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Abstract—As billions of people rely on end-to-end encrypted
messaging, the exposure of metadata, such as communication
timing and participant relationships, continues to deanonymize
users. Asynchronous metadata-hiding solutions with strong
cryptographic guarantees have historically been bottlenecked
by quadratic O(N2) server computation in the number of
users N due to reliance on private information retrieval (PIR).
We present Myco, a metadata-private messaging system that
preserves strong cryptographic guarantees while achieving
O(N log2 N) efficiency. To achieve this, we depart from PIR
and instead introduce an oblivious data structure through
which senders and receivers privately communicate. To unlink
reads and writes, we instantiate Myco in an asymmetric two-
server distributed-trust model where clients write messages to
one server tasked with obliviously transmitting these messages
to another server, from which clients read. Myco achieves
throughput improvements of up to 302x over multi-server and
2,219x over single-server state-of-the-art systems based on PIR.

1. Introduction

While end-to-end encrypted messaging applications such
as WhatsApp [1], Signal [2], and Messenger [3] conceal
message content, they still expose metadata such as who
communicates with whom, when, and how many messages
they exchange. This information could enable an attacker
to identify a whistleblower through discreet exchanges with
a journalist or uncover an activist network by monitoring
interactions during protests. Metadata alone has historically
deanonymized real-world users [4], [5], [6], [7]. To this day,
service providers continue to share sensitive user data with
government agencies and third parties [8], [9], [10], [11],
[12], [13], exposing users to ongoing threats such as mass
surveillance [8], [11], [12].

A broad range of prior systems [14], [15], [16] aim to
hide metadata in secure communication. A key challenge
in this line of work is achieving strong cryptographic pri-
vacy, while maintaining crucial system properties, including
near-linear server overhead and asynchrony. Asynchronous
metadata-private communication systems allow clients to
go temporarily offline without losing their messages. Prior
systems typically satisfy only a subset of these properties.

Near-linear overhead & asynchrony. Mix networks [17],
[18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28],
[29], [30], [31], [32] rely on a set of servers to shuffle
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Figure 1: Myco system model: Clients write to S1, who
obliviously writes to S2, from which clients read.

user messages, resulting in O(N) server overhead in the
number of users N . Despite their efficiency, these works
usually rely on weaker security guarantees such as heuristic
or differential privacy [33], [34], [35], [36], [37]. Recent
mixnet advancements have enabled asynchronous conversa-
tions with sub-quadratic server overhead, but only with dif-
ferential privacy [36]. An alternative research direction [38],
[39] also achieves near-linear overhead and asynchrony, but
relies on trusted hardware.

Cryptographic privacy & near-linear server overhead.
The few attempts at mixnets with cryptographic pri-
vacy [24], [32] require precise coordination between clients
to initiate communication, limiting users to a single syn-
chronous conversation during which they cannot go offline.

Asynchrony & cryptographic privacy. Another line
of work provides both cryptographic guarantees and
asynchrony by relying on private information retrieval
(PIR) [40], a primitive where clients query a database with-
out revealing the queried index [41], [42], [43], [44], [45],
[46], [47], [48], [49], [50]. Most PIR-based communication
systems rely on a set of non-colluding servers [43], [44],
[45], [46], [47], [48], [49], [50], while some only require
a single server at the expense of higher computational
cost [41], [42]. PIR-based messaging systems are a subset of
these works that can support the general-purpose messaging
setting [41], [42], [43], [44]. Messages are stored in a
database, and receivers use PIR to retrieve their message
without revealing which message was read. Messages can be
read anytime between when they are written to the database
and an expiration time (time-to-live).

However, for N users, PIR-based messaging systems in-
cur O(N2) server computation for N queries on a database
containing O(N) messages. Although preprocessing PIR
can reduce per-query computation [51], [52], [53], messag-



ing systems have not benefited from these advancements
because the messaging database is dynamic and continually
being updated. While batch PIR [42], [54], [55] allows a
single client to amortize the cost of performing several
queries, it does not amortize costs across users, so these
systems nevertheless suffer from quadratic server overheads.

To this end, we present Myco1, a metadata-private mes-
saging system that surpasses the quadratic bottleneck of
PIR-based messaging systems. Myco achieves O(N log2 N)
server computation by unlocking polylogarithmic accesses
as opposed to linear. Like in prior work [43], [44], [45], [46],
[47], [48], [49], [50], we leverage the two-server model;
however, unlike prior work, we depart from PIR and instead
adopt an oblivious RAM (ORAM)-inspired approach, which
has typically been discounted in a multi-user setting such
as messaging due to its reliance on a trusted client [44].
We overcome this restriction by introducing a novel obliv-
ious data structure that uses the distributed-trust servers
asymmetrically, as depicted in Figure 1. In doing so, Myco
achieves orders of magnitude higher throughput than PIR-
based systems. Myco protects both the content and metadata
of conversations between honest clients, even if an adversary
controls any number of clients and up to one server. The
result is the first asynchronous metadata-private messaging
system that achieves sub-quadratic server complexity with
cryptographic metadata privacy.

1.1. Technical Overview

Asymmetric distributed trust. PIR-based messaging
systems [41], [44] are symmetric, which means that all
servers perform identical operations. Each pair of communi-
cating clients maintains a shared secret that is used to derive
a pseudorandom location ℓ. A sender writes a message to ℓ
and the receiver reads by performing a symmetric PIR read
at location ℓ across all servers.

In contrast, as depicted in Figure 1, Myco has an asym-
metric distributed-trust model: S1 handles message writes,
while S2 manages reads, decoupling reads from writes. As
in the PIR approach, we arrange the database as a series of
buckets. We start with a naive attempt where S1 instantiates
a new hash-table of buckets and senders write to S1 at the
pseudorandom bucket ℓ. Next, S1 copies the hash-table of
received messages to S2. Receivers can then compute the
bucket ℓ to read from S2 and decrypt the message. Since
S1 does not know who reads each message and S2 does not
know who writes them, the communicating parties remain
private. This simple setup offers O(N) server work across
N clients.

However, simply adopting the bucket structure from
PIR-based messaging systems would not be secure, as an
adversary controlling S2 and a fraction of clients could
infer the honest write locations, allowing it to link reads
and writes. The issue is that the PIR-based works set up
the hash-table of buckets such that a message’s bucket

1. Messaging Your Companions Obliviously is inspired by mycorrhizal
fungi, which plants use for sending anonymous signals through tree roots.

placement depends on other messages in the hash-table. This
interdependence is safe in PIR due to its protection of read
access patterns, but PIR incurs a costly linear scan that Myco
seeks to avoid.

Independent bucket assignment. Myco remedies this
leakage by ensuring that messages are written to locations
independent of the rest of the messages in the database. To
achieve this, buckets are configured to behave as if they
are infinitely sized: the bucket capacity is set large enough
to accommodate all messages in their designated bucket
ℓ. Before sending the hash-table to S2, S1 fills the empty
blocks in each bucket with dummy blocks and shuffles
each bucket. This prevents the adversary from inferring
information about honest writes based on the position of its
own messages within the bucket. Still, a group of malicious
senders could attempt to use non-pseudorandom locations
to clog up specific buckets and disrupt the protocol.

To address this, Myco prevents malicious senders from
biasing write locations by introducing an additional layer of
randomness at S1. This allows us to ensure that a bucket
capacity growing only logarithmically in N (Theorem 2) is
sufficient to maintain the infinite bucket behavior. Specif-
ically, senders first derive an intermediate bucket index f ,
which S1 incorporates with its randomness to compute the
final bucket index ℓ from f . After transferring the hash-table
to S2, S1 broadcasts its randomness, allowing receivers to
compute ℓ from f . Clients then read bucket ℓ.

As in prior work, our system operates in discrete time
intervals, or epochs, during which each client performs a
fixed number of accesses. In each epoch, S1 writes a hash-
table with N buckets to S2, which stores a matrix of N ·∆
buckets at a time, where ∆ is a fixed duration of epochs after
which messages expire. We dub this protocol Matrix-Myco.

In the current design, receivers that were offline for δ
epochs must read δ buckets to conceal the epoch in which
a message was written, which is crucial for hiding user
relationships. In addition, if a user is part of Q conversations,
it must read from every conversation in every epoch be-
cause it can potentially miss messages otherwise. While this
achieves the desired asynchrony property, it scales poorly in
realistic scenarios involving prolonged offline periods and
a large number of conversations. Therefore, we require a
more robust primitive to ensure that reads remain oblivious
across epochs, allowing us to adaptively fetch messages
across conversations and epochs as needed.

Read-static messaging tree. To this end, we draw
inspiration from the tree-based oblivious RAM (ORAM)
literature [56], [57], [58], namely Path ORAM [59], and
instead arrange the buckets in a binary tree in S2. However,
as discussed, ORAM has long been dismissed by multi-
client messaging systems [44]. The issue is that the ORAM
client is trusted as it must store sensitive state like the keys
(that can decrypt user data), and the location of data within
the ORAM server (such as a position map or stash).

Given this secret state, it is unclear which party should
serve as the ORAM client in our system. Clients cannot
maintain this sensitive state locally, as this would reveal the
locations of other honest clients’ messages to an attacker
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Figure 2: Example of percolation for a message cmsg through
the tree over several epochs. Color-shaded nodes indicate the
path-set, and bolded nodes show the intended message path.
In epoch (1), the message is written to the LCA. In epoch
(2), it remains stationary as no deeper nodes on the intended
path are selected. In epoch (3), more nodes on the path are
in the path-set, so cmsg moves deeper towards the leaves.

controlling even a single client. If S1 acts as an ORAM
client, and S2 is the ORAM server, clients would need to
route writes and reads through S1. This would allow an
adversarial S1 to link reads to writes.

To this end, we propose a solution that exploits the
inherent access pattern of messaging to eliminate the need
for clients to route reads through S1. Since messages are
accessed only once, clients can read directly from S2 without
reassigning them through S1 after the initial read. This
allows us to decouple reads from writes while allowing S1
to handle writes as an ORAM-like client.

Now, we have enhanced our asymmetric model such
that S1 acts as an ORAM-like client, and S2 acts as an
ORAM-like server, but rather than relying on a client-side
position map as in ORAM, both the sender and receiver
can independently and dynamically compute their pseudo-
random message location ℓ. To read, the receiver can simply
download the path P(ℓ) from the root to leaf ℓ from S2’s
tree, and trial-decrypt to locate its message.

Oblivious batch evictions. We have yet to discuss
how S1 can write messages along the path P(ℓ) without
disclosing ℓ to S2. If S1 simply reads, edits, and writes back
path P(ℓ), S2 can trivially link the receiver’s read to S1’s
write by correlating when particular paths are written with
when they are read. S1 could write all messages to the root
of the S2 tree, but this bucket would quickly overflow. In
Path ORAM, evictions happened with reads, but our read-
static requirement demands a more creative approach.

To address this, Myco leverages the high volume of
messages sent in a messaging system to process writes in
batches. In each epoch, S1 randomly samples N paths from
S2. Next, S1 writes each message (both new and pre-existing
in the path-set) to the deepest node along its intended path
that is part of the path-set, or the least common ancestor
(LCA). Recall that if we did not always write exactly to the
LCA, this would violate independent bucket assignment.

The randomness in sampling both ℓ and the path-set
itself ensures that the messages will fit into the buckets
with high probability. After each epoch, S2 will only see
that N uniformly random paths were replaced with mutually
indistinguishable blocks. Since the eviction path-set is inde-
pendent of the messages’ intended paths, S2 learns nothing
about the intended path of any messages. Over the epochs,
messages will percolate effectively towards the leaves of the
tree as new path-sets are chosen, as depicted in Figure 2.
This frees up space closer to the root for freshly written
messages. In addition, messages stored past ∆ epochs will
expire, ensuring that the tree never fills up. We dub this
protocol Tree-Myco. Theorem 3 proves that logarithmically-
sized buckets in N and ∆ are sufficient to prevent overflow,
ensuring polylogarithmic accesses.

Private notifications. While Tree-Myco reads offer
cross-epoch obliviousness and polylogarithmic accesses, re-
ceivers must still guess which path to read each epoch and
cannot query the same path again. This is unlike Pung and
Talek, where repeated reads are leakage-free and mitigate
the risk of missed messages. Indeed, we need a way for a
client to know which conversation and epoch to fetch from
if it is in Q total conversations.

To eliminate the guesswork, we revisit Matrix-Myco,
which has the limitation that it must fetch messages from
every epoch and every conversation to hide access patterns
across epochs and ensure no message is missed, respectively.
Since Tree-Myco needs to know the exact epoch and con-
versation to fetch from in order to only read q ≪ Q real
messages, we can use Matrix-Myco to receive this signal.
The hybrid solution is still efficient because this signal can
be a small λ-bit notification, which is 16× smaller than
messages considered in prior work for λ = 128 [41], [42].
Consequently, our notification cost scales linearly with Q
and δ, and logarithmically with Q and N , while fetching
actual messages via Tree-Myco scales polylogarithmically
with N and ∆. Thus, clients use Matrix-Myco exclusively
for λ-bit notifications, enabling receivers to efficiently pri-
oritize their Tree-Myco conversations.

We present protocol details in §3, a simulation-based
security definition in §4, a capacity analysis in §5, and a
security proof in §A.

1.2. Evaluation Summary

In §6, we evaluate Myco’s performance against the
PIR-based systems Talek++ and Pung++, which incorpo-
rate state-of-the-art PIR techniques into the multi-server
Talek [44] and single-server Pung [41] setups, respectively.
Myco delivers up to 302× higher throughput than Talek++
and up to 2, 219× higher throughput than Pung++, with
throughput gains increasing as the number of system users
increases. The end-to-end latency for delivering a single
message in Myco ranges from a few seconds to a minute,
which is higher than for PIR-based works. This is due to
Myco’s batching, which accounts for messages from all
system clients, while PIR works report the best-case latency
assuming a single message. If we consider the latency of



prior work under typical message volumes, Myco surpasses
both Pung++ and Talek++.

2. System Overview

2.1. System Architecture

System roles. A Myco deployment consists of N clients
and two servers, S1 and S2, as illustrated in Figure 1. S1
and S2 operate under distinct trust domains. S1 handles
client writes, then transmits these writes obliviously to S2.
S2 subsequently manages client reads. Each conversation
involves a client pair—a sender and a receiver. The sender
writes a message to S1, and the receiver retrieves it from S2
in the next epoch during which it is online.

Epochs & cover traffic. Myco operates in discrete in-
tervals called epochs, tracked independently by each server.
Clients locally keep track of epochs and query both servers
if they lose track, ensuring that both servers agree on the
current epoch. Myco resists traffic analysis by generating
a consistent rate of fixed-size, random-looking reads and
writes for each epoch, using dummy requests when no real
activity occurs. This cover traffic effectively hides actual
communication patterns.

Contacts. Myco clients can participate in up to Q
conversations with Q contacts, but write to and read from
at most q ≪ Q conversations per epoch. Clients receive
notifications through Myco’s private notification system, and
define their own fetch policies to decide which q conver-
sations to read from out of the Q total conversations. We
set q = 1 for simplicity, though Myco supports multiple
conversations per epoch. This is unlike prior work, which
relies on expensive dialing protocols to determine the active
conversations [20], [24], [29], [33], [34], [35], [36], [41],
[42], [44], [49], [50], [60], [61], [62], [63], [64], [65].

Shared keys. As in prior communication systems [20],
[24], [29], [33], [34], [35], [36], [41], [42], [44], [49],
[50], [60], [61], [62], [63], [64], [65], users must exchange
some information through an out-of-band channel prior to
communication (e.g., keys or pseudorandom addresses). In
Myco, we assume that users intending to communicate
can establish a shared symmetric key. Orthogonal work
facilitates this for client pairs through bootstrapping from
other applications [66], scanning one another’s QR codes
in-person, or a metadata-private “add-friend” protocol as in
Alpenhorn [37]. Like prior work, we have not added forward
secrecy to shared keys, and leave this to future work.

2.2. Threat Model & Security Guarantees

We begin with an informal discussion of Myco’s threat
model and security guarantees. In §4, we present our formal
security definition and theorem. Informally, Myco offers
secure two-way communication over the Internet, concealing
both message content and metadata—such as timestamps,
message count, and participant identities—from everyone
except the communicating users. This approach protects

both the content of messages and any data that could reveal
information about the communication itself. Myco provides
privacy guarantees only to conversations between two honest
clients; a compromised client can trivially leak the plaintext
messages shared with an honest client, though this does
not compromise the security of the honest client’s other
conversations.

Threat model. We consider a threat model where any
subset of clients and up to one of the two servers may
be maliciously corrupted. Like many PIR-based commu-
nication systems [43], [44], [45], [46], [47], [48], [49],
[50], we adopt a two-server distributed-trust model. This
stands in contrast to their single-server counterparts [41],
[42], which achieve a stronger threat model at the cost
of reduced performance. Informally, Myco guarantees the
following security properties even if the adversary deviates
arbitrarily from the protocol, as long as both servers are not
simultaneously compromised.

Message privacy and integrity. As long as the commu-
nicating clients are honest, messages remain confidential,
accessible only to intended recipients, and any tampering
or replay attacks are detectable by the receiver to ensure
integrity.

Metadata privacy is more difficult to achieve and is the
primary challenge of Myco. In Myco, an adversary cannot
discern whether any conversation is happening between any
pairs of honest clients. This property holds even if the adver-
sary corrupts one of the servers and all of the clients except
the two communicating clients. Myco’s guarantees are in
line with Talek’s access sequence indistinguishability [44],
where the adversary cannot distinguish between an honest
user’s access patterns and a random access pattern of the
same length.

Although the adversary can infer the anonymity set of
the write corresponding to a read based on the number of
clients that were online, this does not reveal communication
patterns in Myco because clients also issue fake reads indis-
tinguishable from real reads. If all honest clients sent and
received a (fake or real) message within an allocated time-
frame, the precise metadata-hiding guarantee achieved by
Myco is communication unobservability (CUS) [14], where
the adversary may infer possible senders and recipients but
cannot even detect the existence of a conversation between
honest clients.

If honest clients are permitted to go offline and not send
cover traffic, then Myco still achieves at least relationship
unobservability (RUS) [14], where the adversary may infer
possible senders and recipients, as well as the number
of ongoing conversations, but cannot identify any sender-
receiver pair from the pool of active correspondents. In fact,
the anonymity is stronger because in the extreme case where
only one honest pair of communicating clients was online,
the adversary cannot infer whether the clients are commu-
nicating or if they are just performing fake accesses. If the
adversary learns side-channel information that a message
was received by an honest client in epoch t, its anonymity
set includes all messages written by online honest clients in
epochs [t−∆, t), each equally likely to be the one read.



Online-offline behavior. Like other asynchronous
metadata-private messaging systems [36], [41], [42], [44],
Myco allows users to go offline temporarily as long as the
times at which they go offline or online is independent of
their communication patterns. As a result, an adversary will
not be able to distinguish between any two plausible access
sequences of the same length. We model this in our security
definition by allowing the adversary to choose which clients
are online at any given epoch. We also assume that within
each epoch, clients query at a time independent of their
communication patterns (e.g., at a fixed or random time).

Availability. Myco does not offer protection against de-
nial of service (DoS) attacks. Either server can misbehave to
block honest clients from exchanging messages, though this
does not compromise their privacy. In particular, any server
can block communication between a set of clients without
gaining any information about whether those clients were
communicating. Thus, we assume that services supporting
client communication, such as ISPs, DNS for name resolu-
tion, and servers handling requests, do not deny service.
Malicious clients alone cannot disrupt service to honest
clients. Like Pung and Talek, Myco assumes that clients
do not alter their actions in response to server misbehavior
(e.g., if the client does not receive an expected message).
This ensures that Myco’s guarantees remain intact even in
the face of selective failure attacks.

3. The Myco Protocol

We now describe the Myco protocol. In §3.1, we pro-
vide an overview of the message flow through a simplified
version of Matrix-Myco. In §3.2, we introduce independent
bucket assignment, resulting in Matrix-Myco. In §3.3, we
extend these building blocks to Tree-Myco, which uses
a tree-based oblivious data structure to overcome Matrix-
Myco’s limitations through cross-epoch obliviousness. In
§3.4, we describe how we use Matrix-Myco for a private
notification system, resulting in the full Myco protocol.
Algorithm 1 denotes the full Myco client and server API.

3.1. Overview of Myco

We begin by describing a simplified protocol flow
through Myco’s asymmetric distributed-trust servers.

3.1.1. Client setup. To exchange messages in Myco, a
client must first run client.Setup(k⃗Q), where k⃗Q maps
each of the user’s Q contacts’ user IDs to the shared
key with that contact. This operation securely derives a
set of keys from each shared key k, known exclusively
to the communicating client pair. In particular, kenc ←
KDF(k,"enc") is responsible for message encryption and
krk ← KDF(k,"routing key") derives the message
location, where KDF : {0, 1}λ × {0, 1}∗ → {0, 1}λ is a
secure key derivation function [67].

3.1.2. Sending messages to S1. Writes are processed
through S1, which handles client-written messages and
obliviously writes a batch of these messages to S2 in each
epoch. To write a message to a contact, a client invokes
client.Write(cr,m), where m is the message intended for
the receiver cr. In a write, the derived key kenc encrypts
the plaintext message m into ciphertext ct← Enckenc(m; t),
concealing the message content from S1. Enck(m; t) is
a key-private (§C) AEAD (authenticated encryption with
additional data [68], [69], [70]) scheme that takes key k,
plaintext m, and integrity tag input t, where the current
epoch t is taken as authenticated data to prevent message
replays. Due to the key-privacy property, this ciphertext does
not reveal anything about the key used to encrypt it. Thus,
it does not reveal anything about the intended recipient of
the message.

krk is then used to key a pseudorandom function [71]
with input t to generate a bucket index ℓ← PRFkrk

(t) that
determines the message’s location, where PRF : {0, 1}λ ×
{0, 1}∗ → {0, 1}|ℓ|. Due to the security of the pseudoran-
dom function, ℓ appears random to S1 during the write,
irrespective of which of its conversations’ PRF key the
sender used. The sender then transmits ct and ℓ to S1 by
calling S1.Write(ct, ℓ), which adds ct to bucket ℓ of S1’s
epoch-specific hash-table Tt.

3.1.3. Batch writes from S1 to S2. S1 is tasked with
writing messages to S2 while concealing the sender and
therefore the conversation associated with each message.
S1.BatchWrite() transfers the table Tt to S2, from which
clients can read. S1 signs [72], [73] each bucket in the batch
write to allow clients to detect tampering by S2.

Upon receiving a batch write, S2 increments its local
epoch counter. Messages written in the current epoch will
be made available to receivers beginning in the next epoch.

3.1.4. Receiving messages from S2. To read their message,
the receiver uses krk to compute ℓ and fetches the ℓ-indexed
bucket from S2. The receiver then trial-decrypts each entry
in the bucket using kenc until it successfully decrypts its
message m. Since the message was encrypted by an AEAD,
the receiver can detect any tampering from the servers.

Because the servers already know which epochs each
client goes offline, clients can read from all missed con-
versations after coming back online after δ epochs without
leaking new information. Let L be the matrix of Q · δ
message locations, one for each potential bucket containing
a message for the receiver across the δ unread epochs. The
receiver sends L to S2, who responds with the buckets at
the requested indices.

In §3.2, we will discuss how we ensure that the bucket
indices do not reveal any information to S2 about which
conversations were written to. In addition, the receiver will
not miss any messages since it checks all Q conversations
for each system epoch. Similarly, S1 has no knowledge of
when reads occur or which receiver accessed which buckets,
so it cannot link the metadata of written messages to a
specific receiver, conversation, or read access.



3.1.5. Message expiration. We must support asynchrony
while preventing the message database from growing indef-
initely. To do so, messages are stored in S2 for ∆ epochs
before being garbage-collected. This mirrors the approach
of current messaging apps [1], [2], [3], which temporarily
store messages before requiring the receiver to re-request
the message from the sender once they are online again.
In Matrix-Myco, this means the hash-table Tt−∆ is deleted
from S2’s memory every epoch t.

3.1.6. Fake accesses. Typically, a client would not want
to perform Q reads and writes per epoch. As such, each
online client must perform some fake accesses to pad their
accesses in each epoch to Q. In particular, if no real message
needs to be sent, the client generates dummy values for
these elements using client.FakeWrite(), which is indis-
tinguishable from a real write from the perspective of S1
and therefore S2. A fake write calls S1.Write(ct′, ℓ′) where
ct′ ← Enck′(0m), k′ $←− {0, 1}λ, and ℓ′

$←− {0, 1}|ℓ|. Sim-
ilarly, client.FakeRead() downloads bucket ℓ′

$←− {0, 1}|ℓ|.
Due to the security of the key-private AEAD scheme and
the pseudorandomness of the PRF, fake accesses are indis-
tinguishable from real ones, which we ensure in §3.2 and
prove in §A.

3.2. Matrix-Myco

In this section, we will complete the Matrix-Myco pro-
tocol. As we have detailed, each epoch t has a new hash-
table Tt, consisting of Q ·N buckets. S1 places each client’s
message ct in bucket ℓ of Tt. Myco clients write to a bucket
using a pseudorandom location ℓ. At the end of the epoch, S1
fills all empty blocks of Tt with dummy values, and shuffles
each bucket. We now enhance our bucket structure with
independent bucket assignment to protect against malicious
clients and ensure fake read indistinguishability.

3.2.1. Infinite buckets. Each bucket must inherently have a
bucket capacity ZM . Suppose that ZM is a small constant,
and messages get pushed to another bucket if bucket ℓ is full.
This is the case in Talek [44], in which message locations
depend on other messages in the database. This does not
leak any information for Talek because the PIR reads do
not reveal the bucket that was read to the servers.

In our case, an adversary controlling a subset of receivers
and S2 could infer information about the placement of
honest clients’ messages by observing which bucket it found
its message in. For instance, if the receiver finds its message
in a backup bucket, it can deduce that the first bucket it
checked was full with other honest user messages, leaking
information about those messages. Similarly, if a fake read
occurs to a bucket which is full of malicious client messages,
the attacker can deduce that the read was fake.

By always adhering to the invariant that receivers find
their messages in a deterministically computable bucket, a
malicious receiver colluding with S2 cannot gain additional
information based on which bucket contains its message.

This effectively requires that we configure our buckets to
act as infinitely sized; in particular, ZM should be large
enough such that messages will always fit in the bucket
corresponding to their PRF location ℓ.

3.2.2. Fake access indistinguishability. Infinite buckets
ensure that fake and real accesses are indistinguishable.

Fake & dummy writes. Recall that before writing
buckets to S2 at the end of each epoch, S1 adds dummy
blocks to fill each bucket, then randomly shuffles them be-
fore sending them to S2, which prevents malicious receivers
from learning anything from their message’s position within
the bucket. To remain indistinguishable from real values,
dummy blocks are generated by S1 as Enck′(0m) where
k′

$←− {0, 1}λ.
Fake reads. The only difference between a real read

and a fake read is that the former has a corresponding real
write. As long as each fake read could plausibly correspond
to a real write, the adversary cannot distinguish real reads
from fake ones. Since real writes are indistinguishable from
dummy writes, and we can accommodate any number of
valid real writes, all fake reads could also potentially have
a corresponding real write, and fake and real reads are
indistinguishable.

3.2.3. Layered PRFs for unbiasable writes. A remaining
challenge in our bucket structure is preventing a malicious
sender from crafting a message location ℓ to distort the dis-
tribution of message placements, potentially causing bucket
overflows. Naively, we would have to set the bucket capacity
very large to ensure that buckets behave as if they are
infinitely sized, because an attacker could force all of its
messages in the same bucket.

To prevent such an attack, S1 does not write the sender’s
ciphertext ct directly to the client-specified location. In-
stead, we use the sender’s submitted PRF output as an
intermediate input f . S1 then derives the final message
location ℓ by applying an additional PRF to f , using an
epoch-specific, client-agnostic server routing key ksrk,t. In
particular, ℓ ← PRFksrk,t

(f, cs). After the epoch, S1 sends
ksrk,t to S2. To compute ℓ, the receiver then downloads ksrk,t
from S2 and uses it to key the external PRF layer, yielding
the message location ℓ. Since each message is placed at the
output of a PRF on distinct inputs, this distributes each mes-
sage uniformly over the buckets and thwarts any adversarial
strategy to manipulate bucket distribution. In Theorem 2 of
§5, we prove that the asymptotic bucket size of Matrix-
Myco is logarithmic in Q ·N , resulting in a corresponding
asymptotic access linear in Q · δ and logarithmic in Q ·N .

3.3. Tree-Myco

Matrix-Myco has a shortcoming: The number of buckets
downloaded by the client scales with Q · δ, which can be
problematic since clients typically have many contacts Q,
and can go offline for an extended number of epochs δ.
We now introduce Tree-Myco, which solves this problem
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Figure 3: Simplified mes-
sage flow of a sender send-
ing a single message m
through Tree-Myco to mes-
sage location ℓ, and a re-
ceiver reading this message.
Shaded orange indicates the
epoch’s path-set and tree
nodes with bold outline in-
dicate the path read by the
receiver, P(ℓ).

with cross-epoch obliviousness. The Tree-Myco message
database is instead arranged as a binary-tree in S2, taking
inspiration from the tree-based ORAM literature [58], [59].
S1 obliviously writes to a bucket on the root-to-leaf path
P(ℓ), and receivers download the path P(ℓ), trial decrypt-
ing the path to locate their message. Figure 3 shows the
message flow through Tree-Myco.

3.3.1. Setup. Since the entire message database is stored in
a single data structure unlike Matrix-Myco’s epoch-specific
hash-tables, S1 must re-encrypt any buckets that are edited
to prevent S2 from observing how the messages are moving
across the tree. To do so, however, S1 needs to re-encrypt
message ciphertexts with a key that the receiver can derive.
Thus, in addition to kenc and krk, client.Setup derives a
conversation-specific re-encryption key krenc. However, it
is essential to prevent S1 from deducing the receiver’s
identity by correlating re-encryption keys used by the sender
across different epochs. To address this, we can create
message-specific values by making them unique to the
current epoch t. To this end, senders derive a message-
specific re-encryption key krenc,t ← PRFkrenc(t). S1 encrypts
the ciphertext ct with krenc,t to create a double-encrypted
ciphertext cmsg. This also means we now compute dummy
blocks as Enck′(Enck′′(0m)) where k′, k′′

$←− {0, 1}λ.
Both S1 and S2 store copies of the tree. S2’s copy

is where clients read from. S1’s copy is void of dummy
blocks and is simply ⊥ for blocks with no real message.
Additionally, S1 also stores a metadata tree Tmd, which is a
mirror of the message tree storing the krenc,t value, intended
path ℓ, and expiration date texp of each message, which will
be used in future batch evictions.

3.3.2. Batch evictions. S1 must hide the message’s intended
path P(ℓ) when writing a cmsg value to S2. At the start of
each epoch t, we call S1.BatchInit(), in which S1 randomly
samples N leaves with replacement, where N denotes the
number of clients in the system. S1 creates a path-set P from
the union of these root-to-leaf paths in the tree. P contains
the only buckets where messages for the current epoch will
be written. Each cmsg is added to the bucket at the least
common ancestor (LCA) of P and P(ℓ). Recall from §3.2
that Myco requires independent bucket assignment. Thus,

a critical difference between our eviction protocol and Path
ORAM’s is that in Path ORAM, messages are simply evicted
as deep as they go within the freshly sampled path. This
would lead to leakage in Myco. For instance, if the receiver
finds its message at a node closer to the root than the LCA,
it can deduce that the LCA was full with other honest
user messages, leaking information about those messages’
intended paths.

S1 follows the same process as fresh message writes
for handling preexisting messages found within P . First,
it retrieves the corresponding metadata from the relevant
bucket and block in Tmd. If texp has passed the current epoch,
the message is expired and is deleted from the path-set P
and Tmd. If the message is unexpired, S1 reads the message’s
intended path ℓ from the metadata tree and inserts the data
cmsg into the bucket that is the LCA of the current epoch’s
path-set and ℓ. Finally, krenc,t from the metadata is used
to re-encrypt the underlying ciphertext ct, providing a fresh
encryption for the message. The corresponding block in Tmd

is updated accordingly. In order to avoid timing attacks,
we ensure that each bucket involves ZT decryptions and
ZT encryptions in total, where ZT is the Tree-Myco bucket
capacity. This avoids timing attacks by ensuring that each
epoch’s duration is independent of the number of dummies
vs. real messages in the path-set.

At the end of the epoch, S1 sends the path-set P to S2,
which overwrites the corresponding paths with S1’s edited
path-set. As in Matrix-Myco, all data in the buckets is
re-encrypted, while empty blocks are filled with dummy
blocks. Consequently, S2 can only observe that a set of
random paths were written by S1 with data indistinguishable
from dummy data.

Figure 2 depicts an example of a message’s movement
through the tree over time. Messages gradually move deeper
towards the leaves through successive epochs. In Theorem 3
of §5, we prove that the asymptotic bucket size of Tree-
Myco is logarithmic in N and ∆, resulting in polylogarith-
mic accesses in N and ∆ per user.

3.3.3. Receiving messages. Tree-Myco enables receivers
to download a single root-to-leaf path in which they are
guaranteed to find their message. As such, receivers only
need to process a polylogarithmic number of data blocks by



deriving ℓ and downloading the path P(ℓ) from S2. Since
the honest receiver does not know which path-sets were
selected in previous epochs, it trial-decrypts each block in
the path using krenc,t until it finds the correct one. Finally,
it decrypts the inner layer with kenc to retrieve the message
m. Because the sender used AEAD, the receiver can detect
any replay attacks or tampering to the internal ciphertext
by S1. A malicious S2 cannot link the receiver’s read to
any prior write since only the path-sets were written to and
re-encrypted per epoch, and S1 used independent bucket
assignment.

3.4. Full Myco

Tree-Myco requires clients to read Q paths every epoch
to avoid missing messages, similar to Matrix-Myco. Al-
ternatively, clients could guess which path to read each
epoch, but could therefore risk missing a message they never
checked before expiry.2 To fully utilize Tree-Myco’s cross-
epoch obliviousness, a private notification system is needed
to identify the paths containing new messages.

Although Matrix-Myco is inefficient for messaging due
to the need to check all Q inboxes across δ epochs, its
asymptotically quasilinear server workload makes it well-
suited for notifications, which only need to be λ bits long
(e.g., λ = 128 bits), 16× smaller than message sizes of prior
work [41], [44].

In this design, S1 and S2 run a lightweight version of
Matrix-Myco, replacing messages with notifications. Clients
derive notification keys {kntf , kntfrk } from their shared key
k during client.Setup. When a sender writes a message to
S1 in Tree-Myco, they also write a notification ctntf ←
PRFλ,kntf (t) to Matrix-Myco, where PRFλ : {0, 1}λ ×
{0, 1}∗ → {0, 1}λ. Notification locations are derived using
kntfrk to obtain fntf as the intermediate location, and ℓntf as
the final bucket index. Receivers compute ctntf and fntf

locally, and if they find ctntf in the bucket with index
ℓntf , this indicates that the Tree-Myco path derived from
t contains a new message from the sender associated with
the shared key k. This prompts the receiver to fetch the
corresponding path in Tree-Myco. The small size of notifica-
tions significantly reduces Matrix-Myco’s client bandwidth
consumption when downloading missed notifications instead
of missed messages after an offline period.

Notifications are unforgeable because to add a fake
notification which gets accepted by a receiver, the server
would have to guess the PRF output in each epoch t without
knowing the PRF key, undermining the security of a PRF.
An adversary who deletes or tampers with a notification
would simply result in the receiver not finding their message,
and has no impact on security.

Push-based system. The private notification system en-
ables a push-based model where each receiver checks their
inboxes depending on which notifications it receives. We de-
fine a deterministic, client-specific pushPolicy that dictates

2. By contrast, systems like Pung and Talek allow repeated queries
without revealing information, enabling clients to re-check mailboxes to
avoid message loss.

Key Exchange Ideal Functionality FKE

Initialize keyCount and keyRequests to {⊥}.
On input ⟨GenerateKey, c′⟩ from client c:

1) If keyRequests contains (c′, c), send k
$←−

{0, 1}λ to c and c′.
2) Else, add (c, c′) to keyRequests.

Figure 4: Ideal functionality of symmetric key exchange.

inbox selection, e.g., prioritizing smaller user IDs, random
selection, or client-specified priority lists. Unlike Pung and
Talek, where clients must repeatedly check inboxes until a
message arrives, Myco only requires downloading a message
when one is received.

4. Security

4.1. Ideal Functionality F

In this section, we define the ideal functionality F
securely realized by Myco and explain how it encapsulates
the properties outlined in §2.2. Specifically, we present
a simulation-based definition that captures Myco’s secu-
rity guarantees. Unlike Pung and Talek, which use game-
based definitions [41], [44], our definition captures denial
of service attacks, which are inherent to prior work but not
explicitly captured by their game-based definitions.

4.1.1. Key exchange ideal functionality FKE. Recall from
§2.1 that Myco clients are assumed to have a shared key
agreed upon out-of-band. We describe this functionality
using FKE defined in Figure 4 and prove Myco’s security
in the FKE-hybrid model. FKE receives ⟨GenerateKey, c′⟩
from client c seeking to communicate with another client
c′, and returns the same symmetric key k to both if c and
c′ queried each other. If both clients did not query for each
other, they do not receive any signal from FKE. As a result,
a malicious client does not learn whether the honest user
is interacting with others in the system. We assume each
user’s list of Q contacts remains fixed during the protocol
for simplicity, though this can be extended to allow dynamic
contact additions.

4.1.2. Myco ideal functionality F . Myco’s ideal function-
ality, defined in Figure 5, mediates communication between
clients. Clients first specify the list of contacts from which
they will accept messages. In each epoch, a client can send
one message using Write and can receive one message using
Read. If the receiver has more than one unread message,
F applies a deterministic client-specific pushPolicy to pri-
oritize the returned message. Messages are accessible until
they expire after ∆ epochs. Incrementing the epoch requires
a request from the simulator to capture delays introduced by



a corrupted server or network, and F obliges provided the
minimum epoch time has passed.

Message privacy, integrity, and metadata privacy. For
honest communicating clients, the adversary learns nothing
about message contents or metadata because F does not
send any information to our simulator S regarding these
accesses. All either server or S should see is when a client
makes a write or read request within an epoch, not the
content of any message or any knowledge about which
parties communicated. In fact, the requests can be fake:
For writes, the receiver cr could be ⊥, and for reads, there
could be no unread messages at all. A message that is
received by cr is marked as read (⊤) and cannot be marked
as unread again. F also does not allow sending messages
to non-contacts by confirming that any message request’s
receiver contains the message sender in their contact list. To
prevent replay attacks, observe that a malicious server can
only delete items from the database DB to deny service, but
has no ability to replay an already-read message.

Since we cannot ensure security for malicious clients
and we do not hide communication patterns in this case, F
notifies the simulator S of the (cs, cr) sender-receiver IDs
if at least one of the clients is malicious. For a malicious
cr, F sends the IDs, message content, and current epoch to
S. For a malicious cs, F sends the IDs and epoch in which
the malicious message was read to S. We allow malicious
clients to change their previously written messages as long
as the message is not already marked as read.
S could learn if an honest cs is talking to other clients

simply based on when it fetches the adversary’s message.
To avoid this, clients can use a pushPolicy that fetches
messages in each conversation independently of other con-
versations [74].

Availability. Either server can deny service in Myco.
We prove that malicious server actions can be modeled as
denial of service attacks and do not compromise the security
of honest clients. S1 can deny service by tampering with the
data or storing it in a location other than where the client
expects to find it. Similarly, S2 can deny service by failing
to return the intended data to clients or by tampering with
it in any manner.

We model DoS attacks from the servers in two ways:
(1) simply rejecting read and write requests, and (2) the
Avail API. F allows the servers to block communication
between two clients without knowing if they are interacting.
S1 can reject any write request and S2 can reject any read
request, both without any knowledge of the message or the
other participant in the conversation. However, S1 has an
additional, more nuanced way that it can deny service. It can
deny a write when the sender requests it, but also process
it later and reintroduce the write into the system sometime
before it is read. To model this ability to toggle a message’s
availability, we allow S to access our more expressive Avail
API, which allows S to select if the message sent by cs in
epoch t is currently retrievable or not. If pushPolicy selects
a message which is not available, this message will still be
marked as read because honest clients will not attempt to
read it again.

Ideal Functionality F

F maintains a message database DB for all clients,
where DB[cs, cr, t] stores the message at epoch t
between sender cs and receiver cr, and Avail[cs, t]
stores whether the message sent by cs in epoch t is
currently available for reading. DB entries can also
have the following special symbols: uninitialized (ϕ)
and marked as read (⊤). The message written in
epoch t can only be read after the end of epoch t. Ini-
tially, F sets tcurr ← 0. For t ∈ Z≥0 and cs, cr ∈ C,
F sets DB[cs, cr, t] = ϕ and Avail[cs, t] = true. F
receives a contact list contacts[c] and a push policy
pushPolicy[c] (determines which unread message is
fetched first) from each client c. F sends all honest-
malicious client pairs (c, c′) to S s.t. c ∈ CH ,
c′ ∈ CM , and c′ ∈ contacts[c]. ∆ is the number
of epochs a message is accessible before expiration.

On input ⟨Write, cr,m, t⟩ from sender client cs:
1) If DB[cs, cr, t] = ⊤, cr = ⊥, or m ∈ {ϕ,⊤},
F ignores this request.

2) Send ⟨Write, cs, t⟩ to S and wait for its ap-
proval. If S disapproves, ignore this request.

3) If cr ∈ CM , send ⟨Write, cs, cr,m, t⟩ to S.
4) Update DB[cs, cr, t]← m.

On input ⟨Read⟩ from receiver client cr:
1) For all cs ∈ contacts[cr] and t ∈ [tcurr −

∆, tcurr − 1], if m = DB[cs, cr, t] /∈ {ϕ,⊤},
add (cs, cr, t) to a list Mall.

2) If Mall is empty, return ⊥.
3) Get (cs, cr, t) ← pushPolicy[cr](Mall), set

m← DB[cs, cr, t] and DB[cs, cr, t]← ⊤.
4) If cs ∈ CM , send ⟨Read, cs, cr, tcurr⟩ to S, else

send ⟨Read, cr, tcurr⟩.
5) Wait for approval from S and return ⊥ if it

disapproves.
6) Return m to cr if Avail[cs, t] = true, else ⊥.

On input ⟨Avail, cs, t, b⟩ from S:
1) Set Avail[cs, t]← b, where b ∈ {true, false}.

On input ⟨NextEpoch⟩ from S:
1) Increment tcurr if minimum epoch time has

passed.

Figure 5: Ideal functionality of Myco.

Recall from §2.2 that clients will not alter their actions
based on server misbehavior, which ensures security in the
face of selective failure attacks. Indeed, if a client’s read
fails, then they will simply continue as usual and move onto
their next message without altering their actions.



4.2. Definition & Security Theorem

We now define the ideal and real-world experiments,
which are parameterized by the security parameter λ. Com-
munication patterns are depicted in Figure 11. In the be-
ginning of both the real and ideal world experiments, the
environment Z establishes the list of all malicious clients
CM ⊆ C. We use a static adversary model. For honest
clients, the environment Z decides the push policy, the
contact list, which clients are online or offline, the exact
time of each request, and who each client messages in
every epoch. This is subject to the following constraints: the
contact list can be of length at most Q, clients may message
at most one contact per epoch, and clients can only message
when they are online. In addition, Z also sees the honest
client outputs in each epoch, as soon as a client receives
the output from F . Z ensures that S1 and S2 follow their
respective APIs if they are honest. Z gets the view of the
adversary A after every operation. Note, however, that Z
and A can communicate throughout the protocol, not only
at operation boundaries.

The ideal experiment. In the ideal world, honest parties
interact only with F , and S interacts with F on behalf of the
corrupted parties. S simulates the honest parties in the real
protocol for A. Each client executes the setup protocol by
submitting their contacts list before epoch 0. In each epoch
t ∈ Z≥0 and for each honest client c ∈ CH , Z specifies a
set of at most one write access Wc = {cr,m}. If Wc ̸=⊥, c
invokes F with input ⟨Write, cr,m, t⟩. Otherwise, c invokes
F with input ⟨Write,⊥,⊥, t⟩. For reads, c invokes F with
input ⟨Read⟩, returning the result m to the environment Z .
At the end of the experiment (Z decides when), Z outputs
a bit, which we denote by IDEALF,S,Z(λ).

The real experiment. In the real world, honest
parties follow the real Myco protocol described in §3
and Algorithm 1. Each client executes the setup proto-
col client.Setup(k⃗Q). In each epoch t ∈ Z≥0 and for
each honest client c ∈ CH , Z specifies a set of at
most one write access Wc = {cr,m}. If Wc ̸=⊥,
c executes client.Write(cr,m). Otherwise, c executes
client.FakeWrite(). For reads, c executes client.Read(),
returning the result m to the environment Z . S1 per-
forms S1.BatchInit() at the beginning of each epoch, and
S1.BatchWrite() at the end of each epoch. At the end of
the experiment, Z outputs a bit REALΠ,A,Z(λ).

Definition 1. Let Π be a protocol in the FKE-hybrid model.
Then Π securely realizes F (Figure 5) in the FKE-hybrid
model if for all PPT adversaries A controlling a malicious
subset of clients CM ⊆ C (where C is the set of all clients
and CM is chosen adversarially) and at most one of S1 and
S2, there exists a PPT simulator S such that for every PPT
environment Z , λ ∈ N, we have:∣∣∣∣Pr[IDEALF,S,Z(λ) = 1]

− Pr[REALΠ,A,Z(λ) = 1]

∣∣∣∣ ≤ negl(λ)

Theorem 1. As per Definition 1, the Myco protocol defined
in §3 and Algorithm 1 securely realizes the ideal function-

ality F in the FKE-hybrid model when instantiated with a
secure pseudorandom function, a key-derivation function, a
key-private authenticated encryption with authenticated data
scheme, and a digital signature scheme.

We prove Theorem 1 in §A.

5. Capacity Analysis

We now provide theoretical bounds on the bucket capac-
ities ZT (Tree-Myco) and ZM (Matrix-Myco) that ensure
negligible overflow probability. We then conduct an empir-
ical simulation to offer a smaller heuristic ZT and ZM that
do not overflow in practice.

5.1. Theoretical Bounds

5.1.1. Bucket capacity. The following theorems show that
setting the bucket capacity to be logarithmic in Q and N for
Matrix-Myco, and logarithmic in N and ∆ for Tree-Myco,
ensures negligible overflow probability across all buckets
over ∆ epochs. We prove both theorems in §B.

Theorem 2 (Matrix-Myco Capacity). Choosing the bucket
capacity ZM = Θ(κ + log (QN)) ensures that the total
overflow probability in each epoch of Matrix-Myco (i.e.,
the probability that some node receives more than ZM

messages) is at most 2−κ for security parameter κ.

Theorem 3 (Tree-Myco Capacity). Choosing the bucket
capacity ZT = Θ(κ + log (N∆3)) ensures that the total
overflow probability across ∆ epochs of Tree-Myco (i.e., the
probability that some node receives more than ZT messages)
is at most 2−κ for security parameter κ.

Beyond ∆ epochs. Note that since the capacity analysis
holds for ∆ epochs, it will hold for infinite epochs. This
is because after ∆ epochs, the system’s overflow probabil-
ity reaches a steady state. Since messages expire after ∆
epochs, any expired message encountered again through fu-
ture path-set selection will be deleted. Consequently, expired
messages do not occupy space in the system beyond their
lifetime. As such, the same argument as above can apply to
the range t ∈ [1,∆ + 1), t ∈ [2,∆ + 2), t ∈ [3,∆ + 3),
etc. This effect is exemplified in Figure 6. Since there will
only be polynomially many epochs, the union bound on the
probability that no overflow happens in any of these epochs
is still negligible in κ.

5.1.2. Total server work per epoch. We now compute the
total work per epoch.

Matrix-Myco. In each epoch, Q ·N buckets of size ZM

are processed. Thus, the total server work in each epoch is:

O
(
QN (κ+ log(QN))

)
Tree-Myco. When an eviction batch is triggered, N root-

to-leaf paths are evicted. Each path has D = log(N∆)
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Figure 6: Tree-Myco percolation example with ∆ =
3, N = 10. In epoch 0, green messages settle below
depth d0. In epoch 1, blue messages settle below d0,
and green shift below d1. In epoch 2, pink settle below
d0, blue shift below d1, and green shift below d2. In
epoch 3, green expire (after ∆ epochs); orange settle
below d0, pink shift below d1, and blue shift below
d2. For clarity, we show a separation between di and
di+1, though they may be equal.

buckets, each with capacity ZT . Therefore, the total number
of blocks processed in an epoch is:

O(N DZT ) = O
(
N log(N∆)

(
κ+ log(N∆3)

))
Thus, the cost per client is polylogarithmic in N and ∆.

5.2. Empirical Simulation

In this section, we perform a simulation to derive heuris-
tic upper bounds on the bucket capacity that outperform the
conservative bounds we obtain theoretically in the previous
section. We note that this is in line with many foundational
and practically efficient ORAM schemes [59], [75], [76].
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Figure 7: Usage of maximally filled buckets for N =
335.5K. Tree-Myco (left) and Matrix-Myco (right).

We perform the simulation for Matrix-Myco and Tree-
Myco for the largest parameter setting we consider in the
evaluation (§6): N = 335.5K and ∆ = 25, as the theoretical
bucket capacity grows with these parameters. Figure 7 re-
ports these results. We set the bucket capacity to ZM = 25
and ZT = 50, and it is evident from the figure that this
is well above the maximum bucket usage of 15 and 35 in
Matrix-Myco and Tree-Myco, respectively.

6. Evaluation

We now answer: How does Myco’s performance com-
pare to PIR-based metadata-private messaging systems?

6.1. Implementation

We implement Myco using 5, 500 lines of pure Rust.
Our codebase can be found at:

https://github.com/myco-org/myco/

We use well-reputed libraries for the cryptographic build-
ing blocks: aes-gcm of RustCrypto3 for authenticated
encryption with AES-128-GCM, the ring4 crate’s HKDF-
SHA256 for our key derivation function and HMAC-
SHA256 for our pseudorandom functions, rand_chacha’s
ChaCha205 for pseudorandom number generation, and
ed25519_dalek6 for digital signatures. We build a net-
working stack with the tonic RPC framework7. All net-
work communication occurs over TLS. We remark that
while our protocol and design are secure against timing
attacks, our implementation is not guaranteed to be void
of timing side channel attacks.

6.2. Experiment Setup

Baselines. As discussed in §1 and §2.2, Myco’s strong
cryptographic guarantees are most comparable to the PIR-
based approaches, such as Pung [41], which is single-server,
and Talek [44], which is multi-server. Thus, we plug the
state-of-the-art non-preprocessing single-server and multi-
server PIR protocols into the Pung and Talek settings,
respectively. For two-server PIR, we use Google’s imple-
mentation8 of incremental distributed point functions [77].
For single-server PIR, we use Microsoft’s implementation9

of SealPIR [42] via the sealpir-rust library10. We
emphasize that single-server PIR schemes do not require
the non-collusion assumption, which remains a limitation
of both Myco and the multi-server PIR approach. Inspired
by Talek’s naming convention [44], we refer to these con-
figurations as Pung++ and Talek++.

Deployment. We deploy the baseline and Myco servers
on 64 vCPU, 640 GB n2-custom-64-655360-ext
machines in us-west1 with extended memory to accom-
modate the larger database configurations and high-memory
throughput experiments. Clients use 16 vCPU, 64 GB mem-
ory n2-standard-16 machines in us-east4 to simu-
late realistic WAN latency between clients and servers. We

3. https://github.com/RustCrypto
4. https://github.com/briansmith/ring
5. https://github.com/rust-random/rand/tree/master/rand chacha
6. https://github.com/dalek-cryptography/curve25519-dalek
7. https://github.com/hyperium/tonic
8. https://github.com/google/distributed point functions
9. https://github.com/microsoft/SealPIR
10. https://github.com/sga001/sealpir-rust

https://github.com/myco-org/myco/
https://github.com/RustCrypto
https://github.com/briansmith/ring
https://github.com/rust-random/rand/tree/master/rand_chacha
https://github.com/dalek-cryptography/curve25519-dalek
https://github.com/hyperium/tonic
https://github.com/google/distributed_point_functions
https://github.com/microsoft/SealPIR
https://github.com/sga001/sealpir-rust


Throughput Local Latency End-to-End Latency (s) Bandwidth
Clients System Clients/Min. Client (ms) Server (s) Write Read Total Client (KB) S1-S2 (GB)
10.5K Myco 255.7K 1 0.83 1.58 0.38 1.96 297.3 1.13
= 218/25 Talek++ 24.1K 2 0.09 0.11 0.15 0.26 10.6 -

Pung++ 2.4K 27 0.74 0.11 1.09 1.20 394.2 -
21.0K Myco 243.8K 1 1.70 3.06 0.45 3.51 311.5 2.27
= 219/25 Talek++ 12.0K 2 0.18 0.11 0.24 0.35 10.7 -

Pung++ 1.3K 27 1.34 0.11 1.75 1.86 394.2 -
41.9K Myco 236.1K 1 3.65 6.25 0.52 6.77 325.8 4.53
= 220/25 Talek++ 5.5K 2 0.37 0.11 0.43 0.54 10.8 -

Pung++ 0.7K 27 2.52 0.11 2.92 3.03 459.9 -
83.9K Myco 223.9K 1 7.55 12.63 0.64 13.27 340.1 9.06
= 221/25 Talek++ 2.7K 2 0.66 0.11 0.72 0.83 11.0 -

Pung++ 0.4K 27 4.74 0.11 5.13 5.24 459.9 -
167.8K Myco 215.6K 1 15.25 25.56 0.88 26.44 354.3 18.12
= 222/25 Talek++ 1.4K 2 1.37 0.11 1.44 1.55 11.1 -

Pung++ 0.2K 27 10.09 0.11 10.98 11.09 459.9 -
335.5K Myco 203.8K 1 33.18 54.30 1.12 55.42 368.6 36.25
= 223/25 Talek++ 0.7K 2 2.78 0.11 3.05 3.16 11.3 -

Pung++ 0.1K 27 20.45 0.11 20.98 21.09 459.9 -

TABLE 1: Throughput, single-client latency, & bandwidth of Myco, Talek++, and Pung++.

measured a roundtrip time of 0.41 ms between S1 and S2
and 56 ms between the client and the servers. The network
bandwidth between S1 and S2 is 32 Gbps. The client has
410 Mbps bandwidth with the servers.

Parameters. We set N = 2D/∆, where D is the
tree depth and N represents system clients, following
Talek’s [44] approach to message time-to-live. We use an
expiration period of ∆ = 25, ensuring messages persist
for 25 epochs before deletion by S1. We set the number
of conversations each client is participating in to Q = 64,
similar to prior work [36], [41], [42], [44].

Given the empirical analysis of §5.2, we set ZT = 50
for Tree-Myco and ZM = 25 for Matrix-Myco. Message
ciphertexts are 256 bytes, as evaluated in prior work [41],
[42]. Our experiments vary the number of clients from
218/25 ≈ 10.5K clients to 223/25 ≈ 335.5K clients. We
average results over 10 consecutive protocol epochs.

6.3. Throughput

Myco achieves higher throughput than the baselines due
to polylogarithmic reads and writes, as shown in Figure 8
and Table 1. For each N that the system is configured to
handle, all N clients write, followed by all clients reading
a message before proceeding to the next epoch. We report
the number of clients processed per minute.

For the throughput experiment, we simulate all the N
clients on an additional server in the same region as S1 and
S2 to capture the effect of bandwidth on throughput. For the
PIR baselines, we take a conservative approach and do not
consider the communication costs.

Varying N from 10.5K to 335.5K, Myco achieves
11-302× the throughput of Talek++ and 106-2, 219× the
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Figure 8: Server throughput in clients processed per minute
in linear (left) and log2-scale (right). Each client sends and
receives one message per epoch.

throughput of Pung++.11 In all three systems, throughput de-
clines when the system must accommodate more clients (Ta-
ble 1). However, as demonstrated in Figure 8, Myco experi-
ences significantly less throughput degradation as the system
scales. This is because of Myco’s asymptotic improvement,
which means that the servers perform O(N log2 N) work in
N per epoch. This is in contrast with the PIR-based systems,
which degrade quadratically in N .

6.4. Single-Client Latency

We now measure the end-to-end latency for sending a
single message through our system and compare it to our
baselines, as shown in Table 1 and Figure 9. When a single
client is writing and reading a message, Myco’s single-client
end-to-end latency ranges from a few seconds to under a

11. Ratios use full-precision data; table values are rounded.
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Figure 9: End-to-end latency of a single client sending a
message across total number of supported clients.
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Figure 10: Client-server bandwidth of sending one message.

minute, while Talek++’s remains under a few seconds and
Pung++’s reaches up to 21 seconds.

A limitation of Myco is that even if only one user
is online, S1 must perform a batch write on N paths to
ensure our capacity analysis in §5 holds. Thus, the end-
to-end latency includes: (1) S1 invoking BatchInit, (2) a
single client executing a S1.Write with its message, (3) S1
calling BatchWrite to write the processed path-set, including
the message, back to S2, and (4) the client reading from
S2. The true value of Myco emerges in realistic scenarios
with simultaneous participation of many clients, as shown
in our throughput experiments (§6.3). In these situations,
the average latency of Talek++ and Pung++ will be much
higher than Myco. Assuming all clients write in an epoch,
the worst-case latency of Myco for N = 335.5K is under
2 minutes, while the worst-case latency for Talek++ and
Pung++ is around 8 and 60 hours, respectively. We note that
the worst-case latency of the PIR works could be reduced
linearly by introducing more servers, but it would require
hundreds of servers to achieve a latency similar to Myco.

6.5. Bandwidth

Table 1 and Figure 10 report the communication com-
parison of Myco versus the PIR-based works. A tradeoff of
Myco is that it has larger communication costs than Talek++
in terms of both server-server communication and client-
server communication. While Talek++ has no server-server
communication, Myco sends 1.13-36.25 GB of data per
epoch between the servers. The client-server communication

of Myco grows up to 369 KB, which is also much higher
than Talek++’s 11 KB. Like Talek++, Myco’s client-server
communication grows sub-linearly with N .

7. Related Work

Myco is the first asynchronous metadata-private mes-
saging system offering strong cryptographic guarantees and
high throughput. We now discuss how Myco is situated in
the related work. Prior SoKs [14], [15], [16] provide more
details on secure and anonymous communication systems.

PIR-based messaging systems [41], [42], [43], [44],
[45], [46], [78] closely align with Myco’s asynchronous
mailbox design [79], but incur O(N2) total server work
for handling N queries by N users. Receivers use private
information retrieval (PIR) to read messages obliviously.
Oblivious message retrieval [80], [81] enables clients to
retrieve messages obliviously but incurs high computational
costs due to its reliance on fully-homomorphic encryption,
and requires a linear scan over the message database, as
in PIR-based works. Distributed PIR [82] shifts PIR server
computation to the clients, but this significantly increases
client overhead.

DC networks [62], [63], [64], [65], [83] offer crypto-
graphic guarantees like PIR-based systems. However, they
require an all-to-all broadcast of messages among all users,
resulting in prohibitively high communication costs. Con-
sequently, these systems are typically limited to very small
client groups.

Mix networks (mixnets) [17], [18], [19], [20], [21],
[22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32]
rely on servers to shuffle messages before delivery. Mixnets
are efficient with O(N) server overhead, but are typically
only synchronous, limiting users to one conversation for
which they must be perpetually online. Originally, these
systems either depended on trusted servers [30], [31] or
faced potential manipulation by mixnet servers [84], [85],
[86], [87], [88], [89], [90], [91], [92]. Peer-to-peer renditions
of mixnets and routing protocols [93], [94], [95], [96],
[97], [98], [99], [100], [101] similarly can only withstand
a limited number of malicious clients and are vulnerable to
strong Sybil adversaries [102], [103], [104], [105], [106],
[107], [108].

Differential privacy [109] has more recently been ap-
plied to enhance mixnets by introducing noise into the
network [33], [34], [35], [36], [37]. While these systems
retain the high performance of mixnets, their security de-
pends on differential privacy. XRD [24] and Yodel [32] are
mixnets that offer cryptographic guarantees, but these works
limit clients to a single conversation for which they must
constantly be online to avoid missing messages. Groove [36]
is the first work to add asynchronous flexibility to mixnets,
but also relies on differential privacy.

MPC-based systems [60], [61], [110], [111], [112] lever-
age multi-party computation at the servers to enhance
mixnets. These synchronous systems also limit users to one
conversation for which they must constantly be online.



Reverse-PIR-based systems [47], [48], [49], [50] use
reverse PIR to target a different setting of whistleblowing,
where the writer is hidden, but reads go to trusted entities.
Our goal is instead the messaging setting.

TEE-based metadata-hiding approaches [38], [39],
[113], [114], [115] have been proposed, but enclaves are
susceptible to side-channel attacks that undermine remote
attestation [116], [117], [118], [119]. With root access to
servers, application providers can exploit these vulnerabili-
ties to access secrets. Consequently, while enclaves serve as
a supplementary defense, real-world applications often pri-
oritize cryptography as the primary security measure [120].

Onion routing [121], [122], [123], [124] is widely
adopted for anonymous communication due to its scalability.
However, it remains highly vulnerable to traffic analysis
attacks that undermine its anonymity guarantees [89], [125],
[126], [127], [128], [129], [130], [131], [132].

Oblivious data structures. ORAM [56], [57], partic-
ularly tree-based ORAMs [58], [59] inspire many of our
techniques. Multi-client ORAMs [133], [134], [135] mostly
assume semi-honest clients. PANDA [136] allows for a
limited set of malicious clients, while solutions that tolerate
arbitrarily many malicious clients remain theoretical [137].

8. Conclusion

This work introduces Myco, a metadata-private
messaging system that achieves polylogarithmic read and
write efficiency. Myco uses an asymmetric distributed-trust
model and introduces a novel tree-based oblivious data
structure that allows clients to write to S1, who obliviously
transfers messages to S2, from which clients read. In doing
so, Myco overcomes the linear-access barrier of prior
works with strong cryptographic guarantees, and takes a
significant step towards cryptographic metadata-private
messaging at scale.
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Algorithm 1: Myco

client.Setup(k⃗Q)

1: for (c, k) ∈ k⃗Q do
2: kenc ← KDF(k,"enc")
3: krenc ← KDF(k,"re_enc")
4: krk ← KDF(k,"routing_key")
5: kntf ← KDF(k,"notif")
6: kntf

rk ← KDF(k,"routing_notif")
7: client.keys[c] = {kenc, krenc, krk, kntf , kntf

rk }

client.Write(cr,m)

1: {kenc, krenc, krk, kntf , kntf
rk } ← client.keys[cr]

2: ct← Enckenc(m; client.t)

3: ctntf ← PRFλ,kntf (client.t)

4: f ← PRFkrk(client.t)

5: fntf ← PRFkntf
rk
(client.t)

6: krenc,t ← PRFkrenc(client.t)

7: S1.Write(ct, ctntf , f, fntf , krenc,t)

client.Read()

1: L,Mall ← {}, {}
2: k⃗srk ← S2.GetPRFKeys()

3: δ ← epochsOffline()

4: for t ∈ [client.t− δ, client.t) do
5: for cs ∈ client.contacts do
6: { , , , , kntf

rk } ← client.keys[cs]

7: fntf ← PRFkntf
rk
(t)

8: ksrk,t ← ksrk[∆− (client.t− t)]

9: ℓntf ← PRFksrk,t(f
ntf , cs)

10: L[t].Add(ℓntf)

11: pntf ← S2.ReadNotifs(L)

12: for bkt ∈ pntf do
13: for b ∈ [0, ZM ), t ∈ L.keys(), cs ∈ client.contacts do
14: { , , , kntf , } ← client.keys[cs]

15: if PRFλ,kntf (t) = bkt[b] then
16: Mall.Add((cs, t))

17: if (cs, t)← pushPolicy(Mall) ̸=⊥ then
18: {kenc, krenc, krk, , } ← client.keys[cs]

19: krenc,t ← PRFkrenc(t)

20: f ← PRFkrk(t)

21: ksrk,t ← ksrk[∆− (client.t− t)]

22: ℓ← PRFksrk,t(f, cs)

23: p← S2.Read(ℓ)

24: for each bkt ∈ p do
25: if Verify(ksvk, bkt.sig, bkt) then
26: for b ∈ [0, ZT ) do
27: if ct← Deckrenc,t(bkt[b]) succeeds then
28: return m← Deckenc(ct)

29: else
30: client.FakeRead()

client.FakeWrite()

1: k′ $←− {0, 1}λ
2: ct′ ← Enck′(0m)

3: ctntf
′ $←− {0, 1}λ

4: f ′ $←− {0, 1}D

5: fntf ′ $←− {0, 1}Q·N

6: k′
renc,t

$←− {0, 1}λ

7: S1.Write(ct′, ctntf
′
, f ′, fntf ′, k′

renc,t)

client.FakeRead()

1: ℓ′
$←− {0, 1}D

2: S2.Read(ℓ
′)

S1.BatchInit()

1: S1.ksrk,t
$←− {0, 1}λ

2: S1.P ←
⋃

i∈[N ] S1.P(ℓi), ℓi
$←− {0, 1}D

3: S1.Tntf,t, S1.Pt, S1.Tmd,t = [ ], emptyTreeFrom(P ), emptyTreeFrom(P )

S1.Write(ct, ctntf , f, fntf , krenc,t)

1: texp = S1.t+∆

2: cs ← getCallingClient()

3: ℓ← PRFS1.ksrk,t(f, cs)

4: ℓntf ← PRFS1.ksrk,t(f
ntf , cs)

5: S1.insertMessage(ct, ℓ, krenc,t, texp)

6: S1.Tntf,t[ℓ
ntf ].Add(ctntf)

S1.BatchWrite()

1: for each bkt ∈ S1.P do
2: for each b ∈ [0, ZT ) do
3: ℓ, krenc,t, texp ← S1.Tmd[bkt][b]

4: if ℓ, krenc,t, texp ̸=⊥,⊥ and S1.t < texp then
5: cmsg ← bkt[b]

6: ct← Deckrenc,t(cmsg)

7: S1.insertMessage(ct, ℓ, krenc,t, texp)

8: for each bkt ∈ S1.Pt do
9: s

$←− {0, 1}λ
10: bkt.shuffle(s)

11: S1.Tmd,t[bkt].shuffle(s)

12: S1.Tmd.Write(S1.Tmd,t)

13: S1.P = S1.Pt

14: for each bkt ∈ S1.Pt do
15: for b ∈ [0, ZT ) do
16: if bkt[b] =⊥ then
17: bkt[b]← Enck′(Enck′′(0m)) where k′, k′′ $←− {0, 1}λ

18: bkt.sig← Sign(S1.kssk, bkt)

19: S2.Write(S1.Pt)

20: for each bkt ∈ S1.Tntf,t do
21: for b ∈ [bkt.size(), ZM ) do
22: bkt[b]

$←− {0, 1}λ

23: bkt.shuffle(s), s $←− {0, 1}λ

24: S2.WriteNotifs(S1.Tntf,t)

25: S2.AddPRFKey(S1.ksrk,t)

26: S1.t += 1

S2.Read(ℓ)

1: return P(ℓ)

S2.Write(Pt)

1: S2.P = Pt

S2.GetPRFKeys()

1: return S2.PRFKeys

S2.AddPRFKey(ksrk,t)

1: S2.PRFKeys.Add(ksrk,t)

2: if S2.t ≥ ∆ then
3: S2.PRFKeys.Remove(0)

4: S2.t+ = 1

S2.ReadNotifs(L)

1: p← [ ]

2: for each t ∈ L.keys(), i ∈ [Q] do
3: j = ∆− (S2.t− t)

4: p.Add(S2.Tntf [j][L[t][i]])

5: return p

S2.WriteNotifs(Tntf,t)

1: S2.Tntf .Add(Tntf,t)

2: if S2.t ≥ ∆ then
3: S2.Tntf .Remove(0)

S1.insertMessage(ct, ℓ, krenc,t, texp):
1: cmsg = Enckrenc,t(ct)

2: bkt← LCA(S1.Pt, ℓ)

3: bkt.Add(cmsg)

4: S1.Tmd,t[bkt].Add(ℓ, krenc,t, texp)



Appendix A.
Security Proof

We now define our simulator S in §A.1 and prove Theo-
rem 1 in §A.2. Although our security proof is independent of
ORAM, it relies on Myco’s ORAM-style properties, such as
padding buckets with indistinguishable dummy blocks and
sampling fresh bucket indices per epoch.

<latexit sha1_base64="jsfaMKRNdEQnM4b5nH/OXt1FQxk="></latexit>A

<latexit sha1_base64="MYYhZlbHzghzmK07lL5VdlIUY4U="></latexit>S (C" )
<latexit sha1_base64="2/HzJJhT6fZnjyUDBlCf6Jlw6+4="></latexit>S (C� )

<latexit sha1_base64="m+qJ2wo1Jc8+G3pdmesw2p5q82o="></latexit>S

<latexit sha1_base64="dakPqVNl7TdPn5CvteJ8xpgY37I="></latexit>C"

<latexit sha1_base64="Eg1PZS813XoirCkPU3hwGVgj348="></latexit>F
<latexit sha1_base64="Bg4C5s+wllOKtosDVc2bJUTRpXc="></latexit>

-" <latexit sha1_base64="sYXh8N+nTPT95eWIg8s/ztRplbg="></latexit>S (S! )

<latexit sha1_base64="OCFDjU0P+GyMDHss54tMSwJhj2E=">AAAC0XicbVFNbxMxEHWWr7J8pXDgwMUiqlQuUVKh0mNLOXAJFNK0lZIo8npnu1b9sbJnSVarlRBX/gVc4Qfxb/BuEom0jGTp+Y3fzPNMlEnhsNf70wpu3b5z997W/fDBw0ePn7S3n545k1sOI26ksRcRcyCFhhEKlHCRWWAqknAeXR3X+fMvYJ0w+hSLDKaKXWqRCM7QU7P284limHImy2G122CXePhq1u70ur0m6E3QX4EOWcXJbLv1YxIbnivQyCVzbtzvZTgtmUXBJVThJHeQMX7FLmHsoWYK3LRsflDRHeqpmCbG+qORNvS/kpIp5woV1U8bl9eTNfnf5DjH5GBaCp3lCJqveiW5pGhoPRIaCwscZeEB41Z4v5SnzDKOfnDhRqO6eoZqUVc5Ff4H9APM6WejmKYIC6RzgWnjgbo8y4zFDbmGOS7WTmvlssZSX/NhuENHDiimQB0yHTMb02Ojau+WDkwMVtP1ysLJO/CjtjDw9yOZpSwCLNfZqvw4GFYlV66oSlWVugpDv9X+9R3eBGd73f5+d//T687h29V+t8gL8pLskj55Qw7Je3JCRoSTivwkv8jvYBgUwdfg2/Jp0FppnpGNCL7/BdzZ4X4=</latexit>S (S) <latexit sha1_base64="plFizfUHcH1VdecPlXRH3NKgX4Y="></latexit>

S!

<latexit sha1_base64="HJoMiKleT2f8DDy986p0c6OHyIc="></latexit>S (FKE)
<latexit sha1_base64="QAkwIhr9LV06zTcITlur3b5y4wo=">AAACw3icbVHbbhMxEHWWW1luLTzyYhFV4inaIFR4LBQkXgIFmrYiiSqvd9K14svKniWJrP0MXkHir/gb7GQjkZaRLB2f8Zk5nskrKRxm2Z9OcuPmrdt3du6m9+4/ePhod+/xqTO15TDkRhp7njMHUmgYokAJ55UFpnIJZ/nsKObPvoN1wugTXFYwUexSi6ngDAM1GiuGJWfSf2sudrtZL1sFvQ76LeiSNo4v9jq/x4XhtQKNXDLnRv2swolnFgWX0KTj2kHF+IxdwihAzRS4iV95bug+DVRBp8aGo5Gu6H8lninnliqPT6NLdzUZyf8mRzVOX0+80FWNoHnba1pLiobGIdBCWOAolwEwbkXwS3nJLOMYRpVuNYrVK1SLWOVEhB/QjzCnX4ximiIskM4FlisP1NVVZSxuyTXMcbFxGpXrGmt95NN0nw4dUCyBOmS6YLagR0ZF75YOTAFW082a0vE7CKO2MAj3N7IqWQ7oN9nGfxp8bTxXbtl41XjdpGnYav/qDq+D0xe9/kHv4PPL7uHbdr875Cl5Rp6TPnlFDskHckyGhBNDfpCf5FfyPpklNsH106TTap6QrUiav9Nt3GE=</latexit>Z

<latexit sha1_base64="CRvcXDI35LbAO8wZiteVY+SBBiI="></latexit>

!!
<latexit sha1_base64="kHRWEYu9MRFPp/7azTZaDs/A6YE="></latexit>

!!

(a) Ideal World

C𝑀C𝐻

<latexit sha1_base64="jsfaMKRNdEQnM4b5nH/OXt1FQxk="></latexit>A

<latexit sha1_base64="TtWr34FkUrkvdft1ENZQu6c5Mm8="></latexit>

S
<latexit sha1_base64="plFizfUHcH1VdecPlXRH3NKgX4Y="></latexit>

S!

<latexit sha1_base64="Vo9fq3trQvYRr6elOxgw2s92rWs="></latexit>FKE

<latexit sha1_base64="QAkwIhr9LV06zTcITlur3b5y4wo="></latexit>Z
<latexit sha1_base64="CRvcXDI35LbAO8wZiteVY+SBBiI="></latexit>

!!
<latexit sha1_base64="kHRWEYu9MRFPp/7azTZaDs/A6YE="></latexit>

!!

(b) Real World

Figure 11: S and CH denote the honest server and clients;
SM and CM denote the malicious server and clients. Dashed
outlines mark parties fully controlled by the adversary. The
simulator S maintains internal state per party, denoted S(·).
Shaded nodes run the server protocol. Solid arrows represent
protocol interactions; dashed, internal communication within
A and S; dotted, ideal-world interactions; and gray, com-
munication between A and Z . XH and XM are honest and
malicious client inputs; YH are the honest clients’ outputs.
XH is chosen by Z , which also receives YH from the
reactive functionality F each epoch.

A.1. Simulator S
H→H , M→H , H→M , and M→M represent the

honesty of the sender and receiver: H →H indicates that
both are honest, M→H a malicious sender with an honest
receiver, H→M an honest sender with a malicious receiver,
and M →M both being malicious. Let S and SM denote
the honest and malicious server, respectively.

At a high level, when H → H , S replaces each write
performed by a simulated honest client with a fake write and
each read with a fake read. For H→M , M→H , or M→
M , S adheres to the real protocol when simulating honest
clients. S can simulate the honest server S by following the
real protocol.

We now provide the detailed simulator descriptions for
the two cases: (i) S2 is malicious, and (ii) S1 is malicious,
respectively. In both cases, at system instantiation, upon
receiving {(c, c′) | c ∈ CH , c′ ∈ CM , c′ ∈ contacts[c]}
from F , S uses FKE to establish shared symmetric keys
between honest and malicious clients. By default, the writes
and reads performed by simulated clients (in case Z decided
to keep them online) are fake writes and fake reads. Based
on information received from A and F , S modifies the
behavior of these simulated clients.

A.1.1. Simulator S for Case 1. S simulates S1 and honest
clients CH for the adversary, while interacting with F on

behalf of malicious clients CM . In this case, S approves all
write requests from honest clients. S faithfully simulates S1
according to the protocol. When S2 sends the ACK to the
simulated S1 after S1’s batch write, S sends ⟨NextEpoch⟩
to F . Per conversation:
• H → H: Honest clients perform fake writes and fake

reads. In particular, they perform one fake write for both
the message and notification, Q fake notification reads,
and one fake message read. When F informs S of a read
request ⟨Read, cr, t⟩, S makes the fake read request from
cr. If the simulated cr does not abort, S approves the read
request of the real cr; otherwise, it disapproves.

• M → H: S monitors its simulation of S1 for messages
from a cs ∈ CM (with cs ∈ contacts[cr] for an honest
client cr ∈ CH ) in epoch t. If cs sends a well-formed
message m (i.e., one that the simulated cr can retrieve
successfully), then S sends ⟨Write, cr,m, t⟩ to F on
behalf of cs at the end of epoch t. If cr is able to retrieve
more than one message from cs in the same epoch, S does
not send any write request from cs in epoch t to F . When
honest cr eventually reads this message, F informs S by
sending ⟨Read, cs, cr, t′⟩ for some epoch t′ > t. When
this happens, S makes a real read request from simulated
cr. Rejecting reads in case simulated cr aborts is the same
as in H→H .

• H→M : S receives ⟨Write, cs, cr,m, t⟩ from F and uses
its shared keys to perform a real write for simulated client
cs to send m to cr in epoch t.

• M →M : S follows the protocol and does not need to
communicate anything to F .

A.1.2. Simulator S for Case 2. S simulates S2 and honest
clients CH for the adversary, while interacting with F on
behalf of the malicious clients CM . In this case, S approves
all read requests from honest clients. S faithfully simulates
S2 according to the protocol. If the batch write from S1
is well-formed, S sends ⟨NextEpoch⟩ to F provided the
minimum epoch time has elapsed. Per-conversation:
• H → H: Honest clients perform fake reads and fake

writes. S monitors its simulation of S2 and does the
following based on how the corrupted S1 processes the
write:

1) If the notification corresponding to the fake write that
a simulated cs performs in epoch t is not in the right
bucket, S disapproves the write request from cs on
receiving ⟨Write, cs, t⟩.

2) If the notification is in the right bucket, S approves the
write request from cs and tracks whether the message
is retrievable in epochs t′ ≥ t. At the end of each epoch
t′, S sends ⟨Avail, cs, t, b⟩ to F where b = true if the
message is in the right bucket during the batch write
from S1 in epoch t′.

• M → H: S monitors its simulation of S2 for messages
from a cs ∈ CM (with cs ∈ contacts[cr] for cr ∈ CH )
in epoch t. Suppose S sees a well-formed notification
from cs in epoch t. First, S sends ⟨Write, cr,⊥, t⟩ to F
and approves it. Then, it observes the current retrievable



message corresponding for this notification in epoch t′ ≥
t, and does the following in epoch t′:

1) If there is a single retrievable message m, S
sends ⟨Write, cr,m, t⟩, approves it, and then sends
⟨Avail, cs, t, true⟩ to F .

2) Else (there are zero or multiple retrievable messages),
S sends ⟨Avail, cs, t, false⟩ to F .

• H→M & M→M : Same as Case 1.

A.2. Security Proof

Proof. (Theorem 1) There are two cases.
Case 1: A controls SM = S2 and CM .

Hybrid 0 H0: Real world. The real Myco protocol.
Hybrid 1 H1: Simulator controls FKE, honest clients

CH , and S1. Protocol responsibilities are delegated to S: it
controls FKE, the honest clients CH , and S1 according to the
protocol. Consequently, it generates the shared symmetric
keys and it knows honest party inputs (contacts, messages
to send, push policies). Since S faithfully simulates FKE, the
honest clients, and S1, H0 and H1 are indistinguishable.

Hybrid 2H2: Replace client’s KDF-derived keys with
uniformly random keys. In this hybrid, the honest clients
freshly and independently sample all KDF-derived keys (i.e.,
kenc, krenc, krk, kntf , and kntfrk ) for their H → H conver-
sations, instead of deriving them from the corresponding
shared secret k. The simulator ensures that communicating
honest clients use the same keys so that the receivers can
successfully retrieve the messages as in the previous hybrid.
Since the shared secret k (i.e., source key material to KDF)
has at least λ bits of entropy, this hybrid is indistinguishable
due to the pseudorandomness of the KDF.

Hybrid 3 H3: Replace client’s PRF outputs with
uniformly random values. In this hybrid, if an honest
client cs is sending a message to another honest client cr,
it replaces the PRF outputs (i.e., f and fntf , key krenc,t,
and notification ctntf ) with uniformly random values, instead
of deriving them from client.keys[cr] (i.e., krk, kntfrk , krenc,
kntf , respectively). Again, the simulator ensures that the
honest client cr uses the same random values to replace PRF
outputs to ensure the same output behavior as before. This
hybrid is indistinguishable due to the pseudorandomness of
the PRF since all PRF keys are uniformly random in this
hybrid.

Hybrid 4 H4: Authenticity of notifications. In this
hybrid, the simulator aborts if an honest client cr accepts a
notification ctntf from honest client cs with respect to epoch
t even though cs did not send this notification in epoch t.
This hybrid is indistinguishable because the notifications for
each epoch are uniformly random values of λ bits, and there
is a negligible probability that the adversary will guess the
correct value.

Hybrid 5 H5: Authenticity of messages. In this hybrid,
the simulator aborts if an honest client cr accepts a message
m from honest client cs with respect to epoch t, even though
cs did not send m during epoch t. This hybrid is indis-
tinguishable because the simulator aborts with negligible

probability due to the INT-CTXT property of the AEAD
scheme which provides integrity for both the ciphertext and
the associated data. The integrity of the ciphertext prevents
the adversary from presenting a valid ciphertext that cs
did not generate, and the integrity of the additional data
prevents it from replaying an old valid ciphertext because
the associated data embeds the write epoch.

Hybrid 6 H6: Confidentiality of client messages. In
this hybrid, if any honest client cs wants to send some
message m to another honest client cr, it sends 0 instead:
ct← Enckenc(0; client.t). To keep the outputs of honest par-
ties consistent with the previous hybrid, if cr receives a valid
ciphertext from cs in epoch t, the simulator has cr output m
in epoch t instead of 0. This hybrid is indistinguishable due
to the IND-CPA property of the AEAD scheme. Note that
the IND-CPA property is enough in this hybrid because we
already have the guarantee that honest clients can identify
adversarially generated ciphertexts.

Hybrid 7 H7: Real → fake client writes. In this
hybrid, when an honest client cs sends a message to another
honest client cr in epoch t, instead of using kenc, it samples
a uniformly random key k′enc

$←− {0, 1}λ, that is freshly
sampled each epoch t. Accordingly, cr trial decrypts with
k′enc for that epoch instead of using kenc. This hybrid is
indistinguishable due to the key-privacy property of the
AEAD scheme. Note that in this hybrid, honest clients have
replaced real writes to honest clients with fake writes.

Hybrid 8 H8: H→H client writes → dummy writes.
In this hybrid, S1 replaces krenc,t in Tree-Myco for H →
H conversations with the random key k′renc,t

$←− {0, 1}λ,
that is freshly sampled during each epoch t. Accordingly,
the honest receivers also use k′renc,t for that epoch to trial-
decrypt cmsg ← Enck′

renc,t
(ct). It also replaces the dummy

writes as follows: sample random keys k′, k′′
$←− {0, 1}λ

and output Enck′(Enck′′(0m)). Due to the key-privacy and
the IND-CPA property of the AEAD scheme, this hybrid
is indistinguishable. Note that the H→H client writes are
now identically distributed to the dummy writes introduced
by S1.

Hybrid 9 H9: Corrupted S2 response leads to abort.
In this hybrid, the simulator aborts if an honest client does
not output abort in an epoch even though S2’s response in
that epoch was not according to the protocol specification.
S2 can deviate from the protocol in one of the following
three ways:
1) It can refuse service by not responding to the client’s

read request.
2) It can provide the wrong epoch counter to the client.
3) It can tamper with the buckets sent by S1.
The honest client can detect all three deviations. For (2), it
asks for the epoch counter from both servers and confirms
they are the same before accepting it, and for (3), it verifies
a signature from S1 on each bucket it accepts. Thus, S
will abort with negligible probability due to the EUF-CMA
property of signatures, and this hybrid is indistinguishable.

Hybrid 10 H10: Correct S2 response guarantees
H → H message delivery. In this hybrid, S aborts if S1



aborts because it cannot fit the client writes (both honest
and malicious) in the Myco buckets. If S1 does not abort
and S2 provides the right response to a client, the client is
guaranteed to receive its H→H messages. In §5 and §B,
we prove that we choose the Myco parameters such that S1
can always accommodate the writes in the buckets assuming
the bucket indices for each write are chosen uniformly at
random. Recall that bucket indices ℓ and ℓntf are chosen
by a PRF output. Since the PRF seed ksrk,t is chosen after
the inputs to the PRF are decided, it is straightforward to
prove that an adversary that can make a bucket overflow with
PRF outputs can also distinguish the PRF from a random
function. Thus, the simulator never aborts in this hybrid and
it is indistinguishable from the previous one.

Hybrid 11 H11: Real → fake client reads. In this
hybrid, any honest client receiver cr makes the following
changes: the buckets to read fntf and f for conversations
with any honest sender cs are chosen at random (indepen-
dently of the corresponding sender cs). As a result, the real
client reads for H→H conversations are now identical to
the fake client reads. Client cr preserves the output from
the previous hybrid if it does not detect protocol deviation
from S2 because the correct output is guaranteed if S2 does
not deviate.

Since we have just replaced real H → H client reads
with fake reads, this hybrid is indistinguishable from the
previous hybrid if real H → H and fake client reads are
indistinguishable for the adversary which sees reads through
corrupted S2. To prove that this is indeed the case, consider
the following facts about this hybrid:
• The real H→H writes are identical to the dummy writes

introduced by S1 from adversary’s perspective. So we can
think of real H→H writes also as dummy writes.

• The only difference between a real H → H read and a
fake read in the previous hybrid is that the former has a
corresponding real write.

Thus, as long as each fake read in this hybrid could
potentially have a corresponding real write, any of these
could potentially be a real H→H read for the adversary.
This is the case if the total number of fake reads by honest
receivers (includes real H →H reads) to a bucket do not
exceed the number of dummy writes (includes real H →
H writes) in that bucket. All the malicious client writes
and the fake reads from honest receivers can be seen as
Q·N and N random accesses to the Matrix-Myco and Tree-
Myco buckets, and our parameter selection in §5 ensures the
accesses never overflow the bucket.

Hybrid 12 H12: Ideal world. In this hybrid, we realize
the complete simulator described in §A.1.1. The following
changes are made from the previous hybrid:
1) The honest clients and S1 are no longer controlled by

the simulator, and the honest clients only interact with
the ideal functionality F . Thus, S no longer has access
to honest client inputs like their messages, contacts, and
push policies.

2) S receives {(c, c′) | c ∈ CH ∧ c′ ∈ CM ∧ c′ ∈
contacts[c]} from F , and accordingly makes request

from the simulated honest clients to FKE to setup shared
symmetric keys with malicious clients just like before.

3) When S2 sends the ACK to the simulated S1 after S1’s
batch write, S sends ⟨NextEpoch⟩ to F . Note that simu-
lated S1 will only perform a batch write after minimum
epoch time has elapsed.

4) For H → H conversations, the honest clients in the
previous hybrid are only performing fake writes and fake
reads, and thus, the simulator does not need to know their
inputs to simulate them. From the previous hybrid, we
have the following guarantees for H→H conversations:
messages from honest senders cannot be spoofed or
replayed, they are either delivered according to push
policy if S2 follows the protocol or the honest client
outputs ⊥ otherwise. Whenever F sends ⟨Read, cr, t⟩ to
S, it performs a fake read from simulated cr, and if
simulated cr does not abort, it approves the read request
of real cr. Once the read is approved, F delivers reads
according to the push policy and the message delivery
from honest senders is guaranteed without spoofing or
replaying. In case cr aborts, S disapproves the read
request and F informs cr to output ⊥. Importantly, in
the previous hybrids, if a read is disapproved in epoch t
that was supposed to output some message mt, then the
next epoch t′ > t when a successful read happens, cr
outputs the message mt′ according to the push policy,
and skips over {mt, . . . ,mt′−1} (as is prescribed in the
real protocol). F also enforces the same output behavior
by setting DB[cs, cr, t] = ⊤ (marking it as read) even if
cr’s read was disapproved.

5) For M→H conversations, since S has set up shared keys
between honest and malicious clients and it simulates S1,
it can detect when a malicious client cs in the contact
list12 of an honest client cr is sending a message m to cr
in epoch t. Accordingly, at the end of epoch t, S sends
⟨Write, cr,m, t⟩ to F on behalf of cs if the message is
well-formed such that the simulated honest client can
actually retrieve it without outputting ⊥. Sending these
requests at the end of epoch t is okay because honest
clients can only receive them in epoch t + 1 onwards.
Note that a malicious client cs can potentially send
multiple messages to an honest cr in a single epoch
(potentially through multiple malicious senders). In case
this happens, the protocol prescribes cr to output ⊥
(since that proves the sender is malicious). Accordingly,
if S detects that there are multiple retrievable messages
to a cr from the same cs, it does not send any message
to F from cs. Finally, when honest cr eventually reads
the message sent by a malicious cs, F informs S by
sending ⟨Read, cs, cr, t′⟩ for some epoch t′ > t. When
this happens, S makes a real read request from simulated
cr to ensure that the adversary’s view of M →H con-
versations is identical to the previous hybrid. Rejecting

12. The simulator does not care about malicious clients outside the
contact list of an honest client because the honest clients in the previous
hybrid do not assign messages to clients outside their contact list and the
ones interacting with F do not get messages from clients outside their
contact list.



reads in case simulated cr aborts is the same as in the
H→H conversations.

6) For H→M conversations, whenever an honest client cs
writes a message m to malicious client cr during epoch
t, F sends ⟨Write, cs, cr,m, t⟩ to S. Since S already has
a shared key setup with cr and an honest client only
performs a single write per epoch, S performs a real
write (instead of a fake write) for simulated client cs to
send m to cr in epoch t.

7) For M→M conversations, S does not change anything
from the previous hybrid as it does not need to simulate
these clients.

This hybrid is the same as the ideal world, and ensures
that the output of honest parties and adversary’s view are
identical to the previous hybrid.

Case 2: A controls SM = S1 and CM .
H0: Real world. The real Myco protocol.
H1: Simulate FKE, honest clients CH , and S2. Same

as Case 1 except S controls S2 instead of S1.
H2, . . . ,H7: Same as Case 1. As in Case 1, in this

hybrid, real H → H writes have been replaced with fake
writes, we have authenticity of notifications and messages
for H → H conversations, and the bucket indices for
H → H messages are chosen uniformly at random (with
the constraint that a communicating honest pair of clients
write and read to the same bucket) instead of being derived
from a PRF.

Hybrid 8 H8: Real → fake client reads. The same
change as H11 in Case 1. This hybrid is indistinguishable
because the adversary does not control S2, and as such, does
not get to see the honest client reads.

Hybrid 9 H9: Ideal world. In this hybrid, we realize
the complete simulator described in §A.1.2. The following
changes are made from the previous hybrid:
1) The honest clients and S2 are no longer controlled by

the simulator, and the honest clients only interact with
the ideal functionality F , as described in the description
of ideal world (§4.2). Thus, S no longer has access to
honest client inputs like their messages, contacts, and
push policies.

2) S sets up the shared symmetric keys between honest and
malicious clients as in Case 1.

3) If the batch write sent by S1 to simulated S2 is well-
formed (has valid signatures and has the right structure),
S sends ⟨NextEpoch⟩ to F on behalf of S1 provided the
minimum epoch time has elapsed.

4) For H → H conversations, the honest clients in the
previous hybrid were performing fake reads and writes,
and thus, the simulator does not need to know their inputs
to simulate them. For any epoch t and any honest sender
client cs, the simulated S2 can track whether the message
sent by the simulated cs in epoch t is retrievable in some
epoch t′ ≥ t. A message is retrievable if and only if
the corrupted S1 put it in the right bucket according to
the protocol. The notification must be put in the right
bucket during epoch t for the message to be retrievable
because the notifications have separate buckets for each

epoch. Thus, if the notification was not in the right
bucket, S disapproves the write request from cs on
receiving ⟨Write, cs, t⟩. Otherwise, S approves the write
request and tracks whether the message is retrievable in
epochs t′ ≥ t. At the end of each epoch t′, S sends
⟨Avail, cs, t, b⟩ to F where b = true if the message is
in the right bucket during the batch write from S1 in
epoch t′. Note that the H→H messages are delivered
according to the push policy (modulo their availability)
in this hybrid and the previous one. Every successful
notification in the previous hybrid is considered by an
honest receiver while applying the push policy, and S
tells F to approve all H → H write requests which
had a successful notification, which are then ultimately
considered by F while applying the push policy. Note
that it is okay to delay setting the availability of writes
requests until the end of epoch (when corrupted S1
performs the batch write) because messages written in
epoch t will only be read epoch t+ 1 onwards.

5) For M→H conversations, like in Case 1, S can detect
when a malicious client cs in the contact list of an honest
client cr is sending a message m to cr in epoch t (since
S simulates S2). In case S1 follows the protocol, S
simulates the same way as Case 1. If not, corrupted S1
and cs can deviate in the following ways:

a) The notification is not in the right bucket during
epoch t.

b) The notification is in the right bucket but the cor-
responding message changes every epoch, and for
some epochs, it could even be unavailable (in the
wrong bucket or absent).

For the first behavior, S does not perform a write on
behalf of cs because the honest client’s push policy will
not consider this message without a valid notification,
and notification for epoch t cannot be introduced in
a later epoch. For the second behavior, it first sends
⟨Write, cr,⊥, t⟩ to F and approves it to ensure the
notification is considered by the push policy of cr. Then,
it observes the current retrievable message corresponding
for this notification in epoch t′ ≥ t, and does the follow-
ing in epoch t′: if there is a single retrievable message
m, S sends ⟨Write, cr,m, t⟩, approves it, and then sends
⟨Avail, cs, t, true⟩ to F . Else (there are zero or multiple
retrievable messages), S sends ⟨Avail, cs, t, false⟩ to F .
With this simulation strategy, we ensure that malicious
client messages availability is the same in ideal world
and the previous hybrid. Since the push policy only
depends on the valid notifications, these messages are
also delivered to an honest client according to their push
policy.

6) S handles H→M and M→M conversations the same
way as in the ideal world of Case 1.

This hybrid is the same as the ideal world, and ensures that
the outputs of honest parties and the adversary’s view are
identical to the previous hybrid.



Appendix B.
Capacity Analysis Proof

B.1. Matrix-Myco

Proof. (Theorem 2) Let QN be the number of buckets in
Matrix-Myco, and let Xv denote the number of messages
(out of these QN ) that land in bucket v. Because each
message chooses its bucket uniformly at random, the place-
ment of any single message in v is a Bernoulli trial with
probability p = 1/(QN). Hence

Pr[Xv > ZM ] = Pr
[
Binomial(QN, 1/(QN)) > ZM

]
.

Set ZM = 1 + δ with δ = 2
(
κ + log(QN)

)
≥ 2.

Applying the Chernoff bound gives

Pr
[
Binomial(QN, 1/(QN)) > ZM

]
≤ exp

(
− δ2

2+δ

)
(Chernoff)

≤ exp
(
− δ

2

)
≤ exp

(
−κ− log(QN)

)
≤ 2−κ−log(QN).

Taking a union bound over all QN buckets,

Pr
[ ⋃
v∈[QN ]

{Xv > ZM}
]
≤ QN · 2−κ−log(QN)

≤ 2−κ.

B.2. Tree-Myco

B.2.1. Overflow probability for a single node.

Theorem 4. Let Xv,d be a random variable representing the
total number of messages (out of N ) that are assigned to a
node v at depth d. Then the probability that Xv,d exceeds
capacity ZT satisfies

Pr[Xv,d > ZT ] = 2
[(
1− 2−(d+1)

)n − (
1− 2−d

)n]
· Pr

[
Binomial(N, 2−(d+1)) > ZT

]
.

Proof. (Theorem 4) Let P = (VP , EP ) denote the sparse
binary tree representing the path-set of n paths, where VP

is the set of nodes in the tree that are part of the path-set,
and EP is the set of edges between them. Let Ld,n be an
event that denotes that exactly one child of the node v is one
of the path-set nodes in VP . Note that this is a pre-requisite
for v to be an LCA. If both children are in the path-set,
v can not be the deepest node for any path that intersects
with the path-set; this is because v’s child or an even deeper
node would be considered the LCA. Conversely, if none of
the children are in the path-set, then v is also not in the
path-set.

We can define the probability of Ld,n as follows: we
want at least one path in the path-set to go through v at
depth-d, but we do not want any path in the path-set to go
through a child w of v.

To calculate the probability that the path-set goes
through v but not w, we first analyze the probability that
the path-set goes through a node v. Note that:

Pr[v ∈ VP ] = 1− Pr[v ̸∈ VP ] = 1− (1− 2−d)n

Likewise, the probability that the path-set goes through the
child w of this particular node v is given by:

Pr[w ∈ VP ] = 1− Pr[w ̸∈ VP ] = 1− (1− 2−(d+1))n

Note that every path that passes through a child node w
must also pass through its parent v. In other words, the event
{w ∈ VP } is a subset of the event {v ∈ VP }. Therefore,
subtracting the probability Pr[w ∈ VP ] from Pr[v ∈ VP ]
directly yields the probability that the path-set goes through
v but not through w. Since Pr[Ld,n] is the probability that
path-set goes through v (depth d) but not w (depth d + 1)
for two choices of w, we can write:

Pr[Ld,n] = 2 · [Pr[v ∈ VP ]− Pr[w ∈ VP ]]

= 2 · [(1− (1− 2−d)n)− (1− (1− 2−(d+1))n)]

= 2 · [(1− 2−(d+1))n − (1− 2−d)n]

Now that we have established the probability a node v
could be an LCA, we look at the probability that a message
with a random path ℓ will be put in v. Let A be this event.
Then, we have (Pr[A|¬Ld,n] = 0):

Pr[A] = Pr[Ld,n] · Pr[A|Ld,n] + Pr[¬Ld,n] · Pr[A|¬Ld,n]

= Pr[Ld,n] · Pr[A|Ld,n]

= Pr[Ld,n] · 2−(d+1)

In the above expression, Pr[A|Ld,n] = 2−(d+1) because
the path ℓ needs to go exactly through the child w (at depth
d+ 1) for v to be the LCA.

We can extend this analysis to N messages, and since
all of these messages are independently chosen w.r.t. a given
path-set. Once the path-set is fixed and node v is an LCA
with probability Pr[Ld,n], each message sampling can be
seen as an independent Bernoulli trial with probability p =
2−(d+1). Thus, we can write the probability Pr[Xv,d > ZT ]
as follows:
Pr[Xv,d > ZT ] = Pr[Ld,n] · Pr[Xv,d > ZT | Ld,n]

+ Pr[¬Ld,n] · Pr[Xv,d > ZT | ¬Ld,n]

= Pr[Ld,n] · Pr[Xv,d > ZT | Ld,n]

= Pr[Ld,n] · Pr[Binomial(N, 2−(d+1)) > ZT ]



B.2.2. Overflow probability for a single epoch.

Theorem 5. Choosing the bucket capacity ZT = Θ(κ +
logN∆) ensures that the total overflow probability in a
single epoch in the tree (i.e., the probability that some node
receives more than ZT messages) is at most 2−κ for security
parameter κ.

Proof. (Theorem 5) We split this analysis into two parts. Let
d0 = ⌊log( N

2 ln 2(κ+logN∆+2) )⌋ be the breakeven tree level
where we split the analysis. First, we analyze the overflow
probability of nodes at shallow levels 0 ≤ d ≤ d0 and then
later we look at the overflow probability of nodes at deeper
levels d0 < d ≤ D.
Shallow levels 0 ≤ d ≤ d0. Recall from Theorem 4 that
Pr[Xv,d > ZT ] = Pr[Ld,n] · Pr[Binomial(N, 2−(d+1)) >
ZT ] ≤ Pr[Ld,n]. We first argue that Pr[Ld,n] is
O(2−(κ+logN)) for these shallow levels.

Given n = N , we can re-write Pr[Ld,n] as follows for
levels 0 ≤ d ≤ d0:

Pr[Ld,n]

= 2 · [(1− 2−(d+1))N − (1− 2−d)N ]

= 2 · [2N log(1−2−(d+1)) − 2N log(1−2−d)]

≤ 2 · 2N log(1−2−(d+1))

≤ 2 · 2−N · 2−d

2 ln 2(
log(1− x) ≤ −x

ln(2)
for 0 < x < 1

)
≤ 2 · 2−κ−logN∆−2(

2 ln 2(κ+ logN∆+ 2)

N
≤ 2−d0 ≤ 2−d

)
≤ 2−κ

2N∆
≤ 2−κ

2N

Given that there are at most 2d0+1 ≤ 2· N
2 ln 2(κ+logN∆) ≤ N

nodes in the shallow levels, by the union bound it follows
that:

Pr
[ ⋃
0≤d≤d0

⋃
v∈Vd

{Xv,d > ZT }
]
≤ N · 2

−κ

2N
≤ 2−κ−1.

Deep levels d0 < d ≤ D. Recall from Theorem 4 that
Pr[Xv,d > ZT ] = Pr[Ld,n] · Pr[Binomial(N, 2−(d+1)) >
ZT ] ≤ Pr[Binomial(N, 2−(d+1)) > ZT ]. We first argue
that Pr[Binomial(N, 2−(d+1)) > ZT ] ≤ 2−(κ+logN∆) for
the deep levels d > d0, and then take a union bound over
all N∆ buckets to show that all of them overflow with at
most 2−κ−1 probability.

For d > d0, the mean of binomial is µ ≤ N · 2−(d+1) ≤
N ·2−d0 ≤ N · 4 ln 2(κ+logN∆+2)

N = 4 ln 2·(κ+logN∆+2).
Let µ0 = 4 ln 2(κ + logN∆ + 2) and ZT = (1 + δ) · µ0,
where δ = 2 is a constant. Now, we can rewrite the binomial
for depth d as follows:

Pr[Binomial(N, 2−(d+1)) > ZT ]

≤ Pr[Binomial(N,
µ0

N
) > ZT ] (

1

2d+1
<

µ0

N
)

≤ Pr[Binomial(N,
µ0

N
) > (1 + δ) · µ0]

≤ exp(− δ2

2 + δ
· µ0) (Chernoff Bound)

≤ exp
(
− δ2

2 + δ
· (κ+ logN∆+ 2)

)
≤ exp

(
−(κ+ logN∆+ 2)

)
(δ = 2)

≤ 2−κ

4N∆

Given that there are at most 2D ≤ 2N∆ nodes in the deep
levels, by the union bound it follows that:

Pr
[ ⋃
d0<d≤D

⋃
v∈Vd

{Xv,d > ZT }
]
≤ 2N∆ · 2−κ

4N∆
≤ 2−κ−1.

Combining the results. If we take a union bound over the
shallow as well as deep layers, we get the following result
for ZT = Θ(κ+ logN∆):

Pr
[ ⋃
0≤d≤D

⋃
v∈Vd

{Xv,d > ZT }
]
≤ 2−κ−1 + 2−κ−1 ≤ 2−κ.

B.2.3. Overflow probability across ∆ epochs.

Proof. (Theorem 3) Building on the analysis of shallow and
deep layers from Theorem 5, we prove that across epochs
t ∈ [0,∆ − 1], the combined overflow probability of any
bucket is negligible.

Let di = ⌊log( (i+1)·N
2 ln 2(κ+log (N∆3)+2) )⌋. Intuitively, the di

value helps us define the level above which messages from
certain epochs are guaranteed to not be stored. In particular,
in epoch t, we have the guarantee that messages from epochs
≤ t − i will always occupy levels > di. This is shown
pictorially in Figure 6.

To bound the combined overflow probability, we define
some bad events that we do not want to happen.

Bad Events. ∀t ∈ [0,∆), i ∈ [0, t], let At,i denote
the bad event that any epoch i message falls within layers
0 ≤ d ≤ dt−i in epoch t. ∀t ∈ [0,∆), i ∈ [1, t], let
Bt,i denote the bad event that at least one bucket in layers
d ∈ (di−1, di] overflows when i·N messages (corresponding
to epochs (t − i, t]) are inserted in epoch t. Note that if
events {At,j}j∈[0,t−i] do not happen, these buckets are only
supposed to get messages from epochs (t− i, t]. Bt,t+1 is a
special case that considers layers (dt, D] and the bad event
is that one of the buckets in these layers overflows when
(t+1) ·N messages (corresponding to all t+1 epochs) are
inserted.

Success Condition. If for all epochs t ∈ [0,∆− 1] and
i ∈ [0, t], all the bad events At,i and Bt,i+1 do not happen,
note that no overflows happen across ∆ epochs. Now, we
bound the probability that these bad events happen.

Analyzing Pr[At,i]. This is similar to the shallow-level
argument from Theorem 5. Note that epoch i messages have
access to a (t+ 1− i) ·N -sized pathset in epoch t.



This is the case because the following are equivalent in
terms of the placement of a message: (1) the path-set being
sampled incrementally, with N paths sampled at a time in
each epoch and a message moving from its current location
to its LCA with the path-set; (2) the path-set being sampled
for all t′ epochs at once and a message is placed at its
LCA with this path-set. To see why, consider a message
with a fixed, random leaf. In epoch 0, it is assigned to
the deepest node along its path that appears in the initial
set of N random paths. In each subsequent epoch, N new
independent random paths are added, and the message is
reassigned to the deepest node common to its leaf path and
the new path-set. After t′ epochs, the union of all path-sets
comprises t′N independent random paths. Since the LCA
operator is monotonic, adding paths can only push the LCA
deeper or leave it unchanged. Thus, the final assignment is
equivalent to computing the LCA over a single batch of t′N
paths.

Recall from Theorem 4 that Pr[Xv,d > 0] ≤ Pr[Ld,n].
Given n = (t + 1 − i) · N , we can re-write Pr[Ld,n] as
follows for levels 0 ≤ d ≤ dt−i:

Pr[Ld,n] = 2 · [(1− 2−(d+1))n − (1− 2−d)n]

≤ 2 · 2n log(1−2−(d+1))

≤ 2 · 2−n· 2−d

2 ln 2(
log(1− x) ≤ −x

ln(2)
for 0 < x < 1

)
≤ 2 · 2−κ−logN∆3−2(

2 ln 2(κ+logN∆3+2)
(t+1−i)·N ≤ 2−dt−i ≤ 2−d

)
≤ 2−κ

2N∆3

Given that there are at most 2dt−i+1 ≤ 2 ·
(t+1−i)·N

2 ln 2(κ+logN∆3+2) ≤ (t + 1 − i) · N nodes in the shallow
levels, by the union bound it follows that:

Pr[At,i] ≤ Pr
[ ⋃
0≤d≤dt−i

⋃
v∈Vd

{Xv,d > 0}
]

≤ (t+ 1− i)N · 2−κ

2N∆3
≤ t+ 1− i

2∆3
2−κ.

Analyzing Pr[Bt,i]. This is similar to the deep-level
argument from Theorem 5. Recall from Theorem 4 that
Pr[Xv,d > ZT ] = Pr[Ld,n] ·Pr[Binomial(i ·N, 2−(d+1)) >
ZT ] ≤ Pr[Binomial(i ·N, 2−(d+1)) > ZT ]. For di−1 < d ≤
di, the mean of binomial is µ ≤ i·N ·2−(d+1) ≤ i·N ·2−di ≤
i ·N · 4 ln 2(κ+logN∆3+2)

(i+1)·N = 4 ln 2 · (κ+ logN∆3 + 2). Let
µ0 = 4 ln 2(κ+logN∆3+2) and ZT = (1+ δ) ·µ0, where
δ = 2 is a constant. Note that µ0 is independent of i and
t, and thus, ZT stays consistent for all Bt,i. Now, we can

rewrite the binomial for depth d as follows:

Pr[Binomial(i ·N, 2−(d+1)) > ZT ]

≤ Pr[Binomial(i ·N, µ0

i·N ) > ZT ]
(

1
2d+1 < µ0

i·N
)

≤ Pr[Binomial(i ·N, µ0

i·N )

> (1 + δ)µ0]

≤ exp(− δ2

2+δ · µ0) (Chernoff Bound)

≤ exp
(
− δ2

2+δ

· 4 ln 2(κ+ logN∆3 + 2)
)

≤ exp(−(κ+ logN∆3 + 2)) (δ = 2)

≤ 2−κ

4N∆3

Given that there are at most 2di+1 − 2di−1+1 nodes in the
deep levels, by the union bound it follows that:

Pr[Bt,i] ≤ Pr
[ ⋃
di−1<d≤di

⋃
v∈Vd

{Xv,d > ZT }
]

≤ 2 · (2di − 2di−1) · 2−κ

4N∆3
≤ (2di − 2di−1)

2−κ

2N∆3
.

For Bt,t+1, the levels dt < d ≤ D are considered that
could have at most 2D+1− 2dt+1 nodes. Thus, we have the
following by the union bound:

Pr[Bt,t+1] ≤ Pr
[ ⋃
dt<d≤D

⋃
v∈Vd

{Xv,d > ZT }
]

≤ 2 · (2D − 2dt) · 2−κ

4N∆3
≤ (2D − 2dt)

2−κ

2N∆3
.

Union bound over all bad events. Now, we take a union
bound over all bad events to upper bound the failure prob-
ability.

∪t∈[0,∆−1] ∪i∈[0,t](Pr[At,i] ∪ Pr[Bt,i+1])

≤
∑

t∈[0,∆−1]

∑
i∈[0,t]

(Pr[At,i] + Pr[Bt,i+1])

≤
∑
t

∑
i

t+ 1− i

2∆3
2−κ +

∑
t

(
(2D − 2dt)

2−κ

2N∆3

+
∑

i∈[1,t]

(2di − 2di−1)
2−κ

2N∆3

)

≤ 2−κ
(1
2
+

∆−1∑
t=0

2D

2N∆3

)
≤ 2−κ

(1
2
+

1

2∆

)
≤ 2−κ

Success Probability. Note that the success probability (no
bucket overflows over ∆ epochs) is as follows:

Pr[success] ≥ ∩t∈[0,∆−1] ∩i∈[0,t] (Pr[¬At,i] ∩ Pr[¬Bt,i+1])

In other words, the success probability is ≥ none of the
bad events happening. Using DeMorgan’s principle, we can



alternatively write it as:

Pr[success] ≥ 1−
⋃

t∈[0,∆−1]

⋃
i∈[0, t]

(Pr[At,i] ∪ Pr[Bt,i+1])

≥ 1− 2−κ

Appendix C.
Key Privacy

Prior work shows that if a probabilistic (or nonce-based
with randomized nonces) authenticated encryption scheme
produces ciphertexts indistinguishable from random, this
implies key-privacy [70].

Definition 2 (Key Privacy). For any PPT adversary A,
given access to two encryption oracles Enc(k0, ·) and
Enc(k1, ·) with randomly chosen keys k0, k1 ∈ {0, 1}l, the
advantage of distinguishing which key is used is:

AdvKP
Æ (λ) :=

∣∣∣∣Pr [1← AEnc(kb,·)(1λ) : b
$← {0, 1}

]
− 1

2

∣∣∣∣
We say the scheme is key-private if this advantage is negli-
gible in λ.

As we note in §6.1, we use AES-GCM for authenticated
encryption with random nonces, which indeed has indistin-
guishability from random ciphertexts property [138]. Thus,
we consider AES-GCM to be a key-private AE.

Appendix D.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

D.1. Summary

The paper designs a metadata-private communication
system, Myco, in the two-server model. They use techniques
based on ORAM to achieve polylogarithmic server compu-
tation and polylogarithmic communication complexity for
sending and receiving messages.

D.2. Scientific Contributions

• Addresses a Long-Known Issue
• Creates a New Tool to Enable Future Science
• Provides a Valuable Step Forward in an Established

Field

D.3. Reasons for Acceptance

1) Provides interesting technique to utilize ORAM to-
wards designing metadata-private messaging system.

2) Consequently, makes significant improvement in
asymptotic complexity for server computation, com-
pared to existing PIR-based systems.

D.4. Noteworthy Concerns

1) The paper does not solve the scenario when the long-
term secret key material is compromised. They discuss
the issue and consider it as a future work.

2) Similar to many other systems in the literature, Myco is
also not resilient against DoS attacks and other poten-
tially “undetectable” malicious behaviors by adversarial
servers. However, they discuss the issue in the paper
and discussed how such attacks do not impact the
privacy of the honest users.
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