but different
challenges c and c′ ̸= c.

8



Again, we refer to Appendix B for a detailed description of the attack, but we now outline the
two queries. Suppose the honest signer’s public key is X and its first-round output is (R1,1, R2,1).
Consider the session context

ctx =
(
(X, m1, R1,1, R2,1), (X, m2, R1,1, R2,1)

)
.

The signing oracle can then be queried with ctx and message m1 or with ctx and message m2.
In both cases, b = Hnon(ctx) and R remain identical, but the challenges differ: in the first query,
the challenge is Hsig(L, R, X, m1), while in the second it is Hsig(L, R, X, m2). Note that this attack
crucially exploits the fact that each party signs its own message and that a party may sign multiple
messages in the same aggregate signature, which is not possible for a multi-signature scheme.

To prevent this vulnerability, we add an extra check to the signing algorithm that forces it
to abort unless the following condition is met: Given as input the first-round state r1, r2 ←$ Zp,
the session context ctx = ((Xi, mi, R1,i, R2,i))i∈[n], and message m, the signing algorithm checks
that there exists a unique index u such that R2,u = gr2 and that (Xu, mu) = (X, m). In this way,
the session context ctx uniquely determines both b and m, which in turn uniquely determines the
challenge, thereby thwarting the attack.

We prove that DahLIAS achieves co-EUF-CMA-TK security (i.e., cosigners-aware EUF-CMA
security with key tweaking) when used with tweaking schemes satisfying a number of technical
conditions (which are met for example by the tweaking scheme used in HD wallets and Taproot). Our
security proof relies on the AOMDL assumption and models Hsig as a random oracle. Interestingly,
the proof only requires Hnon to be collision-resistant rather than modeling it as a random oracle
(as is the case in the security proof of FROST [KG20] and MuSig2 [NRS21]). Whether this proof
technique can be adapted to FROST and MuSig2 is an interesting open question, which we believe
can be answered positively.

1.4 Related Work

Sequential Aggregate Signatures. Our contribution is concerned with “parallel” aggregate
signatures, i.e., all signers contribute to the signature at the same time. Some works have instead
considered sequential aggregate signature schemes. These additionally certify that parties have
signed in a certain order [LMRS04, LOS+06, BGOY07, Nev08, FLS12, BGR12, GOR18], which is
helpful for use cases such as certificate chains and secure message routing [KLS00].

Aggregate Signatures Not Based on Discrete Logarithms. A number of works build
aggregate signatures (either sequential or parallel) based on lattices [EB14, WW19, DHSS20,
BK20, BR21, BT23, TS23, JRS24, AAB+24]. Schemes based on advanced techniques such as
indistinguishability obfuscation [HKW15] and batched arguments for NP [WW22, DGKV22] have
also been proposed.

Batch Verification. Batch verification [Fia90, NMVR95, BGR98, CHP07] of signatures allows
verifying many signatures (potentially from different signers and on different messages) more
efficiently than verifying signatures one by one, see Bernstein et al. [BDL+12, Section 5] for a
comprehensive overview. Verification speedup is a benefit that is typically also true for aggregate
signatures when compared to similar standard signature schemes, e.g., when comparing the verifica-
tion time of a DahLIAS signature against that of n Schnorr signatures. The crucial advantage of
aggregate signatures over batch verification is that they provide savings not only in verification
time, but also in signature size, yielding for instance a constant-size signature in the case of our
work.

Whether batch verification or aggregate signatures are used, any savings in verification time are
fundamentally limited by a linear lower bound: verifying that n signers have signed n messages will
necessarily need time O(n) because verification needs to read n messages and n public keys.

Key Tweaking. Initial security analyses related to key tweaking considered the weaker model
of related-key security, where the adversary’s query to the signing oracle is allowed to include a
tweak and the oracle outputs the signature for the corresponding tweaked key. However, any forgery
produced by the adversary must be valid for the exact target public key, not for a tweaked version
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of it. In this model, Morita et al. [MSM+16] show that Schnorr signatures are secure as long as the
signature’s challenge hash input includes the public key.

Fleischhacker et al. [FKM+16] introduce signature schemes with re-randomizable keys. Re-
randomization is very similar to key tweaking, but we adhere to the term “tweaking” since it is
more established in practice and because certain applications (e.g., Taproot commitments) do
not necessarily randomize the key. They also introduce unforgeability under re-randomizable keys,
which not only permits the adversary to query the signing oracle with a tweak but also allows
the adversary to produce a forgery for a tweaked target key. Moreover, they prove the security of
Schnorr signatures (specifically, the variant with extended challenge hash input mentioned above)
under this notion for a concrete tweaking scheme.

ECDSA with tweaking, on the other hand, has been proven secure only under a weaker notion,
where the tweak is (“honestly”) chosen uniformly at random by the signer rather than being
provided by the adversary [DFL19, DEF+21, GS22].

Subsequent works have considered tweaking for Schnorr and ECDSA signatures in the threshold
setting [DEF+23, GK24].

2 Preliminaries

2.1 Notation and Definitions

Basic Notation. We let λ denote the security parameter. For a positive integer n ≥ 1, we let [n]
denote the set {1, . . . , n}. Given a set S, a list L = (x1, . . . , xn) over S, also denoted (xi)i∈[n], is a
finite sequence of elements of S. For a finite non-empty set S, we write s←$ S for the operation of
sampling s uniformly at random from S. Given a probabilistic algorithm A, we let y ← A(x1, . . . ; ρ)
denote the operation of running A on inputs x1, . . . and random coins ρ and assigning its output to
y, and y ← A(x1, . . . ) when coins ρ are chosen uniformly at random. When A is deterministic, we
use indifferently y := A(x1, . . . ) or y ← A(x1, . . . ).

Groups. A group description is a triple (G, p, g) where G is a cyclic group of order p and g is
a generator of G. A (prime-order) group generation algorithm is an algorithm GrGen which on
input 1λ returns a group description (G, p, g) where p is a λ-bit prime. The group G is denoted
multiplicatively. Given an element X ∈ G, we let logg(X) denote the discrete logarithm of X in
base g, i.e., the unique x ∈ Zp such that X = gx. We conflate group elements X ∈ G and scalars
x ∈ Zp with their encodings as bit strings.

Games. We use the standard game-based approach to define security [BR06]. A security game
GAMEpar(λ) indexed by a set of parameters par consists of a main procedure and a collection of
oracle procedures. The main procedure, on input the security parameter λ, initializes variables
and generates input on which an adversary A is run. The adversary interacts with the game by
calling oracles provided by the game and returns some output, based on which the game computes
its own output d (usually a single boolean true/false), which we write GAMEA

par(λ) = d. Given
a predicate P , we use “assert P” as a shorthand for “if ¬P then return false” in the main
procedure or “if ¬P then return ⊥” in an oracle procedure.

2.2 Security Assumptions

AOMDL Assumption. The algebraic one-more discrete logarithm (AOMDL) assumption is
a falsifiable (and thus weaker) variant of OMDL [BP02, BNPS03] introduced by Nick, Ruffing,
Seurin [NRS21]. The adversary A is given a group description (G, p, g) and wins if it outputs
the discrete logarithms x1, . . . , xℓ to base g of ℓ challenge group elements X1, . . . , Xℓ obtained
via the Chal oracle by making strictly less than ℓ queries to an oracle ADLog which returns
the discrete logarithm to base g of a given group element. More precisely, ADLog takes a tuples
(α, β1, . . . , βℓ) ∈ Zℓ+1

p where ℓ is the number of challenge group elements A has received thus far
and returns α +

∑ℓ
i=1 βixi, i.e., the discrete logarithm in base g of X := gα

∏ℓ
i=1 Xβi

i . As a result,
A can only obtain discrete logarithms of group elements X for which it can provide an algebraic
representation w.r.t. (g, X1, . . . , Xℓ). This restriction is what differentiates the AOMDL assumption
from the usual OMDL assumption.
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Game AOMDLA
GrGen(λ)

(G, p, g)← GrGen(1λ)
ℓ := 0 ; q := 0

y⃗ ← AChal,ADLog(G, p, g)
x⃗ := (x1, . . . , xℓ)
return (y⃗ = x⃗ ∧ q < ℓ)

Oracle Chal()

ℓ := ℓ + 1
xℓ ←$ Z∗

p

Xℓ := gxℓ

return Xℓ

Oracle ADLog((α, β1, . . . , βℓ))

q := q + 1
return α +

∑ℓ

i=1 βixi

// = logg

(
g

α
∏ℓ

i=1
X

βi
i

)

Fig. 1. The AOMDL game. Challenges xi are sampled from Z∗
p = Zp \ {0} to fit key generation of DahLIAS.

Definition 1 (AOMDL Assumption). Let GrGen be a group generation algorithm, and let game
AOMDLA

GrGen be as defined in Figure 1. The algebraic one-more discrete logarithm (AOMDL)
assumption is hard for GrGen if for any p.p.t. algorithm A,

Advaomdl
A,GrGen(λ) := Pr

[
AOMDLA

GrGen(λ) = true
]

= negl(λ).

Collision-Resistant Hash Functions. Let H = (HGen, HEval) where HGen is an algorithm
taking the security parameter 1λ and returning a hashing key κ and HEval is an algorithm taking a
hashing key κ and an input x ∈ {0, 1}∗ and returning a hash h in some finite set defined by the
hashing key. Let game COLLA

H be defined as follows:

Game COLLA
H(λ)

κ← HGen(1λ)
(x, x′)← A(κ)

return
(
x ̸= x′ ∧ HEval(κ, x) = HEval(κ, x′)

)
Definition 2. H is collision-resistant if for any p.p.t. algorithm A,

Advcoll
A,H(λ) := Pr

[
COLLA

H(λ) = true
]

= negl(λ).

In the rest of the paper, we simply write H(x) for HEval(κ, x), leaving the hashing key implicit
for notational simplicity. Also, we extend the notation to arbitrary inputs x (typically tuples) and
simply write H(x), implicitly assuming the existence of a fixed injective encoding function that
maps the input x into {0, 1}∗. We omit explicit reference to the encoding function in our notation.

3 Interactive Aggregate Signature Schemes

In this section, we introduce the syntax and security definitions for an IAS scheme and define the
notion of tweaking scheme.

3.1 Syntax

We consider a set of n+1 parties consisting of n signers and a so-called coordinator. The coordinator
can be one of the signers and is considered untrusted. Each signer is identified by a distinct integer i
in [n]. This indexing might be specified by the application or chosen by the coordinator and signers
need not be aware of it.9

A two-round interactive aggregate signature (IAS) scheme IAS consists of algorithms (Setup,
KeyGen, Sign, Coord, Sign′, Coord′, Ver) as follows:
9 We write variables involved in the Sign and Sign′ algorithms with this index i for clarity and assume that

the inputs to the coordinator algorithms are listed according to this index.
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– The setup algorithm Setup takes as input the security parameter 1λ and returns system-wide
parameters par . For notational simplicity, we assume that par is given as implicit input to all
other algorithms.

– The key generation algorithm KeyGen takes no input and returns a secret/public key pair
(sk, pk).

– The interactive signature algorithm (Sign, Coord, Sign′, Coord′) consists of two algorithms Sign
and Sign′ run by signers and two algorithms Coord and Coord′ run by the coordinator:
• Sign takes no input and returns a first-round signer output outi and a signer state sti.
• Coord takes a list of public key/message/signer first-round output triples ((pk1, m1, out1),

. . . , (pkn, mn, outn)) and returns a session context ctx and a coordinator state st.
• Sign′ takes a secret key ski, a signer state sti, a message mi to sign, and a session context

ctx and returns a second-round signer output out′
i.

• Coord′ takes a coordinator state st and a list of second-round signer outputs (out′
1, . . . , out′

n)
and returns a signature σ.

– The verification algorithm Ver takes a list of public key/message pairs ((pk1, m1), . . . , (pkn, mn))
and a signature σ and returns true if the signature is valid and false otherwise.

Note that the list of public key/message pairs taken by the verification algorithm may contain
duplicates, which corresponds to the notion of unrestricted aggregate signature scheme of [BNN07].

Protocol Execution and Correctness. The nominal execution of the protocol goes as follows:

– each signer generates a key pair (ski, pki)← KeyGen() and sends pki to the coordinator;
– each signer sends the message mi it wants to sign to the coordinator;
– each signer runs (outi, sti)← Sign() and sends outi to the coordinator (note that pki, outi, and

mi can be sent separately or all together to the coordinator);
– when the coordinator has received each signer’s public key, message, and first-round output, it

runs
(ctx, st)← Coord

(
((pki, mi, outi))i∈[n]

)
and sends ctx to all signers;

– each signer runs out′
i ← Sign′(ski, sti, mi, ctx) and sends out′

i to the coordinator;
– when the coordinator has received each signer’s second-round output, it runs

σ ← Coord′ (st, (out′
i)i∈[n]

)
and outputs the signature σ.

Consider game CORRECTIAS,n,m1,...,mn
(λ) as defined in Figure 2. It is parameterized by an

integer n and messages m1, . . . , mn and executes the IAS protocol IAS as outlined above for n
signers (arbitrarily indexed from 1 to n) signing respectively message mi. Given a function ε(λ) ≥ 0,
ε-correctness requires that for every λ, every integer n, and every messages m1, . . . , mn,

Pr
[
CORRECTIAS,n,m1,...,mn

(λ) = true
]
≥ 1− ε(λ).

Dispensing with the Coordinator. We stress that having a coordinator is optional: the signers
can run the protocol by themselves with slightly modified algorithms (AltSign, AltSign′, AltSign′′)
defined as follows:10

– AltSign is exactly Sign: it takes no input and returns a first-round signer output outi and a
signer state sti.

10 We assume that the signer’s public key pki can be computed from the secret key ski and the signer’s
first round output outi can be computed from its state sti. This is without loss of generality since the
secret key can be redefined to contain the public key and the signer’s state to contain the signer’s first
round output.
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Game CORRECTIAS,n,m1,...,mn, τ1, . . . , τn
(λ)

1 : par ← Setup(1λ)
2 : // key generation

3 : for i := 1 . . . n do
4 : (ski, pki)← KeyGen()
5 : ski := TweakSK(ski, τi)
6 : pki := TweakPK(pki, τi)
7 : // first round

8 : for i := 1 . . . n do
9 : (outi, sti)← Sign()

10 : (ctx, st)← Coord
(
((pki, mi, outi))i∈[n]

)
11 : // second round

12 : for i := 1 . . . n do
13 : out′

i ← Sign′(ski, sti, mi, ctx)

14 : σ ← Coord′ (st, (out′
i)i∈[n]

)
15 : // verification

16 : return Ver
(
((pki, mi))i∈[n], σ

)

Fig. 2. The correctness game for an IAS scheme IAS. The highlighted parts show the modifications for an
IAS scheme used together with a tweaking scheme TS (see Section 3.2).

– AltSign′ takes a secret key ski, a signer state sti, a message mi to sign, and a list of cosigners’
public key/message/first round output tuple ((pkj , mj , outj))j∈[n]\{i}. It computes pki from ski

and outi from sti, runs

(ctx, st)← Coord
(
((pki, mi, outi))i∈[n]

)
out′

i ← Sign′(ski, sti, mi, ctx),

and returns the second-round signer output out′
i and state st′

i := st.
– AltSign′′ takes a signer second-round state st′

i and a list of second-round signer outputs
(out′

1, . . . , out′
n), runs σ ← Coord′(st′

i, (out′
i)i∈[n]), and returns the signature σ.

Note that for correctness of this alternative signing protocol without a dedicated coordinator, it
is essential for certain schemes (such as DahLIAS) that all signers supply the input list of triples to
Coord in the same order. If no natural order is imposed by the application, the signers should sort
the list using a predetermined order relation before providing it to Coord.

3.2 Tweaking
In this section we introduce the notion of tweaking scheme for an IAS scheme. Intuitively, a tweaking
scheme allows one to transform a secret/public key pair into another valid pair via a “tweak”.
This section defines the syntax of tweaking schemes and specifies properties that ensure correct
integration with an IAS scheme.

Syntax. A tweaking scheme TS for an IAS scheme IAS is a tuple (T , TweakSK, TweakPK) where T is
a set of allowed tweaks and (TweakSK, TweakPK) are two deterministic algorithms. Set T is parame-
terized by system parameters par output by the IAS Setup and algorithms (TweakSK, TweakPK) take
par as input although we usually omit it in notation for brevity. Algorithms (TweakSK, TweakPK)
have the following syntax:

– The secret key tweaking algorithm TweakSK takes a secret key sk and tweak τ as input and
returns a secret key s̃k.

– The public key tweaking algorithm TweakPK takes a public key pk and tweak τ as input and
returns a public key p̃k.

Neutral Tweak. A tweaking scheme may also specify a neutral tweak τ0 ∈ T . For every key
pair (sk, pk) output by KeyGen(par), the neutral tweak τ0 must leave the key unchanged:

(TweakSK(sk, τ0), TweakPK(pk, τ0)) = (sk, pk).

This property is useful for defining the EUF-CMA-TK game, since it ensures that an oracle providing
signatures under the tweaked key TweakSK(sk, τ) behaves identically to one providing signatures
under the original key when τ = τ0.
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Perfect Tweak Invariance. We say that TS is perfectly tweak invariant11 for IAS if for every
tweak τ ∈ T , the distributions of (sk, pk) and (s̃k, p̃k) are identical, where

(sk, pk)← KeyGen()

(s̃k, p̃k) := (TweakSK(sk ′, τ), TweakPK(pk ′, τ)) and (sk ′, pk ′)← KeyGen().

Correctness. Consider the modified correctness game for an IAS scheme IAS used with a tweaking
scheme TS in Figure 2. Compared with correctness for an IAS scheme used without a tweaking
scheme, it is additionally parameterized by n tweaks τ1, . . . , τn ∈ T . For signer i, the secret/public
key pair (ski, pki) is tweaked using τi after having been generated by KeyGen. Then ε-correctness
for the pair (IAS, TS) requires that for every λ, every integer n, every messages m1, . . . , mn, and
every tweaks τ1, . . . , τn ∈ T ,

Pr
[
CORRECTIAS,n,m1,...,mn,τ1,...,τn

(λ) = true
]
≥ 1− ε(λ).

If IAS is ε-correct and TS is perfectly tweak invariant for IAS, then the pair (IAS, TS) is ε-correct.
This follows from the fact that the tweaked key pair for each signer is identically distributed to a
key pair sampled directly by KeyGen.

3.3 Security Definition

We extend the standard EUF-CMA (existential unforgeability under chosen message attacks)
security notion for non-interactive aggregate signature schemes [BGLS03] in two (orthogonal)
directions: we consider cosigners-aware security on the one hand, and security with respect to
tweaked keys on the other hand.

Before presenting these two extensions in turn, let us explain the basic EUF-CMA security
notion for interactive aggregate signature schemes. It is a straightforward adaptation of the security
notion proposed by Boneh et al. for non-interactive aggregate signatures [BGLS03] to the interactive
setting. The EUF-CMA security game for an IAS scheme is defined in Figure 3 (ignore highlighted
lines for now). Informally, it should be infeasible for an attacker to forge an aggregate signature
for a list ((pk1, m1), . . . , (pkn, mn)) involving the public key of at least one honest signer. As in
previous work on multiparty signatures, we assume that there is a single honest signer and that the
adversary controls all other signers as well as the coordinator. In particular, it can choose corrupted
public keys arbitrarily and potentially as a function of the honest signer’s public key.

In more details, the honest signer’s key pair (sk, pk) is generated randomly and the adversary is
given pk as input. It can engage concurrent signing sessions with the honest signer by interacting
with first-round and second-round signing oracle Sign and Sign′. Oracle Sign′ takes as input (in
addition to the message m being signed by the honest signer) the session context ctx, modelling
the fact that the coordinator is untrusted. Eventually, the adversary outputs a list L = ((pk1, m1),
. . . , (pkn, mn)) and a signature σ. It wins if the signature is valid for L and if L contains at least
one pair (pk, m) such that m was not queried to Sign′.

Cosigners-Aware Security. We now define a stronger security notion that we call cosigners-
aware EUF-CMA (co-EUF-CMA for short) security, which essentially differs from the EUF-CMA
notion in its winning condition. For convenience, we assume that it is possible to retrieve the list
of all signers’ public key/message pairs from the session context output by the coordinator. More
formally, there is an algorithm GetList such that for every public keys pki and every messages mi,
when running

(ctx, st)← Coord
(
((pki, mi, outi))i∈[n]

)
L← GetList(ctx)

11 This notion is a stronger variant of a correctness condition for signatures with perfectly re-randomizable
keys as defined by Fleischhacker et al. [FKM+16]. In their definition, the output distributions of KeyGen
and (TweakSK(·), TweakPK(·)) are required to be identical only when the tweak is chosen uniformly at
random.
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Game EUF-CMAA
IAS(λ) co-EUF-CMAA

IAS(λ)

par ← Setup(1λ)
(sk, pk)← KeyGen()
ctr := 0 // session counter

S := ∅ // set of open signing sessions after Sign

Q := ∅ // set of Sign′ queries

(L, σ)← ASign,Sign′
(pk)

((pki, mi))i∈[n] := L

assert ∃i ∈ [n] : pki = pk ∧mi /∈ Q assert ∃i ∈ [n] : pki = pk ∧ (L, mi) /∈ Q

return Ver(L, σ)

Oracle Sign()

ctr := ctr + 1 // increment session counter

S := S ∪ {ctr} // open session ctr

(out, stctr)← Sign()
return out

Oracle Sign′(k, m, ctx)

assert k ∈ S // session k must be open

out′ ← Sign′(sk, stk, m, ctx)
Q := Q ∪ {m} L← GetList(ctx) ; Q := Q ∪ {(L, m)}
S := S \ {k} // close session k

return out′

Fig. 3. The EUF-CMA security game for a two-round IAS scheme IAS = (Setup, KeyGen, Sign, Coord, Sign′,
Coord′, Ver). The highlighted lines show the modifications for the co-EUF-CMA security game.

then it always holds that L = ((pki, mi))i∈[n]. This is without loss of generality as one can always
redefine ctx so that it contains L.

The co-EUF-CMA security game is also defined in Figure 3 by taking into account highlighted
lines. For every call to Sign′(k, m, ctx), the game computes the list L ← GetList(ctx) for which
the signing session is intended and records the pair (L, m) in Q rather than just the message m
being queried. To win, the adversary must now output a list L and a valid signature σ such that L
contains at least one pair (pk, m) such that (L, m) was not queried to Sign′.

Let us illustrate the distinction between EUF-CMA and co-EUF-CMA security with a concrete
example. Let pk1 = pk be the honest signer’s public key. Consider an adversary making a signing
oracle query for some honest signer’s message m1 and a cosigner public key/message pair (pk2, m2),
so that the corresponding list is L = ((pk1, m1), (pk2, m2)), and returns a valid signature σ for
a list L′ = ((pk1, m1), (pk ′

2, m′
2)) where (pk ′

2, m′
2) ̸= (pk2, m2) and pk ′

2 ̸= pk. Then this does not
constitute a forgery for the EUF-CMA security notion: message m1 was queried to the signing
oracle and pk ′

2 ̸= pk, so L′ does not contain any pair (pk, m) such that m was not queried to the
signing oracle. In contrast, this does constitute a forgery for the co-EUF-CMA notion since m1 was
not queried with cosigner’s input (pk ′

2, m′
2).

Definition 3 ((co-)EUF-CMA security). Given a two-round interactive aggregate signature
scheme IAS, consider game (co-)EUF-CMA defined in Figure 3. Then IAS is (co-)EUF-CMA-secure
if for any p.p.t. adversary A,

Adv(co-)euf-cma
A,IAS (λ) := Pr

[
(co-)EUF-CMAA

IAS(λ) = true
]

= negl(λ).
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Remark 1. We consider an “order-dependent” security definition where the order of the list L =
((pk1, m1), . . . , (pkn, mn)) matters, meaning the adversary wins if it makes a signing query for
(L, m) and returns a forgery for (L′, m) where L′ ̸= L is a non-trivial permutation of L. One could
instead consider a weaker “order-independent” notion where the game only records the multiset
corresponding to L in list Q, so that the adversary cannot win by simply permuting the list L of
a signing query. As we will see, DahLIAS naturally satisfies the stronger order-dependent notion
(essentially for the reason that, if a signature σ is valid for a list L, then it is not valid for any
non-trivial permutation of L, except with negligible probability). We stress that this order-dependent
security notion is different from sequential aggregate signatures [LMRS04] as it does not ensure that
signers participated in any specific order.

Tweaked Keys Security. We now define a security notion capturing the setting where parties
use the IAS scheme together with a tweaking scheme TS = (T , TweakSK, TweakPK), meaning they
use a tweaked key pair (s̃k, p̃k) where s̃k = TweakSK(x, τ) and p̃k = TweakPK(pk, τ) instead of their
main key pair (sk, pk) (where the tweak τ might be different for each signing session). We assume
that tweaks can be adversarially chosen: concretely, the Sign′ oracle takes as additional input the
tweak τ that will be used by the honest signer to sign in the corresponding session. Moreover, the
adversary can also choose the tweak with respect to which the forgery will be checked arbitrarily, as
long as it does not yield a trivial forgery. These changes can be equally applied to EUF-CMA and
co-EUF-CMA security, yielding respectively the EUF-CMA-TK and co-EUF-CMA-TK security
notions that are formally defined in Figure 4. Hence, in total, we get four different security notions.

Definition 4 ((co-)EUF-CMA-TK security). Given a two-round interactive aggregate signature
scheme IAS and a tweaking scheme TS, consider game (co-)EUF-CMA-TK defined in Figure 4.
Then IAS is (co-)EUF-CMA-TK-secure with respect to TS if for any p.p.t. adversary A,

Adv(co-)euf-cma-tk
A,IAS,TS (λ) := Pr

[
(co-)EUF-CMA-TKA

IAS,TS(λ) = true
]

= negl(λ).

One can easily see that co-EUF-CMA(-TK) security implies EUF-CMA(-TK) security. On
the other hand, under the mild assumption that the tweaking scheme has a neutral tweak, then
(co-)EUF-CMA-TK security implies (co-)EUF-CMA security.

3.4 A Generic Conversion from EUF-CMA to co-EUF-CMA Security

In this section, we show a simple black-box way to turn an EUF-CMA-secure IAS scheme into
a co-EUF-CMA-secure one. The high-level idea is simple. Let L = ((pk1, m1), . . . , (pkn, mn)) be
the list of public key/message pairs for which the aggregate signature is computed. Then each
participant signs (with the EUF-CMA-secure IAS scheme) an “extended” message m′

i := enc(L, mi),
where enc is some injective encoding.

More formally, let IAS = (Setup, KeyGen, Sign, Coord, Sign′, Coord′, Ver) be an EUF-CMA-secure
IAS scheme. Let us define the IAS scheme IAS′ as in Figure 5.

Theorem 1. Assume that IAS is a EUF-CMA-secure IAS scheme. Then IAS′ as defined in Figure 5
is a co-EUF-CMA-secure IAS scheme.

Proof. Let A be an adversary against the co-EUF-CMA security of IAS′. We construct an adversary
B against the EUF-CMA security of IAS as follows. On input pk, B runs A(pk). It relays all IAS′.Sign
queries of A to its own oracle IAS.Sign and forwards the answers to A. When A makes a query
IAS′.Sign′(k, m, ctx), B computes L ← GetList(ctx) and makes a call IAS.Sign′(k, enc(L, m), ctx)
to its own oracle and returns the corresponding answer. Eventually, A returns an output (L, σ). Let
((pk1, m1), . . . , (pkn, mn)) := L. Then B computes m′

i := enc(L, mi) for i ∈ {1, . . . , n} and outputs
(L′, σ) where L′ := ((pki, m′

i))i∈[n]. Let us show that B is successful when A is.
If A is successful, then by definition IAS′.Ver(L, σ) = true and there exists i ∈ [n] such that

pki = pk and (L, mi) /∈ Q′, where Q′ is the list of queries maintained by the co-EUF-CMA game.
The first condition is equivalent to IAS.Ver(L′, σ) = true, meaning the forgery output by B is
valid. Let us now show that m′

i = enc(L, mi) /∈ Q, where Q is the list of queries maintained by the
EUF-CMA game. Assume towards a contradiction that enc(L, mi) ∈ Q. This means that B has
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Game EUF-CMA-TKA
IAS,TS(λ) co-EUF-CMA-TKA

IAS,TS(λ)

par ← Setup(1λ)
(sk, pk)← KeyGen()
ctr := 0 // session counter

S := ∅ // set of open signing sessions after Sign

Q := ∅ // set of Sign′ queries

(L, τ, σ)← ASign,Sign′
(pk)

((pki, mi))i∈[n] := L

assert τ ∈ T
pk∗ := TweakPK(pk, τ)
assert ∃i ∈ [n] : pki = pk∗ ∧ (τ, mi) /∈ Q assert ∃i ∈ [n] : pki = pk∗ ∧ (L, τ, mi) /∈ Q

return Ver(L, σ)

Oracle Sign()

ctr := ctr + 1 // increment session counter

S := S ∪ {ctr} // open session ctr

(out, stctr)← Sign()
return out

Oracle Sign′(k, τ, m, ctx)

assert k ∈ S // session k must be open

assert τ ∈ T

s̃k := TweakSK(sk, τ)

out′ ← Sign′(s̃k, stk, m, ctx)
Q := Q ∪ {(τ, m)} L← GetList(ctx) ; Q := Q ∪ {(L, τ, m)}
S := S \ {k} // close session k

return out′

Fig. 4. The EUF-CMA-TK security game for a two-round IAS scheme IAS = (Setup, KeyGen, Sign, Coord,
Sign′, Coord′, Ver) and a tweaking scheme TS = (T , TweakSK, TweakPK). The highlighted lines show the
modifications for the co-EUF-CMA-TK security game.

IAS′.Coord
(
((pki, mi, outi))i∈[n]

)
L := ((pki, mi))i∈[n]

for i := 1 . . . n do
m′

i := enc(L, mi)

return IAS.Coord
(
((pki, m′

i, outi))i∈[n]
)

IAS′.Sign′(sk, st, m, ctx)

L← GetList(ctx)
m′ := enc(L, m)
return IAS.Sign′(sk, st, m′, ctx)

IAS′.Ver
(
((pki, mi))i∈[n], σ

)
L := ((pki, mi))i∈[n]

for i := 1 . . . n do
m′

i := enc(L, mi)

return IAS.Ver
(
((pki, m′

i))i∈[n], σ
)

Fig. 5. A generic conversion method from an EUF-CMA-secure scheme IAS to a co-EUF-CMA-secure IAS
scheme IAS′, where enc is some injective encoding function. Algorithms Setup, KeyGen, Sign, and Coord′

are exactly the same for IAS′ as for IAS.
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made a query IAS.Sign′(k, enc(L, mi), ctx), which, considering how B simulates Sign′ to A, implies
that A has made a query IAS′.Sign′(k, mi, ctx) such that L̄ := GetList(ctx) satisfies L̄ = L. But
then this implies that (L, mi) ∈ Q′, a contradiction. Hence, B is always successful when A is and

Adveuf-cma
B,IAS (λ) ≥ Advco-euf-cma

A,IAS′ (λ).

Then running time of B is similar to the one of A, which concludes the proof.

4 The DL-Based IAS Scheme DahLIAS

4.1 Specification
The DahLIAS IAS scheme is defined in Figure 6. It is parameterized by a group generation algorithm
GrGen and two hash functions Hnon and Hsig. We explain each algorithm in detail below. Recall
that for a hash function H = (HGen, HEval), we write H(x) for HEval(κ, x), leaving the hashing
key implicit.

Parameters setup (Setup): On input, 1λ, the setup algorithm runs (G, p, g) ← GrGen(1λ),
κnon ← Hnon.HGen(1λ), and κsig ← Hsig.HGen(1λ) and returns par := ((G, p, g), κnon, κsig).
For simplicity, we assume that Hnon.HEval(κnon, ·) and Hsig.HEval(κsig, ·) output values in Zp.12

Key generation (KeyGen): The key generation algorithm draws a random secret key x ←$ Zp,
computes the corresponding public key X := gx, and returns (sk, pk) = (x, X).

First signing round (Sign): Signer i generates secret nonces r1,i, r2,i ←$ Zp, computes the public
nonces R1,i := gr1,i and R2,i := gr2,i , stores state sti := (r1,i, r2,i, R2,i),13 and sends outi :=
(R1,i, R2,i) to the coordinator.

First coordinator round (Coord): Given all signers’ public key pki = Xi, message mi, and
first-round output outi = (R1,i, R2,i), i ∈ [n], the coordinator computes R1 :=

∏n
i=1 R1,i and

R2 :=
∏n

i=1 R2,i, defines
ctx :=

(
R1, R2, ((Xi, mi, R2,i))i∈[n]

)
and computes

b := Hnon(ctx)
R := R1Rb

2.

(The value R is the “common” nonce that will be used by all signers to derive their signing
challenge.) Then, the coordinator stores state st := R and sends ctx to all signers.

Second signing round (Sign′): On input a message mi and a session context ctx , signer i, which
has public key pki = Xi and state sti = (r1,i, r2,i, R2,i), parses(

R1, R2, ((X̂j , m̂j , R̂2,j))j∈[n]

)
:= ctx

and checks whether there is a unique index j ∈ [n] such that R̂2,j = R2,i. If not (i.e., if there is
no such index or several such indexes), then it aborts the session and returns ⊥. Otherwise,
letting u be the unique index in [n] such that R̂2,u = R2,i, it additionally checks whether
(X̂u, m̂u) = (Xi, mi). If not, then it aborts the session and returns ⊥. Otherwise, it extracts
from ctx the public key/message pairs list

L := ((X̂j , m̂j))j∈[n],

computes

b := Hnon(ctx)
R := R1Rb

2

ci := Hsig(L, R, Xi, mi)
si := r1,i + br2,i + cixi,

12 This can easily be achieved up to some negligible statistical distance by using hash functions outputting
values in {0, 1}2λ and reducing the output mod p.

13 Alternatively, the state can be reduced to sti := (r1,i, r2,i), but then R2,i = gr2,i must be computed again
in Sign′.
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Setup(1λ)

(G, p, g)← GrGen(1λ)

κnon ← Hnon.HGen(1λ)

κsig ← Hsig.HGen(1λ)
par := ((G, p, g), κnon, κsig)
return par

KeyGen() // signer i

xi ←$ Z∗
p ; Xi := gxi

ski := xi ; pki := Xi

return (ski, pki)

Sign() // signer i

r1,i, r2,i ←$ Zp

R1,i := gr1,i ; R2,i := gr2,i

outi := (R1,i, R2,i)
sti := (r1,i, r2,i, R2,i)
return (outi, sti)

Coord
(
((pki, mi, outi))i∈[n]

)
for i := 1 . . . n do

Xi := pki

(R1,i, R2,i) := outi

R1 :=
∏n

i=1 R1,i ; R2 :=
∏n

i=1 R2,i

ctx :=
(
R1, R2, ((Xi, mi, R2,i))i∈[n]

)
b := Hnon(ctx)

R := R1Rb
2

st := R

return (ctx, st)

Sign′(ski, sti, mi, ctx) // signer i

// Sign′ must be called at most once per signer state sti

xi := ski ; Xi := gxi

(r1,i, r2,i, R2,i) := sti(
R1, R2, ((X̂j , m̂j , R̂2,j))j∈[n]

)
:= ctx

U := ∅
for j := 1 . . . n do

if R̂2,j = R2,i then
U := U ∪ {j}

assert #U = 1 // R2,i appears exactly once

{u} := U

// check that public key and message are correct

assert (X̂u, m̂u) = (Xi, mi)
L := ((X̂j , m̂j))j∈[n]

b := Hnon(ctx)
R := R1Rb

2

ci := Hsig(L, R, Xi, mi)
si := r1,i + br2,i + cixi

return out′
i := si

Coord′ (st, (out′
1, . . . , out′

n))

R := st
(s1, . . . , sn) := (out′

1, . . . , out′
n)

s :=
∑n

i=1 si

return σ := (R, s)

Ver(L, σ)

((Xi, mi))i∈[n] := L

assert 1G /∈ {Xi}i∈[n]

(R, s) := σ

return gs = R
∏n

i=1 X
Hsig(L,R,Xi,mi)
i

Fig. 6. The IAS scheme DahLIAS[GrGen, Hnon, Hsig]. Public parameters par returned by Setup are implicitly
given as input to all other algorithms. The highlighted line is only needed for binding-security (see Section 6).

and sends out′
i := si to the coordinator. Note that, assuming the coordinator is honest, one

must have R2 =
∏n

j=1 R̂2,j . However, signers are not required to check that this holds.14

Second coordinator round (Coord′): On input (s1, . . . , sn), the coordinator, which has state
st = R, computes s :=

∑n
i=1 si and returns the signature σ := (R, s).

Verification (Ver): Given a list of public key/message pairs L = ((X1, m1), . . . , (Xn, mn)) and
a signature (R, s), the signature is valid if gs = R

∏n
i=1 X

Hsig(L,R,Xi,mi)
i . If strongly binding

security is needed (see Section 6), the verification algorithm additionally checks that all public
keys are different from 1G.

Note that the verification for a list consisting of a single public key/message pair (X, m) is the
same as a standard Schnorr signature verification, up to the repetition of X and m in the Hsig
input.
14 This means in particular that the coordinator can impose any value for R by letting R2 = 1G.
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Correctness. Consider a nominal execution of the protocol with n honest signers and an honest
coordinator where signer i has public key pki, message mi, and first-round output (R1,i, R2,i), the
honest signer outputs session context ctx, and signer i outputs partial signature si. Assume first
that no signer aborts during Sign′. The signature returned by the coordinator is (R, s) where R =∏n

i=1 R1,iR
b
2,i and s =

∑n
i=1 si. Each signer computed its partial signature as si = r1,i + br2,i + cixi

where ci := Hsig(L, R, Xi, mi). Hence, one has

gs =
n∏

i=1
gsi =

n∏
i=1

gr1,i+br2,i+cixi =
n∏

i=1
R1,iR

b
2,i

n∏
i=1

Xci
i = R

n∏
i=1

Xci
i .

Moreover, since KeyGen samples each xi from Z∗
p, we have Xi ̸= 1G for all i ∈ [n]. Therefore, the

verification algorithm’s condition that 1G is not among the public keys is satisfied, ensuring that
the signature is accepted by Ver.

Since the coordinator is honest, no signer aborts unless some collision happens among R2,i values.
The probability of this event is at most n2/2p ≤ n2/2λ. Hence, if at most N signers participate in
any protocol execution, DahLIAS is N2/2λ-correct.

4.2 Practical Considerations

Implementation Pitfall. Let us stress that the check in the Sign′ algorithm is not equivalent to
verifying that there is a unique index u such that (X̂u, m̂u, R̂2,u) = (Xi, mi, R2,i). In fact, using this
variant yields an insecure scheme: indeed, let the honest signer have public key X1 and first-round
output (R1,1, R2,1) and consider the session context

ctx :=
(

R1, R2, ((X1, m
(0)
1 , R2,1), (X1, m

(1)
1 , R2,1))

)
where R1 and R2 are arbitrary group elements. Then the flawed test would pass when closing
the session with both m

(0)
1 and m

(1)
1 . This makes the scheme vulnerable to the attack described

in Appendix B since closing the session with (ctx, m
(0)
1 ) or (ctx, m

(1)
1 ) will yield the same honest

signer’s effective nonce but different challenges.

Session Context. It may seem strange to let the coordinator echo back the tuple (Xi, mi, R2,i)
to signer i in the session context ctx rather than letting signer i use its local values and add them
to the list. This is rather for convenience, and each signer checks that its tuple indeed does appear
in the list and that no other signer “copied” its nonce R2,i. The alternative would be to let the
coordinator send a different session context ctxi to each signer with (Xi, mi, R2,i) omitted for signer
i, who would then insert their own inputs (Xi, mi, R2,i) in the list. While this would save a few
bytes of communication, it would make the overall protocol and messages more complex.

Yet another option would be to change the syntax so that Coord only takes the list of signers’
first-round outputs (R1,i, R2,i), but not the public keys and messages. The coordinator would simply
compute R1 and R2 and output ctx = (R1, R2, (R2,i)i∈[n]). Then, we would also need to change
Sign′ so that it takes public keys and messages of cosigners, but the question then is how each
signer can link the values R2,j in the session context ctx and the cosigners’ pk/message pairs. It
seems like it would require a unique id per signer, something that would be inconvenient and that
our scheme avoids: packing Xi, mi, and R2,i in a single triple is the task of the coordinator.

List Ordering. The signature produced by DahLIAS is dependent on the order of the input list
((pki, mi, outi))i∈[n] provided to Coord. That is, if a signature σ is generated by an honest execution
of the protocol, the verification algorithm Ver accepts σ only for the list L = ((Xi, mi))i∈[n], and it
will reject for any non-trivial permutation of L (except with negligible probability). If an application
requires a signature that is independent of the ordering of the input list, the coordinator should sort
the list before providing it to Coord and supply the verifier with the correspondingly sorted list L.

4.3 DahLIAS-compatible Tweaking Schemes

In this section, we list the properties that a tweaking scheme must satisfy to be securely used with
DahLIAS and provide an example of such a scheme.
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Definition 5. A tweaking scheme TS = (T , TweakSK, TweakPK) is DahLIAS-compatible if for any
group parameters (G, p, g) possibly output by GrGen, it satisfies the following properties:

(P-1) homomorphism: for every x ∈ Zp and every τ ∈ T , TweakPK(gx, τ) = gTweakSK(x,τ);
(P-2) invertibility: for every τ ∈ T , the mapping x 7→ TweakSK(x, τ) is efficiently invertible,

meaning there is a p.p.t. algorithm InvSK such that for every τ ∈ T and every x ∈ Zp,
InvSK(TweakSK(x, τ), τ) = x;

(P-3) collision-extractability: there is a p.p.t. algorithm Extract such that for every x ∈ Zp and
every τ, τ ′ ∈ T with τ ̸= τ ′, if TweakPK(gx, τ) = TweakPK(gx, τ ′), then Extract(τ, τ ′) = x.

(P-4) algebraic representability: there is a p.p.t. algorithm TweakRep such that every τ ∈ T ,
TweakRep(τ) outputs (α, β) ∈ Z2

p such that for every X ∈ G, TweakPK(X, τ) = gαXβ.

These properties imply that DahLIAS-compatible tweaking schemes are essentially affine trans-
formations. More precisely, let T := Zp × Z∗

p where Z∗
p = Zp \ {0}. For (α, β) ∈ T , define

TweakSK(x, (α, β)) := α + βx for every x ∈ Zp and TweakPK(X, (α, β)) := gαXβ for every X ∈ G.

Lemma 1. The tweaking scheme TS = (T , TweakSK, TweakPK) defined as above is DahLIAS-
compatible and perfectly tweak invariant (as defined in Section 3.2).

Proof. We prove each property of a DahLIAS-compatible tweaking scheme in turn. Homomorphism
and invertibility (with InvSK(y, (α, β)) := β−1(y−α)) are straightforward. For collision-extractability,
note that if (α, β) ̸= (γ, δ) are such that gαgβx = gγgδx, then (β−δ)x = γ−α. If β = δ, then gα = gγ ,
which implies α = γ, contradicting the assumption that (α, β) ̸= (γ, δ). Hence, β − δ ̸= 0 and we
can define Extract as the algorithm returning (γ − α)/(β − δ). Finally, algebraic representability is
obvious, with TweakRep being simply the identity.

For perfect tweak invariance, observe that for every τ = (α, β) ∈ T and x′ ←$ Zp,

(TweakSK(x′, τ), TweakPK(gx′
, τ)) = (α + βx′, gα+βx′

)

has the same distribution as a pair (x, gx) where x←$ Zp since β ̸= 0.

5 Security Proof

In this section, we prove that the interactive aggregate signature scheme DahLIAS[GrGen, Hnon, Hsig]
is co-EUF-CMA-TK-secure for any DahLIAS-compatible tweaking scheme TS in the random oracle
for Hsig assuming the AOMDL assumption holds for GrGen and Hnon is collision-resistant.

5.1 The Local Forking Lemma

Before proceeding to the security proof, we recall the local forking lemma on which our proof
relies. The local forking lemma [BDL19] is a variant of the generalized forking lemma (GFL) by
Bellare and Neven [BN06]. The GFL considers an adversary A having access to a random oracle
H, which is run twice on different but related instances of H: In the first execution, all random
oracle answers are sampled normally. In the second execution, the answers are identical to those
provided in the first execution up to some specific query called the forking point, after which all
random oracle answers are refreshed, i.e., resampled using fresh randomness. As a result, the two
executions (including the behavior of A) are identical up to the forking point but start to diverge
with A receiving the random oracle answer at the forking point.

In the vanilla version of the GFL [BN06], the second execution refreshes not only the random
oracle answer at the forking point, but also all answers after the forking point, even if the adversary
sends a query z which was sent already in the first execution and whose answer was sampled in the
first execution after the forking point. On the contrary, in the local forking lemma [BDL19], the
random oracle is refreshed only on the input z∗ at the forking point. In other words, if we view H as
a function, it differs between the first and second execution only at position H(z∗). Any query H(z)
after the forking point, where z ̸= z∗ was already queried in the first execution, reuses the answer
from the first execution (while any query z not seen in the first execution is answered uniformly at
random).
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In more detail, consider the standard way to implement a random oracle through lazy sampling.
A table T , initially empty, is used to store random oracle answers. If the table value corresponding
to some entry z is undefined, we write T (z) = ⊥. When a query z is made to oracle H, the oracle
first checks whether T (z) = ⊥ and if it is the case it draws T (z)←$ S, where S is the codomain of
the oracle. Then, it returns T (z). See Figure 7 for the code of H(T ) (where the notation makes
explicit which table is used to store answers).

Consider a randomized algorithm A taking some input inp and random coins ρ and having
access to a random oracle H : {0, 1}∗ → S. The first query z1 made by A to H is a deterministic
function of (inp, ρ), the second query z2 is a deterministic function of (inp, ρ, H(z1)), etc. Eventually,
A outputs either a distinguished failure symbol ⊥ or a pair (z, aux) where z is one of the queries
A made to H and aux is some auxiliary output. Assuming A makes exactly q queries and never
repeats a query, at the end of A’s execution, T is defined on exactly q entries z1, . . . , zq.

Algorithm A is then run a second time on the same inputs (inp, ρ) with access to random oracle
H(T ′), where T ′ is a table that is equal to T at the end of the first execution, except T ′(z) is freshly
drawn uniformly at random. Let i be the index such that the query z returned by A in its output
is equal to zi (which is unique since we assumed all queries are different). Since A is run with the
same pair (inp, ρ) as in the first execution and the next-query function that computes the j-th
query of A is a deterministic function of (inp, ρ, H(z1), . . . , H(zj−1)), the first i queries z1, . . . , zi

made by A are the same as in the first execution and the first i− 1 queries are answered with the
same values T ′(zj) = T (zj), j ∈ [i− 1].

Starting from the forking point, i.e., query zi, the answers in the two executions T (zi) and T ′(zi)
are different (there is a negligible chance that they are equal, but let us ignore that for the sake of
the discussion). After that, the behavior of A might change arbitrarily (it may continue with the
same queries as in the first execution, modify their order, or make new queries that it has not made
in the first execution). The local forking lemma ensures that if A repeats a query zj that it had
made in the first execution, it will receive the same answer as in the first execution, even after the
forking point. If it makes a fresh query z′ that it did not make in the first execution, it will get a
uniformly random answer since T ′(z′) = ⊥ when it makes the query.

On the contrary, in the formulation of the vanilla GFL [BN06], all random oracle answers after
the forking point are fresh, even queries that were made in the first execution. As we will explain
later, relying on the local forking lemma rather than the vanilla one greatly simplifies the analysis
of the security reduction.

After these informal explanations, we are ready to state the local forking lemma, which lower
bounds the probability that in its two executions, A returns (z, aux) and (z′, aux ′) such that z = z′

and T (z) ̸= T ′(z′).

Lemma 2 (Local Forking Lemma [BDL19]). Let q ≥ 1 be an integer and InpGen be a ran-
domized algorithm which on input 1λ returns some input inp. Let A be a randomized algorithm
taking some input inp generated by InpGen and random coins ρ from some sampleable set R, having
access to an oracle H : {0, 1}∗ → S where S is some finite set that might depend on inp and such
that |S| ≥ s(λ) for some function s of the security parameter, and returning either a distinguished
failure symbol ⊥ or a pair (z, aux) where z is one of the queries A made to H and aux is some
auxiliary output. Assume that A makes at most q oracle queries and never repeats a query. Consider
games SINGLEA

InpGen(λ) and FORKA
InpGen(λ) defined in Figure 7 and let

Advsingle
A,InpGen(λ) := Pr

[
SINGLEA

InpGen(λ) = true
]

Advfork
A,InpGen(λ) := Pr

[
FORKA

InpGen(λ) = true
]

.

Then

Advfork
A,InpGen(λ) ≥ Advsingle

A,InpGen(λ)
(

Advsingle
A,InpGen(λ)

q
− 1

s(λ)

)
.

We will make use of the fact that the lemma also applies if algorithm A is given access to a
deterministically computable oracle F. While not explicit in the formulation of Lemma 2, this is
implied because no assumptions on the running time of A are made.
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Concretely, assume that the (overall) c-th query to F on query input x returns the value f(c, x)
for some computable function f . If we would like to use the lemma to bound Advfork

AF,InpGen(λ), we
can instead consider the oracle-free algorithm A′ defined as follows: A′ initializes a query counter
ctr ← 1 and then runs AF, simulating oracle queries F(x) by incrementing ctr , computing f(ctr , x)
and returning the computed value. Clearly, the observable behavior of A′ is identical to that of AF,
and thus Advgame

AF,InpGen(λ) = Advgame
A′,InpGen(λ) for game ∈ {fork, single}.

SINGLEA
InpGen(λ)

inp ← InpGen(1λ)
ρ←$R // draw random coins for A

T := ∅ // table for storing H answers

α← AH[T ](inp; ρ)
assert α ̸= ⊥
return true

Oracle H[T ](z)

if T (z) = ⊥ then
T (z)←$ S

return T (z)

FORKA
InpGen(λ)

inp ← InpGen(1λ)
ρ←$R // draw random coins for A

T := ∅ // table for storing H answers

α← AH[T ](inp; ρ)
assert α ̸= ⊥
(z, aux) := α

T ′ := T // copy T into T
′

T ′(z)←$ S // and refresh T
′(z)

α′ ← AH[T ′](inp; ρ)
assert α′ ̸= ⊥
(z′, aux ′) := α′

assert z = z′ ∧ T (z) ̸= T ′(z′)
return true

Fig. 7. The SINGLE and FORK games associated with algorithms InpGen and A.

5.2 Proof Sketch

Let A be an adversary against the co-EUF-CMA-TK security of DahLIAS[GrGen, Hnon, Hsig] with
respect to a compatible tweaking scheme TS in the random oracle for Hsig. The proof proceeds by
constructing a reduction C solving the AOMDL problem with respect to GrGen and a reduction D
breaking collision resistance of Hnon. We describe at a high-level how C works and will explain how
D fits in the picture towards the end of this section.

Let X, U1, . . . , U2qs ∈ G be the reduction’s AOMDL challenges obtained from Chal. Reduction
C runs the adversary A on input X as public key for the honest signer. The reduction maintains a
table Tsig for answering queries made by A to random oracle Hsig. The programming is done such
that the answer returned by the reduction to any query Hsig(L, R, X, m) is the value stored in entry
Tsig(L, R, X, m). The reduction uses uniformly random scalars in Zp to program any table entry.

The k-th query made by A to oracle Sign is answered with fresh AOMDL challenges U2k−1, U2k,
whereas queries to oracle Sign′ are answered using the DL oracle ADLog to which C has access,
allowing C to compute the partial signature s of the honest signer.

As usual, we rely on forking (i.e., executing the adversary twice with a different challenge c for the
forgery) for extracting the discrete logarithm of X. (In a special case, the reduction is able to solve
its AOMDL instance directly after the first execution of the adversary using collision-extractability
of the tweaking scheme, but we will mention it in due time.) Assume that the adversary returns a
forgery (L, τ, (R, s)) for some list L = ((X1, m1), . . . , (Xn, mn)) of public key/message pairs and
some tweak τ . By validity of the signature, we have

gs = R

n∏
i=1

X
Tsig(L,R,Xi,mi)
i . (5)
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Let X∗ := TweakPK(X, τ). By definition of a valid forgery, there must exist i ∈ [n] such that
Xi = X∗ and (L, τ, mi) /∈ Q, meaning A did not make a query to oracle Sign′ for list L, tweak τ ,
and message mi. Let m∗ be an arbitrary message among all messages satisfying this condition, i.e.,
(X∗, m∗) ∈ L and (L, τ, m∗) /∈ Q.

Then, C runs A again identically up to the point where Tsig(L, R, X∗, m∗) was programmed. In
more detail, C runs A on the same input X and answers Hsig queries using a table T ′

sig initialized
with table Tsig resulting from the first execution, except T ′

sig(L, R, X∗, m∗) which is refreshed with
a uniformly random value (the forking point after which the two executions diverge).

Assume for a moment that A returns a second forgery (L′, τ ′, (R′, s′)) involving the same random
oracle query Hsig(L, R, X∗, m∗). This implies in particular that L = L′ and R = R′. By validity of
the forgery, we have

gs′
= R

n∏
i=1

X
T ′

sig(L,R,Xi,mi)
i . (6)

By combining Equation (5) and Equation (6), we obtain

gs−s′
=

n∏
i=1

X
Tsig(L,R,Xi,mi)−T ′

sig(L,R,Xi,mi)
i . (7)

All table values Tsig(L, R, Xi, mi) were assigned during the first execution.15 Since we are using
the local forking lemma, it follows that for every i ∈ [n] such that (Xi, mi) ̸= (X∗, m∗),

Tsig(L, R, Xi, mi) = T ′
sig(L, R, Xi, mi).

(We stress that this holds even for values programmed after the forking point.) As the only entry
for which Tsig and T ′

sig differ is (L, R, X∗, m∗), Equation (7) simplifies to

gs−s′
= (X∗)n∗(Tsig(L,R,X∗,m∗)−T ′

sig(L,R,X∗,m∗)),

where n∗ is the number of indices i ∈ [n] such that (Xi, mi) = (X∗, m∗) (recall that L can contain
duplicates). Since with high probability Tsig(L, R, X∗, m∗) ̸= T ′

sig(L, R, X∗, m∗) (because these are
two uniformly random and independent values), this allows the reduction to extract the discrete
logarithm x∗ of X∗. Once this is done, the discrete logarithm x of X can be computed from x∗

using τ and the invertibility property of the tweaking scheme.
Recall that the goal of the reduction is not only to retrieve the discrete logarithm of X but

also of other challenges U1, . . . , U2qs . For this, the reduction uses the partial signatures it has
computed through the calls to its DL oracle in the two executions. Consider the k-th signing
session. In both executions, the reduction answers the k-th Sign oracle query with (U2k−1, U2k) as
public nonces of the honest signer. To answer the corresponding Sign′(k, τk, mk, ctxk) query (first
execution) and Sign′(k, τ ′

k, m′
k, ctx ′

k) query (second execution), the reduction queries respectively
the discrete logarithm sk = logg(U2k−1U bk

2k (X̃k)ck ) and s′
k = logg(U2k−1U

b′
k

2k (X̃ ′
k)c′

k ) to the ADLog
oracle, where X̃k := TweakPK(X, τk) and X̃ ′

k := TweakPK(X, τ ′
k), yielding equations

sk = u2k−1 + bku2k + ckx̃k (8)
s′

k = u2k−1 + b′
ku2k + c′

kx̃′
k (9)

where u2k−1 and u2k are respectively the discrete logarithms of U2k−1 and U2k, x̃k := TweakSK(x, τk),
and x̃′

k := TweakSK(x, τ ′
k).

This system can be solved for u2k−1 and u2k (once x has been computed) assuming the two
equations are linearly independent, i.e. bk ̸= b′

k, which the reduction can ensure (except with
negligible probability) as follows. Assume that in the first execution, the adversary closes the k-th
signing session by calling Sign′(k, τk, mk, ctxk) with

ctxk =
(

R1, R2, ((X̂j , m̂j , R̂2,j))j∈[n]

)
.

15 This is not quite true without the mild assumption that A makes all Hsig queries necessary to verify the
forgery before outputting it. In the proof, we define a wrapper B that (among other things) checks the
validity of the forgery, ensuring this assumption holds.
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The reduction checks that U2k appears exactly once in (R̂2,j)j∈[n] and, letting u be the unique
index with R̂2,u = U2k, that (X̂u, m̂u) = (X̃k, mk) where X̃k = TweakPK(X, τk). We will assume
(and show that this is without loss of generality) that the adversary never makes a Sign′ query that
aborts, so these two checks pass by assumption. Then, the reduction computes

bk := Hnon(ctxk)
Rk := R1Rbk

2

Lk := ((X̂j , m̂j))j∈[n]

ck := Hsig(Lk, Rk, X̃k, mk)

and replies to the adversary with the partial signature sk := logg(U2k−1U bk

2k (X̃k)ck ) obtained with
a call to ADLog.

Consider now the second execution where the adversary closes the k-th session by calling
Sign′(k, τ ′

k, m′
k, ctx ′

k) and let X̃ ′
k, b′

k, R′
k, L′

k and c′
k be computed as above. There are two cases:

– If ctxk = ctx ′
k, then we have bk = b′

k (recall that Hnon is a standard function, not a random
oracle). We will show below that we also have X̃k = X̃ ′

k and ck = c′
k. For now, assume that

these equalities hold; it then follows that

U2k−1U bk

2k (X̃k)ck = U2k−1U
b′

k

2k (X̃ ′
k)c′

k . (10)

Thus, the DL oracle query to compute the partial signature is the same as in the first execution,
meaning the reduction can simply cache and reuse the answer of the DL oracle from the
first execution. To obtain the discrete logarithms of U2k−1 and U2k, the reduction samples
a new value b′

k ←$ Zp \ {bk} and uses the spare query to the ADLog oracle to compute
s′

k := logg(U2k−1U
b′

k

2k ) = u2k−1 + b′
ku2k. This equation is linearly independent of (8) and

therefore allows solving for u2k−1 and u2k.
Let us show that we indeed have X̃k = X̃ ′

k and ck = c′
k if ctxk = ctx ′

k. One can easily check that
ctx ′

k = ctxk implies Lk = L′
k and Rk = R′

k. Moreover, since the checks also pass when closing
session k in the second execution, one must have (X̂u, m̂u) = (X̃ ′

k, m′
k) and hence X̃k = X̃ ′

k and
mk = m′

k. Consequently, c′
k := T ′

sig(L′
k, R′

k, X̃ ′
k, m′

k) is equal to T ′
sig(Lk, Rk, X̃k, mk). Since the

forking point is the only entry on which Tsig and T ′
sig may differ, we have Tsig(Lk, Rk, X̃k, mk) =

T ′
sig(Lk, Rk, X̃k, mk), i.e. ck = c′

k, unless (Lk, Rk, X̃k, mk) is the forking point (L, R, X∗, m∗).
Recall that by definition, the forking point satisfies (L, τ, m∗) /∈ Q, hence we must have
(Lk, τk, mk) ̸= (L, τ, m∗). So the only possibility to have (Lk, Rk, X̃k, mk) = (L, R, X∗, m∗) is
if τk ̸= τ and X̃k = X∗, i.e., TweakPK(X, τk) = TweakPK(X, τ). If this happens, then the
reduction could (and would) actually have computed the discrete logarithm of X directly after
the first execution of A using collision-extractability (property (P-3)) of the tweaking scheme
(and subsequently the discrete logarithm of additional challenges U1, . . . , U2qs) and would have
returned early, without running A a second time. Thus, this case actually never happens,
ensuring ck = c′

k.
– If ctx ′

k ̸= ctxk, then b′
k = bk implies that the pair (ctxk, ctx ′

k) forms a collision for Hnon, and this
can only happen with probability upper bounded by the advantage of a reduction D (explicitly
constructed in the proof) against collision-resistance of Hnon. Hence, b′

k ≠ bk except with
negligible probability, which implies that the two equations (8), (9) are linearly independent,
allowing the reduction to compute the discrete logarithm of both challenges.

Note that, since the two executions are the same before the forking point, it must always be the
case that ctxk = ctx ′

k when the session is closed before the forking point. We stress though that the
reasoning for the case ctxk = ctx ′

k also holds when the session is closed after the forking point since
we rely on the local forking lemma.

5.3 Detailed Security Proof

Let A be an adversary against the co-EUF-CMA-TK security of DahLIAS[GrGen, Hnon, Hsig] with
respect to a compatible tweaking scheme TS (see Definition 5) with Hsig modeled as a random
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oracle. We will construct a reduction C solving the AOMDL problem with respect to GrGen and a
reduction D breaking collision resistance of Hnon.

In all the following, we assume that A makes exactly qs queries to the Sign oracle, closes all
signing sessions, and never makes a Sign′(k, τ, m, ctx) query that would lead to an abort when
the oracle asserts that the second nonce R2,i of the honest signer appears exactly once among
R̂2,j values and that the corresponding public key and message are correct (see algorithm Sign′ in
Figure 6). This is clearly wlog since for any adversary A that leaves some sessions open or makes
Sign′ queries leading to an abort, we can construct an adversary A′ that checks whether each Sign′

query made by A would cause an abort (which can be verified just from the inputs to the oracle
call), answers this query with ⊥, and, once A has returned, closes all open sessions or all sessions
which would have aborted by making a query to its own Sign′ oracle that does not cause an abort
and does not invalidate A’s forgery. Eventually, A′ returns the same output as A. Then A′ has the
same advantage as A but closes all sessions and never makes a Sign′ query that aborts.

In order to cleanly apply the local forking lemma, we start by defining a wrapper algorithm
B on top of A which merely simulates the co-EUF-CMA-TK security game to A using a discrete
logarithm oracle and processes A’s output. In the following, we let InpGen be the algorithm which
on input 1λ runs (G, p, g)← GrGen(1λ), draws 2qs + 1 group elements X, U1, . . . , U2qs ←$ G, and
returns ((G, p, g), (X, U1, . . . , U2qs)).

Lemma 3. Let A be an adversary against the co-EUF-CMA-TK security of DahLIAS[GrGen, Hnon,
Hsig] in the random oracle model for Hsig running in time at most tA, making at most qs queries
to Sign and at most qh queries to Hsig, and such that the size of L in any signing session
and in the forgery is at most N . Consider algorithm B defined in Figure 8 that takes as input
((G, p, g), (X, U1, . . . , U2qs)) ← InpGen(1λ) and has access to a random oracle Hsig and a discrete
logarithm oracle ADLog. Then B runs in time at most tB = tA + (3qs + N + 1)texp where texp
is the time of an exponentiation in G, makes at most qs queries to ADLog, at most qh + qs + N
queries to Hsig, and satisfies

Advsingle
B,InpGen(λ) = Advco-euf-cma-tk

A,DahLIAS (λ)

with game SINGLEB
InpGen(λ) as defined in Figure 7. Moreover, assuming B returns a non-⊥ output

(z, aux) where z = (L, R, X∗, m∗), L = ((Xi, mi))i∈[n], and aux = (τ, s, Tsession), the following holds
when B terminates:

(i) (L, R, Xi, mi) was queried by B to Hsig for every i ∈ [n],
(ii) X∗ = TweakPK(X, τ) and (X∗, m∗) ∈ L,

(iii) the following equation holds:

gs = R

n∏
i=1

X
Hsig(L,R,Xi,mi)
i ,

(iv) Tsession is a table such that for each k ∈ [qs], (τk, ctxk, bk, ck, sk) := Tsession(k) satisfies

sk = u2k−1 + bku2k + ckTweakSK(x, τk)

where x, u1, . . . , u2qs are the discrete logarithms of respectively X, U1, . . . , U2qs .

Proof. Algorithm B, the detailed pseudocode of which is given in Figure 8, proceeds as follows. It
takes as input group parameters (G, p, g) and 2qs + 1 groups elements X, U1, . . . , U2qs ∈ G and has
access to a random oracle Hsig and to a discrete logarithm oracle ADLog. (Recall from Section 5.1
that having access to an extra deterministic oracle will not prevent us from applying the local forking
lemma.) Its random coins simply consist of coins ρ for adversary A. It runs A on input ((G, p, g), X)
and random coins ρ and answers A’s queries to Hsig, Sign, and Sign′ as follows. Random oracle
queries and answers are simply relayed by B between A and Hsig. When A makes a Sign query,
B answers with two fresh group elements U2ctr−1, U2ctr , where ctr is a session counter. When A
makes a Sign′(k, τ, m, ctx) query, B uses the ADLog oracle to compute the partial signature and
returns it to A after having recorded the values of τ , ctx, b (the output of Hnon), c (the output of
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BHsig,ADLog((G, p, g), (X, U1, . . . , U2qs ); ρ)

ctr := 0 // counter for opened sessions

S := ∅ // set of currently open sessions

Q := ∅ // set of seen Sign′ parameters

Tsession := ∅ // table for recording sessions

(L, τ, σ)← AHsig,Sign,Sign′
((G, p, g), X; ρ)

((Xi, mi))i∈[n] := L

(R, s) := σ

// assert signature validity

assert gs = R
∏n

i=1 X
Hsig(L,R,Xi,mi)
i

X∗ := TweakPK(X, τ)
J := {i ∈ [n] : Xi = X∗ ∧ (L, τ, mi) /∈ Q}
// assert non-triviality of forgery

assert #J > 0
j := min(J)
m∗ := mj

z := (L, R, X∗, m∗)
aux := (τ, s, Tsession)
return (z, aux)

Sign()

ctr := ctr + 1
S := S ∪ {ctr}
return (U2ctr−1, U2ctr)

Sign′(k, τ, m, ctx)

assert k ∈ S

assert τ ∈ T

X̃ := TweakPK(X, τ)
// honest signer’s public nonces are (U2k−1, U2k)(

R1, R2, ((X̂j , m̂j , R̂2,j))j∈[n]
)

:= ctx
U := ∅
for j := 1 . . . n do

if R̂2,j = U2k then
U := U ∪ {j}

assert #U = 1 // U2k appears exactly once

{u} := U

// check that public key and message are correct

assert (X̂u, m̂u) = (X̃, m)
L := ((X̂j , m̂j))j∈[n]

b := Hnon(ctx)
R := R1Rb

2

c := Hsig(L, R, X̃, m)
(α′, β′) := TweakRep(τ) // X̃ = g

α′
X

β′

// set α, β0, (βi)i∈[2qs] s.t. U2k−1Ub
2kX̃c = gαXβ0

∏2qs
i=1

U
βi
i

α := α′c ; β0 := β′c

(βi)i∈[2qs] := (0, . . . , 0) ; (β2k−1, β2k) := (1, b)
s := ADLog(α, β0, (βi)i∈[2qs])
S := S \ {k}
Q := Q ∪ {(L, τ, m)}
Tsession(k) := (τ, ctx, b, c, s)
return s

Fig. 8. Algorithm B from the proof of Lemma 3.

Hsig), and s (the partial signature) for the session in table entry Tsession(k). Note that B relies on
algebraic representability (property (P-4)) of the tweaking scheme to compute a representation of
the tweaked public key X̃ and therefore of the argument U2k−1U b

2kX̃c of the ADLog query.
It is straightforward to check that answers to Sign and Sign′ queries provided by B to A are

distributed exactly as in the real co-EUF-CMA-TK security game. The only difference is that during
a Sign′ query, B computes the tweaked public key of the honest signer as X̃ := TweakPK(X, τ)
whereas the real Sign′ algorithm computes X̃ := gTweakSK(x,τ) but by homomorphism (property
(P-1) of the tweaking scheme) these group elements are equal. Therefore, B returns a non-⊥ output
exactly when A is successful and hence

Advsingle
B,InpGen(λ) = Advco-euf-cma-tk

A,DahLIAS (λ).

It remains to prove properties (i) to (iv) of the output (z, aux) returned by B. Property (i)
follows from the fact that B queries Hsig(L, R, Xi, mi) for every i ∈ [n] when checking the validity
of the signature returned by A. Property (ii) holds by non-triviality of the signature returned by A
while property (iii) follows from the validity of the signature. Finally, property (iv) holds because for
each k ∈ [qs], Tsession(k) is defined when B terminates by our assumption that A closes all sessions
and never makes a Sign′ query that aborts and sk is obtained by B by calling the ADLog oracle
on input a representation of U2k−1U bk

2k (X̃k)ck where X̃k := TweakPK(X, τk). By homomorphism of
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the tweaking scheme, we have X̃k = gTweakSK(x,τk) and hence

U2k−1U bk

2k (X̃k)ck = gu2k−1+bku2k+ckTweakSK(x,τk)

which yields the result.
Algorithm B makes at most one ADLog query to answer each Sign′ query made by A, hence

at most qs queries in total. It makes at most one Hsig query per Sign′ call made by A and at most
N Hsig queries when verifying the validity of the forgery. Together with the at most qh queries
to Hsig made by A and relayed by B, the total number of queries made by B to Hsig is at most
qh + qs + N . The running time of B is the running time tA of A plus the time needed to compute
X̃ and R when answering Sign′ queries which is at most 3texp per signing query16 and the time
to verify the forgery which is at most (N + 1)texp (we neglect other operations such as group
multiplications, maintaining tables, and evaluating hash functions). Hence, B runs in time at most
tA + (3qs + N + 1)texp.

We can now prove the co-EUF-CMA-TK security of DahLIAS.

Theorem 2. Let GrGen be a group generation algorithm for which the AOMDL assumption holds,
Hnon be a collision-resistant hash function family, and TS be a DahLIAS-compatible tweaking scheme.
Then the IAS scheme DahLIAS[GrGen, Hnon, Hsig] is co-EUF-CMA-TK secure with respect to TS in
the random oracle model for Hsig.

More precisely, for any adversary A against the co-EUF-CMA-TK security of DahLIAS[GrGen,
Hnon, Hsig] running in time at most tA, making at most qs queries to Sign and at most qh queries to
Hsig, and such that the size of L in any signing session and in the forgery is at most N , there exists
an algorithm C solving the AOMDL problem for GrGen in time at most 2tA + (6qs + 2N + 2)texp and
making at most 2qs ADLog queries and an algorithm D breaking collision resistance of Hnon in
time at most 2tA + (8qs + 2N + 3)texp (where texp is the time of an exponentiation in G) such that

Advco-euf-cma-tk
A,DahLIAS (λ) ≤ √q

(
Advaomdl

C,GrGen(λ) + Advcoll
D,Hnon

(λ) + 1
2λ−1

) 1
2

.

Proof. Consider algorithm C for the AOMDL problem defined in Figure 9. It essentially runs
FORKB

InpGen(λ) with B as defined in Lemma 3 and computes the solution to its AOMDL instance
from the outputs of the two executions of B. It may also be able to solve its AOMDL instance
after the first execution of B in case the adversary found two distinct tweaks τ and τ ′ such that
the corresponding tweaked public keys collide (this is handled by sub-procedure TryFirstRun). One
salient point to note is that C relays queries of B to the discrete logarithm oracle ADLog′ to its
own oracle ADLog but uses a caching mechanism (through table Tdl) to avoid repeating queries.

First, we will show that if C does not abort at any of the four lines with assert’s, namely lines
(8), (17), (19), or (33), then it is successful. Algorithm C may compute its output in two ways: by
relying on a tweaked public key collision (when C returns at line (12)) or by forking algorithm B
(when C returns at line (43)). We consider these two possibilities in turn. All quantities below refer
to the ones defined in Figure 9. In particular, the outputs of B in the two executions are respectively
(z, aux) and (z′, aux ′) with z = z′ = (L, R, X∗, m∗), L = ((Xi, mi))i∈[n], aux = (τ, s, Tsession), and
aux ′ = (τ ′, s′, T ′

session). We also let x, u1, . . . , u2qs denote the discrete logarithms of X, U1, . . . , U2qs ,
respectively.

Tweaked Public Key Collision. Consider sub-procedure TryFirstRun that C runs after the
first execution of B. It goes through all signing sessions and looks for some k ∈ [qs] such that
the tweak τk for session k is distinct from the tweak τ for the forgery yet the tweaked public key
X̃k = TweakPK(X, τk) is equal to the tweaked public key for the forgery X∗ = TweakPK(X, τ).
When this happens, then C can compute x := Extract(τ, τk) using collision-extractability (property
(P-3)) of the tweaking scheme.

16 Here, we assume that TweakPK is of the form gαXβ and hence requires two exponentiations.
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CChal,ADLog((G, p, g))

1 : ρ←$R // randomness for A/B

2 : Tsig := ∅ // tables for RO answers

3 : Tdl := ∅ // table for ADLog answers

4 : X, U1, . . . , U2qs ← Chal()
5 : inp := ((G, p, g), (X, U1, . . . , U2qs ))
6 : // first execution

7 : α← BHsig[Tsig],ADLog′
(inp; ρ)

8 : assert α ̸= ⊥
9 : (z, aux) := α

10 : // try to compute DLs directly

11 : dlogs ← TryFirstRun(z, aux)
12 : if dlogs ̸= ⊥ then return dlogs
13 : // else, second execution

14 : T ′
sig := Tsig

15 : T ′
sig(z)←$ Zp

16 : α′ ← BHsig[T ′
sig],ADLog′

(inp; ρ)
17 : assert α′ ̸= ⊥
18 : (z′, aux ′) := α′

19 : assert z = z′ ∧ Tsig(z) ̸= T ′
sig(z)

20 : // compute discrete log of X
∗ and then X

21 : (L, R, X∗, m∗) := z

22 : ((Xi, mi))i∈[n] := L

23 : (τ, s, Tsession) := aux
24 : (τ ′, s′, T ′

session) := aux ′

25 : n∗ := #{i ∈ [n] : (Xi, mi) = (X∗, m∗)}
26 : x∗ := (s− s′)/(n∗(Tsig(z)− T ′

sig(z)))
27 : x := InvSK(x∗, τ)
28 : // make spare DL queries

29 : for k := 1 . . . qs do
30 : (τk, ctxk, bk, ck, sk) := Tsession(k)
31 : (τ ′

k, ctx ′
k, b′

k, c′
k, s′

k) := T ′
session(k)

32 : if bk = b′
k then

33 : assert ctxk = ctx ′
k

34 : b′
k ←$ Zp \ {bk} ; c′

k := 0
35 : // set α, β0, (βi)i∈[2qs] such that

36 : // U2k−1U
b′

k
2k

= g
α

X
β0
∏2qs

i=1
U

βi
i

37 : α := 0 ; β0 := 0
38 : (βi)i∈[2qs] := (0, . . . , 0)
39 : (β2k−1, β2k) := (1, b′

k)
40 : s′

k := ADLog(α, β0, (βi)i∈[2qs])
41 : // compute discrete log of U1, . . . , U2qs

42 : (u1, . . . , u2qs )← Solve(x, (τk, . . . , s′
k)k∈[qs])

43 : return (x, u1, . . . , u2qs )

TryFirstRun(z, aux)

41 : (L, R, X∗, m∗) := z

42 : (τ, s, Tsession) := aux
43 : x := ⊥
44 : for i := 1 . . . qs do
45 : (τk, ctxk, bk, ck, sk) := Tsession(k)
46 : X̃k := TweakPK(X, τk)
47 : if τk ̸= τ ∧ X̃k = X∗ then
48 : // compute discrete log of X

49 : // using collision-extractability

50 : x := Extract(τ, τk)
51 : if x = ⊥ then return ⊥
52 : // make spare DL queries

53 : for i := 1 . . . qs do
54 : b′

k ←$ Zp \ {bk} ; τ ′
k := 0 ; c′

k := 0
55 : // set α, β0, (βi)i∈[2qs] such that

56 : // U2k−1U
b′

k
2k

= g
α

X
β0
∏2qs

i=1
U

βi
i

57 : α := 0 ; β0 := 0
58 : (βi)i∈[2qs] := (0, . . . , 0)
59 : (β2k−1, β2k) := (1, b′

k)
60 : s′

k := ADLog(α, β0, (βi)i∈[2qs])
61 : // compute discrete log of U1, . . . , U2qs

62 : (u1, . . . , u2qs )← Solve(x, (τk, . . . , s′
k)k∈[qs])

63 : return (x, u1, . . . , u2qs )

Solve(x, (τk, bk, ck, sk, τ ′
k, b′

k, c′
k, s′

k)k∈[qs])

61 : for k := 1 . . . qs do
62 : xk := TweakSK(x, τk)
63 : x′

k := TweakSK(x, τ ′
k)

64 : u2k := sk − s′
k − (ckxk − c′

kx′
k)

bk − b′
k

65 : u2k−1 := sk − bku2k − ckxk

66 : return (u1, . . . , u2qs )

Hsig[Tsig](L, R, X, m)

if Tsig(L, R, X, m) = ⊥ then
Tsig(L, R, X, m)←$ Zp

return Tsig(L, R, X, m)

ADLog′(repr)

if Tdl(repr) = ⊥ then
Tdl(repr) := ADLog(repr)

return Tdl(repr)

Fig. 9. Algorithm C from the proof of Theorem 2.
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If this succeeds, C then computes the discrete logarithms u1, . . . , u2qs of U1, . . . , U2qs as follows.
By Lemma 3 (iv), for every k ∈ [qs], the k-th signing session in the first execution yields an equation

sk = u2k−1 + bku2k + ckxk

where xk := TweakSK(x, τk). Since C made at most qs ADLog queries during B’x first execution,
it has qs spare queries. Hence, for each k ∈ [qs], C draws b′

k ←$ Zp \ {bk}, lets c′
k := 0, and queries

ADLog on input a representation of U2k−1U
b′

k

2k , receiving an answer s′
k that satisfies

s′
k = u2k−1 + b′

ku2k

Taken together, these two equations yield a system

sk = u2k−1 + bku2k + ckxk

s′
k = u2k−1 + b′

ku2k + c′
kx′

k.

(Here, c′
k = 0 and x′

k is irrelevant, but we use this general form as it will be needed for the case
where C forks B.) It has two unknowns u2k−1 and u2k and can be uniquely solved since bk ̸= b′

k as

u2k = sk − s′
k − (ckxk − c′

kx′
k)

bk − b′
k

u2k−1 = sk − bku2k − ckxk.

(11)

which is handled by the Solve sub-procedure.
Hence, when TryFirstRun does not return ⊥, C outputs the correct discrete logarithms of all its

2qs + 1 challenges and makes at most 2qs ADLog oracle queries, meaning it successfully solves its
AOMDL instance.

Forking. Consider now the case where C runs B a second time and returns (assuming it does not
abort) at line (43). By Lemma 3 (iii), we have

gs = R

n∏
i=1

X
Tsig(L,R,Xi,mi)
i

gs′
= R

n∏
i=1

X
T ′

sig(L,R,Xi,mi)
i

which implies

gs−s′
=

n∏
i=1

X
Tsig(L,R,Xi,mi)−T ′

sig(L,R,Ximi)
i . (12)

By Lemma 3 (i), (L, R, Xi, mi) was queried by B to Hsig for every i ∈ [n]. Hence, all table entries
Tsig(L, R, Xi, mi) were assigned during the first execution. Because C starts the second execution
of B with T ′

sig initialized with the values that Tsig holds at the end of the first execution except for
entry z = (L, R, X∗, m∗), for every i ∈ [n] such that (Xi, mi) ̸= (X∗, m∗) we have

Tsig(L, R, Xi, mi) = T ′
sig(L, R, Xi, mi).

Hence, Equation (12) simplifies to

gs−s′
= (X∗)n∗(Tsig(z)−T ′

sig(z)), (13)

where n∗ := #{i ∈ [n] : (Xi, mi) = (X∗, m∗)} is non-zero since by Lemma 3 (ii) we have that
(X∗, m∗) ∈ L. Moreover, since C did not abort at line (19), we have Tsig(z) ̸= T ′

sig(z) and hence by
Equation (13) the discrete logarithm of X∗ is

x∗ := s− s′

n∗(Tsig(z)− T ′
sig(z)) .
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From x∗, the discrete logarithm x of challenge X can now be computed as follows. We have
X∗ = TweakPK(X, τ) = gTweakSK(x,τ) where the first equality is from Lemma 3 (ii) and the second
from property (P-1) of the tweaking scheme. Hence, x∗ = TweakSK(x, τ) and since the tweaking
scheme is efficiently invertible (property (P-2)), x can be computed as

x := InvSK(x∗, τ).

Let us now consider the computation of the discrete logarithm of Ui’s. Let us fix k ∈ [qs]. By
Lemma 3 (iv), the k-th signing session in each execution yield equations

sk = u2k−1 + bku2k + ckxk

s′
k = u2k−1 + b′

ku2k + c′
kx′

k,

where xk := TweakSK(x, τk) and x′
k := TweakSK(x, τ ′

k). As in the previous case, this system with
two unknowns u2k−1 and u2k can be uniquely solved when bk ̸= b′

k by (11). Note that when bk = b′
k

initially, algorithm C overwrites b′
k with a fresh random value different from bk and c′

k with zero
and makes an extra ADLog query to overwrite s′

k at lines (34) and (40) (effectively emulating
a signing session with the fresh values b′

k, c′
k). This ensures that the system has indeed a unique

solution, which is computed by the Solve sub-procedure, which is always called with bk ̸= b′
k. Hence,

as we assumed that C does not abort at line (33), it successfully computes the discrete logarithms
of its 2qs + 1 challenges.

In order to prove that C successfully solves the AOMDL problem, it remains to show that it
makes at most 2qs queries to ADLog. Note that C calls ADLog at two places: when answering a
Sign′ query, or at line (40). Note also that C makes at most qs queries to ADLog during the first
execution of B,17 but during the second execution it only makes a query if it was not made during
the first execution because answers are cached in table Tdl. The following claim gives a sufficient
condition ensuring that the arguments of the two DL oracle queries for closing some session k are
the same in both executions.

Claim. Let k ∈ [qs] and assume that the two calls Sign′(k, τk, ctxk, mk) and Sign′(k, τ ′
k, ctx ′

k, m′
k) in

both executions were such that ctxk = ctx ′
k. Let X̃k := TweakPK(X, τk) and X̃ ′

k := TweakPK(X, τ ′
k).

Then bk = b′
k, X̃k = X̃ ′

k and ck = c′
k. Therefore, U2k−1U bk

2k X̃ck

k = U2k−1U
b′

k

2k (X̃ ′
k)c′

k and the
arguments of the two DL oracle queries for session k were the same in both executions.

Proof of claim. Assume that ctxk = ctx ′
k. Then Hnon(ctxk) = Hnon(ctx ′

k), hence bk = b′
k. Let us

show that X̃k = X̃ ′
k and mk = m′

k.
Let (·, ·, ((X̂j , m̂j , R̂2,j))j∈[n]) := ctxk = ctx ′

k and recall that the second nonce of the honest
signer in session k is U2k. By our assumption that A never makes a Sign′ query leading to an abort,
U2k appears exactly once among (R̂2,j)j∈[n] values. Moreover, letting u ∈ [n] be the unique index
such that R̂2,u = U2k, we must have (X̂u, m̂u) = (X̃k, mk) because session k does not abort in the
first execution and (X̂u, m̂u) = (X̃ ′

k, m′
k) because session k does not abort in the second execution.

This implies in particular that X̃k = X̃ ′
k and mk = m′

k, as claimed.
It remains to show that ck = c′

k. Since ck and c′
k are computed by B in Sign′ with a call to

Hsig, we have

ck = Tsig(Lk, Rk, X̃k, mk)

c′
k = T ′

sig(L′
k, R′

k, X̃ ′
k, m′

k).

By inspection of the code, one can easily see that ctxk = ctx ′
k implies Lk = L′

k and Rk = R′
k.

Moreover, we already proved that X̃k = X̃ ′
k and mk = m′

k. Hence, the inputs to these two
table evaluations are equal and c′

k = T ′
sig(Lk, Rk, X̃k, mk). Recall that since we rely on the local

forking lemma, z = (L, R, X∗, m∗) is the only entry on which Tsig and T ′
sig may differ. Let us

show that the Hsig query (Lk, Rk, X̃k, mk) cannot be the forking point. Note that message m∗

17 In fact, it makes exactly qs queries unless some collision happens by chance between two inputs, but this
is unimportant.
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defining the forking point is chosen by B among messages m such that (L, τ, m) /∈ Q. We can
distinguish two cases: (i) if τk ̸= τ , then X̃k ̸= X∗ as otherwise sub-procedure TryFirstRun called
after the first execution of B would have been able to compute x and C would have returned
at line (12); (ii) if τk = τ , then necessarily (Lk, mk) ̸= (L, m∗) since (Lk, τk, mk) ̸= (L, τ, m∗).
In both cases, we have (Lk, Rk, X̃k, mk) ̸= z, meaning (Lk, Rk, X̃k, mk) is not the forking point.
Thus, we have Tsig(Lk, Rk, X̃k, mk) = T ′

sig(Lk, Rk, X̃k, mk) and hence ck = c′
k as claimed. Hence,

U2k−1U bk

2k X̃ck

k = U2k−1U
b′

k

2k (X̃ ′
k)c′

k and the arguments of the two DL calls for session k were the
same in both executions. ■

Thus, for each k ∈ [qs] we can distinguish two cases:

– if bk ≠ b′
k, then C makes at most two ADLog query to answer Sign′(k, ·, ·) for each execution

of B, but line (40) is not called;
– if bk = b′

k, then either ctxk ̸= ctx ′
k, in which case C aborts at line (33), or ctxk = ctx ′

k, which
by the claim above implies that C did not call ADLog when answering Sign′(k, ·, ·) during the
second execution of B and can safely call ADLog at line (40) for a total of at most two queries.

All in all, C makes at most two ADLog queries for each k ∈ [qs], hence at most 2qs queries in total,
meaning it successfully solves the AOMDL problem when it does not abort.

Success Probability. Let us now lower bound the success probability of C, which, as proven
above, is exactly the probability that C does not abort. First, observe that when C aborts at line
(8), (17), or (19), then game FORKB

InpGen(λ) returns false, which implies

1− Advfork
B,InpGen(λ) = Pr

[
FORKB

InpGen(λ) = false
]
≥ Pr [C aborts at line (8), (17), or (19)] .

(This is an inequality because C might return earlier than FORKB
InpGen(λ), namely when running

TryFirstRun, meaning FORKB
InpGen(λ) may return false even though C does not abort.) Hence,

1− Advaomdl
C,GrGen(λ) = Pr [C aborts]

≤ Pr [C aborts at line (8), (17), or (19)] + Pr [C aborts at line (33)]
≤ 1− Advfork

B,InpGen(λ) + Pr [C aborts at line (33)] ,

which implies
Advaomdl

C,GrGen(λ) ≥ Advfork
B,InpGen(λ)− Pr [C aborts at line (33)] . (14)

Let us upper bound the probability that C aborts at line (33). Consider algorithm D against
collision resistance of Hnon defined as follows. It simply draws x, u1, . . . , u2qs ←$ Zp and coins ρ and
runs B twice on input (gx, gu1 , . . . , gu2qs ) and coins ρ exactly as C would, simulating Hsig by lazily
sampling table Tsig and answering ADLog queries using its knowledge of x, u1, . . . , u2qs (which is
possible for the AOMDL problem). Once the second execution has completed, it checks whether there
is some k ∈ [qs] such that (τk, ctxk, bk, ck, sk) := Tsession(k) and (τ ′

k, ctx ′
k, b′

k, c′
k, s′

k) := T ′
session(k)

satisfy bk = b′
k and ctxk ̸= ctx ′

k. If it finds such an index k, it returns (ctxk, ctx ′
k) as colliding pair

for Hnon. We then have Hnon(ctxk) = bk = b′
k = Hnon(ctx ′

k), hence D indeed found a collision.
Hence, D runs it time at most (2qs + 1)texp + 2tB = 2tA + (8qs + 2N + 3)texp and is successful

as soon as there exists some k ∈ [qs] such that bk = b′
k and ctxk ̸= ctx ′

k. In particular, C aborting at
line (33) implies that D is successful,18 so that we have

Pr [C aborts at line (33)] ≤ Advcoll
D,Hnon

(λ).

Combined with (14), this yields

Advaomdl
C,GrGen(λ) ≥ Advfork

B,InpGen(λ)− Advcoll
D,Hnon

(λ).
18 Note that there is not necessarily an equivalence between C aborting at line (33) and D being successful

since it could happen that D is successful but C aborts at line at line (8), (17), or (19) or returns after
running TryFirstRun.
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By Lemma 2 (with s(λ) = 2λ−1 as |Zp| = p ≥ 2λ−1), this implies

Advaomdl
C,GrGen(λ) ≥ Advsingle

B,InpGen(λ)
(

Advsingle
B,InpGen(λ)

q
− 1

2λ−1

)
− Advcoll

D,Hnon
(λ)

≥
(Advsingle

B,InpGen(λ))2

q
− 1

2λ−1 − Advcoll
D,Hnon

(λ)

By Lemma 3, we have Advsingle
B,InpGen(λ) = Advco-euf-cma-tk

A,GrGen (λ), hence we obtain

Advco-euf-cma-tk
A,GrGen (λ) ≤ √q

(
Advaomdl

C,GrGen(λ) + Advcoll
D,Hnon

(λ) + 1
2λ−1

) 1
2

.

Neglecting the time needed for linear algebra when computing discrete logarithms, the running
time of C is twice the running time of B, hence at most 2tA + (6qs + 2N + 2)texp, which concludes
the proof.

6 Binding Security

This section defines strongly binding security for aggregate signatures and presents a proof that
DahLIAS satisfies this definition. Informally, strong binding for aggregate signatures requires that
no p.p.t. adversary can find two distinct lists of public key/message pairs L and L′ and a signature
σ such that σ is valid for both L and L′. A formal security definition is provided in Figure 10.
Note that security only depends on the verification algorithm of the scheme, hence it applies
independently of the signing protocol (interactive or non-interactive).

Game SBA
IAS(λ)

par ← Setup(1λ)
(L, L′, σ)← A(par)
assert L ̸= L′

return Ver(L, σ) ∧ Ver(L′, σ)

Fig. 10. The SB security game for an IAS scheme IAS.

Definition 6 (SB security). Given an aggregate signature scheme IAS, consider game SB defined
in Figure 10. Then IAS is strongly binding-secure (SB-secure) if for any p.p.t. adversary A,

Advsb
A,IAS(λ) := Pr

[
SBA

IAS(λ) = true
]

= negl(λ).

Theorem 3. The IAS scheme DahLIAS[GrGen, Hnon, Hsig] is SB-secure in the random oracle model
for Hsig. More precisely, for any adversary A against the SB security of DahLIAS[GrGen, Hnon, Hsig]
making at most qh queries to Hsig and such that the size of L and L′ in its output is at most N ,
one has

Advsb
A,DahLIAS(λ) ≤ q2

h
2λ

.

Proof. Consider an execution SBA
IAS(λ) = true in which some adversary A against the SB se-

curity of DahLIAS is successful. Let (L, L′, σ) be the output of A with L = ((Xi, mi))i∈[n],
L′ = ((X ′

i, m′
i))i∈[n′], and σ = (R, s). We first prove that

n∏
i=1

X
Hsig(L,R,Xi,mi)
i =

n′∏
i=1

(X ′
i)Hsig(L′,R,X′

i,m′
i). (15)
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Without loss of generality, we assume that A made all queries Hsig(L, R, Xi, mi) for 1 ≤ i ≤ n
and Hsig(L′, R, X ′

i, m′
i) for 1 ≤ i ≤ n′ when it returns. If Ver(L, σ) = Ver(L′, σ) = true, we have

Xi ̸= 1G for every i ∈ [n], X ′
i ̸= 1G for every i ∈ [n′], and

gs = R

n∏
i=1

X
Hsig(L,R,Xi,mi)
i

gs = R

n′∏
i=1

(X ′
i)Hsig(L′,R,X′

i,m′
i)

This implies that Eq. (15) holds in every execution in which the adversary A is successful.
We now prove the theorem. Consider any adversary A, and consider the sequence of Hsig queries

made by A. For every k ∈ {0} ∪ [qh], every list L = ((Xi, mi))i∈[n], and every R ∈ G, let π(k, L, R)
be defined as follows: if (L, R, Xi, mi) appears among the k first Hsig queries for every i ∈ [n], then
π(k, L, R) :=

∏n
i=1 X

Hsig(L,R,Xi,mi)
i , otherwise π(k, L, R) := ⊥.

For every k ∈ [qh], let Sk be the set of group elements S ∈ G such that there exists a list L and
R ∈ G such that π(k−1, L, R) = S. (Due to Eq. (15), Sk is, informally speaking, the set of “targets”
that would allow A to win if the k-th query defines another list L′ ̸= L such that π(k, L′, R) = S for
some S ∈ Sk.) Since each element of Sk corresponds to a pair (L, R) such that L and R appeared
as arguments in one of the first k − 1 Hsig queries, we have #Sk ≤ k − 1.

Thus, forA to be successful, we know due to Eq. (15) that the following event must have happened:
for some k ∈ [qh], the k-th query Hsig(L, R, Xi, mi) must have been such that π(k − 1, L, R) = ⊥,
π(k, L, R) ̸= ⊥, and there exists L′ such that L ̸= L′, π(k − 1, L′, R) ∈ Sk, and π(k, L, R) =
π(k − 1, L′, R). Clearly, π(k, L, R) is uniformly random in G when it becomes defined since all
public keys involved in the winning output of A are different from 1G and Hsig is a random oracle.
It is also independent of values in Sk by the requirement that L ̸= L′. Hence, for the k-th query,
this event happens with probability at most #Sk/p ≤ (k − 1)/p. Summing over all qh queries, the
success probability of the adversary is at most

∑qh
k=1(k − 1)/p ≤ q2

h/2λ.
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A Relationship to Multi-Signatures

In this section, we explore the relation between interactive multi-signature (IMS) schemes (where
all signers sign the same message m) and IAS schemes. In particular, we formalize the suggestion
of Bellare and Neven [BN06] for turning an IMS scheme into an IAS scheme by setting the message
m of the IMS scheme to the tuple of all public key/message pairs of IAS signers.
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A.1 Generic IMS to IAS Conversion

We begin by recalling the syntax and EUF-CMA security notion for an IMS scheme. Our presentation
follows Nick, Ruffing, and Seurin [NRS21] with some slight adjustments. We restrict ourselves to two-
round schemes such as MuSig2 [NRS21] for simplicity, but our treatment can be straightforwardly
extended to more rounds.

Multi-signature Syntax and Security. A two-round multi-signature scheme IMS consists of
the following algorithms:

– The setup algorithm Setup takes as input the security parameter 1λ and returns system-wide
parameters par . For notational simplicity, we assume that par is given as implicit input to all
other algorithms.

– The key generation algorithm KeyGen takes no input and returns a secret/public key pair
(sk, pk).

– The interactive signature algorithm (Sign, Coord, Sign′, Coord′) consists of two algorithms Sign
and Sign′ run by signers and two algorithms Coord and Coord′ run by the coordinator:
• Sign takes no input and returns a first-round signer output outi and a signer state sti.
• Coord takes a list of signer first-round outputs (outi)i∈[n] and returns a session context ctx

and a coordinator state st.
• Sign′ takes a secret key ski, a signer state sti, a list of all signers’ public keys Lpk, a message

m to sign, and a session context ctx and returns a second-round signer output out′
i.

• Coord′ takes a coordinator state st and a list of second-round signer outputs (out′
1, . . . , out′

n)
and returns a signature σ.

– The verification algorithm Ver takes a list of public keys Lpk = (pki)i∈[n], a message m, and a
signature σ and returns true if the signature is valid and false otherwise.

The EUF-CMA security game for a two-round IMS scheme is given in Figure 11.

Game EUF-CMAA
IMS(λ)

par ← Setup(1λ)
(sk, pk)← KeyGen()
ctr := 0 // session counter

S := ∅ // set of open signing sessions after Sign

Q := ∅ // set of Sign′ queries

(Lpk, m, σ)← ASign,Sign′
(pk)

(pki)i∈[n] := Lpk

assert ∃i ∈ [n] : pki = pk ∧ (Lpk, m) /∈ Q

return Ver(Lpk, m, σ)

Oracle Sign()

ctr := ctr + 1 // increment session counter

S := S ∪ {ctr} // open session ctr

(out, stctr)← Sign()
return out

Oracle Sign′(k, Lpk, m, ctx)

assert k ∈ S // session k must be open

out′ ← Sign′(sk, stk, Lpk, m, ctx)
Q := Q ∪ {(Lpk, m)}
S := S \ {k} // close session k

return out′

Fig. 11. The EUF-CMA security game for a two-round IMS scheme IMS = (Setup, KeyGen, Sign, Coord,
Sign′, Coord′, Ver).

Generic Transformation. Bellare and Neven [BN06] informally suggested to turn an IMS
scheme into an IAS by setting the message in the IMS scheme to the tuple of all public key/message
pairs of the signers of the IAS scheme. We formalize this transformation in Figure 12. We let
enc denote an injective encoding of public key/message pairs into bit strings and we assume the
existence of an algorithm GetPK which on input a secret key sk for the IMS scheme returns the
corresponding public key pk (this is wlog as one can always redefine KeyGen to include the public

38



IAS.Setup(1λ)

par ← IMS.Setup(1λ)
return par

IAS.KeyGen() // signer i

(ski, pki)← IMS.KeyGen()
return (ski, pki)

IAS.Sign() // signer i

(outi, sti)← IMS.Sign()
return (outi, sti)

IAS.Coord
(
((pki, mi, outi))i∈[n]

)
(ctx ims, st)← IMS.Coord((outi)i∈[n])
L := ((pki, mi))i∈[n]

ctx := (ctx ims, L)
return (ctx, st)

IAS.Sign′(ski, sti, mi, ctx) // signer i

pki ← GetPK(ski)
(ctx ims, L) := ctx
((p̂kj , m̂j))j∈[n] ← L

U := ∅
for j := 1 . . . n do

if p̂kj = pki then
U := U ∪ {j}

assert #U = 1 // pki appears exactly once

{u} := U

assert m̂u = mi // message is correct

Lpk := (p̂kj)j∈[n] ; mims := enc(L)
out′

i ← IMS.Sign′(ski, sti, Lpk, mims, ctx ims)
return out′

i

IAS.Coord′ (st, (out′
1, . . . , out′

n))

σ ← IMS.Coord′ (st, (out′
1, . . . , out′

n)
)

return σ

IAS.Ver(L, σ)

((pki, mi))i∈[n] := L

Lpk := (pki)i∈[n] ; mims := enc(L)
return IMS.Ver(Lpk, mims, σ)

Fig. 12. The IAS scheme constructed from a multi-signature scheme IMS.

key in the secret key). Importantly, we add a safeguarding condition in the Sign′ algorithm, which
checks that the input list L contains the signer’s public key pki exactly once together with the
correct input message mi. As we will see, this is necessary for the resulting IAS scheme to be
secure (even in the weakest EUF-CMA sense). As a result, the IAS scheme obtained from this
transformation is not unrestricted: it cannot produce a signature for a list L containing duplicate
public keys.

The theorem below shows that the resulting IAS scheme is co-EUF-CMA-secure.

Theorem 4. Let IMS be a multi-signature scheme and let IAS be the IAS scheme resulting from
transformation in Figure 12. If IMS is EUF-CMA-secure, then IAS is co-EUF-CMA-secure

Proof. Let IMS be a multi-signature scheme and let IAS be the IAS scheme resulting from transfor-
mation in Figure 12. Let A be an adversary against the co-EUF-CMA-security of IAS. We construct
an adversary B against the EUF-CMA-security of IMS as follows. Adversary B takes as input the
honest signer’s public key pk and runs A on pk. It answers IAS.Sign() queries made by A by querying
its own IMS.Sign() oracle and relaying the answer. When A makes an IAS.Sign′(k, m, ctx) query,
B parses (ctx ims, L) ← ctx and ((pkj , mj))j∈[n] ← L, lets Lpk := (pkj)j∈[n] and mims := enc(L),
queries IMS.Sign′(k, Lpk, mims, ctx ims), and forwards the answer to A. One can easily check that B
perfectly simulates the oracles of the IAS game to A.

Eventually, A returns a forgery (L, σ) where L = ((pki, mi))i∈[n]. Then B lets Lpk := (pki)i∈[n]
and mims := enc(L) and returns (Lpk, mims, σ). Let us show that B is successful whenever A is
successful. Since IAS.Ver(L, σ) = true, one must have IMS.Ver(Lpk, mims, σ) = true as well. Let
us show that the forgery is non-trivial, meaning (Lpk, mims) /∈ IMS.Q, where IMS.Q is the list of
IMS.Sign′ queries maintained by the IMS EUF-CMA game. Assume towards a contradiction that
(Lpk, mims) ∈ IMS.Q. This means that B made a query IMS.Sign′(k, Lpk, mims, ctx ims) for some k
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and some ctx ims. Given how B simulates the IAS.Sign′ oracle, this query must have been triggered
by an IAS.Sign′(k, m, ctx) query from A for some message m and ctx = (ctx ims, L). Moreover, this
query cannot have returned ⊥ as otherwise B would not have queried its own IMS.Sign′ oracle. This
implies that pk appears exactly once in L and, letting u be the unique index such that pku = pk,
one must have mu = m. This IAS.Sign′ query caused (L, mu) to be added to IAS.Q, implying that
there cannot exist i ∈ [n] such that pki = pk and (L, mi) /∈ IAS.Q (again, because u is the unique
index such that pku = pk). But this means that A’s forgery is trivial, a contradiction.

Hence, we have Adveuf-cma
B,IMS (λ) ≥ Advco-euf-cma

A,IAS (λ). The running time of B is similar to the one of
A, which concludes the proof.

If we omit the check that pki appears exactly once together with the correct message mi in
IAS.Sign′, then the resulting scheme is not even EUF-CMA-secure. This was already pointed out
by Maxwell et al. [MPSW18, Appendix A.2]. We recall the attack here for completeness, which
exploits the fact that, without this verification, the output of IAS.Sign′(ski, sti, mi, ctx) does not
depend on input message mi.

The adversary, on input the honest party’s public key pk, selects two distinct messages
m1 and m2 and queries Sign(), opening session 1 and receiving some answer out1. It lets
out2 := out1 and computes (ctx, st) ← Coord((pk, m1, out1), (pk, m2, out2)). Then, it closes ses-
sion 1 by calling Sign′(1, m1, ctx), receiving answer out′

1. It defines out′
2 := out′

1 and computes
σ ← Coord′(st, (out′

1, out′
2)). Finally, it returns (L, σ) where L = ((pk, m1), (pk, m2)).

It is easy to see that the adversary, by copying the outputs out1 and out′
1 of Sign and Sign′

into respectively out2 and out′
2, perfectly emulates the behavior of the honest signer in a “phantom”

session 2, albeit with input message m2. Indeed, by copying the output out1 of Sign, the adversary
implicitly defines the state st2 of the honest signer in the “phantom” session as the state st1 in
session 1. Since the output of algorithm Sign′ does not depend on the input message, out′

2 = out′
1 is

the correct answer oracle Sign′ would return on input (1, m2, ctx). Hence, σ is a valid signature for
L. Since the adversary actually never queried Sign′ for message m2, this is a valid forgery breaking
EUF-CMA security of IAS.

A.2 MuSig2-IAS is not Tweak-Secure

Here, we consider the IAS scheme obtained by applying the conversion of Figure 12 to the IMS
scheme MuSig2 [NRS21] (with ν = 2 nonces). The resulting scheme, which we call MuSig2-IAS, is
specified in Figure 13. By Theorem 4, this scheme is co-EUF-CMA-secure (but not unrestricted, as
explained in the previous section) if MuSig2 is EUF-CMA-secure, which for ν = 2 is known to hold
in the ROM+AGM under the AOMDL assumption.

This section describes a successful adversary against MuSig2-IAS in the EUF-CMA-TK security
model who produces a forgery for a tweaked key. We note that it is straightforward to apply
our counterexample to MuSig2∗-IAS, the scheme obtained by applying the conversion method to
MuSig2∗ [NRS21, Appendix A], a slightly optimized variant of MuSig2.

We consider translations as our tweaking functions. Formally, we define the tweak space as
T := Zp and, for any τ ∈ T and x ∈ Zp or X ∈ G, we set

TweakSK(x, τ) := x + τ and TweakPK(X, τ) := gτ X.

Without loss of generality, assume that the honest signer’s index is 1, so that (x1, X1) is the
honest signer’s key pair. The adversary first queries the Sign oracle, to which the signer responds
with (R1,1, R2,1). Next, the adversary selects a message m1 for the signer to sign, a message m2 for
which it will later produce a forgery, and a non-zero tweak τ ∈ Zp. The adversary then generates a
related key

X2 := TweakPK(X1, τ) = gτ X1

and computes the MuSig2 aggregate key

X̃ := MuSig2.KeyAgg((X1, X2)) = Xa1
1 Xa2

2 ,

where a1 = Hagg((X1, X2), X1) and a2 = Hagg((X1, X2), X2) are the corresponding key aggregation
coefficients.
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Setup(1λ)

(G, p, g)← GrGen(1λ)

κagg ← Hagg.HGen(1λ)

κnon ← Hnon.HGen(1λ)

κsig ← Hsig.HGen(1λ)
par := ((G, p, g), κagg, κnon, κsig)
return par

KeyGen() // signer i

xi ←$ Zp ; Xi := gxi

ski := xi ; pki := Xi

return (ski, pki)

KeyAgg((Xi)i∈[n])

for j := 1 . . . n do
aj := Hagg((Xi)i∈[n], Xj)

return X̃ :=
∏n

j=1 X
aj

j

Sign() // signer i

r1,i, r2,i ←$ Zp

R1,i := gr1,i ; R2,i := gr2,i

outi := (R1,i, R2,i)
sti := (r1,i, r2,i)
return (outi, sti)

Coord
(
((pki, mi, outi))i∈[n]

)
for i := 1 . . . n do

Xi := pki

(R1,i, R2,i) := outi

R1 :=
∏n

i=1 R1,i ; R2 :=
∏n

i=1 R2,i

ctx ims := (R1, R2)
ctx :=

(
ctx ims, ((Xi, mi))i∈[n]

)
// extra steps to pre-compute R

X̃ := KeyAgg((Xi)i∈[n])
m := enc

(
((Xi, mi))i∈[n]

)
b := Hnon(X̃, (R1, R2), m)
R := R1Rb

2

st := R

return (ctx, st)

Sign′(ski, sti, mi, ctx) // signer i

// Sign′ must be called at most once per signer state sti

xi := ski ; Xi := gxi

(r1,i, r2,i) := sti(
ctx ims, ((X̂j , m̂j))j∈[n]

)
:= ctx

(R1, R2) := ctx ims

U := ∅
for j := 1 . . . n do

if X̂j = Xi then
U := U ∪ {j}

assert #U = 1 // Xi appears exactly once

{u} := U

assert m̂u = mi // message is correct

Lpk := (X̂j)j∈[n]

m := enc
(
((X̂j , m̂j))j∈[n]

)
// run MuSig2.Sign′(sti, ski, Lpk, m, ctxims)

X̃ := KeyAgg(Lpk)
ai := Hagg((Lpk, Xi)
b := Hnon(X̃, (R1, R2), m)
R := R1Rb

2

c := Hsig(X̃, R, m)
si := r1,i + br2,i + caixi

return out′
i := si

Coord′ (st, (out′
1, . . . , out′

n))

R := st
(s1, . . . , sn) := (out′

1, . . . , out′
n)

s :=
∑n

i=1 si

return σ := (R, s)

Ver(L, σ)

((Xi, mi))i∈[n] := L

X̃ := KeyAgg((Xi)i∈[n])
m := enc(L)
(R, s) := σ

c := Hsig(X̃, R, m)

return gs = RX̃c

Fig. 13. The IAS scheme MuSig2-IAS[GrGen, Hagg, Hnon, Hsig] obtained by applying the transformation of
Figure 12 to MuSig2. Public parameters par returned by Setup are implicitly given as input to all other
algorithms.
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The adversary sets the following values:

α := a2/a1

R1,2 := Rα
1,1

R2,2 := Rα
2,1

R1 := R1,1R1,2

R2 := R2,1R2,2

ctx := ((R1, R2), ((X1, m1), (X2, m2))).

Then, the adversary queries the Sign′ oracle with tweak 0, message m1, and ctx. Since X1
appears exactly once together with the correct message m1, the signing oracle responds with a
partial signature s1 satisfying

gs1 = R1,1 Rb
2,1 Xa1c

1 ,

where b = Hnon(X̃, (R1, R2), m), c = Hsig(X̃, R, m), m = enc(((X1, m1), (X2, m2))), and R = R1 Rb
2.

Next, the adversary sets s2 := s1α + τ a2c, which results in

gs2 = gs1αgτa2c

= Rα
1,1(Rα

2,1)bXαa1c
1 gτa2c

= R1,2Rb
2,2(gτ X1)a2c.

Thus, s2 is a correct partial signature for the public key X2 = gτ X1 and message m. Moreover, the
aggregate signature σ := (R, s1 + s2) is valid for L := ((X1, m1), (X2, m2)).

Finally, the adversary returns L, the tweak τ , and σ which wins the EUF-CMA-TK game
because X2 = TweakPK(X1, τ) and (τ, m2) was never queried to the Sign′ oracle.

B Same-Nonce Different-Challenge Attack

This section demonstrates an attack based on Benhamouda et al.’s polynomial time ROS at-
tack [BLL+21] against any variant of DahLIAS satisfying the following properties:

(1) As in DahLIAS, KeyGen returns a pair (x, gx) ∈ Zp×G and a signature (R, s) ∈ G×Zp is valid
for L = ((Xi, mi))i∈[n] if gs = R

∏n
i=1 X

Hsig(L,R,Xi,mi)
i .

(2) The two-round protocol for computing the signature proceeds as follows:
– first signing round: the i-th signer runs (outi, sti) ← Sign(), sends output outi to the

coordinator, and keeps state sti;
– first coordinator round: on input ((Xi, mi, outi))i∈[n], algorithm Coord simply lets ctx =

st := ((Xi, mi, outi))i∈[n] and sends ctx to all signers;
– second signing round: given the secret key xi, the signer’s state sti, the message mi, and the

session context ctx = ((X̂j , m̂j , ˆoutj))j∈[n], the i-th signer computes its partial signature si

as follows:

ri := f(xi, mi, sti, ctx)

R :=
n∏

j=1
F (X̂j , m̂j , ˆoutj , ctx)

L := ((X̂j , m̂j))j∈[n]

ci := Hsig(L, R, Xi, mi)
si := ri + cixi,

where f and F are two functions such that for every key pair (xi, Xi) possibly returned by
KeyGen, every message mi, every signer’s output/state pair (outi, sti) possibly returned by
Sign, and every session context ctx possibly returned by Coord,

F (Xi, mi, outi, ctx) = gf(xi,mi,sti,ctx). (16)
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– second coordinator round: the final signature is (R, s) with s =
∑n

i=1 si.
(3) Fix a signer key pair (xi, Xi) and first-round output/state pair (outi, sti). Given xi and outi,

it is possible to find two distinct pairs (m(0)
i , ctx(0)) and (m(1)

i , ctx(1)) of message and session
context such that F (Xi, m

(0)
i , outi, ctx(0)) = F (Xi, m

(1)
i , outi, ctx(1)) and c

(0)
i ̸= c

(1)
i , where for

β ∈ {0, 1}, c
(β)
i is the challenge computed by the signer when running Sign′(xi, sti, m

(β)
i , ctx(β)).

One can think of ri = f(xi, mi, sti, ctx) as the “effective” secret nonce of the i-th signer and of
F (Xi, mi, outi, ctx) as its “effective” public nonce. Hence, property (3) says that an adversary can
close a signing session with a signer in two ways such that the signer computes the same effective
secret/public nonce pair but two different challenges.

Note that Equation (16) ensures correctness of the IAS scheme: a signature computed following
the protocol is valid since

gs = g
∑n

i=1
si

=
n∏

i=1
gri+cixi

=
n∏

i=1
gf(xi,mi,sti,ctx)

n∏
i=1

X
Hsig(L,R,Xi,mi)
i

=
n∏

i=1
F (Xi, mi, outi, ctx)

n∏
i=1

X
Hsig(L,R,Xi,mi)
i

= R

n∏
i=1

X
Hsig(L,R,Xi,mi)
i .

These properties encompass the case of the “single-nonce” scheme where each signer simply
draws ri ←$ Zp and sets sti := ri and outi := gri with functions f and F defined simply as
f(xi, mi, ri, ctx) := ri and F (Xi, mi, Ri, ctx) := Ri. Property (3) is satisfied as shown for example
by the following strategy (we assume i = 1 here): given out1 = R1 = gr1 , fix an arbitrary public
key X2, arbitrary messages m1 and m2, and distinct value R

(0)
2 ̸= R

(1)
2 , and for β ∈ {0, 1} let

ctx(β) := ((X1, m1, R1), (X2, m2, R
(β)
2 )).

Then F (X1, m1, out1, ctx(0)) = F (X1, m1, out1, ctx(1)) = R1 and c
(β)
1 = Hsig(L, R(β), X1, m1) where

R(β) = R1R
(β)
2 , hence c

(0)
1 ̸= c

(1)
1 (except with negligible probability).

It also covers the case of the “naive” two-nonce scheme outlined in Section 1.3 where each signer
draws ri,1, ri,2 ←$ Zp and sets sti := (ri,1, ri,2) and outi = (Ri,1, Ri,2) := (gri,1 , gri,2) and functions
f and F are given by

b := h(ctx)
f(xi, mi, (ri,1, ri,2), ctx) := ri,1 + bri,2

F (Xi, mi, (Ri,1, Ri,2), ctx) := Ri,1Rb
i,2,

where h is some arbitrary function. Property (3) is satisfied as follows: given out1 = (R1,1, R1,2),
fix different messages m

(0)
1 and m

(1)
1 and let

ctx := ((X1, m
(0)
1 , out1), (X1, m

(1)
1 , out1)).

Then (m(0)
1 , ctx) and (m(1)

1 , ctx) are two distinct pairs such that

F (X1, m
(0)
1 , out1, ctx) = F (X1, m

(1)
1 , out1, ctx)

but the challenges are Hsig(L, R, X1, m
(β)
1 ) which are different (except with negligible probability).
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Description of the Attack. We assume the honest signer has index 1 and let (x1, X1) ∈ Zp×G
denote the honest signer’s key pair. The attack proceeds as follows:

1. The adversary requests ℓ first-round messages from the honest signer with ℓ ≥ λ. In each session
k ∈ [ℓ], the signer responds with out1,k and keeps state st1,k.

2. For each session k ∈ [ℓ], using Property (3) the adversary finds two distinct pairs (m(β)
1,k , ctx(β)

k ),
β ∈ {0, 1}, such that the corresponding honest signer’s effective nonces

R
(β)
1,k := F (X1, m

(β)
1,k , out1,k, ctx(β)

k )

and challenges c
(β)
1,k computed by Sign′ satisfy R

(0)
1,k = R

(1)
1,k and c

(0)
1,k ≠ c

(1)
1,k. For convenience, we

set R1,k := R
(0)
1,k = R

(1)
1,k.

3. The adversary now constructs the multivariate polynomial

P (Z1, . . . , Zℓ) :=
ℓ∑

k=1
2k−1 Zk − c

(0)
1,k

c
(1)
1,k − c

(0)
1,k

.

Notice that for each k and β ∈ {0, 1} the term (Zk− c
(0)
1,k)/(c(1)

1,k− c
(0)
1,k) equals β when Zk = c

(β)
1,k .

For each k ∈ [ℓ + 1], let αk be the k-th coefficient of the polynomial P , so that

P (Z1, . . . , Zℓ) = α0 +
ℓ∑

k=1
αkZk.

4. Let m′ be the forgery message. The adversary then sets

L′ := ((X1, m′))

R′ :=
ℓ∏

k=1
Rαk

1,k

c′ := Hsig(L′, R′, X1, m′).

Next, for each k ∈ [ℓ], let βk ∈ {0, 1} be the k-th bit in the binary representation of c′ + α0, so
that c′ + α0 =

∑ℓ
k=1 2k−1βk. For each k, set c1,k := c

(βk)
1,k . By construction of polynomial P , we

have
ℓ∑

k=1
αkc1,k = P (c1,1, . . . c1,ℓ)− α0 =

ℓ∑
k=1

2k−1βk − α0 = c′.

5. The adversary then closes each session k ∈ [ℓ] with session values ctx(βk)
k and obtains partial

signatures sk satisfying gsk = R1,kX
c1,k

1 . Then, the adversary computes s′ =
∑ℓ

k=1 αksk and
returns L′ and σ = (R′, s′).

Let us show that the adversary’s output is a correct forgery, i.e., σ is a valid signature for L′.
For k ∈ [ℓ], let r1,k := f(x1, m

(βk)
1,k , st1,k, ctx(βk)

k ). By Equation (16), r1,k is the discrete logarithm of
R1,k, hence we have s1,k = r1,k + c1,kx1. Then,

gs′
= g
∑ℓ

k=1
αksk

= g
∑ℓ

k=1
αk(r1,k+c1,kx1)

= g
∑ℓ

k=1
αkr1,k gx1

∑ℓ

k=1
αkc1,k

=
(

ℓ∏
k=1

Rαk

1,k

)
gx1c′

= R′ X
Hsig(L′,R′,X1,m′)
1 ,

meaning (R′, s′) is a valid signature for L′ = ((X1, m′)).
The attack can be straightforwardly adapted to forge signatures for lists L′ containing (X1, m)

and other public key/message pairs for which the adversary knows the corresponding secret key.
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