
Uncertainty Estimation in Neural
Network-enabled Side-channel Analysis and

Links to Explainability
Seyedmohammad Nouraniboosjin and Fatameh Ganji

Worcester Polytechnic Institute, Worcester, USA
snouraniboojin@wpi.edu,fganji@wpi.edu

Abstract. Side-channel analysis (SCA) has emerged as a critical field in securing
hardware implementations against potential vulnerabilities. With the advent of
artificial intelligence(AI), neural network-based approaches have proven to be among
the most useful techniques for profiled SCA. Despite the success of NN-assisted
SCA, a critical challenge remains, namely understanding predictive uncertainty. NNs
are often uncertain in their predictions, leading to incorrect key guesses with high
probabilities, corresponding to a higher rank associated with the correct key. This
uncertainty stems from multiple factors, including measurement errors, randomness
in physical quantities, and variability in NN training. Understanding whether this
uncertainty arises from inherent data characteristics or can be mitigated through
better training is crucial. Additionally, if data uncertainty dominates, identifying
specific trace features responsible for misclassification becomes essential.
We propose a novel approach to estimating uncertainty in NN-based SCA by leveraging
Rényi entropy, which offers a generalized framework for capturing various forms of
uncertainty. This metric allows us to quantify uncertainty in NN predictions and
explain its impact on key recovery. We decompose uncertainty into epistemic (model-
related) and aleatoric (data-related) components. Given the challenge of estimating
probability distributions in high-dimensional spaces, we use matrix-based Rényi
α-entropy and α-divergence to better approximate leakage distributions, addressing
the limitations of KL divergence in SCA. We also explore the sources of uncertainty,
e.g., resynchronization, randomized keys, as well as hyperparameters related to NN
training. To identify which time instances (features in traces) contribute most to
uncertainty, we also integrate SHAP explanations with our framework, overcoming
the limitations of conventional sensitivity analysis. Lastly, we show that predictive
uncertainty strongly correlates with standard SCA metrics like rank, offering a
complementary measure for evaluating attack complexity. Our theoretical findings
are backed by extensive experiments on available datasets and NN models.
Keywords: NN-assisted SCA. · Uncertainty. · Metrics.

1 Introduction
Assessing the security of an implementation against side-channel analysis (SCA) is a
complex task. Since their introduction in the 1990s [Koc96, KJJ99], extensive research has
been dedicated to analyzing physical leakage in the form of time, power, electromagnetic
emanation, etc. This line of research focuses on evaluating mechanisms based on a solid
theoretical foundation. A key advancement toward establishing rigorous, information-
theoretic security has been the introduction of profiled SCA, which uses an open sample
to estimate the device’s leakage model [CRR02]. Profiled SCA represents the worst-case
security scenario for an implementation, as there is no universal attack strategy capable of

mailto:snouraniboojin@wpi.edu,fganji@wpi.edu

2 Uncertainty Estimation in NN-enabled SCA

extracting secret information from physical observables without prior knowledge of the
device’s leakage distribution [SMY09, WOS14, MCHS23]. [HRG14] has established that an
optimal attack strategy from an information-theoretic perspective relies on distinguishing
the correct key with regard to the probability distribution of leakage conditioned on the
targeted secret. Establishing such an optimal distinguisher is known to be highly non-trivial
due to the unknown true leakage distribution of a device that is complex to even estimate,
especially in the presence of countermeasures like masking [CJRR99]. In fact, if one can
perfectly learn the probability density function (pdf) of the leakage conditioned on the
targeted secret, it can be further involved in a maximum likelihood distinguisher to obtain
the optimal solution cf. [MDP20]. In the absence of knowledge about this pdf, supervised
classification using deep neural networks (NNs) has emerged as a sub-optimal solution.

Despite major breakthroughs and increases in the effectiveness of NN-enabled attacks,
obstacles should be faced to link NNs’ concepts widely adopted in machine learning and
SCA. One of the already known missing links in this regard is the link between performance
metrics in both domains. While key rank, guessing entropy, and key discrimination success
rate [SMY09] have been used as metrics in SCA, accuracy serves as the primary metric
in machine learning. The lack of a direct equivalent for accuracy in SCA severely limits
not only the evaluation of SCA effectiveness cf. [BPS+18, PHJ+19, MDP20], but also our
ability to explain why an NN makes a correct/wrong key guess.

In fact, regardless of their applications, NN classifiers often assign a high prediction
probability to an incorrect label, i.e., NNs are overconfident in their predictions [TB24,
GTA+23]. This means that an NN model can be uncertain in its predictions even with a
high predictive probability obtained at the end of the pipeline (the softmax output, for
instance). In the context of SCA, the uncertainty can be translated to wrong guesses with
high probabilities delivered by the NN (i.e., the correct key has a high rank instead of
being ranked first). SCA-specific metrics, unfortunately, fail to provide a clear assessment
of the model’s predictive uncertainty.

The root cause of uncertainty in NN-enabled SCA can be measurement errors, random-
ness in physical quantities, and errors in the NN’s architecture specification or its training.
Calibration issues, limitations in precision, as well as human errors during measurement
account for measurement errors. Randomness in physical quantities encompasses thermal
noise, manufacturing, or environmental variations and can influence the consistency of
patterns in traces, making the traces less exploitable [DCEM18, MHK+24, GOKT16].
On the other hand, the training process of an NN involves numerous parameters, e.g.,
batch size, optimizer, learning rate, stopping criteria, and regularization. Other stochas-
tic elements like batch generation and weight initialization introduce more randomness
during training [LBH15]. These directly lead to a strong factor for uncertainties in NNs’
predictions.

The key question to address here is whether it is possible to explain why an NN’s key
guess is incorrect. In other words, one seeks to understand whether the uncertainty stems
from the inherent characteristics of the data or if it can be mitigated through improved
NN training. The second question that arises is: if data characteristics are determined as
the primary contributor to predictive uncertainty in an NN employed in SCA, can one
identify which trace features led to ambiguity in guessing the correct key?

Contribution. Our paper positively answers these questions by making the following
contributions. We stress that we do not treat the concepts borrowed from the machine
learning field as simple, “plug-and-play” solutions; instead, we adapt and tailor them
to meet the specific needs of SCA. Through extensive experimentation, we validate our
proposed uncertainty estimation framework and its implications for NN-based SCA, as
detailed below.

1. We introduced the predictive uncertainty metric quantified by looking at the entropy of

S. Nouraniboosjin et al. 3

the classification output conditioned on the input traces. In the context of SCA with
high dimensional data, the precise probability density function pdf estimation required
to approximate the entropy is infeasible. Therefore, we employ the matrix-based Rényi
α-entropy. Moreover, as the side-channel leakage can follow a multimodal and/or
multivariate distribution [LPMS18, LM18, RBAF24, MMOS16, BGH+17, GLRP06,
RBFA21, DCGRP19, Riv08, SMY09], conventional measures for approximating proba-
bility distributions cannot be employed. After discussing why one of the most popular
measures, i.e., Kullback-Leibler divergence, fails to approximate the leakage distribu-
tion, we propose using α-divergence [Ama12, ZR95] to approximate the pdfs and then
compute the predictive uncertainty. In doing so, we also examine the relationship
between uncertainty and standard SCA evaluation metrics, such as rank. Our findings
reveal a strong relationship between uncertainty levels and rank. As opposed to an
ideal case, our work demonstrates that higher predictive uncertainty often corresponds
to lower-rank key guesses in existing NN-assisted SCA.

2. The second contribution of our paper is related to how explainability links to predictive
uncertainty in SCA. Our approach explains whether the uncertainty arises from data
uncertainty and/or model uncertainty. As a prime example, we evaluate the impact of
desynchronization and key randomization on model uncertainty. Using datasets that
introduced such characteristics, we show that they not only reduce attack performance,
but also increase uncertainty in model predictions. We further take into account
hyperparameters closely related to the NN training, including the number of epochs,
the number of training/evaluation traces, and the network configuration. In this regard,
we highlight the fact that the uncertainty can explain whether better hyperparameters
could improve the attack. Such an explanation helps the evaluators understand whether
the uncertainty is reducible, i.e., can be resolved by, e.g., feeding more traces to the
NN. Hence, the uncertainty metric directly connects the NN performance to the attack
cost and effectiveness.

3. Our third contribution deals with which time instance(s) in a trace causes uncertainty.
The existing method in machine learning for this is uncertainty sensitivity analysis, which
is improper in the context of SCA. The reason is that if a leakage trace is segmented
into multiple sub-traces corresponding to successive operations, these sub-traces are
likely to exhibit some degree of dependency. In other words, a correlation exists
between successive leakage points, making multivariate statistical methods particularly
suitable for SCA [CRR02]. Therefore, we conduct an in-depth analysis of time sample
contributions using SHapley Additive exPlanations (SHAP) [LL17] to identify the most
critical time features influencing model uncertainty. Clearly, given that side-channel
traces contain thousands of time features, not all contribute equally to classification
tasks. By integrating SHAP values with uncertainty estimations, we determine which
time samples are most responsible for the uncertainty in model predictions, providing
valuable insights for optimizing SCA models and improving attack efficacy.

1.1 Organization of the Paper
The remainder of this paper is organized as follows. Section 2 provides a detailed background
on profiled SCA and its evaluation metrics. In this section we also introduce uncertainty
quantification techniques, SHAP values and the datasets that we used for our experiments.
Section 3 details our methodology for uncertainty analysis in NN-enabled SCA. Section 4
presents extensive experimental results on benchmark datasets, focusing on uncertainty
analysis under various conditions, such as desynchronization, calibration or different
training setups. Section 5 concludes the paper by summarizing our findings, discussing
their implications for SCA, and suggesting directions for future research.

4 Uncertainty Estimation in NN-enabled SCA

2 Background

2.1 Notations
In this paper, we adopt calligraphic letters such as X to represent sets. Correspondingly,
uppercase letters, such as X, denote random variables (random vectors are represented
as X), while lowercase letters like x (or x for vectors) indicate specific realizations of
these random variables. Matrices are distinguished using bold capital letters. The i-th
component of a vector x is expressed as x[i], whereas the i-th observation of a random
variable X is written as xi. The pdf of a continuous random variable X is denoted as
fX , where fX(x) = p(X = x). The expected value is represented by E[·], which may be
sub-scripted by a random variable, as in EX [·], or by a probability distribution, written
as EfX

[·], to specify the context in which the expectation is computed. Formulation of
Shannon’s conditional entropy is H(y | x) = H(y, x) − H(x), whereas mutual information
(MI) and conditional mutual information (CMI) is I(x; y) = H(x) + H(y) − H(x, y) and
I(x; y|x′) = H(x, x′) + H(y, x′) − H(x, y, x′) − H(x′). Here, H denotes entropy or joint
entropy: H = −

∑
x∈X

p(x) log p(x) and p(x) denotes the probability of random variable X

taking value x.

2.2 Profiled Side-Channel Analysis
SCA exploits the observations L obtained during the operation of an algorithm to extract
its secret [BPS+18]. When an SCA adversary gains control over an open device (i.e., a
device where she can manipulate at least some inputs, including the secret), they can
execute a specific class of attacks known as profiling attacks. A profiling SCA consists of
two primary phases: a profiling phase and an attack phase [BPS+18]. For each possible
key k ∈ K, the attacker computes an estimated probability distribution function ĝk as
follows:

gk : (ℓ, p) 7→ p(L = ℓ | (P, K) = (p, k)). (1)

The estimated function ĝk is obtained from a profiling set Dprofiling
.= {(ℓi, pi, ki)}

Np

i=1,
where Np represents the number of traces ℓi. These traces are collected under known
plaintext chunks pi and key values ki. Throughout this paper, the trace set is denoted by
L, while the corresponding set of inputs is referred to as X .

In the attack phase, the attacker collects an attack set from a closed device, denoted as
Dattack

.= {(ℓi, pi)}Na
i=1, where the unknown secret, say k∗, remains fixed but undisclosed.

The attacker’s goal is to recover this key. For traces in Dattack, a score based on the
maximum-likelihood of each hypothetical key can be obtained as

dNa[k] =
Na∏
i=1

Pr((P, K) = (pi, k) | L = ℓi) =
Na∏
i=1

Pr(L = ℓi | (P, K) = (pi, k))fL(ℓi)
fP,K(pi, k) . (2)

where Bayes’ theorem has been applied to derive the equation. The posterior probabilities
p(L = ℓi | (P, K) = (pi, k)) are obtained from the generative model built during the
profiling phase.
Metrics for SCA. In the realm of SCA, model performance is often assessed using the
rank function. Let k∗ ∈ K denote the true key used during Dprofiling acquisition. The rank
function of a model ĝ trained on Dprofiling and tested on Dattack is:

rank(ĝ, Dprofiling, Dattack, n) = |{k ∈ K | dNa[k] > dNa[k∗]}|, (3)

where dNa[k] represents the score for candidate k, as defined in Equation 2. The score
is derived from the conditional probability model built on Dprofiling and evaluated on the

S. Nouraniboosjin et al. 5

first n traces in Dattack. If k∗ achieves the highest score, the rank is 0; if it has the lowest,
the rank is |K| − 1. Since the rank varies based on the traces used, it is common practice
to calculate it across different dataset chunks and determine the average rank, also known
as guessing entropy [MPP16].

2.3 Matrix-based Estimation of Rényi Entropy
When using a generalized version of Shannon entropy—specifically Rényi entropy—information-
theoretic measures can be computed through functionals applied to normalized positive
definite matrices. These matrices are constructed by evaluating a positive definite kernel
on all pairs of data points [GRP14, YWJP20], which implicitly maps the data into a
reproducing kernel Hilbert space (RKHS) of functions. This approach enables the analysis
of information quantities without requiring explicit estimation of the underlying probability
distribution of the data.

Definition 1. (cf. [YP19]) Consider n samples {xi
1, xi

2, · · · , xi
k}n

i=1, where each sample
contains k (k ≥ 2) measurements, we define the kernels κ1 : X1 × X1 7→ R, · · · , κk :
Xk × Xk 7→ R (Xz = x1

z, · · · , xn
z with 1 ≤ z ≤ k). The kernels are real-valued positive

definite and infinitely divisible [Bha06, YP19]. The Rényi’s α-order joint-entropy for k
variables is

Jα(X1, · · · , Xk) = Sα

(
A1 ⊙ · · · ⊙ Ak

tr(A1 ⊙ · · · ⊙ Ak)

)
, (4)

where (A1)ij = κ1(xi
1, xj

1), · · · , (Ak)ij = κk(xi
k, xj

k). Here, tr(·) and ⊙ denote the
transpose and Hadamard product operators, respectively. Furthermore, the function Sα(·)
is defined as follows.

Sα(A) = 1
1 − α

log2(tr(Aα)) = 1
1 − α

log2

n∑
i=1

λi(Aα), (5)

where λi(A) denotes the ith eigenvalue of A.

The relationship between the matrix A in Equation (5) and the Gram matrix K
can be formulated as Aij = Kij

n
√

KiiKjj

. In order to approximate Shannon entropy, the
information quantities are computed by setting α = 1.01 in the matrix-based Rényi entropy
formula [GP13, GRP14].

2.4 SHAP Values
SHAP (SHapley Additive exPlanations) values provide an interpretable method to un-
derstand the contributions of individual features in a machine learning model. Based on
cooperative game theory, SHAP fairly attributes the prediction of a model to its input
features by considering their marginal contributions across all possible feature subsets
[SREG+25].

Definition 2. For a model f : X → R and a set of input features N , the SHAP value ϕi

for feature i ∈ N is defined as:

ϕi =
∑

S⊆N \{i}

|S|! · (|N | − |S| − 1)!
|N |! [f(S ∪ {i}) − f(S)] , (6)

where S represents a subset of features, and f(S) is the model output when only the features
in S are included.

6 Uncertainty Estimation in NN-enabled SCA

SHAP ensures additivity and fairness: the sum of contributions from all features equals
the model’s output. This property makes SHAP particularly suitable for analyzing time
sample contributions in side-channel traces. By applying SHAP to profiled SCA, we
can identify which time samples have the greatest impact on model predictions and key
recovery performance.

2.5 Datasets
This paper uses two versions of the ASCAD dataset, which serve as benchmarks for
evaluating the performance of NN-based SCA models.
ASCAD Fixed (ASCAD-f). The ASCAD fixed dataset targets an 8-bit AVR microcon-
troller running a masked AES-128 implementation. Electromagnetic (EM) emanations are
recorded as side-channel traces. The dataset consists of a profiling set with 50,000 traces
and an attack set with 10,000 traces. Each trace contains 700 features extracted from a
fixed time window, and the profiling and attack sets use the same encryption key. The
attack focuses on recovering the third key byte, which corresponds to the first masked
intermediate value. This dataset also has traces with parametrized desynchronization to
check the efficiency of the algorithm against jitter, here we also use traces with 50 and 100
desynchronization [BPS+20].
ASCAD Random (ASCAD-r). The ASCAD random dataset is an extension of the
ASCAD family, featuring random encryption keys for the profiling phase. This dataset
contains a profiling set with 200,000 traces recorded with random keys and an attack set
with 100,000 traces using a fixed key. The attack still focuses on the third key byte, but
the traces contain a larger window of 1,400 features to account for increased variability due
to random keys. ASCAD-r is more challenging than ASCAD-f due to the presence of key
randomness, which increases noise and reduces the effectiveness of simple leakage models.

Both ASCAD-f and ASCAD-r provide a controlled environment for evaluating NN-based
profiled attacks. The use of masked AES-128 ensures that these datasets are representative
of real-world cryptographic implementations [BPS+20].
CHES CTF 2018. The database refers to the CHES Capture-the-flag (CTF) AES-128
trace set, which was released in 2018 for the Conference on Cryptographic Hardware
and Embedded Systems (CHES) [Ris18]. The traces are derived from masked AES-128
encryption executed on a 32-bit STM microcontroller. In our experiments, we utilize
45,000 traces for the training set, which incorporates a fixed key. The test set comprises
5,000 traces, with the key used in the training set being different from the key configured
for the test set. Additionally, every trace contains 2,200 features.

3 Uncertainty Analysis in SCA
Our main objective in this section is to study the uncertainty associated with the predictions
of NNs in SCA. To achieve this, we start with formulation of NN-enabled SCA to understand
sources of uncertainty.

3.1 NN-enabled Profiled SCA
As explained in Section 2.2, the attacker aims to disclose the secretk∗, where she must
determine which of the estimated probability distributions ĝk (for each k ∈ K) best fits
the attack set. Given reasonable assumptions about the distributions, the most efficient
way to determine this is through a maximum likelihood strategy. This strategy involves
computing the following likelihood function dNa[k] for each key candidate k ∈ K and
selecting the most probable candidate; see Equation 2. Estimating Pr(L | (P, K) = (p, k))
for a given pair (p, k) ∈ Y with Y .= P × K is recognized as a prediction problem

S. Nouraniboosjin et al. 7

(also referred to as a generation problem). Conversely, estimating p((P, K) = (p, k) |
L) is known as a classification problem. Bayes’ theorem provides a means to relate
the latter more complex pdf to the simpler former one, making two problems closely
interconnected [BPS+18, LTR17].

NNs have found application in SCA since they provide tools for handling classification
problems, enabling a discriminative approach [LTR17]. This means that the classification
problem is directly addressed by estimating Pr((P, K) = (p, k) | L) without relying on
Bayes’ inversion [BN06]. This methodology aims at constructing an approximation f̂L,P

of the function fL,P : (ℓ, p) 7→ Pr((P, K) = (p, k) | L = ℓ)k∈K. The classification of a new
trace ℓ observed for an input p is carried out by computing y = ĝL,P (ℓ, p) and selecting
the key candidate k̂ (or equivalently, the corresponding label in ML terminology) as:
k̂ = arg maxk∈K y[k]. When key discrimination is conducted over Na pairs (ℓi, pi), the
maximum likelihood approach is applied as follows:

dNa
[k] =

Na∏
i=1

yi[k], (7)

where yi represents the output of the function f̂L,P when evaluated with the pair (ℓi, pi).
Using the same notation, accuracy is defined as:

acc(ĝ, Dtrain, Dtest) = |{(ℓi, pi, k∗) ∈ Dtest | k∗ = arg maxk∈K yi[k]}|
|Dtest|

, (8)

where yi is the output vector from ĝ(ℓi, pi).
Notably, Equation 7 is a straightforward reformulation of Equation 2, where the

conditional probability Pr((P, K) = (pi, k) | L = ℓi) is replaced by its approximation
yi[k] = f̂L,P (ℓi, pi)[k] cf. [BPS+18]. This approximation of ĝL,P can be performed by NNs
from a family of functions (often referred to as models in ML terminology) whose types are
usually specified a priori by the data analyst to suit the problem’s specific characteristics.
Selecting the appropriate type of NNs in SCA is the first step, where the first attempts have
been devoted to combining convolutional NNs (CNNs) with data augmentation in order to
enhance attack performance, even against protected designs [BPS+18, PYW+17, WAGP20,
ZBHV20]. Later, studies have shown similar performance, and sometimes even superiority,
when using multi-layer perceptrons (MLPs) [WPP22, AGF23]. Regardless of NN types, the
approximated function ĝL,P is selected from a predefined class of parameterized hypotheses
established by the evaluator (i.e., the adversary). This class can be thought of as a
collection of models Gθ = {gθ(x) | gθ : x 7→ gθ(x, θ)} with θ ∈ Θ ⊆ Rq, where q is the
dimension of the vector gathering all the parameters cf. [MDP20].

Within the ML community, various evaluation frameworks are utilized to measure model
performance and select optimal parameters within a given family of models. According to
Bayes error in supervised classification, accuracy maximization is the optimal strategy for
setting model parameters θ. Maximizing the accuracy is equivalent to only finding the
model that maximizes the probability that the right key is ranked first [BPS+18, MDP20].

3.2 Uncertainty in NNs’ Predictions
The prediction process constitutes three principal steps. First, the data acquisition phase
is devoted to capturing observations, whereas during the NN building phase, the NN is
designed and trained to learn patterns from the measurements. The trained model is
then deployed in the applied inference phase, where it is utilized to make predictions.The
predictive uncertainty deals with the uncertainty sources within the NN and the data to
quantify whether the model’s outputs should (not) be trusted [GTA+23]. (see Section 1
for sources of uncertainty in SCA).

8 Uncertainty Estimation in NN-enabled SCA

Model uncertainty accounts for the uncertainty arising from limitations in the model
itself, which may result from errors in the training process, an inadequate model architecture,
or insufficient knowledge due to the presence of unknown samples or an incomplete
representation of the training data, see Figure1. In contrast, data uncertainty is linked
to uncertainties inherent in the data itself. It arises from the loss of information when
capturing real-world phenomena within a dataset. While model uncertainty can, in
principle, be mitigated by refining the model architecture, training process, or dataset
quality, data uncertainty is intrinsic to the data and cannot be eliminated [KG17].

Figure 1: Uncertainty
decomposition in a bi-
nary classification task.

The Bayesian framework provides an elegant approach for mod-
eling uncertainty in deep learning [GG16, TB24]. The underlying
principle of this framework is that to estimate y∗, one commonly
employs the maximum a posteriori (MAP) approach, which de-
termines the most probable outcome as y∗ = arg maxy p(y|x∗, θ).
Since the underlying model relies on an unknown latent vari-
able θ, an approximation is constructed using a sampled training
dataset D = {(xi, yi)}N

i=1, which contains N training samples.
In the Bayesian framework, model uncertainty is expressed as a
probability distribution over the model parameters θ, whereas
data uncertainty is represented as a probability distribution over
predictions y∗, given a parameterized model fθ. When predicting
y∗ for a new sample x∗, the distribution of prediction is given by:

p(y∗|x∗, D) =
∫

p(y∗|x∗, θ)p(θ|D)dθ. (9)

In a classification problem, predictive uncertainty is mea-
sured by the entropy of the softmax output distribution as
H(y∗|x∗, D) [G+16, GG16, GIG17, HHGL11].

Moreover, in Equation 9, the term p(θ|D), known as the pos-
terior distribution, corresponds to the uncertainty in the model
parameters given the training dataset D. However, this posterior
distribution is often intractable. Applying the Bayes theorem to reformulate the posterior
distribution yields p(θ|D) = p(D|θ)p(θ)/p(D), with p(θ) represents the prior distribution
over model parameters, incorporating general knowledge about θ without specific obser-
vations [BN06]. The likelihood term p(D|θ) measures the probability that the dataset
D aligns with the distribution defined by a model parameterized by θ. Many standard
loss functions, such as cross-entropy and mean squared error, are derived from or directly
related to this likelihood function [GTA+23].

Despite this reformulation, the predictive uncertainty remains intractable. To approxi-
mate that, various methods have been proposed, offering different trade-offs in accuracy
and computational complexity. Next, we discuss how we can use Bayesian methods to
estimate uncertainty in the context of SCA. For that, we use the matrix-based estimation
of Rényi Entropy introduced next.

3.3 Uncertainty Analysis through Bayesian Modeling
In this work, we develop tools to derive practical uncertainty estimates in NNs by employing
Bayesian models—without altering the NN models themselves or the optimization process.
Bayesian modeling offers a principled way to estimate uncertainty by treating model
parameters as probability distributions rather than fixed values [GG16, G+16, Cha18,
JLB+22, SG05, JLB+22]1. This modeling does not aim to enhance NN’s performance,

1Note that we do not train Bayesian NNs, but employ principles of Bayesian modeling to compute the
uncertainty.

S. Nouraniboosjin et al. 9

but to explain why a prediction is made by the NN [TB24]. Our approach captures both
epistemic (model-related) and aleatoric (data-dependant) uncertainties more effectively.
As shown in Equation 9, estimating the posterior distribution of the weights is essential
to computing the predictive uncertainty. Therefore, given an already-trained NN, the
following steps should be taken cf. [VdSDK+21]: (1) representing existing knowledge about
the NN’s parameters in a statistical model through a prior distribution p(θ)—usually
defined before data is collected; (2) defining the likelihood function based on information
about the parameters contained in the observed data (p(D|θ)); and (3) combining the
prior and likelihood using Bayes’ theorem to obtain the posterior distribution p(θ|D).

3.3.1 Defining the Prior Distribution

To implement this, we first need to determine the appropriate distribution for the model’s
parameters. A reasonable assumption is that the weights follow a normal (Gaussian)
distribution. This assumption is supported by the central limit theorem, which states
that the sum of many independent variables tends to be normally distributed [Ros14].
More importantly, it is known that NNs with random Gaussian weights can create a stable
embedding of the data, serving as a universal classifier [GSB16]. Additionally, common
training techniques, such as stochastic gradient descent (SGD), introduce randomness
that can contribute to a normal-like distribution of the trained weights. Another reason
to assume normality is the weight initialization method used in SCA-related literature,
e.g., [WAGP20, AGF23], which follows He initialization [HZRS15]. This initialization
method relies on sampling weights from a normal distribution, confirming our assumption.
Toy example. Among multiple NNs trained on ASCAD-f dataset (see Section 2.5),
we select the model used in [WAGP20] due to its simple and compact structure (code
is available in [KUL20]), which achieves a great deal of attack performance in terms of
the number of attack traces needed to reach rank = 0. The network consists of two
convolutional and 3 dense layers, trained on 90% of the profiling traces. To examine
whether the trained model’s weights indeed follow a normal distribution, we use quantile-
quantile (Q-Q) plots [WG68]. These plots visually compare the quantiles of our sample
distribution (the model’s weights) with those of an ideal normal distribution. If the points
align along the diagonal, the weight distribution is approximately normal. Deviations from
this diagonal indicate skewness, heavy tails, or other irregularities in the distribution.

In our scenario, once we confirm the normality assumption for our model’s weights,
the next step is to determine the mean and variance of the distribution. By fitting a
Gaussian distribution, we experiment with different values of mean and variance to find
a distribution that closely matches the actual weight distribution. The blue curve in
Figure 3 illustrates the weight distribution for the second layer of the trained model.The
orange curves represent distributions close to the original distribution, and we observe
that the one on the right provides a closer match to the actual distribution, yielding a
higher similarity score (see Section 3.3.3).

3.3.2 Defining the Likelihood Function

In order to determine the likelihood function, one specifies a data-generating model and
includes observed data [VdSDK+21]. The likelihood p(D|θ) is a function of θ for a given
dataset D; hence, the likelihood function summarizes a model that stochastically generates
all the traces and a range of possible values for θ explaining the observations. This specified
model, represented by the likelihood function, is the foundation for the uncertainty analysis,
as the posterior distribution is the result of the prior distribution determined in this step.
Background knowledge offered by SCA. In various fields, specifying a likelihood
function can be nontrivial; however, SCA provides insight into this problem. In the context
of SCA, it is assumed that each trace is measured independently from others. Hence,

10 Uncertainty Estimation in NN-enabled SCA

Figure 2: Q-Q plots of the layers in [WAGP20]. The model consists of six layers and
achieves high performance on the ASCAD-fixed dataset with fewer than 150 traces. Notably,
this model does not include convolutional layers to capture repetitive patterns.

the likelihood function can be written as p(D|θ) =
∏N

i=1 p(yi | θ, pi) for a given key. The
likelihood p(yi | θ, xi) can be thought of as the output of the output layer in the NN,
where logits are translated to probabilities.

The choice of the output layer is closely tied to the selection of the loss function. In
line with deep learning principles, classification neural networks that employ a softmax
output layer tend to learn more efficiently and robustly when trained with the negative log-
likelihood (NLL) loss function [GBC16]. Interestingly, it has been shown that minimizing
the negative log-likelihood (NLL) function (similarly, the cross-entropy loss) during training
is asymptotically equivalent to maximizing the estimated mutual information between
the side-channel traces and the leakage profiling model (i.e., the machine learning model
trained on the traces) [MDP20]. Hence, for networks employing the softmax function and
trained on side-channel traces, predictions of the NN can be directly used as the likelihood
p(yi | θ, pi).

3.3.3 Bayesian Inference

Defining the likelihood function is followed by Bayesian Inference2. Bayesian inference
requires evaluating the true posterior p(θ | D), which cannot be evaluated analytically,
as explained before. To address this, we use variational inference [Cha18], a powerful
technique in Bayesian modeling that allows us to approximate the complex, intractable
posterior distributions of the network’s parameters. During the profiling phase, this

2It is important to note that the term “inference” means differently in Bayesian modeling and deep
learning. In Bayesian modeling, “inference” refers to the process of integrating over model parameters θ,
which often involves approximation techniques. In contrast, in deep learning, inference typically refers to
evaluating the model on test data after training is complete.

S. Nouraniboosjin et al. 11

Figure 3: Weight distribution for the second layer of the trained model [WAGP20]. Two
different parameter settings are used for sampling (orange curves). The right distribution,
which has a closer mean and variance to the actual weights, produces more accurate results.

distribution is learned by the model ĝ given the profiling traces. Intuitively, variational
inference approximates the intractable posterior distribution p(θ|D) with a tractable
distribution over the model weights, qν(θ), with variational parameters ν. In other words,
variational inference makes it feasible to use Bayesian methods to transform the problem
into an optimization task. The approximated distribution should be as close as possible
to the posterior distribution obtained from the original model. Hence, the approximated
distribution is usually minimized by calculating the Kullback-Leibler (KL) divergence with
regard to θ:

KL(qν(θ) ∥ p(θ|X)) :=
∫

qν(θ) log qν(θ)
p(θ|X) dθ. (10)

To solve Equation 10, an approximating variational distribution qν(θ) should be defined
first, and then the KL divergence can be minimized to determine the variational parameter
ν. A common choice is a mean-field approximation, where the variational distribution
factorizes into independent Gaussian distributions over the weights [HVC93]:

qν(θ) =
L∏

l=1

Vl−1∏
i=1

Vl∏
j=1

N
(
θijl; µθ

ijl, (σθ
ijl)2)

, (11)

where L is the number of layers, and Vℓ is the number of parameters per layer. The
parameters µθ

ijl and σθ
ijl define the mean and standard deviation of the weight distributions.

This approximation assumes the independence of each weight scalar in each layer from all
other weights to simplify the Bayesian inference. It is clear that if this assumption does
not hold true in practice, the approximation loses important information about weight
correlations. To resolve the issue, Monte Carlo sampling [Gra11] and using a mixture of
Gaussians prior to each weight [BCKW15] have been introduced.
Why SCA does not comply well with KL divergence. KL divergence-based
variational inference suffers from issues known to the machine learning community, including
scalability and computational complexity [G+16]. Besides, when it comes to SCA, leakage
can follow a multimodal and/or multivariant distribution [LPMS18, LM18, RBAF24,
MMOS16, BGH+17, GLRP06, RBFA21, DCGRP19, Riv08, SMY09]. In SCA-related
literature, it has been theoretically verified that the estimated leakage function ĝL,P is
always composed of some Gaussian PDFs (i.e., following a Gaussian mixture model–GMM),
where the key hypothesis k determines how the Gaussian PDFs are mixed cf. [PR09, PR10,
BGP+11]. In such scenarios, qν(θ) fitted with the KL divergence criterion fails to capture
the global behavior of the posterior as it fits a local mode of that. In other words, KL
divergence neither exhibits “mass-covering property”, nor offer the ability to adjust the

12 Uncertainty Estimation in NN-enabled SCA

Figure 4: Solutions for minimizing the α-divergence between the complicated posterior
distribution p (shown in blue) and the tractable, unnormalized Gaussian approximation q
(shown in red) [DHLDVU16, M+05]. α → 0 corresponds to KL.

impact of likelihood ratios as in GMMs [HLLR+16, LG17]. These lacks can result in less
accurate approximations—particularly in the case of complex models.
α-divergence. The KL-divergence is one of the options for measuring the distance
between the posterior and the tractable distribution qν . A more general alternative is the
α-divergence, defined as:

Dα(p(x) ∥ q(x)) := 1
α(1 − α)

(
1 −

∫
p(x)αq(x)1−αdx

)
. (12)

α-divergence measures the “similarity” between two distributions. To explore how the
choice of α influences the outcome of inference, we consider the task of approximating a
complex distribution p with a more manageable Gaussian distribution q by minimizing the
divergence between the two; see Figure 4. When α is large and positive, the approximation
q tends to cover all the modes of p, whereas for α → −∞ (assuming the divergence remains
finite), q is drawn toward the mode with the highest probability mass cf. [HLLR+16]. If
the true posterior is multimodal, a global approximation using α ≥ 1 will capture multiple
modes; however, it also assigns large enough probability to regions where the true posterior
has low density.

3.4 Uncertainty Decomposition in SCA
Understanding what a model does not know is a critical part of NN-enable NNs. If one is
able to assign a high level of uncertainty to the NN’s erroneous predictions, then poor attack
performance can be explained and, to some extent, improved by taking the right measures
into account. The ultimate goal of decomposing the uncertainty in SCA is to link the high
rank of the correct key (as one of the possible metrics) to inherent noise in traces and/or
uncertainty in the model parameters. While the former cannot be reduced even if more data
were to be collected, the latter can be resolved by considering different means, e.g., better
hyperparameter tuning, regulation, etc. In this regard, as in the machine learning field,
uncertainty can be decomposed into epistemic and aleatoric uncertainties [DKD09, KG17].
As described in Section 3.2, the predictive uncertainty of an attack trace x∗ and its output
y∗, denoted as H(y∗|x∗, D), is expressed as [DHLDVU18, KG17]:

H(y∗|x∗, D) = I(y∗, θ|x∗, D) + Eθ∼p(θ|D)(H(y∗|x∗, θ)). (13)

The terms in Equation 13 are explained below.

3.4.1 Predictive uncertainty estimation for SCA.

The core idea of employing the variational distribution qν(θ) is that, after minimizing
the divergence to select ν, it closely approximates the posterior weight distribution while
remaining simple to sample from. To this end, because the exact posterior p(θ|D) is

S. Nouraniboosjin et al. 13

intractable, we substitute it with an approximate variational distribution q(θ), once the
variational parameters ν have been optimized. This yields p(y∗|x∗, D) ≈

∫
p(y∗|x∗, θ)q(θ)dθ

(see Equation 9). Instead of performing direct integration over the weight space, a
common approach is to use Monte Carlo sampling. In this method, m samples are
drawn from the weight distribution θm ∼ q(θ), and each sample is used to compute the
likelihood p(y∗|x∗, θm). With this approximation, the output distribution can be written
as: p(y∗ | x∗, D) ≈ (

∑M
m=1 p(y∗ | x∗, θm))/M with each θk is a sample drawn from the

approximate weight distribution q(θ).
In the context of SCA, to calculate the predictive uncertainty H(y∗|x∗, θm), we use

matrix-based Rényi entropy [YWJP20]. The reason for our choice is twofold. First, large
datasets with high dimensions in SCA can be analyzed more straightforwardly when
employing matrix computations, which effectively reduce computational complexity. The
second reason is more delicate. Information-theoretic quantities, e.g., entropy, heavily
depend on the underlying probability distribution of the data. When these probability
distributions are unknown, and only a finite set of samples is available, such quantities must
be estimated. A common method is the “plug-in” approach, which first fits a model to the
available data and then uses this model to compute the desired quantity [GRP14]. While
intuitive and (sometimes) easy to compute, this method relies on accurately estimating the
data distribution, which can be intractable when, for instance, dealing with noisy data. On
the other hand, parametric statistical models require selecting an appropriate model and
balancing complexity and tractability, while non-parametric statistical approaches often
involve tuning an extra hyperparameter. Moreover, non-parametric statistical models may
suffer from overfitting, where smoothing and regularization techniques must be employed
to control statistical model capacity.

Interestingly enough, if a generalized form of Shannon entropy, namely Rényi entropy,
is considered, the information-theoretic measures can be quantified using functionals on
normalized positive definite matrices. To put it simply, the matrices are obtained by
evaluating a positive definite kernel on all pairs of data points [GRP14, YWJP20]. This
implicitly maps the data to a reproducing kernel Hilbert space (RKHS) of functions.

To calculate H(y∗ | x∗, θm) for a given model with parameters θm using matrix-based
Rényi entropy as in Definition 1, we have

H(y∗ | x∗, θm) = Sα(A) = Sα

(
A1 ⊙ · · · ⊙ Ak

tr(A1 ⊙ · · · ⊙ Ak)

)
. (14)

In Equation 14, A1, · · · , Akt denote the Gram matrices evaluated over the output of the
softmax function in the NN.

3.4.2 Estimating aleatoric uncertainty.

Aleatoric uncertainty is defined as the expected entropy of the model’s predictions over
the sets of weights. To estimate that, we perform

Eθ∼p(θ|D) [H(y∗|x∗, θ)] = −
∫

p(θ | D)H(y∗|x∗, θ)dθ (15)

Since the true posterior p(θ | D) is intractable, we approximate it with the variational
distribution q(θ), and use Monte Carlo sampling with M samples: Eθ∼p(θ|D) [H(y∗|x∗, θ)] ≈
−(

∑M
m=1

∑
c H(y∗ = c|x,θm))/M, where θm ∼ q(θ) are samples from the approximate

posterior. This estimates the aleatoric uncertainty by averaging over the model’s predictive
distributions conditioned on sampled weights.

3.4.3 Estimating epistemic uncertainty.

Epistemic uncertainty I(y∗, θ|x∗, D) is computed as the difference between predictive
entropy and aleatoric entropy. This captures the uncertainty due to model limitations,

14 Uncertainty Estimation in NN-enabled SCA

highlighting areas where the model requires more information for improved predictions.

3.5 Sensitivity Analysis in SCA
After understanding how much the model contributes to the predictive uncertainty, one can
be interested in explaining which measurement in time (i.e., a feature in the side-channel
trace) can account for the uncertainty. Determining the contribution of the time features
xj (1 ≤ j ≤ k) to predictive uncertainty allows us to pinpoint areas where profiling
data is sparse [ABA+20]. A feature exhibiting high aleatoric sensitivity suggests a strong
relationship with unobserved or latent variables, e.g., noise in side-channel traces. In such
cases, collecting more traces could be helpful. On the other hand, a feature with high
epistemic sensitivity indicates that the model’s confidence heavily depends on it, and thus,
careful feature selection can reduce the attack cost and complexity. Hence, sensitivity
analysis helps establish the relationship between leakage points and attack cost.

In the machine learning domain, sensitivity analysis is a straightforward technique that
offers insights into how variations in the input influence the network’s predictions. The
importance score Si for the measurement x∗

i quantifies this influence. This score measures
the overall significance of an input dimension with respect to a selected uncertainty metric
through summing linear approximations centered around each test data point as formulated
below cf. [DHLUR17].

Si = 1
|Dtest|

|Dtest|∑
n=1

∣∣∣∣∂H(y|x)
∂xn,i

∣∣∣∣ ; 1 ≤ i ≤ k. (16)

One can leverage the chain rule to compute these derivatives.
However, the derivative-based approach assumes that other time features remain con-

stant, thereby failing to account for interactions between features. Given that side-channel
traces can be inherently multivariate, the contributions of time samples to uncertainty are
interdependent, necessitating a method that captures their interconnections.

To address this limitation, we use SHAP values, as discussed in Section 2.4. SHAP
values assess the contribution of a time feature by considering all possible subsets of other
features [LC23]. More precisely, SHAP aims to allocate credit for a model’s output among
its input features, based on principles from cooperative game theory. The algorithm
associates input features with players in a game and aligns the model function with the
game’s rules. In game theory, players can choose to participate or not, which translates in
machine learning to whether a feature “influences” the uncertainty. Specifically, for each
feature, we track changes in uncertainty when that feature is included or excluded from
all possible subsets of features. To evaluate the influence of a feature on the uncertainty,
the influence of the remaining features is integrated out using a conditional expectation
approach as Ex∗∈Dtest [H(y | x∗

i)].

4 Results and Discussion

4.1 Experimental Setup
The experiments were conducted on a high-performance computing system running Ubuntu
22.04.3 LTS with a 6.5.0-44-generic Linux kernel. The system was equipped with dual
Intel(R) Xeon(R) Silver 4216 CPUs, each with 16 cores and 32 threads, providing a
total of 64 logical processors. The system had 256 GB of RAM. For GPU-accelerated
computations, an NVIDIA RTX A4000 GPU with 16 GB of dedicated memory was utilized.
In all experiments presented in this section, the parameter α associated with α-divergence
is set to 1. Moreover, for Rényi entropy, α = 1.01 to approximate Shannon’s entropy
definition.

S. Nouraniboosjin et al. 15

Table 1: The architecture of the models used in our case studies. Here, C(filters, kernel
size, strides) and P(size, stride) show the hyperparameters for a convolutional layer and
average pooling. FLAT denotes a flatten layer, whereas FC(#neurons) denotes a fully
connected layer with the number of neurons given in parentheses. SM(#classes) shows the
number of classes at the softmax layer.

Data set Leakage model Architecture

ASCAD-f [WAGP20] ID P(350,1),FLAT, FC(10), FC(10),
SM(256)

ASCAD-r [WPP22] ID
C(120,3,1), P(32,2), C(8,1,1),
P(32,2), FLAT, FC(30),
FC(5), FC(5), SM(256)

CHES CTF [WPP22] HW
P(1100,1), FLAT, FC(512),
FC(256), FC(128), FC(64),
FC(9), SM(9)

(a) ASCAD-f (b) ASCAD-r (c) CHES-CTF

Figure 5: Average rank (so-called guessing entropy–GE) plots of the datasets used in this
paper.

Architecture of the models. The architectures of the models that we used are
described in Table 1. In the models considered in our study, negative-log-likelihood (NLL)
has been used as the loss function. We emphasize that minimizing the NLL loss function
(similarly, cross-entropy) during NN training is asymptotically equivalent to maximizing the
perceived information as proved in [MDP20]. Furthermore, none of the models used in our
study has gone under hyperparameter tuning by us. We aim to understand how previously
proposed models work and how their attack performance is related to undersecretaries.
GE curves. Figure 5 plots the average rank (so-called guessing entropy–GE) vs. the
number of attack traces for the models that we use in our experiments. The model trained
on CHES CTF reaches to the rank 0 with 514 attack traces while in the ASDAC-r this
number is 475 and for the ASCAD-f is 153.

4.2 Toy Example: Uncertainty Decomposition for CIFAR10
Before we proceed to the results of the SCA datasets, we show the results obtained for
the CIFAR dataset [Kri09] to illustrate the uncertainty decomposition in a well-known
dataset cf. [Cha18]. Analysis of the CIFAR10 test images was performed by decomposing
the predictive uncertainty into its aleatoric and epistemic components, as described in
Section 3.3. The predictive softmax output p(y∗ = c | x∗) was computed by averaging
weight samples. When the maximum probability delivered by softmax reaches 1, a full
probability assignment to a single class is observed. This results in zero uncertainty with
regard to both epistemic and aleatoric uncertainties. A low softmax output (around
0.2, as shown in Fig. 6) indicates that predictive uncertainty is influenced by epistemic
contributions, e.g., differences between the test examples and training examples. The
aleatoric uncertainty reflects the inherent difficulty in categorizing an image based on the
available features.

16 Uncertainty Estimation in NN-enabled SCA

Figure 6: Uncertainty decomposition in CIFAR [Kri09, Cha18]. Each point represents a
single image in the test dataset. A reduction in the probability delivered by the softmax
in the NN results in an increase in epistemic and aleatoric uncertainties (downward trend
observable in all three sub-figures).

4.3 What Can Be Explained in SCA through Uncertainties?
In this section, we show our results for different case studies. These case studies are
designed to explain the behavior of the models trained on SCA datasets. Considering
ASCAD-f, as we can see in Figure 5, it takes more than 100 traces for the models to reach
rank zero. This can be associated with giving higher probabilities to the wrong keys in
the attack phase. Now, we try to find the root cause of this behavior by decomposing
the uncertainty based on Equation 13. In our first scenario, we use the model trained on
the ASACAD-f dataset with no desynchronization as proposed in [WAGP20]3 We find
the variational distribution q(θ) of the model as we discussed in 3.2 and decompose the
uncertainty for this model.

Figure 7 illustrates the results for 5,000 attack traces. We decompose the overall
predictive uncertainty into two primary components, aleatoric and epistemic uncertainties,
which were found to contribute equally in this case. The relatively high value of aleatoric
uncertainty indicates that the available traces do not contain enough information to
reliably predict the key, implying that intrinsic noise and variability within the traces limit
classification performance. To reduce this type of uncertainty, we need more informative
traces, for example, by employing better probes to minimize noise. On the other hand,
the significant amount of epistemic uncertainty suggests that the trained model cannot
generalize well to the attack traces. This implies that the model’s predictions are less
reliable in regions where no data has been seen.

In Figure 7, we also illustrate the link between uncertainty and the attack performance,
specifically the rank of the correct key. To achieve this, we calculate the rank of the correct
key based on the output probabilities (see Equation 3). Subsequently, we summed up the
uncertainty values associated with the traces with the same rank. The results reveal a
clear trend: traces with lower ranks exhibit higher uncertainty. This observation shows
that the model is unsure about its prediction, although the rank is low.

Is there any link between the labels and uncertainties? Specifically, the objective
is to observe whether there is any relationship between the model’s uncertainty and the
labels of the traces (one-hot encoding of the respective output of the SBOX). The sub-
figures in the first row of Figure 8 present the uncertainty of the traces labeled with the
correct key. We summed up the uncertainty values of traces sharing the same label, i.e.,

3We emphasize that none of the models in our study underwent hyperparameter tuning. Our goal is to
evaluate how existing models perform and how their attack effectiveness relates to uncertainty.

S. Nouraniboosjin et al. 17

(a) Predicted (b) Epistemic (c) Aleatoric

(d) Predicted (e) Epistemic (f) Aleatoric

Figure 7: Uncertainty decomposition and rank comparison for the model proposed
in [WAGP20] and trained on ASACAD-f dataset with no desynchronization. The first
row shows the relationship between the softmax output and uncertainty, where each point
corresponds to one trace. The sub-figures in the second row depict how the rank relates to
maximum uncertainty for all traces with a given rank. Here, each point represents the
summation of uncertainty for all traces with a given rank.

the correct key. As depicted in Figure 8, the results do not indicate a clear relationship
between these two parameters, suggesting that trace labels do not significantly influence
the uncertainty associated with model performance.

In Figure 8, we also analyze the relationship between the NN predicted key and the
uncertainty for 5000 traces (see the second row). An interesting observation about this is
that some of the key candidates never achieve rank 0, resulting in an assigned uncertainty
of “1” (or “0” on a log scale) for those classes. Apart from this, the results once again
reveal no strong relationship between the predicted key and uncertainty.

What is the impact of randomized keys on the uncertainties? In the ASCAD-f
dataset, the same key is used for collecting both profiling and testing traces, while in
ASCAD-r, random keys are used during the profiling stage, and a fixed key is used for
the attack stage [BPS+17a, BPS+17b]. We employed the model trained on ASCAD-
r [WPP22] to evaluate the feasibility of our approach under more challenging conditions.
Specifically, we use 5000 attack traces from the ASCAD-r dataset.This setup further shifts
the distribution of the test set from the profiling set compared to the results presented in this
section so far. Consequently, the model faces greater difficulty in generalizing its learned
patterns from the profiling phase to the attack phase. Therefore, intuitively, we expected
to observe a higher degree of epistemic entropy than ASCAD-f. The use of different keys
for the profiling and attack phases effectively reduces the model’s prior knowledge of the
unseen data and, consequently, the model’s ability to recover the correct key. Figure 9 gives
us a good insight: epistemic uncertainty dominates the overall uncertainty in this scenario.
This indicates that the uncertainty stems largely from the model’s lack of knowledge about
the relationship between the profiling and attack phases. This observation underscores

18 Uncertainty Estimation in NN-enabled SCA

(a) Predicted (b) Epistemic (c) Aleatoric

(d) Predicted (e) Epistemic (f) Aleatoric

Figure 8: Uncertainty decomposition for the model from [WAGP20], trained on the
ASACAD-f dataset without desynchronization. The first row shows the relationship
between the softmax output of the correct class, where each point corresponds to the
summation of uncertainty values when the given class was the correct class. The sub-figures
in the second row depict the summation of uncertainty values when the given class was
the predicted class.

the importance of system-specific knowledge in SCA and suggests that the task becomes
increasingly tedious when such knowledge is limited.

Now, if we set Figures 9.c and 7.c side by side, the reduction in the aleatoric uncertainty
is clearly observable, corresponding to the reduced noise in the dataset. We highlight
that the ASCAD-f and ASCAD-r differ in their measurement settings cf. [EST+22]. The
ASCAD-f dataset contains 100,000 time instance recorded at a sampling rate of 200MS/s
(not 2GS/s as reported in [BPS+18]), while the ASCAD-r dataset includes 250,000 samples
captured at 500MS/s. Both datasets include traces from the first round of an AES software
implementation running on an ATmega8515 microcontroller clocked at 4MHz, resulting in
50 and 125 samples per clock cycle, respectively. Increasing the sampling rate can help
better capture signal details as one can track rapid transitions in the signal more accurately,
potentially separating the signal from some types of noise. Better time resolution can also
be achieved, i.e., side-channel leakage can be isolated from other overlapping operations in
time. Such differences in the two campaigns can result in reduced aleatoric uncertainty for
ASCAD-r.

What is the impact of countermeasures like desynchronization on the uncer-
tainty? The objective of this case study is to understand the influence of jitter on the
model’s uncertainty. To investigate this, we evaluated the model trained on ASCAD-f with
no desynchronization as in [WAGP20] when applied against 5000 attack traces from the
ASCAD-fixed dataset subjected to 100 desynchronization. This setup introduces temporal
shifts, enabling the analysis of their impact on the model’s performance and uncertainty
levels. Although the model was trained on a dataset without desynchronization, where a

S. Nouraniboosjin et al. 19

(a) Predicted (b) Epistemic (c) Aleatoric

(d) Predicted (e) Epistemic (f) Aleatoric

Figure 9: Uncertainty decomposition and rank comparison for the model proposed
in [WPP22] and trained on ASACAD-r dataset with no desynchronization. The first
row shows the relationship between the softmax output and uncertainty, where each point
corresponds to one trace. The sub-figures in the second row depict how the rank relates to
maximum uncertainty for all traces with a given rank. Here, each point represents the
summation of uncertainty for all traces with a given rank.

small jitter should not significantly affect performance, our results reveal that the model
fails to recover the correct key under desynchronized conditions.

Figure 10 illustrates how a substantial shift of the test set distribution introduced
by desynchronization causes the increase in epistemic uncertainty. Even minor desyn-
chronization increases the model’s uncertainty, disrupting the patterns typically observed
in synchronized traces; see Figure 7. Additionally, Figure 10 highlights that although
the probability vs. uncertainty plots may seem similar, a small change in their skewness
indicates a significant shift in the trend of uncertainty vs. rank plots (see Figure 7). The
NN’s uncertainty leads to incorrect predictions, and as a result, all guessed keys exhibit
high uncertainty regardless of their rank. In a noisy setting like this, such behavior strongly
suggests that the model is not functioning effectively.

4.4 What Model Changes Benefit SCA?
This section aims to look at some hyperparameters thought to be useful in the context of
SCA through the lens of uncertainty. Given the large space of possible hyperparameters,
we focus on some existing methods proposed in SCA-related literature.

Can convolutional filters help the model reduce its uncertainty when dealing
with desynchronization? We have already studied how uncertainties can indicate
reduced attack effectiveness when an MLP model is trained on a dataset and tested
against a dataset containing desynchronized traces. It can be interesting to make a similar
observation for convolutional neural networks (CNNs). For this, our model incorporates
a convolutional layer and has been proposed in [WPP22]. CNNs are powerful tools for

20 Uncertainty Estimation in NN-enabled SCA

(a) Predicted (b) Epistemic (c) Aleatoric

(d) Predicted (e) Epistemic (f) Aleatoric

Figure 10: Uncertainty decomposition and rank comparison for the MLP model proposed
in [WAGP20] and trained on ASACAD dataset with no desynchronization and tested
against 5000 attack traces of ASCAD dataset with 100 desynchronization. The first row
shows the relationship between the softmax output and uncertainty, where each point
corresponds to one trace. The sub-figures in the second row depict how the rank relates to
maximum uncertainty for all traces with a given rank. Here, each point represents the
summation of uncertainty for all traces with a given rank.

handling sequential or spatial data, as they are designed to identify and capture local
patterns through convolutional filters [HTFF09]. Can these filters help the model reduce
its uncertainty? The answer is negative. The epistemic uncertainty remains high, although
we can observe a clear reduction in the aleatoric uncertainty (as explained before, this is
due to the ASCAD-r capturing setting). In this case, the epistemic uncertainty values are
relatively high, showcasing the inefficacy of the model. As shown in Figure 11 for 5000
attack traces, again, there is no clear relationship between the rank and uncertainty as the
model performs poorly, confirmed by the high epistemic uncertainty.

Can an increase in the number of training/validation traces be helpful? Our
goal is to showcase the influence of the number of traces in the training process on the
uncertainty values. In other words, can uncertainties indicate that more training traces are
needed? In doing so, we used different numbers of the training and validation traces to see
the impact on the uncertainty decomposition. In this setup, the number of attack traces
is 5000 for all models. As shown in figure 12, changing the number of the training and
validation traces does not affect the predictive uncertainty significantly. Nevertheless, its
impact on both aleatoric and epistemic uncertainties is clear. An increase in the number
of validation traces reduces the variance of these uncertainties, suggesting a more stable
setting. Comparing the results for Model 1 and Model 3, where the training set is divided
into 45K/5K and 49K/1K training/validation traces, the average epistemic uncertainty
is much reduced for Model 3 as expected. Nonetheless, the average aleatoric uncertainty
is increased as the model has not undergone extensive validation in contrast to Model 1.
A better balance between the number of traces in the validation and training datasets

S. Nouraniboosjin et al. 21

(a) Predicted (b) Epistemic (c) Aleatoric

(d) Predicted (e) Epistemic (f) Aleatoric

Figure 11: Uncertainty decomposition and rank comparison for the CNN model proposed
in [WPP22] and trained on the ASACAD-r dataset with no desynchronization but tested
against the ASACAD-r dataset with 100 desynchronization. The first row shows the
relationship between the softmax output and uncertainty, where each point corresponds
to one trace. The sub-figures in the second row depict how the rank relates to maximum
uncertainty for all traces with a given rank. Here, each point represents the summation of
uncertainty for all traces with a given rank.

can be observed in Model 2. However, if there could be an option to reduce the epistemic
uncertainty, Model 3 (49K/1K training/validation traces) could be a viable option.

Can we calibrate the softmax outputs to reduce uncertainty? Recently, [NG24]
has introduced temperature calibration [GPSW17] in the context of SCA. That study has
demonstrated that temperature calibration enhances the performance of the attack [NG24],
but how can we see that in terms of uncertainty? In the context of model calibration, let
q̂i denote the calibrated probabilities for class i, and zi represent the logits (pre-softmax
outputs) of the model. Temperature calibration introduces a scalar parameter T > 0 to
rescale the logits, modifying the softmax function as follows:

q̂i = σSM (zi/T)i = exp(zi/T)∑
j exp(zj/T) .

When T > 1, the output probabilities are distributed more evenly across all classes,
effectively increasing the entropy of the predictions. This process is commonly referred to
as “softening” the softmax [GPSW17]. Conversely, when T < 1, the probabilities become
skewed, concentrating on the most likely classes. For T = 1, no scaling is applied, and the
original softmax probabilities are retained. For the MLP model trained on ASCAD-f and
used in our paper, namely [WPP22], the temperature has been calculated as 4.11 [NG24].

As depicted in Figure 13, compared to the results in Figure 7, our observation for
5,000 attack traces is the change in the shape of the uncertainty patterns. The softmax
probabilities are reduced, and the aleatoric uncertainty is much reduced. This shows that
the M sampled model could approximate the true posterior p(θ | D) well. Nevertheless,

22 Uncertainty Estimation in NN-enabled SCA

Figure 12: Models trained different validation and training set sizes. Model 1 is trained
with 45,000 training traces and 5,000 validation traces; for Model 2, we use 47,500 training
and 2,500 validation traces, and these numbers were 49,000 and 1,000 for the third model.
Here, the gray box is for predicted entropy, the green box is for the epistemic entropy, and
the red box is for aleatoric entropy.

the epistemic uncertainties are increased, more specifically, the shape is now skewed toward
right indicating a higher epistemic uncertainty in the prediction. This means that although
the output of the model is calibrated, the model lacks the knowledge to be certain about its
predictions. The same phenomenon can be observed in sub-Figure 13.f, where regardless
of the rank, the aleatoric uncertainty remains (more or less) the same. In other words, the
main contributor to the predictive uncertainty is the epistemic one, which is related to the
dataset.

Can an increase in the number of epochs be beneficial to reduce the uncertainty?
In this case study, we train three different models with varying numbers of epochs, leading
to differences in their attack performance. Model 1, trained for 50 epochs, demonstrated
the best performance, while Model 2, trained for 35 epochs, ranked second. Model 3,
trained for only 20 epochs, performed the worst among the three. As shown in the figure14,
the guessing entropy of these models varies significantly, reflecting the impact of training
duration on the models’ ability to recover the correct key.

Increasing the number of training epochs typically enhances model accuracy by enabling
it to learn more complex patterns in the data. However, this comes with a trade-off that an
excessive number of epochs can lead to overfitting, where the model becomes too tailored
to the training data and fails to generalize well to unseen inputs. Before conducting this
analysis, we examined whether the model overfit, which was the case for none of the three
models. To further explore the relationship between rank and uncertainty, we categorize
model predictions into four groups: accurate and certain (AC), accurate and uncertain
(AU), inaccurate and certain (IC), and inaccurate and uncertain (IU). Predictions are
labeled as “accurate” if the rank is below a predefined threshold, set to 128 in this paper.
Being “certain” or “uncertain” depends on whether the uncertainty lies below or above
the average uncertainty. This approach allows us to evaluate the trade-offs between rank
and uncertainty across different models.

Table 2 presents the results of this analysis for the three models. From the table, we
can see that Model 1, the best-performing model, achieved the highest number of accurate
and certain predictions (#AC = 59) and accurate and uncertain predictions (#AU =
3566). In comparison, Model 2 had fewer accurate and certain predictions (#AC = 45) and
accurate and uncertain predictions (#AU = 2480). Model 3, with the poorest performance,
showed only 27 accurate and certain predictions (#AC = 27) and a slightly higher count
of accurate and uncertain predictions (#AU = 3003).

S. Nouraniboosjin et al. 23

(a) Predicted (b) Epistemic (c) Aleatoric

(d) Predicted (e) Epistemic (f) Aleatoric

Figure 13: Uncertainty decomposition and rank comparison for the model proposed
in [WAGP20] trained on ASACAD-f dataset with no desynchronization. Temperature
scaling proposed in [NG24] has been applied. The first row shows the relationship between
the calibrated softmax output and uncertainty, where each point corresponds to one trace.
The sub-figures in the second row depict how the rank relates to maximum uncertainty for
all traces with a given rank. Here, each point represents the summation of uncertainty for
all traces with a given rank.

Figure 14: A model trained for different
numbers of epochs against ASCAD-f.

Model #AC #AU #IC #IU
1 59 3566 2 1373
2 45 2480 31 2444
3 27 3003 2 1968

Table 2: Rank vs. uncertainty: AC: ac-
curate and certain, AU: accurate and un-
certain, IC: inaccurate and certain, IU:
inaccurate and uncertain for 5000 attack
traces.

4.5 Interesting Case of CHES-CTF Dataset
Next, we move to the CHES CTF dataset [Ris18]. In this dataset, three key differences
impact the results compared to the ASCAD datasets. First, the leakage model is hamming
weight [GJS19]. This means the output of the model has 9 possible values; as a result,
the maximum value of the uncertainty is decreased. Secondly, the sub-key used during
the profiling phase differs from the one employed in the attack phase, which induces a
distribution shift between the training traces and the test samples. Figure 15 illustrates
the uncertainty decomposition for 5,000 attack traces of this dataset, where the change in

24 Uncertainty Estimation in NN-enabled SCA

(a) Predicted (b) Epistemic (c) Aleatoric

(d) Predicted (e) Epistemic (f) Aleatoric

Figure 15: Uncertainty decomposition and rank comparison for the model proposed
in [WPP22] and trained on CHES CTF dataset. The first row shows the relationship
between the softmax output and uncertainty, where each point corresponds to one trace.
The sub-figures in the second row depict how the rank relates to maximum uncertainty for
all traces with a given rank. Here, each point represents the summation of uncertainty for
all traces with a given rank.

key leads to an increased contribution of epistemic uncertainty. By looking at this figure,
we can see a much different pattern in the probabilities delivered by softmax. Compared
to other results in this section, the probability varies between 0 and one.

More interestingly, epistemic uncertainty is equal to zero for some of the points,
indicating that the model successfully approximates the probability density related to
Pr((P, K) = (p, k) | L) through ĝL,P,θ. It is known that y = ĝL,P,θ is composed of
Gaussian pdfs [PR09, PR10]. Hence, the predictive uncertainty H(y∗|x∗, D) for a given
trace x∗ = ℓ∗ can be approximated by the entropy of t-dimensional Gaussian random
variable cf. [PR09, PR10]. This gives H(y∗|x∗, D) = 1/2(log((2πe)t | Σ |)), with Σ being
the covariance matrix of X. To confirm that, we fit an exponential curve to the predictive
uncertainty. Curve fitting yields that a single Gaussian distribution can approximate the
pdf of y, where the mean and variance are 0.2293 and 0.1218, respectively. This result is
in line with what has been observed in [GJS19]. The uncertainty vs. rank curves also show
piece-wise upward trends, meaning that the model is more certain about lower-ranked
guessed keys compared to previous cases in this section.

4.6 Sensitivity Analysis with SHAP Values
The question that we aim to answer here is that, given the predictive uncertainty
H(y∗|x∗, D), we can determine which time instances in a trace have an influence on
the uncertainty. Figure 17 demonstrates the contribution of time instance to the uncer-
tainty of the model trained on the ASCAD dataset [WAGP20] using SHAP values for 1000
attack traces. To create SHAP plots, we use a function that maps the time instance to
uncertainty, i.e., the trained model that maps the time instance to output distributions.
We integrate the Rényi entropy estimation alongside the trained model, using them in

S. Nouraniboosjin et al. 25

Figure 16: SNR in ASCAD dataset: there are 700 time instances in ASCAD-fixed
dataset [BPS+20] that based on the SNR we can divide them into four groups: 1. MO
(masked SBOX output) 2.CM (common SBOX output mask) 3.MOL (masked SBOX
output in linear parts) 4. OML (SBOX output mask in linear parts).

Figure 17: SHAP values of time instances. 1000 attack traces in ASCAD-f are given to
the trained model as in [WAGP20]. The x-axis shows the feature indices (time instance),
whereas we have 4 groups corresponding to SNR categories in Figure 16. Here, the intensity
of the time instances shows more contribution, and the color shows the negative/positive
contribution. Positive SHAP values (colored in red) indicate that the time instance
increases the uncertainty, while the negative values reduce that.

series to construct a comprehensive function for uncertainty estimation. This setup enables
us to analyze the contribution of individual time instances to the uncertainty of the model
outputs effectively.

The results reveal that, unlike trace labels, which did not show a significant relation-
ship with uncertainty, time instances play a substantial role in determining uncertainty.
Moreover, SHAP values show that the time instance that has a higher SNR contributes
the most to the uncertainty; see Figure 16. As illustrated in Figure 17, the feature sets do
not play the same role for all instances. Negative SHAP values indicate that these time
instances reduce the uncertainty of the model output (depicted in blue), demonstrating
their stabilizing influence. Conversely, the positive SHAP values (depicted in red) indicate
that these time instances increase the uncertainty, highlighting their destabilizing impact.
This differentiation underscores the varying contributions of time instances to the model’s
predictions, emphasizing the importance of feature-specific analysis in understanding model
behavior.

26 Uncertainty Estimation in NN-enabled SCA

5 Conclusion and Future Work
In this paper, we provide a framework to estimate and decompose the uncertainties
associated with the outputs of the NN models used in SCA. The main goal of this study is
to explain why these models tend to assign high probabilities to the wrong key candidates.
Our analysis helps find the root cause of this problem. To this end, we use matrix-based
Rényi entropy to estimate the entropy as a measure of uncertainty. Through decomposition,
it is possible to explain whether uncertainty comes from the lack of information in the
traces due to, e.g., the intrinsic noise. This part of the uncertainty can be reduced by
employing a better capturing setup, for instance, using better probes while collecting
the traces. The other component of the uncertainty is the epistemic uncertainty, which
suggests that the model has limits when classifying unseen traces. Multiple case studies
have been carried out in this paper to highlight the power of uncertainty as a metric to
explain the outcome of an NN-enable SCA. Specifically, the impact of desynchronization
and randomized keys have been considered. Furthermore, changing some hyperparameters
in the model has been studied to investigate the impact of convolutional filters, the number
of training/validation traces, and the number of training epochs.

Moreover, we utilize SHAP values as an explainable AI tool to find the time sample
that contributes the most to the predictive uncertainty. We have demonstrated that the
points with high SNR contribute the most to the uncertainty value, which is reasonable
since these points have more information regarding the key.

Analyzing the characteristics of the traces with high impact in rank curves and their
influence on the uncertainty remains an open problem that we leave to future work.

References
[ABA+20] Javier Antorán, Umang Bhatt, Tameem Adel, Adrian Weller, and José Miguel

Hernández-Lobato. Getting a clue: A method for explaining uncertainty estimates.
arXiv preprint arXiv:2006.06848, 2020.

[AGF23] Rabin Y Acharya, Fatemeh Ganji, and Domenic Forte. Information theory-based
evolution of neural networks for side-channel analysis. IACR Transactions on
Cryptographic Hardware and Embedded Systems, pages 401–437, 2023.

[Ama12] Shun-ichi Amari. Differential-geometrical methods in statistics, volume 28. Springer
Science & Business Media, 2012.

[BCKW15] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra.
Weight uncertainty in neural network. In International conference on machine
learning, pages 1613–1622. PMLR, 2015.

[BGH+17] Nicolas Bruneau, Sylvain Guilley, Annelie Heuser, Damien Marion, and Olivier
Rioul. Optimal side-channel attacks for multivariate leakages and multiple models.
Journal of Cryptographic Engineering, 7:331–341, 2017.

[BGP+11] Lejla Batina, Benedikt Gierlichs, Emmanuel Prouff, Matthieu Rivain, François-
Xavier Standaert, and Nicolas Veyrat-Charvillon. Mutual information analysis: a
comprehensive study. Journal of Cryptology, 24(2):269–291, 2011.

[Bha06] Rajendra Bhatia. Infinitely divisible matrices. The American Mathematical Monthly,
113(3):221–235, 2006.

[BN06] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine
learning, volume 4. Springer, 2006.

[BPS+17a] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and
Cécile Dumas. ASCAD: the ATMega8515 SCA traces databases (fixed
key). [Online]https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_
AES_v1/ATM_AES_v1_fixed_key [Accessed: Jan.8, 2024], 2017.

[Online] https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_fixed_key
[Online] https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_fixed_key

S. Nouraniboosjin et al. 27

[BPS+17b] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and
Cécile Dumas. ASCAD: the ATMega8515 SCA traces databases (vari-
able key). [Online]https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_
AES_v1/ATM_AES_v1_variable_key [Accessed: Jan.8, 2024], 2017.

[BPS+18] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and Cécile Dumas.
Study of deep learning techniques for side-channel analysis and introduction to
ascad database. 2018.

[BPS+20] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and Cécile Dumas.
Deep learning for side-channel analysis and introduction to ascad database. Journal
of Cryptographic Engineering, 10(2):163–188, 2020.

[Cha18] Lucy R Chai. Uncertainty estimation in bayesian neural networks and links to
interpretability. Master’s Thesis, Massachusetts Institute of Technology, 2018.

[CJRR99] Suresh Chari, Charanjit S Jutla, Josyula R Rao, and Pankaj Rohatgi. Towards
sound approaches to counteract power-analysis attacks. In Advances in Cryp-
tology—CRYPTO’99: 19th Annual International Cryptology Conference Santa
Barbara, California, USA, August 15–19, 1999 Proceedings 19, pages 398–412.
Springer, 1999.

[CRR02] Suresh Chari, Josyula R Rao, and Pankaj Rohatgi. Template attacks. In Intrl.
Workshop on Cryptographic Hardware and Embedded Systems, pages 13–28. Springer,
2002.

[DCEM18] Thomas De Cnudde, Maik Ender, and Amir Moradi. Hardware masking, revisited.
IACR Transactions on Cryptographic Hardware and Embedded Systems, pages
123–148, 2018.

[DCGRP19] Eloi De Cherisey, Sylvain Guilley, Olivier Rioul, and Pablo Piantanida. An
information-theoretic model for side-channel attacks in embedded hardware. In
2019 IEEE International Symposium on Information Theory (ISIT), pages 310–315.
IEEE, 2019.

[DHLDVU16] Stefan Depeweg, José Miguel Hernández-Lobato, Finale Doshi-Velez, and Steffen
Udluft. Learning and policy search in stochastic dynamical systems with bayesian
neural networks. arXiv preprint arXiv:1605.07127, 2016.

[DHLDVU18] Stefan Depeweg, José Miguel Hernández-Lobato, Finale Doshi-Velez, and Steffen
Udluft. Decomposition of uncertainty in bayesian deep learning for efficient and
risk-sensitive learning. In Proceedings of the 35th International Conference on
Machine Learning (ICML), volume 80 of Proceedings of Machine Learning Research,
pages 1184–1193. PMLR, 2018. URL: https://proceedings.mlr.press/v80/
depeweg18a.html.

[DHLUR17] Stefan Depeweg, José Miguel Hernández-Lobato, Steffen Udluft, and Thomas
Runkler. Sensitivity analysis for predictive uncertainty in bayesian neural networks.
arXiv preprint arXiv:1712.03605, 2017.

[DKD09] Armen Der Kiureghian and Ove Ditlevsen. Aleatory or epistemic? does it matter?
Structural safety, 31(2):105–112, 2009.

[EST+22] Maximilian Egger, Thomas Schamberger, Lars Tebelmann, Florian Lippert, and
Georg Sigl. A second look at the ascad databases. In International Workshop
on Constructive Side-Channel Analysis and Secure Design, pages 75–99. Springer,
2022.

[G+16] Yarin Gal et al. Uncertainty in deep learning. 2016.
[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,

2016.
[GG16] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Repre-

senting model uncertainty in deep learning. In international conference on machine
learning, pages 1050–1059. PMLR, 2016.

[Online] https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_variable_key
[Online] https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_variable_key
https://proceedings.mlr.press/v80/depeweg18a.html
https://proceedings.mlr.press/v80/depeweg18a.html

28 Uncertainty Estimation in NN-enabled SCA

[GIG17] Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian active learning
with image data. In International conference on machine learning, pages 1183–1192.
PMLR, 2017.

[GJS19] Aron Gohr, Sven Jacob, and Werner Schindler. Ches 2018 side channel contest
ctf-solution of the aes challenges. Cryptology ePrint Archive, 2019.

[GLRP06] Benedikt Gierlichs, Kerstin Lemke-Rust, and Christof Paar. Templates vs. stochas-
tic methods: A performance analysis for side channel cryptanalysis. In Crypto-
graphic Hardware and Embedded Systems-CHES 2006: 8th International Workshop,
Yokohama, Japan, October 10-13, 2006. Proceedings 8, pages 15–29. Springer, 2006.

[GOKT16] Dennis RE Gnad, Fabian Oboril, Saman Kiamehr, and Mehdi B Tahoori. Analysis
of transient voltage fluctuations in fpgas. In 2016 International Conference on
Field-Programmable Technology (FPT), pages 12–19. IEEE, 2016.

[GP13] Luis G Sanchez Giraldo and Jose C Principe. Rate-distortion auto-encoders. arXiv
preprint arXiv:1312.7381, 2013.

[GPSW17] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of
modern neural networks. In International conference on machine learning, pages
1321–1330. PMLR, 2017.

[Gra11] Alex Graves. Practical variational inference for neural networks. Advances in
neural information processing systems, 24, 2011.

[GRP14] Luis Gonzalo Sanchez Giraldo, Murali Rao, and Jose C Principe. Measures of
entropy from data using infinitely divisible kernels. Trans. on Information Theory,
61(1):535–548, 2014.

[GSB16] Raja Giryes, Guillermo Sapiro, and Alex M Bronstein. Deep neural networks with
random gaussian weights: A universal classification strategy? IEEE Transactions
on Signal Processing, 64(13):3444–3457, 2016.

[GTA+23] Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi, Mohsin Ali, Jongseok Lee,
Matthias Humt, Jianxiang Feng, Anna Kruspe, Rudolph Triebel, Peter Jung,
Ribana Roscher, et al. A survey of uncertainty in deep neural networks. Artificial
Intelligence Review, 56(Suppl 1):1513–1589, 2023.

[HHGL11] Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and Máté Lengyel. Bayesian
active learning for classification and preference learning. arXiv preprint
arXiv:1112.5745, 2011.

[HLLR+16] Jose Hernandez-Lobato, Yingzhen Li, Mark Rowland, Thang Bui, Daniel
Hernández-Lobato, and Richard Turner. Black-box alpha divergence minimization.
In International conference on machine learning, pages 1511–1520. PMLR, 2016.

[HRG14] Annelie Heuser, Olivier Rioul, and Sylvain Guilley. Good is not good enough:
Deriving optimal distinguishers from communication theory. In Cryptographic
Hardware and Embedded Systems–CHES 2014: 16th International Workshop, Busan,
South Korea, September 23-26, 2014. Proceedings 16, pages 55–74. Springer, 2014.

[HTFF09] Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The
elements of statistical learning: data mining, inference, and prediction, volume 2.
Springer, 2009.

[HVC93] Geoffrey E Hinton and Drew Van Camp. Keeping the neural networks simple by
minimizing the description length of the weights. In Proceedings of the sixth annual
conference on Computational learning theory, pages 5–13, 1993.

[HZRS15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification. In
Proceedings of the IEEE international conference on computer vision, pages 1026–
1034, 2015.

[JLB+22] Laurent Valentin Jospin, Hamid Laga, Farid Boussaid, Wray Buntine, and Mo-
hammed Bennamoun. Hands-on bayesian neural networks—a tutorial for deep
learning users. IEEE Computational Intelligence Magazine, 17(2):29–48, 2022.

S. Nouraniboosjin et al. 29

[KG17] Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep
learning for computer vision? Advances in neural information processing systems,
30, 2017.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Advances in Cryptology—CRYPTO’99: 19th Annual International Cryptology
Conference Santa Barbara, California, USA, August 15–19, 1999 Proceedings 19,
pages 388–397. Springer, 1999.

[Koc96] Paul C Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In Annual International Cryptology Conference, pages 104–113.
Springer, 1996.

[Kri09] Alex Krizhevsky. Learning multiple layers of features from tiny images. https:
//www.cs.toronto.edu/~kriz/cifar.html, 2009. Technical report, University of
Toronto.

[KUL20] KULeuven-COSIC. TCHES20V3_CNN_SCA: Deep Learning Side-Channel Anal-
ysis Toolkit. [Online]https://github.com/KULeuven-COSIC/TCHES20V3_CNN_
SCA[Accessed Apr.6, 2025], 2020.

[LBH15] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436–444, 2015.

[LC23] Scott Lundberg and SHAP Contributors. An introduction to explainable ai with
shapley values. https://shap.readthedocs.io/en/latest/example_notebooks/
overviews/An%20introduction%20to%20explainable%20AI%20with%20Shapley%
20values.html[Accessed Apr.6, 2025], 2023.

[LG17] Yingzhen Li and Yarin Gal. Dropout inference in bayesian neural networks with
alpha-divergences. In International conference on machine learning, pages 2052–
2061. PMLR, 2017.

[LL17] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model
predictions. In Advances in Neural Information Processing Systems 30, pages
4765–4774. Curran Associates, Inc., 2017.

[LM18] Liran Lerman and Olivier Markowitch. Efficient profiled attacks on masking schemes.
IEEE Transactions on Information Forensics and Security, 14(6):1445–1454, 2018.

[LPMS18] Liran Lerman, Romain Poussier, Olivier Markowitch, and François-Xavier Stan-
daert. Template attacks versus machine learning revisited and the curse of di-
mensionality in side-channel analysis: extended version. Journal of Cryptographic
Engineering, 8(4):301–313, 2018.

[LTR17] Henry W Lin, Max Tegmark, and David Rolnick. Why does deep and cheap
learning work so well? Journal of Statistical Physics, 168:1223–1247, 2017.

[M+05] Tom Minka et al. Divergence measures and message passing. 2005.
[MCHS23] Loïc Masure, Gaëtan Cassiers, Julien Hendrickx, and François-Xavier Standaert.

Information bounds and convergence rates for side-channel security evaluators.
IACR Transactions on Cryptographic Hardware and Embedded Systems, 2023(3):522–
569, 2023.

[MDP20] Loïc Masure, Cécile Dumas, and Emmanuel Prouff. A comprehensive study of
deep learning for side-channel analysis. IACR Trans. on Cryptographic Hardware
and Embedded Systems, pages 348–375, 2020.

[MHK+24] Dev M Mehta, Mohammad Hashemi, David S Koblah, Domenic Forte, and Fatemeh
Ganji. Bake it till you make it: Heat-induced power leakage from masked neural
networks. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2024(4):569–609, 2024.

[MMOS16] Daniel P Martin, Luke Mather, Elisabeth Oswald, and Martijn Stam. Characteri-
sation and estimation of the key rank distribution in the context of side channel
evaluations. In Advances in Cryptology–ASIACRYPT 2016: 22nd International
Conference on the Theory and Application of Cryptology and Information Secu-
rity, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I 22, pages 548–572.
Springer, 2016.

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
[Online] https://github.com/KULeuven-COSIC/TCHES20V3_CNN_SCA
[Online] https://github.com/KULeuven-COSIC/TCHES20V3_CNN_SCA
https://shap.readthedocs.io/en/latest/example_notebooks/overviews/An%20introduction%20to%20explainable%20AI%20with%20Shapley%20values.html
https://shap.readthedocs.io/en/latest/example_notebooks/overviews/An%20introduction%20to%20explainable%20AI%20with%20Shapley%20values.html
https://shap.readthedocs.io/en/latest/example_notebooks/overviews/An%20introduction%20to%20explainable%20AI%20with%20Shapley%20values.html

30 Uncertainty Estimation in NN-enabled SCA

[MPP16] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. Breaking crypto-
graphic implementations using deep learning techniques. In Intrl. Conf. on Security,
Privacy, and Applied Cryptography Engineering, pages 3–26. Springer, 2016.

[NG24] Seyedmohammad Nouraniboosjin and Fatemeh Ganji. Too hot to be true: Tem-
perature calibration for higher confidence in NN-assisted side-channel analysis.
Cryptology ePrint Archive, Paper 2024/071, 2024. URL: https://eprint.iacr.
org/2024/071.

[PHJ+19] Stjepan Picek, Annelie Heuser, Alan Jovic, Shivam Bhasin, and Francesco Regaz-
zoni. The curse of class imbalance and conflicting metrics with machine learning for
side-channel evaluations. IACR Trans. on Cryptographic Hardware and Embedded
Systems, 2019(1):1–29, 2019.

[PR09] Emmanuel Prouff and Matthieu Rivain. Theoretical and practical aspects of mutual
information based side channel analysis. In Applied Cryptography and Network
Security: 7th International Conference, ACNS 2009, Paris-Rocquencourt, France,
June 2-5, 2009. Proceedings 7, pages 499–518. Springer, 2009.

[PR10] Emmanuel Prouff and Matthieu Rivain. Theoretical and practical aspects of
mutual information-based side channel analysis. International Journal of Applied
Cryptography, 2(2):121–138, 2010.

[PYW+17] Sihang Pu, Yu Yu, Weijia Wang, Zheng Guo, Junrong Liu, Dawu Gu, Lingyun
Wang, and Jie Gan. Trace augmentation: What can be done even before prepro-
cessing in a profiled sca? In International Conference on Smart Card Research
and Advanced Applications, pages 232–247. Springer, 2017.

[RBAF24] Unai Rioja, Lejla Batina, Igor Armendariz, and Jose Luis Flores. Keep it unbiased:
a comparison between estimation of distribution algorithms and deep learning for
human interaction-free side-channel analysis. Journal of Cryptographic Engineering,
14(3):499–511, 2024.

[RBFA21] Unai Rioja, Lejla Batina, Jose Luis Flores, and Igor Armendariz. Auto-tune pois:
Estimation of distribution algorithms for efficient side-channel analysis. Computer
Networks, 198:108405, 2021.

[Ris18] Riscure. CHES_CTF: trace database. [Online]http://aisylabdatasets.ewi.
tudelft.nl [Accessed: Jan.8, 2024], 2018.

[Riv08] Matthieu Rivain. On the exact success rate of side channel analysis in the gaussian
model. In International Workshop on Selected Areas in Cryptography, pages 165–183.
Springer, 2008.

[Ros14] Sheldon M Ross. Introduction to probability models. Academic press, 2014.
[SG05] Edward Snelson and Zoubin Ghahramani. Compact approximations to bayesian

predictive distributions. In Proceedings of the 22nd international conference on
Machine learning, pages 840–847, 2005.

[SMY09] François-Xavier Standaert, Tal G Malkin, and Moti Yung. A unified framework
for the analysis of side-channel key recovery attacks. In Annual Intrl. Conf. on
the Theory and Applications of Cryptographic Techniques, pages 443–461. Springer,
2009.

[SREG+25] Ahmed M Salih, Zahra Raisi-Estabragh, Ilaria Boscolo Galazzo, Petia Radeva,
Steffen E Petersen, Karim Lekadir, and Gloria Menegaz. A perspective on explain-
able artificial intelligence methods: Shap and lime. Advanced Intelligent Systems,
7(1):2400304, 2025.

[TB24] Arthur Thuy and Dries F Benoit. Explainability through uncertainty: Trustworthy
decision-making with neural networks. European Journal of Operational Research,
317(2):330–340, 2024.

[VdSDK+21] Rens Van de Schoot, Sarah Depaoli, Ruth King, Bianca Kramer, Kaspar Märtens,
Mahlet G Tadesse, Marina Vannucci, Andrew Gelman, Duco Veen, Joukje Willem-
sen, et al. Bayesian statistics and modelling. Nature Reviews Methods Primers,
1(1):1, 2021.

https://eprint.iacr.org/2024/071
https://eprint.iacr.org/2024/071
[Online] http://aisylabdatasets.ewi.tudelft.nl
[Online] http://aisylabdatasets.ewi.tudelft.nl

S. Nouraniboosjin et al. 31

[WAGP20] Lennert Wouters, Victor Arribas, Benedikt Gierlichs, and Bart Preneel. Revisiting a
methodology for efficient cnn architectures in profiling attacks. IACR Transactions
on Cryptographic Hardware and Embedded Systems, pages 147–168, 2020.

[WG68] Martin B Wilk and Ram Gnanadesikan. Probability plotting methods for the
analysis for the analysis of data. Biometrika, 55(1):1–17, 1968.

[WOS14] Carolyn Whitnall, Elisabeth Oswald, and François-Xavier Standaert. The myth of
generic dpa. . . and the magic of learning. In Topics in Cryptology–CT-RSA 2014:
The Cryptographer’s Track at the RSA Conference 2014, San Francisco, CA, USA,
February 25-28, 2014. Proceedings, pages 183–205. Springer, 2014.

[WPP22] Lichao Wu, Guilherme Perin, and Stjepan Picek. I choose you: Automated hyper-
parameter tuning for deep learning-based side-channel analysis. IEEE Transactions
on Emerging Topics in Computing, 2022.

[YP19] Shujian Yu and José C Príncipe. Simple stopping criteria for information theoretic
feature selection. Entropy, 21(1):99, 2019.

[YWJP20] Shujian Yu, Kristoffer Wickstrøm, Robert Jenssen, and José C Príncipe. Un-
derstanding convolutional neural networks with information theory: An initial
exploration. Trans. on Neural Networks and Learning Systems, 2020.

[ZBHV20] Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli. Methodology
for efficient cnn architectures in profiling attacks. IACR Trans. on Cryptographic
Hardware and Embedded Systems, 2020(1):1–36, 2020.

[ZR95] Huaiyu Zhu and Richard Rohwer. Information geometric measurements of general-
isation. 1995.

	Introduction
	Organization of the Paper

	Background
	Notations
	Profiled Side-Channel Analysis
	Matrix-based Estimation of Rényi Entropy
	SHAP Values
	Datasets

	Uncertainty Analysis in SCA
	NN-enabled Profiled SCA
	Uncertainty in NNs' Predictions
	Uncertainty Analysis through Bayesian Modeling
	Uncertainty Decomposition in SCA
	Sensitivity Analysis in SCA

	Results and Discussion
	Experimental Setup
	Toy Example: Uncertainty Decomposition for CIFAR10
	What Can Be Explained in SCA through Uncertainties?
	What Model Changes Benefit SCA?
	Interesting Case of CHES-CTF Dataset
	Sensitivity Analysis with SHAP Values

	Conclusion and Future Work

