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Abstract

A multi-server private information retrieval (PIR) protocol allows a client to obtain an entry
of its choice from a database, held by one or more servers, while hiding the identity of the entry
from small enough coalitions of servers. In this paper, we study PIR protocols in which some of
the servers are malicious and may not send messages according to the pre-described protocol.
In previous papers, such protocols were defined by requiring that they are correct, private, and
robust to malicious servers, i.e., by listing 3 properties that they should satisfy. However, 40
years of experience in studying secure multiparty protocols taught us that defining the security
of protocols by a list of required properties is problematic.

In this paper, we rectify this situation and define the security of PIR protocols with malicious
servers using the real vs. ideal paradigm. We study the relationship between the property-based
definition of PIR protocols and the real vs. ideal definition, showing the following results:

• We prove that if we require full security from PIR protocols, e.g., the client outputs the
correct value of the database entry with high probability even if a minority of the servers
are malicious, then the two definitions are equivalent. This implies that constructions of
such protocols that were proven secure using the property-based definition are actually
secure under the “correct” definition of security.

• We show that if we require security-with-abort from PIR protocols (called PIR protocols
with error-detection in previous papers), i.e., protocols in which the user either outputs
the correct value or an abort symbol, then there are protocols that are secure under the
property-based definition; however, they do not satisfy the real vs. ideal definition, that
is, they can be attacked allowing selective abort. This shows that the property-based
definition of PIR protocols with security-with-abort is problematic.

• We consider the compiler of Eriguchi et al. (TCC 22) that starts with a PIR protocol that is
secure against semi-honest servers and constructs a PIR protocol with security-with-abort;
this compiler implies the best-known PIR protocols with security-with-abort. We show
that applying this protocol does not result in PIR protocols that are secure according to
the real vs. ideal definition. However, we prove that a simple modification of this compiler
results in PIR protocols that are secure according to the real vs. ideal definition.

∗Partially supported by ISF grant 391/21 and by ERC project NFITSC (101097959).
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1 Introduction
A private information retrieval (PIR) protocol [16] allows a client to obtain an entry of its choice
from a database held by one or more servers, such that nothing is revealed to any small enough
coalition of servers about the item being revealed. For example, an investor might want to know
the value of a specific stock without revealing which stock they are interested in. This is modeled
by setting the database to be an N -bit string D, the client holding a retrieval index i, and it wishes
to learn the ith entry of D, i.e., Di, without revealing i. The trivial solution is to let a single
server send the entire database to the client. Chor et al. [16] showed that this is optimal in the
information-theoretic setting when there is a single server. PIR protocols were used to construct
secure multiparty protocols [30, 9], locally decodable codes [34], and inspired constructions of
conditional disclosure of secrets [39, 40]. Most constructions of PIR protocols guarantee that any
single server will not learn any information on the client’s retrieval index [16, 2, 30, 31, 6, 35, 46,
48, 22, 33, 14, 20, 27, 1], e.g., there is a 3-server PIR protocol secure against a single server with
communication complexity 2Õ( 3√log N) [27]. When there are many servers, it is natural to require
that the protocol guarantees the privacy of the client against colluding subsets of the servers.
Constructions of such PIR protocols are given in [30, 6, 46, 5]. It is also natural to consider
malicious servers that may deviate from the protocol. In the stock market example above, one may
consider the case where some of the servers try to give the wrong information on the stock. Such PIR
protocols were first discussed in [7] and further studied in [47, 46, 28, 18, 49, 43, 44, 37, 4, 24, 23, 25].

The security of PIR protocols in the literature is defined by listing the desired properties from
the protocol. However, PIR is a special case of secure multiparty computation (MPC), where it is
well-known that separating the security properties is problematic. Indeed, there are MPC protocols
that satisfy the natural security properties (such as privacy and correctness) yet should clearly be
considered insecure [42, 13, 29]. Instead, the security of MPC protocols is defined using the real
vs. ideal world paradigm. Intuitively, we consider an ideal process for computing a function via a
trusted party that the adversary cannot corrupt. It is then required that any attack performed in
the real world can be simulated in the ideal world, where the adversary is more limited. Different
ideal processes capture different security properties, e.g., full security and security-with-abort.

Defining malicious security of PIR protocol via properties is problematic and it is unclear if
there are other security properties that can be attacked in such protocols. In this work, we rectify
this situation and define the security of PIR protocols using the real vs. ideal world paradigm.
Specifically, we are interested in the notions of full security (also known as guaranteed output
delivery) and security-with-abort. The former captures the requirement that the client always obtain
the “correct” output, and the latter allows the client to abort but never output an “incorrect” value.
We ask how such definitions relate to the property-based definitions used so far, and if there are
efficient PIR protocols satisfying the real vs. ideal security definition. We consider the perfect
setting, the statistical setting, and the computational setting.

1.1 Our Contributions

Our conceptual contribution is defining the ideal processes of the PIR functionality for full security
and security-with-abort against malicious adversaries (see Section 3 for the formal definitions). We
then compare the simulation-based security definition to the property-based security definition.
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1.1.1 The Ideal World Processes

In this section, we describe the ideal world process for each of the desired security notions. A PIR
protocol is then considered secure according to an ideal world if any adversary corrupting a subset
of the servers can be simulated in the ideal world. We stress that definitions for PIR protocols do
not have any privacy requirements from the client; in particular, the client may learn the whole
database. Thus, we only consider adversaries that do not corrupt the client.

Full security of PIR protocols. We first describe the definition of fully secure PIR protocols.
Roughly, the definition captures the requirement that the client outputs the correct value Di,
regardless of the messages sent by the malicious servers. Observe that this only makes sense when
the majority of the servers are honest.1 The ideal world for full security proceeds as follows.
The client sends i to the trusted party and each honest server sends D to the trusted party. The
corrupted servers may change their databases (based on the instruction of the ideal-world adversary)
and send them to the trusted party. Let D′ denote the database that was sent by more than 1/2
of the servers (note that D′ = D if there is an honest majority). The trusted party then sends D′i
to the client. The ideal functionality is only defined when there is an honest majority.

Secure-with-abort PIR protocols. We next describe the definition of secure-with-abort PIR
protocols. Here, we allow the client to output ⊥ (indicating abort). The security definition captures
the requirement that the client never outputs 1 − Di. Note that, unlike the ideal world for full
security, here the definition allows a majority of corrupted servers.

The ideal-world computation proceeds as follows. The client sends i to the trusted party and
each honest server sends D to the trusted party. The corrupted servers may change their databases
(based on the instruction of the ideal-world adversary) and send them to the trusted party. If
the trusted party receives the same database D from all servers, then it sends Di to the client;
otherwise, it sends ⊥ to the client.

1.1.2 Comparing Simulation-Based Security to Property-Based Security

We compare the simulation-based security definitions to the property-based security definitions. In
the following, we fix the total number of servers to be ℓ, and let t bound the number of corrupted
servers. We refer the reader to Section 4 for the formal statements and proofs of the theorems.

Full security. We first compare full security with the property-based definition. In addition to
correctness and t-privacy, here we also consider the notion of t-Byzantine robust2 PIR protocols
defined by Beimel and Stahl [7]. Roughly, it requires that the client outputs Di even if t malicious
servers arbitrarily deviate from the protocol. Note that similarly to full security, this definition
only makes sense when the majority of the servers are honest. As would be expected, full security
implies all 3 security properties. We show that the converse also holds.

1If the number of servers is ℓ and t of them might be corrupted, where 2t ≥ ℓ, then the client cannot distinguish
an execution with the first t servers being corrupted and behaving honestly on input 0N and the ℓ − t remaining
honest servers holding 1N , from an execution with the last ℓ − t ≤ t servers being corrupted and behaving honestly
on input 1N and the first t servers being honest and holding 0N .

2Also known as t-error-correcting [23].

3



Theorem 1.1 (Informal, equivalence of full security and the property-based definition). Any ℓ-
server PIR protocol is t-fully secure if and only if it is correct, t-private, and t-Byzantine robust.

Thus, to prove full security it suffices to show that each property holds individually. In partic-
ular, this shows that previous Byzantine robust constructions, e.g., [7, 47, 46, 43, 44, 37, 4, 24, 23],
are also fully secure.

Security-with-abort. Finally, we consider security-with-abort. Here, instead of t-Byzantine
robustness, we consider the notion of t-error-detecting PIR protocols defined by Eriguchi et al.
[24, 23]. In a t-error-detecting PIR protocol, the client can abort (i.e., by outputting ⊥) but security
requires that no set of t malicious servers can force the client to output 1 − Di. Clearly, error-
detecting is weaker than Byzantine robust; however, it is possible to construct t-error-detecting
PIR protocols when t ≥ ℓ/2 [24, 23].

Similarly to the previous definitions, the simulation-based definition implies the property-based
definition. However, we show that here the converse is not true.

Theorem 1.2 (Informal, security-with-abort and the property-based definition). Any ℓ-server
PIR protocol that is t-secure-with-abort is correct, t-private, and t-error-detecting. However, the
converse does not hold.

To see why the properties do not imply simulation-based security, consider the following pro-
tocol, in which a single malicious server can cause a “selective abort”, i.e., the user will abort if
and only if i = 1. In the protocol, each server sends D to the client and additionally, the first
server sends an additional bit b ∈ {0, 1}. An honest server sends b = 0. If the client received
different databases, or if it has input i = 1 and it received b = 1, then it outputs ⊥. Otherwise,
it receives only the database D, and the client outputs Di. Clearly, Π is correct, 1-private, and
1-error-detecting. However, it is not 1-secure-with-abort. This is because the first server can force
a different probability for the client to abort on different indices i. Specifically, if the server sends
i = 1 then the client always aborts on index i = 1, and it never aborts on index i ̸= 1. Note that
this holds even though the server does not know anything about i. See Example 4.4 for the formal
argument. In Example 4.5 we show that even if we require the same probability for abort on all
indexes i, then it is still insufficient to claim security-with-abort.

Colombo et al. [17] noticed that standard definitions for the security of PIR might allow for
selective abort (however, they did not provide any concrete example). This motivated them to
define authenticated PIR to capture security against such attacks. However, their definition is
property-based, and it is unclear whether their definition is equivalent to our simulation-based
security, or whether it captures security against attacks not mentioned in their paper.

A compiler from a private PIR protocol to a secure-with-abort protocol. Eriguchi et al.
[23] showed a compiler that takes any ℓ-server correct and t-private PIR protocol, and transforms
it into a correct, t-private, and t-error-detecting ℓ-server PIR protocol. In light of Theorem 1.2, it
is natural to ask whether their compiler satisfies the stronger requirement of t-security-with-abort.
We show that this is not the case; however, we prove that a simple modification to their construction
results in a secure-with-abort protocol.

Theorem 1.3 (Informal, compiler to secure-with-abort). There exists a compiler that transforms
any ℓ-server correct and t-private PIR protocol Π into an ℓ-server t-secure-with-abort PIR protocol.
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The total communication complexity (i.e., the total number of bits sent) of the new protocol is
ℓ2 · ω(log N) · (c + ℓ log ℓ), where c is the communication complexity of Π.

This result implies that for a constant number of servers, the communication complexity of
t-secure-with-abort PIR protocol is equivalent to PIR protocol secure against t-semi-honest servers
(up to a factor of ω(log N)). We refer to Section 5 for the formal statement and proof. In Table 1
we summarize the PIR protocols obtained from our results.

2t server PIR
from [5] + [20]

3t server PIR
from [5] + [22]

The ℓ server PIR,
ℓ = O(1) [46]

t-private 2Õ(t
√

log N) max
{

t · 2Õ(
√

log N), 2O(t)
}

N1/⌊(2ℓ−1)/t⌋

t-security-with-abort 2max{Õ(t
√

log N),t log t} 32t ·max
{

t2Õ(
√

log N), t3t
}

N
1

⌊(2ℓ−1)/t⌋ +o(1)

t-full security 2t2+max{Õ(t
√

log N),t log t} 3t2+2t ·max
{

t2Õ(
√

log N), 2O(t)
}

N
1

⌊(2ℓ−1)/t⌋−2 +o(1)

Table 1: A summary of the best PIR protocols tolerating t corrupted servers for various parameters.
The results in the second row are obtained by applying our compiler on the protocols from the first
row. These results are also obtained by [23] for the weaker property-based security. The last row
follows from [23] and Theorem 1.1.

1.2 Our Techniques

To illustrate our techniques, we next show that t-semi-honest security is equivalent to correctness
and t-privacy. Since simulation-based security is clearly stronger than property-based security,
we only show that correctness and t-privacy imply t-semi-honest security. We do it for statisti-
cal security (other cases are handled similarly). This is a special case of a known result that the
property-based definition is equivalent to the simulation-based definition for deterministic function-
alities with security against unbounded adversaries.

Fix a real-world adversary B corrupting a set I of at most t servers. We define its simulator
Sim running the client on index i = 1, and outputting the queries that correspond to the corrupted
servers. We now show that the statistical distance between the real and ideal worlds is negligible.
For a retrieval index i ∈ [N ] and a database D ∈ {0, 1}N let yD,i denote the output of the client in
the real world, and let qi

I denote the queries the corrupted server receives. By construction of the
simulator and the fact that the client always outputs Di in the ideal world, we need to show that(
qi
I , yD,i

)
and

(
q1
I , Di

)
are statistically close. First, by the t-privacy of the protocol,

(
q1
I , Di

)
and(

qi
I , Di

)
are statistically close. Second, observe that correctness implies that

(
qi
I , Di

)
and

(
qi
I , yD,i

)
are statistically close. Thus,

(
qi
I , yD,i

)
and

(
q1
I , Di

)
are statistically close.

1.3 Related Works

1-private PIR. We next state the best known PIR protocols. Efremenko [22] constructed a
3-server 1-private PIR protocol with query length 2Õ(√log N) and 2r-server 1-private PIR proto-
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cols with query length 2Õ( r√log N); the answer length in these protocols is O(1). Dvir and Gopi [20]
constructed a PIR protocol with query and answer length 2Õ(√log N). Very recently, Ghasemi, Kop-
party, and Sudan [27] constructed a 3-server PIR protocol with query and answer length 2Õ( 3√log N).
These constructions were simplified by Alon, Beimel, and Lasri [1]. The communication complex-
ity of ℓ-server PIR protocols for ℓ ≥ 6 was improved by Itoh and Suzuki [32, 33], Chee, Feng,
Ling, Wang, and Zhang [14], Dvir and Gopi [20], and Ghasemi et al. [27]. For example, there is a
6-server PIR protocol with communication complexity 2Õ( 4√log N) [32, 3, 27, 1]. The best known
lower bound on the total communication complexity of 2-server PIR protocols is 5 log n, proved by
Wehner and de Wolf [45] (improving on [41, 36]).

t-private PIR. t-private PIR protocols were constructed in [16, 2, 30, 6, 8, 46]. In particular,
Woodruff and Yekhanin [46] presented a t-private ℓ-server PIR construction for general ℓ and t with
communication complexity ℓ2

t ·log ℓ·N1/⌊(2ℓ−1)/t⌋. Barkol, Ishai, and Weinreb [5] presented a general
transformation from 1-private PIR protocols to t-private PIR protocol; given a 1-private ℓ-server
PIR protocol with query length mq and answer length ma, they constructed a t-private ℓt-server
PIR protocol with query length O(tmq) and answer length O(mt

a). When t is small compared to ℓ,
this gives better protocols, e.g., a t-private 2t-server PIR protocol with communication complexity
2Õ(t
√

log(N)) (using [20]) and a t-private 3t-server PIR protocol with query length t ·2Õ(
√

log(N)) and
answer length 2O(t) (using [22]).

Robust and Byzantine-robust PIR. Beimel and Stahl [7] introduced robust and Byzantine
robust PIR protocols. A PIR protocol is t-robust if the client can recover the correct value even if
t of the servers go offline. The generalized notion of t-Byzantine robust requires robustness to hold
even if t of the servers are malicious. This was further studied in subsequent works [46, 37, 24, 23].
In particular, Eriguchi et al. [23] showed that for a constant number of servers:

• The communication complexity of perfect t-Byzantine robust and t-private ℓ-server PIR is
equivalent to the communication complexity of t-private (ℓ− 2t)-server PIR protocol;

• The communication complexity of statistical t-Byzantine robust and t-private ℓ-server PIR is
equivalent to t-private (ℓ− t)-server PIR protocol.

Combining the above results and [46] yields a t-private and t-Byzantine robust ℓ-server statistical
PIR protocol with total communication ω(log N)·N

1
⌊(2ℓ−1)/t⌋−2 . When t is relatively small compared

to ℓ, the results of [5, 20, 22] yield a t-private and a t-Byzantine robust 2t-server statistical PIR
protocol with total communication complexity 2t2+max{Õ(t

√
log N),t log t} and a t-Byzantine robust 3t-

server statistical PIR protocol with total communication complexity 3t2+2t ·max
{

t2Õ(
√

log N), t3t
}

.
Byzantine robust PIR protocols where the database entries are large were considered in [47, 43, 44,
4]. They measure efficiency compared to the size of the entries rather than the size of the database
(as we do in our work).

Eriguchi et al. [24, 23] introduced error-detecting PIR, where the client may abort and it is
required that it never outputs the wrong value. In [24], they showed that error-detecting with
perfect security and communication that is sublinear in the database size is impossible. In partic-
ular, this shows that there is no non-trivial perfect security-with-abort PIR protocol. In [23] they
constructed a compiler transforming any t-private ℓ-server PIR protocol with communication c0 to
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a t-error-detecting one with total communication ℓ2 · ω(log N) · (c0 + ℓ log ℓ). When t is very small
compared to ℓ, this has significantly better communication complexity compared to the Byzantine
robust protocols discussed above. For example, there is a t-error-detecting 2t-server PIR protocol
with total communication complexity 2max{Õ(t

√
log N),t log t} and a t-error-detecting 3t-server PIR

protocol with total communication complexity 32t ·max
{

t2Õ(
√

log N), t3t
}

. Additional constructions
of error-detecting PIR protocols appear in Eriguchi et al. [25].

Colombo et al. [17] also observed that standard PIR security definitions allow for selective
abort attacks. This motivated them to define authenticated PIR protocols, where, similarly to
error-detection, it is required that either the client aborts or its output is consistent with the
honest server’s database. Additionally, the privacy of the client’s retrieval index is required to
hold even if the adversary knows whether the client aborts or not, which prevents selective abort
attacks. Unlike our definitions, Colombo et al. [17] defined security by listing the desired security
properties.

Computational PIR. Computational PIR protocols consider computationally-bounded servers.
This model was first considered by Chor and Gilboa [15]. In this setting, it was shown that single-
server PIR protocols can be constructed with non-trivial communication complexity [38, 12, 26].
Computational PIR can be seen as a special case of fully homomorphic encryption; the result of
Brakerski and Vaikuntanathan [11] used this to construct a single-server PIR protocol with total
communication poly(κ) + log N , where κ is the security parameter.

Spooky PIR. Dwork et al. [21] studied two-round succinct arguments for NP by composing PCP
proofs with computational single-server PIR protocols. They showed that such heuristics may be
insecure. More generally, they argued that executing PIR protocols in parallel may introduce
“spooky interactions”: even though the queries made by the client are independent and the server
knows nothing about the indexes of the client, the server may introduce correlations between the
queries and outputs of the client. Dodis et al. [19] later showed that this holds even when using
multi-prover interactive proofs instead of PCPs. These results show the necessity of defining the
security of PIR protocols via the real vs. ideal world paradigm.

Verifiable PIR. Ben-David et al. [10] introduced verifiable PIR, where it is required from the
(single) server to be able to prove that the database satisfies various properties. Although one of
their definition follows the real vs. ideal world paradigm, it does not require privacy or security
against selective abort attacks.

2 Preliminaries

2.1 Notations

We use bold characters to denote vectors. For n ∈ N, let [n] = {1, 2 . . . , n}. For a set S, we write
s ← S to indicate that s is selected uniformly at random from S. Given a random variable (or
a distribution) X, we write x ← X to indicate that x is selected according to X. ppt stands for
probabilistic polynomial time. A function ε(·) is called negligible if for every positive polynomial
p(·) and all sufficiently large n, ε(n) < 1/p(n). For a vector v of dimension n, we write vi for its
ith coordinate, and for S ⊆ [n] we write vS = (vi)i∈S .
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A distribution ensemble X = {Xa,n}a∈Dn,n∈N is an infinite sequence of random variables in-
dexed by a ∈ Dn and n ∈ N, where Dn is a domain that might depend on n. Computational
indistinguishability is defined as follows.

Definition 2.1. Let X = {Xa,n}a∈Dn,n∈N and Y = {Ya,n}a∈Dn,n∈N be two ensembles. We say that
X and Y are computationally indistinguishable, denoted X

C≡ Y , if for every ppt distinguisher D,
there exists a negligible function ε(·), such that for all n ∈ N and a ∈ Dn,

|Pr [D(Xa,n) = 1]− Pr [D(Ya,n) = 1]| ≤ ε(n).

Definition 2.2. The statistical distance between two finite random variables X and Y is defined
as

SD (X, Y ) = max
T

(Pr [X ∈ T ]− Pr [Y ∈ T ]) .

Two ensembles X = {Xa,n}a∈Dn,n∈N and Y = {Ya,n}a∈Dn,n∈N are said to be statistically close,
denoted X

S≡ Y , if there exists a negligible function ε(·), such that for all n and a ∈ Dn,

SD (Xa,n, Ya,n) ≤ ε(n).

We say that X and Y are identically distributed, denoted X
P≡ Y , if ε(n) = 0 for all a ∈ Dn and

n ∈ N.

Theorem 2.3 (Hoeffding’s inequality for the hypergeometric distribution). Let n ∈ N, m, k ∈ [n],
and A ∈

([n]
m

)
. Then for every t > 0,

Pr
X←([n]

k )

[
|X ∩A| − km

n
≥ t

]
≤ e−2t2/k

and
Pr

X←([n]
k )

[
|X ∩A| − km

n
≤ −t

]
≤ e−2t2/k.

2.2 Private Information Retrieval

In this section, we present the definition of private information retrieval (PIR) protocols [16]. In
the next definition, we present the syntax of a single-round PIR protocol. We then define property-
based security taken from previous papers [7, 24, 23]. To simplify the presentation, we present the
definition for a constant number of servers (i.e., independent of the database size). The definition
readily extends to a non-constant number of servers. Intuitively, the PIR protocol starts with the
client running a query algorithm Q and sending the jth output to the jth server Sj . The jth server,
holding the database D and the query qj , responds with the answer A(j, qj , D). Finally, the client
computes the output by applying the reconstruction algorithm C. We next formalize this.

Definition 2.4 (PIR protocols). Let ℓ ∈ N. An ℓ-server PIR protocol is given by a 3-tuple Π =
(Q,A, C) of algorithms with the following syntax.

1. The query algorithm (q1, q2, . . . , qℓ, st)← Q(1N , i) is a randomized algorithm that is given the
size of the database N and a retrieval index i ∈ [N ]. It outputs a query qj for every server
j ∈ [ℓ] and a state st ∈ {0, 1}∗. We denote q = (q1, . . . , qℓ).
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2. The answer algorithm aj = A(j, q, D) is a deterministic algorithm that is given an index
j ∈ [ℓ], a query q, and a database D ∈ {0, 1}N for some N ∈ N. It outputs a response aj. We
denote a = (a1, . . . , aℓ).

3. The reconstruction algorithm y = C(1N , a, st) is a deterministic algorithm that is given the
size of the database N , the ℓ answers a = (aj)j∈[ℓ], and the state st. It outputs y ∈ {0, 1,⊥}.

The protocol is efficient if all three algorithms run in polynomial time in N . The total com-
munication complexity is the maximum (taken over the randomness of the client and the databases
D) of the total number of bits sent in the protocol, i.e., maxr,D{

∑ℓ
i=1 |qi| + |ai|}, where r is the

randomness of Q.

2.3 Defining Security for PIR via Security Properties

We next define the security properties of PIR protocols as they appear in the literature. We first
define correctness, which states that in an honest execution, the client outputs the correct value.

Definition 2.5 (Correctness). Let ℓ ∈ N and let Π = (Q,A, C) be an ℓ-server PIR protocol. We
say that Π is statistically correct if for all sufficiently large N ∈ N, any database D ∈ {0, 1}N , and
any retrieval index i ∈ [N ],

Pr(q,st)←Q(1N ,i)

[
C

(
1N , (A (j, qj , D))j∈[ℓ] , st

)
= Di

]
≥ 1− ε(N),

for some negligible function ε(·), where the probability is over the randomness of Q. If ε = 0 then
we say that Π is perfectly correct.

We now define t-privacy, stating that no set of t servers learns anything about the retrieval
index of the client.

Definition 2.6 (Privacy). Let ℓ ∈ N, let t ∈ [ℓ], and let Π = (Q,A, C) be an ℓ-server PIR protocol.
We say that Π is statistically t-private if for any set of t servers I ∈

([ℓ]
t

)
, and any two sequences

of indices {iN}N∈N and {i′N}N∈N,

{qI}N∈N,D∈{0,1}N

S≡
{
q′I

}
N∈N,D∈{0,1}N

where (q, st)← Q(1N , iN ) and (q′, st′)← Q(1N , i′M ). We define computationally/perfectly t-privacy
by replacing S≡ with C≡ and P≡, respectively, in the above equation.

We next define security properties that should hold against malicious behavior by a subset of
the servers. Following [24, 23], we first define tampering algorithms;3 this is an adversary that can
modify some of the answers.

Definition 2.7 (A tampering algorithm [24, 23]). Let ℓ ∈ N, I ⊆ [ℓ], and let Π = (Q,A, C) be an
ℓ-server PIR protocol. A tampering algorithm B for Π is a randomized algorithm a′ = (a′j)j∈[ℓ] ←
B(I, q, D) that is given a set I ⊆ [ℓ], a set of ℓ queries, and a database D ∈ {0, 1}N for some
N ∈ N. It outputs answers (a′j)j∈[ℓ] such that a′j = A (j, qj , D) for all j ∈ [ℓ] \ I, and a′j depends
on qI and D for all j ∈ I.

3Eriguchi et al. [24, 23] defined tampering functions rather than algorithms.
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We now define t-error-detecting. Roughly, it means that no set of t cheating servers can force
the client to output the wrong value. Note, however, that the client is allowed to output ⊥ (even
with probability 1).

Definition 2.8 (Error-detecting PIR [24, 23]). Let ℓ ∈ N, t ∈ [ℓ], and let Π = (Q,A, C) be an
ℓ-server PIR protocol. We say that Π is statistical t-error-detecting if for any N ∈ N, for any
database D ∈ {0, 1}N , for any retrieval index i ∈ [N ], any subset I ∈

([ℓ]
t

)
of t servers, and any

tampering algorithm B for Π,

Pr(q,st)←Q(1N ,i)

[
C

(
1N ,B(I, q, D), st

)
∈ {Di,⊥}

]
≥ 1− ε(N),

for some negligible function ε(·), where the probability is over the randomness of Q and B. We
define perfect t-error-detecting by requiring the above to hold for ε(N) = 0 for all N ∈ N. We
define computational t-error-detecting by requiring the above to hold only for ppt algorithms B.

Finally, we define t-Byzantine robustness, which roughly means that the client outputs the
correct value (i.e., Di) even if at most t servers cheat. Note that any Byzantine robust PIR
protocol is also correct, since we can consider a tampering algorithm that behaves honestly.

Definition 2.9 (Byzantine robust PIR [7]). Let ℓ ∈ N, let t ∈ [ℓ], and let Π = (Q,A, C) be an
ℓ-server PIR protocol. We say that Π is statistical t-Byzantine robust if for any N ∈ N, any
database D ∈ {0, 1}N , any retrieval index i ∈ [N ], any subset I ∈

([ℓ]
t

)
of t servers, and any

tampering algorithm B for Π,

Pr(q,st)←Q(1N ,i)

[
C

(
1N ,B(I, q, D), st

)
= Di

]
≥ 1− ε(N),

for some negligible function ε(·), where the probability is over the randomness of Q and B. We
define perfect t-Byzantine robust by requiring the above to hold for ε(N) = 0 for all N ∈ N. We
define computational t-Byzantine robust by requiring the above to hold only for ppt algorithms B.

3 Defining Security via The Real vs. Ideal World Paradigm
In this section, we present the security definition for PIR via the real vs. ideal world paradigm. We
present the definition for both full security (i.e., with guaranteed output delivery) and for security-
with-abort. We first define the real world execution, followed by the ideal worlds for full security
and security-with-abort. Then, we present the security definitions. Our main contribution in the
definition is defining the appropriate functionalities that are computed in the ideal world.

The real world

Let ℓ ∈ N and let Π = (Q,A, C) be an ℓ-server PIR protocol. Toward defining security, we first
describe an execution of Π in the presence of an adversary B. The adversary controls a subset
I ⊆ [ℓ] of the servers. It receives the database D ∈ {0, 1}N and the queries the corrupted servers
receive from the client, and instructs each server how to respond. We consider malicious adversaries
that can instruct the corrupted servers to respond to the client in an arbitrary way. At the end of
the execution, the adversary outputs some function of its view (i.e., its randomness, the database,
and the queries it received from the client). For a database size N ∈ N, a database D ∈ {0, 1}N ,
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and a retrieval index i ∈ [N ], we let VIEWreal
Π,B(N, D, i) and OUTreal

Π,B(N, D, i) denote the outputs of B
and the client respectively in an execution of Π. Finally, let

REALΠ,B(N, D, i) =
(

VIEWreal
Π,B(N, D, i), OUTreal

Π,B(N, D, i)
)

.

The ideal world – full security

We next describe an ideal computation with guaranteed output delivery (also referred to as full
security) for PIR, where a trusted party T performs the computation on behalf of the parties, and
the ideal model adversary cannot abort the computation. Note that we only consider adversaries
that do not corrupt the client and corrupt a minority of the servers. The input of the adversary is
the input of the servers it corrupts, i.e., the database D. An ideal computation with database size
N ∈ N, on input a database D ∈ {0, 1}N for the servers and retrieval index i ∈ [N ] for the client,
in the presence of an adversary (a simulator) Sim controlling a set I ⊆ [ℓ], proceeds as follows.

Parties send inputs to the trusted party: Each honest server Sj , i.e., j /∈ I, sends Dj := D
to the trusted party T. For each corrupted server Sj , i.e., j ∈ I, the adversary Sim sends to
T a database Dj ∈ {0, 1}N of its choice. If the server does not send any database then T sets
Dj = 0N . The client sends i to T.

The trusted party performs the computation: If more than 1/2 of the databases equal some
D′, then the trusted party sends D′i to the client. Otherwise, send D1

i to the client.

Output: The client outputs whatever it received from T and the adversary outputs some function
of its view (i.e., its random string and the database D).

For a database size N ∈ N, a database D ∈ {0, 1}N , and a retrieval index i ∈ [N ], let VIEWgod
Sim(N, D, i)

and OUTgod
Sim(N, D, i) denote the outputs of Sim and the client respectively in an execution of the

above ideal world. Finally, let

IDEALgod
Sim(N, D, i) =

(
VIEWgod

Sim(N, D, i), OUTgod
Sim(N, D, i)

)
.

Note that the client always outputs Di if there is an honest majority.

The ideal world – security-with-abort

We next describe an ideal computation with security-with-abort for PIR. Unlike the ideal model for
full security, here the adversary can abort the computation. An ideal computation with database
size N ∈ N, on input a database D ∈ {0, 1}N and index i ∈ [N ] for the client, in the presence of an
adversary (a simulator) Sim controlling a set I ⊆ [ℓ], proceeds as follows.

Parties send inputs to the trusted party: Each honest server Sj sends Dj := D to the trusted
party T. For each corrupted server Sj , the adversary Sim sends to T a database Dj ∈ {0, 1}N
of its choice. If the server does not send any database then T sets Dj = 0N . The client sends
i to T.

The trusted party performs the computation: If the databases that T received are not iden-
tical, then T sends ⊥ to the client. Otherwise, it sends it D1

i .
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Output: The client outputs whatever it received from T and the adversary outputs some function
of its view (i.e., its random string and the database D).

For a database size N ∈ N, a database D ∈ {0, 1}N , and a retrieval index i ∈ [N ], let VIEWswa
Sim(N, D, i)

and OUTswa
Sim(N, D, i) denote the outputs of Sim and the client respectively in an execution of the

above ideal world. Finally, let

IDEALswa
Sim(N, D, i) = (VIEWswa

Sim(N, D, i), OUTswa
Sim(N, D, i)) .

Defining Security

Next, we define the security of a PIR protocol via the real vs. ideal world paradigm. We define full
security and security-with-abort.

Definition 3.1 (Security via real vs. ideal paradigm). Let ℓ ∈ N, t ∈ [ℓ], and let Π = (Q,A, C)
be an ℓ-server PIR protocol. We say that Π is statistically t-fully secure if for every adversary B
controlling a set I ⊆ [ℓ] of at most t servers, there exists a simulator Sim controlling the same
subset I in the ideal world, such that{

IDEALgod
Sim(N, D, i)

}
N∈N,D∈{0,1}N ,i∈[N ]

S≡ {REALΠ,B(N, D, i)}N∈N,D∈{0,1}N ,i∈[N ] .

We say that Π is statistically t-secure-with-abort if the above holds with IDEALswa
Sim(N, D, i) replacing

IDEALgod
Sim(N, D, i).

Perfect t-security is defined by replacing S≡ with P≡ in the above equations. Computational t-
security is defined by replacing S≡ with C≡ and limiting both the real-world adversary B and the
ideal-world simulator Sim to be ppt algorithms.

Remark 3.2. Standard security definitions following the real vs. ideal world paradigm consider
adversaries that receive auxiliary information. The same auxiliary information is given to the real-
world adversary and its simulator. This is necessary to argue that the composition of secure protocols
remains secure. If we were to add this to the security definition, then in order to argue that full
security is equivalent to the privacy and Byzantine robustness properties (see Theorem 4.1 below),
we would have had to add the auxiliary information to the privacy requirement (the statement and
proof of equivalence remain the same). We decided not to include the auxiliary information in the
privacy definition since this is not a common definition in the literature.

4 Comparing the Definitions
In this section, we compare the definitions given in the previous section. We start by showing the
equivalence between full security and the property-based security definition. Specifically, we show
that a PIR protocol is fully secure if and only if it is both private and Byzantine robust (recall that
Byzantine robustness implies correctness). The interesting direction is showing the property-based
security definition implies the real vs. ideal definition.

Theorem 4.1. Let ℓ, t ∈ N be such that t < ℓ/2, let Π = (Q,A, C) be an ℓ-server PIR protocol,
and let type ∈ {computationally, statistically, perfectly}. Then, Π is type t-fully secure if and only
if it is type t-private and type t-Byzantine robust.

12



Proof. We prove the results for type = statistically. The other cases are similar. We first prove that
if Π is both statistically t-private and statistically t-Byzantine robust, then it is statistically t-fully
secure. Fix a real-world adversary B corrupting a set I of at most t servers. We define its simulator
Sim as follows. First, it sends to the trusted party the database D for every corrupted party. It
then computes (q1, st1) ← Q(1N , 1) (i.e., queries for the index 1), sends q1

I to the adversary, and
outputs whatever it outputs. Note that if B and Q are ppt algorithms, then Sim is a ppt algorithm.

We now show that the statistical difference between the real and ideal worlds is negligible. For
a retrieval index i ∈ [N ] and a database D ∈ {0, 1}N let yD,i denote the output of the client in the
real world. Note that it suffices to show that{(

qi
I , yD,i

)}
N∈N,D∈{0,1}N ,i∈[N ]

S≡
{(

q1
I , Di

)}
N∈N,D∈{0,1}N ,i∈[N ]

, (1)

where (qi, sti)← Q(1N , i).
Fix an event T and let

∆ = Pr
[(

qi
I , yD,i

)
∈ T

]
− Pr

[(
q1
I , Di

)
∈ T

]
,

where the probabilities are over the execution of the real/ideal world. Then

∆ = Pr
[(

qi
I , yD,i

)
∈ T

]
− Pr

[(
q1
I , Di

)
∈ T

]
= Pr

[(
qi
I , yD,i

)
∈ T

]
− Pr

[(
qi
I , Di

)
∈ T

]
+ Pr

[(
qi
I , Di

)
∈ T

]
− Pr

[(
q1
I , Di

)
∈ T

]
.

Observe that by the t-privacy of Π,

Pr
[(

qi
I , Di

)
∈ T

]
− Pr

[(
q1
I , Di

)
∈ T

]
= neg(N).

Indeed, if this was not the case, then

Pr
[
qi
I ∈ TDi

]
− Pr

[
q1
I ∈ TDi

]
is non-negligible, where TDi = {q : (q, Di) ∈ T }. Therefore,

∆ ≤ Pr
[(

qi
I , yD,i

)
∈ T

]
− Pr

[(
qi
I , Di

)
∈ T

]
+ neg(N)

= Pr
[(

qi
I , Di

)
∈ T

]
· Pr [yD,i = Di] + Pr

[(
qi
I , 1−Di

)
∈ T

]
· Pr [yD,i = 1−Di]

− Pr
[(

qi
I , Di

)
∈ T

]
+ neg(N).

By the t-Byzantine robustness of Π,

Pr [yD,i = 1−Di] = neg(N).

Thus,

∆ ≤ Pr
[(

qi
I , Di

)
∈ T

]
· Pr [yD,i = Di] + Pr

[(
qi
I , 1−Di

)
∈ T

]
· Pr [yD,i = 1−Di]

− Pr
[(

qi
I , Di

)
∈ T

]
+ neg(N)

= Pr
[(

qi
I , Di

)
∈ T

]
· (1− neg(N)) + Pr

[(
qi
I , 1−Di

)
∈ T

]
· neg(N)

− Pr
[(

qi
I , Di

)
∈ T

]
+ neg(N)

= Pr
[(

qi
I , Di

)
∈ T

]
− Pr

[(
qi
I , Di

)
∈ T

]
+ neg(N)

= neg(N).
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We now prove the second direction. Assume that Π is statistically t-fully secure. We first
prove that Π is statistically t-private. Fix a set I of size t and consider the real-world adversary B
controlling the servers in I that outputs the queries it received from the client. Then by assumption,
there exists an ideal-world simulator Sim such that{

IDEALgod
Sim(N, D, i)

}
N∈N,D∈{0,1}N ,i∈[N ]

S≡ {REALΠ,B(N, D, i)}N∈N,D∈{0,1}N ,i∈[N ] . (2)

In particular,{
VIEWgod

Sim(N, D, i)
}

N∈N,D∈{0,1}N ,i∈[N ]

S≡
{

VIEWreal
Π,B(N, D, i)

}
N∈N,D∈{0,1}N ,i∈[N ]

.

Now, as Sim does not receive any message from the trusted party, it follows that its output is
independent of i. Thus,

VIEWgod
Sim(D, i) ≡ VIEWgod

Sim(D, i′)

for all D ∈ {0, 1}N and i, i′ ∈ [N ]. Therefore,{
VIEWreal

Π,B(N, D, i)
}

N∈N,D∈{0,1}N ,i,i′∈[N ]

C≡
{

VIEWreal
Π,B(N, D, i′)

}
N∈N,D∈{0,1}N ,i,i′∈[N ]

.

Privacy follows from the fact that VIEWreal
Π,B(N, D, i) = qI , where (q, st)← Q(1N , i).

We now show that Π is statistically t-Byzantine robust. Fix a tampering algorithm B′ and
consider the adversary B that instructs the corrupted server to respond by computing B′. Then by
Equation (2), ∣∣∣Pr

[
OUTgod

Sim(N, D, i) = Di

]
− Pr

[
OUTreal

Π,B(N, D, i) = Di

]∣∣∣ ≤ ε(N),

for some negligible function ε(·). Since t < ℓ/2, in the ideal world, the client always outputs Di.
Thus, Pr

[
OUTreal

Π,B(N, D, i) = Di

]
≥ 1− ε(N). □

Remark 4.2. Note that the result holds for PIR protocols with more than a single round. To see
this, let the simulator run the client on input 1 and simulate the entire execution of the protocol
to generate the adversary’s view. The same analysis shows that privacy and Byzantine robustness
suffice to argue that the simulator succeeds.

For security-with-abort, we show that the real vs. ideal definition is strictly stronger than the
property-based security. The next theorem states that security-with-abort implies the correspond-
ing property-based security.

Theorem 4.3. Let ℓ, t ∈ N, let Π = (Q,A, C) be an ℓ-server PIR protocol, and let type ∈
{computationally, statistically, perfectly}. If Π is type t-secure-with-abort, then it is type correct,
type t-private, and type t-error-detecting.

Proof. We assume that type = statistically since the other cases are handled similarly. For cor-
rectness, consider an adversary that does not corrupt any server. Then the output of the client
in the ideal world is Di. Therefore, in the real world, the client outputs Di except with negligible
probability. The proof that Π is statistically t-private is identical to the proof done in Theorem 4.1
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and is therefore omitted. We now show that Π is statistically t-error-detecting. Fix a tamper-
ing algorithm B′ and consider the adversary B that instructs the corrupted server to respond by
computing B′. Then there is a simulator Sim such that∣∣∣Pr [OUTswa

Sim(N, D, i) = y]− Pr
[

OUTreal
Π,B(N, D, i) = y

]∣∣∣ ≤ ε(N),

for all y ∈ {0, 1,⊥}, where ε(·) is a negligible function. Since in the ideal world the client never
outputs 1−Di, it follows that Pr

[
OUTreal

Π,B(N, D, i) ∈ {Di,⊥}
]
≥ 1− ε(N). □

We next show that the converse does not hold: there exists an ℓ-server PIR protocol Π that is
correct, 1-private, and 1-error-detecting but is not computationally 1-secure-with-abort. Intuitively,
we construct a protocol where a malicious server can force a “selective abort” of the client, that is,
the adversary forces the client to abort if and only if it holds certain indices i (e.g., i = 1). This is
impossible to simulate since the simulation is independent of i. We next formalize this intuition.

Example 4.4. Let Π be a perfectly 1-secure-with-abort PIR protocol (e.g., each server sends D to
the client; if all databases are the same then the client outputs Di, else it aborts). Consider the
following PIR protocol Π′. The client computes the same queries as in Π, all servers respond with
the same messages, and additionally, the first server sends an additional bit b ∈ {0, 1}. An honest
server sends b = 0. If the client has input i = 1 and it received b = 1 then it outputs ⊥. Otherwise,
it proceeds as in Π. Clearly, Π′ is correct, 1-private, and 1-error-detecting.

We next show that Π′ is not 1-secure-with-abort. Intuitively, this is because the adversary can
force a probability for abort on i = 1 that is different from the probability on i ̸= 1 (although each
server does not know i). Fix an adversary B that corrupts S1 and sends b = 1, and assume towards
contradiction that there exists a simulator Sim for it. Consider an execution of Π′ with i← {1, 2}
(i.e., i = 1 with probability 1/2 and i = 2 with probability 1/2) and D = 1N . Then in the real
world,

Pri←{1,2}
[
i = 1, OUTreal

Π′,B(N, 1N , i) = ⊥
]

= Pri←{1,2}
[
i = 2, OUTreal

Π′,B(N, 1N , i) = 1
]

= 1
2 .

Let us analyze the ideal world. Let p denote the probability that Sim sends D = 1N to the trusted
party (and thus the client outputs 1). Since in the ideal world the simulator is independent of i,

Pri←{1,2}
[
i = 1, OUTswa

Sim(N, 1N , i) = ⊥
]

= 1
2 · (1− p)

and
Pri←{1,2}

[
i = 2, OUTswa

Sim(N, 1N , i) = 1
]

= 1
2 · p.

Clearly, it cannot be the case where both values are 1/2 as in the real world, thus the two worlds
can be easily distinguished.

One might expect that the reason the above example worked is because the client aborts with
different probabilities for different inputs. We next show that adding such a requirement is still
insufficient to argue for simulation-based security. Roughly, this is done by letting the client send
to the first server a random index i′ that will inform the server whether the client will abort on i′

(if the additional bit b from the previous example is 1). Thus, in the real world, the adversary can
choose for which inputs the client will abort, which cannot be simulated in the ideal world. We
next formalize this.
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Example 4.5. Let Π be a perfectly 1-secure-with-abort PIR protocol (e.g., the servers send D to
the client who then proceeds like the trusted party). Consider the following PIR protocol Π′. The
client computes the same queries as in Π and appends the first query a random i′ ← [N ] sampled
uniformly at random. All servers respond with the same messages, and additionally, the first server
sends an additional bit b ∈ {0, 1}. An honest server sends b = 0. If the client has input i = i′

and it received b = 1, then it outputs ⊥. Otherwise, it proceeds as in Π. Clearly, Π′ is correct,
1-private, 1-error-detecting, and the probability the client aborts is 1/N if the first server cheats
(and 0 otherwise). The formal argument that Π′ is not secure-with-abort is similar to the previous
example and is therefore omitted.

5 A Generic Transformation From Private PIR to Secure-With-
Abort PIR

In this section, we show a generic transformation of a private PIR protocol to a secure-with-abort
protocol, based on Eriguchi et al. [23]. The original construction of [23] is insecure according to
Definition 3.1 (see Remark 5.7 below). However, we prove that a modification of the construction
is secure. We prove the following.

Theorem 5.1. Let ℓ ∈ N, t ∈ [ℓ], and type ∈ {statistically, computationally}. There exists a
compiler that transforms any statistically correct and type t-private ℓ-server PIR protocol Π to a
type t-secure-with-abort protocol. Moreover, if the total communication complexity of Π is c, then
the new protocol has total communication complexity ℓ2 · ω(log N) · (c + ℓ log ℓ).

Proof. We prove the result for type = statistically. The case where type = computationally follows
from the fact that the simulator we construct is efficient (if the adversary is) and from simple hybrid
arguments. Let Π = (Q,A, C) be a statistically correct and statistically t-private PIR protocol. The
idea of the transformation is the following. First, the client generates the queries q as in Π. Then,
with probability 1/2, the client samples two indices m1, m2 ∈ [ℓ] at random such that m1 ̸= m2,
and sends qj to the jth server Sj for every j ̸= m1, and sends (m2, qm2) to server Sm1 (i.e., query
qm2 is a duplicate query). With probability 1/2, the client sends qj to Sj for every j ∈ [ℓ] (without
duplicating any of them). We refer to the first kind of execution, where the client duplicated a
query, as a test execution, and we refer to the second kind of execution as a real execution. The jth

server, upon receiving qj , responds as Sj does in Π, and upon receiving (m2, qm2), Sm1 responds as
Sm2 does in Π.

Notice that if in a test execution, Sm1 is honest, then the view of the adversary in this case is
identical to its view in a real execution. Thus, if the adversary cheats in the test execution, then it
cheats in the real execution.

We then let the parties repeat this process in parallel sufficiently many times. The output of
the client is defined as follows. If in one of the test executions, the client receives from the servers
Sm1 and Sm2 different answers, then one of them is malicious and so the client aborts. Otherwise,
the client computes the output of all of the real executions and outputs the majority. Intuitively,
if we repeat this sufficiently many times, then the adversary cannot distinguish the real executions
from most of the test executions. Therefore, if it cheats on too many real executions, then the
client will catch it in one of the test executions. Otherwise, it will cheat on a minority of the
real executions; hence, the correctness of the underlying PIR protocol implies that the client will
compute the correct value most of the time.
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For convenience, instead of deciding at random and independently which execution is a test and
which is a real execution, we let the client randomly sample exactly half of the executions to be
real.4 We next formalize this.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protocol 5.2 (Πswa = (Qswa,Aswa, Cswa)).
Inputs: The client holds the database length 1N and a retrieval index i ∈ [N ]. Each server holds
a database D ∈ {0, 1}N .
Let λ ∈ N be an integer such that λ/2 is odd to be determined by the analysis below.

The query algorithm: The client samples a set K ∈
( [λ]

λ/2
)

and computes (q1, st1), . . . , (qλ, stλ)←
Q(1N , i) independently. It then does the following for all k ∈ [λ].

1. Sample a pair mk
1, mk

2 ∈ [ℓ] of distinct elements independently and uniformly at random.
2. If k ∈ K then set q̂k

j = qk
j for all j ∈ [ℓ]. Otherwise, for every j ∈ [ℓ] \ {mk

1} set q̂k
j = qk

j ,
and set q̂k

mk
1

= (mk
2, qk

mk
2
).

Let st = K||((mk
1, mk

2, stk))k∈[λ]. The client sends (q̂1
j , . . . , q̂λ

j ) to the jth server.

The answer algorithm: For every k ∈ [λ] and j ∈ [ℓ], if server Sj receives q̂k
j = qk

j from the
client, it computes ak

j = A(j, q̂k
j , D). Else, it receives q̂k

j = (mk
2, qk

mk
2
) and computes ak

j =
A(mk

2, qk
mk

2
, D). It sends (a1

j , . . . , aλ
j ) to the client.

The reconstruction algorithm: The client computes yk = C(1N , ak
1, . . . , ak

ℓ , stk) for all k ∈ K.
Output ⊥ if there exists k ∈ [λ] \ K such that and ak

mk
1
̸= ak

mk
2
. Otherwise, the client outputs

majk∈K{yk}.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We now show the security of Πswa. Fix an adversary B corrupting a set I ⊆ [ℓ] of at most t
servers. We define its simulator Sim whose input is D as follows. Sample (q̂, st) ← Qswa(1N , 1)
and send q̂I to B. For every j ∈ I let aj denote the response B made for server Sj , and for every
j ∈ [ℓ] \ I let aj = Aswa(j, q̂j , D). Write st = K||((mk

1, mk
2, stk))k∈[λ]. If there exists k ∈ [λ] \ K

such that ak
mk

1
̸= ak

mk
2
, then send to the trusted party a different database for the corrupted servers.

Otherwise, send D as the input of every corrupted server. Finally, output whatever B outputs and
halt. We show that

{IDEALswa
Sim(N, D, i)}N∈N,D∈{0,1}N ,i∈[N ]

S≡ {REALΠswa,B(N, D, i)}N∈N,D∈{0,1}N ,i∈[N ] . (3)

To prove this, we first prove the following lemma, stating that B cannot force the client to
output 1−Di with noticeable probability.

Lemma 5.3. Let noAbort be the event that ak
mk

1
= ak

mk
2

for every k ∈ [λ] \ K (i.e., the client did
not output ⊥), and let Fail denote the event that majk∈K{yk} = 1 −Di (i.e., the client output the
wrong value). Then

Pr [noAbort ∧ Fail] ≤ 2e−λ/64 + e
− λ

8ℓ(ℓ−1) + neg(N), (4)
4Note that if Π is perfectly correct, our protocol achieves only statistical correctness since it could be the case

where the client duplicates a query in every execution of Π.
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where the probability is over the random coins of the client and the adversary.

Proof. We prove that the bound holds for any fixed randomness of the adversary. In the following,
we assume the randomness of B and the queries of the client before duplication (i.e., q1, . . . , qλ)
are fixed. Observe that for every k ∈ [λ], the adversary cannot distinguish the case where k ∈ K
and the case where k /∈ K and mk

1 /∈ I. Therefore, if it instructs a server to cheat in one case, then
it will instruct it to cheat in the other case.

To this end, we say that a server Sj cheated in execution k if its answer is different from
A(j, qk

j , D). That is, if it were to receive its original query before duplicating, then it would send a
different answer. Let

A = {k ∈ [λ] : ∃j ∈ I s.t. Sj cheated in execution k} ,

i.e., A denotes the set of all executions where the adversary cheated. As we fixed the randomness
of the adversary and q1, . . . , qλ, the set A is properly defined. We show that if |A| is too large,
then the client will catch the adversary with overwhelming probability in one of the test executions,
and if it is too small, then it is unlikely that the majority of the outputs computed for the real
execution will be incorrect. We separate the proof into two cases.

We first analyze the probability in (4) assuming |A| < 3λ/8. We show that it is unlikely that
the client outputs the wrong value. That is, we show Fail occurs with low probability. Observe that
the expectation of |A ∩ K| is at most |A|/2 < 3λ/16. By Hoeffding’s inequality (Theorem 2.3), it
follows that

PrK←( [λ]
λ/2)

[
|A ∩ K| ≥ λ

4

]
≤ PrK←( [λ]

λ/2)

[
|A ∩ K| − 3λ

16 ≥
λ

16

]
≤ e−λ/64.

Let k ∈ K \ A, i.e., the kth execution is an honest real execution. By the statistical correctness of
the original PIR protocol, the probability that the client outputs 1−Di in the kth execution of the
protocol is negligible. Therefore,

Pr [Fail] = Pr
[
majk∈K

{
yk

}
= 1−Di

]
= Pr

[
|A ∩ K| ≥ λ

4

]
· Pr

[
majk∈K

{
yk

}
= 1−Di

∣∣∣|A ∩ K| ≥ λ

4

]
+ Pr

[
|A ∩ K| < λ

4

]
· Pr

[
majk∈K

{
yk

}
= 1−Di

∣∣∣|A ∩ K| < λ

4

]
≤ Pr

[
|A ∩ K| ≥ λ

4

]
+ Pr

[
majk∈K

{
yk

}
= 1−Di

∣∣∣|A ∩ K| < λ

4

]
≤ e−λ/64 + Pr

[
∃k∈K\A yk = 1−Di

∣∣∣|A ∩ K| < λ

4

]
≤ e−λ64 + neg(N).

We now analyze the probability in (4) assuming |A| ≥ 3λ/8. We show that in this case, the
client will catch the adversary cheating with high probability. Since the expectation of |A ∩ K| is
at least |A|/2 ≥ 3λ/16, by Hoeffding’s inequality, it follows that

PrK←( [λ]
λ/2)

[
|A ∩ K| ≤ λ

8

]
≤ PrK←( [λ]

λ/2)

[
|A ∩ K| − 3λ

16 ≤ −
λ

16

]
≤ e−λ/64.
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Next, for every k ∈ A ∩ K let Caughtk be the event that mk
1 /∈ I and mk

2 cheated in execution
k (that is, it is the event the adversary got caught cheating in the kth execution). Fix an honest
server h ∈ [ℓ] \ I, and for every k ∈ A ∩ K fix a server ck ∈ I that cheated execution k. Observe
that for every k ∈ A ∩ K the client will catch the adversary with probability at least

Pr
[
Caughtk

∣∣k ∈ A
]
≥ Pr

[
mk

1 = h, mk
2 = ck

∣∣k ∈ A
]
≥ 1

ℓ(ℓ− 1) .

Now, observe that for every k ∈ [λ] \ K, if ak
mk

1
= ak

mk
2

then either the adversary did not cheat
on the kth execution or Caughtk did not occur. Therefore,

Pr [noAbort] = Pr
[
∀k∈[λ]\K ak

mk
1

= ak
mk

2

]
≤ Pr

[
∀k∈([λ]\K)∩A ¬Caughtk

]
= Pr

[
|A ∩ K| ≤ λ

8

]
· Pr

[
∀k∈([λ]\K)∩A ¬Caughtk

∣∣∣|A ∩ K| ≤ λ

8

]
+ Pr

[
|A ∩ K| > λ

8

]
· Pr

[
∀k∈([λ]\K)∩A ¬Caughtk

∣∣∣|A ∩ K| > λ

8

]
≤ e−λ/64 + Pr

[
∀k∈A∩K ¬Caughtk

∣∣∣|A ∩ K| > λ

8

]
≤ e−λ/64 +

(
1− 1

ℓ(ℓ− 1)

)λ/8

≤ e−λ/64 + e
− λ

8ℓ(ℓ−1) .

We conclude that

Pr [noAbort ∧ Fail] ≤ 2e−λ/64 + e
− λ

8ℓ(ℓ−1) + neg(N).

□

We now use Lemma 5.3 to show that Equation (3) holds. Specifically, we show that conditioned
that the event noAbort ∧ Fail does not occur, the two ensembles are statistically close. First, note
that by the t-privacy of Π, the queries that B receives in the real world are statistically close
to the queries it receives from Sim in the ideal world. Therefore, its responses are statistically
close. Now, if the client aborts in the real world, then there exists a test execution where it gets
different responses. Thus, the same holds in the ideal world (except with negligible probability),
hence the simulator changes its database. This means that in both worlds, the client outputs ⊥.
Otherwise, since we condition on noAbort∧Fail not occurring, the client outputs Di in both worlds.
Finally, setting λ = ω(ℓ2 · log N) implies that noAbort∧Fail occurs with negligible probability, which
completes the proof. □

Using the t-private ℓ-server PIR protocol of Woodruff and Yekhanin [46] we obtain the following.

Corollary 5.4. For every ℓ ∈ N and t ∈ [ℓ − 1] there exists a t-secure-with-abort ℓ-server PIR
protocol with communication complexity

ω(log N) · ℓ4

t
· log ℓ ·N1/⌊(2ℓ−1)/t⌋.
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Applying Theorem 5.1 to the protocol resulting from the compiler of Barkol et al. [5] applied
to the 2-server protocol of Dvir and Gopi [20] yields the following.

Corollary 5.5. For every t ∈ N, there exists a t-secure-with-abort 2t-server PIR protocol with
communication complexity

2max{Õ(√log N),t log t}.

Finally, for 3t-server PIR protocols, Barkol et al. [5] and Efremenko [22] gives the following.

Corollary 5.6. For every t ∈ N, there exists a t-secure-with-abort 3t-server PIR protocol with
communication complexity

32t ·max
{

t2Õ(√log N), t · 3t
}

.

Remark 5.7 (On the insecurity of the compiler of [23]). In the original construction of Eriguchi
et al. [23], instead of computing majk∈K{yk}, the client also tests whether all of these values are
equal. If not, it outputs ⊥, and if they are equal, the client outputs this value. Although their
protocol is correct, t-private, and t-error-detecting, it is not t-secure-with-abort. Intuitively, this
is because in the underlying protocol Π the adversary can cause the client to output an incorrect
value for different inputs i (recall that Π is not guaranteed to satisfy any robustness property). This
causes the client to abort only on certain inputs; thus it has the same selective abort issue presented
in Examples 4.4 and 4.5. We next give details.

Consider the protocol Π, where each server sends D to the client, and the client computes the
output as follows. If i = 1 then output the ith entry of the database sent by S1, and otherwise, output
the ith entry of the database sent by S2. Clearly this protocol is correct and private. However, the
compiled protocol of Eriguchi et al. [23] is not 1-secure-with-abort since an adversary corrupting S1
can force the client to output an incorrect value only on i = 1. Therefore, the client will abort only
when i = 1.
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