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Abstract—The Secure Shell (SSH) protocol is one of the first
security protocols on the Internet to upgrade itself to resist
attacks against future quantum computers, with the default
adoption of the “quantum (otherwise, classically)” secure hybrid
key exchange in OpenSSH from April 2022. However, there is
a lack of a comprehensive security analysis of this quantum-
resistant version of SSH in the literature: related works either
focus on the hybrid key exchange in isolation and do not
consider security of the overall protocol, or analyze the protocol
in security models which are not appropriate for SSH, especially
in the “post-quantum” setting.

In this paper, we remedy the state of affairs by providing
a thorough post-quantum cryptographic analysis of SSH.
We follow a “top-down” approach wherein we first prove
security of SSH in a more appropriate model, namely, our
post-quantum extension of the so-called authenticated and
confidential channel establishment (ACCE) protocol security
model; our extension which captures “harvest now, decrypt later”
attacks could be of independent interest. Then we establish
the cryptographic properties of SSH’s underlying primitives,
as concretely instantiated in practice, based on our protocol-
level ACCE security analysis: for example, we prove relevant
cryptographic properties of “Streamlined NTRU Prime”, a
key encapsulation mechanism (KEM) which is used in recent
versions of OpenSSH and TinySSH, in the quantum random
oracle model, and address open problems related to its analysis
in the literature. Notably, our ACCE security analysis of post-
quantum SSH relies on the weaker notion of IND-CPA security
of the ephemeral KEMs used in the hybrid key exchange. This is
in contrast to prior works which rely on the stronger assumption
of IND-CCA secure ephemeral KEMs. Hence we conclude the
paper with a discussion on potentially replacing IND-CCA
secure KEMs in current post-quantum implementations of SSH
with simpler and faster IND-CPA secure counterparts, and also
provide the corresponding benchmarks.

1. Introduction

To counter the threat of quantum computers breaking
most currently deployed cryptography, there is an ongoing

effort to transition important communication protocols on
the Internet from using quantum-vulnerable cryptographic al-
gorithms to their quantum-resilient counterparts. The Secure
Shell (SSH) protocol — which is widely used for remote
access to servers, as well as virtual private network (VPN)
access — is one such protocol. In fact, recent versions
of OpenSSH [1], the most prominent SSH implementation
in practice, use quantum-secure key exchange methods by
default. Because of the widespread adoption of these “post-
quantum” transitioned protocols, it is important to formally
analyze their cryptographic properties in appropriate quantum
security models.

In post-quantum implementations of SSH (and other
protocols such as the Transport Layer Security (TLS) protocol
and Signal), the key exchange mechanism technically follows
the so-called hybrid paradigm wherein the quantum-secure
key exchange method (or technically, key encapsulation
mechanism (KEM)) does not replace but instead is used
in combination with the quantum-vulnerable method (e.g.,
that based on the Diffie-Hellman (DH) setting) such that
the resulting mechanism is secure as long as one of these
two methods is; in a way, these methods act as “backstops”
against any potential weaknesses in their counterparts. And
if we look at the handful of prior works which analyze the
post-quantum security of such SSH implementations, most of
them (e.g., [2], [3]) only focus on this hybrid key exchange
primitive in isolation, and do not extend their analysis to
capture security of the entire protocol.

To the best of our knowledge, the work which comes
close to providing a protocol-level cryptographic analysis of
post-quantum SSH is by Blanchet and Jacomme [4]. More
specifically, the authors take a machine-aided approach to
provide formal security guarantees for post-quantum versions
of SSH (and also TLS). However in their security proofs,
SSH was analyzed using close variants of the standard au-
thenticated key exchange (AKE) models [5]. And as explained
in [6], AKE models are not appropriate for modeling security



of SSH for various reasons.1
Finally, if we go back to the hybrid key exchange used in

post-quantum implementations of SSH — notably, OpenSSH
and TinySSH [7] — the quantum-secure KEM is instantiated
with “Streamlined NTRU Prime” [8], a scheme which was
submitted to NIST’s post-quantum cryptography (PQC)
standardization project; in fact, Streamlined NTRU Prime was
used in the default key exchange method in OpenSSH from
version 9.0 (OpenSSH also uses the new NIST PQC standard
“ML-KEM” [9] from version 9.9). However as pointed out
in [10], Streamlined NTRU Prime evades a formal security
proof in the post-quantum setting — particularly, in the so-
called “Quantum Random Oracle Model (QROM)” [11] —
because of certain design choices (we will expand upon this
in Subsection 4.2.1 below). This only adds to the list of
issues with regards to a thorough cryptographic analysis of
post-quantum SSH.

1.1. Our Contributions

In this work, we provide a comprehensive post-quantum
cryptographic analysis of SSH in appropriate security models,
thereby addressing the above issues in the literature. We
follow a “top-down” approach in our analysis wherein we
first establish post-quantum security of SSH at a protocol
level, while relying on certain cryptographic properties of
the underlying primitives; we then prove that concrete post-
quantum instantiations of these primitives in practice do
satisfy the corresponding properties. Our results can be
summarized as follows:

Post-quantum ACCE security of SSH. As pointed
above, AKE models are not suitable to model security of
SSH. Instead, as explained in [6], the notion of so-called
authenticated and confidential channel establishment (ACCE)
security is more appropriate. The authors of [6] also establish
ACCE security of SSH — albeit in the classical Diffie-
Hellman setting. To analyze SSH in the post-quantum setting,
we first extend the ACCE security definition to capture the
highly relevant “harvest now, decrypt later” attacks; we
believe our extension is of independent interest. Then we
formally prove security of SSH in our enhanced post-quantum
ACCE model. We also capture forward secrecy in our proof,
unlike the prior classical analysis of SSH in [6].

Analysis of SSH’s hybrid KEX, and Streamlined
NTRU Prime. Our post-quantum ACCE security analysis
of SSH relies on the underlying hybrid key exchange (KEX)
satisfying the standard notion of IND-CPA security. We
hence establish IND-CPA security of the specific hybrid
KEX methods used in post-quantum SSH in the appropriate
QROM setting; prior works which focus on such hybrid KEX
(e.g., [3]) consider the classical ROM [12] in contrast. And
as mentioned earlier, most post-quantum implementations of
SSH in practice instantiate the quantum-secure component
of their hybrid KEX with Streamlined NTRU Prime. In

1. One reason is that AKE security requires indistinguishability of session
keys in the protocol following the initial key exchange; however in SSH,
an adversary can trivially distinguish real session keys from random using
so-called “key confirmation” messages sent during the handshake phase.

the context of SSH, we therefore tightly prove IND-CPA
security of Streamlined NTRU Prime in the QROM. At the
same time, we also describe a way to establish the stronger
notion of IND-CCA security for Streamlined NTRU Prime
in the QROM, thereby addressing an open problem in [10].
Such an IND-CCA security proof provides assurance against
attacks which may exploit ephemeral keys being reused in
bad hybrid KEX implementations in SSH.

QROM security of SSH PRF. Following the hybrid
key exchange in the handshake phase, session keys in post-
quantum SSH are derived using a specific function denoted as
PRFSSH in this paper. Our ACCE security analysis of SSH
in the post-quantum setting also relies on PRFSSH being
a secure pseudorandom function (PRF). Now PRFSSH is
a relatively complicated construction (see Figure 5 for a
detailed description) which involves nested invocations of
a hash function. And as pointed out in [6], analyzing the
PRF security of PRFSSH using standard assumptions on the
underlying hash function (such as collision resistance) is
either not possible or highly challenging. Hence in their
classical ACCE security analysis of SSH, the authors of [6]
make a non-standard “monolithic” assumption that PRFSSH

is a secure PRF, and do not go further. At the same time, they
mention that if the hash function is (heuristically) modeled
as a random oracle (i.e., in the classical ROM [12] setting),
then it can be proven that PRFSSH is a secure PRF. Hence
to complement our post-quantum ACCE security analysis,
we model the hash function appropriately as a quantum
random oracle — namely, where attackers can query such
functions in quantum superposition — and formally establish
the security of PRFSSH in the QROM.

Benchmarking IND-CPA v/s IND-CCA secure
KEMs in post-quantum SSH. Going back to the protocol-
level analysis of post-quantum SSH by Blanchet and Ja-
comme [4], they rely on the stronger assumption of IND-
CCA security of the ephemeral quantum-secure KEM in the
handshake phase; the authors mention they need IND-CCA
security to prove forward secrecy in their model. But as
mentioned above, the AKE-like model used in [4] is not
suitable to capture security of SSH, and we believe the IND-
CCA security requirement is an artifact of their proofs. In
contrast, our post-quantum ACCE security analysis of SSH
suggests that the simpler IND-CPA secure ephemeral KEMs
are sufficient — even for forward secrecy.2 Now in post-
quantum implementations of SSH, the quantum-secure KEMs
(e.g., Streamlined NTRU Prime, ML-KEM) are instantiated
with certain “transforms” (we describe them in more detail
in Subsection 4.2.1) to achieve IND-CCA security; these
transforms however result in some performance overheads —
e.g., due to extra hash calls. In light of our ACCE analysis,
we instantiate the above ephemeral KEMs without these
IND-CCA transforms and evaluate the resulting performance
in the post-quantum SSH protocol. Even though we notice
a significant runtime improvement when such IND-CPA

2. Our result also follows some recent works, e.g., [13], [14], which claim
that IND-CPA secure KEMs are sufficient in post-quantum TLS; however,
their new security proofs for TLS incur a significant loss in tightness in
contrast to our analysis of post-quantum SSH.



secure KEMs are used in isolation, when compared to
their transformed IND-CCA secure counterparts, we observe
that the resulting improvements in the overall protocol are
minimal.3 At the same time, we are concretely saving on the
number of hash calls during the protocol execution on both
the server and client sides, and this should result in reduced
financial and ecological costs: for example, as mentioned in
Meta’s post-quantum transition update at the “Real World
PQC Workshop” [15], an extra hash “can cost hundreds of
thousands or even millions of dollars a year”. So all in all,
we hope our benchmarks serve as a guide to implementers
of the post-quantum SSH protocol with regards to reducing
the associated costs.

2. Preliminaries

2.1. Notations

For a positive integer n, we denote [n] to be the set
{1, 2, . . . , n}. We denote λ ∈ N to be the security parameter,
unless stated otherwise (but we omit writing λ when it is
clear from context). For a finite set S, we write x←$ S to
denote that x is uniformly at random sampled from S, unless
stated otherwise; also |S| denotes the size of S. x ∥ y denotes
the concatenation of bit strings x and y. For probabilistic
algorithms we use y ← A(x) to denote a (randomized)
output of A on input x; we also sometimes specify the
randomness r used in A as y ← A(x; r).

2.2. ACCE

An Authenticated and Confidential Channel Establish-
ment (ACCE) protocol is a two-phase communication proto-
col consisting of a handshake phase (establishing secrets and
authenticating parties) and a communication phase (using se-
crets to authentically encrypt messages). The original ACCE
SSH analysis [6] defines two variants of ACCE protocols: a
standard ACCE formulation, and a multi-ciphersuite ACCE
protocol. In what follows we extend the standard ACCE
formalism to capture post-quantum security. Each execution
of the protocol is called a session and will maintain and
update the following per-session variables.

Definition 2.1 (Per-session variables). Let π denote the
following collection of per-session variables:

• ρ ∈ {init, resp}: The party’s role in this session.
• pid ∈ {1, . . . , nP ,⊥}: The identifier of the alleged

peer of this session, or ⊥ for unauthenticated.
• status ∈ {active, reject, accept}: The status.
• k: A session key, or ⊥. Note that k consists of two sub-

keys: bi-directional authenticated encryption keys ke

3. It is worth pointing out that similar benchmarks done in the literature
in the context of post-quantum TLS (e.g., in [13], [14]) only focus on
“primitive-level” performance improvements in KEMs, when the above
IND-CCA transforms are removed, but do not consider improvements in
the overall protocol.

and kd (which themselves may consist of encryption
and MAC sub-keys).

• sid: A session identifier defined by the protocol.
• ste, std: State for the stateful authenticated encryp-

tion and decryption algorithms.
• Any additional state specific to the protocol.
• Any additional state for the security experiment.

We now define and formalise the algorithms comprising
an ACCE protocol.

Definition 2.2 (ACCE protocol). An ACCE protocol is a tu-
ple of algorithms. The key generation algorithm KeyGen()

$→
(sk , pk) outputs a long-term secret key / public key pair.
The handshake algorithms AlgIℓ and AlgRℓ, ℓ = 1, . . . ,
take as input (sk , pk) and an incoming message m, up-
date per-session variables π, and output an outgoing mes-
sage m′. The handshake algorithms eventually set the
variables for the peer identifier π.pid, the session status
π.status, the session key π.k, and the session identifier
π.sid. There are also stateful authenticated encryption and
decryption algorithms Enc(π.ke,m, π.ste)

$→ (C, π.ste)
and Dec(π.kd, C, π.std)→ (m′, π.std). All algorithms are
assumed to take as implicit input any global protocol
parameters, including the list of all trusted peer public keys.

2.3. Execution Environment

We now define the experiments used to capture the
security of ACCE protocols. Our ACCE experiments mostly
follow those of the original ACCE SSH analysis [6], but
we extend the execution environment of ACCE protocols
by introducing a new adversarial query OExecute, which is
used to execute ACCE protocols between two honest parties.
This allows us to capture Harvest-Now-Decrypt-Later attacks
for our post-quantum ACCE security experiment.

Parties and long-term key generation. The execution
environment consists of nP parties, P1, . . . , PnP

, each a
potential protocol participant. Each party Pi generates long-
term private key / public key pairs (sk i, pk i) using KeyGen().

Sessions. Each party can execute multiple sessions of
the protocol, either concurrently or subsequently. We will
denote the s-th session of a protocol at party Pi by πs

i , where
s ∈ {1, . . . , nS}. We overload the notation so that πs

i also
denotes the per-session variables π for this session. Each
session within a party has read access to the party’s long-
term keys. The per-session variables πj

i .(pid, status, k, sid)
are initialized to (⊥, active,⊥,⊥).

For the purposes of defining ciphertext indistinguishabil-
ity and integrity, each session upon initialization chooses a
uniform random bit πs

i .b
$← {0, 1}. Each session also main-

tains additional variables for stateful encryption/decryption
as required in Figure 1.

Adversary interaction. The adversary controls all com-
munications between parties: it directs parties to initiate
sessions, delivers messages to parties, and can reorder, alter,



delete, and create messages. The adversary can also compro-
mise certain long-term and per-session values of parties. The
adversary interacts with parties using the following queries.

The first two queries model normal, unencrypted com-
munication of parties during session establishment.

• OSend(i, s,m)→ m′: The adversary sends message
m to session πs

i . Party Pi processes message m
according to the protocol specification and its per-
session state πs

i , updates its per-session state, and
optionally outputs an outgoing message m′. There is
a distinguished initialization message which allows
the adversary to activate the session with certain
information. In particular, the initialization message
consists of: the role ρ the party is meant to play in
this session; and optionally the identity pid of the
intended partner of this session. This query returns
⊥ if the session has set status = accept and no
more protocol messages are transmitted over the
unencrypted channel.

• OExecute(i, s, j, t) :→ m⃗: Sessions πs
i and πt

j exe-
cute the channel establishment protocol without modi-
fication from the adversary. Internally, this is achieved
by the challenger calling OSend(i, s, ρ∥pid) → m,
OSend(j, t,m)→ m′ . . . until both sessions have set
status = accept and returned ⊥.

The next two queries model adversarial compromise of long-
term and per-session secrets.

• OReveal(i, s)→ k: Returns session key πs
i .k.

• OCorrupt(i) → sk : Returns party Pi’s long-term
secret key sk i, and can now impersonate Pi in later
sessions.

The final two queries model communication over the
encrypted channel. The adversary can cause plaintexts to be
encrypted as outgoing ciphertexts, and can cause ciphertexts
to be delivered and decrypted as incoming plaintexts.

• OEncrypt(i, s,m0,m1) → C: This query takes as
input two messages m0 and m1. If πs

i .k = ⊥, the
query returns ⊥. Otherwise, it proceeds as in Figure 1,
depending on the random bit πs

i .b sampled by πs
i at

the beginning of the game and the state variables of
πs
i .

• ODecrypt(i, s, C) → m or ⊥: This query takes as
input a ciphertext C. If πs

i .k = ⊥, the query returns
⊥. Otherwise, it proceeds as in Figure 1. Note in
particular that decryption can be buffered, meaning
a decryption state may be maintained containing
unprocessed bytes of a partial ciphertext.

Together, these two oracles model the buffered stateful
authenticated encryption (BSAE) notion, which simultane-
ously captures (i) indistinguishability under chosen ciphertext
attack, (ii) integrity of ciphertexts, and (iii) buffered in-order
delivery of ciphertexts. The hidden bit πs

i .b is leaked to the
adversary if any of these goals is violated.

OEncrypt(i, s,m0,m1)

1 : u← u+ 1

2 : (C(0), st0e)← Enc(ke,m0, st0e)

3 : (C(1), st1e)← Enc(ke,m1, st1e)

4 : if C(0) = ⊥ or C(1) = ⊥ then

5 : return ⊥
6 : C[u]← C(b)

7 : return C(b)

ODecrypt(i, s, C)

1 : (j, t)← πs
i .pid, v ← v + 1

2 : (m, std)← Dec(kd, C, std)

3 : if m = ⊥p then return ⊥
4 : if b = 0 then return ⊥
5 : if v > πt

j .u or C ̸= πt
j .C[v] then

6 : phase← 1

7 : if phase = 1 then return m

8 : return ⊥

Figure 1. OEncrypt and ODecrypt queries in the multi-ciphersuite ACCE
security experiment.

Note that b, C[], kd, ke, std, ste, u, v denote the values stored in the per-session
variables πs

i . Although πs
i .pid only contains the party identifier j, once πs

i has
accepted every session πs

i has a unique matching session πt
j known to the challenger.

The ODecrypt query accounts for buffering in the third line; this is the difference
from ACCE’s original stateful length-hiding definition [16], [17].

2.4. Post-quantum Security Definitions

The security of ACCE protocols require that (i) the
handshake is a secure authentication protocol, and (ii) the
encrypted channel provides authenticated and confidential
communication Security in ACCE protocols is captured
through a game played between an adversary and a challenger.
When considering authentication, the adversary’s goal is to
cause a session to accept without an honest matching partner.
Additionally, we consider the security of the channel protocol,
where an adversary’s goal is to distinguish between the
encryption of distinct plaintext messages.

The post-quantum security of ACCE protocols are cap-
tured slightly different, since we are specifically interested
in Harvest-Now-Decrypt-Later attacks in which classical
adversaries can interact with the sessions while the sessions
are online, but quantum adversaries can only interact with
the transcripts of previously completed sessions. Thus we
consider only classical adversaries against the standard ACCE
game.

In the post-quantum ACCE experiment quantum adver-
saries can no longer interact with the handshake protocol,
but is instead given completed handshake transcripts via
the OExecute query. The quantum adversary is still allowed
to issue OCorrupt and OReveal queries, but is limited to
interacting with the sessions via the OEncrypt and ODecrypt
queries. Thus we begin with defining the standard ACCE
security experiment.

ACCE security experiment. The security experiment
is played between an adversary A and a challenger who
implements all parties according to the ACCE execution
environment. After the challenger initializes long-term keys,
the adversary receives the long-term public keys of all parties,
then interacts with the challenger. In the standard ACCE
game, the PPT adversary interacts with the sessions by
using OSend, OReveal, OCorrupt, OEncrypt, and ODecrypt
queries. In the post-quantum ACCE game, the QPT adversary
interacts with the sessions by using OExecute, OReveal,
OCorrupt, OEncrypt and ODecrypt queries. Finally, the
adversary outputs a triple (i, s, b′) and terminates. We begin
by defining when sessions match.



Definition 2.3 (Matching sessions). We say that session πt
j

matches πs
i if πs

i .ρ ̸= πt
j .ρ; πs

i .c = πt
j .c; and πs

i .sid prefix-
matches πt

j .sid, meaning that (i) if πs
i sent the last message

in πs
i .sid, then πt

j .sid is a prefix of πs
i .sid, or (ii) if πt

j sent
the last message in πs

i .sid, then πs
i .sid = πt

j .sid.

Note that for previous analyses of SSH, session IDs
consisted of a single value (the hashed session ID) and thus
not only prefix-matched, but were identical: πs

i .sid = πt
j .sid.

This is due to the abbreviated handshake option of SSH
where clients can send KEXINIT and KEX INIT DH messages
simultaneously. We do not capture this abbreviated handshake
option in our analysis of SSH, and clients cannot send both
KEXINIT and KEX KEM INIT simultaneously.

Next we describe server-only authentication definitions,
based on the existence of matching sessions. For server-only
authentication, we are only concerned about clients accepting
without a matching server session, since the client does not
authenticate to the server and so it is trivial for an adversary
to impersonate an unauthenticated client. We note that our
analysis would follow the ACCE analysis of SSH [6] with
minor modifications to prove mutual authentication modes.

Definition 2.4 (Authentication). Let πs
i be a session. We say

that πs
i accepts maliciously if

• πs
i .status = accept; and

• πs
i .pid = j ̸= ⊥, where no OCorrupt(j) query was

issued before πs
i accepted,

but there is no unique session πt
j which matches πs

i .
Define Advacce-so-auth

ACCE (A) as the probability that, when a
PPT A terminates in the ACCE experiment for ACCE, there
exists an initiator session (i.e., with πs

i .ρ = init) that has
accepted maliciously.

Channel security is defined by the ability to break the
confidentiality or integrity of the channel. Formally, this is
defined as the ability of the adversary to guess the bit b used
in the OEncrypt and ODecrypt queries of an uncompromised
session. “Uncompromised” means that the adversary did not
reveal the session key at either the session or any matching
session, and that that adversary did not corrupt the long-term
keys of either party in the session before they transitioned
to the channel phase.

Definition 2.5 (Channel security). Suppose A with access to
OSend, OReveal, OCorrupt, OEncrypt, ODecrypt outputs
(i, s, b′) in the ACCE experiment. We say that A answers the
encryption challenge correctly if

• πs
i .status = accept;

• no OCorrupt(j) query was ever issued before
πs
i .status ← accept such that πs

i .pid = j and πs
i

does not have a matching session;
• no OReveal(i, s) query was issued;
• no OReveal(j, t) query was issued for any πt

j that
matches πs

i ; and
• πs

i .b = b′.

Define Advacce-so-aenc
ACCE (A) as |p − 1/2|, where p is the

probability that a PPT A answers the encryption challenge
correctly and either πs

i .ρ = init or both πs
i .ρ = resp and

there exists a session that matches πs
i .

Definition 2.6 (ACCE security). An ACCE protocol ACCE
is ϵ-ACCE-secure against a PPT adversary A if, we have
that Advacce-so-auth

ACCE (A) ≤ ϵ and Advacce-so-aenc
ACCE (A) ≤ ϵ.

We now turn to defining post-quantum ACCE security
in the Harvest-Now-Decrypt-Later setting. The definition
modifies the above security experiment by allowing the
adversary to be a quantum polynomial time (QPT) adversary,
replacing the OSend query with the OExecute query, and
only considering channel security.

Definition 2.7 (Post-quantum channel security). Suppose
Q with access to OExecute, OReveal, OCorrupt, OEncrypt,
ODecrypt outputs (i, s, b′) in the ACCE experiment. We say
that Q answers the encryption challenge correctly if

• πs
i .status = accept;

• no OCorrupt(j) query was ever issued before
πs
i .status ← accept such that πs

i .pid = j and πs
i

does not have a matching session;
• no OReveal(i, s) query was issued;
• no OReveal(j, t) query was issued for any πt

j that
matches πs

i ; and
• πs

i .b = b′.

Define Advpq-acce-aenc
ACCE (Q) as |p − 1/2|, where p is the

probability that a QPT Q answers the encryption challenge
correctly and either πs

i .ρ = init or both πs
i .ρ = resp and

there exists a session that matches πs
i .

Definition 2.8 (Post-quantum ACCE security). An ACCE
protocol ACCE is ϵ-post-quantum-ACCE-secure against a
QPT adversary Q if, we have that Advpq-acce-aenc

ACCE (Q) ≤ ϵ.

Note that unlike the original ACCE analysis of the SSH
protocol [6] our analysis captures forward secrecy: in both
experiments the adversary is allowed to corrupt the long-term
secrets of either session after the session has accepted. In
the post-quantum ACCE security game, while the handshake
is executed without interference from an active adversary,
the quantum adversary is allowed to corrupt the long-term
keys of either party at any point, capturing forward secrecy.

2.5. Quantum Random Oracle Model (QROM)

We refer the reader to [18] for the basics of quantum com-
putation and information. The QROM is an idealized model
where hash functions are modeled as random oracles that are
publicly and quantumly accessible. Namely, an adversary A
is allowed to query a random oracle O : {0, 1}m → {0, 1}n
on an arbitrary quantum superposition of inputs, where we
use the mapping |x⟩ |y⟩ → |x⟩ |y ⊕ O(x)⟩ with input register
x ∈ {0, 1}m and output register y ∈ {0, 1}n. We also use
the notation A|O⟩ to denote that A has quantum access to
oracle O. We sometimes omit the “ket” notation in A|O⟩ and



instead just write AO when it is clear from context. For a
more detailed description of the QROM, we refer to [11].

Now the following lemma, which is a generalization of
the so-called One-Way To Hiding (OW2H) lemma in the
QROM literature [19], allows us to “program” quantum
random oracles.

Lemma 2.1 (Generalized OW2H, simplified [20, Theorem
3]). Let S ⊆ X be a random subset. Let G,H : X → Y be
random oracles satisfying G(x) = H(x) for every x /∈ S. Let
z be a random bit string. (S,G,H, z) may have arbitrary joint
distribution. Let A be a quantum oracle algorithm making at
most q quantum queries to its corresponding oracle (either
G or H)4. Let B|H⟩ be an oracle algorithm that on input z
does the following: picks i←$ [q], runs A|H⟩(z) until (just
before) the i-th query, measures a query input register in the
computational basis, and outputs the measurement outcome
t (if A makes less than i queries, the measurement outcomes
are taken to be ⊥ /∈ X). Let

Pleft = Pr[1← A|H⟩(z)],
Pright = Pr[1← A|G⟩(z)],
Pguess = Pr[t ∈ S : t← B|H⟩(z)].

Then, |Pleft−Pright| ≤ 2q
√

Pguess. The same result also holds
with B|G⟩ instead of B|H⟩ in the definition of Pguess.

A consequence of the above lemma is that a quantum
random oracle “behaves” as a secure pseudorandom function
(PRF) even with respect to adversaries that have quantum
access to said random oracle. More formally, we have the
following (the proof can be found in [21]).

Lemma 2.2 (QRO is a secure PRF [21, Corollary 1]). Let
H : K×X → Y and R : X → Y be two independent quantum
random oracles. Define the (classical) oracles F0 = H(K, ·),
where we have the “PRF key” K ←$ K, and F1 = R(·).
Consider an oracle distinguisher A|H⟩,Fi (i ∈ {0, 1}) that
makes at most qH quantum queries to H. Then we have
|Pr[1← A|H⟩,F0 ]− Pr[1← A|H⟩,F1 ]| ≤ 2qH√

|K|
.

Finally, the following variant of the OW2H lemma, which
is called the double-sided OW2H lemma, offers a much
tighter bound than Lemma 2.1 on the indistinguishability
of the programmed quantum random oracles; however the
downside of this lemma is that it comes with limited
applicability (e.g., the oracles can only be programmed on a
single input). But looking ahead, it turns out that this double-
sided OW2H lemma suffices to provide a tight security
analysis of Streamlined NTRU Prime as used in OpenSSH.

Lemma 2.3 (Double-sided OW2H [21, Lemma 5]). Let x∗
be a random element in set X . Let G,H : X → Y be random
oracles satisfying G(x) = H(x) for every x ̸= x∗. Let z be

4. The generalized OW2H lemma in [20] technically has “q” to be the
query-depth of A which accounts for potential parallel oracle queries made
by the algorithm. We will not be considering such parallel queries in this
paper for the sake of simplicity. But at the same time, our subsequent
analyses in the QROM can be extended to this parallel setting in a
straightforward manner.

a random bit string. (x∗,G,H, z) may have arbitrary joint
distribution. Let A be a quantum oracle algorithm that has
access to either G or H. Then there exists a quantum oracle
algorithm B|G⟩,|H⟩(z) such that if,

Pleft = Pr[1← A|H⟩(z)]
Pright = Pr[1← A|G⟩(z)]

Pextract = Pr[x∗ ← B|G⟩,|H⟩(z)],

then we have |Pleft − Pright| ≤ 2
√
Pextract. Here whenever A

queries its quantum oracle, B queries both G and H, and
at the end of A’s execution, B outputs either x∗ or ⊥. The
running time of B is about that of A,

3. Post-quantum SSH Protocol

We provide the description of SSH’s handshake protocol
— the combination of the key-exchange (KEX) protocol
in RFC 4253 [22] and the user authentication protocol in
RFC 4252 [23] — in Figure 2, where we replace the DH-
based KEX with KEM-based KEX. Intuitively speaking, after
sending nonces (rC and rS) to each other and negotiating
cryptographic algorithms, the client and server run a key-
exchange protocol and compute session identifier and keys
used for authenticated encryption. We note that the server
generates a signature on the session identifier. Afterwards,
they run the user authentication protocol in a secure channel
protected by stateful authenticated encryption.

4. Security Analysis

In this section, we provide a comprehensive analysis of
SSH in appropriate post-quantum security models by follow-
ing a “top-down” approach. Namely, in Subsection 4.1, we
first prove security of the SSH protocol in our post-quantum
extension of the ACCE model wherein we rely on certain
cryptographic properties of the underlying primitives. Then in
the subsequent subsections, we prove that the primitives, and
their real-world instantiations, satisfy these corresponding
properties in the post-quantum setting: Subsection 4.2 covers
the hybrid key exchange primitive and Subsection 4.3 covers
the PRFSSH primitive (see Figure 5).

4.1. Post-quantum ACCE Security of SSH

We begin by proving the security of the post-quantum
SSH protocol in server-only mode. The following theorem
shows that, if the hash function Hc is collision-resistant, the
signature scheme DSS is EUF-CMA-secure, PRFSSH is a
secure PRF, the symmetric encryption is a secure BSAE
scheme5 and the key encapsulation mechanism KEM is
IND-CPA-secure, then the post-quantum SSH protocol is
a secure server-only ACCE protocol. Notably, our security
proof relies on the weaker assumption of IND-CPA secure
KEMs when compared to the recent analysis in [4] which
requires IND-CCA secure KEMs.

5. All assumptions match [6] except the IND-CPA KEM assumption.



Negotiation
1. init→ resp: KEXINIT

1 : rC ←$ {0, 1}µ

2 : send KEXINIT← (rC , S⃗PC)

3 : π.ρ← init

4 : π.status← active

2. resp→ init: KEXREPLY

1 : rS ←$ {0, 1}µ

2 : send KEXREPLY← (rS , S⃗PS)

3 : π.ρ← resp

4 : π.status← active

5 : π.c← neg(S⃗PC , S⃗PS)

3. init

1 : π.c← neg(S⃗PC , S⃗PS)

Signed KEX (for both modes)
4. init→ resp: KEX KEM INIT

1 : (ek , dk)← KEMπ.c.Gen()

2 : send KEX KEM INIT← ek

5. resp→ init: KEX KEM REPLY and NEWKEYS

1 : (K, ct)← KEMπ.c.Encap(ek)

2 : x← VC ∥VS ∥ KEXINIT ∥ KEXREPLY ∥ vkS,π.c ∥ ek ∥ ct
3 : (π.sid, π.k)← PRFSSH(K, x)

4 : σS ← DSSπ.c.Sign(skS,π.c, π.sid)

5 : send KEX KEM REPLY← (ct, vkS,π.c, σS)

6 : send NEWKEYS

6. init→ resp: NEWKEYS

1 : K ← KEMπ.c.Decap(dk , ct)

2 : x← VC ∥VS ∥ KEXINIT ∥ KEXREPLY ∥ vkS,π.c ∥ ek ∥ ct
3 : (π.sid, π.k)← PRFSSH(K, x)

4 : if DSSπ.c.Vrfy(vkS,π.c, σS , π.sid) = ⊥ then

5 : π.status← reject and terminate

6 : π.pid← S, the owner of vkS,π.c

7 : send NEWKEYS

Server-only Auth. Mode
7. init→ resp: AUTH REQUEST

1 : send AUTH REQUEST← username ∥ service ∥ none
8. resp→ init: AUTH SUCCESS or AUTH FAILURE

1 : if Check(username, service, none) then

2 : π.status← accept;

3 : send AUTH SUCCESS

4 : else

5 : π.status← reject;

6 : send AUTH FAILURE

11. init

1 : if AUTH FAILURE then

2 : π.status← reject and terminate

3 : if AUTH SUCCESS then

4 : π.status← accept

Mutual Auth. Mode
7. init→ resp: AUTH REQUEST

1 : A0 ← username ∥ service ∥ publickey ∥ 0 ∥ alg ∥ vkC,π.c

2 : // alg specifies DSS′
π.c.

3 : send AUTH REQUEST← A0

8. resp→ init: AUTH OK or AUTH FAILURE

1 : if Check(username, service, publickey) then

2 : π.status← reject and terminate

3 : if π.status = active then

4 : send AUTH OK← alg ∥ vkC,π.c

5 : if π.status = reject then

6 : send AUTH FAILURE and terminate

9. init→ resp: AUTH REQUEST

1 : A← username ∥ service ∥ publickey ∥ 1 ∥ alg ∥ vkC,π.c

2 : σC ← DSS′
π.c.Sign(skC,π.c, π.sid ∥A)

3 : send (A, σC)

10. resp→ init: AUTH SUCCESS or AUTH FAILURE

1 : A
′ ← username ∥ service ∥ publickey ∥ 1 ∥ alg ∥ vkC,π.c

2 : if A
′ ̸= A then

3 : π.status← reject

4 : if DSS′
π.c.Vrfy(vkC,π.c, σC , π.sid ∥A) = ⊥ then

5 : π.status← reject

6 : if π.status = active then

7 : π.status← accept

8 : if π.status = accept then

9 : send AUTH SUCCESS

10 : if π.status = reject then

11 : send AUTH FAILURE and terminate

11. init

1 : if AUTH FAILURE then

2 : π.status← reject and terminate

3 : if AUTH SUCCESS then

4 : π.status← accept

Figure 2. Description of SSH handshake protocol (RFC 4253 + RFC 4252) with KEM-based KEX. In steps 1 and 2, algorithm neg negotiates a ciphersuite
to be used in the protocol. VC and VS are version strings. In steps 5 and 6, PRFSSH is defined in Figure 5. In step 8, algorithm Check checks the
accessibility of username for service via some authentication mechanism, none or publickey. We note that from steps 7–11, their protocol is run within
BSAE using π.k.

Lemma 4.1 (SSH is ACCE-Authentication-secure). Let µ
be the length of the nonces in KEXINIT and KEXREPLY (µ =
128), nP the number of participating parties and nS the
maximum number of sessions per party. Thus, for algorithms
B1, . . . ,B5 given in the proof, and for all algorithms A,

Advacce-so-auth
SSH (A) ≤ (nPnS)

2

2µ
+ Advcoll-res

Hc
(BA1 )

+ n2
P · nS

(
Adveuf-cma

DSS (BA2 )

+ Advind-cpa
KEM (BA3 ) + Advprf

PRFSSH
(BA4 )

+ Advbsae
BSAE(BA5 )

)
.

Sketch. Due to space limitations we give a proof sketch, and
point readers to Appendix A for full details.

Our proof proceeds in a sequence of game hops. We
begin by introducing a series of conditions that cause our
proof to abort. This occurs if any nonces collide, if any hash
collisions are output, if the challenger incorrectly guesses
the first (client) session to accepts maliciously, and finally if
the adversary manages to forge a valid signature from the
client’s session partner.

From this point we demonstrate that the adversary cannot
modify any messages between the client and its communicat-
ing partner. We do so by showing that the adversary cannot
forge valid ciphertexts for the BSAE scheme used between
the client and the server. We replace keys used by the BSAE
scheme (via a ind-cpa assumption on the KEM, and a PRF
assumption on the PRFSSH) with uniformly random keys.
Finally, we replace the encryption and decryption of BSAE



ciphertexts with a bsae challenger: any adversary capable
of forging messages between the client and server can be
turned into an attacker against the bsae security of the BSAE
scheme. This completes the authentication proof sketch.

We now turn to proving the classical ACCE-channel-
security of our post-quantum SSH protocol.

Lemma 4.2 (Channel security, server-only auth. mode). Let
µ be the length of the nonces in KEXINIT and KEXREPLY
(µ = 128), nP the number of participating parties and nS

the maximum number of sessions per party. The algorithms
B3, B4, and B5, explicitly given in the proof of the lemma,
are such that, for all algorithms A,

Advacce-so-aenc
SSH (A) ≤ Advacce-so-auth

SSH (A)
+ n2

Pn
2
S

(
Advind-cpa

KEM (BA6 )

+ Advprf
PRFSSH

(BA7 ) + Advbsae
BSAE(BA8 )

)
.

Sketch. Due to space limitations we give a proof sketch, and
point readers to the Appendix A for full details.

Our proof proceeds in a sequence of game hops. We
begin by introducing a series of conditions that cause our
proof to abort. This occurs if the adversary manages to cause
our test session to accept maliciously (in the sense of Lemma
4.1), or if the challenger incorrectly guesses the test session.

From this point we demonstrate that the adversary cannot
break the security of the ACCE channel. We do so by
forwarding all OEncrypt/ODecrypt queries sent to the test
session and its matching partner to a bsae challenger.

However, we must first replace the keys used by
the BSAE scheme with uniformly random keys (via a
ind-cpa assumption on the KEM, and a PRF assumption
on the PRFSSH). Now our reduction simply forwards all
OEncrypt/ODecrypt queries to our bsae challenger: the
output from the adversary is forwarded to the bsae challenger,
and we win the bsae game with the same advantage as our
adversary, completing the channel security proof sketch.

Finally, we turn to proving the post-quantum ACCE
security of the PQ-SSH protocol.

Theorem 4.1 (Post-quantum channel security). Let µ be the
length of the nonces in KEXINIT and KEXREPLY (µ = 128),
nP the number of participating parties and nS the maximum
number of sessions per party. The algorithms B1, B2, and
B3, explicitly given in the proof of the theorem, are such
that, for all algorithms Q,

Advpq-acce-aenc
SSH (Q) ≤ nPnS

(
Advind-cpa

KEM (BQ1 )

+ Advprf
PRFSSH

(BQ2 )

+ Advbsae
BSAE(BQ3 )

)
.

Proof. Let break(2)δ be the event that occurs when Q answers
the encryption challenge correctly in Game δ in the sense
of Definition 2.7.

Game 0. This game equals the ACCE channel security
experiment described in Section 2.4. Note that since we are
capturing Harvest-Now-Decrypt-Later attacks, the adversary

uses OExecute to generate sessions, and thus from now on,
we always have a matching session for the session πs

i where
the adversary tries to guess the random bit.

Game 1. In this game, we guess the session for which the
adversary outputs the bit b′. We guess two indices (i, s) ∈
[nP ] × [nS ] and abort if the adversary outputs (i∗, s∗, b′)
with (i∗, s∗) ̸= (i, s). This happens with probability 1

nPnS
.

By the definition of the channel security experiment we
have that there exists a unique partner session πt

j which
can be easily determined by the simulator. Thus we have:
Pr(break

(2)
0 ) ≤ nPnS · Pr(break(2)1 ).

Game 2. In this game we replace the value K, ct =
KEM.Encap(ek), K = KEM.Decap(dk, ct) computed by
πs
i and πt

j with a uniformly random value K∗. Specifically,
we introduce a reduction B1 that interacts with Q and embeds
an IND-CPA challenge into the test session’s transcript. Note
that in what follows, we assume WLOG that the test session
πs
i is the client. The alternative case (where πs

i is the server)
follows identically up to a change in notation.

At the beginning of the experiment, B1 initialises an
IND-CPA KEM challenger. When πs

i needs to compute a
KEM public key pair, B1 replaces the honest computation of
(ek, dk) with (ek∗, dk∗) output by the IND-CPA challenger.
Similarly, when the server session πt

j needs to encapsulate
a shared secret, B1 replaces K, ct with the key output K∗
and the ciphertext output ct∗ from the IND-CPA challenger.
Finally, when πs

i needs to compute K, B1 replaces K with
K∗. We note that by definition πs

i and πt
j communicate

without any modification from the adversary.
Any adversary Q that can distinguish this game from the

previous game can directly be used to construct an adversary
BQ1 that can break the IND-CPA assumption: If the challenge
bit b sampled by the IND-CPA KEM challenger is 0, then
K∗ = Decap(dk, ct) and we are in Game 1. If the challenge
bit b sampled by the IND-CPA KEM challenger is 1, then
K∗ is instead uniformly random and independent of the
protocol flow and we are in Game 2. Thus Pr(break

(2)
1 ) ≤

Pr(break
(2)
2 ) + Advind-cpa

KEM (BQ1 ).
Game 3. In this game we replace the values H, k1, ..., k6

computed by πs
i and πt

j as PRFSSH(K
∗, sid) with random

values H∗, k∗1 , ..., k
∗
6 . Any adversary Q that can distinguish

this game from the previous game can directly be used
to construct an adversary BQ2 that can break the PRF
assumption: let S = H∥k1∥...∥k6 be the output of PRFSSH,
and let S∗ = H∗∥k∗1∥...∥k∗6 be a random string of the same
length. For S we are in Game 2, and for S∗ in Game 3.
Thus Pr(break

(2)
2 ) ≤ Pr(break

(2)
3 ) + Advprf

PRFSSH
(BA2 ).

Final analysis. We now have that the keys k∗1 , ..., k
∗
6

are uniformly random and independent from the protocol
transcript. Thus any adversary Q that can guess (i∗, s∗, b′)
correctly can directly be used to construct an adversary BQ3
that breaks the BSAE scheme. Technically we exploit the fact
that all keys for the encryption scheme are now independent
from the handshake and embed a BSAE challenger to answer
Q’s queries for Enc, Dec. Now B3 simply forwards Q’s
output to the challenger and thus we have Pr(break

(2)
3 ) ≤

Advbsae
BSAE(BA3 ).



4.2. Hybrid KEMs in SSH

Post-quantum implementations of SSH, e.g.,
OpenSSH [1], TinySSH [7], and OQS-OpenSSH [24], use
hybrid key exchange (or more technically, KEMs) in the
handshake phase which combine a post-quantum secure
KEM with a classically secure counterpart by simply
concatenating their respective shared keys and hashing
the result to derive the final key. More formally, a hybrid
KEM KEMhy = (Genhy,Encaphy,Decaphy) used in SSH
combines two constituent KEMs, i.e., a post-quantum secure
KEM0 = (Gen0,Encap0,Decap0) and a classically secure
KEM1 = (Gen1,Encap1,Decap1), with the hash function
Hc

6 as shown in Figure 3.
As indicated in our above ACCE security analysis of the

post-quantum SSH protocol, we would need an IND-CPA
secure hybrid KEM. In this section, we will show that the
hybrid KEM KEMhy used in SSH retains IND-CPA security
of any of its constituent KEMs when Hc is modeled as a
quantum random oracle. Now before diving into our proof,
we briefly discuss how our analysis relates to prior work on
hybrid KEM combiners.

The works [25] and [26] initiated a formal study of KEM
combiners in a post-quantum setting. However they consid-
ered different and (slightly) more complicated hybrid KEMs
than KEMhy above since their goal was to retain/achieve
security stronger than IND-CPA (e.g., IND-CCA7); but as
we saw in our ACCE security analysis of post-quantum SSH,
IND-CPA security of hybrid KEMs is in fact sufficient. On
the other hand, Petcher and Campagna [3] studied hybrid
KEMs which concatenate shared keys as in the post-quantum
versions of SSH (and TLS 1.3); however they considered a
more “advanced” KEM abstraction wherein the final key is
not only derived from the concatenated keys but also involves
public keys and ciphertexts of the constituent KEMs along
with some auxiliary context and label information. They
were also able to prove IND-CCA security of such a hybrid
KEM albeit in the classical random oracle model. But the
authors did not discuss how their results formally relate to
the wider protocol-level security of post-quantum SSH. In
contrast, the subsequent analysis of KEMhy follows from our
ACCE security theorem for post-quantum SSH above; this
top-down approach also allows us to focus on a modular and
much simpler KEMhy abstraction in the handshake phase.

Now our following IND-CPA security analysis of KEMhy

in the QROM only considers two constituent KEMs for
simplicity. However it is straightforward to extend the proof
to multiple constituent KEMs. At the same time, one can also
easily extend our analysis from the QROM to the standard
model by replacing the hash function Hc with a so-called
“dual PRF”8.

6. The same hash function Hc is used in PRFSSH as described in Figure 5.
7. In contrast to IND-CPA, the notion of IND-CCA security allows

adversaries to obtain decapsulations of ciphertexts of their choosing.
8. A function F(·, ·) is said to be a secure dual PRF if it is a secure

PRF (in the standard sense) when “keyed” by the first input, i.e., F(K, ·),
and also when “keyed” by the second input, i.e., F(·,K).

Encaphy(ek)

1 : Parse (ek0, ek1)← ek

2 : (ct0,K0)← Encap0(ek0)

3 : (ct1,K1)← Encap1(ek1)

4 : ct := (ct0, ct1)

5 : K := Hc(K0 ∥K1)

6 : return (ct ,K)

Decaphy(dk , ct)

1 : Parse (dk0, dk1)← dk

2 : Parse (ct0, ct1)← ct

3 : K0 ← Decap0(dk0, ct0)

4 : K1 ← Decap1(dk1, ct1)

5 : if K0 = ⊥ ∨K1 = ⊥
6 : return ⊥
7 : K := Hc(K0 ∥K1)

8 : return K

Figure 3. Abstract KEM combiner used in post-quantum SSH. Genhy(1λ)
simply generates (ek0, dk0)← Gen0(1λ), (ek1, dk1)← Gen1(1λ), and
outputs the encapsulation key ek := (ek0, ek1) and decapsulation key
dk := (dk0, dk1).

Theorem 4.2. For any IND-CPA adversary A against
KEMhy (described in Fig. 3) making qHc quantum queries to
the underlying random oracle Hc, there exists an IND-CPA
adversary B against the constituent KEM KEMi — for any
i ∈ {0, 1} — such that

Advind-cpa
KEMhy

(A) ≤ Advind-cpa
KEMi

(B) + 2qHc√
|Ki|

,

where Ki is the encapsulated key space of KEMi, and the
running time of B is about the same as that of A.

Proof. We first consider the case of i = 0. The proof
proceeds with a sequence of game hops (G0 → G1 → G2)
with respect to adversary A. The games G0 and G2 are
essentially the IND-CPA security games for KEMhy where
A gets the “real” encapsulated key K∗ := Hc(K

∗
0 ∥K∗1 ) as

in Figure 3 and a uniformly “random” encapsulated key
K∗ ←$ Khy respectively. From the advantage definition of
IND-CPA adversaries, it is not hard to see that

Advind-cpa
KEMhy

(A) = |Pr[1← G0]− Pr[1← G2]|.

In the intermediate game G1, we use a uniformly random
KEM0 encapsulated key K∗0 ←$ K0 to derive the final
key K∗ := Hc(K

∗
0 ∥K∗1 ) in contrast to Figure 3. Using a

straightforward reduction to the IND-CPA security of KEM0,
it is not hard to obtain

Advind-cpa
KEM0

(B) = |Pr[1← G0]− Pr[1← G1]|,

where B is an IND-CPA adversary against KEM0 which runs
in about the same time as A; B can simulate games G0

and G1 towards A by simulating the QRO |Hc⟩ (e.g., using
a 2qHc

-wise independent function as in [27]) by itself, in
addition to deriving the KEM1-based values by generating
(ek1, dk1)← Gen1(1

λ).
Now interpreting K∗0 ←$ K0 as a secret “PRF key” in

K∗ := Hc(K
∗
0 ∥K∗1 ), we use the fact that the QRO |Hc⟩ is

a secure PRF (Lemma 2.2) to replace K∗ with a uniformly
random key in G2, thereby obtaining

|Pr[1← G1]− Pr[1← G2]| ≤
2qHc√
|K0|

.



Applying a triangle inequality on the above bounds finishes
the proof — at least for the case i = 0.

The proof for i = 1 follows analogously wherein we
rely on IND-CPA security of KEM1 to first replace the “real”
encapsulated key K∗1 derived from Encap1 with a uniformly
random K∗1 ←$ K1. Then to replace the final KEMhy key
K∗ := Hc(K

∗
0 ∥K∗1 ) with a uniformly random one, we

observe that the proof of Lemma 2.2 in the literature —
specifically, the proof of [21, Corollary 1] — can be extended
in a straightforward manner to show |Hc⟩, and any QRO in
general, is also a secure dual PRF. In fact, in Subsection 4.3
below, we extend the proof of [21, Corollary 1] to prove
a stronger result — namely that Hc(K

∗
1 ∥ ·) and Hc(· ∥K∗1 )

are jointly secure PRFs.

4.2.1. Concrete Instantiations. When it comes to instan-
tiating the above hybrid KEMhy for post-quantum versions
of SSH, there have been a couple of proposals for stan-
dardization. Friedl, Mojzis, and Josefsson proposed the
hybrid KEM sntrup761x25519-sha512 in [28] which ba-
sically instantiates the post-quantum secure KEM0 with
the NIST submission Streamlined NTRU Prime [8] and
the classically secure KEM1 with the well-known X25519
elliptic curve Diffie-Hellman key exchange (ECDH) [29];
also the hash function Hc is instantiated with SHA-
512. Following the FIPS publication of the NIST stan-
dard ML-KEM [9], Kampanakis, Stebila, and Hansen
proposed the hybrid KEMs mlkem768nistp256-sha256,
mlkem1024nistp384-sha384, mlkem768x25519-sha256
in [30] which use different parameter sets for ML-KEM
in KEM0 and different ECDH methods for KEM1

9, along
with different instantiations of Hc.

Focusing on real-world implementations of SSH,
OpenSSH v.8.0 (Apr. 2019) and TinySSH (Jan. 2019)
incorporated sntrup4591761x25519-sha512 which used
an older version of Streamlined NTRU Prime for KEM0.
Later OpenSSH v.8.5 (Mar. 2021) and TinySSH (Mar. 2021)
replaced the hybrid KEM with sntrup761x25519-sha512
described above; OpenSSH v.9.0 (Apr. 2022) also set it
as the default key exchange method. Recently, OpenSSH
v.9.9 (Sep. 2024) added support for the hybrid KEM
mlkem768x25519-sha256.10 Since Streamlined NTRU
Prime is quite prevalent in post-quantum implementations of
SSH, and arguably has not received much scrutiny compared
to ML-KEM, we will be analyzing this constituent KEM in
what follows.

But let us first quickly consider the classical security of
the above hybrid KEMs. Now X25519, when seen as a KEM,
offers IND-CPA security based on the Decisional Diffie-
Hellman (DDH) assumption in the nominal group. From
Theorem 4.2, it then follows that the related hybrid KEMs
in SSH retain IND-CPA security albeit against classical
attackers. For post-quantum ACCE security of SSH, we

9. Here nistp256 and nistp384 refer to the NIST-recommended elliptic
curves P-256 and P-384 respectively in [31].

10. OQS-OpenSSH [24] also supports hybrid KEMs which instantiate
KEM0 with quite a few NIST submissions; however these implementations
are for experimental purposes, and as such are not deployed in practice.

would also need to show that Streamlined NTRU Prime does
achieve IND-CPA security against quantum attackers.

Zooming in on Streamlined NTRU Prime, the KEM
is constructed by starting with a deterministic OW-CPA
secure (i.e., “one-way”) PKE scheme called Streamlined
NTRU Prime Core [8] and applying a variant of the so-
called Fujisaki-Okamoto (FO) transform ( [32], [33], [34]);
the exact variant of the FO transform used in Streamlined
NTRU Prime is described in Figure 4. Now the original FO
transforms have been analyzed in the QROM (e.g., in [21],
[34], [35]) to show that if we start with such a deterministic
OW-CPA secure PKE scheme, then the resulting KEM
achieves the stronger notion IND-CCA security. However as
pointed out in [10], the specific transform used in Streamlined
NTRU Prime deviates quite significantly from the original FO
transforms which in turn makes the above QROM IND-CCA
security results in the literature inapplicable. Fortunately, in
the context of our ACCE security analysis of post-quantum
SSH, we only need to prove the weaker IND-CPA security of
Streamlined NTRU Prime — which we do so in the QROM as
stated below. At the same time, we also sketch an IND-CCA
security proof for Streamlined NTRU Prime in Appendix B
by adapting some advanced QROM proof techniques, thereby
addressing the related open problem in [10]. Such an IND-
CCA security proof accounts for potential “key-reuse” attacks
in misimplementations of post-quantum SSH wherein the
hybrid KEM is used with a static public key, instead of an
ephemeral one, in the handshake phase.

Gen(1λ)

1 : (ek , dk)← Gen(1λ)

2 : s←$ {0, 1}ℓ

3 : h := H4(ek)

4 : dk := (dk , ek , s, h)

5 : return (ek , dk)

Encap(ek)

1 : m←$M
2 : ct0 := Enc(ek ,m)

3 : ct1 := H2(H3(m),H4(ek))

4 : ct := (ct0, ct1)

5 : K := H1(H3(m), ct)

6 : return (ct ,K)

Decap(dk , ct)

1 : Parse (dk , ek , s, h)← dk , (ct0, ct1)← ct

2 : m ′ := Dec(dk , ct0)

3 : ct ′0 := Enc(ek ,m ′)

4 : ct ′1 := H2(H3(m
′), h)

5 : if (ct0, ct1) ̸= (ct ′0, ct
′
1) then return K := H0(H3(s), ct)

6 : else return K := H1(H3(m
′), ct)

Figure 4. The FO-type transform used in Streamlined NTRU Prime. Here
sntrup-core = (Gen,Enc,Dec) is the deterministic OW-CPA secure PKE
scheme called Streamlined NTRU Prime Core [8] with message space M;
sntrup = (Gen,Encap,Decap) is the Streamlined NTRU Prime KEM.
Also for all i ∈ {0, 1, . . . , 4}, we have Hi : {0, 1}∗ → {0, 1}256 to be
hash functions. Streamlined NTRU Prime instantiates these different hash
functions with appropriately domain separated SHA-512 where the outputs
are truncated to the first 32 bytes.

Theorem 4.3. For any IND-CPA adversary A against the
sntrup KEM (described in Figure 4) making qHi

queries
to the underlying quantum random oracles Hi for i ∈
{0, 1, . . . , 4}, there exist OW-CPA adversaries B and B′



against the sntrup-core PKE scheme such that

Advind-cpa
sntrup (A) ≤ 2

(√
Advow-cpa

sntrup-core(B) +
√

Advow-cpa
sntrup-core(B′)

)
+

2qH1
+ 4qH2

2128
,

where the running times of B and B′ are about the same as
that of A.

We provide the full proof of this theorem in Appendix A
because of space limitations. At a high level, we leverage the
fact that the underlying Streamlined NTRU Prime Core PKE
scheme is deterministic in order to use the “tighter” double-
sided OW2H lemma (Lemma 2.3), instead of the generalized
OW2H lemma (Lemma 2.1); this in turn results in tight
bounds on the IND-CPA security of Streamlined NTRU
Prime KEM in the QROM. One can also extend our above
IND-CPA security results to ML-KEM in a straightforward
manner since the NIST standard uses a much simpler FO-
type transform when compared to Streamlined NTRU Prime.
However the resulting bounds would be relatively non-tight11

since we cannot use the double-sided OW2H lemma in this
case as the PKE scheme underlying ML-KEM is randomized.

4.3. SSH PRF in the QROM

PRFSSH(K,x)

1 : H ← Hc(x ∥K)

2 : label← [A,B,C,D,E, F ]

3 : for i ∈ {1, 2, . . . , 6}
4 : ki ← Hc(K ∥H ∥ label[i] ∥H)

5 : return (H, k1, . . . , k6)

Figure 5. Description of PRFSSH used in the SSH protocol to compute
session ID H and session keys (ki)i∈[6] using the hash function Hc.

Note that in our above analysis of post-quantum SSH in
the ACCE security model, we also needed to assume that the
PRFSSH function used in the protocol is a secure PRF. Prior
works on analysing SSH (namely, [4], [6]) go into detail on
why we need to make such a “monolithic” PRF assumption
on PRFSSH, and why we cannot rely on a weaker assumption
that the underlying hash function Hc is collision-resistant.
At a high level, this is because the hash Hc is applied on
an input which includes the shared key K (see Figures 2
and 5), and collision resistance of Hc does not guarantee the
secrecy of K.

The authors of [6] also mention that if Hc is modeled as
a (classical) random oracle, then PRFSSH can be proven to be
a secure PRF. At the same time, they leave proving the same
in the standard model as an open question. Now in the post-
quantum setting, since the QROM uses a weaker heuristic
than the ROM (but a stronger heuristic than the standard
model) in terms of providing attackers with a more realistic

11. More specifically, we would obtain a multiplicative factor based on
the number of quantum random oracle queries made by the IND-CPA
adversary.

quantum access to public hash functions, we take a step
towards answering this question by concretely establishing
the security of PRFSSH when Hc is modeled as a quantum
random oracle.12 But before diving into our QROM security
analysis of PRFSSH, we first give some intuition behind it.

It is folklore in the QROM literature that a keyed quantum
random oracle is a secure PRF (e.g., see [35, Lemma 2.2], [21,
Corollary 1]). This means that the functions Hc(· ∥K) and
Hc(K ∥ ·) in the description of PRFSSH (see Figure 5) are
secure PRFs. So towards proving the security of PRFSSH in
the QROM, one can first replace Hc(· ∥K) with a uniformly
random function R1 (with the same domain and co-domain as
that of Hc(· ∥K)), and then replace Hc(K ∥ ·) with another
independent random function R2. But there is a problem
with this approach. Note that the functions Hc(· ∥K) and
Hc(K ∥ ·) are highly correlated in the sense that they share
the same key K. So we cannot just replace these functions
with their uniformly random counterparts individually. For
example, if we first replace Hc(· ∥K) with R1, then the
reduction needs to simulate the function Hc(K ∥ ·) towards
the PRFSSH-attacker; however the reduction cannot do so
because it does not know the secret key K. To overcome
this problem, we would need some kind of a joint PRF
assumption on Hc(· ∥K) and Hc(K ∥ ·). However the authors
of [4] mention that this is an “unusual” assumption, and
hence resort to the monolithic PRF assumption on PRFSSH

(similar to [6]) in their analysis of post-quantum SSH.
In our following analysis, we justify this unusual as-

sumption in the QROM by revisiting the proof of the
folklore “keyed QRO is a PRF” result (specifically, that
of [21, Corollary 1]) and extending it to our above joint PRF
setting. This allows us to replace the functions Hc(· ∥K)
and Hc(K ∥ ·) with R1 and R2 simultaneously, which later
makes it easy to formally argue security of PRFSSH.

Theorem 4.4. Let ℓK and ℓH denote the bit-lengths of shared
hybrid key K and session ID H respectively in the post-
quantum SSH protocol. Then for any adversary A against
PRFSSH (see Fig. 5) making qPRF classical PRF queries and
qHc

quantum queries to the underlying random oracle Hc,
we have

Advprf
PRFSSH

(A) ≤ qHc · 2
−
(

ℓK−3

2

)
+ q2PRF · 2−ℓH .

Proof. Let ℓtr denote the bit-length of transcripts on which
PRFSSH is applied in the post-quantum SSH protocol (see
Figure 2). Note that we have

Advprf
PRFSSH

(A) = |Pr[1← A|Hc⟩,PRFSSH(K,·)]− Pr[1← A|Hc⟩,R]|,

where we have the secret key K ←$ {0, 1}ℓK , and R to be
an independent and uniformly random function with domain
{0, 1}ℓtr and co-domain {0, 1}7ℓH

(
i.e., the same as that

of PRFSSH(K, ·)
)
. To establish the above upper bound on

Advprf
PRFSSH

(A), we first provide A classical access to an

12. In fact, our security proof of PRFSSH also holds in the so-called Non-
Observable QROM (NO QROM) [36] which uses even weaker heuristics
than the plain QROM wherein we do not observe an attacker’s queries to
the hash oracle (but we still rely on “programming” such an oracle).



“intermediate” function F described as follows: F is basically
the same as PRFSSH(K, ·) but where instead of computing
H ← Hc(x ∥K) and ki ← Hc(K ∥H ∥ label[i] ∥H) (for
i ∈ {1, . . . , 6}) as in Figure 5, we compute H ← R1(x)
and ki ← R2(H ∥ label[i] ∥H) for two independent and
uniformly random functions R1 : {0, 1}ℓtr → {0, 1}ℓH and
R2 : {0, 1}2ℓH+ℓlabel → {0, 1}ℓH , where ℓlabel denotes the
bit-length of labels in the PRFSSH computations.

Now we prove the following lemma.

Lemma 4.3.

|Pr[1← A|Hc⟩,PRFSSH(K,·)]−Pr[1← A|Hc⟩,F]| ≤ qHc
·2−

(
ℓK−3

2

)
.

Proof. Let B be an algorithm that has quantum access to
random oracle Hc, and classical access either to the oracles
Hc(· ∥K) and Hc(K ∥ ·) or oracles R1 and R2 used in
function F.13 It is not hard to see that B|Hc⟩,Hc(· ∥K),Hc(K ∥ ·)

(resp. B|Hc⟩,R1,R2) can perfectly simulate the PRF security
experiment A|Hc⟩,PRFSSH(K,·) (resp. A|Hc⟩,F); B can respond
to A’s classical PRF queries by performing the corresponding
computations (either that of PRFSSH(K, ·) or F) locally
using its classical oracles. By having B output the same
bit as that of A at the end of the experiment, we there-
fore have that Pr[1 ← B|Hc⟩,Hc(· ∥K),Hc(K ∥ ·)] = Pr[1 ←
A|Hc⟩,PRFSSH(K,·)], Pr[1← B|Hc⟩,R1,R2 ] = Pr[1← A|Hc⟩,R].

We now use Lemma 2.1 (i.e., the generalized “One-
Way To Hiding” lemma) for bounding the probability
of B distinguishing the classical oracles Hc(· ∥K) and
Hc(K ∥ ·) from the oracles R1 and R2 — while having
quantum access to oracle Hc — to complete the proof. Note
that the task of distinguishing between the oracle tuples
(|Hc⟩ ,Hc(· ∥K),Hc(K ∥ ·)) and (|Hc⟩ ,R1,R2) is the same
as distinguishing the tuples (|G⟩ ,R1,R2) and (|Hc⟩ ,R1,R2)
where the quantum oracle G is obtained by reprogramming
Hc as follows:

G(y) =



R1(x) if y is of the form (x ∥K) where
x ∈ {0, 1}ℓtr ,

R2(x) if y is of the form (K ∥x) where
x ∈ {0, 1}2ℓH+ℓlabel ,

Hc(y) otherwise.

In other words, the quantum oracles Hc and G behave the
same on all inputs except those belonging to the set S =
{(x ∥K) | x ∈ {0, 1}ℓtr} ∪ {(K ∥x) | x ∈ {0, 1}2ℓH+ℓlabel}.
Hence from Lemma 2.1, the distinguishing advantage of
any oracle algorithm making at-most qHc quantum queries
either to |Hc⟩ or |G⟩ in the above tuples would be at
most 2qHc

√
Pguess; in our setting, Pguess is essentially the

probability of the event where measurement of a random i-th
quantum query (i←$ [qHc

]) of B|Hc⟩,R1,R2 falls in S. Since
the random oracles Hc, R1 and R2 carry no information on
key K ←$ {0, 1}ℓK , the view of B|Hc⟩,R1,R2 — and hence,
the measurement of its i-th quantum query — is independent
of set S. Therefore, we have Pguess ≤ 2 · 2−ℓK which results

13. Note that the oracles Hc(· ∥K) and Hc(K ∥ ·) are appropriately
domain separated because in the post-quantum SSH protocol, ℓtr is strictly
greater than 2ℓH + ℓlabel.

in the above distinguishing probability to be bounded by

qHc
· 2−

(
ℓK−3

2

)
. This finishes the proof.

To obtain the final bound on Advprf
PRFSSH

(A), all that
remains is to prove the following lemma.

Lemma 4.4.

|Pr[1← A|Hc⟩,F]− Pr[1← A|Hc⟩,R]| ≤ q2PRF · 2−ℓH .

Proof. Note that the functions F and R are independent
of the quantum random oracle Hc, and A is only allowed
to access these functions classically. To argue about the
above distinguishing probability, it helps to consider each
component of the outputs of F and R, i.e., (H, k1, . . . , k6),
separately.

Starting with the session ID component H , for each
unique input x to F, we have H ← R1(x) to be an
independent and uniformly random output (since R1 is a
random function). This is also the case for R as it is a random
function by definition. Hence the distributions of session ID
outputs match in both F and R.

Moving to the session keys ki (i ∈ [6]), first note that
in F, any two components ki ← R2(. . . ∥ label[i] ∥ . . . ) and
kj ← R2(. . . ∥ label[j] ∥ . . . ) where i ̸= j are independent
of each other because of the label separation (i.e., label[i] ̸=
label[j]) in the random function R2. This is also true for R.
Hence we only have to focus on the individual distributions
of ki’s. Now with respect to any fixed index i ∈ [6], for
each unique input x to R, the resulting ki is independent
and uniformly random. In the case of F, this is true for
ki ← R2(R1(x) ∥ label[i] ∥R1(x)) as well unless there are
collisions in R1. Since A can make at-most qPRF classical
queries to F — and hence, at-most qPRF indirect classical
queries to the random function R1 with co-domain {0, 1}ℓH
— the probability that A induces a collision in R1 is upper-
bounded by q2PRF

2ℓH
. This completes the proof.

Hence we arrive at the above upper bound on
Advprf

PRFSSH
(A) by applying a triangle inequality on the bounds

shown in Lemmas 4.3 and 4.4.

5. IND-CPA v/s IND-CCA Secure KEMs in
Post-quantum SSH

Our security analysis in the previous section essentially
states that SSH is a post-quantum secure ACCE protocol
when the hybrid KEM used in the handshake phase is
IND-CPA secure (along with the other primitives, such as
signatures, being secure according to our theorems in Subsec-
tion 4.1). And post-quantum IND-CPA security of the hybrid
KEM follows tightly from IND-CPA security of the quantum-
secure constituent KEM, as seen in Theorem 4.2. However
as discussed in Subsection 4.2.1 above, such quantum-secure
ephemeral KEMs used in real-world implementations of SSH,
namely, Streamlined NTRU Prime and ML-KEM, employ
variants of the FO transforms to achieve the stronger notion
of IND-CCA security — which is more than what is required
for the security of SSH in a formal sense. Also such FO-like



transforms not only complicate cryptographic analyses of the
resulting KEMs in post-quantum models such as the QROM,
but they result in performance overheads too.

Hence in the context of post-quantum SSH, we suggest a
much simpler transform for the quantum-secure constituent
KEMs of the hybrid key exchange which achieves IND-CPA
security in the QROM, and also avoids the aforementioned
costs. We describe our transform in Figure 6.

Encap⋆(ek)

1 : m←$M
2 : ct := Enc(ek ,m)

3 : K := H(m)

4 : return (ct ,K)

Decap⋆(dk , ct)

1 : m ′ := Dec(dk , ct)

2 : if m ′ = ⊥ then return K := ⊥
3 : else return K := H(m ′)

Figure 6. Our suggested transform to construct quantum-secure
KEMs (Gen,Encap⋆,Decap⋆) for SSH’s hybrid key exchange. Here
(Gen,Enc,Dec) is the starting PKE scheme, with message space M,
which is assumed to be OW-CPA secure (“Streamlined NTRU Prime
Core” [8] is an example of such a PKE scheme); note that the constructed
KEM uses the same Gen as the starting PKE scheme. We also have
H : {0, 1}∗ → {0, 1}256 to be a hash function. More importantly, note
the lack of a “re-encryption check” in Decap⋆, in contrast to FO-like
transforms as seen in Figure 4.

In Appendix A, we formally prove IND-CPA security
of a variant of Streamlined NTRU Prime called sntrup⋆

which is obtained by applying our suggested transform to the
sntrup-core PKE scheme. Our analysis in the QROM is much
simpler compared to the one for the original Streamlined
NTRU Prime, as stated in Theorem 4.3.

Theorem 5.1. For any IND-CPA adversary A against the
sntrup⋆ KEM (described in Figure 6), there exists a OW-CPA
adversary B against the sntrup-core PKE scheme such that

Advind-cpa
sntrup⋆(A) ≤ 2

√
Advow-cpa

sntrup-core(B),

where B runs in about the same time as that of A.

Our result can also be extended to ML-KEM in a straight-
forward way. But again as discussed w.r.t. Theorem 4.3 above,
the resulting bounds would be relatively non-tight as the
starting PKE scheme used in ML-KEM is randomized.

5.1. Experiments

We quantify our modification, that is removing the
FO transform, by applying it to two post-quantum
hybrid key exchange methods used in OpenSSH
version 9.9p1, namely sntrup761x25519-sha512
and mlkem768x25519-sha256.14 We modified the code
ourselves and provide the patches and experiment notes
along with the three experiments we performed, available
at [39]. All of our experiments were performed on a Linux
6.11.6 machine using a single CPU core (i.e., 12th Gen Intel
Core i7-1265U@3.9GHz) and 16 GB RAM. Our findings
are summarized in Tables 1 and 2.

14. Because the C code for the mlkem768 constituent KEM of
mlkem768x25519-sha256 is machine-generated from libcrux [37], we
instead link against liboqs [38] (commit 2ee908df).

TABLE 1. CPU TIMINGS OF KEM AND HYBRID KEX WHICH MEASURE
KeyGen, Encap, AND Decap EXECUTED ONE AFTER THE OTHER.

NUMBER REPORTED IS THE MEAN OF 1000 SAMPLES, WITH THE SAMPLE
VARIANCE BEING ABOUT 10−5 TIMES THE CORRESPONDING MEAN.

Scheme IND-CCA [s] IND-CPA [s]

sntrup761 2.8164 · 10−2 2.7056 · 10−2

mlkem768 2.7853 · 10−5 1.3242 · 10−5

sntrup761x25519-sha512 3.0290 · 10−2 2.9105 · 10−2

mlkem768x25519-sha256 3.1412 · 10−3 3.1015 · 10−3

TABLE 2. NETWORK TIMINGS WHICH MEASURE A SINGLE COMPLETE
SSH CONNECTION. SAMPLE VARIANCE IS ABOUT 0.0001X THIS TIME.

Scheme IND-CCA [s] IND-CPA [s]

sntrup761x25519-sha512 0.1565 0.1534
mlkem768x25519-sha256 0.1325 0.1316

We find that, as expected, the difference in the CPU
timings of the KEMs themselves is noticeable — around a
52% improvement in mlkem768 where Encap is most costly,
but around a 4% improvement in sntrup761 where KeyGen
is most costly. On the protocol level, however, the difference
is barely noticeable (with respect to a single SSH connection)
— below 2% for sntrup761x25519-sha512 and below 1%
for mlkem768x25519-sha256.15

On the other hand, it is worth pointing out that removing
the FO transform from the hybrid KEX saves one from
performing a significant number of hash function computa-
tions. Namely, in our modification of the KEMs we were
able to remove four out of five hash function computations
performed by the SSH server in Encap — that is, we only
compute H(m) — and four out of five hash computations
performed by the SSH client in KeyGen and Decap — that
is, the key ek is no longer hashed, and we do not re-
encrypt and only compute H(m). These benefits add up
considering the large number of SSH connections that happen
per day worldwide. For example, as pointed out in Meta’s
post-quantum transition update [15], “extra hashing steps”
such as the ones used in the above KEMs because of the
FO transform contribute to “non-negligible capacity cost”
associated with deploying post-quantum key exchange that
“can cost hundreds of thousands or even millions of dollars
a year”. Using our suggested IND-CPA secure KEMs thus
reduces the required number of hash function computations
from ten to two, helping to alleviate ecological and financial
costs of transitioning to post-quantum cryptography on a
larger scale.
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Appendix A.
Omitted Proofs

A.1. Proof of Lemma 4.1

Proof. Game 0. The game equals the ACCE security exper-
iment described in Section 2.4. Thus, Advacce-so-auth

SSH (A) =
Pr(break

(0)
0 ).

Game 1. In this game we abort if any two nonces ri,
rj collide. Specifically the challenger collects a list L of all
nonces ri sampled by the challenger during the simulation.
If any nonce appears twice, we abort the simulation. Thus
Pr(break

(0)
0 ) ≤ Pr(break

(0)
1 ) + (nPnS)2

2µ .
Game 2. In this game we abort if, during the experiment,

any two hash inputs collide to the same output. We do
so by initialising a collision-resistance challenger at the
beginning of the experiment. Our reduction B1 maintains a
list Coll , where all the input/output pairs of all executions
of the hash function H are recorded. B1 aborts if at any
time a pair (in,H(in)) is added to Coll such that there
already exists an entry (in′,H(in′)) in Coll with H(in) =
H(in′) but in ̸= in′. Whenever A causes a collision, B1
inspects Coll and outputs this collision to the hash collision-
resistance challenger. Since B1 finds a collision, we have
that Pr(break(0)1 ) ≤ Pr(break

(0)
2 ) + Advcoll-res

Hc
(BA1 ).

Game 3. In this game, we guess the session the first
session that accepts maliciously. Since we are consider-
ing server-only authentication we note that only client
sessions can accept maliciously. Thus we guess two in-
dices (i, s) ∈ [nP ] × [nS ] and abort if the adversary
causes some other session πt

j to accept maliciously before
πs
i . This happens with probability 1

nPnS
. Thus we have:

Pr(break
(0)
2 ) ≤ nPnS · Pr(break(0)3 ). Note that in what

follows πs
i accepts maliciously, and thus by Definition 2.4

A cannot issue OCorrupt(πs
i .pid).

Game 4. In this game we exclude signature forgeries.
We abort the simulation if some session πs

i accepts after it

receives a signature which was never output of a session with
a matching session identifier. Note that we have excluded
nonce and hash collisions, so from now on all values to be
signed are different. Thus any abort event is related to a
signature forgery.

Technically, we construct an algorithm BA2 which simu-
lates the SSH protocol as in Game 3. B2 interacts with A.
B2 receives a public key vk from an EUF-CMA signature
challenger for DSS, guesses which public key vk j∗ the ses-
sion will use to verify the signature (which costs us a factor
nP in the reduction) and sets vk j∗ = vk . Since the signing
key has to be uncorrupted it is no problem for the reduction
that the secret signing key is unknown. If B2 needs to sign
a message on behalf of party Pj∗ , it makes a signing query
to the EUF-CMA challenger. If the session πs

i maliciously
accepts in the sense of definition 2.4 in Game 4, we know
from the discussion above that the maliciously accepting
session has verified a signature σ′ over a session ID H
where there is no session πt

j∗ with the same session ID, thus
this signature was not generated with a call to the signature
challenger. Thus B2 has found (H,σ′) as a signature forgery,
so Pr(break

(0)
3 ) ≤ Pr(break

(0)
4 ) + nPAdv

EUF-CMA
DSS (BA2 ). We

note that at this point, for a client session πs
i , all messages

sent up to and including KEX KEM REPLY are authenticated
via the server signature. Now we ensure all other messages
in the handshake are authenticated via the BSAE scheme.

Game 5. In this game we introduce an abort event that
triggers if the test session πs

i is a client and accepts a
KEM ciphertext ct but ct was not generated by an honest
session owned by πs

i .pid. Note that here we are in server-
only authentication mode, so if the test session πs

i is a
server and the adversary injects a KEM public key ek that
is not from an honest session then it will lose the game.
Note that at the point the test session πs

i accepts the KEM
ciphertext, neither its communicating partner nor itself has
accepted the session and thus the adversary cannot issue
OCorrupt(πs

i .pid) without losing the game. Since πs
i will

only accept ct after verifying a signature σS over Hc(x∥K)
where ct ⊂ x, and by Game 4 we exclude signature
forgeries and by Game 2 we exclude hash collisions we
find: Pr(break(0)4 ) = Pr(break

(0)
5 ).

Game 6. In this game we replace the value K, ct =
KEM.Encap(ek), K = KEM.Decap(dk, ct) computed by
πs
i and πt

j with a uniformly random value K∗. Specifically,
we introduce a reduction B3 that interacts with A and embeds
an IND-CPA challenge into the test session’s transcript. Note
that in what follows, we assume WLOG that the test session
πs
i is the client. The alternative case (where πs

i is the server)
follows identically up to a change in notation.

At the beginning of the experiment, B3 initialises an
IND-CPA KEM challenger. When πs

i needs to compute a
KEM public key pair, B3 replaces the honest computation of
(ek, dk) with (ek∗, dk∗) output by the IND-CPA challenger.
Similarly, when the server session πt

j needs to encapsulate
a shared secret, B3 replaces K, ct with the key output K∗
and the ciphertext output ct∗ from the IND-CPA challenger.
Finally, when πs

i needs to compute K, B3 replaces K with



K∗. Since we have excluded maliciously accepting sessions,
and πs

i and πt
j communicate without any modification from

the adversary.
Any adversary A that can distinguish this game from the

previous game can directly be used to construct an adversary
BA3 that can break the IND-CPA assumption: If the challenge
bit b sampled by the IND-CPA KEM challenger is 0, then
K∗ = Decap(dk, ct) and we are in Game 5. If the challenge
bit b sampled by the IND-CPA KEM challenger is 1, then
K∗ is instead uniformly random and independent of the
protocol flow and we are in Game 6. Thus Pr(break

(0)
5 ) ≤

Pr(break
(0)
6 ) + Advind-cpa

KEM (BA3 ).
Game 7. In this game we replace the values H, k1, ..., k6

computed by πs
i and πt

j as PRFSSH(K
∗, sid) with random

values H∗, k∗1 , ..., k
∗
6 . Any adversary A that can distinguish

this game from the previous game can directly be used
to construct an adversary BA4 that can break the PRF
assumption: let S = H∥k1∥...∥k6 be the output of PRFSSH,
and let S∗ = H∗∥k∗1∥...∥k∗6 be a random string of the same
length. For S we are in Game 6, and for S∗ in Game 7.
Thus Pr(break

(0)
6 ) ≤ Pr(break

(0)
7 ) + Advprf

PRFSSH
(BA4 ).

Game 8. In this game, we introduce an abort event that
triggers if πs

i decrypts AUTHOK or AUTH SUCCESS ciphertexts
(keyed by k∗1 . . . k

∗
6 but the ciphertext was not output by an

honest session owned by πs
i .pid.

Specifically, we specify a reduction B5 that proceeds
identically as in Game 7, but at the beginning of the experi-
ment initialises an bsae challenger, which B5 queries when
πs
i needs to encrypt or decrypt using k∗1 . . . k

∗
6 . The abort

event only triggers if A can produce a valid ciphertext that
decrypts under k∗1 . . . k

∗
6 , and we can submit the ciphertext to

the bsae challenger, causing phase← 1 in the bsae security,
allowing a trivial win by asking for an encryption of m0, m1,
and submitting the challenge ciphertext to the Dec oracle,
recovering mb and allowing B5 to win the game. By Game
7 k∗1 . . . k

∗
6 are already uniformly random and independent

and this replacement is sound.
Any A that can trigger the abort event can be used by

B5 to break the bsae security of the BSAE scheme. Thus:
Pr(break

(0)
7 ) ≤ Pr(break

(0)
8 ) + Advbsae

BSAE(BA5 ).
Final analysis. Now all signatures are computed by

legitimate parties only, and are all computed for different
session IDs, which allows πs

i to verify that KEXREPLY,
KEX KEM REPLY come from an honest server party. Addi-
tionally, the game aborts when AUTHOK or AUTH SUCCESS
are forged to πs

i . Thus there is no way for πs
i to accept

maliciously, and we have Pr(break
(0)
8 ) = 0.

A.2. Proof of Lemma 4.2

Proof. Let break(1)δ be the event that occurs when A answers
the encryption challenge correctly in Game δ in the sense
of Definition 2.5.

Game 0. This game equals the ACCE channel security
experiment described in Section 2.4.

Game 1. In this game we abort if the test session πs
i

accepts maliciously, and thus proceeds identically to the

proof of Lemma 4.1. Thus, in this game any session that
accepts non-maliciously in the sense of Definition 2.4 has a
unique uncorrupted partner session. From the previous proof,
we have Pr(break

(1)
0 ) ≤ Pr(break

(1)
1 ) + Advacce-so-aenc

SSH (A).
From now on, we always have a matching session for the
session πs

i where the adversary tries to guess the random
bit: for server sessions through Definition 2.4, and for client
sessions through this game.

Game 2. In this game, we guess the session for which
the adversary outputs the bit b′. We guess two indices
(i, s), (j, t) ∈ [nP ]× [nS ] and abort if the adversary outputs
(i∗, s∗, b′) with (i∗, s∗) ̸= (i, s), or has a unique matching
partner with session πt∗

j∗ , but (j∗, t∗) ̸= (j, t). This happens
with probability 1

n2
Pn2

S
. By the definition of the channel

security experiment we have that there exists a unique partner
session πt

j which can be easily determined by the simulator.
Thus we have: Pr(break(1)1 ) ≤ n2

Pn
2
S · Pr(break

(1)
2 ).

Game 3. In this game we replace the value K, ct =
KEM.Encap(ek), K = KEM.Decap(dk, ct) computed by
πs
i and πt

j with a uniformly random value K∗. Specifically,
we introduce a reduction B6 that interacts with A and embeds
an IND-CPA challenge into the test session’s transcript. Note
that in what follows, we assume WLOG that the test session
πs
i is the client. The alternative case (where πs

i is the server)
follows identically up to a change in notation.

At the beginning of the experiment, B6 initialises an
IND-CPA KEM challenger. When πs

i needs to compute a
KEM public key pair, B6 replaces the honest computation of
(ek, dk) with (ek∗, dk∗) output by the IND-CPA challenger.
Similarly, when the server session πt

j needs to encapsulate
a shared secret, B6 replaces K, ct with the key output K∗
and the ciphertext output ct∗ from the IND-CPA challenger.
Finally, when πs

i needs to compute K, B6 replaces K with
K∗. Since we have excluded maliciously accepting sessions,
and πs

i and πt
j communicate without any modification from

the adversary.
Any adversary A that can distinguish this game from the

previous game can directly be used to construct an adversary
BA6 that can break the IND-CPA assumption: If the challenge
bit b sampled by the IND-CPA KEM challenger is 0, then
K∗ = Decap(dk, ct) and we are in Game 2. If the challenge
bit b sampled by the IND-CPA KEM challenger is 1, then
K∗ is instead uniformly random and independent of the
protocol flow and we are in Game 3. Thus Pr(break

(1)
2 ) ≤

Pr(break
(1)
3 ) + Advind-cpa

KEM (BA6 ).
Game 4. In this game we replace the values H, k1, ..., k6

computed by πs
i and πt

j as PRFSSH(K
∗, sid) with random

values H∗, k∗1 , ..., k
∗
6 . Any adversary A that can distinguish

this game from the previous game can directly be used
to construct an adversary BA7 that can break the PRF
assumption: let S = H∥k1∥...∥k6 be the output of PRFSSH,
and let S∗ = H∗∥k∗1∥...∥k∗6 be a random string of the same
length. For S we are in Game 3, and for S∗ in Game 4.
Thus Pr(break

(1)
3 ) ≤ Pr(break

(1)
4 ) + Advprf

PRFSSH
(BA7 ).

Final analysis. We now have that the keys k∗1 , ..., k
∗
6

are uniformly random and independent from the protocol
transcript. Thus any adversary A that can guess (i∗, s∗, b′)



correctly can directly be used to construct an adversary BA8
that breaks the BSAE scheme. Technically we exploit the fact
that all keys for the encryption scheme are now independent
from the handshake and embed a BSAE challenger to answer
A’s queries for Enc, Dec. Now B8 simply forwards Q’s
output to the challenger and thus we have Pr(break

(1)
4 ) ≤

Advbsae
BSAE(BA8 ).

A.3. Proof of Theorem 4.3

Proof. The proof proceeds with a sequence of game hops
(G0 → . . .→ G4) with respect to adversary A. The games
G0 and G4 are basically the IND-CPA security games for
sntrup KEM where A gets the real encapsulated key K∗ :=
H1(r, ct

∗) with r := H3(m) as in Figure 4 and a random
encapsulated key K∗ ←$ {0, 1}256 respectively. We hence
have

Advind-cpa
sntrup (A) = |Pr[1← G0]− Pr[1← G4]|.

In game G1, we program the random oracle H3 on
a single input, i.e., m, by replacing r := H3(m) with a
uniformly random value r ←$ {0, 1}256 which is independent
of H3. We will use the double-sided OW2H lemma (see
Lemma 2.3 above) to bound |Pr[1← G0]−Pr[1← G1]|. In
the context of Lemma 2.3, let G3 be the quantum oracle that is
obtained by reprogramming H3 as above: i.e., G3(x) = H3(x)
for all x ̸= m, and G3(m) := r for a uniformly random
r ←$ {0, 1}256 which is independent of H3. Also let DA
be a quantum oracle algorithm which has access to either
H3 or G3, and takes as input z = (ek , ct∗0,H3(m)) where
(ek , dk)← Gen(1λ), m←$M and ct∗0 := Enc(ek ,m).

It is not hard to see that D|H3⟩
A (z) (resp. D|G3⟩

A (z)) can
perfectly simulate the game G0 (resp. G1) towards A.
Specifically, note that D|G3⟩

A (z) uses the H3(m)-part of its
input z as “r” to derive ct∗1 and K∗ as in Figure 4, and uses
the oracle G3 to respond to A’s H3-queries; but from A’s
perspective, this is virtually the same as in G1. By having
DA output the same bit as A at the end of the game, from
Lemma 2.3 we have

|Pr[1← G0]− Pr[1← G1]| ≤ 2

√
Pr[m← D|H3⟩,|G3⟩

B (z)]

for a quantum oracle algorithm DB — as described in
Lemma 2.3 — which runs in about the same time as that of
DA, and hence, also A. Using DB, we will now construct a
OW-CPA adversary B against the sntrup-core PKE scheme
such that Advow-cpa

sntrup-core(B) = Pr[m← D|H3⟩,|G3⟩
B (z)].

Upon receiving the pair (ek , ct∗0) from its OW-CPA
challenger — where (ek , dk) ← Gen(1λ), m ←$ M and
ct∗0 := Enc(ek ,m) — B samples r ←$ {0, 1}256 uniformly
at random and forwards the input z = (ek , ct∗0, r) to DB.
To simulate both the QROs H3 and G3 towards DB, B first
uses a 2q-wise independent function to simulate G3 (as
in [27]) where q is the number of quantum queries made
by DB to its oracles. Now here is the important part. Since
sntrup-core is a perfectly-correct deterministic PKE scheme,
B simulates H3 by first checking if DB’s H3-query x satisfies

Enc(ek , x) = ct∗0: if it does, it means that x = m and B
returns r as the response of H3; otherwise, x ̸= m and
B forwards G3(x) (B can do this simulation in quantum
superposition using an appropriate unitary mapping in a
straightforward way). After DB completes its execution
and returns a value, B forwards it to its OW-CPA chal-
lenger. Since B perfectly simulates D|H3⟩,|G3⟩

B (z), we have
Advow-cpa

sntrup-core(B) = Pr[m ← D|H3⟩,|G3⟩
B (z)]; also note that

the running time of B is about the same as that of DB, and
hence, also that of A.

In game G2, we replace the values ct∗1 := H2(r,H4(ek))
and K∗ := H1(r, (ct

∗
0, ct

∗
1))) with two independent and

uniformly random values in {0, 1}256. Consider the QRO
(H1 × H2)(·) = (H1(·),H2(·)). For the above replacement,
we are effectively relying on the fact that |(H1 × H2)(r, ·)⟩
is a secure PRF (see Lemma 2.2) where we have the secret
“PRF key” to be r ←$ {0, 1}256 following game G1. To
argue this more formally via a reduction, we note that a
PRF-adversary with access to |H1 × H2⟩ can respond to
A’s individual quantum queries to |H1⟩ (resp. to |H2⟩) by
initially preparing a 256-qubit uniform superposition in
the output register corresponding to |H2⟩ (resp. to |H1⟩);
this would make it “unentangled” with the |H1⟩-register
(resp. |H2⟩-register), thereby allowing the PRF-adversary
to ignore the unentangled output following A’s individual
query (also see [40, Footnote 1]). With this observation, we
can use a straightforward reduction to the PRF security of
|(H1 × H2)(r, ·)⟩ as described in Lemma 2.2 to obtain

|Pr[1← G1]− Pr[1← G2]| ≤
2(qH1 + qH2)

2128
.

(In such a reduction, the PRF-adversary makes a query to
|H1 × H2⟩ each time A makes an individual H1-query or H2-
query; hence the PRF-adversary effectively makes at-most
(qH1

+ qH2
) queries.)

In game G3, we revert the change introduced in G2

w.r.t. ct∗1, while still keeping the change w.r.t. K∗ intact—
i.e., we now have ct∗1 := H2(r,H4(ek)) once again instead of
ct∗1 ←$ {0, 1}256. By having r ←$ {0, 1}256 to be our secret
PRF key in “ct∗1 := H2(r,H4(ek))”, we can use Lemma 2.2
for the PRF security of |H2⟩ to get

|Pr[1← G2]− Pr[1← G3]| ≤
2qH2

2128
.

Finally in game G4, we reprogram the random oracle
H3 on the single input m by replacing back r ←$ {0, 1}256
with r := H3(m), thereby essentially reverting the change
introduced in G1. By invoking the double-sided OW2H
lemma (Lemma 2.3) in a similar way as in the above “G0 →
G1” hop, it is not hard to obtain another OW-CPA adversary
B′ against the underlying sntrup-core, with about the same
running time as that of A, such that

|Pr[1← G3]− Pr[1← G4]| ≤ 2
√

Advow-cpa
sntrup-core(B′).

Collecting the above bounds finishes the proof.



Gen′(1λ)

1 : (ek , dk)← Gen(1λ)

2 : s̄←$ {0, 1}ℓ

3 : dk := (dk , ek , s̄)

4 : return (ek , dk)

Encap′(ek)

1 : m←$M
2 : ct0 := Enc(ek ,m)

3 : ct1 := H̄2(m,H4(ek))

4 : ct := (ct0, ct1)

5 : K := H̄1(m, ct)

6 : return (ct ,K)

Decap′(dk , ct)

1 : Parse (dk , ek , s̄)← dk , (ct0, ct1)← ct

2 : m ′ := Dec(dk , ct0)

3 : if m ′ = ⊥ then return K := H0(s̄, ct)

4 : ct ′0 := Enc(ek ,m ′)

5 : ct ′1 := H̄2(m
′,H4(ek))

6 : if (ct0, ct1) ̸= (ct ′0, ct
′
1) then return K := H0(s̄, ct)

7 : else return K := H̄1(m
′, ct)

Figure 7. sntrup′ = (Gen′,Encap′,Decap′), the simplified FO-
type transform used in Streamlined NTRU Prime with random oracles
H0,H4, H̄1, H̄2 : {0, 1}∗ → {0, 1}256.

A.4. Proof of Theorem 5.1

Proof. The proof simply consists of a single game hop
(G0 → G1). The games G0 and G1 are basically the
IND-CPA security games for sntrup⋆ where A gets the
real encapsulated key K∗ := H(m) as in Figure 6 and a
random encapsulated key K∗ ←$ {0, 1}256 respectively. We
therefore have

Advind-cpa
sntrup⋆(A) = |Pr[1← G0]− Pr[1← G1]|.

Note that in G1, we are essentially programming the
QRO H on a single input, i.e., m, by replacing K := H(m)
with a uniformly random key K ←$ {0, 1}256. Similar to
the “G0 → G1” hop in our IND-CPA security proof of
sntrup above (Subsection A.3), we can apply the double-
sided OW2H lemma (Lemma 2.3) to construct a OW-CPA
adversary B against sntrup-core, whose running time is about
the same as that of A, such that

|Pr[1← G0]− Pr[1← G1]| ≤ 2
√

Advow-cpa
sntrup-core(B).

As in the proof of Theorem 4.3 above, we again cru-
cially use the fact that sntrup-core is a perfectly-correct
deterministic PKE scheme.

Appendix B.
IND-CCA Security of Streamlined NTRU Prime
in the QROM

At a high level, the nested use of random oracles in
Streamlined NTRU Prime, i.e., sntrup, is the main hurdle
towards proving its IND-CCA security in the QROM. Here
we provide a proof sketch by using so-called quantum
indifferentiability to overcome this hurdle, following the
idea proposed by Bernstein [41].

Theorem B.1 (informal). If sntrup′ in Figure 7 is IND-CCA-
secure in the QROM, then sntrup is also IND-CCA-secure
in the QROM. If sntrup-core is OW-CPA-secure, then sntrup
is also IND-CCA-secure in the QROM.

Sketch. Our proof sketch follows a sequence of game hops.
Game 0: This is the original IND-CCA game against sntrup.
Game 1: We replace K ′ := H0(H3(s), ct) for invalid
ciphertext with K ′ := H0(s̄, ct), where s̄ ← {0, 1}256.
This change is justified by the generalized OW2H lemma
(Lemma 2.1).
Game 2: Next, we replace the computation of ct1 and
K by using two new random oracles H̄1, H̄2 : {0, 1}∗ →
{0, 1}256; we set ct1 = H̄2(m,H4(ek)) and K ′ = H̄1(m, ct)
in the generation of the challenge and the decapsulation
oracle. Now, the scheme is reduced to the simplified scheme
sntrup′ in Figure 7. This modification is justified by quantum
indifferentiability as will be discussed later.

Finally, we note that this simplified variant employs
one of the FO-like transforms HU ̸⊥ described in [42]
and can be considered as HU ̸⊥[sntrup-core, H̄1, H̄2]. Since
the security of HU ̸⊥ inherits that of the explicit-rejection
variant HU⊥ [21], we only need to focus on security of
HU⊥[sntrup-core, H̄1, H̄2] in the QROM. However the secu-
rity of the latter is proven in [21], [43] following the OW-CPA
security of the underlying PKE scheme, i.e., sntrup-core.

B.1. Quantum Indifferentiability

We now briefly discuss the concept of quantum indiffer-
entiability. To do so, we generalize the corresponding results
of Zhandry [44].

Namely in [44], Zhandry has shown the quantum in-
differentiability of domain extension in hash functions as
follows. Let H0 : X0 → Y0 and H1 : Y0 × X → Y be two
random oracles. Define the construction CH0,H1(x0, x) =
H1(H0(x0), x). Zhandry showed that this construction C is
(quantum) indifferentiable from an independent “monolithic”
random oracle.

But in our case, we would need to consider three
random oracles H0, H1, and H2 and two constructions
CH0,H1

1 (x0, x) = H1(H0(x0), x) and CH0,H2

2 (x0, x) =
H2(H0(x0), x) simultaneously.

It turns out that we can extend the simulator in Zhandry’s
original quantum indifferentiability proof for domain exten-
sion to our case in a straightforward manner. It is also
easy to show that the simulator is indistinguishable [44,
Lemma 8] and consistent [44, Lemma 13], and this leads
to our constructions C1 and C2 being indifferentiable from
the independent random oracles H̄1, H̄2 in our above proof
sketch. That is, there exists a QPT simulator S such that for
any QPT adversary D,∣∣∣∣∣Pr[D|H⃗⟩,|C

H0,H1
1 ⟩,|CH0,H2

2 ⟩(1λ) = 1]

−Pr[D|S
H̄1,H̄2 ⟩,|H̄1⟩,|H̄2⟩(1λ) = 1]

∣∣∣∣∣ = negl(λ).

Thus, this simulator justifies our game hop from Game 1 to
Game 2 in the above sketch.


