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Abstract. Constructing and implementing isogeny-based cryptographic primitives is
an active research. In particular, performing length-n isogenies walks over quadratic
field extensions of F,, plays an exciting role in some constructions, including Hash
functions, Verifiable Delay Functions, Key-Encapsulation Mechanisms, and generic
proof systems for isogeny knowledge. Remarkably, many isogeny-based constructions,
for efficiency, perform 2-isogenies through square root calculations.

This work analyzes the idea of using 3-isogenies instead of 2-isogenies, which replaces
the requirement of calculating square roots with cube roots. Performing length-m
3-isogenies allows shorter isogeny walks than when employing length-n 2-isogenies
since a cube root calculation costs essentially the same as computing a square root,
and we require 3™ = 2" to provide the same security level.

We propose an efficient mapping from arbitrary supersingular Montgomery curves
defined over F 2 to the 3-isogeny curve model from Castryck, Decru, and Vercauteren
(Asiacrypt 2020); a deterministic algorithm to compute all order-3 points on arbitrary
supersingular Montgomery curves, and an efficient algorithm to compute length-m
3-isogeny chains.

We improve the length-m 3-isogeny walks required by the KEM from Nakagawa and
Onuki (CRYPTO 2024) by using our results and introducing more suitable parameter
sets that are friendly with C-code implementations. In particular, our experiments
illustrate an improvement of 26.41%-35.60% in savings when calculating length-m
3-isogeny chains and using our proposed parameters instead of those proposed by
Nakagawa and Onuki (CRYPTO 2024).

Finally, we enhance the key generation of CTIDH-2048 by including radical 3-isogeny
chains over the basefield F,, reducing the overhead of finding a 3-torsion basis as
required in some instantiations of the CSIDH protocol. Our experiments illustrate
the advantage of radical 3 isogenies in the key generation of CTIDH-2048, with an
improvement close to 4x faster than the original dCTIDH.

Keywords: CGL-hash function - CTIDH - Isogeny-based cryptography - Post-
quantum cryptography - Radical 3-isogenies

1 Introduction

In 2009, Charles, Gordon, and Lauter [CLGO09] proposed a hash function, namely CGLHash,
based on the computation of isogenies (of a large degree) between supersingular elliptic
curves over finite fields, IF2. Since the introduction of the CGLHash function, supersingular
isogeny problems have attracted considerable attention in cryptography, because the
best-known attacks have exponential complexity. Nevertheless, the main drawback of the
CGLHash function is its efficiency, which requires log,(p) field multiplications per input bit.
In practice, the CGLHash function is instantiated for efficiency via 2-isogenies (requiring a
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single square root per bit), which summarizes as calculating length-n 2-isogeny walks (i.e.,
involves the calculation of n 2-isogenies).

Remark 1. Calculating length-n 2-isogenies walks via square roots is essential in cryptanal-
ysis; the best classical attack [DG16, SCS22] requires a single square root per 2-isogeny.

Related work: computing isogenies over [, via radical calculations. In 2020, Castryck
and Decru [CD20] presented an algorithm for calculating length-n 2-isogeny walks formulas
between supersingular elliptic curves defined over IF,,. Their algorithm performs 2-isogenies
via square roots over F,, and was dedicated to improve the isogeny-based group action
from [CLMT'18]. Subsequently, Castryck, Decru and Vercauteren extended the work
from [CD20] by calculating ¢-isogenies through radical calculations (i.e., calculating ¢-th
roots). Several consecutive works [OM22, CR22, CDHV22, Dec24] have recently extended
and improved the radical formulas from [CDV20] for £ > 3. The current most efficient
variant of the isogeny-based Diffie-Hellman protocol from [CLM™18] requires calculating
3-isogenies [BBCT21, CCSCT24, CHMR25].

Related work: computing isogenies over 2 via radical calculations. In 2022, Chavez-
Saab, Rodriguez-Henriquez, and Tibouchi [CSRT22] described an isogeny-based Verifiable
Delay Function (VDF) having as core the calculation of length-n 2-isogeny walks, as
required in the CGLHash function, needing a single square root per 2-isogeny. In 2023,
Cong, Lai and Levin [CLL23] detailed a non-interactive protocol to prove the knowledge
of an isogeny path using a generic zkSNARK proof system, which performs 2-isogenies
via square roots. Recently, Nakagawa and Onuki [NO24] presented a Key Encapsulation
Mechanism (KEM) that involves calculating length-m 3-isogeny walks, where each 3-isogeny
requires a cube root computation. In addition, Levin and Pedersen [LP24] described a
Verifiable Random Function (VRF) based on 2-isogenies calculated through square roots.

Our Contribution: In this work, we are interested in improving the calculation of isogeny
walks such as those used in [NO24, BBCT21, CCSC*24] through the usage of radical
3-isogenies. In general, our results could help to improve any isogeny-based construction
where the chain of radical 3-isogenies is required instead of 2-isogenies or finding for order-3
points are needed. The core contributions of this paper are the following.

1. We present an efficient mapping from Montgomery curve models to the 3-isogeny curve
model from [CDV20]. More precisely, given a Montgomery curve F: y? = 2°+ Az +x
and the z-coordinate xzp of an order-3 point P on F, we show that F is isomorphic
to G: y? +a1xy+asy = o3 with a1 = 32% +2Azp +1 and a3 = 2(z5 + Azp + {I?p)27
requiring only two multiplications, two squares, and six additions in F..

2. We describe a deterministic and efficient procedure for computing all the order-3
points on arbitrary supersingular Montgomery curves. This procedure relies on solving
the quartic equation determined by the division-3 polynomial of the Montgomery
curve F. We illustrate the advantage of our proposal in Table 1.
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Table 1: Comparison between calculating (z-coordinates of) order-3 points on an arbitrary
supersingular Montgomery curve F. Here, mul, denotes a field multiplication in [F),.

Approach Type of #(Points Cost
algorithm computed)
[CDV20, Sampling an Probabilistic One ! 50 log, (p)mul,
OM22] order-3 point
This work Solving a Deterministic =~ Four 14.5logy (p)mul,
quartic
equation

3. We explicitly and efficiently describe how to compute length-m 3-isogeny chains with
non-backtracking via the 3-isogeny formulas from [CDV20]. In particular, we show
that using the 3-isogeny curve model £: y? + a1y + azy = 23 — bayazz — ajaz — 7a3
allows to compute length-m 3-isogeny chains with non-backtracking.

Our analysis centers on supersingular elliptic curves defined over Fp» with p = 3 mod 4
and p? —1 = 3- f for some integer f € N such that f is relatively prime to three. > We verify
the correctness of our results through intensive experiments and illustrate the advantages
and differences of performing 3-isogeny walks instead of 2-isogeny walks (see Table 2). Our
experiments show that the CGLHashs function has a competitive performance compared
to the CGLHash, function.

Table 2: Comparison between computing 2-isogeny and 3-isogeny walks with p = 3 mod 4.
2-isogeny walks [CLGO9]

3-isogeny walks (this work)

Condition on p —

p?—1=3-f with
ged(3, f) = 1.

Initial setup

The j-invariants j(€_1)
and j(&) of two fixed
2-isogenous curves.

An order-3 point P on
Fi:y =a3+Az% + 2
along with F_.

Path nodes J(&) Eity? 4 arzy + azy =
23 — bajazx — ai’ag . 7a§
Path length n n/logy(3)

Cube root calculation

The j-invariant j(&,) of &,

Bottleneck operation Square root calculation

Additional calculations —

Our contribution on the efficient method for computing order-3 points (the second
contribution from above) has the following two important implications.

First, it allows us to provide some less conservative parameter sets for instantiat-
ing [NO24], which still provide the desired bit security according to the complexity O(p'/?).
More precisely, we propose three primes (named p381, p575 and p765) to reach levels equal
to QFESTA-128, QFESTA-192 and QFESTA-256, and compare them against the primes
proposed by [NO24] (namely, p398, p592, and p783). Our suggested parameters benefit
from having one less 64-bit word, giving a performance improvement of 35,60% for 128-bits,
31.62% for 192-bits, and 26.41% for 256-bits for CPU cycles.

1This approach gets a random order-3 point with probability 0.96. We detail the analysis discussion
in Section 3.2.

20ur results holds for any prime, but for efficiency and simplicity we limit our analysis to p>? —1 =3 f
with ged(3, f) = 1. We only require an efficient field exponentiation for computing cube-roots in Fp2.
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Second, it allows to reduce the overhead for the initial step of chains of radical 3-isogenies
(finding order-3 points over F,, and mapping to the correct curve model). In particular, we
provide projective formulas instantiation and implementation of [OM22]. Using our results
we improve the key generation of the CTIDH protocol (e.g., dCTIDH [BBC*21, CHMR25]).
Our experiments illustrate a speed-up of 4x faster compared to the original implementation
of dCTIDH.

As part of our results, we provide the first x86_ 64 Intel C-code implementation for
computing 3-isogeny walks on arbitrary supersingular Montgomery curves defined over
2 via cube-root calculations and present an efficient implementation of the CGLHash3
function. We use a custom assembly code designed for x86_ 64 Intel to guarantee that our
implementation is constant-time compliant. Additionally, our implementation is memory-
leak free, aiming for a stronger security solution. In particular, we provide two dedicated
implementations 3:

1. An implementation that performs 3-isogeny random walk over F,2 (as required

in [NO24]). Figure 1 describes our results and the operation blocks needed to
implement 3-isogeny walks over F,z.

R e e [nitial Setup - - --

Fi? =23+ Az +z Get x—coordina‘?e
of an order-3 point Tp
(Section 3.2)

From Montgomery model to 3-isogeny model
(Section 3)

&
R R e LT LR CGLHashg --- -,
| path length—.m 3-Isogeny g Calculate JE
walk given by path .

j-invariant

(Section 3.4)

Figure 1: The superingular elliptic curves £ and &£’ are defined over Fj2 and described as
in Section 3.5.

2. An implementation that calculates chains of 3-isogenies over F,, with the goal of
improving [BBCT21, CHMR25]. Figure 2 describes our results and the operation
blocks needed to implement 3-isogeny chains over IFp,.

Outline. Section 2 presents the necessary mathematical background. Section 3 presents
our theoretical results. In particular, Section 3.2 describes a deterministic method for
calculating order-3 points over arbitrary supersingular Montgomery curves defined over
Fp2, while Sections 3.3 and 3.4 detail how to perform length-m 3-isogeny walks with non-
backtracking. Subsequently, Section 3.5 provides an optimized description of the CGLHash
function instantiated with 3-isogenies, and Section 3.6 analyzes the impact of our results

30ur C-code implementation will be public soon.
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———————————————————— Initial Setup - - --

: e Get projective !
: ’ z-coordinate of !
| an order-3 point !
! |

_________________ R
e e e L e T Radical 3-isogenies - - - -,
| I
X e Calculate t/ Get Montgomery &’ !
X 3-isogeny chain curve

Figure 2: The superingular elliptic curves £ and £’ are defined over F, and given in
Montgomery curve form. All the block calculations are presented in Section 3.7.

on the KEM construction of [NO24]. Section 3.7 shows how our results can be used to
improve the CTIDH protocol. We finally present our experiments in Section 4. Section 4.1
includes experiments over Fj2, while Section 4.2 over F,,.

2 Preliminaries

Let p be a prime integer number with p = 3 mod 4. We focus on the quadratic field extension
Fp2 = Fpli]/(i* + 1) of F, and supersingular elliptic curves & with #&(F,2) = (p+ 1)?
points.

Unless we specify a different model, we center on elliptic curves in Montgomery
form (i.e, £: y*> = 23 + Az? + x for some A € F,2). Elliptic curves are uniquely de-
termined (up to isomorphism) by their j-invariant, which in this case coincides with
J(E) = 256(A% — 3)° /(A% — 4).

An isogeny ¢: £ — F is a non-constant morphism between two elliptic curves that has
a finite kernel and sends the point at infinity Og on £ to the point at infinity 0 on F
(i.e., ¢(0g) = 0x). In particular, we focus on cyclic isogenies (i.e., ker ¢ is cyclic), and we
say that ¢ is an f-isogeny if ker ¢ has size £. The dual of ¢ is another (-isogeny ¢: F — &
such that ¢ o ¢ = [¢] and ¢ o ¢ = [{], where [¢]: P — ¢P denotes the multiplication-by-¢
map. There are exactly (¢ 4 1) ¢-isogenies (up to isomorphism) with domain JF, one of
them corresponding with ¢: F — £.

Division and Modular polynomials. The (-division polynomial ¢ ¢(z) of an elliptic
curve £ determines all the ¢-torsion points on & (i.e., all the points P on & such that
[/]P = 0g); more precisely, its roots determine the z-coordinates of all the ¢-torsion points
on &£. The /" modular polynomial ®,(z,y) € Z[x,y| is an irreducible polynomial such
that ®,(j(E),7(F)) = 0 for any pair of two ¢-isogenous curves £ and F.

Charles-Goren-Lauter hash function. Given two /-isogenous supersingular elliptic curves
& and £_1, and an length-n f-isogeny chain

g2 e B e, (1)

with non-backtracking (i.e., ;41 different from ;), the ¢-isogeny path connecting & and
&, can be encoded by a length-n list of integers in [1,¢ — 1]. The Charles-Goren-Lauter
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hash function [CLG09] determined by & and £_; is defined as

CGLHashy: {1,...,0— 1} = F

path — j(&n) @

where n = #path and &, is the end curve of the length-n (-isogeny chain determined by
path. Commonly, ¢ is chosen as a small prime number (e.g., £ = 2).

Computing 2-isogenies via square-roots. For any 2-isogeny ¢;: & — &1 in Equa-
tion (1), we have that j; :== j(&;) and j;11 == j(£;41) annihilate the 2°¢ modular polynomial
Oy (z,y). In particular, given the j;—1 = j(&;—1) and j;, the next j-invariant in Equation (1)
can be calculated as below [CSRT22].

1
Jig1 = 3 (j7 — 1288j; — ji—1 + 162000 £ /p;) (3)
where
pi = ji — 297657 + 257 j;_1 + 253219257 — 29765; 5,1
— 6452055005; — 352 | + 3240004;_; — 8748000000.

Assuming we have a deterministic algorithm for computing square-roots in F2, the ith
bit of an input path € {0,1}" for CGLHash, determines the sign in +,/p; in Equation (3).
For example, one can deterministically calculate a square root over F,> using the Kong
et al. algorithm [KCYLO06] if p? = 9 mod 16. However, Scott’s algorithm [Sco20] allows
computing square roots over [,z \ F,, much more efficiently than the Kong et al. algorithm.

Computing 3-isogenies via cube-roots. There are two ways of computing radical 3-
isogenies: Using the formulas from [CDV20], which are the best choice when we are working
over Fp2 (e.g., [NO24]); or using the formulas from [OM22] when we are working over I,
(e.g., [CLM*18]).

The authors in [CDV20, OM22] take an extra assumption, p = 3- f — 1 for some f € N
such that 4 | f and ged(3, f) = 1. Let N3 be the inverse of three modulo %(p? — 1) and

(3 = 71%"@ € IF,2 be a cube-root of unity. Let a € Fp» be a cubic residue, then b = alNs,
¢ = (3b, and d = (3b are the three cube-roots of a.

Let £: y? +a1zy +asy = x> be a supersingular elliptic curve defined over Fp2, and let
be a cube-root of —az. Then the supersingular elliptic curve £ : y* + ajzy + a4y = =3 with
a} = (—6a+ay) and a} = (3a;a® — a?a + 9as) is 3-isogenous to € [CDV20]. In particular,
£’ is isomorphic to the codomain of the 3-isogeny ¥: £ — £” with kernel ker ¢ = ((0, 0))
(i.e., & is isomorphic to E£”).

Let £: y? = 23+ Az? + 2, and (¢,y) be an order-3 point on £ such that (¢,y) € E[r —¢]
with € € {1, —1}. Then, t' = 3ta? + (3t> — 1)a + 3t — 2t determines the x-coordinate of
an order-3 point (¢',y') € &'[r — €] where £': y? = 23 + A’2? + x is the codomain of the
isogeny with kernel generated by (¢,y) and o = {/t(¢?> — 1) [OM22]. In particular, it holds

=3t —6(t)?+1
that A’ = =y

Notation and baseline cost assumptions. Through this paper, we write I, M, S, and A to
refer to inversions, multiplications, squares, and additions in [Fp2. Similarly, inv,, mul,, sqr,,,
and add, denote inversions, multiplications, squares, and additions in F,. Additionally, we
write Ep and E3 to refer to a square-root and cube-root in F .

Remark 2. Determining if an element a € IF), is a quadratic residue it reduces to verifying
ifa®> =1. In addition, we have v/a = apTH, whenever a has a square root over [F),, and

¥/a = a~3 . Therefore, we write exp,, to refer to these calculations over . In particular,
we assume exp,, = inv, in general.
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Field inversions 4 and cube-roots correspond with raising to the powers of (p — 2) and
N3 = 37! mod (% (p*>—1)), which for concrete cryptographic parameters have approximately
%(p —2) and %Ng, as Hamming weights, respectively. On the other hand, Scott’s algorithm
requires raising elements in I, to the power of No = +(p+1) and My = 1(p—3). Therefore,
for simplicity and without loss of generality, we assume that calculating field inversions,
square roots, and cube roots takes log, (p)(sqr,+3mul,) = 2 log, (p)M, log, (p)(2sqr,+mul,),
and log, (p)(2S + M) operations, respectively. °

3 On the efficiency of non-backtracking 3-isogeny walks

As highlighted in the introduction, some cryptographic applications explicitly require
calculating long length-n chains of 3-isogenies

3-isogeny 3-isogeny 3-isogeny 3-isogeny
E=¢& & & &=8n
é1 ¢2 ¢3 n

(instead of 2-isogenies) over specific fields where no rational order-3™ kernel point exists;
that is, where we cannot efficiently compute 3"-isogenies through kernel point generators.
On those cases, each 3-isogeny ¢; is then calculated through cube root calculations over
the finite field F2 (e.g. [CDV20, OM22]), and, for efficiency, some additional requirements
are needed. Below, we list the four main ingredients required for computing length-n
3-isogeny chains.

e As the first ingredient, we need an efficient algorithm for computing cube roots.

e We require an efficient mapping to switch to a suitable curve model. For example,
the formulas from [CDV20] work over curves different from the Montgomery curve
model.

e We required an initial order-3 point on the curve as the third ingredient. Therefore,
we need an efficient algorithm for finding/calculating an order-3 point for arbitrary
curves.

o Additionally, we must ensure that there is non-backtracking in the 3-isogeny chain.

In this section, we assume p = 3 mod 4 and (p* — 1) = 3 - f for some positive integer
f € N such that ged(3, f) = 1. Therefore, we have an efficient procedure for computing
cube roots (see Section 2).

3.1 An efficient transformation for getting the 3-isogeny curve model

Let P = (zp,yp) be an order-3 point on a Montgomery curve F: y? = 3 + Ax? + x.
The isomorphism ¢: F — G determined by the translation P — (0,0) has codomain
G: y? + a1zy + asy = 23, where a; = (Sx% +2Azp +1)/yp and az = 2yp. However, we
can avoid calculating the inverse of yp as follows.

Notice that j-invariant of G (in terms of a; and a3) is equal to

aj(a$ — 24a3)3
aj(a? —27a3)

J(@) =

4A field inversion in F,2 requires a single field inversion in Fp, when p = 3 mod 4.
5A multiplication (resp. square) in F,2 requires three multiplications (resp. two multiplications) in F,,
when p = 3 mod 4.
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Now, let us rewrite a; = a; /yp with @, = (3z% +2Axp + 1), and set asz = azysp = 2yp.

Observe that

— 24a3)°
- 27(13)

— 24(13)3 o
- 270,3)

~?(~3

a3(af
where G: y% + a zy +asy = z3. Therefore, G and G are isomorphic over F,2 and the
isomorphism i: G — G is give by the map

ai (a3 — 24@3913) _
~ ypag(af — 27asyp)

ai(ai
a3(ai

i(9) = =3(9),

i (z,y) = (ypo,y/yp)-
It is important to stress that the order 3 point P either belongs to F[p+ 1] or Flp — 1].
Consequently, we have that zp and y% lie in F2; thus, the curve G is defined over Fp2
To sum up, given a Montgomery curve and an order-3 point, we can move to the
3-isogeny curve model from [CDV20] at the cost of 2M + 2S + 6A operations.

3.2 Computing x-coordinates of order-3 points

Let us focus on a Montgomery curve F: y? = 3 + Az? + z with A € F,2. Notice that the

3-division polynomial of F is

Ur3(x) = 30" + 4A2% 4 627 — 1 (4)

such that its roots determine the z-coordinates of order-3 points P = (zp,yp) on F.
Observe that the construction of the 3-isogenous curve G: y* + (32% + 2Azp + 1)ay +
(2y%b)y = 23 can obtained from the pair (zp,y%); that is, yp is not explicitly required.
Thus, solving the quartic polynomial given by ¥ r 3(x) yields an efficient and deterministic
procedure to compute all pairs (zp, y%) such that P = (zp,yp) is an order-3 point on F.
We describe such a procedure below.

1. We first reduce to the depressed quartic polynomial

Az) = 2% + (§A2+2) 22 L

8 , 4 1, 2
S fa) o Ly il
+<27 3 >Z a7t Tt T3

by applying the change of variables x = z — fA

2. Next, we calculate the root

1 1 1
—A2+§+§\3/—2A2+8

Z/:_g

of the cubic polynomial

- (o () - (o3 ) -3

which implicitly determines the roots of Equation (5) as follows. Let

2
A),

1 1
SO—\/2y6<9A2+3>,

S1

1
— 9y — _Z A2
\/ Y 6( 9 +

1 16 8
3) + (27A 34

52

1
—2y — 6 —=A2
oo

DN (65 8,
3 277 73
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Then the roots of Equation (5) are

1 1 1 1
z1 = 5(—50 +51), 2z9= 5(—50 —51), 23= 5(30 +s2), and z4= 5(50 — S9).

3. Finally, the roots of Equation (4) correspond with x; = z; — %A for each j :=1,2,3,4.

As a consequence, we can compute all the roots of Equation (4) at the cost of Es +
3Es + 1 4+ 3M + 8M,. + S + 30A operations. ® Since the most demanding computations are
the cube-root, square-roots and field inversion, this leads to an approximate cost of

3Bz + E3 + 1 = (7sqr,, + 7.5mul,, ) log, (p) ~ 14.5log, (p) mul,,

operations.

Compared to the naive approach of sampling a random point P and calculating
[1(p+ 1)]P, the above-described deterministic method improves the state of the art. For
instance, one randomly samples an element zp € Fp2 and checks if zp = 2% + az% + zp is
a quadratic residue in Fj2. Such a check reduces to verifying if w = (27 + 22) is a quadratic
residue in F,, (e.g., if wP=1/2 = 1 holds), where z = 21 + izo with 21,20 € F,. That
gives a cost of logy(p)(sar, + 3mul,) = 2 log,(p)M multiplications. © On the other hand,
computing the z-coordinate of [%(p + 1)]P when given xp requires & 1.44log,(p) xz-only
point additions [CS18]. ® Since an z-only point addition in Montgomery curve models
takes 4M + 2S + 6A operations [CS18], this provides a total of ~ log,(p)(5.76M + 2.88S)
operations for computing the z-coordinate of [(p + 1)]P.

However, the probability that a random point P satisfies [%(p +1)]P =0Fis %, 9 and
then this approach has probability of % = 0.8 to succeed. So, one would need at least two
random samplings to ensure a probability of 1 — (%)2 = 0.96 to succeed in finding a root
of Wr 3, at the cost of

2
2log,(p)(5.76M + 2.88S + §M> = 50.08log, (p)mul,

operations.

Remark 3. The naive approach only works if 3 divides p + 1, but a minor tweak allows it
to extend to the case when 3 divides p — 1. Conversely, our method works for both cases.

3.3 Computing non-backtracking 3-isogenies

Let us consider the 3-isogeny construction from [CDV20], which is described in Section 2.
Let G: 4% + a12y + azy = 2 be a supersingular elliptic curve defined over Fp2 and set
aj = ¢3(—a3)™*. Notice that a; determines the three different cube-roots of —az (i.e.,
3 = —ag). Now, let

N3

e %
Gi:y® + (=6a; +ar)zy + (3a1a§ —aja; +9a3)y = 23 (6)

be the 3-isogenous curve to G for each j := 0,1,2. Certainly, the curves Gy, Gy, and
G- determine different supersingular elliptic curves. Still, to use them for computing a

1 1 1
21 37 9> ﬁ)
2

6Here M. denotes a multiplication by a constant (e.g., é
has Hamming weight approximately equal to

7Such a cost is under the observation that N = (p — 1)/
%logQ (p) for concrete cryptographic parameters.

8[CS18] gives the number of steps of the PRAC algorithm [CS18, Alg. 10], which is ~ 0.721logs(p).
Each step performs a point doubling and point addition, and an z-only point doubling cost 4M + 2S + 4A
operations.

9There are exactly five possibilities for the z-coordinate of a 3-torsion point on F over sz (the roots
of @ 3(x) and the one corresponding to 0x).
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non-backtracking 3-isogeny ¥: G; — £/, we must ensure first ¥ determines non-isomorphic
codomain curves.

We follow a similar reasoning from [CDV20], but this time, to show why those curves
determine non-isomorphic curves. Let us focus on the curve Gy determined by «g. By
construction, we know that Gy is isomorphic to the codomain of the 3-isogeny 9¥: G — &
with kernel ker 9 = ((0,0)). In particular,

E:y* + a1y + azy = 2° — bajazr — ataz — 7a3,

and its 3-division polynomial is

Ve s(z) =3(z+ %a%)(x +ajap — 302) (22 + (—a1a + 3ad)x + alad — 3a1as — Yazap),
such that its roots determine the z-coordinates of order-3 points on £. The first linear
factor (z + 3a}) determines the kernel of the dual 3-isogeny ¢: £ — G. The second linear
factor (z +ajag — 3ad) determines the order-3 point Py = (—ajag + 3a3, 4a3) on &, which
defines the curve Gy under the translation given by Py — (0,0).

Next, we proceed by showing the curves G; and G come from the remaining roots of

the last quadratic factor in Wg 3(x). Let 1 = —aj10q + 304% and zo = —ajao + 304%. Notice
that o = =430 and ay = <1530, Now, evaluating f(z) = 22 + (—ajaq + 302)z +
atad — 3araz — 9azap at x1 and xo gives

f(z1) = 23 + (—a1ap + 30d)x1 — +aad — 3araz — Yazap = —3(az + a)(a; + 3ap), and
flxe) = x% + (—a109 + 3a8)x2 — —Q—a?ag —3aras — Yazap = —3(as + ag)(al + 3a).

In other words, f(z1) =0 and f(x3) = 0 since o = —a3. Notice that Py = (—ajag +
3a2,4a3), P = (—ajoq + 3a?,4a3), and Py = (—ajag + 303, 4a3) define three different
order-3 points on £. In addition, translating the order-3 point Py (resp. P») to (0,0) yields
the corresponding curve Gy (resp. Go). This implies that each 3-isogeny ¥: G; — &/ with
ker 9 = ((0,0)) determines a different non-backtracking 3-isogeny.

3.4 Performing length-m 3-isogeny walks with non-backtracking

Let P = (zp,yp) be an order-3 point on a Montgomery curve F_1: y? = 2° + Az? + x, and
let G_1: y?+a1 0zy+as oy = 2 with a1 o = (32%+2Azp+1) and ag o = yp. Additionally,
let &: y? + a10zy + asoy = 2* — Saypaser — af gase — Ta3, be the codomain of the
3-isogeny Jg: G_1 — & with ker Jy = ((0,0)).

As previously described above, the 3-isogeny formulas from [CDV20] correspond by
translating the order-3 point (—aj oa; + 3a§, 4asz o) on the curve & into the point (0, 0)
on Go: y? + (—6a; + a1 0)zy + (Salwoa? —a10%a; + 9as,0)y = 3 and then calculating the
3-isogeny ¥: Go — & with kernel generated by (0,0), where a; = Cg &/—asz,o. However, we
suggest using the curve model &;: y? + a1,;xy + as iy = 3 — 5a1,;a3,;T — aiiag,i — 7a§7i
instead of G;: y? + a1zy + as;y = x> to represent the elliptic curves nodes from any
3-isogeny path. In that way, a string path € {0, 1,2} determines the length-m 3-isogeny
chain & 25 & £ ... £y & described in Equation (7).

©1 P2 Y2 Pm—1 Pm
&o & & e Em—1 En
9 /?( (- A
S PR R

|
|
|
s | |
- ~ v N L

g, 1 gO gl gmf 1

The *" trit of path defines the non-backtracking i*" 3-isogeny ¢; = ¥;0T;, where ¥;: G;_1 —
&; is the 3-isogeny with ker J; = ((0,0)), and T, is the translation map given by (—a ;o; +

3a2,4a3 ;) — (0,0) with oy = gathi &—az,;.
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If one uses the curve model G;: y* + a1 ;2y + ag;y = 2 from [CDV20] to represent

the elliptic curves nodes from any 3-isogeny path, then the i*"' trit of path does not
determine the i*" 3-isogeny ;. In particular, the path describes the length-m 3-isogeny
walk Go 25 Gy &5 -+ 275 G,y with g3 = Tipq 0 9. In [NO24], the authors randomly
sample an order-3 point P = (zp,yp) and perform an length-m 3-isogeny walk of the
form G_1 — Gy — - -+ — Gy,,—1. However, our analysis refines why such length-m 3-isogeny
walks do not have backtracking. In particular, similar to previously mentioned, [NO24]
could increase the number of isogenies since the m'" trit of the path determines the
non-calculate 3-isogeny ¥,,: Gm—1 — Ep with kerd,, = ((0,0)). This gives a space of
3™+ instead of 3™, which could slightly improve the parameter choice and performance
in [NO24].
Remark 4. Notice that the elliptic curves &; : y? +ai2y+as;y = x3 —5a1’ia37ix—aiia3,i —
7“5,1‘ are described only by the two coefficients a; ; and a3 ;. Therefore, our curve model
suggestion requires exactly the same number of elements in Fj2 (the two elements a; ; and
as,;) than using G;: Y2+ a1,;xY + as;y = x> to describe the elliptic curve nodes from any
3-isogeny path.

3.5 CGL Hash function built on top of 3-isogenies

As implicitly highlighted before, and opposite to CGLHashsy, we suggest that each isogeny
step in CGLHashs calculates 3-isogenies between curves of the form &: y? + a1zy + azy =
2% —5ajasx —ajaz —Ta?. This, in some sense, is slightly different from CGLHash, where the
isogeny calculations are via the 2" modular polynomial ®;(z,y) and, therefore, directly
on the j-invariants of the curves.

In a nutshell, given an arbitrary supersingular elliptic curve F: 42 = 23 + A2? + z and
the z-coordinate zp of an order-3 point P on F, we describe the CGLHashs as follows.
Let a; = (323 + 2Azp + 1) and a3 = 2y = 2(23, + Az% + 2p)” such that describe the
supersingular elliptic curve £: y? + a12y + agy = 23 — bajazxr — ajaz — Ta3.

An efficient CGLHashs function description:
Step 1: Take as input a trit-string path € {0,1,2}" of length m.

Step 2: Compute the length-m 3-isogeny walk & = & 25 & 2 ... 245 ¢ = ¢,
determined by path as below.
Step 2.1: Set a) < a; and a§ < ag.
Step 2.2: For each i:=1,...,n.
Step 2.2.1: Calculate o = gathi J/—as.
Step 2.2.2: Update a} + —6a + a].
Step 2.2.3: Update a} + 3a}02 — a, o + 9aj.
Step 3: Outputs the j-invariant of £': y? +ajzy +aly = 23 —bayazx — aBaly — 7a’}, which
is equal to

a3(a’® + 216a})"

afy(af? —27a})”

(€)= (8)

3.6 On the implications to QFESTA

In [NO24], the authors propose prime numbers of the form p = 23%.3 . f — 1 with
ged(3, f) = 1, restricting to the scenario when 3 divides (p + 1). However, our results are
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not limited to that constraint and hold for any prime in general, but for efficiency, we
assume p such that (p? —1) =23%.3. f and ged(3, f) = 1.

For instance, [NO24] takes the conservative choice of a = X\ + 2, and suggests the
following parameter sets for A € {128,192, 256}.

o QFESTA-128: p398 = 23130.3.55 — 1 of 398 bits.
o QFESTA-192: p592 = 23194.3.307 — 1 of 592 bits.
o QFESTA-256: p783 = 23258 .3.137 — 1 of 783 bits.

Those parameter sets do not take into account possible optimizations for the prime
bitlengths. In practice, one would opt for primes with log,(p) < 3\ since 64 | A, which
allows a more efficient arithmetic implementation in terms of bit operations. In addition,
the security analysis of [NO24] highlights a time complexity for breaking QFESTA of at
least O(2*). Therefore, one can slightly relax the size of a, and still provide the desired
bit security.

For example, as a less conservative choice, we list the following parameter sets for
QFESTA. 10

o QFESTA-128: p381 = 23'124.437 — 1 of 381 bits.
o QFESTA-192: p575 = 23189.139 — 1 of 575 bits.
o QFESTA-256: p765 = 23252 . 257 — 1 of 765 bits.

These parameter sets have one 64-bit word less than the proposed in [NO24], which
could benefit from a faster field arithmetic implementation. However, further analysis is
required for the usage of such a parameter sets, and, therefore, we limit our analysis to
illustrate the practical advantage of these less conservative parameter sets in Section 4.

3.7 On the implications to CSIDH

As mentioned in the introduction, the original case of use for radical 3-isogeny formulas
centers on performing chains of 3-isogenies over the base field IF,,, hoping to speed up the
CSIDH protocol.

In CSIDH, one needs to compute m f-isogenies with £ being a small odd prime; in
particular, some variants of CSIDH (e.g., CTIDH [BBC*21] ') require sampling random
points, which, as mentioned before, are expensive compared to the cost of calculating
¢-isogenies. While other variants of CSIDH (e.g., dCSIDH [CCSC™24]) exclude the usage of
3-isogenies to avoid the expensive cost of the sampling point. With the expensive cost of
sampling points in mind, the formulas from [CDV20] remove such a sampling per ¢-isogeny
(the formulas only require a single sampling point per 3-isogeny chain, that is, for a bunch
of 3-isogenies!).

General considerations for CSIDH: In general, we explicitly require knowing which order-
3 point belongs to £[r — 1] and which one to £ + 1]; more precisely, if zp € F,, determines
the z-coordinate of a point P on &, we need to determine if wp = (z% + Az% +zp) is a
quadratic residue (resp. a non-quadratic residue) corresponding to a point on E[m — 1] (resp.
on &[m + 1]). Based on these considerations and employing the technique from Section 3.2,
we end up with a cost of 6exp,, +3mul, +sqr, operations for calculating two z-only order-3

10We construct these proposed prime numbers by using the script parameter_generate.py from
https://github.com/hiroshi-onuki/QFESTA-SageMath, and removing the factor of three from Line 119
of parameter_generate.py.

HLCTIDH is the current most efficient variant of CSIDH, and it still uses 3-isogenies.
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points (one in E[r — 1] and another in E[m + 1]) from a given Montgomery curve coefficient
AeF,.

Given that any variant of the CSIDH protocol works explicitly over the Montgomery
curve model, taking the Montgomery curve coefficient A € IF,, as inputs and outputs, we
opt for using the formulas from [OM22] given in the Montgomery curve model. However, in
practice, one works with projective Montgomery curve coefficients (A + 2C': 4C) € P!(F,)
and kernel point generators (X : Y) € P!(F,) to avoid calculating field inversions, which is
not the case for the formulas in [OM22].

Therefore, let us describe a projective variant approach of our procedure in Section 3.2
and subsequently introduce a projective version of the formulas from [OM22]. As the main
ingredient for achieving such projective variants, we present the following lemma. 2

Lemma 1. Let n € N. Let a« = X/Z € Fj» with X,Z € Fp2 such that Z # 0. Then
B = VXZ"1/Z satisfies f™ = .
Proof. Observe that a = X/Z = (XZ"1)/(Z"). Hence, f = VXZ"1/Z satisfies

" = X/Z. In particular, it follows that o has an n*® root if and only if XZ"~! so
does. O

Computing z-coordinates of order-3 points without field inversions: Let £: 2 =
23 + Az? + x with A € F,. According to Section 3.2, the four order-3 points on £ have

the z-coordinates x; = z; — %A where
1 1 1 1
z1 = 5(—50 +51), 22= 5(—80 —51), 23= 5(50 +52), and z4= 5(50 — $2)

with sg, s1, s2 and y defined as in Section 3.2. Let us write A = A’/C for some A’,C € F,,
and C' # 0. Then, applying Lemma 1 with n = 3 in the cube root in y gives

NN GIE DUV B - B 5 PPV 2\
y—02< S(A) + 20 +3\/( 2(AN? +8C2)CH ).

y/

Next, applying Lemma 1 with n = 2 in the square root in sg gives

1 1, 1
— oy —6(—2an? 4 2c2).
S0 C\/y 6( 9( )—|—3C’>

!’
So

Similarly, applying Lemma 1 with n = 2 but this time in the square roots in s; and sy
gives

7
S1

1 1, 1 . (16 5 8
— -9 ! _ _ A/ — (2 / A/ _7A/ 2 /
81 sl \/( Y 6( 9( )"+ 30 )) (sp)” + (27( ) 3 C ) s4, and

1 1, o5 1 o (16 5 8 ,
= o —6(—Z(a 202 12 _ N3 _ S pe2
82_036 \/( 2y 6< 9(A) +3C’)>(50) <27(A) 3AC’)50.

/
2

S

Hence, it follows that z; = X;/Z; where Z; = Csy, X; = 2 — 3 A’s{;, and
1

1 1 1

A== s, =g s, A =5 ((6) + ), 2= 5((s5)" — s2).

2Lemma 1 can be viewed as a straightforward generalization of [CR22, Lemma 3.1].
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Notice that there are two possible options: 1) s} € F,, and s5 € iF,, or 2) s} € iF, and
sy € Fp. Therefore as previously mentioned, the choice between s} and s5 can be done by
checking if s/ is a quadratic residue (or not) where sj = /s/.

Thereafter the cost of computing both order-3 points in E[r — 1] and E[m + 1] reduces
to (5exp, + 15mul, + 8mulc, + 6sqr,,) &~ 7.5log,(p) mul,, operations ' when outputting
projective z-only points from a projective curve coefficient as input. This is a considerable
improvement compared with the state-of-the-art where sampling a 3-torsion basis is
required; for example, in average 4 - (6.26mul, + 3.88sqr,,) log,(p) =~ 40.56 log,(p) mul,
operations are needed according to Section 3.2.

Projective radical 3-isogeny formulas: Let (¢,y) be an order-3 point on £ such that
(t,y) € E[r — €] with € € {1, —1}. Recall that ¢’ = 3ta? + (3t — 1)a + 3t3 — 2t determines
the z-coordinate of an order-3 point (t',y’) € £'[r — €] where &': y? = 23 + A'z? + x is the
codomain of the isogeny with kernel generated by (¢,y) and a = {/¢(t? — 1) [OM22]. Now,
let us assume t = R/S for some R, S € F), such that S # 0. Then,

o

/—/%
1

a=g R(R? — 52), and
1
t'= 25 (3R(e’)’ + (3R> — §2)a’ + 3R — 2RS?).
R/

Hence, we can perform mg projective radical 3-isogenies over an arbitrary Montgomery
curve at the cost of

5 exp,, + 15mul,, + 6sqr,, + mz(exp,, + 6mul, + 3sqr,,)

3-torsion basis Radical 3-isogenies

operations, which is approximately equal to
(1.5 -mg + 7.5)logy(p) + (21 + 9 - m3)

multiplications over FF,,. In addition, we can retrieve the Montgomery curve coeflicient A’
at the cost of invj, + 2mul, + 4sqr,, operations as follows.

=3 —6(t) +1  —3(R)* —6(R)*(S") + (5)*

A = =
43 4(R)?S"

where S’ = S3.

Specific considerations for CTIDH: Plugging our results into the CTIDH protocol requires
more than replacing the 3-isogeny formulas; it requires a thoughtful analysis for determining
optimal parameters (i.e., private keyspace). In particular, the CTIDH authors emphasize
that searching for optimal parameters is challenging [BBCT21]. However, considering that
the keyspace of CTIDH is approximately of size 2", adding ms = 2™~ ! radical 3-isogenies
increases such keyspace to a size of (2" + 1) x 2™ secret keys. Therefore, we can decrease
the value of n by m without any loss of security, which gives the following keyspace size.

CTIDH part
~
(2™ 4+1) x 2™~ 2n
——
3-isogeny part

We illustrate the practical advantage of using the this keyspace modification in Section 4.

1

3Here mulc, denotes a multiplication by a constant (e.g., %, 3 %, %)
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4 Comparisons and Experiments

Our results from Section 3 highlight the main advantage of using 3-isogenies: we can perform
shorter length-m 3-isogeny walks than length-n 2-isogenies walks, where m = n/log,(3).
We emphasize that the main advantage of our results centers when there is a need for
calculating 3-isogenies as required in [NO24, BBCT21, CHMR25].

We provide a dedicated implementation in C-language to experimentally validate the
advantage of using 3-isogenies instead of 2-isogenies. Given the structure of the CGLHashs
function from Section 3.5, we highlight that implementing it in constant-time '* becomes
straightforward by calculating o = (gathi /—as3 through a linear-pass procedure on the
list [¢/—agz,(3¢/—as,(2/—az]. Similarly for CGLHash, (see Equation (3)), we provide a
constant-time implementation of it. Additionally, the field arithmetic implementation is
based on the optimized implementation from [BBC*21]. We emphasize that we provide
two dedicated implementations:

1. An implementation that performs 3-isogeny random walk over F,2 (as required
in [NO24]).

2. An implementation that calculates chains of 3-isogenies over F,, with the goal of
improving [BBC*21, CCSC*24, CHMR25].

Our testbed consists of machine with a 12th Gen. Intel(R) Core(TM) i9-12900H CPU
and 32 Gb of RAM, running Ubuntu 24.04.2 LTS (64 bits). To avoid the operating
system to use multi-thread or additional performance boosts, we disabled the Turbo Boost,
hyperthreading, and perform the calculations in one single CPU.

Benchmarking CPU cycles and Execution Time. We perform two types of benchmarking:
CPU cycles and Execution Time. To measure the CPU cycle count between executions
of our tests, we use the rdtsc assembly instruction for Intel architectures, returning an
integer value of cycles. The execution time was measured in nanoseconds (ns). As both
the CPU cycle count and execution time show the same behavior, in the manuscript we
only include the CPU cycle count graphs.

4.1 Experiments over [

Setup for the case p? = 9 mod 16. Our experiments focus on the 511-bit prime number
p511 from [CLMT18]. Additionally, we incorporate experiments for two prime numbers
p255 and p383 constructed following the CSIDH form of p511. More precisely,

41 57

281 367
p255=4-7-H£i—1 and p383:4~?-H€i—1,
i=1 =1
where /1, ..., {57 correspond with the first 57 small odd prime numbers. We opt for including

these primes given that the radical isogeny formulas from [CDV20] were originally proposed
for CSIDH-like primes.

Setup for the case p? % 9 mod 16. We additionally include experiments for the scenario
when p? £ 9 mod 16. In particular, the field characteristic is of the form p = 2% - f — 1 for
some positive integers a > 2 and c¢. Our experiments centers on the primes p398, p592, and
p783 from [NO24], and the prime p254 from [DMPR24]. In addition, we include experiments

4By constant-time we mean the running time of an algorithm is independent from its input. In particular,
our implementation protects against timing attacks by avoiding secret-dependent branch conditions.
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considering our suggested primes p381, p575, and p765 from Section 3.6. In all our
experiments, we calculate length-n 2-isogeny chains with n = 2\, where A € {128,192, 256};

thus, we compute length-m 3-isogeny chains with m = {@A-‘. Table 3 lists the used

values of n and m in our experiments.

Table 3: Lengths of the 2-isogeny (value of n) and 3-isogeny (value of m) walks.
P p254  p255 p381  p383  p398  pSll  p5T5  p592  pT65  p7s3
n: 256 256 256 384 256 512 384 384 512 512
m: 162 162 162 243 162 324 243 243 324 324

Numerical Results over F,,>. We performed benchmarks for the traditional 2-isogenies
walks and our 3-isogenies walks. These benchmarks included measurements made in CPU
cycles. Figure 3 shows a summary of the results obtained after running ten thousand
(10,000) independent walks (10,000 independent 2-isogenies walk and 10,000 independent
3-isogenies walk per prime) in a single-core CPU (no hyperthreading) and no Turbo
Boost scenario. Our experiments illustrates that performing 3-isogenies walks of length
m = n/log, 3 is competitive compared with 2-isogeny walks of length n. We reiterate that
the main advantage of our results centers when there is a need to computing 3-isogenies
walks as required in [NO24, BBC*21, CHMR25], and our comparisons against 2-isogeny
walks are merely illustrative.

CPU Cycles

p254 p255 p381 383 398 p511 P55 592 PT65 P783

Primes

Figure 3: Benchmarks for the 2-isogenies vs. 3-isogenies walks, measured in CPU cycles.

Additionally, we prove by numbers that our suggested primes (p381, p575 and p765)
provide a better performance in the 3-isogenies walk scenario compared to the primes (p398,
p592 and p783) proposed by QFESTA [NO24]. Both primes p381 and p398 offer 128-bits
security, while p575 and p592 offer 192-bits security, and p765 and p783 offer 256-bits
security. Similar to the experiments results shown in Figure 3, we performed the CPU
cycles and execution time benchmarking of these three pairs of primes. Figure 4 shows
that our proposed primes have an improvement in performance of 35.60% for 128-bits,
31.62% for 192-bits, and 26.41% for 256-bits, respectively, with respect to CPU-cycles.
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Figure 4: Benchmarks for the 3-isogenies walks for our proposed primes (p381, p575
and p765) vs. QFESTA [NO24] primes (p398, p592 and p783). Both p381 and p398 offer
128-bits security, while p575 and p592 offer 192-bits security, and p765 and p783 offer
256-bits security. For these six primes, the performance was measured in CPU cycles,
having an improvement of 35,60% for 128-bits, 31.62% for 192-bits, and 26.41% for 256-bits,
respectively.

4.2 Experiments over [,

Setup for CTIDH experiments. To illustrate the impact of our formulas in the CTIDH
context, we center our experimental analysis on the most efficient CTIDH variant (i.e.,
dCTIDH [CHMR25]). In particular, we take the parameter set from [CHMR25] determined
by the following 2048-bits prime numbers:

194 205 264 226
__ o387 L — 9275 | . L — . .
pl194 = 2387 . 287 . sz 1, p205=2%7.221 H& 1, and p226 = 361 H& 1,
Jj=1 Jj=1 j=1
where 01, ..., {296 are the first 226 small odd prime numbers.

Remark 5. It could be for sure a bit worrying to see the expensive cost of performing
radical 3-isogeny chains; likewise, we must take into consideration that in higher security
parameter sets for dCTIDH: the last isogeny have a degree greater than 1400, and adding
a new £, 1-isogeny with £,,;1 > 1400 implies adding the calculation of the codomain
Montgomery curve coefficient concerning ¢,,11, and (at least) pushing two points through
the /,,-isogeny. Thus, adding such a (n + 1)** isogeny includes around

22 (\/enﬁ)logz3 +30 (\/5)1%3 > 52. (m)l%g ~ 16190 ~ 8 - 2048

multiplications when employing the formulas from [BFLS20]. ® Consequently. adding m
new primes £, 41, ... ¢, m implies an increased cost of at least 8 - 2048 - m = 8mlog,(p)
multiplications. Therefore, we only take into consideration values of msz = 2™~! such that
(1.5-2m71 4+ 7.5)logy(p) + (21 +9- 2™ 1) < 8mlog,y(p).
15 According to the cost analysis from [CSOPM24, Section 2.3].
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Following the above observation, we consider the next keyspace sizes: (2™ +1) x 2221=m
(this corresponds with including ms = 2™~! radical 3-isogenies) for each m = 1,2,3,4,5.
More precisely, we take the dCTIDH keyspaces from [CHMR25] as a baseline, and decrease
the number of £’s by m for each choice of m. For ms = 2™~ we exclude the values of
{e {Kl =3,0,=5,... ,gm}. That is,

e For m =1 we exclude ¢ = 3.

e For m = 2 we exclude ¢ = 3,5.

e For m = 3 we exclude ¢ = 3,5, 7.

e For m =4 we exclude ¢ = 3,5,7,11.

e For m =5 we exclude the ¢ = 3,5,7,11,13.

Given that the key generation of dCTIDH requires finding a full torsion basis of
Ely -+ £,], then removing the smallest £’s implies an improvement on the performance of
the key generation of dCTIDH. We experimentally verify such assertion: our experiments
reflect considerable savings in the key generation (keygen) of dCTIDH, with a small impact
on the shared key derivation (derive) of dCTIDH.

Remark 6. We provide a constant-time implementation of 3-isogeny chains in the sense
i) it exactly performs 2™~1 3-isogenies, and ii) it follows the dummy-based approach of
CSIDH and dCTIDH.

Numerical Results over F,. Our experiments in F,, include the efficient implementation
of our formulas and their integration to the dCTIDH protocol. from [CHMR25]. Figure 5
shows both the timings of the keygen and the derive procedures of dCTIDH. The timings
corresponding with the dCTIDH keygen procedure concerns the isogeny calculations along
with the search of the full-torsion point basis as required in dCTIDH, while the dCTIDH
derive procedure only incorporates the isogeny calculations. In all our experiments, we
take as full-torsion point a point of order

Hzl:l gn .
d=+==—— with n € {194,205,226}.

Ol
Our experiments illustrate that the key generation of dCTIDH can be as much as close
to 4x faster than the original dCTIDH, with a slightly small overhead in the shared key
derivation of dCTIDH. The results of each parameter set correspond by computing the
mean from 100 random instances. To minimize biases from background tasks running on
the benchmark platform, each instance has been repeated ten times and averaged. Tables 4
and 5 show the numerical results of the benchmarks for the keygeneration and derive,
respectively, and Figure 5 graphically presents these aforementioned values.

Table 4: CPU cycles (in the order of millions, i.e., 10°) for the key generation (keygen)
reported by the dCTIDH benchmarking tool. For m = 0, the original dCTIDH was run,
while m > 0 implies the use of 2™~! radical 3-isogenies. From these values, we can see
that m = 5 represents a performance boost of 4.0 times for p194, and 3.5 times faster for
p205 and p226.

m=20 m=1 m =2 m=3 m =4 m=>5
pl94  21504.9302 10529.1717 7893.4182  6065.7520 5868.6174 5449.2955
p205  22272.8744 11264.1632 9012.5654  6752.0274 6238.9333 6349.9610
p226  23534.7420 13067.9704 10105.5958 8172.4838 8236.8301 6699.5763
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Table 5: CPU cycles (in the order of millions, i.e., 10°) for the key derivation (act) reported
by the dCTIDH benchmarking tool. For m = 0, the original dCTIDH was run, while m > 0
implies the use of 2™~! radical 3-isogenies.

m =20 m=1 m =2 m=3 m=4 m=2>
pl94  1478.1633 1538.1753 1554.5752 1582.6123 1636.1530 1746.2648
p205 1491.3575 1553.2523 1568.7469 1596.6670 1650.9843 1762.9833
p226  1525.1140 1594.6851 1606.5136 1634.0456 1686.8832 1796.4955
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Figure 5: Benchmarks for state-of-the-art dCTIDH vs. dCTIDH modified using our proposal.
Both the key generation (keygen) and the shared key derivation (derive) were tested. From
(a), it is evident that the usage of 3-isogenies creates a huge decrease in the execution time
of the key generation, and this impact depends on the number of radical 3-isogenies used.
When m = 5 radical 3-isogenies are used, the key generation performs 4.0 times faster for
p194, and 3.5 times faster for both p205 and p226, respectively. Regarding (b), the use
of 3-isogenies introduce a small latency in the key derivation (derive), which is negligible
compared to the boost gained in the key generation.
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5 Concluding Remarks

This work introduces a novel and efficient method to compute all order-3 points on arbitrary
supersingular Montogomery curves. Our results show a considerable improvement in the
computation of those order-3 points, where the cost goes from 501log,(p)mul, per point
to 14.5log, (p)mul, for computing the four order-3 points for curves over Fj2; and from
40.56 log, (p)mul,, per point to 7.5logy(p)mul, for computing the two order-3 x-only points
for curves over F,,.

This work presents explicit formulas to compute length-m 3-isogeny chains with non-
backtracking via the 3-isogeny over IF)2, and novel explicit formulas to compute projective
radical 3-isogenies over F,,.

We show that by using radical 3-isgogenies is possible to propose less conservative
parameter sets for instantiating [NO24], improving the finite field arithmetic and the isogeny
walks computation. Our results show that using this approach we could improve QFESTA
up to 35.60%. Our results also offer an excellent opportunity to improve cryptographic
schemes where the computation of an order-3 point is needed; we show the applicability
of our results in the CTIDH protocol from [BBCT21, CCSC*24], where we obtained a
speed-up of up to 4x faster compared to the original implementation.

Finally, we provide the first optimized C-code implementation for computing 3-isogeny
walks on arbitrary supersingular Montgomery curves defined over > and F,, via cube-root
calculations.
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