
Zero-Knowledge Protocol for Knowledge of Known Discrete Logarithms:
Applications to Ring Confidential Transactions and Anonymous Zether

Li Lin
Digital Technologies, Ant Group

felix.ll@antgroup.com

Hailong Wang
Digital Technologies, Ant Group

whl383799@antgroup.com

Wei Wang
Digital Technologies, Ant Group
wei.wangwwei@antgroup.com

Tian Qiu
The University of Sydney

tqiu4893@uni.sydney.edu.au

Changzheng Wei
Digital Technologies, Ant Group
changzheng.wcz@antgroup.com

Wenbiao Zhao
Digital Technologies, Ant Group

wenbiao.zwb@antgroup.com

Xin Wang
Digital Technologies, Ant Group

wx352699@antgroup.com

Ying Yan
Digital Technologies, Ant Group

fuying.yy@antgroup.com

Abstract—The securities of a large fraction of zero-knowledge
arguments of knowledge schemes rely on the discrete logarithm
(DL) assumption or the discrete logarithm relation assumption,
such as Bulletproofs (S&P 18) and compressed Σ-protocol
(CRYPTO 20). At the heart of these protocols is an interactive
proof of knowledge between a prover and a verifier showing
that a Pedersen vector commitment P = hρ · gx to a vector x
satisfies multi-variate equations, where the DL relations among
the vector of generators g are unknown. However, in some cir-
cumstances, the prover may know the DL relations among the
generators, and the DL relation assumption no longer holds,
such as ring signatures, ring confidential transactions (RingCT)
and K-out-of-N proofs, which will make the soundness proof
of these protocols infeasible.

This paper is concerned with a problem called knowledge
of known discrete logarithms (KKDL) that appears but has
not been clearly delineated in the literature. Namely, it asks
to prove a set of multi-exponent equalities, starting with the
fact that the prover may know the DL relations among the
generators of these equalities. Our contributions are three-
fold: (1) We propose a special honest-verifier zero-knowledge
protocol for the problem. Using the Fiat-Shamir heuristic
and the improved inner-product argument of Bulletproofs, the
proof size of our protocol is logarithmic to the dimension of
the vector.

(2) As applications, our protocol can be utilized to con-
struct logarithmic-size RingCT securely which fixes the issues
of Omniring (CCS 19), ring signatures (with signature size
2 · ⌈log2(N)⌉ + 10 for ring size N ) and K-out-of-N proof
of knowledge (with proof size 2 · ⌈log2(N)⌉ + 14) which
achieves the most succinct proof size improving on previous
results. Meanwhile, we propose the first account-based multi-
receiver privacy scheme considering the sender’s privacy with
logarithmic proof size (to the best of our knowledge). (3) We
describe an attack on RingCT-3.0 (FC 20) where an attacker

can spend a coin of an arbitrary amount that never existed on
the blockchain.

Index Terms—Zero-Knowledge Proof, Bulletproofs, Com-
pressed Σ-Protocol, Knowledge of Known Discrete Logarithms,
RingCT, K-out-of-N Proof of Knowledge, Omniring, Anony-
mous Zether, Cryptanalysis on RingCT-3.0

1. Introduction

Zero-knowledge arguments of knowledge [1] have been
widely used in many prominent applications, such as cryp-
tocurrencies [2], [3], [4], [5], verifiable outsourced computa-
tion [6], [7], [8], [9], and anonymous credentials [10], [11],
[12], [13]. A zero-knowledge proof of knowledge is a proto-
col that enables the prover to generate a proof for convincing
the verifier of the validity of a particular statement without
revealing anything else except the statement itself.

In [14], [15], Bünz et al. proposed a special honest-
verifier zero-knowledge (SHVZK) proof without a trusted
setup, called Bulletproofs, based on the techniques of Bootle
et al. [16]. In [17], Attema and Cramer proposed a com-
pressed Σ-protocol to strengthen Σ-protocol theory while
shortening its communication complexity from linear to
logarithmic. In [18], Attema et al. extended the compressed
Σ-protocol of [17] from linear equations to general homo-
morphisms. At the heart of these protocols is an interactive
proof of knowledge between a prover and a verifier showing
that the Pedersen vector commitment [19] to a vector of
length n satisfies multi-variate equations. More concretely,
suppose G is a cyclic group of prime order p, and choose
g = (g1, · · · , gn) ∈ Gn and h ∈ G with unknown discrete
logarithm (DL) relations [20]. These protocols aim to con-
vince the verifier that a vector x = (x1, · · · , xn) hidden
in the Pedersen vector commitment P = hρ · gx satisfies
some constraints (a multi-variate polynomial equation of



degree 2 for [15], linear equations for [17], and general
homomorphisms for [18]) without leaking any information
about x where ρ←$ Zp. After that, these protocols use the
improved inner-product argument to reduce the sizes of the
proofs from linear to logarithmic.

The securities of the protocols mentioned above rely
either on the discrete logarithm assumption or the discrete
logarithm relation assumption, i.e., the DL relations among
the vector g should be unknown “in nature”, e.g., using some
cryptographic-secure hash-to-point functions [21] to deduce
g . The reason is that one should be able to deduce x = y
from gx = gy in the soundness proof of the Bulletproofs-
like protocols. However, the unknownness of the DL re-
lations among g may not be guaranteed “in nature” when
dealing with public keys or commitments generated from
the same generators, e.g., the ring confidential transactions
(RingCT) in the blockchain [3], [22], [23].

RingCT is the cryptographic core component of Monero
[3], which is one of the largest privacy-preserving cryp-
tocurrencies. In this private transaction, the sender takes
a set of public keys as the input which were outputs of
previous transactions. He proves that he knows the secret
keys of some of the public keys without showing which
ones and just claims they have not been used before. It
is similar in spirit to linkable ring signatures and achieves
anonymity and double-spending prevention simultaneously.
But in the original RingCT construction [3], the transaction
size is linear with the size of the ring.

1.1. Related Works and Issues

A natural idea for applying the techniques of Bullet-
proofs to RingCT is to replace g with the ring of public
keys. However, it raises a new issue. In this setting, the
public keys were generated and chosen arbitrarily by users
and the unknownness of the DL relations among these
public keys is not guaranteed by the cryptographic-secure
assumptions. The user may know the DL relations among
these public keys since they may know more than one private
key. This will make the soundness proof of Bulletproofs-
like protocol infeasible. Therefore, this method should be
used very carefully. We will give an overall introduction to
Bulletproofs and explain previous works that some of them
are flawed.

1.1.1. Bulletproofs. From a higher perspective of Bul-
letproofs, if we want to prove that bL = 0n, these n
constraints are equivalent to one inner-product constraint
⟨bL,yn⟩ = 0 where y ∈ Zp is a random challenge cho-
sen by the verifier. The probability that one can deduce
bL ̸= 0n from ⟨bL,yn⟩ = 0 is n/p, which is negligible.
Meanwhile, suppose we have m inner-product constraints by
taking a random linear combination of these inner-product
constraints using another challenge z ∈ Zp from the verifier.
In that case, one can convert these constraints into a single
inner-product constraint. Hence, all the constraints can be
proven at once. Based on these ideas and the improved
inner-product argument, Bulletproofs are well suited for

constructing an (aggregated) range proof protocol with log-
arithmic size in the witness size and an arithmetic circuit
proof protocol with logarithmic size in the circuit size.

1.1.2. RingCT-3.0. In FC 2020, Yuen et al. proposed
RingCT-3.0 [23] for blockchain confidential transactions
to replace the RingCT-1.0 of Monero [24] with a shorter
size and stronger security. It is based on Bulletproofs and
enjoys the logarithmic proof size. Suppose there are N
unspent coins, and vk = (vk1, · · · , vkN ) is the vector
of corresponding verification keys (the real protocol also
includes commitments of the amounts, we show the detailed
one in Appendix B). Let ĝ = (ĝ1, · · · , ĝN ) be a vector
of generators with unknown DL relations, and ind be the
index of the coin that belongs to the prover. The prover
commits vkind, ĝind using B1 = hα1 · vkind · ĝdind and
commits ĝind using B2 = hα2 · ĝind, where α1, α2 ∈ Zp are
random numbers, and d is a challenge sent by the verifier at
the beginning of the protocol. At the verification procedure,
the prover uses B2 and d to cancel ĝind from B1 and then
convinces the verifier that he knows the private key skind
corresponding to vkind.

Unfortunately, this scheme is vulnerable such that a
malicious user can spend a coin that never existed. The
attacker generates a random verification key vk′ = gsk

′
, then

appends vk′ and vkind to B2 as B2 = hα1 · ĝind · (vkind ·
vk′−1)

1
d . During the verification procedure, the attacker uses

B2 and d to cancel vkind from B1 as well as gind and
appends vk′ to B1. The attacker only needs to show that he
knows sk′ instead of skind, so he can “forge” a proof and
pass the verification procedure without knowing any private
key in vk.

Although RingCT-3.0 shows a soundness proof in Ap-
pendix A of [25], it has some mistakes. The main drawback
is that the components of B2 are not deduced from a strict
security proof (i.e., rewinding technique). The authors omit
the discussion for B2 and think that B2 “defaults” to consist
of ĝind and h. Therefore, the attacker can pad vk′ and vkind
to B2, and the verifier cannot notice this change due to the
hiding property of the commitment scheme. We have noticed
the author of [25] about this attack.

1.1.3. Omniring. In [22], Lai et al. proposed a fully-fledged
RingCT scheme in the discrete logarithm setting, which
also has a proof size logarithmic in the size of the ring
inherited from Bulletproofs. Their zero-knowledge proofs
are based on the Bulletproofs framework. The main dif-
ference between Omniring and Bulletproofs is the way to
embed the set of verification keys vk into the commitment
P and the way to extract the multi-exponent equalities about
the private keys in the soundness proof. Briefly speaking,
Omniring notices the public key issue, so it embeds vk into
the generator vector g to keep the DL relations unknown,
which avoids the problem regarding soundness. We take
one relation qbL1,1 · q

ψ1

2 = 1 as an example, where the DL
relations among q1,1 ∈ Gn1 and q2 ∈ Gn2 may be known
to the prover. When bL ∈ Zn1

P is a binary vector with
one component that is “1”, q1,1 = vk, q2 = {g} and



ψ1 = {−sk}, then qbL1,1 · q
ψ1

2 = 1 is the relation of ring
signature. For this relation, one can deduce the DL relation
assumption of ge = g ◦ (q1,1∥q2)e from the DL relation
assumption of g, where e ∈ Zp is a random challenge.
Since qbL1,1 · q

ψ1

2 = 1 is an equality, one can deduce that
P = hρ · g(bL∥ψ1) = hρ · g(bL∥ψ1)

e . Therefore, the prover
can commit bL∥ψ1 using P = hρ ·g(bL∥ψ1) at the beginning
of the protocol and then use P = hρ · g(bL∥ψ1)

e at the veri-
fication procedure after receiving e from the verifier. Using
two different values of e, an extractor can be constructed
to extract the above equality in the soundness proof of the
protocol.

As a RingCT protocol, Omniring considers more rela-
tions rather than one ring-signature relation. Considering
relations qbL1,i · q

ψi

2 = 1 for 1 ≤ i ≤ m, we introduce two
random challenges e, v ∈ Zp from the verifier following
the ideas of [22]. The challenge v gathers all equalities
qbL1,i · q

ψi

2 = 1 into one, and the witnesses become bL and
a =

∑m
i=1 v

i · ψi. The challenge e combines the gathered
equality with the commitment P . One can construct an ex-
tractor that extracts the gathered equality using two different
values of e and then extracts each equality using m different
values of v in the soundness proof of the protocol.

However, when constructing the RingCT, the soundness
proof of [22] is problematic. Taking the above version as an
example. Since the randomness v is chosen at the beginning
of the protocol before committing bL in Section 5.1 of [22],
one cannot use the normal rewinding technique to extract
the witness ψi because the prover may choose bL depending
on v. Therefore, the authors use the Schwartz-Zippel lemma
[26] to overcome this in Appendix D.2 of [22]. For the
Schwartz-Zippel lemma, the polynomial coefficients should
be selected before choosing the random variable. However,
in their scheme, the random variable v is chosen before com-
mitting the coefficients, so one may choose the coefficients
according to v. Hence, the way how [22] uses the Schwartz-
Zippel lemma is problematic which makes the soundness
proof infeasible.

1.1.4. K-out-of-N proof of knowledge. K-out-of-N proof
of knowledge is a generalization of one-out-of-N proof
of knowledge, i.e., a prover can convince the verifier that
he knows the witnesses for some K-subset of N public
statements without revealing the exact K-subset. One can
apply the K-out-of-N proof of knowledge to threshold
ring signatures [27], allowing only a significant enough
subset to compute a valid signature. In [28], Diamond
proposed a generalization of one-out-of-N proof of knowl-
edge, called many-out-of-many proofs, which reduces the
communication complexity of the Zether payment system
[29]. However, this generalization considers a prover that
claims to know the private keys of all public keys in one
of the orbits of a public permutation of N public keys.
Therefore, the protocol only works for permutations with
orbits of equal size. Since the permutation is public and
of this specific form, this protocol does not constitute a
general K-out-of-N proof of knowledge. In [18], Attema et

al. proposed an SHVZK protocol for the K-out-of-N proof
of knowledge with logarithmic communication for general
K and N using the compressed Σ-protocol. The proof size
is 4 · ⌈log2(2N −K + 1)⌉ − 1, and the authors argue that
one can reduce the size to 2 · ⌈log2(2N −K + 1)⌉+ 3 but
it is restricted on pairing-friendly elliptic curves.

1.2. Our Contributions

In this paper, we abstract a general problem called
knowledge of known discrete logarithms (KKDL) and pro-
pose a special honest-verifier zero-knowledge (SHVZK)
protocol ΠKKDL. It can be used as a black box for proving
the knowledge of many secret vectors even when the prover
knows the DL relations among the given generators and still
enjoys the logarithmic proof size.

This protocol finds applications in many topics, for
example, RingCT [3], [22], [23], K-out-of-N proof of
knowledge (threshold ring signatures) [18], [27], [28] and
ring signature [30], [31]. These schemes share a common
characteristic, which is the requirement to prove knowledge
among a set of group elements generated from the same
generators, e.g., public keys or commitments. This paper
considers a general case of these schemes and proposes a
zero-knowledge protocol ΠKKDL to solve this problem. As
a result, based on our ΠKKDL protocol, we give secure and
more efficient constructions of RingCT, K-out-of-N proof
of knowledge, and ring signature.

Our ΠKKDL protocol consists of inner and outer pro-
tocols with the linear witnesses substitution for commitment
lemma. It is different from Bulletproofs and Omniring. We
demonstrate the novelties of our work by showing the gaps
between them.
• Admittedly, the basic security proof procedure of the
inner protocol and the way to compress the proof
size are borrowed from Bulletproofs. Nevertheless, our
primary emphasis lies in addressing the case of known
DL relations. It is a common issue in many scenarios, but
is not covered by Bulletproofs.

• Omniring noticed the known DL issue and tried to address
it. But their technique falls short of encompassing the
entire RingCT protocol, and their construction poses prob-
lems as we discussed in Section 1.1.3. Different from it,
we not only embed the ring public keys into the generator
vector, but also design the outer protocol to fix the
issues identified in Omniring. This involves dividing the
input commitment P into two parts and committing the
witness before selecting the randomness. Consequently,
our ΠKKDL protocol covers a broader range of relations and
can be seamlessly applied (as a black box) in constructing
RingCT.

1.2.1. KKDL Proofs. Let us describe the ΠKKDL protocol
more concretely. It is a protocol for proving that m + 1
secret vectors bL ∈ Zn1

p and ψ1, · · · ,ψm ∈ Zn2
p satisfy m

multi-exponent equalities qbL1,i · q
ψi

2 = 1 for 1 ≤ i ≤ m.
Note that the prover may know the DL relations among



q1,1, · · · , q1,m ∈ Gn1 , q2 ∈ Gn2 , and bL satisfies n1
public quadratic relations and k public linear relations (the
quadratic relations constraint each component of bL to a
specific value, e.g., “0” or “1”, and the linear relations
constraint the combinations of the components of bL, e.g.,
only one component of bL is “1”).

ΠKKDL consists of two parts, i.e., the inner protocol
and the outer protocol. We give a general protocol that
applies to the Pedersen vector commitments and proves that
a committed vector satisfies n1 public quadratic relations
and k public linear relations for the inner protocol. The
inner protocol is an extension of Bulletproofs. There is
a gap between the input commitment P = hρ · gbL and
the commitment P = hρ · gbL · hbR of the Bulletproofs-
like proof system for the public quadratic relations. We
propose the linear witnesses substitution for commitment
lemma to fill the gap. Since the inner protocol only
supports the generators g of unknown DL relations and
cannot support multi-exponent equalities qbL1,i ·q

ψi

2 = 1 with
generators of known DL relations, we propose the outer
protocol for embedding these equalities into g just as how
g becomes ge in the former part of this section. Using the
Fiat-Shamir heuristic [32], we can convert ΠKKDL into a non-
interactive protocol that is secure and full zero-knowledge
in the random oracle model. Finally, we compress the proof
size of ΠKKDL from linear to logarithmic using the improved
inner-product argument from [15], [17]. The proof size is
2 · ⌈log2(2n1 + n2)⌉+ 2 · ⌈log2(n2 + 1)⌉+ 9.

1.2.2. RingCT. As we mentioned in Section 1.1.3, there are
some issues in previous Bulletproofs-based RingCT. By im-
plementing our protocol in RingCT, we get a secure RingCT
scheme without encountering any previous issues, while
still enjoying logarithmic communication cost. To overcome
those problems, note that P is the commitment of (a, bL)
and a is based on v, we split the commitment into two
parts. Firstly, the prover commits bL at the beginning of the
protocol before receiving v. Secondly, the prover commits
a after receiving v and adds an in-line Σ-protocol to ensure
that this commitment does not contain any information about
bL. Then, P is the combination of these two commitments.
These methods solve the soundness problem of Omniring
since bL is fixed at the beginning of the protocol and one
can rewind v many times in the soundness proof because
v is chosen after committing bL. Section 3.2 and 4 gives a
more detailed description. The proof size of the scheme is
2·⌈log2(3+|R|+|R||S|+β|T |+3|S|)⌉+2⌈log2(4+|R|)⌉+
12 elements 1, where R, S, and T are the size of the ring,
the set of source accounts, and the set of target accounts in
a transaction respectively, and 2β is the maximum currency
amount that can be sent in a single transaction. Since the
proof size is logarithm, our scheme enjoys a shorter size than
1 One point from G can be stored as 32 bytes plus one bit in the

compressed form when G is the elliptic curve secp256r1 [33], and
one element from Zp can be stored as 32 bytes, so we measure them
as the same.

all the previous RingCT schemes without trusted setup and
pairing-friendly elliptic curves to the best of our knowledge.
We compare our scheme with prior works without a trusted
setup in Table 1.

1.2.3. Anonymous Zether. In [28], Diamond proposed an
account-based privacy-preserving protocol for blockchain
transactions called Anonymous Zether. The way for anony-
mous is that a sender may hide herself and the receivers
in a larger ring R⃗ = {pki, 0 ≤ i ≤ N − 1}. The original
paper [28] only consider the case that the number of receiver
is one, but it may be larger than one. In this paper, we
consider the multi-receiver scenario. Although [34] also
considers the multi-receiver scenario, they do not consider
the anonymity of sender since an artifact of Ethereum where
invocation to smart contract trivially reveals the identity of
the invoking party. However, the identity of the invoking
party can be different from the identity of the smart con-
tract, and we can trivially use Tor network [35], paymaster
[36] and ring signature to avoid this. The proof size is
2 · ⌈log2(5+ 10|R|)⌉+2⌈log2(5+ 7|R|+ (|R|+1)β)⌉+9
elements. The term (|R|+1)β arises because there are more
than one receivers. For the case of one receiver, we have
better proof size compared to [28].

1.2.4. K-out-of-N proof of knowledge. We construct an
SHVZK protocol for the K-out-of-N proof of knowl-
edge using ΠKKDL, and the proof size of our scheme is
2 · ⌈log2(N)⌉+14 elements. To the best of our knowledge,
our scheme enjoys a shorter size than the previous scheme
without pairing-friendly elliptic curves, and we compare our
scheme with prior works in Table 1. The reason why our
scheme enjoys a shorter size is that we use the improved
inner-product argument to compress the vector of dimension
2N to 2·log2(N), while the compression mechanism of [18]
can only compress it to 4 · log2(N).

It also implies a ring signature scheme as follows.
Firstly, we build an SHVZK protocol for the one-out-of-
N proof of knowledge [38] using ΠKKDL. This protocol can
be converted to a signature of knowledge [39] which implies
a ring signature scheme. The signature size of our scheme
is 2 · ⌈log2(N)⌉+ 10 elements, where N is the number of
verification keys in the ring. The signature size is almost the
same as the state-of-the-art construction from [22].

2 [37] also has logarithmic proof size, but it is less efficient than ours
with the same anonymous set since it requires separate rings for sep-
arate source accounts. Meanwhile, the separated range proof system
will incur unnecessary computational and communication overheads.



Type Scheme Size
RingCT RingCT-1.0 [24] (|R|+ 2)(|S|+ 1) + ⌈log2(β|T |)⌉
RingCT PBT [37] 2 (|S|+ 1)(7 log2(|R|+ 3) + ⌈log2(β|T |)⌉
RingCT Section 4 2⌈log2(3 + |R|+ |R||S|+ β|T |+ 3|S|)⌉+ 2⌈log2(4 + |R|)⌉+ 12

K-out-of-N [18] 4 · ⌈log2(2N −K + 1)⌉ − 1
K-out-of-N Section 5 2 · ⌈log2(N)⌉+ 14

TABLE 1: Efficiency comparisons between our instantiations and the most efficient RingCT/ K-out-of-N proof of knowledge
schemes. 3

1.2.5. Cryptoanalysis of RingCT-3.0. As another contribu-
tion of this paper, we give an attack on RingCT-3.0 where
a malicious user can spend a coin of an arbitrary amount
that never existed on the chain. We have discussed it briefly
in Section 1.1.2 and will show the detailed cryptanalysis in
Appendix B. Note that in our protocol, we do not use such
cancellation techniques of RingCT-3.0. Meanwhile, we add
an in-line Σ-protocol in the outer protocol to ensure that
the commitment does not contain any other generator.

1.3. Organization

The rest of the paper is organized as follows. We pro-
vide the definitions of commitments and zero-knowledge
arguments of knowledge, along with notations in Section
2. Section 3 gives the definition, the construction, and the
security proof of ΠKKDL. Section 4 proposes a protocol for
RingCT using ΠKKDL. Section 5 proposes a protocol for the
K-out-of-N proof of knowledge using ΠKKDL. Meanwhile,
Appendix A provides the detailed construction of multi-
receiver Anonymous Zether. Appendix B provides the de-
tailed cryptanalysis of RingCT-3.0. Appendix D constructs
a ring signature scheme using ΠKKDL.

2. Preliminaries

This section gives the notations used in this paper and
reviews some underlying tools.

2.1. Notations

Let λ denote a security parameter, and p be a prime
number of length λ. Let G denote a cyclic group of prime
order p, Zp denote the ring of integers modulo p, and
3 Although [40] gives a RingCT scheme, we do not consider it here

due to the following two reasons: (1) In Section V.C of [40], it aggre-
gates steps 19 and 20 to shorten the proof size. However, one cannot
distinguish equations (19) and (20) from the aggregated verification
equation in the soundness proof. Meanwhile, g should be sent at
the beginning of the protocol as Omniring instead of fixing at the
beginning to make the DL relation with the public keys unknown. (2)
In Section VI.B of [40], they use u to gather public keys, tags and
prime tags together to form the RingCT protocol. However, the way
to generate u follows Omniring and RingCT-3.0 which may face the
same problems as we analyzed in this paper.

Z∗
p denote Zp \ {0}. Let (G, p) ← GroupGen(1λ) be an

algorithm that inputs a security parameter λ and outputs
a cyclic group G of prime order p. x ←$ Zp denotes
the uniform sampling of an element from Zp. Throughout
this paper, we will use bold letters to denote vectors, i.e.,
a ∈ Zn is a vector with elements a1, a2, · · · , an ∈ Z. Let
a, b denote vectors from Zp, and G,H denote vectors from
G.

For two vectors a, b ∈ Zn
p , the inner product between

a and b is defined as ⟨a, b⟩ =
∑n

i=1 ai · bi ∈ Zp, and
the Hadamard product between a and b is defined as
a ◦ b = (a1 · b1, · · · , an · bn) ∈ Zn

p . For a scalar c ∈ Zp

and a vector a ∈ Zn
p , the scalar multiplication is denoted

as c · a = (c · a1, · · · , c · an) ∈ Zn
p . For a ∈ Zn

p and
G ∈ Gn, the multi-exponent is denoted as Ga =

∏n
i=1G

ai
i ,

and G◦a = (Ga1
1 , · · · , Gan

n ). Meanwhile, for k ∈ Z∗
p,

we use kn to denote the vector containing the first n
powers of k, i.e., kn = (1, k, k2, · · · , kn−1). For example,
2n = (1, 2, 4, · · · , 2n−1) and k−n = (1, k−1, · · · , k−n+1).
For g ∈ Gn and c ∈ Zp, gc = (gc1, · · · , gcn). For two vectors
a ∈ Zn

p and b ∈ Zm
p , the concatenation of a and b is denoted

as a∥b ∈ Zm+n
p .

2.2. Basic Assumptions

The security of our protocol depends on the discrete log-
arithm (DL) assumption and the discrete logarithm relation
assumption defined in Definition 1 and 2, respectively.

Definition 1 (Discrete Logarithm Assumption). We say that
the discrete logarithm assumption holds relative to Group-
Gen if for all non-uniform polynomial-time adversaries A,
there exists a negligible function µ(λ) such that

Pr

[
gx = h

∣∣∣∣ (G, p)← GroupGen(1λ),
g, h←$ G, x← A(G, p, g, h)

]
< µ(λ).

Definition 2 (Discrete Logarithm Relation Assumption). We
say that the discrete logarithm relation assumption holds
with respect to GroupGen if for all n ≥ 1 and all non-
uniform polynomial-time adversaries A, there exists a neg-
ligible function µ(λ) such that

Pr

[
(∃ai ̸= 0 for
i ∈ [1, n])∧

(
∏n

i=1 g
ai
i = 1)

∣∣∣∣ (G, p)← GroupGen(1λ),
g1, · · · , gn ←$ G

{ai}ni=1 ← A(G, p, {gi}ni=1)

]
< µ(λ).

2.3. Pedersen Vector Commitment

A commitment scheme consists of three algorithms:
Setup, Com, and Open. The setup algorithm outputs the



public parameters pp for this scheme inputting the security
parameter λ. The commit algorithm Com is a function
Mpp×Rpp → Cpp, where Mpp, Rpp, and Cpp is the message
space, the randomness space, and the commitment space, re-
spectively. To commit a message v ∈Mpp, the sender com-
putes C ← Compp(v, r) by choosing r ←$ Rpp. The open
algorithm Open is a function Cpp×Mpp×Rpp → {0, 1}. To
de-commit a message v ∈Mpp, the sender sends v and r to
the receiver. The receiver outputs “1” if C = Compp(v, r)
and “0” otherwise.

In this paper, we use Pedersen vector commit-
ment [19], where Mpp = Zn

p , Rpp = Zp, and
Cpp = G. The setup algorithm works as follows:
(G, p, g = (g1, · · · , gn), h) ← Setup(1λ), where (G, p) ←
GroupGen(1λ) and g1, · · · , gn, h←$ G with unknown DL
relations. The commit algorithm works as follows: C ←
Compp(v = (v1, · · · , vn), r), where C = hr

n∏
i=1

gvi
i ∈ G.

The open algorithm outputs “1” if C = hr
n∏

i=1

gvii and “0”

otherwise.

2.4. Zero-Knowledge Arguments of Knowledge

A zero-knowledge argument of knowledge is a two-party
protocol between a prover and a verifier. The prover tries to
convince the verifier that a statement holds without reveal-
ing any information about the witness. This proof system
consists of three probabilistic polynomial-time algorithms
Setup, P , and V . The setup algorithm outputs a common
reference string σ on inputting a security parameter λ. The
prover P and the verifier V are interactive algorithms. The
transcript produced by P and V when interacting on inputs
x and y is denoted by tr ← ⟨P,V⟩. As the output of this
protocol, we use the notation ⟨P,V⟩ = b, where b = 1 if V
accepts and b = 0 if V rejects. The proof is public coin if
an honest verifier generates his responses to P uniformly.

Let R be a polynomial-time verifiable ternary relation
for common reference string σ, statement x, and witness
w, and let L be the corresponding language, i.e., L =
{x | ∃w, s.t., (σ, x, w) ∈ R}. The argument of knowledge
is defined as follows.

Definition 3 (Argument of Knowledge). The triple
(Setup,P,V) is called an argument of knowledge for the
relation R if it satisfies the following two definitions.

Definition 4 (Perfect Completeness). (Setup,P,V) has
perfect completeness if for all non-uniform polynomial-time
interactive adversaries A,

Pr

[
⟨P(σ, x, w),V(σ, x)⟩ = 1
∨ (σ, x, w) /∈ R

∣∣∣∣ σ ← Setup(1λ)
(x,w)← A(σ)

]
= 1.

Definition 5 (Computational Witness-Extended Emulation).
(Setup,P,V) has witness-extended emulation if for any
deterministic polynomial-time prover P∗, there exists an
expected polynomial-time emulator E such that for all non-
uniform polynomial-time interactive adversaries A, there
exists a negligible function µ(λ) such that the difference

between the following two probabilities is smaller than
µ(λ).

Pr

[
A(tr) = 1

∣∣∣∣ σ ← Setup(1λ); (x, s)← A(σ);
tr ← ⟨P∗(σ, x, s),V(σ, x)⟩

]
and

Pr

[ A(tr) = 1 ∧
if tr is accepting,

then (σ, x, w) ∈ R

∣∣∣∣ σ ← Setup(1λ); (x, s)← A(σ);
(tr, w)← E⟨P

∗(σ,x,s),V(σ,x)⟩(σ, x)

]
,

where E has access to the oracle ⟨P∗(σ, x, s),V(σ, x)⟩ that
permits rewinding to a specific round and rerunning with V
using fresh randomness.

We use the witness-extended emulation to define knowl-
edge soundness as in [15], and the value s can be regarded
as the state of P∗ including the randomness. Whenever
an adversary produces an argument that can pass the ver-
ification with some probability, an emulator can produce
an identically distributed argument (i.e., witness) with the
same probability. The way the emulator produces such an
argument is to rewind the interaction between the prover
and the verifier, the internal state of the prover is the same.
Still, the randomness of the verifier is fresh.

The protocols in this paper require the zero-knowledge
property. We use special honest-verifier zero-knowledge
(SHVZK), i.e., given the verifier’s challenge values, it is
possible to simulate the entire argument without knowing
the witness efficiently.

Definition 6 (Perfect Special Honest-Verifier Zero-Knowl-
edge). A public coin argument (Setup,P,V) is perfect spe-
cial honest-verifier zero-knowledge (SHVZK) for R if there
exists probabilistic polynomial-time simulator S such that
for all non-uniform polynomial-time interactive adversaries
A,

Pr

[
A(tr) = 1 ∧
(σ, x, w) ∈ R

∣∣∣∣ σ ← Setup(1λ);
(x,w, ρ)← A(σ);

tr ← ⟨P(σ, x, w),V(σ, x, ρ)⟩

]

=Pr

[
A(tr) = 1 ∧
(σ, x, w) ∈ R

∣∣∣∣ (x,w, ρ)← A(σ);
tr ← S(x, ρ)

]
where ρ is the public coin randomness used by V .

3. General Proof System for Knowledge of
Known Discrete Logarithms

In this section, we construct an interactive protocol for
proving that m + 1 secret vectors ψ1, · · · ,ψm ∈ Zn2

p

and bL ∈ Zn1
p satisfy m multi-exponent relations qbL1,i ·

qψi

2 = 1 for 1 ≤ i ≤ m, where the DL relations among
q1,1, · · · , q1,m ∈ Gn1 , q2 ∈ Gn2 may be known to the
prover and bL also satisfies n1 public quadratic relations
and k public linear relations. More concretely, we construct
an SHVZK protocol for knowledge of known discrete loga-
rithms (KKDL) problem, i.e., we give an SHVZK protocol
for the following relation

RKKDL =


(d1, · · · , dk,
ϕ1, · · · , ϕk,
q1,1, · · · ,
q1,m, f, q2)

∣∣∣∣ ∃ bL,ψi, s.t., qbL1,i · q
ψi
2 = 1

for 1 ≤ i ≤ m ∧ f(bL) = 0n1

∧ ϕj(bL) = dj for 1 ≤ j ≤ k

 ,

(1)



where dj ∈ Zp for 1 ≤ j ≤ k. The function f : Zn1
p → Zn1

p

is a quadratic function such that f(bL) = α ◦ bL ◦ bL +β ◦
bL+γ where α ∈ (Z∗

p)
n1 , β ∈ Zn1

p and γ ∈ Zn1
p are public

coefficients, and ϕj : Zn1
p → Zp is a linear function such

that ϕj(bL) = ⟨bL, ζj⟩ where ζj ∈ Zn1
p is a public vector.

We split the protocol for RKKDL into two parts, i.e., the
inner protocol and the outer protocol. The inner pro-
tocol (Section 3.1) gives a protocol that applies to Pedersen
vector commitments and proves that a committed vector
satisfies n1 public quadratic relations and k public linear
relations. Since the inner protocol can only support the
generators g of unknown DL relations and cannot handle
multi-exponent equalities qbL1,i · q

ψi

2 = 1 with generators of
known DL relations, we propose the outer protocol to
embed these equalities into g. Informally, one can deduce
the DL relation assumption of ge = g ◦ (q1,1||q2)e from the
DL relation assumption of g, where e ∈ Zp is a random
challenge from the verifier. Since qbL1,1 ·q

ψ1

2 = 1 is an equal-
ity, one can deduce that P = hρ · g(bL∥ψ1) = hρ · g(bL∥ψ1)

e .
Then, the inner protocol can be used to handle the com-
mitment P with generators ge. After that, we provide the
outer protocol (Section 3.2), which proves RKKDL using
the inner protocol as a sub-protocol. In Section 3.3, we
analyze the securities of the inner protocol and the outer
protocol. Section 3.4 compresses the proof size from linear
to logarithmic using the improved inner-product argument
from [15] and [17].

3.1. The Inner Protocol

In this section, we generalize the ideas of Bulletproofs
and construct an interactive protocol for proving that two
secret vectors bL ∈ Zn1

p and a ∈ Zn2
p satisfy a public vector

commitment P = hρL · gbL1 · ga2 ∈ G, a public quadratic
function (n1 quadratic relations) f : Zn1

p → Zn1
p and public

linear functions ϕi : Zn1
p → Zp for 1 ≤ i ≤ k without

leaking any information about bL and a. More concretely,
we want to construct a zero-knowledge protocol for the
following relation (we treat d1, · · · , dk as public values
while Bulletproofs treat them as private witnesses):

Rinner =

 (g1, g2, h, P,
f, d1, · · · , dk,
ϕ1, · · · , ϕk)

∣∣∣∣ ∃ bL,a, ρL, s.t., f(bL) = 0n1

∧P = hρLgbL1 ga2
∧ϕi(bL) = difor 1 ≤ i ≤ k


(2)

where P ∈ G, g1 ∈ Gn1 , g2 ∈ Gn2 , ρL ∈ Zp, bL ∈ Zn1
p ,

a ∈ Zn2
p and di ∈ Zp for 1 ≤ i ≤ k. The DL relations

among g1, g2, g and h are unknown.
Attema et al. give Σ-protocols for the following relation:

Rf =

{
(P ∈ G, y)

∣∣∣∣ ∃ bL ∈ Zn1
p , ρ ∈ Zp, s.t.,

P = hρ · gbL1 ∧ y = ϕ(bL)

}
, (3)

where y ∈ Zp, ϕ : Zn1
p → Zp is a linear function (Section

3.1 of [17]) and y ∈ G, ϕ : Zn1
p → G is a group

homomorphic function (Section 3.1 of [18]). The differences
between (2) and (3) are that (2) is more expressive since it
supports the quadratic function and more than one linear
functions. Meanwhile, (2) is only an inner relation, and we

will make it more expressive by adding equalities of known
DL relations related to bL in Section 3.2.

Rewrite f(bL) = bL◦(α◦bL+β)+γ. Construct another
vector bR that satisfies

bR = α ◦ bL + β ∈ Zn1
p . (4)

Then, one can rewrite f(bL) = 0n1 as

bL ◦ bR = −γ. (5)

Since bR = α ◦ bL + β and P = hρL · gbL1 · ga2 , one
can transform the commitment of bL into the commitment
of bL and bR using the following lemma.

Lemma 1 (Linear Witnesses Substitution for Commitment).
Given one vector of generators h ∈ Gn1 where the DL
relations among h, g1, g2, g, and h are unknown, P̃ =
P ·hβ is a commitment of bL and bR using g = g1◦h◦−α ∈
Gn1 and h as generators.

Proof. By the definitions of bR and P , one has that

P̃ = P · hβ = hρL · gbL1 · ga2 · hβ

= hρL · ga2 · (g1 ◦ h◦−α)bL · hα◦bL+β

= hρL · ga2 · gbL · hbR .
(6)

Since the DL relations among g1, g2, h, g, and h are
unknown and α ∈ (Z∗

p)
n1 , the DL relations among g =

g1 ◦h◦−α, g2, h, g, and h are unknown. Therefore, P̃ is a
commitment of bL and bR.

By Lemma 1, Rinner is equivalent to R̃inner defined
as follows:

R̃inner =


(g, g2,h, h,
d1, · · · , dk,
P̃ ,α,β,γ,
ϕ1, · · · , ϕk)

∣∣∣∣
∃ bL, bR,a, ρL, s.t.,

P̃ = hρL · ga2 · gbL · hbR
∧ bL ◦ bR = −γ
∧ bR = α ◦ bL + β

∧ ϕi(bL) = di for 1 ≤ i ≤ k


(7)

A proof system for R̃inner gives a proof system for Rinner.
Hence, it suffices to provide a proof system for R̃inner. In
the following part of this section, we will give an SHVZK
protocol Π̃inner for R̃inner, which is also an SHVZK
protocol for Rinner.

Next, we will convert 2n1 constraints of (4) and (5) as
a single inner-product constraint. Using randomness y ∈ Z∗

p

from the verifier and the Schwartz–Zippel lemma [41], the
prover can prove that (4) and (5) hold by proving that

⟨bL, bR◦yn1⟩ = −⟨γ,yn1⟩ and ⟨α◦bL−bR+β,yn1⟩ = 0.
(8)

Then, one can prove that (2) holds by proving that (8) and
ϕi(bL) = di hold for 1 ≤ i ≤ k. We can combine these
equations into one using the same technique: the verifier
chooses z ←$ Zp, and then the prover proves that

k∑
i=1

zi+1·⟨bL, ζi⟩+z·⟨α◦bL−bR+β,yn1⟩+⟨bL, bR◦yn1⟩

=

k∑
i=1

zi+1 · di − ⟨γ,yn1⟩. (9)



This equality can be re-written as:

⟨bL−z·1n1 ,yn1◦(bR+z·α)+
k∑

i=1

zi+1·ζi⟩ = δ(y, z), (10)

where δ(y, z) = −
k∑

i=1

zi+2 · ⟨ζi,1n1⟩+
k∑

i=1

zi+1 · di − z2 ·

⟨α,yn1⟩−z·⟨β,yn1⟩−⟨γ,yn1⟩ is a quantity that the verifier
can easily calculate, the problem of proving that (2) holds
is reduced to proving one single inner-product equality.

We show the full protocol Π̃inner between the prover
and the verifier in Protocol 1, and it consists of five moves:
the first two moves between the prover and the verifier are
used to commit sL, sM , and sR, which is used to blind bL,
a, and bR, respectively.

With y and z, we define two linear vector polynomials
l(X), r(X) ∈ Zn1

p [X], which are the blinded vectors of
the inner-product in (10) using blinding vectors sL and
sR. Due to sL and sR, one can publish l(x) and r(x)
for x ←$ Zp without revealing any information about
bL and bR. Meanwhile, we define the inner-product poly-
nomial t(X) = ⟨l(X), r(X)⟩ as [14], and the constant
term of t(x), denoted as t0, is the result of the inner-
product in (10). The representations of l(X), r(X), and
t(X) are defined as follows: l(X) = bL − z · 1n1 + sL ·X ,
r(X) = yn1 ◦ (bR + z · α + sR · X) +

∑k
i=1 z

i+1 · ζi,
t(X) = ⟨l(X), r(X)⟩ = t0 + t1 ·X + t2 ·X2.

Now (10) is equal to t0 = δ(y, z), i.e., the prover needs

to convince the verifier that t0 = −
k∑

i=1

zi+2 · ⟨ζi,1n1⟩ +
k∑

i=1

zi+1 · di − z2 · ⟨α,yn1⟩ − z · ⟨β,yn1⟩ − ⟨γ,yn1⟩ holds.

The last three moves between the prover and the verifier
are used to commit coefficients t1 and t2 of t(X) and then
reveal the value of t(X) at a random point x chosen by
the verifier. After that, the protocol shows that the revealed
value is consistent with all the former commitments.

During the verification procedure, the vector of gener-
ators h = (h1, · · · , hn1) is switched to h′ = h◦y−n1

=

(h1, h
(y−1)
2 , · · · , h(y

−n1+1)
n1 ) to construct a commitment to

yn1◦bR for r(X). Hence, P̃ and S is the vector commitment
of (bL,yn1 ◦ bR,a) and (sL,y

n1 ◦ sR, sM ), respectively.
The first verification equation of Protocol 1 is to check

whether equation (9) is consistent with bL, i.e., check the
constant term of t(X), t0

?
= δ(y, z), at a random point

x. The remaining verification equations check whether the
commitments used during the protocol are consistent.

Since the prover only needs to prove the knowledge of
a, a three-move Σ-protocol [42] is used inside Π̃inner with
S as the first-move commitment from the prover, x as the
challenge from the verifier, and η as the third-move response
from the prover.

We present the security of Π̃inner as an interactive
protocol in Theorem 1 of Section 3.3.

Π̃inner⟨P(g, g2,h, h, di, P̃ ,α,β,γ, ϕi; bL, bR,a, ρL),

V(g, g2,h, h, di, P̃ ,α,β,γ, ϕi)⟩ where 1 ≤ i ≤ k

P computes :
sL, sR ←$ Zn1

p , sM ←$ Zn2
p , ρS ←$ Zp

S = hρS · gsL · gsM2 · hsR ∈ G
P → V : S

V computes :
y, z ←$ Zp

V → P : y, z

P computes:
l(X) = bL − z · 1n1 + sL ·X

r(X) = yn1 ◦ (bR + z ·α+ sR ·X) +

k∑
i=1

zi+1 · ζi

t(X) = ⟨l(X), r(X)⟩ = t0 + t1X + t2X
2

τ1, τ2 ←$ Zp, T1 = gt1hτ1 , T2 = gt2hτ2

P → V : T1, T2

V computes :
x←$ Zp

V → P : x

P computes:
l = l(x) = bL − z · 1n1 + x · sL

r = r(x) = yn1 ◦ (bR + z ·α+ x · sR) +
k∑

i=1

zi+1 · ζi

η = a+ x · sM
t̂ = ⟨l, r⟩
τx = τ2 · x2 + τ1 · x, µ = ρL + x · ρS
P → V : τx, µ, t̂, l, r,η

V : Verification procedure:

Let h′ = h◦y−n1
,

gt̂−δ(y,z)hτx ?
= T x

1 · T x2

2

Let T = P̃ · Sx · g−z·1n1 · (h′)
z·α◦yn1+

k∑
i=1

zi+1·ζi

T
?
= hµ · gl · (h′)

r · gη2
t̂

?
= ⟨l, r⟩

Protocol 1: The Π̃inner protocol.

3.2. The Outer Protocol

In Section 3.1, we have constructed the protocol to prove
that secret vectors bL ∈ Zn1

p and a ∈ Zn2
p satisfy relation

Rinner without leaking any information about bL and a.
The information about bL is hidden in the Pedersen vector
commitment P = hρL · gbL1 · ga2 , and the DL relations
among g1, g2 and h are unknown. However, in some circum-
stances, the prover may know the DL relations among the
generators, and the discrete logarithm relation assumption
(Definition 2) no longer holds, making the soundness proofs
of Bulletproofs-like protocols infeasible. In the following
part of this section, we will give the outer protocol ΠKKDL,



which proves RKKDL of (1) using the inner protocol as a
sub-protocol.

Following the basic ideas of [22], we give an SHVZK
protocol for the relation RKKDL by combining the equality
qbL1,i ·q

ψi

2 = 1 of (1) with the commitment P = hρL ·ĝbL1 ·ĝa2
as follows, where h, ĝ1, and ĝ2 are chosen randomly by the
verifier at the beginning of ΠKKDL

4.
1) Introduce two new random challenges, e and v, from the

verifier. The challenge v is used to gather all equalities

qbL1,i · q
ψi

2 = 1 into one equality
m∏
i=1

(qbL1,i · q
ψi

2 )v
i−1

=

(
m∏
i=1

◦qvi−1

1,i )bL ·q
∑m

i=1 vi−1·ψi

2 = 1. Let a =
m∑
i=1

vi−1 ·ψi,

the challenge e is used to combine the gathered equality
with the commitment as follows:

P = hρL · ĝbL1 · ĝa2 · [(
m∏
i=1

◦qv
i−1

1,i )bL · qa2 ]e

= hρL · (ĝ1 ◦
m∏
i=1

◦qev
i−1

1,i )bL · (ĝ2 ◦ qe2)a
(11)

Since the DL relations among h, ĝ1, and ĝ2 are unknown,
the DL relations among h, g1, and g2 are unknown,
where g1 and g2 are defined as follows:

g1 = ĝ1 ◦
m∏
i=1

◦qev
i−1

1,i and g2 = ĝ2 ◦ qe2 (12)

Therefore, we can use g1 and g2 of (12) and
(d1, · · · , dk, h, P, f, ϕ1, · · · , ϕk) of RKKDL as the public
inputs of Rinner of Section 3.1, and use (bL,a, ρL) as
the witnesses of Rinner, and then execute the SHVZK
protocol of Section 3.1.

2) In [22], randomness v ∈ Zp is sent at the beginning of
the protocol before committing bL, which will bring the
following two problems:
a) Since v is sent before committing bL, the prover

may choose bL depending on v, which will make
the commitment P unfixed and make the witness
ψi unextractable in the soundness proof. More con-
cretely, one can extract (bL,a, ρL) from the inner
protocol satisfying

P = hρL · gbL1 · ga2

= hρL · (ĝ1 ◦
m∏
i=1

◦qev
i−1

1,i )bL · (ĝ2 ◦ qe2)a.
(13)

Then, one can deduce equality (
∏m

i=1 ◦qv
i−1

1,i )bL ·
qa2 = 1 by fixing v. For m different values of v,
one can deduce m such equalities by the rewinding
technique. However, since bL may be different, one
cannot deduce ψi that satisfies qbL1,i · q

ψi

2 = 1 for
4 In the non-interactive version, h, ĝ1, and ĝ2 can be deduced by

inputting q1,i and q2 to some cryptographic-secure hash-to-point
functions [21], which will make the DL relations between (q1,i, q2)
and (h, ĝ1, ĝ2) unknown.

1 ≤ i ≤ m with the same bL.
b) Since v is sent at the beginning of the protocol, one

cannot rewind v many times using the Fiat-Shamir
heuristic [32] because all the protocol statements are
fixed. The authors of [22] use the Schwartz-Zippel
lemma [26] to overcome this. For the Schwartz-
Zippel lemma, the polynomial coefficients should
be fixed before choosing the random variable (i.e.,
v). However, when they apply the Schwartz-Zippel
lemma, the coefficients may be selected according to
the random variable since v is sent at the beginning
of the protocol, which will make the soundness proof
infeasible.

To overcome the problems mentioned above, since P
is the commitment of (a, bL) and a is based on v, we
split the commitment into two parts. Firstly, the prover
commits bL at the beginning of the protocol before re-
ceiving v. Secondly, the prover commits a after receiving
v and adds an in-line Σ-protocol to ensure that this
commitment does not contain any information about bL.
Then, P is the combination of these two commitments.
These methods solve Problem (a) since bL is fixed at the
beginning of the protocol and solve Problem (b) since
one can rewind v many times in the soundness proof
for the reason that v is chosen after committing bL. We
show the detailed explanation in the witness-extended
emulation part of the proof of Theorem 2.
We give the SHVZK protocol ΠKKDL for the relation

RKKDL in Protocol 2, consisting of six moves. Firstly, the
prover commits bL and sends the commitment P1 to the
verifier. Then, the verifier chooses v ←$ Zp and sends v to
the prover. After receiving the challenge v from the verifier,
the prover and the verifier conduct the three-move in-line
Σ-protocol using a =

∑m
i=1 v

i−1 ·ai ∈ Zn2
p as the witness,

where the commitment of a is denoted as P2. Here, we use
P = P1 ·P2 as the commitment of bL and a. Afterward, the
verifier chooses e←$ Zp and sends e to the prover. Finally,
the prover and the verifier proceed to the protocol forRinner

of Section 3.1 using (g1 ← ĝ1 ◦
∏m

i=1 ◦qev
i−1

1,i , g2 ← ĝ2 ◦
qe2, d1, · · · , dk, h, P, f, ϕ1, · · · , ϕk) as the public inputs and
(bL,a, ρL) as the witnesses.

We show the security of ΠKKDL as an interactive pro-
tocol in Theorem 2 of Section 3.3. Since the verifier is a
public-coin verifier, we can convert the protocol into a non-
interactive protocol that is secure and full zero-knowledge
in the random oracle model using the Fiat-Shamir heuristic
[32].

3.3. Security Analysis

In this section, we prove the security of Πinner and
ΠKKDL presented in Section 3.1 and Section 3.2, respectively.
We give the security analysis of Πinner in Theorem 1 and
the security analysis of ΠKKDL in Theorem 2.

Theorem 1 (Security of Πinner). The protocol Πinner

presented in Section 3.1 has perfect completeness, perfect



ΠKKDL : ⟨P(di, ϕi, q1,j , q2, f ; bL,ψj),V(di, ϕi, q1,j , q2, f)⟩
where 1 ≤ i ≤ k and 1 ≤ j ≤ m

V computes:
h←$ G, ĝ1 ←$ Gn1 ,

ĝ2 ←$ Gn2 ,h←$ Gn1

V → P : h, ĝ1, ĝ2,h

P computes:

ρ1 ←$ Zp, P1 = hρ1 · ĝbL1
P → V : P1

V computes:
v ←$ Zp

V → P : v

. . . . . . . . . . . . . . . . . . . . In-line Σ-protocol . . . . . . . . . . . . . . . . . . . .

P computes:

Let a =

m∑
i=1

vi−1 ·ψi ∈ Zn2
p ,

ρ2, ρ3 ←$ Zp, c←$ Zn2
p ,

P2 = hρ2 · ĝa2 , P3 = hρ3 · ĝc2
P → V : P2, P3

V computes:
w ←$ Zp

V → P : w

P computes:
θ1 = ρ3 + w · ρ2,θ2 = c+ w · a
P → V : θ1,θ2

V : Verification Procedure:

hθ1 · ĝθ22
?
= P3 · Pw

2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If passed, both prover and verifier compute P = P1 · P2

V computes:
e←$ Zp

V → P : e

Proceed to the proof of Rinner using g1 ← ĝ1 ◦
m∏
i=1

◦qev
i−1

1,i ,

g2 ← ĝ2 ◦ qe2, d1, · · · , dk, h, P, f, ϕ1, · · · , ϕk) as public
inputs, and (bL,a, ρL = ρ1 + ρ2) as witnesses of prover.

Protocol 2: The ΠKKDL protocol.

special honest-verifier zero-knowledge, and computational
witness-extended emulation.

The proof process follows the process of Bulletproofs,
we show the detailed proof process in Appendix C.

Theorem 2 (Security of ΠKKDL). The protocol ΠKKDL pre-

sented in Section 3.2 has perfect completeness, perfect
special honest-verifier zero-knowledge, and computational
witness-extended emulation.

Proof. 1) Perfect completeness. Perfect completeness fol-
lows directly.

2) Perfect special honest-verifier zero-knowledge. The
proof of special honest-verifier zero-knowledge is almost
the same as the proof of Theorem 1 except (1) the
randomness set is (v, w, e, y, z, x); (2) the commitment
P = P̃ · h−β is chosen at random; (3) the generator
g = g1 ◦ h◦−α = ĝ1 ◦

∏m
i=1 ◦qev

i−1

1,i ◦ h◦−α and
g2 = ĝ2 ◦ qe2; (4) the special honest-verifier zero-
knowledge of the in-line Σ-protocol can be deduced from
the special honest-verifier zero-knowledge property of Σ-
protocol [42] directly.

3) Computational witness-extended emulation. We con-
struct an extractor χKKDL to prove the computational
witness-extended emulation. The extractor runs the
prover with m different values of v, two different values
of w, and two different values of e. Additionally, it
invokes the extractor χinner for the relation Rinner of
Theorem 1 on each of (v, w, e), resulting in 4m total
transcripts.
For each (v, w, e), the extractor χKKDL first runs the
extractor χinner to extract a witness (bL,a, ρL) for the
relation Rinner, satisfying

P = hρL · gbL1 · ga2

= hρL · (ĝ1 ◦
m∏
i=1

◦qev
i−1

1,i )bL · (ĝ2 ◦ qe2)a
(14)

For given values of v, using two valid transcripts for
different e challenges e and e′, one has that

hρL−ρ′
L · ĝbL−b′L

1 · (
m∏
i=1

◦qv
i−1

1,i )e·bL−e′·b′L · ĝa−a
′

2

· qe·a−e′·a′

2 = 1, (15)

where (bL,a, ρL) and (b′L,a
′, ρ′L) is the transcript for

e and e′, respectively. The correctness of this step is
based on the general forking lemma [16] which is also
used in Bulletproofs and Omniring. The commitments
and randomnesses form a tree of accepting transcripts,
where the nodes denote the commitments and the edges
denote the randomness. One parent node has different
child nodes (subtrees) w.r.t. different randomnesses, but
the parent node is fixed for its subtrees, and one can
extract the witnesses of this parent node from different
transcripts of its subtree using the rewinding technique.
Meanwhile, the parent node can be used to extract the
grandparent node with its peers. Hence, the commitment
P is fixed for its subtrees starting from e and e′, so one
can deduce two different transcripts satisfying (14) with
the same P .
From (15), one can deduce that ρL = ρ′L, bL = b′L
and a = a′. Otherwise, we can deduce a non-trivial DL



relation among generators h, ĝ1, and ĝ2, contradicting
the DL relation assumption. Then, we have

(

m∏
i=1

◦qv
i−1

1,i )bL · qa2 = 1 (16)

Next, let’s turn to the in-line Σ-protocol. Using two
valid transcripts (P2, P3, θ1,θ2) and (P ′

2, P
′
3, θ

′
1,θ

′
2) for

different w challenges w and w′, one has that

P2 = h
θ1−θ′1
w−w′ · ĝ

θ2−θ′
2

w−w′
2 and P3 = h

w·θ′1−w′·θ1
w−w′ · ĝ

w·θ′
2−w′·θ2
w−w′

2
(17)

Otherwise, one can deduce a non-trivial DL relation
among generators h and ĝ2.
By (14) and (17), one can deduce that ĝbL1 of P has noth-
ing to do with P2, i.e., it all comes from P1. Therefore,
we have that bL is fixed and has nothing to do with v by
the binding property of the commitment scheme. Then,
one can deduce that bL of (16) is fixed for different
values of v.
Using m valid transcripts ai for different v challenges
vi where 1 ≤ i ≤ m, constructing a system of equations
for unknown variables ψ1 ∈ Zn2

p , · · · ,ψm ∈ Zn2
p as

follows: 

m∑
i=1

vi1 ·ψi = a1

· · ·
m∑
i=1

vim ·ψi = am

(18)

Since the coefficient matrix of (18) is a Vandermonde
matrix, there exists one solution (ψ1, · · · ,ψm) for (18).
Then, one can deduce the following equality

m∏
i=1

(qbL1,i ·q
ψi

2 )v
i−1· = (

m∏
i=1

◦qv
i−1

1,i )bL ·q
∑m

i=1 vi−1·ψi

2 = 1.

(19)
Since (19) holds for m different values of v, we can
deduce that qbL1,i · q

ψi

2 = 1 for 1 ≤ i ≤ m. Of course,
one can sample fresh ψ1, · · · , ψm depending on vi, but
the verifier will not see this, the only thing they can see

is a =
m∑
i=1

vi−1 · ψi and the final verification processes

are passed. We can treat different (ψ1, · · · , ψm) as the
same and construct the system of equations. Since the
coefficient matrix is a Vandermonde matrix, one can
always get the only value of (ψ1, · · · ,ψm) satisfying
m∏
i=1

(qbL1,i ·q
ψi

2 )v
i−1· = 1, i.e., qbL1,i ·q

ψi

2 = 1 for 1 ≤ i ≤ m.

These equations are sufficient for our RKKDL since we
only consider the relations. Therefore, one can deduce
RKKDL of (1).

3.4. Improved Inner-Product Argument and
Logarithmic-Size Proofs

3.4.1. Improved Inner-Product Argument. The maximum
component of Bulletproofs is two N -dimensional vectors l
and r satisfying relation (20) where g,h ∈ GN , P ∈ G, t̂ ∈
Zp and l, r ∈ ZN

p . Bulletproofs employs the improved inner-
product argument to reduce the size of (l, r) that satisfies
the following relation from 2N to 2⌈log2(N)⌉+ 2:

Rbullet = {(g,h, P, t̂)|∃ l, r, s.t., P = glhr ∧ t̂ = ⟨l, r⟩}.
(20)

In [17], Attema and Cramer generalize the improved
inner-product argument, and give an argument of knowledge
for the following relation (Section 4 of [17]).

Rac20 = {(g̃, P, L, t̂) | ∃ z, , s.t., P = g̃z ∧ t̂ = L(z)}, (21)

where g̃ ∈ GN , P ∈ G, z ∈ ZN
p and L : ZN

q → Zq is
a linear function. The size of this argument of knowledge
is 2⌈log2(N)⌉. The basic idea of the protocol for Rac20 is
almost the same as Rbullet by representing P = g̃zLL · g̃

zR
R ,

where the dimension of g̃L, g̃R, zL and zR is ⌈N2 ⌉.

3.4.2. Logarithmic Size Proofs. Using the Fiat-Shamir
heuristic, Πinner consists of three elements S, T1, T2 ∈ G,
three elements τx, µ, t̂ ∈ Zp, two n1-dimensional vectors
l, r ∈ Zn1

p , and one n2-dimensional vector η ∈ Zn2
p . Hence,

the total proof size is 2n1 + n2 + 6.
The maximum component of Πinner is two n1-

dimensional vectors l, r and one n2-dimensional vector η
satisfying the following relation from Protocol 1:

Rinner-ipa =

{
(g,h′, g2, P, t̂)

∣∣∣∣ ∃ l, r,η, s.t., t̂ = ⟨l, r⟩
∧ P = gl · (h′)r · g2η

}
,

(22)
where g,h′ ∈ Gn1 and g2 ∈ Gn2 . Let g̃ = (g, g̃1,h

′, g̃2),
z = (l,η1, r,η2), N = 2n1 + n2 and L(z) = ⟨l, r⟩, and
then one can transform relation (22) to relation (21) and use
the PoK in Section 4 of [17] to compress the size of (l, r,η)
from 2n1 + n2 to 2⌈log2(2n1 + n2)⌉, where (g̃1, g̃2) = g2,
(η1,η2) = z, g̃1, g̃2 ∈ G⌈n2

2 ⌉ and η1,η2 ∈ Z⌈n2
2 ⌉

p .
Using the Fiat-Shamir heuristic, ΠKKDL consists of three

elements P1, P2, P3 ∈ G, one element θ1 ∈ Zp, and one n2-
dimensional vector θ2 ∈ Zn2

p . Hence, the total proof size is
n2 + 4.

The maximum component of ΠKKDL is one n2-
dimensional vector θ2 and one element θ1 satisfying the
following relation from Protocol 2

Router-ipa = {(h, ĝ2, P ) | ∃ θ1,θ2, s.t., P = hθ1 · ĝθ22 }, (23)

where ĝ2 ∈ Gn2 and h ∈ G. Let g̃ = (h, ĝ2), z = (θ1,θ2),
N = n2 + 1 and L(z) = 0, and then one can transform
relation (23) to relation (21) and use the PoK in Section
4 of [17] to compress the size of (θ1,θ2) from n2 + 1 to
2⌈log2(n2 + 1)⌉.

Combining Πinner and ΠKKDL, the proof size of the
whole protocol is 2·⌈log2(2n1+n2)⌉+2·⌈log2(n2+1)⌉+9.

We measure the time complexity using the number of
exponentiations. For the proving time, Πinner requires about



13n1 +5n2 exponentiations (including 8n1 +4n2 exponen-
tiations for inner-product argument), Πinner requires about
n1+6n2 exponentiations (including 4n2 exponentiations for
inner-product argument), and transforming the parameters
from Πinner to Πouter requires about m · n1 + n2 expo-
nentiations. Hence, the proving time is (m+ 14)n1 + 12n2
exponentiations. Using the technique of [15], the verification
time is managed by a single multi-exponentiation of size
about 4n1 + 4n2 + ⌈log2(2n1 + n2)⌉+ ⌈log2(n2 + 1)⌉.

4. Application: Omniring-style RingCT

In this section, we give a RingCT construction in
the Omniring framework [22] which doesn’t have the
problems mentioned in Section 1.1.3 and 3.2. We use
the same notations as [22] in this section. Let G′ =
(g1, g2, g3, g4, g5) ←$ Gm−|R|−3 where g1 ∈ G|R||S|,
g2 ∈ Gβ|T |, g3 ∈ G|S|, g4 ∈ G|S|, g5 ∈ G|S|,
and m = 3 + |R| + |R||S| + β|T | + 3|S|. Also, let
H = (h1,h2,h3,h4,h5) ←$ Gm where h1 ∈ G3+|R|,
h2 ∈ G|R||S|, h3 ∈ Gβ|T |, h4 ∈ G2|S|, and h5 ∈ G|S|.
Denote ĝ1 = g1 ◦ h2 and ĝ2 = g2 ◦ h3.

We replace the first two moves from Section 5.1 of
[22] with an outer protocol shown in Protocol 3. Then,
continue executing the Omniring protocol after the prover
receives w from the verifier. Denote rA = rA,1+rA,2, these
steps are compatible since

A1 ·A2 · (h2∥h3)
−1

=F rA · ĝvec(E)
1 · ĝvec(B)

2 · ga
S

3 · gr
S

4 · gx5 ·
hx

◦−1

5 · (h2∥h3)
−1 · P (ξ∥η∥1∥ê)

=F rA · (P ||G′)cL ·HcR

=A.

(24)

The security proofs, including balance, privacy and non-
slanderability, are inherited from [22] except for the security
proofs for argument of knowledge construction (Appendix
D of [22]). The completeness is quite straightforward. The
zero-knowledge can be deduced from the SHVZK of The-
orem 2 and the SHVZK of Omniring.

The soundness proof is almost the same except for
the last few steps, i.e., steps after deducing the witnesses
(aS′

, rS
′
,x′,E) and equations

ξ′ = −⟨v|S|, u · aS′
+ u2 · x′◦−1⟩

η′ = −⟨v|S|,x′ + u · rS
′
⟩

ψ′ = 1

ê′ = v|S|E′ =
∑

l∈[|S|]

vl−1 · e′l.

Then one can deduce

I =
∏

l∈[|S|]

(H−x′
lRe

′
l)v

l−1

·
∏

l∈[|S|]

(G−aS′
l H−rS

′
l C

e′l
R )uv

l−1

·

∏
l∈[|S|]

(G
−1

x′
l tagl)

u2vl−1

. (25)

Πouter : ⟨P(R,CR,T ,CT ;E,x,aS , rS ,B,aT , rT ),

V(R,CR,T ,CT )⟩

V computes:

F ←$ G,P ←$ G3+|R|,

G′ ←$ Gm−|R|−3,H ←$ Gm

V → P : F,P ,G′,H

P computes:
rA,1 ←$ Zp,

A1 = F rA,1 · ĝvec(E)
1 · ĝvec(B)

2 · ga
S

3 · gr
S

4 · gx5 · hx
◦−1

5

P → V : A1

V computes:
u, v ←$ Zp

V → P : u, v

. . . . . . . . . . . . . . . . . . . In-line Σ-protocol . . . . . . . . . . . . . . . . . . .

P computes:

rA,2, rA,3 ←$ Zp, c←$ Z3+|R|
p ,

A2 = F rA,2 · P (ξ∥η∥1∥ê),

A3 = F rA,3 · P c

P → V : A2, A3

V computes:
e←$ Zp

V → P : e

P computes:
θ1 = rA,3 + e · rA,2,

θ2 = c+ e · (ξ∥η∥1∥ê)
P → V : θ1,θ2

V : Verification Procedure:

F θ1 · P θ2 ?
= A3 ·Ae

2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If verification passed, both prover and verifier compute

and verifier compute A = A1 ·A2 · (h2∥h3)
−1.

V computes:
w ←$ Zp

V → P : w

Continue executing the Omniring protocol after the prover
receiving after the prover receiving w from the verifier as
described in Section 5.1 of [22].

Protocol 3: The outer protocol of Omniring.

In [22], the authors deduce the desirable relations from
the above equation using the Schwartz-Zipple lemma. Since
the witnesses (aS′

, rS
′
,x′,E) are committed after send-



ing (u, v), these witnesses can be chosen according to
(u, v), i.e., the coefficients are not fixed for the Schwartz-
Zipple lemma. Hence, one cannot apply the Schwartz-Zipple
lemma here. Meanwhile, one cannot apply the rewinding
technique here due to the same reason.

We complete these steps using the soundness proof
of Theorem 2. From the in-line Σ-protocol of Protocol
3, one can deduce that the witnesses(aS′

, rS
′
,x′,E) are

committed before sending (u, v). Hence, by the rewinding
technique, (25) holds for |S| different values of v and 3
different values of u. Then one can deduce that Re

′
l = Hx′

l ,
C
e′l
R = GaS′

l HrS
′

l , and tagl = G
1
x′
l for l ∈ [|S|] as desirable

just like the proof of Theorem 2.
The proof size of the scheme is 2·⌈log2(3+|R|+|R||S|+

β|T |+ 3|S|)⌉+ 2⌈log2(4 + |R|)⌉+ 12 elements. The veri-
fication time is dominated by a single multi-exponentiation
of size about 4|R| + 2|R||S| + 2β|T | + 6|S| + ⌈log2(3 +
|R|+ |R||S|+ β|T |+ 3|S|)⌉+ ⌈log2(4 + |R|)⌉.

5. Application: K-out-of-N Proof of Knowl-
edge

In this section, we construct an SHVZK protocol for
K-out-of-N proof of knowledge using the general model of
Section 3, where 1 ≤ K ≤ N . More concretely, we will
give an SHVZK protocol ΠK-N for the following relation

RK-N =

 (g,vk,
K,N)

∣∣∣∣
∃ ij , vkij , skij for 1 ≤ j ≤ K,

s.t., ij ∈ [1, N ] ∧ each ij is different
∧ vkij ∈ vk ∧ vkij = g

skij

for 1 ≤ j ≤ K


(26)

where vk = (vk1, · · · , vkN ) ∈ GN and g ∈ G.
One can deduce RK-N from RKKDL of (1) as follows.

1) In RKKDL, let m = K, n1 = N , n2 = 1, k = 1,

f(bL) = bL◦bL−bL = 0N , ϕ1(bL) =
N∑
j=1

bL,j , d1 = K,

q2 = {g} and ψi = {−ski} for 1 ≤ i ≤ N . Meanwhile,
let q1,i = {0, · · · , 0, vki, 0, · · · , 0} for 1 ≤ i ≤ N ,
where the ith component of q1,i is vki and the other
components are zero.

2) Since f(bL) = bL ◦ bL − bL = bL ◦ (bL − 1N ) = 0N ,
each component of bL is either 0 or 1. Since ϕ1(bL) =
N∑
j=1

bL,j = K, bL has exactly K components which

are “1”. Denote i1, · · · , iK as the positions where the
components of bL are “1”, and denote S = {i1, · · · , iK}.

3) By the analysis above, one has that

qbL1,j · q
ψj

2 =

{
vkj · g−skj = 1 j ∈ S

vk0j · g−skj ·0 = 1 j /∈ S
(27)

The case j ∈ S above means that the prover knows the
DL relation between vkj and the generator g, and the
case j /∈ S is trivial that the prover does not need to
consider in the protocol. Hence, RK-N can be directly
deduced.

Then, one can use ΠKKDL and Πinner to construct a zero-
knowledge protocol ΠK-N forRK-N . The security of ΠK-N
is shown in Theorem 3.

The total proof size of ΠK-N is 2 · ⌈log2(N)⌉ + 14
using the improved inner-product argument and the Fiat-
Shamir heuristic (since n2 and |η| = 1, we do not use the
improved inner-product argument to θ2 of Protocol 2 and η
of Protocol 1). The verifier’s cost is dominated by a single
multi-exponentiation of size 2N + ⌈log2(N)⌉.
Theorem 3 (Security of ΠK-N ). The protocol ΠK-N has
perfect completeness, perfect special honest-verifier zero-
knowledge, and computational witness-extended emulation.

The proof of Theorem 3 can be deduced from the proofs
of Theorem 2 and Theorem 1.

Remark. In the case K = 1, it is a one-out-of-N proof
which implies ring signatures. The details can be found in
Appendix D.
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Appendix A.
Application: Multi-Receiver Anonymous
Zether

In Anonymous Zether, a sender may hide herself and the
receivers in a larger ring R⃗ = {pki, 0 ≤ i ≤ N − 1}. The
original paper [28] only consider the case that the number of
receiver is one, but it may be larger than one. In this paper,
we consider the multi-receiver scenario. Although [34] also
considers the multi-receiver scenario, they do not consider
the anonymity of sender since an artifact of Ethereum where
invocation to smart contract trivially reveals the identity of
the invoking party. However, the identity of the invoking
party can be different from the identity of the smart contract,
and we can trivially use Tor network [35], paymaster [36]
and ring signature to avoid this.

To an observer, it should be impossible to discern which
among a ring’s members sent or received funds. Specifically,
a sender should choose indices ls and (lr,0, · · · , lr,ι) for
which pkls and (pklr,0 , · · · , pklr,ι) belong to the sender and
ι receivers, respectively. Let a⃗ = {a0, · · · , aN−1} be a list
of amounts where ai is the amount for the user with pki.
Indeed, we don’t need to consider the number of receivers,
we only need to consider that the amounts is non-negative
except the amount of sender, and the sum of amounts for
all uses is zero, i.e.,

∑N−1
i=0 ai = 0 with als = −a ≤ 0 and

aj ≥ 0 for j ̸= ls. Let C⃗ = {C0, · · · , CN−1} and D be the
list of ciphertexts that encrypt a⃗ using R⃗.

To apply the transfer, the contract should homomorphi-
cally add (Ci, D) to pki’s balance for each i; we denote the
list of new balances by (CL,i, CR,i)

N−1
i=0 . Denote C⃗L and

C⃗R be the vector of CL,i and CR,i, respectively.
The relations we need to prove are:

• The indexes of sender and receivers are in the proper
ranges, i.e., ls ∈ [0, N − 1].

• Sender knows the secret key, i.e., ∃sk, s.t., pkls = gsk.
• ∃r, s.t., sender knows the randomness, i.e., D = gr;
• The sum of all amounts are zero, i.e.,

∑N−1
i=0 ai = 0.

• The amounts of receivers and the account balance of
sender are in the proper range, i.e., ai ∈ {0, · · · ,MAX}
for i ̸= ls and as ∈ {0, · · · ,MAX} where as is the
remaining account balance of sender.

• The epoch of this transaction is correct.
In conclusion, we will give a SHVZK protocol ΠAZ for

the following relation

RAZ =


(R⃗, C⃗, C⃗L, C⃗R,
D,Cep, gep)

∣∣∣∣
∃ ls, sk, r, as, a⃗

s.t., ls ∈ [0, N − 1]∧
Ci = gaipkri for ∀i ∈ [0, N − 1]
∧ D = gr ∧ pkls = gsk∧

CL,ls = gasCsk
R,ls
∧ Cep = gskep

∧
∑N−1

i=0 ai = 0 ∧ as, aj ∈ [0,MAX]
for ∀j ∈ [0, N − 1]


,

(28)
To prove (28), one can construct one unit vector e⃗0 of

length N where the ls-th position of e⃗0 is 1 and 0 otherwise.

For a⃗′ = {a′0, · · · , a′N−1}, construct an auxiliary vector a⃗′
as follows: {

a′ls = −als
a′i = ai, otherwise

(29)

Meanwhile, construct N unit vectors of length β where
b⃗i is the binary representation of a′i, and b⃗s is the unit vector
of length β where b⃗s is the binary representation of as.

Construct the witness vectors c⃗L and c⃗R as equation (30)
where ξ = ⟨v⃗N , a⃗⟩+ u · as + u2 · sk+ u3 · r, s⃗k is a vector
of N reputations of sk, r⃗ is a vector of N reputations of r,
and E⃗ = (⃗b0||b⃗1|| · · · ||⃗bN−1).

Hence, (28) can be transformed into inner equations and
outer equations as follows:
• For the outer equations:

1) The amounts are correct: C⃗ v⃗N

= g⟨v⃗
N ,⃗a⟩R⃗v⃗n◦r⃗.

2) The account balance of sender is correct: C⃗ e⃗0
L =

gasC⃗sk·e⃗0
R .

3) Sender knows the private key: R⃗e⃗0 = gsk.
4) The construction of D is correct: D = gr.
5) Epoch is correct: Cep = gskep .

• For the inner equations, construct the vectors as (32):
1) The components of binary representations are zero or

one, i.e., e⃗0 , b⃗i (0 ≤ i ≤ N−1) and b⃗s are unit vectors:
⟨c⃗L, c⃗R◦v⃗0⟩ = 0 and ⟨c⃗L− c⃗R−1⃗N+(N+1)β , u⃗17⟩ = 0.

2) e⃗0 is unit vectors with only one position which is one:
⟨c⃗L, u⃗4⟩ = 1.

3) Construct an auxiliary vector a⃗′ satisfying (29). This
condition can be divided into the following two con-
ditions:
– The relation between the seventh, tenth and eleventh

positions of c⃗R are correct: ⟨c⃗R, w⃗13⟩ = ⟨⃗1N , y⃗N ⟩
and ⟨c⃗R, w⃗14⟩ = 0.

– als = −a′ls : ⟨c⃗L, c⃗R ◦ v⃗2⟩ = 0.
– ai = a′i for i ̸= ls: ⟨c⃗L, c⃗R ◦ v⃗3⟩+ ⟨c⃗L, u⃗3⟩ = 0.

4) b⃗i and b⃗s is the binary representation of a′i and as for
i ∈ [0, N − 1]: ⟨c⃗L, u⃗5⟩ = 0.

5) The sum of all amounts is zero, i.e.,
∑N−1

i=0 ai = 0:
⟨c⃗L, u⃗6⟩ = 0.

6) Since the outer equations are fulfilled using the relation
between c⃗L and G⃗w of (31), the following conditions
ensure the correctness of the construction of c⃗L:
– The first position of c⃗L is correct, i.e., ξ = ⟨v⃗N , a⃗⟩+
u · as + u2 · sk + u3 · r: ⟨c⃗L, u⃗7⟩ = 0.

– The second position of c⃗L is r⃗N : ⟨c⃗L, u⃗8⟩ = 0.
– The third position of c⃗L is 1⃗N : ⟨c⃗L, u⃗9⟩ = ⟨⃗1, y⃗N ⟩.
– The fourth and seventh positions of c⃗L are equal:
⟨c⃗L, u⃗10⟩ = 0.

– The fifth position of c⃗L is sk · e⃗0, this condition can
be fulfilled by the following two conditions:
∗ The fourth position of c⃗R consists of N reputa-

tions of the last position of c⃗L, i.e., The fourth
position of c⃗R is s⃗k

N
: ⟨c⃗L, u⃗12⟩+ ⟨c⃗R, w⃗12⟩ = 0.

∗ The fifth positions of c⃗R are 1⃗N : ⟨b⃗R, w⃗15⟩ =



c⃗L = (ξ, r⃗N ,⃗1N , e⃗0,sk · e⃗0, sk,e⃗0, E⃗ ,⃗bs, a⃗,⃗a′, as,r, sk)

c⃗R = (0, 0⃗N ,⃗0N , s⃗k
N
,⃗1N , 0,e⃗0 − 1⃗N , E⃗ − 1⃗Nβ ,⃗bs − 1⃗β , e⃗0,e⃗0, 0,0, 0)

(30)

⟨⃗1N , y⃗N ⟩.
∗ sk · e⃗0 ◦ 1⃗N = e⃗0 ◦ s⃗k: ⟨c⃗L, c⃗R ◦ v⃗1⟩ = 0.

– The sixth position of c⃗L is sk, i.e., it equals the last
position: ⟨c⃗L, u⃗11⟩ = 0.

Combing all the six condition of the outer equations
using the powers of randomness u, one can deduce the
generator

G⃗w = ((g||R⃗v⃗n

||C⃗−v⃗n

·Du3

· Cu4

epoch||
C⃗◦u

L ◦ R⃗◦u2

||C⃗◦u
R ||gu

4

epoch)
◦w ◦ P⃗ ||G⃗′). (31)

The dimension of G⃗w, G⃗′ and P⃗ is m = 7N+(N+1)β+5,
3N + (N + 1)β + 3 and 4N + 2, respectively.

A.1. The Protocol

Let θ⃗ =
∑3

i=0 z
i · v⃗i, ζ⃗ =

∑12
i=3 z

i · u⃗i, µ⃗ =
∑12

i=3 z
i ·

u⃗i + z16 · u⃗16, ν⃗ = z16 · u⃗16, ω⃗ =
∑15

i=12 z
i · w⃗i, α⃗ =

θ⃗−1 ◦ (ω⃗ − ν⃗), β⃗ = θ⃗−1 ◦ µ⃗, l(X) = c⃗L + α⃗ + s⃗L · X ,
r⃗(X) = θ⃗ ◦ (c⃗R+ s⃗R ·X)+ µ⃗ and t(X) = t2X

2+ t1X+ t0,
one can deduce equation (33).

Let G⃗′ = (g⃗0, g⃗1, g⃗2, g⃗3, g⃗4, g5, g6, g7) ←$

G3N+(N+1)β+3 where g⃗0, g⃗3, g⃗4 ∈ GN , g⃗1 ∈ GNβ , and
g⃗2 ∈ Gβ . Also, let H⃗ = (⃗h0, h⃗1, h⃗2, h⃗3, h⃗4, h⃗5, h⃗6)←$ Gm

where h⃗0 ∈ G4N+2, h⃗1 ∈ GN , h⃗2 ∈ GNβ , h⃗3 ∈ Gβ ,
h⃗4 ∈ GN , h⃗5 ∈ GN , and h⃗6 ∈ G3. Denote
g⃗′0 = g⃗0 ◦ h⃗1 ◦ h⃗3 ◦ h⃗4, g⃗′1 = g⃗1 ◦ h⃗2, and g⃗′2 = g⃗2 ◦ h⃗3. The
detailed protocol is shown in Protocol 4.

Appendix B.
Cryptanalysis of RingCT-3.0

In FC 2020, Yuen et al. proposed RingCT-3.0 [23],
[25] for blockchain confidential transactions to replace the
RingCT-1.0 of Monero [24] with a shorter size and stronger
security.

A1 ·A2 · (h2∥h3)
−1

=F rA · ĝvec(E)
1 · ĝvec(B)

2 · ga
S

3 · gr
S

4 · gx5 ·
hx

◦−1

5 · (h2∥h3)
−1 · P (ξ∥η∥1∥ê)

=F rA · (P ||G′)cL ·HcR

=A.

(34)

B.1. Basic Construction of RingCT-3.0

In [25], the authors consider the case of multiple input
coins and output coins. For ease of explanation, we consider
the case of one input coin and one output coin, i.e., k = 1 in
Section 5.1 of [25]. One can easily extend our cryptanalysis

to the case of multiple coins.
Let N denote the size of the ring, vk = (vk1, · · · , vkN )

be the verification keys of input coins (the ring), and
c = (c1, · · · , cN ) be the corresponding commitments of the
amounts of input coins. The relation we need to prove for
RingCT-3.0 is

RRCT-3.0 =

 (c, c̃,vk, u,
gc, hc, U)

∣∣∣∣
∃ ind, ṽ, r̃,∆, sk, s.t.,

c̃ = gr̃ch
ṽ
c ∧ ṽ ∈ [0, Vmax]

∧ vkind = gsk ∧ U = u
1
sk

∧ cind/c̃ = g∆c

 ,

(35)
where ind ∈ [1, N ] is the index of the ring that the prover
knows the secret key sk of vkind and the opening of the
commitment cind, c̃ ∈ G is the commitment of the output
amount ṽ ∈ Zp using randomness r̃ ∈ Zp, Vmax is the
maximum number of the amount, and U ∈ G is the key
image. One can split relation (35) into the following three
parts.
1) c̃ = gr̃ch

ṽ
c and ṽ ∈ [0, Vmax] mean that the commitment

of the output coin is well-formed, and the amount is
in the proper range. This relation can be fulfilled using
Bulletproofs, so we do not consider it here.

2) vkind = gsk means that the prover knows the private
key sk corresponding to one verification key in the ring.
U = u

1
sk means that the key image is well-formed.

3) cind/c̃ = g∆c means that the input amount equals the
output amount.

Let ĝ,h ∈ GN and g, h, gc, u, hc ∈ G be the generators
with unknown DL relations. Let bL ∈ ZN

p be a binary vector
where bL,j = 1 when j = ind and bL,j = 0 otherwise. The
zero-knowledge protocol of RingCT-3.0 without the range
proof part is shown in Protocol 5 where δ(y, z, w) = z2 +
w(z − z2) · ⟨1N ,yN ⟩ − z3 · ⟨1N ,1N ⟩.

B.2. Cryptanalysis of RingCT-3.0.

Next, we will construct an attack on RingCT-3.0, which
can pass the verification procedure without knowing any
secret key of vk and any opening of c.
1) Choose an amount v′ ∈ [0, Vmax] and two random num-

bers r̃′, r′ ∈ Zp, construct a commitment c̃′ = gr̃
′

c h
v′

c for
the new output coin, and a commitment c′ = gr

′

c h
v′

c for
a “forged” input coin (a coin never existed in the chain).
Since v′ ∈ [0, Vmax], one can construct a correct range
proof for c̃′. Denote ∆′ = r′ − r̃′.

2) Choose a random secret key sk′ ∈ Zp, and generate
a verification key vk′ = gsk

′
for the “forged” input

coin. Meanwhile, generate the key image U ′ = u
1

sk′ .
Choose an input coin from the ring, and denote its index
as ind (without knowing its secret key, amount, and
randomness). Construct bL and bR as RingCT-3.0 using
ind.



v⃗0 = (·, ·,·, ·,·, ·,y⃗N+(N+1)β , ·,·, ·,·, ·)
v⃗1 = (·, ·,·, y⃗N ,− y⃗N , ·,·, ·,·, ·,·, ·,·, ·)
v⃗2 = (·, ·,·, ·,·, ·,·, ·,·, y⃗N ,y⃗N , ·,·, ·)
v⃗3 = (·, ·,·, ·,·, ·,·, ·,·, y⃗N ,− y⃗N , ·,·, ·)
u⃗3 = (·, ·,·, ·,·, ·,·, ·,·, −y⃗N ,y⃗N , ·,·, ·)
u⃗4 = (·, ·,·, ·,·, ·,⃗1N , ·,·, ·,·, ·,·, ·)
u⃗5 = (·, ·,·, ·,·, ·,·, y⃗N+1 ⊗ 2⃗β , ·,− y⃗N+1 ,·, ·)
u⃗6 = (·, ·,·, ·,·, ·,·, ·,·, 1⃗N ,·, ·,·, ·)
u⃗7 = (1, ·,·, ·,·, ·,·, ·,·, −v⃗N ,·, −u,− u3, −u2)

u⃗8 = (·, y⃗N ,·, ·,·, ·,·, ·,·, ·,·, ·,−
N−1∑
i=0

yi, ·)

u⃗9 = (·, ·,y⃗N , ·,·, ·,·, ·,·, ·,·, ·,·, ·)
u⃗10 = (·, ·,·, y⃗N ,·, ·,− y⃗N , ·,·, ·,·, ·,·, ·)
u⃗11 = (·, ·,·, ·,·, y,·, ·,·, ·,·, ·,·, −y)

u⃗12 = (·, ·,·, ·,·, ·,·, ·,·, ·,·, ·,·, −
N−1∑
i=0

yi)

w⃗12 = (·, ·,·, y⃗N ,·, ·,·, ·,·, ·,·, ·,·, ·)
w⃗13 = (·, ·,·, ·,·, ·,− y⃗N , ·,·, y⃗N ,·, ·,·, ·)
w⃗14 = (·, ·,·, ·,·, ·,·, ·,·, y⃗N ,− y⃗N , ·,·, ·)
w⃗15 = (·, ·,·, ·,y⃗N , ·,·, ·,·, ·,·, ·,·, ·)
u⃗16 = (·, ·,·, ·,·, ·,y⃗N+(N+1)β , ·,·, ·,·, ·)

(32)

t0 = ⟨c⃗L, θ⃗ ◦ c⃗R⟩+ ⟨α⃗, θ⃗ ◦ c⃗R⟩+ ⟨c⃗L, µ⃗⟩+ ⟨α⃗, µ⃗⟩

=

3∑
i=0

zi · ⟨c⃗L, c⃗R ◦ v⃗i⟩+
15∑

i=12

zi · ⟨c⃗R, w⃗i⟩ − z16 · ⟨c⃗R, u⃗16⟩+
12∑
i=3

zi · ⟨c⃗L, u⃗i⟩+ z16 · ⟨c⃗L, u⃗16⟩+ ⟨α⃗, µ⃗⟩

=z4 + z9 · ⟨⃗1N , y⃗N ⟩+ z13 · ⟨⃗1N , y⃗N ⟩+ z15 · ⟨⃗1N , y⃗N ⟩+ z16 · ⟨⃗1N+(N+1)β , y⃗N+(N+1)β⟩
=δ

(33)

3) We give the protocol for the “forged” proof in Protocol
5. The goal of the “forged” proof is that the attacker
can legally spend a coin that never existed. The main
drawback of RingCT-3.0 is that the verifier cannot ensure
B2 consists of (h, ĝind) or (h, ĝind, vkind, vk′, cind, c′)
by the hiding property of the commitment scheme.
Meanwhile, the construction of B2 cannot be fixed by
the verification procedure and defaults to be h and ĝind
in the soundness proof of RingCT-3.0 (Appendix A of
[25]). The main idea of our cryptanalysis is that one can
replace the commitment and the verification key of a
legal input coin in the ring with a “forged” commitment
and a “forged” verification key silently as follows.
a) After receiving d1, d2 from the verifier, the prover

computes B′
2 = hα2 · ĝind · (vkind · vk′−1)

1
d2 · (cind ·

c′−1)
d1
d2 instead of B2 = hα2 · ĝind. Meanwhile, the

prover computes z′sk = rsk + sk′ · x and z′∆ = r∆ +

∆′·x instead of zsk = rsk+sk·x and z∆ = r∆+∆·x.
During the verification procedure, since

S1 · (B1 · (c̃′)−d1 ·B′−d2

2 )x

=hzα1
−d2zα2 · grsk · gd1r∆

c · [vkind · cd1

ind · g
d2

ind · (c̃
′)−d1

· g−d2

ind · (vk
−1
ind · vk

′) · (c−d1

ind · c
′d1)]x

=hzα1−d2zα2 · grsk · gd1r∆
c · vk′x · (c′/c̃′)xd1

=hzα1−d2zα2 gz
′
skg

d1z
′
∆

c ,

the prover can eliminate vkind and cind from B1

using B′
2, and append the verification key vk′ and

the commitment c′ of the “forged” coin into B1.
Meanwhile, since sk′, ∆′ and the opening of c̃′ are
known, the proof can pass the fifth equality of the
verification procedure.

b) Since S′
3 · ux = U ′rsk+x·sk′

= U ′z′
sk , the proof can

pass the sixth equality of the verification procedure.



ΠAZ : ⟨P(R⃗, C⃗, C⃗L, C⃗R, D,Cep, gep; ls, sk, r, as, a⃗),

V(R⃗, C⃗, C⃗L, C⃗R, D,Cep, gep)⟩

V computes:

F ←$ G, P⃗ ←$ G5N+2, G⃗′ ←$ G3N+2β+4, H⃗ ←$ Gm

V → P : F, P⃗ , G⃗′, H⃗

P computes:

rA,1 ←$ Zp, A1 = F rA,1 · g⃗′e⃗00 · g⃗′E⃗1 · g⃗ ′⃗bs2 · g⃗a⃗3 · g⃗a⃗
′

4 gas
5 · g

r
6 · gsk7

P → V : A1

V computes:
u, v ←$ Zp

V → P : u, v

. . . . . . . . . . . . . . . . . . . . . . . . . . . In-line Σ-protocol . . . . . . . . . . . . . . . . . . . . . . . . . . .

P computes:

rA,2, rA,3 ←$ Zp, c⃗, d⃗←$ Z5N+2
p

A2 = F rA,2 · P⃗ (ξ∥r⃗∥⃗⃗1N∥e⃗0∥sk·e⃗0∥r·e⃗0∥sk) · h⃗(0∥e⃗0∥0⃗N∥s⃗k∥1⃗N∥1⃗N∥0)
0 ,

A3 = F rA,3 · P⃗ c⃗ · h⃗d⃗0
P → V : A2, A3

V computes:
e←$ Zp

V → P : e

P computes:

θ1 = rA,3 + e · rA,2,θ2 = c∥d+ e · (ξ∥η∥1∥ê∥0∥e⃗0∥0⃗N∥s⃗k∥1⃗N∥1⃗N∥0)
P → V : θ1,θ2

V : Verification Procedure:

F θ1 · (P ∥h⃗0)
θ2 ?

= A3 ·Ae
2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If verification passed, both prover and verifier compute

and verifier compute A = A1 ·A2 · (h1∥h2∥h3∥h4)
−⃗1

2N+2β

· h1⃗N

5

V computes:
w ←$ Zp

V → P : w

P computes:

rS ←$ Zp, s⃗L ←$ ZN
p , s⃗R ←$ ZN

p : ∀i ∈ [m], c⃗R[i] = 0⇒ si = 0

S := F rSH⃗ s⃗LG⃗s⃗Rw

P → V : S

V computes: y, z ←$ Zp

V → P : y, z

P computes:
Define the following polynomials (in X) :
l(X) := c⃗L + α⃗+ s⃗L ·X, r(X) := θ ◦ (c⃗R + s⃗R ·X) + µ⃗,

t(X) :=< l(X), r(X) >= t2 ·X2 + t1 ·X + t0 and t0 = δ

τ1, τ2 ←$ Zp, T1 = gt1F τ1 , T2 = gt2F τ2P → V : T1, T2

P computes:

τ = τ1x+ τ2x
2, r = rA + rS · x, (⃗l, r⃗, t) = (l(x), r(x), t)

P → V : τ, r, l⃗, r⃗, t

V check if the following relations hold:

t
?
=< l⃗, r⃗ >, F rG⃗l⃗

wH⃗
θ⃗◦−1◦r⃗ ?

= ASxG⃗α⃗
wH⃗

β⃗ , GtF τ ?
= GδT x

1 T
x
2

Protocol 4: The protocol of Anonymous Zether.

Meanwhile, since sk′ is generated randomly, U ′ does
not exist in the former key image set.

c) Since B1, A, S1, S3, T1, T2, τx, µ, zα1 , zα2 , t̂, l
and r are generated as RingCT-3.0, the proof can
pass the other equalities of the verification procedure.
Hence, the “forged” proof can pass the verification
procedure without knowing any secret key of vk and
any opening of c.

By the analysis above, one can forge a proof and spend
any coin of any amount he wants, and the verification proce-
dure would never catch him. For the case of multiple input
coins and output coins, we need to adjust the construction
of B2 and make sure that all the legal verification keys and
all the legal commitments can be eliminated from B1, and
the verification keys and the commitments of the “forged”
coins can be appended into B1.

Appendix C.
Security Proof of Theorem 1

We give the security proof of Theorem 1 as follows.

Proof. 1) Perfect completeness. Perfect completeness fol-
lows directly.

2) Perfect special honest-verifier zero-knowledge.
Given all the randomness (y, z, x) from the adversary,
we construct a simulator that produces one proof
(S, T1, T2, τx, µ, t̂, l, r,η) without the witness
(bL, bR,a, ρL). The distribution of the “produced”
proof is indistinguishable from a valid proof.
The simulator randomly chooses (T2, τx, µ, t̂, l, r,η)
from their respective domain and then calculates S and
T1 according to the verification equations in Protocol 1
as follows:

S = (hµ · gl+z·1n1 · gη2 · (h′)
r−z·α◦yn1−

k∑
i=1

zi+1·ζi
P̃−1)x

−1

T1 = (gt̂−δ(y,z) · hτx · T−x2

2 )x
−1

All proof components (S, T1, T2, τx, µ, t̂, l, r,η) are cho-
sen randomly or deduced by the verification equations,
the distribution is identical to a real one. This protocol
has perfect special honest-verifier zero-knowledge since
the running time of this simulation is quite efficient, the
distribution is the same as a real one, and the “produced”
proof can pass the verification procedure.

3) Computational witness-extended emulation. To prove
the witness-extended emulation, we construct an extrac-
tor χinner that rewinds the protocol 3 · k · n1 times
for different (x, y, z) and deduces 3 · k · n1 different
transcripts.
◦ From the second and third verification equations in

Protocol 1, one can deduce:

P̃ · Sx = hµ · gl+z·1n1 · gη2 · (h′)
r−z·α◦yn1−

k∑
i=1

zi+1·ζi

(36)
For given values of (y, z), using two valid transcripts
for different x challenges x1 and x2, one can compute



ξ1 and ξ2 such that ξ1 + ξ2 = 1 and x1ξ1 + x2ξ2 = 0.
By equation (36), we have

P̃ = hξ1µ1+ξ2µ2 · gξ1·l1+ξ2·l2+z·1n1 · gξ1·η1+ξ2·η2

2

· (h′)
ξ1·r1+ξ2·r2−z·α◦yn1−

k∑
i=1

zi+1·ζi
(37)

Let P̃ = hρ
′
Lgb

′
Lga

′

2 h
b′R with unknown variables ρ′L ∈

Zp, b′L, b
′
R ∈ Zn1

p , and a′ ∈ Zn2
p , and then we can

deduce the following equations from (37).

ρ′L = ξ1µ1 + ξ2µ2

b′L = ξ1 · l1 + ξ2 · l2 + z · 1n1

b′R = (ξ1 · r1 + ξ2 · r2) ◦ y−n1 − z ·α

−
k∑

i=1

zi+1 · ζi ◦ y−n1

a′ = ξ1 · η1 + ξ2 · η2

(38)

Meanwhile, for given values of (y, z), using two valid
transcripts for different x challenges x1 and x2, one
can compute ξ′1 and ξ′2 such that ξ′1 + ξ′2 = 0 and
x1ξ

′
1+x2ξ

′
2 = 1. Then, one can deduce the only value

ρ′S ∈ Zp, s′L, s
′
R ∈ Zn1

p , and s′M ∈ Zn2
p such that

S =hξ
′
1µ1+ξ′2µ2 · gξ

′
1·l1+ξ′2·l2 · g2ξ

′
1·η1+ξ′2·η2

· h′ξ′1·r1+ξ′2·r2

=hρ
′
Sg1

s′Lg2
s′Mhs

′
R

(39)

Suppose for any other set of challenges (y, z, x), the
extractor can compute a different representation of
P̃ and S. Then, this yields a non-trivial DL relation
among generators h, g, g2 and h, which contradicts
the DL relation assumption.
Combining with equation (36) and the representations
of P̃ and S, one can deduce that for all challenges
(y, z, x):

l =b′L − z · 1n1 + x · s′L (40)

r =yn1 ◦ (b′R + z ·α+ x · s′R) +
k∑

i=1

zi+1 · ζi (41)

η =a′ + x · s′M (42)

Suppose these equalities do not hold for all challenges
and (l, r) from the transcript. In that case, we have
two distinct representations of the same group element
using generators h, g, g2, and h. This would be a non-
trivial DL relation.

◦ From the first verification equation in Protocol 1, one
can deduce that

gt̂−δ(y,z)hτx = T x
1 · T x2

2 (43)

For given values of (y, z), using three valid transcripts
of different x challenges x1, x2, and x3, one can
deduce that:

gt̂1−t̂2hτx1
−τx2 = T x1−x2

1 · T x2
1−x2

2
2 (44)

gt̂3−t̂2hτx3
−τx2 = T x3−x2

1 · T x2
3−x2

2
2 (45)

where (t̂1, τx1
), (t̂2, τx2

), and (t̂3, τx3
) is the transcript

corresponding to x1, x2, and x3, respectively. Using
linear combinations of (44) and (45), one can deduce
the only values t′1, t

′
2, τ

′
1, τ

′
2, s.t., T1 = gt

′
1hτ

′
1 and T2 =

gt
′
2hτ

′
2 .

Substituting the representations of T1 and T2 into (43),
we can deduce that

t̂ = δ(y, z) + t′1x+ t′2x
2 (46)

Otherwise, this will yield a non-trivial DL relation
between g and h.
Let p(X) = ⟨l(X), r(X)⟩ and t(X) = t′0 + t′1X +
t′2X

2, for all (y, z) challenges and three distinct chal-
lenges X = xj , j ∈ [1, 3]:

t′0 + t′1X + t′2X
2 − p(X) = 0

with t′0 = δ(y, z) and p(X) = p0 + p1X + p2X
2 =

⟨l(X), r(X)⟩. Since t(X) − p(X) is of degree 2,
but has at least three roots x1, x2, x3, and then we
have t(X) − p(X) = 0, i.e., t(X) = ⟨l(X), r(X)⟩.
Therefore, p0 = t′0. By equations (40) and (41), we
have for all y, z challenges:

⟨l, r⟩ =⟨b′L − z · 1n1 + x · s′L,yn1 ◦ (b′R + z ·α

+ x · s′R) +
k∑

i=1

zi+1 · ζi⟩

=−
k∑

i=1

zi+2 · ⟨ζi,1n1⟩+
k∑

i=1

zi+1 · ⟨b′L, ζi⟩

− z2 · ⟨α,yn1⟩+ z · [⟨α ◦ b′L,yn1⟩
− ⟨b′R,yn1⟩] + ⟨b′L,yn1 ◦ b′R⟩+ t′1x+ t′2x

2

=δ(y, z) + t′1x+ t′2x
2

(47)
Then, (47) is equivalent to:

k∑
i=1

zi+1 · [⟨b′L, ζi⟩−di]+z · ⟨α◦b′L−b′R+β,yn1⟩

+ ⟨b′L ◦ b′R + γ,yn1⟩ = 0 (48)

If this equation holds for n1 distinct y challenges and
k distinct z challenges, one can infer that b′L ◦ b′R =
−γ, α ◦ b′L − b′R + β = 0n1 , and ⟨b′L, ζi⟩ = di for
1 ≤ i ≤ k.
Meanwhile, from (38), one can deduce the only value
a′ that satisfies P̃ = hρ

′
Lgb

′
Lga

′

2 h
b′R . Otherwise, there

is a non-trivial DL relation. Hence, the extracted value
(b′L, b

′
R,a

′, ρ′L) is a valid witness for relation R̃inner

of (7). Meanwhile, the extracted value is also a valid
witness for relation Rinner of (2) since R̃inner and
Rinner are equivalent.
The extractor rewinds the prover 3 · k · n1 times in
total. The extraction is very efficient, and the number
of transcripts is a polynomial of the security parameter.



Appendix D.
Applications: Ring Signatures

Ring signatures allow a signer to dynamically choose
a set of verification keys vk = (vk1, · · · , vkN ) (including
his own) and sign the message on behalf of the set without
revealing his identity. The verifier can ensure that one user
in the verification key set vk signs the message without
knowing who signs it.

A ring signature scheme consists of four PPT algorithms
(Setup, UKGen, Sign, Vfy) for generating public parameters
available to all users, generating keys for users, signing
messages, and verifying ring signatures.

Next, we will give an SHVZK protocol for the one-out-
of-N proof of knowledge using the model of Section 3, i.e.,
a zero-knowledge protocol Π1-N for the following relation:

R1-N = {(g,vk)|∃ vk, sk, s.t., vk ∈ vk ∧ vk = gsk}, (49)

where vk = (vk1, · · · , vkN ) ∈ GN , g, vk ∈ G and sk ∈
Zp.

D.1. One-out-of-N Proof of Knowledge

In this section, we construct an SHVZK protocol for
the one-out-of-N proof of knowledge using the model of
Section 3, i.e., one can deduce R1-N of (49) from RKKDL

of (1) as follows.
1) Let m = 1, n1 = N , n2 = 1, k = 1, f(bL) = bL ◦

bL− bL = 0N , ϕ1(bL) =
N∑
i=1

bL,i, d1 = 1, q1,1 = vk =

{vk1, · · · , vkN}, q2 = {g} and ψ1 = {−sk} in RKKDL.
2) Since f(bL) = bL ◦ bL − bL = bL ◦ (bL − 1N ) = 0N ,

each component of bL is either 0 or 1. Since ϕ1(bL) =
N∑
i=1

bL,i = 1, bL has exactly one component that is “1”.

Meanwhile, qbL1,1 · q
ψ1

2 = vkbL · g−sk = 1 means that
there exists vk ∈ vk and sk ∈ Zp such that vk = gsk,
so R1-N can be deduced directly.
Therefore, one can use ΠKKDL and Πinner to construct a

zero-knowledge protocol Π1-N for R1-N . Since m = 1 and
n2 = 1, the in-line Σ-protocol of Protocol 2 is no longer
needed. At the beginning of the protocol, the prover commits
(−sk, bL) and sends P = hρ·ĝbL1 ·ĝ

−sk
2 to the verifier, where

ρ←$ Zp. Secondly, the verifier chooses e←$ Zp and sends
it to the prover. After that, the prover and verifier proceed
to Πinner with g1 = ĝ1 ◦ vke and g2 = ĝ2 ◦ ge.

The security of Π1-N is shown in Theorem 4. The total
proof size of Π1-N is 2 · ⌈log2(N)⌉+10 using the improved
inner-product argument and the Fiat-Shamir heuristic (since
n2 = 1 and |η| = 1, we do not use the improved inner-
product argument to η of Protocol 1).

Theorem 4 (Security of Π1-N ). The protocol Π1-N has
perfect completeness, perfect special honest-verifier zero-
knowledge, and computational witness-extended emulation.

The proof of Theorem 4 can be deduced from the proofs
of Theorem 2 and Theorem 1.

The above protocol can be converted to a signature
of knowledge (SoK) [39] which implies a ring signature
scheme following the methods of [31].



Prover Verifier

d1, d2 ←$ Zp

d1, d2

Both prover and verifier

compute g ← vk ◦ cd1 ◦ ĝd2

Compute:
α1, α2, β, ρ, rα1 , rα2 , rsk, r∆ ←$ Zp

sL, sR ←$ ZN
p

B1 = hα1gbL = hα1 · vkind · cd1ind · ĝ
d2
ind

A = hβ · hbR , S2 = hρgsLhsR

S1 = hrα1
−d2rα2 grsk · gd1r∆c ,

B2 = hα2 · ĝind, S3 = Ursk

B′
2 = hα2 · ĝind · (vkind · vk′−1)

1
d2 · (cind · c′−1)

d1
d2

S′
3 = U ′rsk

B1, B2, A, S1, S2, S3

B1, B
′
2, A, S1, S2, S

′
3

y, z, w ←$ Zp

y, z, w

Compute:

l(X) = bL − z · 1N + sL ·X
r(X) = yN ◦ (w · bR + wz · 1N + sR ·X) + z2 · 1N

t(X) = ⟨l(X), r(X)⟩ = t0 + t1X + t2X
2

τ1, τ2 ←$ Zp, T1 = gt1hτ1 , T2 = gt2hτ2

T1, T2

x←$ Zp

x

Compute:

l = l(x) = bL − z · 1N + x · sL
r = r(x) = yN ◦ (w · bR + wz · 1N + x · sR) + z2 · 1N

t̂ = ⟨l, r⟩
τx = τ2 · x2 + τ1 · x, µ = α1 + β · w + ρ · x,
zα1 = rα1 + α1 · x, zα2 = rα2 + α2 · x,
zsk = rsk + sk · x, z∆ = r∆ +∆ · x

z′sk = rsk + sk′ · x, z′∆ = r∆ +∆′ · x

τx, µ, zα1 , zα2 , zsk, z∆, t̂, l, r

τx, µ, zα1 , zα2 , z
′
sk, z

′
∆, t̂, l, r

Verification procedure:

Let h′ = h◦y−N

,

gt̂−δ(y,z,w)hτx ?
= T x

1 · T x2

2

Let T = B1 ·Aw · Sx
2 · g−z·1N

· (h′)
wz·yN+z2·1N

T
?
= hµ · gl · (h′)

r

t̂
?
= ⟨l, r⟩

hzα1
−d2zα2 gzskgd1z∆c

?
= S1(B1 · c̃−d1 ·B−d2

2 )x

Uzsk ?
= S3 · ux

hzα1
−d2zα2 gz

′
skg

d1z
′
∆

c
?
=

S1 · (B1 · (c̃′)−d1 ·B′−d2
2 )x

U ′z′sk ?
= S′

3 · ux

Protocol 5: The RingCT-3.0 and the cryptanalysis of RingCT-3.0 (the cryptanalysis procedures are shown in the box that
replaces the corresponding steps of the original protocol).
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