
Fast amortized bootstrapping
with small keys and polynomial noise overhead

Antonio Guimarães1 and Hilder V. L. Pereira2

1 IMDEA Software Institute, Madrid, Spain
2 Institute of Computing, University of Campinas (UNICAMP), Brazil

antonio.guimaraes@imdea.org
hilder@unicamp.br

Abstract. Most homomorphic encryption (FHE) schemes exploit a tech-
nique called single-instruction multiple-data (SIMD) to process several
messages in parallel. However, they base their security in somehow strong
assumptions, such as the hardness of approximate lattice problems with
superpolynomial approximation factor. On the other extreme of the spec-
trum, there are lightweight FHE schemes that have much faster boot-
strapping but no SIMD capabilities. On the positive side, the security
of these schemes is based on lattice problems with (low-degree) poly-
nomial approximation factor only, which is a much weaker security as-
sumption. Aiming the best of those two options, Micciancio and Sorrell
(ICALP’18) proposed a new amortized bootstrapping that can process
many messages at once, yielding sublinear time complexity per message,
and allowing one to construct FHE based on lattice problems with poly-
nomial approximation factor.
Some subsequent works on this line achieve near-optimal asymptotic per-
formance, nevertheless, concrete efficiency remains mostly an open prob-
lem. The only existing implementation to date (GPV23, Asiacrypt 2023)
requires keys of up to a hundred gigabytes while only providing gains for
relatively large messages. In this paper, we introduce a new method for
amortized bootstrapping where the number of homomorphic operations
required per message is O(h) and the noise overhead is O(

√
hλ log λ),

where h is the Hamming weight of the LWE secret key and λ is the
security parameter. This allows us to use much smaller parameters and
to obtain faster running time. Our method is based on a new efficient
homomorphic evaluation of sparse polynomial multiplication. We boot-
strap 2 to 8-bit messages in 1.1 ms to 26.5 ms, respectively. Compared
to TFHE-rs, this represents a performance improvement of 3.9 to 41.5
times while requiring bootstrapping keys up to 50.4 times smaller.

1 Introduction

Fully homomorphic encryption (FHE) [Gen09] is a powerful cryptographic prim-
itive that allows one to evaluate arbitrary functions on encrypted data. However,
evaluating a function homomorphically is typically orders of magnitude slower
than evaluating it in clear, especially due to the bootstrapping, which is by far

https://orcid.org/0000-0001-5110-6639
https://orcid.org/0000-0003-1303-3760

2 Antonio Guimarães and Hilder V. L. Pereira

γ

O(1)

NP-Hard

O (poly(n))

Known algorithms
run in exponential time

O (2n)

Solved in poly(n)
time by LLL

Fig. 1. Hardness of approximate lattice problems, such as GapSVPγ , as the approxi-
mation factor γ grows as a function of the lattice dimension, n.

the most expensive operation in any FHE scheme. Thus, aiming to reduce the
overhead of the homomorphic evaluation, many of the FHE schemes [BGV14,
CKKS17,BBL17] can pack several messages into one ciphertext in such a way
that each homomorphic operation operates on all the messages in parallel. This
is known as single-instruction multiple data (SIMD) [SV14]. In particular, with
those schemes, by evaluating one single bootstrapping, one refreshes many mes-
sages, so that the amortized time complexity (number of operations required to
evaluate the boostrapping divided by the number of messages) becomes more
acceptable.

The most popular FHE schemes are constructed on top of the learning with
error (LWE) [Reg05] and ring learning with error (RLWE) [LPR10] problems,
which are appealing because of the well-known worst-case to average-case reduc-
tions that allows us to base the security on lattice problems that where already
believed to be hard even before the advent of homomorphic encryption. Roughly
speaking, if one is able to solve in polynomial time LWE in dimension n, with
modulus q, and discrete Gaussian errors with parameter σ, then one can solve
hard problems like approximate shortest vector problem, GapSVPγ , in dimension
n and with approximation factor γ = Õ(n · q/σ) [Reg05,BLP+13].

However, the noise overhead, that is, the noise introduced by the bootstrap-
ping, or, in other words, the noise “inside” the ciphertexts output by the boot-
strapping, is superpolynomial for those schemes. Basically, if the bootstrapping
outputs ciphertexts with noise magnitude e, then one has to choose the cipher-
text modulus q > e, thus, bootstrapping with larger noise overhead implies larger
approximation factor γ for the underlying lattice problem basing the securing
of scheme. However, as we increase γ, solving the approximate lattice problems,
as GapSVPγ , becomes easier, therefore, supposing that GapSVPγ is hard in the
worst-case becomes a stronger assumption as γ grows, as illustrated in Figure 1.
Ideally, we would like to construct our schemes under weak assumptions. In
summary, for GBV and CKKS, since the bootstrapping noise overhead is super-
polynomial, q has to be superpolynomial, and thus, the approximation factor γ of
the lattice problems is also superpolynomial (in the security parameter). When
one constructs FHE based on NTRU instead of (R)LWE, this noise overhead is
even more problematic, since there are already known algorithms to efficiently
solve the NTRU problem with large q [ABD16,KF17,DvW21].

Hence, it is important to construct FHE with bootstrapping noise overhead
just polynomially large (in the security parameter). To achieve this, Alperin-
Sheriff and Peikert [AP14] used the GSW scheme [GSW13] to bootstrap a very

https://orcid.org/0000-0001-5110-6639
https://orcid.org/0000-0003-1303-3760

Fast amortized bootstrapping with small keys and polynomial noise overhead 3

simple LWE-based scheme which could only encrypt one bit. This line of research
was further improved by the schemes FHEW [DM15] and TFHE [CGGI16],
which, for the first time, were able to run the bootstrapping in less than one
second. The time complexity of those bootstrapping algorithms, measured in
number of GSW homomorphic operations, is Õ(λ), that is, quasilinear in the
security parameter. Moreover, the noise overhead is just a low-degree polynomial.
On the negative side, they can only refresh one message per bootstrapping, which
means that, when evaluating a function homomorphically, one has to run the
bootstrapping several times, and this can end up being slow.

Thereupon, Micciancio and Sorrell proposed the concept of amortized boot-
strapping [MS18], which consists in refreshing O(λ) messages at once, but faster
than running FHEW/TFHE bootstrapping O(λ) times and still having poly(λ)
noise overhead3. Subsequent works improved those results, reducing even fur-
ther the amortized time complexity while maintaining polynomial noise over-
head [GPvL23,DKMS24,LW23a,LW23b], however, they are not yet practical. In
particular, to date, the only available implementation of this family of amortized
bootstrapping [GPvL23] requires huge bootstrapping keys of up to a hundred
gigabytes.

In this work, we use LWE and RLWE with sparse secrets to construct a
practical amortized bootstrapping whose number of GSW homomorphic oper-
ations per message is linear in the Hamming weight of the RLWE secret key,
and has much smaller bootstrapping key when compared to [GPvL23], while
having quasilinear noise overhead. Moreover, we provide an open-source public
implementation showing that our amortized running times are up to 32 times
faster than [GPvL23] and up to 41 times faster than TFHE-rs. These results are
summarized in Table 1.

1.1 Overview of existing amortized bootstrapping algorithms

The sequence of works [AP14, DM15, CGGI16] introduced a shift in the boot-
strapping paradigm existing at the time, from slow bootstrapping algorithms
refreshing many messages at once and producing refreshed ciphertext with su-
perpolynomial noise to much simpler and faster bootstrapping refreshing a single
message. The general framework is organized in two layers: one is the LWE-based
scheme whose ciphertexts must be refreshed and the other is the (ring) GSW
scheme used to homomorphically evaluate the decryption circuit of the first
scheme, that is, to bootstrap it.

Given an LWE ciphertext (a, b) ∈ Zn+1
q encrypting some message m, the first

step of the decryption circuit consists in computing the inner product between
a and the secret s ∈ Zn, then subtracting it from b. Thus, the bootstrapping
proceeds in a loop where at each iteration, the GSW scheme is used to generate
an RLWE encryption of X−ai·si , which is then accumulated so that at the end of
the loop, one obtains an encryption of Xb−a·s = Xe+m, where e is the noise in the
3 Notice that [LW23c] does not satisfy this definition, because its noise overhead is
Θ
(
λlog(λ)

)
, which is superpolynomial.

4 Antonio Guimarães and Hilder V. L. Pereira

Table 1: Functional bootstrapping with polynomial noise.

Number of
messages

Precision
(bits)

Bootstrapping
Key Size

Time

Total Amortized

TFHE-rs
[Zam22] 1

2 76.27MBa 9.8ms 9.8ms

4 52.1MB 13.6ms 13.6ms

6 488.5MB 131.1ms 131.1ms

8 3.25GB 1.1s 1.1s

[GPvL23] 1024 7 63GB 14m30s 851ms

This work 2048

2 10.2MB 5.1s 2.5ms

4 10.5MB 5.2s 2.5ms

6 14MB 6.8s 3.3ms

8 66MB 54.2s 26.5ms

a Could be reduced to 12.7MB with seeded-LWE. All others parameters could only be
compressed up to a factor of 2

: Failure probability ≈ 2−64 and λ ≈ 128 for all cases. Execution time includes all necessary
key switchings. See Section 7.2 for key switching key sizes of each implementation.

input ciphertext. In other words, the linear part of the decryption is evaluated
“in the exponent” of the indeterminate X. Finally, an extraction procedure maps
this RLWE encryption of Xe+m to an LWE encryption m. It is evident that this
approach requires Õ(n) = Õ(λ) GSW homomorphic operations per message.

Then, Micciancio and Sorrel [MS18] proposed a packing algorithm to com-
bine O(λ) LWE ciphertexts encrypting messages mi’s into one single RLWE
ciphertext encrypting all the O(λ) messages and to follow the LWE-GSW ap-
proach, but with a RLWE ciphertext as input. However, the inner-product in
the LWE decryption circuit is now a polynomial product, as RLWE samples are
composed by pairs of polynomials. Thus, [MS18] proposed an algorithm to homo-
morphically evaluate a DFT-like algorithm using GSW in such a way that, at the
end, they obtained several ciphertexts encrypting messages of the form Xei+mi ,
from which the extraction procedure could be applied and refreshed LWE cipher-
texts encrypting the mi’s could be produced. Their amortized bootstrapping has
noise overhead Õ(λ2+3·ρ) and requires Õ(3ρ · λ1+1/ρ) GSW homomorphic oper-
ations, where ρ is a parameter controlling the recursion depth of the DFT-like
algorithm. Since it refreshes O(λ) messages at once, it only requires Õ(3ρ ·λ1/ρ)
GSW homomorphic operations per message, i.e., it has sublinear amortized time
complexity.

This approach was further improved [GPvL23, DKMS24, LW23a, LW23b],
still using the GSW scheme to evaluate some DFT-like algorithm, and the
asymptotic cost per message is now only O(poly(log λ)). However, those amor-
tized bootstrapping are still far from practical, as only one of them was ac-
tually implemented [GPvL23] and ended up needing gigabytes of bootstrap-

https://orcid.org/0000-0001-5110-6639
https://orcid.org/0000-0003-1303-3760

Fast amortized bootstrapping with small keys and polynomial noise overhead 5

ping keys. The main limitation of this approach is the requirement for in-
creased parameters to instantiate the GSW scheme, which brings a huge over-
head to each homomorphic operation and to size of the bootstrapping key, as
it is actually a list of GSW ciphertexts. Also, since performing computation
in the exponent is implemented mainly with homomorphic multiplication (e.g.,
Enc(Xm1) ·Enc(Xm2) = Enc(Xm1+m2)), we would like to use efficient homomor-
phic multiplication, such as the external product [CGGI16,BIP+22]. However,
because of their multiplicative depth, the DFT-like algorithms force us to use
regular GSW multiplication, which means a logarithmic slowdown in practice.
Instead, in our approach, we are able to just use external products and small
parameters, therefore, having fast running time and small bootstrapping keys in
practice.

1.2 Overview of our contributions and techniques

New GSW-friendly sparse-by-dense polynomial multiplication. Firstly,
we propose a new algorithm that allows us to multiply, “in the exponent”, two
polynomials a and s, where a is in clear, s is encrypted, has binary coefficients,
and has Hamming weight4 h. This is a key piece of many bootstrapping algo-
rithms, since it corresponds to evaluating the first part of the decryption circuit
of RLWE-based schemes.

Let idx(s) be the set containing the degrees of nonzero coefficients of s and let
⊙ represent a monomial-by-polynomial multiplication. Then, one can compute
b− a · s as the summation of h monomial-by-polynomial multiplications:

b− a · s = b− a ·
∑

i∈idx(s)

Xi = b−
∑

j∈idx(s)

(
N∑
i=0

aiX
i

)
⊙Xj (1)

It is clear that above equation can be computed in O(hN) operations on
cleartext. However, when the indexes j are encrypted, the situation is less clear.
Considering this, we introduce the algorithm MPmul (Algorithm 1 in Section 3),
for homomorphically evaluating monomial-by-polynomial multiplication (with
messages in the exponent) in time O(N logB), where B is a bound for the
degree of the monomial. This algorithm only requires external products and
Galois Automorphisms and has noise overhead O(logB).

We also generalize this algorithm so that it can handle encrypted polynomials
s with non-binary coefficients, that is, polynomials s with Hamming weight h
and coefficients in {−ρ, ...,−1, 0, 1, ..., ρ}. This allows us to bootstrapping FHE
schemes that use more general secret keys instead of simply binary ones.

4 We define the Hamming weight of a polynomial as the number of nonzero coefficients
it has.

6 Antonio Guimarães and Hilder V. L. Pereira

New decryption circuit compatible with our MPmul algorithm It is
clear that Equation 1 could be evaluated homomorphically as

b− a · s = b−
∑

j∈idx(s)

MPmul(a,Enc(Xj)) (2)

Considering, for simplicity, B = N , this would result in an amortized boot-
strapping with complexity O(hN logN) homomorphic operations (i.e., O(h logN)
per message). However, since all the values are encrypted “in the exponent”,
the summation would actually require homomorphic multiplications, therefore,
we would either have to use expensive RLWE-times-RLWE products or use
GSW multiplication in our MPmul instead of external products so that we
could perform another level of multiplications the evaluate the sum. More-
over, this would increase a lot the parameters used in practice, probably giv-
ing us parameters slightly better than [GPvL23] but still worse than [CGGI16]
and [LMK+23]. To avoid this, we proceed as follows: Let j̃ = idx(s) be the set
of exponents of the nonzero coefficients of s. Checking again Equation 1, we see
that b−

∑
j∈idx(s) a⊙Xj can be rewritten as(((

b⊙X−j̃0 − a
)
⊙X j̃0−j̃1 − a

)
⊙X j̃1−j̃2 · · · − a

)
⊙X j̃h

Now, using MPmul, we have:

MPmul
(
. . .MPmul

(
MPmul

(
b,X−j̃0

)
− a,X j̃0−j̃1

)
· · · − a,X j̃h

)
With this formulation, we no longer have to use GSW multiplications, and

we can evaluate the bootstrapping entirely with external products, which are
faster by a factor of Θ(log λ). In more detail, notice that all uses of MPmul
are now nested with at least one operand (X j̃) being a fresh encryption, which
can be then defined as the bootstrapping key. Moreover, all subtractions, al-
though still implemented as multiplications, have at least one operand (the
polynomial a) as a cleartext, thus not adding any noise nor requiring expensive
ciphertext-ciphertext multiplication. Hence, we are able to evaluate the boot-
strapping with O(hN logN) external products. Moreover, noise and key size
are only O(h logN), enabling us to have use the same (or better) parameters
as [CGGI16] and [LMK+23] while having smaller evaluation keys.

As a last adjustment to this base technique, notice that we are now always
multiplying by a monomial with degree given by the difference of consecutive
elements from (j̃0, ..., j̃h−1) = idx(s) and it is easy to establish a high-probability
bound B = O(N/h) for the values j̃i − j̃i+1, allowing us to run MPmul in
time O(N log (N/h)), reducing bootstrapping complexity to O(hN log (N/h))
and both the noise overhead and the key size to O(h log (N/h)). We provide
further detail in Sections 3 to 6.

New packing algorithms exploiting low-Hamming weight secrets We
propose a new algorithm to pack many LWE ciphertexts encrypting messages

https://orcid.org/0000-0001-5110-6639
https://orcid.org/0000-0003-1303-3760

Fast amortized bootstrapping with small keys and polynomial noise overhead 7

High noise

[m1]

...

[mn]

...
New

packing
[∑

mi ·Xi
] New

homomorphic
polynomial

mult.

...

[
Xm1+e1

]
...[

Xmn+en
]... Message

extraction
...

[f1(m1)]

...

[fn(mn)]

Low noise

Fig. 2. Overview of our function amortized bootstrapping.

mi ∈ Z under a secret key s with Hamming weight h into a single RLWE
encryption of m(X) =

∑
miX

i, which can then be used as input of our homo-
morphic decryption circuit. Our algorithm presents new time-noise tradeoffs, as
it is possible to set its parameters so that it introduces more noise in the packed
ciphertexts but runs faster.

Putting it all together, we are able to evaluate the bootstrapping over O(λ)
messages at once, as illustrated in Figure 2. The process starts with high-noise
LWE ciphertexts encrypting messages mi ∈ Zt and finishes with low-noise LWE
ciphertexts encrypting fi(mi), where fi are arbitrary functions from Zt to Zt.

Proof-of-concept implementation and practical results We provide an
open-source5 C implementation of our amortized functional bootstrapping al-
gorithm for many message spaces. We compare our results to [GPvL23], the
only public implementation of amortized bootstrapping to date, and to TFHE-
rs [Zam22], the fastest implementation of non-amortized bootstrapping we are
aware of. The practical results are summarized in Table 1. Firstly, we notice
that our bootstrapping keys are much smaller, being 3 orders of magnitude less
than the ones of [GPvL23] and even about 2 orders of magnitude less than
TFHE-rs for some message spaces. Moreover, we obtained speedups of 32 times
over [GPvL23] and up to 41 times for TFHE-rs.

2 Preliminaries

For any vector u, we denote the infinity norm by ∥u∥ and the Euclidean norm by
∥u∥2. The Hamming Weight of a vector u, represented by HamWeight(u), is the
number of nonzero entries ui from u. For any polynomial a =

∑d
i=0 ai ·Xi, we

define the norm (and the Hamming weight) of a as the norm (and the Hamming
weight) of the coefficient vector (a0, ..., ad). If a is an element of a polynomial ring
like Z[X]/⟨f(X)⟩, we consider a′ ∈ Z[X] as the unique canonical representation
of a (with degree less than the degree of f), and thus the norm (and the Hamming
weight) of a is simply the norm (and the Hamming weight) of a′.

5 Github: TO BE PUBLISHED WITH THE PAPER.

8 Antonio Guimarães and Hilder V. L. Pereira

We use power-of-two cyclotomic rings of the form Z[X]/⟨XN + 1⟩, where
N = 2k for some k ∈ N, which we denote by R. For any positive integer Q, we
define RQ := R/(QR) i.e., the same ring as before but with coefficients of the
elements reduced modulo Q.

Probability distributions We denote by U(X) the uniform distribution over
a finite set X and by x ← D we mean that s was sampled following the distri-
bution D. The discrete Gaussian distribution with parameter σ and centered on
c samples z ∈ Z with probability ρ(z)/(

∑
y∈Z ρ(y)), where ρ(x) = exp(−π(x −

c)2/σ2). A random variable X is subgaussian with parameter σ > 0, in short σ-
subgaussian, if for all t ∈ R it holds that E[exp(2πtX)] ≤ exp(πσ2t2). In this case,
we also write X ∼ SG(E). The “tails” os subgaussians are bounded by a Gaussian
function of standard deviation σ, that is ∀b ∈ R, Pr[|X| ≥ b] ≤ 2 exp(−πb2/σ2).
From this, one can bound the absolute value of X with overwhelming probability,
since fixing b = σ

√
λ/π, implies Pr[|X| ≥ σ

√
λ/π] ≤ 2 exp(−π(s

√
λ/π)2/s2) =

2 exp(−λ) < 2−λ. In other words, |X| is less than σ
√

λ/π with probability
at least 1 − 2−λ. Linear combinations of independently distributed subgaus-
sians are again subgaussians, i.e., given independent σi-subgaussian distribu-
tions Xi’s, then for any u = (u1, ..., un) ∈ Rn, it holds that Z :=

∑n
i=1 uiXi is

σ-subgaussian with σ =
√∑n

i=1 c
2
iσ

2
i . In particular, if all σi are equal to some

σ̂, then, σ = σ̂ · ∥c∥2. Also, since ∥c∥2 ≤
√
n · ∥c∥∞, we have σσ̂ ·

√
n · ∥c∥∞.

We say that a polynomial a is σ-subgaussian if its coefficients are independent
σi-subgaussian, with σi ≤ σ. For any n ∈ N∗, given f equal to Xn ± 1 and
two polynomials a and b of degree less than n following subgaussians with pa-
rameters σa and σb, we can see that for c = a · b mod f , each coefficient ci is
(
√
n · σa · σb)-subgaussian, but the ci’s are not necessarily independent, thus, to

say that c is (
√
n · σa · σb)-subgaussian, we use the independence heuristic, which

is commonly to simplify analysis of FHE schemes [CGGI16,CGGI17,BIP+22].

Independence heuristic All the coefficients of the noise terms of the RLWE
samples appearing in the linear combinations we consider are assumed to be
independent and concentrated. In more detail, they follow σ-subgaussian, where
σ2 is their variance.

Variants of LWE The learning with errors problem [Reg05] with parameters
n, q, and σ, denoted LWEn,m,q,σ, an attacker has to find a secret vector s ←
U(Zn

q) given up to m samples of the form (ai, bi), where ai is uniform in Zn
q and

bi := ai · s + ei mod q, with ei following a discrete Gaussian distribution with
parameter σ.

In the ring version of LWE, known as RLWEN,m,q,σ [LPR10], we fix the ring
R = Z[X]/⟨XN + 1⟩ and a secret polynomial s ← U(Rq). Then, an attacker is
given up to m samples of the form (ai, bi), where ai is uniformly sampled from
Rq and bi := ai · s + ei ∈ Rq, for some small noise term ei following a discrete
Gaussian distribution with parameter σ, and the attacker has to find s.

https://orcid.org/0000-0001-5110-6639
https://orcid.org/0000-0003-1303-3760

Fast amortized bootstrapping with small keys and polynomial noise overhead 9

Both RLWE and LWE problems also have decision versions, where the at-
tacker has to distinguish the samples (ai, bi) from (ai, ui) where ui is uniformly
distributed. Moreover, both problems are often instantiated with a secret hav-
ing a known Hamming weight. Following [CHK+17], we define Sn,h,r := {u ∈
Zn : HamWeight(u) = h and ∥u∥∞ ≤ r}, i.e., the set of vectors with Ham-
ming weight h and entries in the interval J−r, rK, and we use spLWEn,m,q,σ,r,h to
denote LWEn,m,q,σ, but with secret s sampled uniformly from Sn,h,r instead of
Zn
q . Analogously, we define spRLWEn,m,q,σ,r,h as the sparse-secret RLWE (that

is, with secret polynomial s having its coefficient vector sampled from SN,h,r).

2.1 LWE and RLWE encryption schemes

We define the set of LWE encryptions of a message m ∈ Zt, where t ≥ 2, under
a secret key s ∈ Zn, with E-subgaussian noise and scaling factor ∆ ∈ Z as

LWEq
s(∆m,E) = {(a, b) ∈ Zn+1

q : b = [as+ e+∆ ·m]q and e ∼ SG(E)}

For a power-of-two cyclotomic polynomial R, the set of RLWE ciphertexts
encrypting a message m ∈ R, with scaling factor ∆ ∈ N, under a secret key s,
and with E-subgaussian noise is

RqLWEs(∆m,E) := {(a, b) ∈ R2
q : b = [as+ e+∆ ·m]q and e ∼ SG(E)}

In both cases, the decryption is done by multiplying the term a (or a) by
the secret key and subtracting it from b modulo q, which produces e′ = e+∆ ·
m mod q, then outputting ⌊e′/∆⌉ mod t. If ∥e+∆ ·m∥ < q/2 and ∥e∥ < q/(2t),
then the decryption correctly outputs m mod t.

We also briefly describe the ring variant of the GSW scheme [GSW13] pre-
sented in [DM15]. By fixing a decomposition base β and a gadget vector g =
(β0, β1, ..., βℓ−1), where ℓ := ⌊logβ(q)⌋+1, the set of GSW ciphertexts encrypting
a message m ∈ R, under a secret key s, and with E-subgaussian noise is

RqGSW
ℓ
s(m,E) := {[a,a · s+ e] +m · g⊗ I2 ∈ R2ℓ×2

q : e ∼ SG(E)}

At last, we also define the set of key-switching keys from a key s to a key
z, with E-subgaussian noise. For this, consider a decomposition base βksk and
a modulus q, then define ℓksk := ⌊logβksk

(q)⌋ + 1 and gksk = (β0
ksk, β

1
ksk, ..., β

ℓ−1
ksk).

Then, this set is defined as

RqKS
βksk(s � z, E) := {[a,a · z + e+ s · gksk] ∈ Rℓksk×2

q : e ∼ SG(E)}

Common homomorphic operations In this section, we describe in a high-
level the homomorphic operations we will use in our boostrapping algorithms.

– FHE.Add: homomorphically add two ciphertexts of the same type, e.g., maps
(c0, c1) ∈ RqLWEs(m0, E0)×RqLWEs(m1, E1) to c ∈ RqLWEs (m0 +m1, E)

where E ≤
√
E2

0 + E2
1 .

10 Antonio Guimarães and Hilder V. L. Pereira

– FHE.ModSwt: Given ĉ ∈ LWEQ
s (⌊Q/t⌉·m, Ê) and q ∈ N, output c ∈ LWEq

s(⌊q/p⌉·
m,E), with E2 ≤ (Ê · (q/Q))2 + (∥s∥2 /2)2.

– FHE.KeySwt: Given ĉ ∈ LWEq
s(m, Ê), and a key-switching key ksk from s ∈

ZN to z ∈ Zn, output c ∈ LWEq
z(⌊q/p⌉ ·m,E), with E2 ≤ Ê2+n · logβksk

(q) ·
β2
ksk · E2

ksk, where βksk is the decomposition base of ksk. There are also key-
switching procedures for RLWE ciphertexts.

– FHE.ExtProd: given c0 ∈ RqLWEs(∆·m0, E0) and C1 ∈ RqGSW
ℓ
s(m1, E1), it

outputs c ∈ RqLWEs(∆ ·m0 ·m1, E) where E ≤
√

ℓN · β2 · E2
1 + ∥m1∥22 · E2

0 ,
where β is the decomposition base.
Although the external product multiplies the messages, it is often use to add
them “in the exponent”, that is, instead of encrypting mi ∈ Z, one encrypts
Xmi . Then, external products produces encryptions of Xmi+mj .

– FHE.Automorphism: Given ĉ ∈ RqLWEs(m, Ê), odd integer k ∈ J1, 2NK,
and ksk ∈ RqKS

βksk(s � s(Xk), Eksk), output c ∈ RqLWEs(m(Xk), E), with
E2 ≤ Ê2 +N · logβksk

q · β2
ksk · E2

ksk.

2.2 Test vectors and extraction

Now, we describe the well-known technique to “extract” the message from the
exponent of X to constant coefficient [CGGI16,CIM19]. The RLWE sample we
obtain at the end of the main loop of the bootstrapping, which encrypts some-
thing of the form Xe+⌊2N/p⌉m, can be converted to an RLWE sample encrypting a
polynomial u(X) whose coefficient u0 is equal f(m), for any function f : Np/2 →
Np/2. To do so, we define the polynomial t(X) = −

∑N−1
i=0 f(⌊ ip

2N ⌋)X
N−i, then,

u = t(X) ·Xe+⌊2N/p⌉m mod XN +1 has the desired property, u0 = f(m). If f is
public, we then define its corresponding test vector as t := (0, ∆ · t(X)) ∈ R2,
which is a trivial and noiseless RLWE ciphertext. Otherwise, we actually encrypt
t(X), obtaining t = RqLWEs(∆ · t(X)).

Moreover, given c = RqLWEs(∆ · u,E), one can extract ĉ ∈ LWEq
s(∆ · u0, E)

for free, thus, obtaining an LWE encryption of m.

3 Homomorphic multiplication of monomial and
polynomial

In this section, we present an algorithm that homomorphically performs the mul-
tiplication u·Y v mod Y n+1, where u is an arbitrary polynomial in Z[Y]/⟨Y n+1⟩,
v is an integer between 0 and n, and both are encrypted. Notice that multiplying
by Y v means that we want to rotate the coefficients of u by v and multiply v of
them by −1, as follows

(u0, a1, ..., un−1) 7→ (−un−v,−un−v+1, ...,−un−1︸ ︷︷ ︸
negate v positions

, u0, u1, ..., un−b−1)

By starting with a list of ciphertext ci ∈ RqLWEs(X
ui) encrypting the coef-

ficients of u (in the exponent), we could simply rotate the list of ci’s itself and

https://orcid.org/0000-0001-5110-6639
https://orcid.org/0000-0003-1303-3760

Fast amortized bootstrapping with small keys and polynomial noise overhead 11

multiply some of them, however, since we do not know the value of b, performing
this rotation in not trivial.

Our solution is as follows. Let’s say we can homomorphically multiply by
Y vi2

i

where vi ∈ {0, 1}, then we can multiply by Y v by sequentially multiplying
by Y v02

0

, Y v12
1

, ..., and Y vL2L , where (v0, v1, ..., vL) is the binary decomposition
of v. But multiplying by Y vi2

i

is the same as evaluating the following function:

f(u0, ..., un−1) =

{
(u0, u1, ..., un−1) if vi = 0

(−un−2i , ...,−un−1, u0, ..., un−2i−1) if vi = 1

Now, notice that the number of elements that have to be multiplied by −1 is
2i, where i is known, in other words, we know exactly which elements have
to negated (the first 2i) and which only have to be rotated. Also, since the
homomorphic CMUX [CGGI16] allows us to perform two different computations
depending on an encrypted bit, we can differentiate the two scenarios. In more
detail, given Ci ∈ RqGSW

ℓ
s(vi), then for 2i ≤ j ≤ n − 2i − 1, it is enough to

evaluate
ĉj ←

(
cj−2i − cj

)
� Ci + cj .

One can see that if vi = 0, then ĉj = cj , i.e., no rotation is performed, and if
vi = 1, then ĉj = cj−2i , that is, a rotation by 2i is performed, as expected. And
for the first 2i positions, we can use the same CMUX, but we first apply the
automorphism X 7→ X−1 so that the value we obtain is either an encryption
of Xuj itself (when bi = 0) or an encryption of X−un−2i+j , that is, both the
rotation by 2i and the negation happens. In more detail, for 0 ≤ j ≤ 2i, we can
evaluate

ĉj ←
(
FHE.Automorphism(cn−2i+j ,−1)− cj

)
� Ci + cj

This shows how we can obtain the list (ĉ0, ..., ĉn−1) representing the encryp-
tion of u · Y vi·2i mod Y n + 1. Hence, we just need to repeat this procedure for
0 ≤ i ≤ L, where L is any upper bound on the number of bits of v (for instance,
one could set L = ⌊log n⌋+1). This gives us the full homomorphic multiplication,
which is shown in detail in Algorithm 1, MPmul.

To analyze the noise growth, we can focus on line 3, as it introduces more
noise than line 5. Suppose that at the i-th iteration, we have a list of RLWE
ciphertexts (c0, ..., cn−1) with subgaussian noise with parameter Ei, a GSW ci-
phertext with whose noise is EG-subgaussian, and a key-switching key with Ek-
subgaussian noise. Then, from the description of the external product and the au-
tomorphism in Section 2.1, after the automorphism we have Ẽ-subgaussian noise
with Ẽ ≤

√
E2

i +N · logβksk
q · β2

ksk · E2
k, where βksk is the decomposition base

used to key switch. Thus, after the external product, we have Ei+1-subgaussian

noise where Ei+1 ≤
√
ℓNβ2E2

G + |bi|Ẽ2 ≤
√
ℓNβ2E2

G +N logβksk
(q)β2

kskE
2
k + E2

i .
Hence, after logB iterations, the output has noise with parameter Eout ≤√
(logB)

(
ℓNβ2E2

G +N logβksk
(q)β2

kskE
2
k

)
+ E2

0 . This gives us the following lemma.

12 Antonio Guimarães and Hilder V. L. Pereira

Algorithm 1: Monomial-times-polynomial multiplication (MPmul)
Input : a list ci ∈ RqLWEz(X

ui) for 0 ≤ i < n representing a polynomial
u(Y) encrypted in the exponent

Input : a list Ci ∈ RqGSW
ℓ
z(vi) for 0 ≤ i < logB where vi ∈ {0, 1} and∑logB−1

i=0 vi2
i = v < B

Input : a key ksk ∈ RqKS
βksk(z(X−1) � z, Eksk) for the automorphism

Output: a list ci ∈ RqLWEz(X
wi) for 0 ≤ i < n representing an encryption

of a polynomial w(Y) such that w = u · Y v mod (Y n + 1)
1 for 0 ≤ i ≤ logB − 1 do

/* For each i, multiply by Y vi2
i

mod Y n + 1 */
2 for 0 ≤ j < 2i do
3 ĉj ←

(
FHE.Automorphism(cn−2i+j ,−1)− cj

)
� Ci + cj

4 for 2i ≤ j < n− 2i do
5 ĉj ←

(
cj−2i − cj

)
� Ci + cj

6 (c0, ..., cn−1)← (ĉ0, ..., ĉn−1)

7 return (c0, ..., cn−1)

Lemma 3.1 (Noise overhead of MPmul). Let ci ∈ RqLWEz(X
ui , E0) and

Cj ∈ RqGSW
ℓ
z(vj , EG) be the input ciphertexts of Algorithm 1. Also, consider

that input key-switching key is ksk ∈ RqKS
βksk(z(X−1) � z, Eksk) and let ℓksk :=

⌊logβksk
q⌋+ 1. Then, the output ciphertexts have Eout-subgaussian noise with

Eout ≤
√

(logB) (ℓNβ2E2
G +Nℓkskβ2

kskE
2
ksk) + E2

0

4 Homomorphically multiplying the secret key

In this section, we describe three different ways of using our algorithm MPMul
to perform the main step of the decryption that has to be evaluated homo-
morphically during the bootstrapping. To avoid confusion, we use ring R :=
Z[X]/⟨XN + 1⟩ for the bootstrapping key and the ring RY := Z[Y]/⟨Y n + 1⟩
for the input ciphertext. Basically, the homomorphic computation is performed
in the exponent of X, but we are evaluating functions on RY .

Thus, consider that we have an RLWE ciphertext (a(Y), b(Y) = a(Y)·s(Y)+
e(Y) +m(Y)), defined modulo Y n + 1 and a bootstrapping key encrypting the
h nonzero coefficients of s(Y) in some way. Then, we would like to compute
p(Y) := b(Y)− a(Y)s(Y) mod Y n+1 in the exponent, that is, to obtain cipher-
texts encrypting Xpi . From this, we can use standard techniques to extract the
message from the exponent, generating LWE samples.

Define j̃ = idx(s) as the sequence of exponents of the nonzero coefficients of
s. For instance, if s(Y) = 1 − 1 · Y 5 + 1 · Y 7, then j̃ = (0, 5, 7). Also, define
d := diff(s) ∈ J−n, nKh+1 as d[0] = −j̃0, d[h] = −j̃h−1, and d[i] = j̃i−1 − j̃i for
1 ≤ i ≤ h− 1.

https://orcid.org/0000-0001-5110-6639
https://orcid.org/0000-0003-1303-3760

Fast amortized bootstrapping with small keys and polynomial noise overhead 13

Algorithm 2: Subtract a ·s when s is a binary sparse secret (bin-SAB)
Input : an RLWE ciphertext (a, b) ∈ R2

Y encrypting m(Y) =
∑n

i=0 miY
i

under a key s with noise e. For 0 ≤ i < n, ai, bi ∈ Z2N

Input : GSW ciphertexts encrypting the binary decomposition of
d := diff(s), as required by MPmul, i.e., Ci,j ∈ RqGSW

ℓ
z(di,j) for

0 ≤ i ≤ h, 0 ≤ j < logB, where
∑logB−1

j=0 di,j2
j = d[i]

Input : a key ksk ∈ RqKS
βksk(z(X−1) � z, Eksk) for the automorphism

Input : test vectors t0, ..., tn−1 encoding LUTs as polynomials ti(X)
Output: a list ci ∈ RqLWEz(ti(X) ·Xmi+ei) for 0 ≤ i < n.

1 Let c := (c0, ..., cn−1) where ci = FHE.MultPtxt(ti, X
bi)

2 for 0 ≤ i ≤ h− 1 do
/* Multiply by Xd[i] */

3 Let C = (Ci,1, ...,Ci,logn−1)
4 c←MPmul(c,C, ksk)

/* Subtract a(Y) */
5 for 0 ≤ k ≤ n− 1 do
6 ck ← FHE.MultPtxt(ci, X

−ak)
7 c← (c0, ..., cn−1)

8 Let C = (Ch,1, ...,Ch,logn−1)
9 c←MPmul(c,C, ksk)

10 return c

4.1 Bootstrapping with binary secrets

Firstly, let’s consider the simplest case where s has binary coefficients. Define
r := b− a · s = b−

∑
j∈idx(s) a⊙ Y j . Then, we have

r =
(((

b⊙ Y d[0] − a
)
⊙ Y d[1] − a

)
⊙ Y d[2] · · · − a

)
⊙ Y d[h] (3)

Now, using MPmul, we have:

MPmul
(
. . .MPmul

(
MPmul

(
b, Y d[0]

)
− a, Y d[1]

)
· · · − a, Y d[h]

)
Notice that since a is a known polynomial, subtracting it means that we

can simply multiply each RLWE ciphertext ci returned by MPmul by X−ai ,
which is almost for free and does not increase the noise of the ciphertexts. This
gives us Algorithm 2, which takes as input the values d[i] decomposed into bits
and encrypted as GSW ciphertexts, as required by MPmul, and the RLWE
ciphertext to be refreshed, i.e., (a(Y), b(Y)) ∈ R2

Y such that b = a · s + e +
m mod Y n + 1, then computes a list of RLWE ciphertexts encrypting u :=
b−a·s mod Y n+1 in the exponent. As an optimization for the moment it is used
in the functional bootstrapping, it also receives test vectors ti representing look-
up-tables, which are combined with the product. Thus, instead of just outputting
a list of encryptions of Xui , Algorithm 2 outputs encryptions of ti(X) ·Xui .

Lemma 4.1 (Correctness, noise growth and complexity of bin-SAB).
Let the input of Algorithm 2 be (a(Y), b(Y)) ∈ R2

Y , ksk ∈ RqKS
βksk(z(X−1) �

14 Antonio Guimarães and Hilder V. L. Pereira

z, Eksk), Ci,j ∈ RqGSW
ℓ
z(di,j , EG), and ti ∈ RqLWEz(ti(X), ET), where ti are

possibly trivial RLWE samples and b(Y) = a(Y) ·s(Y)+e(Y)+m(Y) mod ⟨Y n+
1, 2N⟩ for some secret key s with Hamming weight h and coefficients in {0, 1}.

Then, the output satisfies ci ∈ RqLWEs(ti(X) ·Xmi+ei , Eout) where

Eout ≤
√

(h+ 1)(logB) (ℓNβ2E2
G +Nℓkskβ2

kskE
2
ksk) + E2

T

Moreover, the time complexity is O(h · n · logB) external products.

Proof. Correctness follows trivially from Equation (3), since each call to MPmul
multiplies the accumulator by Y d[i] and the inner loop subtracts a(Y) in the
exponent.

Also, since MPmul executes O(n logB) external products (and some au-
tomorphisms, which have essentially the same time complexity as an external
product), it is easy to see that claimed time complexity holds.

Now, from the noise growth of the homomorphic operations shown in Sec-
tion 2.1, we see that the multiplications by plaintext do not increase the noise,
since ∥X−ai∥2 =

∥∥X−bi
∥∥
2
= 1. Thus, only the calls to MPmul change the

noise. But from Lemma 3.1, considering that the i-th call to MPmul has RLWE
samples with Ei-subgaussian noise and GSW ciphertexts with EG-subgaussian
noise, we can see that the output has Ei+1-subgaussian noise where

Ei+1 ≤
√
(logB) (ℓNβ2E2

G +Nℓkskβ2
kskE

2
ksk) + E2

i

therefore, since E0 = ET , the last call to MPmul, when i = h, gives us

Ei+1 ≤
√
(h+ 1)(logB) (ℓNβ2E2

G +Nℓkskβ2
kskE

2
ksk) + E2

T

4.2 Bootstrapping with ternary secrets

Now let’s move to a widely used case, when the RLWE has fixed Hamming
weight, h, and coefficients sampled from {−1, 0, 1}. Then, defining j̃ := idx(s),
d := diff(s), and r := b − a · s = b −

∑
j∈idx(s)(asj) ⊙ Y j as in Section 4.1, we

can write

r =
(((

b⊙ Y d[0] − asj̃0

)
⊙ Y d[1] − asj̃1

)
· · · − asj̃h−1

)
⊙ Y d[h] (4)

The only difference when compared to Equation 3 is that we do not simply
subtract a all the time. When the coefficient sj̃i is −1, we have to add a instead
of subtracting it. To achieve this, we include as input another encrypted control
bit which is 1 if sj̃i = 1 and 0 otherwise. Then, by using this control bit, we use
a CMux to select between FHE.MultPtxt(ci, X

−ai) and FHE.MultPtxt(ci, X
ai).

We show this in detail in Algorithm 3.

https://orcid.org/0000-0001-5110-6639
https://orcid.org/0000-0003-1303-3760

Fast amortized bootstrapping with small keys and polynomial noise overhead 15

Algorithm 3: Ternary Sparse Amortized Bootstrapping (tern-SAB)
Input : an RLWE ciphertext (a, b) ∈ R2

Y encrypting m(Y) =
∑n

i=0 miY
i

under a key s with noise e. For 0 ≤ i < n, ai, bi ∈ Z2N

Input : GSW ciphertexts encrypting the binary decomposition of
d := diff(s), as required by MPmul, i.e., Ci,j ∈ RqGSW

ℓ
z(di,j) for

0 ≤ i ≤ h, 0 ≤ j < logB, where
∑logB−1

j=0 di,j2
j = d[i]

Input : a key ksk ∈ RqKS
βksk(z(X−1) � z, Eksk) for the automorphism

Input : test vectors t0, ..., tn−1 encoding LUTs as polynomials ti(X)
Input : encrypted control bits Vi ∈ RqGSW

ℓ
z(bi) for 1 ≤ i ≤ h where bi = 1

if sj̃i = 1 and bi = 0 otherwise
Output: a list ci ∈ RqLWEz(ti(X) ·Xmi+ei) for 0 ≤ i < n.

1 Let c := (c0, ..., cn−1) where ci = FHE.MultPtxt(ti, X
bi)

2 for 0 ≤ i ≤ h− 1 do
/* Multiply by Xd[i] */

3 Let C = (Ci,1, ...,Ci,logn−1)
4 c←MPmul(c,C, ksk)

/* Subtract or add a(Y) */
5 for 0 ≤ k ≤ n− 1 do
6 p← FHE.MultPtxt(ck, X

−ak)
7 z← FHE.MultPtxt(ck, X

ak)
8 ck ← (p− z) � Vk + z

9 c← (c0, ..., cn−1)

10 Let C = (Ch,1, ...,Ch,logn−1)
11 c←MPmul(c,C, ksk)
12 return c

Lemma 4.2 (Correctness, noise growth and complexity of tern-SAB).
Consider an execution of Algorithm 3 with this input: (a(Y), b(Y)) ∈ R2

Y , Ci,j ∈
RqGSW

ℓ
z(di,j , EG), ti ∈ RqLWEz(ti(X), ET), ksk ∈ RqKS

βksk(z(X−1) � z, Eksk),
and Vi ∈ RqGSW

ℓ
z(bi, EG), where ti are possibly trivial RLWE samples and

b(Y) = a(Y) · s(Y) + e(Y) +m(Y) mod ⟨Y n +1, 2N⟩ for some secret key s with
Hamming weight h and coefficients in {0, 1}, bi ∈ {0, 1}, and bi = 1⇔ j̃i = 1.

Then, the output ciphertexts ci satisfy ci ∈ RqLWEs(ti(X) · Xmi+ei , Eout)
where

Eh ≤
√

hℓNβ2E2
G + (h+ 1)(logB) (ℓNβ2E2

G +Nℓkskβ2
kskE

2
ksk) + E2

T

Moreover, the time complexity is O(h · n · logB) external products.

Proof. The proof is almost the same as Lemma 4.1.
Correctness follows from Equation 4 and from the fact that line 8 subtracts

sj̃k · ak, as expected, since sj̃k = 1 implies Vk encrypting 1, which means that
ck ·X−ak is selected, otherwise, Vk encrypts 0 and ck is updated to z = ck ·Xak .

Also, it only performs hn additional external products (line 8) compared
to Algorithm 2, thus, the time complexity is O(hn logB + hn) = O(hn logB)
external products.

16 Antonio Guimarães and Hilder V. L. Pereira

As for the noise, consider that at the i-th iteration, the vector c has ci-
phertexts with Ei-subgaussian noise. After executing MPmul we have Ê ≤√
(logB) (ℓNβ2E2

G +Nℓkskβ2
kskE

2
ksk) + E2

i . The calls to FHE.MultPtxt do not in-
crease the noise since ∥Xak∥2 = ∥X−ak∥2 =

∥∥X−bi
∥∥
2
= 1. Then, the external

product in line 8 yields

Ei+1 ≤
√
ℓNβ2E2

G + bk · Ê2

≤
√
ℓNβ2E2

G + (logB) (ℓNβ2E2
G +Nℓkskβ2

kskE
2
ksk) + E2

i

Thus, after h iterations, we have

Eh ≤
√
hℓNβ2E2

G + h(logB) (ℓNβ2E2
G +Nℓkskβ2

kskE
2
ksk) + E2

i

and the final call to MPmul gives us

Eout ≤
√

(logB) (ℓNβ2E2
G +Nℓkskβ2

kskE
2
ksk) + E2

h

which is the claimed bound since E0 = ET .

4.3 Bootstrapping with general sparse secrets

Finally, let’s consider a more general case where the RLWE secret has h nonzero
coefficients, all sampled from J−ρ, ρK, where ρ is any integer larger than or equal
to 1. As in Section 4.1, define j̃ := idx(s) and d := diff(s). Then, we can write
b− a · s exactly as in Equation 4, but with sj̃1 ∈ J−ρ, ρK.

To evaluate this equation efficiently, we could use MPmul to perform the
multiplications by Y d[i], then homomorphically subtract asj̃i . For the subtrac-
tion, we could have GSW ciphertexts encrypting Xsj̃i , use GSW automor-
phism [GPvL23] to obtain GSW encryptions of X−aksj̃i for each coefficient ak
of a, then use external products to accumulate X−aksj̃i , effectivelly subtracting
asj̃i in the exponent. However, one GSW automorphism costs essentially the
same as O(log λ) regular RLWE automorphisms.

Thus, we evaluate this formula differently, using two RLWE automorphisms,
as proposed in [BDF18]. Firstly, we apply the automorphisms X 7→ X−a−1

k ,
for each coefficient ak, to the RLWE ciphertexts output by MPmul. Then, we
multiply by Y j̃i using external product. Finally, we apply the automorphisms
X 7→ X−ak . This can be viewed as starting with some polynomial u(Y) (with
coefficients encrypted in the exponent of X), then obtaining a new polynomial
v(Y) where each coefficient vi equals −ui ·a−1

i mod 2N , then computing v(Y)+

sj̃i · Y
j̃i (with n external products), and finally using the second automorphism

to obtain w(Y) with coefficients wi = −vi · ai − ai · sj̃i = ui − ai · sj̃i .
Hence, with one external product and two RLWE automorphisms per coef-

ficient instead of one GSW automorphism per coefficient, we are able to homo-
morphically subtract a(Y) · sj̃i , as required in Equation 4. Then, multiplying by
Y d[i] is performed as before, using MPmul. This gives us Algorithm 4.

https://orcid.org/0000-0001-5110-6639
https://orcid.org/0000-0003-1303-3760

Fast amortized bootstrapping with small keys and polynomial noise overhead 17

Algorithm 4: General Sparse Amortized Bootstrapping (ρ-SAB)
Input : an RLWE ciphertext (a, b) ∈ R2

Y encrypting m(Y) =
∑n

i=0 miY
i

under a key s with noise e. For 0 ≤ i < n, ai, bi ∈ Z2N and ai is odd
Input : GSW ciphertexts encrypting the binary decomposition of

d := diff(s), as required by MPmul, i.e., Ci,j ∈ RqGSW
ℓ
z(di,j) for

0 ≤ i ≤ h, 0 ≤ j < logB, where
∑logB−1

j=0 di,j2
j = d[i]

Input : key-switching keys kski ∈ RqKS
βksk(z(Xi) � z, Eksk) for the

automorphism X 7→ Xi for i ∈ {1, 3, 5, ..., 2N − 1}
Input : test vectors t0, ..., tn−1 encoding LUTs as polynomials ti(X)
Input : coefficients of s encrypted in the exponent, i.e., Vi ∈ RqGSW

ℓ
z(X

s
j̃i)

for 0 ≤ i ≤ h− 1
Output: a list ci ∈ RqLWEz(ti(X) ·Xmi+ei) for 0 ≤ i < n.

1 Let c := (c0, ..., cn−1) where ci = FHE.MultPtxt(ti, X
bi)

2 for 0 ≤ i ≤ h− 1 do
/* Multiply by Xd[i] */

3 Let C = (Ci,1, ...,Ci,logn−1)
4 c←MPmul(c,C, ksk)

/* Subtract a(Y) · sj̃i */
5 for 0 ≤ k ≤ n− 1 do
6 y← FHE.Automorphism(ck,−a−1

k)
7 w← y � Vi

8 ck ← FHE.Automorphism(w,−ak)

9 c← (c0, ..., cn−1)

10 Let C = (Ch,1, ...,Ch,logn−1)
11 c←MPmul(c,C, ksk)
12 return c

As a technicality, the automorphisms X 7→ Xk are only defined for odd k.
Therefore, in Algorithm 4, we assume that all input coefficients ai are odd. This
can be achieved with little noise growth using modulus switching [LMK+23].

Lemma 4.3 (Correctness, noise growth and complexity of ρ-SAB).
Consider Algorithm 4 with the following input: (a(Y), b(Y)) ∈ R2

Y , kski ∈
RqKS

βksk(z(Xi) � z, Eksk), Ci,j ∈ RqGSW
ℓ
z(di,j , EG), Vi ∈ RqGSW

ℓ
z(X

sj̃i , EG),
and ti ∈ RqLWEz(ti(X), ET), where ti are possibly trivial RLWE samples,
b(Y) = a(Y) · s(Y) + e(Y) + m(Y) mod ⟨Y n + 1, 2N⟩ for some secret key s
with Hamming weight h and coefficients in J−ρ, ρK, and the coefficients of a(Y)
are odd numbers.

Then, ci ∈ RqLWEs(ti(X) ·Xmi+ei , Eout) for the output (c0, ..., cn−1), where

Eout ≤
√
(h+ 1)(logB + 2) (ℓNβ2E2

G +Nℓkskβ2
kskE

2
ksk) + E2

T

Moreover, the time complexity is O(h · n · logB) external products.

Proof. Essentially the same as Lemma 4.1 and Lemma 4.3.

18 Antonio Guimarães and Hilder V. L. Pereira

5 Packing Key Switching

Exploiting a somewhat similar idea to our sparse multiplication algorithm, we
introduce a new approach to perform packing key switching that introduces
lower noise at the cost of more multiplications. Let ci = (ai, bi) ∈ ZN × Z for
i ∈ [0, n) be a list of n LWE ciphertexts, the first step of a packing key switching
consists of arranging the coefficients of LWE ciphertexts into a matrix: a0,0, a0,1, . . . , a0,N−1

.
an−1,0, an−1,1, . . . , an−1,N−1

 ,

 b0
. . .
bn−1

 ∈ Zn×N
q × Zn×1

q

Let N ′ ≥ n be the dimension of the output RLWE and let f : Zn
q 7→ Zq[X]/(XN ′

+

1), given by f(x0, ..., xn−1) 7→
∑n−1

i=0 xiX
i be a function defining a coefficient em-

bedding, one can produce a module-LWE ciphertext of dimension N ′ and rank
N by applying f to every column of the matrices:

(a′, b′) =
(∑n−1

i=0 ai,0X
i,
∑n−1

i=0 ai,1X
i, . . . ,

∑n−1
i=0 ai,N−1X

i
)
,(∑n−1

i=0 biX
i
)
∈ RN

q ×Rq

Usual RLWE key switching algorithms can now be used to switch this cipher-
text to different parameters and keys. Traditional techniques [CGGI16, MS18,
GPvL23] compute b′ − ⟨a′, s⟩ for some secret key s ∈ ZN

q by performing O(N)
multiplications between the polynomials in a′ and key switching keys encrypting
s. This process introduces noise O(

√
Nn) and requires O(NN ′) evaluation key

size. We introduce an algorithm that requires O(hN) multiplications, but only
introduces noise O(

√
h log(N)

√
N ′) and requires O(h log(N)N ′) evaluation key

size. Algorithm 5 presents our solution.
The basic idea behind it is to use a CMUX tree [CGGI17] to select only the

elements of a′ corresponding to the nonzero positions of s. Naively, we could
run a CMUX tree h times (one per nonzero position) over the entire a′, which
leads to the asymptotic costs mentioned above. However, this process can be
accelerated by assuming some structure in the key (which happens with very high
probability), similarly as we do with our amortized bootstrapping algorithm.
Let s ∈ ZN

q be a vector of Hamming Weight h such that idx(s) is uniformly
distributed in Zh

N . We choose parameters B ≤ N and k ∈ [1, h], such that
Pr
[
HW(sBi,...,B(i+1)−1) > k

]
is small for all i ∈ [0, N/B). Based on this, we

divide a′ into N/B blocks of size B, and we use a CMUX tree to select k positions
from each block (Lines 8 to 11 of Algorithm 5). The selected positions of a′ are
then multiplied by their respective values in the key (Line 12 of Algorithm 5).
The goal is to select all positions corresponding to nonzero elements of key,
which we call “relevant positions”. If a block has less than k relevant positions,
we select any other element, as it will be multiplied by an encryption of 0 in
Line 12. Conversely, if a block has more than k relevant positions, the algorithm
would fail, which we avoid by choosing (B, k) that would lead to negligible
probability of failure. We detail the key generation process in Algorithm 7 in

https://orcid.org/0000-0001-5110-6639
https://orcid.org/0000-0003-1303-3760

Fast amortized bootstrapping with small keys and polynomial noise overhead 19

Algorithm 5: Packing key switching for sparse secrets
Input : a list of n ≤ N ′ LWE ciphertexts

ci = (ai, bi) ∈ LWEq
s(mi) ⊂ ZN

q × Zq, for i ∈ [0, n).
Input : parameters k ∈ [1, h] and B ≤ N s.t. B|N
Input : two vectors (V ′, C′) containing, respectively, GSW encryptions of V

and of the binary decomposition of C, where (V,C) are produced by
Algorithm 7

1 . Output: a ciphertext c′ ∈ RqLWEs′(
∑n−1

i=0 mi)
/* Pack LWE ciphertexts into an MLWE of rank N */

2 f : Zn
q 7→ Rq, given by f(x0, ..., xn−1) 7→

∑n−1
i=0 xiX

i

3 c′ ← (0, f([bi]i=0,...,n−1))
4 for i← 0 to N do
5 âi ← f([ai,j]j=0,...,n−1)
/* Key switching */

6 for j ← 0 to N/B do
7 for i← 0 to k do

/* CMUX tree: select a coeff. in block j */
8 ã← â
9 for t← 0 to logB do

10 z ← 2logB−t−1

11 for r ← 0 to z do
12 ãjB+r ← (ãjB+r+z − ãjB+r) � Cjk+i,log(B)−t−1 + ãjB+r

/* Subtract selected position times V */
13 c′ ← c′ − ãjB � Vjk+i

14 Return c′

Table 2. Comparison between packing methods. Cost measured in the number of
RLWE multiplications; Key size is given in the number of Zq elements. The parameter
ℓ is the gadget decomposition degree. We assume n = N ′ = N .

Method Cost Noise overhead Key size

Traditional ℓN N
√
ℓ 2ℓN2

[CDKS21] ℓN log(N) N
√

ℓ log(N) 2ℓN log(N)

This work 2hNℓ
√

2ℓhN log(N) 4ℓhN log(N)

2kNℓ N
√

2ℓ(k/B) log(B) 4ℓN2(k/B) log(B)

Appendix A. To further improve performance, we can also select (B, k) such that
Pr
[
HW(sBi,...,B(i+1)−1) > k

]
is not negligible and perform rejection sampling

(the impacts on security will be addressed in Section 6.2). The final cost is
O(Nk) GSW multiplications with noise O(

√
k(N/B) logB

√
N ′) and evaluation

key size O(k(N/B) log(B)N ′). Table 2 compares with alternative approaches.
Generally, we see our new method as an interesting theoretical result, but of
limited practical applicability due to its increased cost. Specifically, it enables
noise overhead Õ(

√
hN) instead of the typical O(N) of existing methods, which

may become relevant as the understanding of LWE sparsity advances.

20 Antonio Guimarães and Hilder V. L. Pereira

6 Our amortized functional bootstrapping

Once we have the established our main tools, namely, the LWE-to-RLWE pack-
ing and the homomorphic evaluations of the first step of the RLWE decryption,
we can proceed to presenting our bootstrapping algorithm. As illustrated in
Figure 2, we have a function bootstrapping, thus, n arbitrary functions can be
chosen. If they are private, one generate the corresponding test vectors as actual
RLWE encryptions, otherwise, the test vectors are trivial and noiseless RLWE
samples with the polynomial corresponding to the function presented in clear.

The bootstrapping starts with n LWE ciphertexts, which are packed, and
modulus-switched, and key-switched into a single RLWE ciphertext (a, b) where
b(Y) = a(Y) · s(Y) + e(Y) +m(Y) mod ⟨Y n + 1, 2N⟩, where s is a secret key
with Hamming weight h. Then, depending if the coefficients of s are binary,
ternary, or between −ρ and ρ, we use either bin-SAB, tern-SAB, or ρ-SAB to
homomorphically compute u(Y) := b(Y)− a · s(Y) = e(Y) +m(Y) mod ⟨Y n +
1, 2N⟩. The result is a set of RLWE ciphertexts encrypting

ti(X)Xui = ti(X)Xei+mi = fi(mi) +X · gi(X)

where gi(X) is some polynomial with degree less than N−1. Finally, the constant
term, i.e., fi(mi) is extracted into an LWE ciphertext. We show this thoroughly
in Algorithm 6.

As a practical optimization, since the noise overhead and the running time
of the bootstrapping are linear in the Hamming weight of the secret key, be-
fore the main part of the bootstrapping, we run a key switching to obtain
an RLWE ciphertext under a low Hamming-weight key. This is denoted by
HW-ReducingKeySwitching in our algorithm, and we discuss it in more detail
in Section 7.1.

Algorithm 6: Amortized functional bootstrapping
Input : ci ∈ LWEq

s(mi) s.t. mi ∈ Zp/2 for 1 ≤ i ≤ N
Input : a set of N functions fi : Zp/2 7→ Zp/2 for 1 ≤ i ≤ N
Input : bootstrapping key BSK required by bin-SAB, tern-SAB, or

ρ-SAB
Input : packing and key-switching keys PCK and KSK
Output: c(out)i ∈ LWEq

s(fi(mi)) for 1 ≤ i ≤ N
1 For each fi, define a test vector ti ∈ R2

2 t← (t1, ..., tN)
3 cpck ← PackingKeySwitching(c1, ..., cn,PCK)
4 c← HW-ReducingKeySwitching(cpck,KSK)

5 ĉ← SAB(c, t,BSK) // Call bin-, tern-, or ρ-SAB
6 for 1 ≤ i ≤ N do
7 c

(out)
i ← LWE.Extract(ĉi)

8 Return c
(out)
1 , ..., c

(out)
N

https://orcid.org/0000-0001-5110-6639
https://orcid.org/0000-0003-1303-3760

Fast amortized bootstrapping with small keys and polynomial noise overhead 21

Since extraction does not increase the noise, at the end, we obtain n LWE
ciphertexts encrypting fi(mi) with the same noise output by the chosen SAB
algorithm. This gives us Lemma 6.1

Lemma 6.1 (Noise overhead of amortized functional bootstrapping).
Consider the same notation used in Lemma 4.2. Algorithm 6 runs in time
O(nh logB) external products and outputs LWE ciphertexts with E-subgaussian
noise where

E ∈ O

(√
Nh logB (ℓβ2E2

G + ℓkskβ2
kskE

2
ksk) + E2

T

)
Proof. The proof follows trivially from the time complexity and noise overhead
of bin-SAB, tern-SAB, and ρ-SAB, and also from the fact that they dominate
the running time of the bootstrapping and their output is basically the output
of the bootstrapping (except by the extraction procedure, but it does not change
the noise).

Corollary 6.2. Assuming β, βksk, EG, Eksk ∈ O(1), Algorithm 6 has amortized
time complexity of O(h logB) external products per message and noise overhead
Õ
(√

Nh logB
)
.

Proof. Since β, βksk ∈ O(1), we have ℓ, ℓksk ∈ (log q) = O(log λ). Then, the pa-
rameter E from Lemma 6.1 is Õ(

√
Nh logB). Also, as we refresh n messages per

bootstrapping, from Lemma 6.1, the amortized complexity is O((nh logB)/n) =
O(h logB) external products.

6.1 The choice of the parameter B and efficiency

Recall that the main step of our bootstrapping process an RLWE ciphertext
(a, b) ∈ Z2N [Y]/⟨Y n + 1⟩ using some key s(Y) with Hamming weight h. We
define j̃ = idx(s) as the sequence of exponents of the nonzero coefficients of s.
For instance, if s(Y) = 3 · Y − 1 · Y 3 + 3 · Y 8, then j̃ = (1, 3, 8). Also, define
d := diff(s) ∈ J−n, nKh as d[0] = −j̃0, d[h] = −j̃h−1, and d[i] = j̃i−1 − j̃i
for 1 ≤ i ≤ h − 1. Then, the algorithms presented in Section 4 require us to
encrypt the bits corresponding to the binary decomposition of each d[i]. Thus, we
introduced a parameter B representing an upper bound to |d[i]| for 1 ≤ i ≤ h−1,
and both the time complexity and the noise overhead of our bootstrappping
depend on logB.

A trivial and over pessimist choice for B is n, since each j̃i ∈ J0, n− 1K and
j̃i+1 > j̃i, implying that |d[i]| = |j̃i − j̃i+1| ≤ n− 1.

However, we expect the h nonzero coefficients of s to be well spread over
the n possible positions, in other words, we expect |d[i]| ∈ O(n/h) for 1 ≤ i ≤
h − 1. Hence, by choosing B ∈ O(n/h), we obtain from Corollary 6.2 that our
bootstrapping requires O(h log(n/h)) external products per refreshed message
and has Õ(

√
Nh log(n/h)) noise overhead.

Moreover, a typical choice of parameters for FHE is N,n, h ∈ O(λ), which
gives us O(log(n/λ)) = O(1), implying that our amortized time complexity, in

22 Antonio Guimarães and Hilder V. L. Pereira

terms of external products, is only O(h) = O(λ) while our noise overhead is
Õ(λ). But if one were willing to choose n ∈ O(λ logk λ) and h ∈ O(λ/ log λ), the
required number of external products per refreshed message would be

O(h log(n/h)) = O

(
λ(k + 1) log(log λ)

log λ

)
= o(λ)

that is, sublinear in λ, while the noise overhead would still be Õ(
√
Nh log(n/h)) =

Õ(λ), i.e., quasilinear in λ.

6.2 The choice of the parameter B and security

In practice, we fix a concrete value for B ≈ N/h and, during the key generation,
we apply rejection sampling if the sampled key s does not satisfy |d[i]| < B
for 1 ≤ i ≤ h − 1, where d := diff(s). We argue that if the probability of a
random key s satisfy |d[i]| < B is upper bounded by 1/2δ ∈ R, then, any at-
tacker A against the original scheme, without rejection sampling, would already
have probability 1/2δ of interacting with a key that is accepted by our rejection
sampling. Therefore, if A could break the CPA-security of our scheme with re-
jection sampling with non-negligible probability a(λ), A would essentially have
probability a(λ)/2δ of breaking the CPA-security of the same scheme without
rejection sampling. But a(λ)/2δ would still be non-negligible if δ ∈ ω(λ).

By contrapositive, if no attacker can break the CPA-security of the original
scheme with probability less than some a(λ), then no attacker can break the
CPA-security of the modified scheme (with rejection sampling) with probability
less than a(λ) · 2δ.

Hence, in order to adjust the concrete parameters we pick, we estimate
the probability 1/2δ and subtract δ from the security level the original scheme
achieves. In discuss this in detail in Section 7.1.

7 Practical results

7.1 Parameter selection

Our bootstrapping requires 3 sets of evaluation keys, two for key switchings
and one for the bootstrapping itself. Table 3 shows the parameters we select for
them. In addition to the parameters described in the previous sections, each key
has also its associated values ℓA and β corresponding to the degree and base of
the approximate gadget decomposition [CGGI16] they are used with. These de-
compositions are standard in TFHE-related literature [CGGI16,CGGI17], but,
for completeness, we present the full equations for their noise analysis in Ap-
pendix B. Parameters are selected as follows.

– Repacking key: There are no specific requirements to its distribution, but we
choose sparse ternary for convenience. We benchmark it for N ∈ {211, 212, 213},
as this corresponds to the number of messages to be bootstrapped at once.

https://orcid.org/0000-0001-5110-6639
https://orcid.org/0000-0003-1303-3760

Fast amortized bootstrapping with small keys and polynomial noise overhead 23

Table 3. Parameters for repacking and bootstrapping. All keys are sparse ternary and
q = 264.

Key Key use N h ℓA log2(β) q/σ λ

RPC1

Repacking
2048 256 2 14 244 143.1

RPC2 4096 256 2 14 244 287.2
RPC3 8192 256 2 14 244 689.3

FBS1 Bootstrapping 2048 512 1 23 250 128.9
FBS2 8192 512 1 22 251 511.8

We do not optimize parameters such as Hamming Weight or security level, as
the repacking takes only 1 to 5% of the execution time of our approach, and,
hence, there’s little to no incentive to optimize it.

– Bootstrapping key: If generic repacking methods are used, there is also
no requirements to its distribution, and, again, we choose sparse ternary for
convenience. For our new packing KS method (Section 5), a higher level of
sparsity in the bootstrapping key would improve performance and noise. In
practice, however, we estimate our new method would only reduce the noise
overhead of the repacking by a factor of at most 4, which would have no
impact in the overall protocol. Therefore, we choose to use generic keys for
bootstrapping and let the choice of repacking method arbitrary. We define
keys for dimensions N ∈ {211, 213} to allow the bootstrapping of small (up to
6 bits) and large (8 bits) messages, respectively. The keys for automorphisms
are generated using the same parameters as the bootstrapping keys.

– Hamming-weight-reducing key switching key: Our bootstrapping algo-
rithms could work directly over ciphertexts encrypted under RPC and, given
our parameters, they would likely already be faster than non-amortized ver-
sions of the bootstrapping. This, however, would be far from optimal. Once the
LWE ciphertexts are packed in a single RLWE, we can significantly reduce the
Hamming Weight by applying another key switching. This process follows a
similar idea to the sparse-secret encapsulation technique from [BTH22], which
key-switches the ciphertext to a key of much smaller Hamming Weight (but
also much smaller modulus to keep the security level). This leads us to the
Parameters presented in Table 4. Since we need to minimize noise as much
as possible, all HW-reducing key switching use binary decomposition with
degree ℓA indicated by Table 4. Our method requires sparsity, but it has no
requirements for the distribution of the non-zero positions. Therefore, we de-
fine parameters for sparse binary, ternary, and balanced arbitrary in Z8 keys.

Security Level For all keys in Tables 3 and 4, the security level is defined by
the smallest result of the Lattice Estimator [APS15] using the default reduction
model. We only use parameters for which the Estimator: 1) is able to estimate
security under all available attacks without errors, and 2) gives results that are

24 Antonio Guimarães and Hilder V. L. Pereira

Table 4. Parameters for Binary, Ternary, and Arbitrary in Z8 keys. For all keys,
log2(β) = 1 and q = 264. Parameters B and δ are chosen as detailed in Section 6.2,
and the security level (λ) is already adjusted accordingly.

Key Type N h ℓA q/σ B δ λ

B2

Binary

2048 18 12 215 29 0.2 128.3
B4 2048 21 14 217 28 2.6 128.7
B6 2048 28 16 220 28 1.2 129.1
B8 2048 33 19 223 28 0.7 129.1

T2

Ternary

2048 17 12 215 29 0.2 128.8
T4 2048 21 14 217 28 2.6 128.3
T6 2048 27 16 220 28 1.3 128.1
T8 2048 30 19 223 28 0.9 127.9

A2
Arbitrary Z8

2048 17 12 215 29 0.2 > 128.8
A4 2048 24 14 218 28 1.8 > 134.3
A6 2048 30 16 223 28 0.9 > 127.9

consistent with adjacent parameters (e.g., parameters for which slightly increas-
ing or decreasing the values of q, N , or σ results in the expected impact on
security). This precaution is taken as the estimator may fail or present inconsis-
tencies for some sets of small parameters. We note that some previous literature
on bootstrapping suggest extrapolating results for these cases [BTH22], which
could be leveraged to further improve performance, but we choose to remain con-
servative for this work. The results of Table 4 are also already adjusted based on
the loss (δ) imposed by the rejection sampling (Section 6.2). See Appendix C for
details on how δ is computed. For sparse Arbitrary keys, we estimate security
supposing they are sparse ternary, as the Estimator doesn’t support them.

Probability of failure Consider an RLWE ciphertext with Gaussian-distributed
noise e with standard deviation σ encrypting m =

∑N−1
i=0 ∆miX

i, such that
mi ∈ Z2k and ∆ = q/2k+1. Notice that we are leaving one bit of padding for
the message, which is detailed in Remark 7.1. A message mi ∈ Z2k is correctly
bootstrapped with probability Pr[ei < q/2k+2] = erf

(
q/2k+2

σ
√
2

)
[DM15,CGGI16,

BST20,GBA21,GPvL23], where erf is Gauss error function. We implemented a
script to estimate the input σ for our bootstrapping based on our average case
noise analysis (Appendix B), which we validated by measuring the error variance
at different steps of our implementation.

Negacyclicity Our work is the first to present an amortized bootstrapping
method with polynomial noise overhead that can operate strictly over rings de-
fined by power-of-two cyclotomics, without requiring other rings. Performance-
wise, this is a major advantage, as it enables the use of standard libraries fea-
turing highly-optimized NTT or FFT-based arithmetic. On the other hand, this

https://orcid.org/0000-0001-5110-6639
https://orcid.org/0000-0003-1303-3760

Fast amortized bootstrapping with small keys and polynomial noise overhead 25

Table 5. Sparse amortized bootstrapping for binary (B), ternary (T), and arbitrary
(A) keys. All results are for batches of 2048 messages and use RPC1 for repacking.

Keys Precision
(bits)

Bootstrapping
Key Sizea

Failure
probability

Total
Time

Amortized
Time

B2+FBS1 2 10.16MB 2−121 5.1s 2.49ms
B4+FBS1 4 10.53MB 2−99 5.2s 2.52ms
B6+FBS1 6 14.03MB 2−67 6.8s 3.32ms
B8+FBS2 8 66.13MB 2−63 54.3s 26.51ms

T2+FBS1 2 10.66MB 2−121 5.3s 2.57ms
T4+FBS1 4 11.84MB 2−99 5.7s 2.78ms
T6+FBS1 6 15.22MB 2−69 7.2s 3.52ms
T8+FBS2 8 67.63MB 2−68 54.2s 26.46ms

A2+FBS1 2 74.63MB 2−115 6.15s 3.01ms
A4+FBS1 4 77.50MB 2−78 7.59s 3.70ms
A6+FBS2 6 1.07GB 2−77 72.48s 35.39ms

a Includes all keys required inside the bootstrapping itself, including the ones for auto-
morphisms. See Section 7.2 for external procedures, such as the repacking key switching.

brings the usual problems related to power-of-two cyclotomics, such as nega-
cyclicity. In short, an AP-style functional bootstrapping defined over XN + 1
evaluates only negacyclic functions, i.e. functions f : Z2N 7→ Z2N such that
f(x+N) = −f(x). To overcome this limitation, one evaluates a so called “half-
domain” functional bootstrapping, where one bit of padding is added at the be-
ginning of the message. Methods to enable full-domain bootstrapping are broadly
available in the literature [GBA24]. All the results presented in this paper al-
ready consider limitation. To give a concrete example, a level of precision of 4
bits means that one can evaluate an arbitrary function farbitrary : Z24 7→ Z24 or a
negacyclic function fnegacyclic : Z25 7→ Z25 . This is also true for the results from
TFHE-rs [Zam22], but not for [GPvL23], which avoids negacyclicity by working
over circulant rings.

7.2 Main results

We implemented our solution in C using the MOSFHET library [GBA24], com-
piled it with Intel(R) DPC++ compiler v2025.0.4, and benchmarked it on an
r7i.metal-24xl instance on AWS with an Intel Xeon Platinum 8488C at 2.4GHz
(3.8GHz boost) and 768GB of memory. All results are for single-threaded exe-
cution and each value is the average of 10 executions. We measured the results
for TFHE-rs [Zam22] and GPV23 [GPvL23] (Table 1) in the same environment
using the benchmarking tools they provided. Table 5 shows our main results.

Compared to TFHE-rs, which is a state-of-the-art implementation for non-
amortized polynomial-noise bootstrapping, we achieve gains of up to 41.5 times
whiles using bootstrapping keys that are up to 50.4 time smaller. A complete
comparison is presented in Table 1 (in the Introduction). Interestingly, contrary

26 Antonio Guimarães and Hilder V. L. Pereira

to other GINX-style bootstrapping methods, our approach is almost not im-
pacted by the change from binary to ternary secrets. In fact, ternary secrets
generally present better probability of failure and are even slightly faster for 8-
bit messages. The bootstrapping keys are also only marginally bigger (less than
10%) than binary ones. This is achieved thanks to the fact that ternary secrets
enable a slightly smaller Hamming Weight while the performance of our MPMul
algorithm does not depend on the distribution of the non-zero positions. For ar-
bitrary keys in Z8, on the other hand, there are noticeable slowdowns, loss of
precision, and increase in the size of the keys. Those are explained by three main
factors. Firstly, the Galois automorphisms required by Algorithm 4 rely on large
key switching keys and is two times more expensive than the CMUX required
by the ternary keys. Secondly, we don’t have ways of optimizing parameters for
these keys (as the Lattice Estimator doesn’t support their distributions), which
leads us to work on a security level that is much higher than needed. Finally, their
increased norm increases the noise generated by the mod switching that precedes
the bootstrapping, reducing the bootstrapping precision by the same amount.
Notice that since the key is balanced, we loose

√
8/2 = 2 bits of precision for

Z8.

Intra-coefficient batching The most common methods for batched compu-
tation in RLWE schemes are based on encoding (or packing) different messages
into different coefficients of some encrypted polynomial or in different “slots”
provided by some isomorphism of the plaintext ring. It is also possible, however,
to pack multiple messages inside the same coefficient of a polynomial. Specif-
ically, each k-bit coefficient of a polynomial can be used to pack up to k/n
messages with n bits each. For example, a coefficient in Z15 could pack two
messages m0 ∈ Z3 and m1 ∈ Z5 using the Chinese Remainder Theorem. Ex-
ploiting radix-based encoding, a coefficient in Z24 could also pack m0,m1 ∈ Z22

as given by f(m0,m1) 7→ m0 +m12
2. This restricts the use of some arithmetic

operations, but works generically for bootstrapped-based computation by rely-
ing on techniques such as the BML [CLOT21] multi-value bootstrapping, which
allows a k-bit functional bootstrapping to evaluate n different k/n-bit functions
at once. We refer to this type of packing as “intra-coefficient batching”. Notice
that LWE-based bootstrapping techniques, such as [CGGI16], can also exploit
it. Considering that, we present Table 6, which shows the optimal times for our
method and TFHE-rs considering this type of batching.

Packing Key Switching Our methods enable different choices of packing al-
gorithms, as discussed in Section 5. Performance-wise, however, this choice has
little impact in the overall protocol, and, therefore, our implementation and all
numbers reported in Table 5 consider the use of the traditional packing key
switching. Conversely, this choice may become relevant if the goal is, for exam-
ple, to minimize the size of evaluation keys. For the traditional packing KS, our
repacking key takes 128MB for 2 to 6-bit messages, and 512MB for 8-bit mes-
sages. We estimate our new packing algorithm (Section 5) could reduce these

https://orcid.org/0000-0001-5110-6639
https://orcid.org/0000-0003-1303-3760

Fast amortized bootstrapping with small keys and polynomial noise overhead 27

Table 6. Bootstrapping of 2-bit messages using intra-coefficient batching.

Number of
Messages

Total
Time

Amortized
Time Speedup

TFHE-rs 1 9.8ms 9.8ms 1.0
2 13.6ms 6.8ms 1.4

This work
2048 5.1s 2.49ms 3.9
4096 5.2s 1.26ms 7.8
6144 6.8s 1.1ms 8.9

numbers in up to 4 times, but the additional cost for computing it makes it
unlikely to be a practical choice. Instead, one could consider methods such as
RLWE Conversion [CDKS21] and Partial LWE [BCL+24], which could reduce
the packing key switching key to just a few megabytes. For comparison, key
switching keys in TFHE-rs, which are used to reduce the dimension of the ci-
phertext, take 36.7, 65.2, 366.8, and 3055.3 MB, respectively, for 2, 4, 6, and
8-bit messages. Using the FFT-KS from [BCL+24] (based on those techniques),
KS keys can be reduced to just 0.1, 2.8, 2.0, and 9.0MB, respectively. These
gains cannot be directly mapped to the packing KS, but applying the equations
from Table 2 to our parameters leads to key sizes of similar order of magnitude.
Notwithstanding, one also needs to consider the impacts of the increased noise
overhead introduced by RLWE conversion and other possible improvements from
Partial LWE. We leave this assessment for future work.

7.3 Results for larger input dimension

Increasing the RLWE dimension N without changing other parameters could
enable one to reduce the Hamming weight of the key while keeping the same
security level. However, estimating security for these parameters can be hard,
as tools such as the Lattice estimator do not provide reliable results. Notwith-
standing, we present results for dimensions N = 4096 and N = 8192, aiming at
characterizing the performance of our bootstrapping for larger dimensions. As
we can’t further optimize the Hamming weight, we choose h = 32 in all cases,
as this value is broadly used in related literature [BKSS25]. Table 7 shows our
results.

The results show that the concrete cost of our bootstrapping only grows
logarithmic with the input dimension, enabling bootstrapping for large cipher-
texts without the need of dimension-reduction key switchings that are often used
in FHEW-like bootstrapping literature. The key size, while also asymptotically
growing logarithmic with the input dimension, remains almost the same, being
mostly defined by the Hamming Weight and choice of bootstrapping key (FBS1

or FBS2).

28 Antonio Guimarães and Hilder V. L. Pereira

Table 7. Sparse amortized bootstrapping for ternary and arbitrary keys for larger
input dimensions. The parameters (h, ℓA, q/σ) = (32, 19, 224) are the same for all cases.
The security level is estimated to be at least 133 bits.

Type N Keys Bootstrap.
Key Size

Prec.
(bits)

Failure
prob.

Total
Time

Amortized
Time

Tern.

4096 RPC2+FBS1 20.03MB 6 2−71 20.53s 5.01ms
8192 RPC3+FBS1 22.03MB 6 2−70 45.43s 5.55ms
4096 RPC2+FBS2 80.13MB 8 2−64 130.67s 31.90ms
8192 RPC3+FBS2 88.13MB 8 2−64 286.55s 34.98ms

Arbi.

4096 RPC2+FBS1 84.00MB 4 2−73 23.71s 5.79ms
8192 RPC3+FBS1 86.00MB 4 2−73 51.37s 6.27ms
4096 RPC2+FBS2 1.08GB 6 2−72 169.02s 41.26ms
8192 RPC3+FBS2 1.09GB 6 2−73 360.34s 43.99ms

7.4 Comparison with other works

Table 1, in the introduction, compares our solution with state-of-the-art works on
bootstrapping with polynomial noise overhead. Besides them, we also compare
with other approaches, remarking that different aspects must be considered for
each of them.

Partial LWE Partial LWE [BCL+24] is a recently-introduced assumption (with
direct reductions with standard ones) that is used to improve bootstrapping and
KS performance in (non-amortized) TFHE. In [BCL+24], the 8-bit bootstrap-
ping of TFHE-rs is improved from 415ms to 306ms. This result, however, is
optimized for a failure probability (FP) of < 2−13.9, which hinders a direct
comparison with our work, since we focus on FP between 2−121 and 2−63. By
increasing our FP to 2−17, we can bootstrap 8-bit messages in just 8.45ms (amor-
tized for 2048 messages), which represents an improvement of 36.2 times over
their result. These, however, should not be seen as alternative approaches, as
Partial LWE could also be employed to accelerate our results. Specifically, no-
tice that our FBS2 key has 551.8 bits of security, which, with the use of Partial
LWE, could be lowered to 128 bits in exchange for improving performance.

Methods with superpolynomial noise overhead Avoiding superpolynomial
noise overhead is one of the main points of our work and, more generally, of
the amortized bootstrapping line of research [MS18, GPvL23, LW23a, LW23b,
DKMS24]. Nonetheless, it’s unavoidable to wonder how the performance of these
techniques compare in practice. The state of the art for superpolynomial methods
is given by [BKSS25], which bootstraps 2, 4, 6, and 8-bit messages in 0.78, 1.57,
2.67, and 3.75ms, respectively. As one would expect, their results are better than
ours, but we significantly narrow the gap compared to previous literature. In fact,
for the first time, we have those methods at the same order of magnitude in terms

https://orcid.org/0000-0001-5110-6639
https://orcid.org/0000-0003-1303-3760

Fast amortized bootstrapping with small keys and polynomial noise overhead 29

of amortized time (for messages of up to 6 bits), with the difference being as
little as just 650 microseconds for 6-bit messages. Furthermore, latency-wise, our
method is 1.6 times faster than [BKSS25] for 6-bit messages, as we bootstrap
half the number of messages at a time.

Acknowledgments

This work was partly supported by the São Paulo Research Foundation (FAPESP),
Brasil. Process Number 2023/12755-8, by the Smart Networks and Services Joint
Undertaking (SNS JU) under the European Union’s Horizon Europe research and
innovation programme in the scope of the CONFIDENTIAL6G project under
Grant Agreement 101096435, and by Teaching, Research and Extension Sup-
port Fund (FAEPEX) under the Incentive Program for New Professors (PIND),
process number 3389/23. Views and opinions expressed are however those of
the author(s) only and do not necessarily reflect those of the European Union
or the European Commission. Neither the European Union nor the European
Commission can be held responsible for them.

References

ABD16. Martin R. Albrecht, Shi Bai, and Léo Ducas. A subfield lattice attack
on overstretched NTRU assumptions - cryptanalysis of some FHE and
graded encoding schemes. In Matthew Robshaw and Jonathan Katz, edi-
tors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 153–178. Springer,
Berlin, Heidelberg, August 2016.

AP14. Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with polyno-
mial error. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014,
Part I, volume 8616 of LNCS, pages 297–314. Springer, Berlin, Heidelberg,
August 2014.

APS15. Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness
of Learning with Errors. Journal of Mathematical Cryptology, 9(3):169 –
203, October 2015. Place: Berlin, Boston Publisher: De Gruyter.

BBL17. Daniel Benarroch, Zvika Brakerski, and Tancrède Lepoint. FHE over the
integers: Decomposed and batched in the post-quantum regime. In Serge
Fehr, editor, PKC 2017, Part II, volume 10175 of LNCS, pages 271–301.
Springer, Berlin, Heidelberg, March 2017.

BCL+24. Loris Bergerat, Ilaria Chillotti, Damien Ligier, Jean-Baptiste Orfila, Ade-
line Roux-Langlois, and Samuel Tap. New Secret Keys for Enhanced Perfor-
mance in (T)FHE. In Proceedings of the 2024 on ACM SIGSAC Conference
on Computer and Communications Security, CCS ’24, pages 2547–2561,
New York, NY, USA, December 2024. Association for Computing Machin-
ery.

BDF18. Guillaume Bonnoron, Léo Ducas, and Max Fillinger. Large FHE gates
from tensored homomorphic accumulator. In Antoine Joux, Abderrahmane
Nitaj, and Tajjeeddine Rachidi, editors, AFRICACRYPT 18, volume 10831
of LNCS, pages 217–251. Springer, Cham, May 2018.

30 Antonio Guimarães and Hilder V. L. Pereira

BGV14. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully
homomorphic encryption without bootstrapping. ACM Trans. Comput.
Theory, 6(3), July 2014.

BIP+22. Charlotte Bonte, Ilia Iliashenko, Jeongeun Park, Hilder V. L. Pereira, and
Nigel P. Smart. FINAL: Faster FHE instantiated with NTRU and LWE.
In Shweta Agrawal and Dongdai Lin, editors, ASIACRYPT 2022, Part II,
volume 13792 of LNCS, pages 188–215. Springer, Cham, December 2022.

BKSS25. Youngjin Bae, Jaehyung Kim, Damien Stehlé, and Elias Suvanto. Boot-
strapping Small Integers With CKKS. In Kai-Min Chung and Yu Sasaki,
editors, Advances in Cryptology – ASIACRYPT 2024, pages 330–360, Sin-
gapore, 2025. Springer Nature.

BLP+13. Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien
Stehlé. Classical hardness of learning with errors. In Dan Boneh, Tim
Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC, pages 575–
584. ACM Press, June 2013.

BST20. Florian Bourse, Olivier Sanders, and Jacques Traoré. Improved secure inte-
ger comparison via homomorphic encryption. In Stanislaw Jarecki, editor,
CT-RSA 2020, volume 12006 of LNCS, pages 391–416. Springer, Cham,
February 2020.

BTH22. Jean-Philippe Bossuat, Juan Ramón Troncoso-Pastoriza, and Jean-Pierre
Hubaux. Bootstrapping for approximate homomorphic encryption with neg-
ligible failure-probability by using sparse-secret encapsulation. In Giuseppe
Ateniese and Daniele Venturi, editors, ACNS 22International Conference on
Applied Cryptography and Network Security, volume 13269 of LNCS, pages
521–541. Springer, Cham, June 2022.

CCP+24. Jung Hee Cheon, Hyeongmin Choe, Alain Passelègue, Damien Stehlé, and
Elias Suvanto. Attacks Against the IND-CPAd Security of Exact FHE
Schemes. In Proceedings of the 2024 on ACM SIGSAC Conference on Com-
puter and Communications Security, pages 2505–2519, Salt Lake City UT
USA, December 2024. ACM.

CDKS21. Hao Chen, Wei Dai, Miran Kim, and Yongsoo Song. Efficient homomorphic
conversion between (ring) LWE ciphertexts. In Kazue Sako and Nils Ole
Tippenhauer, editors, ACNS 21International Conference on Applied Cryp-
tography and Network Security, Part I, volume 12726 of LNCS, pages 460–
479. Springer, Cham, June 2021.

CGGI16. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
Faster fully homomorphic encryption: Bootstrapping in less than 0.1 sec-
onds. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016,
Part I, volume 10031 of LNCS, pages 3–33. Springer, Berlin, Heidelberg,
December 2016.

CGGI17. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
Faster packed homomorphic operations and efficient circuit bootstrap-
ping for TFHE. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASI-
ACRYPT 2017, Part I, volume 10624 of LNCS, pages 377–408. Springer,
Cham, December 2017.

CHK+17. Jung Hee Cheon, Kyoohyung Han, Jinsu Kim, Changmin Lee, and Yongha
Son. A practical post-quantum public-key cryptosystem based on spLWE.
In Seokhie Hong and Jong Hwan Park, editors, ICISC 16, volume 10157 of
LNCS, pages 51–74. Springer, Cham, November / December 2017.

https://orcid.org/0000-0001-5110-6639
https://orcid.org/0000-0003-1303-3760

Fast amortized bootstrapping with small keys and polynomial noise overhead 31

CIM19. Sergiu Carpov, Malika Izabachène, and Victor Mollimard. New techniques
for multi-value input homomorphic evaluation and applications. In Mit-
suru Matsui, editor, CT-RSA 2019, volume 11405 of LNCS, pages 106–126.
Springer, Cham, March 2019.

CKKS17. Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. Homomor-
phic encryption for arithmetic of approximate numbers. In Tsuyoshi Takagi
and Thomas Peyrin, editors, ASIACRYPT 2017, Part I, volume 10624 of
LNCS, pages 409–437. Springer, Cham, December 2017.

CLOT21. Ilaria Chillotti, Damien Ligier, Jean-Baptiste Orfila, and Samuel Tap. Im-
proved programmable bootstrapping with larger precision and efficient
arithmetic circuits for TFHE. In Mehdi Tibouchi and Huaxiong Wang, ed-
itors, ASIACRYPT 2021, Part III, volume 13092 of LNCS, pages 670–699.
Springer, Cham, December 2021.

DKMS24. Gabrielle De Micheli, Duhyeong Kim, Daniele Micciancio, and Adam Suhl.
Faster amortized FHEW bootstrapping using ring automorphisms. In Qiang
Tang and Vanessa Teague, editors, PKC 2024, Part II, volume 14604 of
LNCS, pages 322–353. Springer, Cham, April 2024.

DM15. Léo Ducas and Daniele Micciancio. FHEW: Bootstrapping homomorphic
encryption in less than a second. In Elisabeth Oswald and Marc Fischlin,
editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 617–640.
Springer, Berlin, Heidelberg, April 2015.

DvW21. Léo Ducas and Wessel P. J. van Woerden. NTRU fatigue: How stretched
is overstretched? In Mehdi Tibouchi and Huaxiong Wang, editors, ASI-
ACRYPT 2021, Part IV, volume 13093 of LNCS, pages 3–32. Springer,
Cham, December 2021.

GBA21. Antonio Guimarães, Edson Borin, and Diego F. Aranha. Revisiting the
functional bootstrap in TFHE. IACR TCHES, 2021(2):229–253, 2021.

GBA24. Antonio Guimarães, Edson Borin, and Diego F. Aranha. MOSFHET: Op-
timized Software for FHE over the Torus. Journal of Cryptographic Engi-
neering, July 2024.

Gen09. Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stan-
ford University, 2009. crypto.stanford.edu/craig.

GPvL23. Antonio Guimarães, Hilder V. L. Pereira, and Barry van Leeuwen. Amor-
tized bootstrapping revisited: Simpler, asymptotically-faster, implemented.
In Jian Guo and Ron Steinfeld, editors, ASIACRYPT 2023, Part VI, volume
14443 of LNCS, pages 3–35. Springer, Singapore, December 2023.

GSW13. Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryp-
tion from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part I, volume 8042 of LNCS, pages 75–92. Springer, Berlin, Heidelberg,
August 2013.

KF17. Paul Kirchner and Pierre-Alain Fouque. Revisiting lattice attacks on over-
stretched NTRU parameters. In Jean-Sébastien Coron and Jesper Buus
Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210 of LNCS, pages
3–26. Springer, Cham, April / May 2017.

LMK+23. Yongwoo Lee, Daniele Micciancio, Andrey Kim, Rakyong Choi, Maxim
Deryabin, Jieun Eom, and Donghoon Yoo. Efficient FHEW bootstrapping
with small evaluation keys, and applications to threshold homomorphic en-
cryption. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023,
Part III, volume 14006 of LNCS, pages 227–256. Springer, Cham, April
2023.

crypto.stanford.edu/craig

32 Antonio Guimarães and Hilder V. L. Pereira

LPR10. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. In Henri Gilbert, editor, EURO-
CRYPT 2010, volume 6110 of LNCS, pages 1–23. Springer, Berlin, Hei-
delberg, May / June 2010.

LW23a. Feng-Hao Liu and Han Wang. Batch bootstrapping I: A new framework for
SIMD bootstrapping in polynomial modulus. In Carmit Hazay and Martijn
Stam, editors, EUROCRYPT 2023, Part III, volume 14006 of LNCS, pages
321–352. Springer, Cham, April 2023.

LW23b. Feng-Hao Liu and Han Wang. Batch bootstrapping II: Bootstrapping in
polynomial modulus only requires Õ(1) FHE multiplications in amortiza-
tion. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023,
Part III, volume 14006 of LNCS, pages 353–384. Springer, Cham, April
2023.

LW23c. Zeyu Liu and Yunhao Wang. Amortized functional bootstrapping in less
than 7 ms, with Õ(1) polynomial multiplications. In Jian Guo and Ron
Steinfeld, editors, ASIACRYPT 2023, Part VI, volume 14443 of LNCS,
pages 101–132. Springer, Singapore, December 2023.

MS18. Daniele Micciancio and Jessica Sorrell. Ring packing and amortized FHEW
bootstrapping. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel
Marx, and Donald Sannella, editors, ICALP 2018, volume 107 of LIPIcs,
pages 100:1–100:14. Schloss Dagstuhl, July 2018.

Reg05. Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In Harold N. Gabow and Ronald Fagin, editors, 37th ACM
STOC, pages 84–93. ACM Press, May 2005.

SV14. Nigel P. Smart and Frederik Vercauteren. Fully homomorphic SIMD oper-
ations. DCC, 71(1):57–81, 2014.

Zam22. Zama. TFHE-rs: A Pure Rust Implementation of the TFHE
Scheme for Boolean and Integer Arithmetics Over Encrypted
Data, 2022. https://github.com/zama-ai/tfhe-rs - commit
b7d33e6b3f45b432af82637042214fa72bc7036c (Fri Mar 7 08:34:42 2025
+0100).

A Additional algorithms for packing key switching

https://orcid.org/0000-0001-5110-6639
https://orcid.org/0000-0003-1303-3760
https://github.com/zama-ai/tfhe-rs

Fast amortized bootstrapping with small keys and polynomial noise overhead 33

Algorithm 7: Sparse packing key switching - key generation
Input : an LWE secret key s ∈ ZN

q with Hamming weight h and its index set
s̃ = idx(s)

Input : noise-performance trade-off parameters k ∈ [1, h] and B ≤ N s.t.
B|N

Output: two vectors V and C, s.t. s̃ ⊂ {(iB mod N) + Ci : i ∈ [0, kN/B)},
Vi = s(iB mod N)+Ci

, and Ci < B, for all i ∈ [0, kN/B), or ⊥ if s
cannot be represented in this format

1 V ← {0}; C ← {0}
2 for j ← 0 to N/B do
3 i← 0
4 for t← 0 to B do
5 if sjB+t ̸= 0 then
6 (Vjk+i, Cjk+i, sjB+t, i)← (sjB+t, t, 0, i+ 1)

7 if i > k then
8 Return ⊥
9 if s ̸= {0} then

10 Return ⊥
11 Return (V,C)

B Average-case noise analysis

To improve parameters in practice, we consider approximate gadget decomposi-
tions [CGGI16] and performance an average case noise analysis of our method.
Most of this analysis comes straightforwardly from applying previous litera-
ture [CGGI16,CGGI16,BST20,GBA21] to the equations of Sections 3 to 6. In
particular, our constructions requires three main building blocks: GSW exter-
nal products, key switchings (for the automorphisms), and CMUX’s. We have
average-case noise analysis for all of them directly from [CGGI16,CGGI17]. They
do not consider the impact of sparse secrets in their analysis, but several other
follow-up works have extended their analysis to consider it [GBA21,CCP+24].
Based on them, we obtain the following equations. For all of them, consider:

– ℓA and β are parameters of the approximate gadget decomposition of the
RGSW or ksk input.

– N is the RLWE dimension and k is the MLWE rank (k = 1 for us in all
cases)

– σa and µa are, respectively, the noise standard deviation and the encrypted
message of some ciphertext “a”

– h is the hamming weight of the key of the RGSW or ksk input.

RGSW external product. Given an RGSW ciphertext A and a RLWE ciphertext
b, it produces an RLWE ciphertext c with the following noise variance:

σ2
out < (k + 1)ℓAN

(
β

2

)2

σ2
A + (1 + kh) ∥µA∥22

1

12

(
q

βℓA

)2

+ ∥µA∥22 σ
2
b (5)

34 Antonio Guimarães and Hilder V. L. Pereira

CMUX Given an RGSW ciphertext C and two RLWE ciphertexts a and b, it
produces an RLWE ciphertext c with the following noise variance:

σ2
out < (k + 1)ℓAN

(
β

2

)2

σ2
C + (1 + kh)

1

12

(
q

βℓA

)2

+max(σ2
a, σ

2
b) (6)

Key switching. Given an RLWE ciphertext a and a set of RLWE ciphertexts
ksk, it produces an RLWE ciphertext b with the following noise variance:

σ2
out < kℓAN

(
β

2

)2

σ2
ksk + (kh)

1

12

(
q

βℓA

)2

+ σ2
a (7)

C Estimating δ

We estimate the value of δ by generating a large number of random keys and
measuring the value of B that would be required for each of them. Specifically,
for each pair of parameters (N,h), we generated 100 thousand keys, computed
the required value of B for each, and built a histogram. From the histogram, we
computed the cumulative distribution and generated Table 8. To give a concrete
example, for N = 2048, h = 17, from the 100 thousand keys: None of them
would work with B = 27; 1/24.21 = 5.4% of them would work with B = 28;
1/20.19 = 87.6% of them would work with B = 29; and all would work with
B = 210.

https://orcid.org/0000-0001-5110-6639
https://orcid.org/0000-0003-1303-3760

Fast amortized bootstrapping with small keys and polynomial noise overhead 35

Table 8. Estimated loss of security (δ) for N = 2048

h B = 27 B = 28 B = 29 B = 210

17 - 4.21 0.19 0

18 - 3.71 0.15 0

19 - 3.29 0.12 0

20 16.61 2.95 0.09 0

21 - 2.62 0.07 0

22 16.61 2.32 0.06 0

23 - 2.05 0.05 0

24 16.61 1.83 0.03 0

25 16.61 1.64 0.03 0

26 16.61 1.45 0.02 0

27 15.61 1.29 0.02 0

28 14.29 1.16 0.01 0

29 13.61 1.02 0.01 0

30 13.02 0.91 0.01 0

31 12.7 0.81 0.01 0

32 11.44 0.72 0 0

33 10.68 0.64 0 0

	Fast amortized bootstrapping with small keys and polynomial noise overhead

