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Abstract
Since the standardization of the Secure Group Messaging protocol

Messaging Layer Security (MLS) [4], whose core subprotocol is

a Continuous Group Key Agreement (CGKA) mechanism named

TreeKEM, CGKAs have become the norm for group key exchange

protocols. However, in order to alleviate the security issue orig-

inating from the fact that all users in a CGKA are able to carry

out sensitive operations on the member group, an augmented pro-

tocol called Administrated-CGKA (A-CGKA) has been recently

created [2].

An A-CGKA includes in the cryptographic protocol the manage-

ment of the administration rights that restrict the set of privileged

users, giving strong security guarantees for the group administra-

tion. The protocol designed in [2] is a plugin added to a regular

(black-box) CGKA, which consequently add some complexity to

the underlying CGKA and curtail its performances. Yet, leaving the

fully decentralized paradigm of a CGKA offers the perspective of

new protocol designs, potentially more efficient.

We propose in this paper an A-CGKA called SUMAC, which

offers strongly enhanced communication and storage performances

compared to other A-CGKAs and even to TreeKEM. Our protocol is

based on a novel design that modularly combines a regular CGKA

used by the administrators of the group and a Tree-structuredMulti-

cast Key Agreement (TMKA) [9] – which is a centralized group key

exchange mechanism administrated by a single group manager –

between each administrator and all the standard users. That TMKA

gives SUMAC an asymptotic communication cost logarithmic in

the number of users, similarly to a CGKA. However, the concrete

performances of our protocol are much better than the latter, espe-

cially in the post-quantum framework, due to the intensive use of

secret-key cryptography that offers a lighter bandwidth than the

public-key encryption schemes from a CGKA.

In practice, SUMAC improves the communication cost of TreeKEM

by a factor 1.4 to 2.4 for admin operations and a factor 2 to 38 for

user operations. Similarly, its storage cost divides that of TreeKEM

by a factor 1.3 to 23 for an administrator and 3.9 to 1,070 for a

standard user.

Our analysis of SUMAC is provided along with a ready-to-use

open-source rust implementation that confirms the feasibility and

the performances of our protocol.
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1 Introduction
1.1 Motivations
In July 2023, the IETF releases RFC 9420 [4] that standardizes a

Secure Group Messaging (SGM) protocol called Messaging Layer

Security (MLS). This protocol has been designed to ensure the se-

curity properties of point-to-point Secure Messaging (SM), while

being more efficient – particularly communication-wise – than the

ad-hoc protocols that were historically used by Secure Messaging

applications, such as the Pairwise or the Sender Keys protocols.

To do so, the core sub-protocol of MLS, a group key-agreement

mechanism called TreeKEM [8] – that was abstracted by [1] as a

Continuous Group Key Agreement (CGKA) – relies on a binary

Ratchet Tree (RT) that gives the protocol an average
1
communica-

tion cost that is logarithmic in the number 𝑛 of users (𝑂 (log(𝑛))),
even when the handshake messages are broadcast to the entire user

group.

1.1.1 The Administration of a CGKA. In MLS – and more generally,

in any CGKA –, all users are considered equal and are therefore all

entitled to carry out group operations (adding a new user to the

group, removing a user from that group and updating the state of a

user). However, in real-life group conversations, one may not want

all group members to be able to change the group membership or

1
In practice, the communication cost of a TreeKEMhandshake depends on the structure

of the Ratchet Tree. When this one is destructured, which happens regularly in the

group history, due to security considerations, the communication cost increases. The

logarithmic cost evoked for TreeKEM is therefore a fair-weather lower-bound.
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to control the users’ refreshment process. This is particularly true

in large groups – which are precisely the target of MLS – where

it becomes difficult to trust all users. Consequently, in practice, a

subset of the member group (whose members are called adminis-
trators) is granted the administration rights for this group, whereas

the other users (named in this paper standard users2) are restricted
to communicating and possibly proposing changes to the group.

Surprisingly, the administration of a user group is not considered

in the MLS standard, which states in [6] that this matter is left to

the application level.

The issue with that paradigm is that the partitioning between

administrators and standard users offers no security guarantee

from a cryptographic point of view, since it is excluded from the

cryptographic protocol. The recent work of [2] includes the admin-

istration process into the CGKA in order to remedy the situation,

creating a enhanced type of CGKA named Administrated-CGKA
(A-CGKA). In their protocol, administrators belong to a subgroup of

the user group and sign all messages exchanged within the CGKA

by an individual or a shared admin signature key, so that every

group member is able to check that the action demanded during a

commit comes from an administrator.

[15] extends this work in the particular context of a single group

manager, by granting some of the administration rights to the

standard users. This protocol is called a CGKA with Flexible Au-

thorizations (CGKA-FA, cf. Appendix A), and appears to be a mix

of an A-CGKA and a Multicast Key Agreement (cf. below).

These studies achieve their purpose of including the group ad-

ministration to the cryptographic protocol, but this security en-

hancement comes at some computational and communication cost.

This is due to the fact that this process is carried out by a subproto-

col, seen as a plugin that can be applied to any CGKA in order to

transform it into an A-CGKA. But no advantage is taken from this

new paradigm in order to improve the performances of that pro-

tocol, even if administrating a group key agreement protocol may

permit to use a much more efficient architecture. This is the case

notably with the historical protocol of Multicast Key Agreement

(MKA).

1.1.2 Multicast Key Agreement: an Efficient Group Key Agreement
Protocol. Multicast Key Agreement, also known as Broadcast En-

cryption [11], is a group key agreement protocol where, contrary to

a CGKA, an omniscient user named group manager (𝑔𝑚) oversees

the key agreement process by generating and distributing most

of – if not all – the secrets necessary for all users to agree on a

common key. This centralized paradigm is the natural design in

many use cases (such as a videoconferencing session set up by a

single organizer), which is why it has been studied since the 90’s.

The seminal concurrent works of [12] and [17] propose to use a

key graph in order to enhance the distribution process and thus

decrease the communication cost of the protocol. This concept,

called Logical Key Hierarchy, consists in using intermediary keys,

common to a subset of users; the information necessary to update

the group key must therefore only be encrypted under a reduced

number of these intermediary keys instead of the keys of all users.
The most common key graph is a rooted tree; [9] uses such a tree

2
By misuse of language, we sometimes call these standard users “users”. Standard

users and administrators together constitute the “group members”.

structure when it refreshes the MKA construction with modern

concepts from SGM protocols, especially:

• the use of black-box primitives, allowing crypto-agility in

a time where the looming threat of the quantum computer

forces public-key cryptographic schemes to evolve quickly;

• strong and well-formalized security properties for group

key agreements, in particular Forward Secrecy (FS) and

Post-Compromise Security (PCS).

The Tree-based MKA (TMKA) of [9], which is detailed in Sec-

tion 4.1, not only yields a communication cost logarithmic in the

number of users (𝑂 (log(𝑛))), similarly to what is achieved with

tree-based CGKAs like TreeKEM. It also offers two great advantages

that CGKAs are unable to provide:

• While the communication cost of TreeKEM-like protocols

is often higher than the lower bound of𝑂 (log(𝑛)), because
the group history and the decentralized setting do not per-

mit to have a well-structured Ratchet Tree, a centralized

TMKA can have a tree structure always close to the optimal

one thanks to the omniscient group manager.

• More importantly, a TMKA relies almost exclusively on

a secret-key cryptosystem instead of a public-key one
3
,

which greatly decreases the bandwidth of the key agree-

ment process (besides limiting the exposure of the protocol

to the quantum threat, since secret-key cryptography is

only

marginally affected by it).

Despite all its advantages, MKA is limited to use cases where a

single organizer has all privileges. This framework does not corre-

spond to that of Secure Group Messaging protocols – whether they

include regular CGKAs or administrated-CGKAs – that make no

assumption on the number of administrators.

1.2 Our Contributions
We propose in this paper SUMAC (Standard User Multicast

Administrated-CGKA), a novel Administrated-CGKA protocol –

as defined by [2] –, which greatly enhances the communication

and storage costs of existing A-CGKAs and even of TreeKEM-

like CGKAs. To do so, SUMAC uses both the efficient but single-

administrated TMKA of [9] (cf. Section 3.1) and a regular CGKA.

All these protocols and their underlying cryptosystems are used as

black-boxes, which makes SUMAC a versatile protocol independent

of specific cryptographic assumptions.

The high level design of SUMAC is the following (cf. Figure 1):

• As in a standard A-CGKA, the member group G is divided

into two disjoint subgroups: the administrator group (G𝑎)
and the one of the standard users (G𝑢 ).

• Each administrator 𝑎𝑖 ∈ G𝑎 is a group manager of a TMKA

instance – associated with a user tree T𝑢𝑖 –, which includes

all the standard users 𝑢 𝑗 ∈ G𝑢 as that tree’s leaves. Ev-

ery administrator thus has an omniscient view of a single

TMKA tree connected to all the standard users, whereas

every standard user only has a partial view (its direct path)

of as many TMKA trees as there are administrators in G𝑎 .

3
The use of public-key cryptography in a TMKA is indeed limited to sending, in unicast,

new leaf secrets to new or updating users.
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Each TMKA tree T𝑢𝑖 yields a key 𝐼𝑢𝑖 known by all standard

users and the administrator 𝑎𝑖 that manages it.

• The administrators are linked together through a regular

CGKA, that outputs an admin key 𝐼𝑎 known by all admin-

istrators but none of the standard users.

• Additionally, a group key 𝐼𝑔 , common to all group mem-

bers, is derived from the CGKA or the committer’s TMKA,

depending on the group operation carried out.

This architecture thus replaces a CGKA by a TMKA when the

hierarchy makes it possible (administrators over standard users)

while maintaining a CGKA otherwise (between the administrators,

which are all equal and consequently must stay in the decentralized

paradigm). The use of separate TMKA instances for each adminis-

trator comes from the need to partition secret information between

these administrators, without which no operation of update or

remove of an administrator could safely occur.

As shown in Table 4 and Table 1, SUMAC yields communication

and storage costs far lower than that of the A-CGKAs proposed

by [2] and even than TreeKEM. The bandwidth of SUMAC for user

operations is indeed 42 to 97% lower than TreeKEM’s, whereas in

the slightly less efficient admin operations, the gain varies between

27 and 60%. The enhancement in memory is even more pronounced:

administrators gain 26 to 96% compared to TreeKEM, and standard

users gain 74 to more than 99%.

1.3 Outline of the Paper
We firstly discuss in Section 3 the links between the CGKA, MKA

and A-CGKA protocols, and we show that CGKA and MKA are

particular cases of the A-CGKA, depending on the number of ad-

ministrators in the member group.

Section 4 describes the way SUMAC works for each group oper-

ation. In addition, Appendix E describes in pseudocode the TMKA

and SUMAC algorithms, whereas the related figures are recalled in

large size, for readability purpose, in Appendix F.

We then analyze the correctness and security of our protocol

in Section 5 and Appendix B.

Finally, we provide in Section 6 the performance results of SUMAC,

with a focus on its communication cost, whereas the computations

leading to these results and the detailed communication and storage

costs, as well as a preliminary survey on the computational cost,

are dispatched in Appendix D.

In parallel, a ready-to-use rust implementation of SUMAC is

available at https://anonymous.4open.science/r/SUMAC-5F5A, forked

from the open-source implementation of OpenMLS [16].

2 Preliminaries
2.1 Notations and Terminology
The output of a probabilistic algorithm is represented by← and

the one of a deterministic algorithm is given by :=. Sampling from

a space S with uniform distribution is represented by 𝑥 ← $ S.
·| |· is used for the concatenation operation. | · | denotes the

cardinality of a set of elements or the bit-length of a bit-string. [.]

denotes optional elements that may be left empty in some cases.

In our key agreement protocol, whose evolution over time is

caught with the notion of “epoch” (cf. below), we note for instance

𝑥𝑖
𝑗
the data 𝑥 (which may represent a key, a secret...) associated with

Figure 1: High-level design of SUMAC, composed of a CGKA
between the administrators and an instance of a TMKA be-
tween each admin and all the standard users. Dashed lines
indicate the partitioning between the admin world (green),
in which every admin knows the admin key 𝐼𝑎 and the entire
TMKA tree it manages, and user world (blue), where every
standard user knows (only) its direct path and the common
key 𝐼𝑢𝑖 in all the user trees.

user 𝑢 𝑗 in epoch 𝑡𝑖 . All our algorithms, by convention, consider the

passage from epoch 𝑡𝑖 to 𝑡𝑖+1; consequently the updated data all

receive the exponent 𝑖 + 1.

2.2 Ratchet Tree Basics
2.2.1 Ratchet Tree. A Ratchet Tree is a rooted tree used as key

graph in protocols using the Logical Key Hierarchy paradigm.

Therefore, this is a tree whose:

• leaves ℓ𝑖∈J1,𝑛K are associated with a set of 𝑛 group mem-

bers and that have states comprising notably signature and

encryption keys;

• internal nodes 𝑣𝑖 have states with “intermediate” encryption

keys;

• root secret is known by all group members and yields the

common key 𝐼 that is used for group communication.

2.2.2 Parents, Children and Siblings. For any node in a Ratchet Tree,
the node located immediately above is called its parent whereas the
two nodes

4
underneath are its children. The nodes issued from the

same parent are called siblings.

2.2.3 Direct Path and Copath. The (direct) path in a tree T of a leaf

associated with some user 𝑢 𝑗 , noted P(𝑢 𝑗 ,T), is the set of ancestor
nodes of that leaf, i.e. of the internal nodes linked to that leaf up to

the tree root.

We define the extended (direct) path of a leaf ℓ𝑗 (belonging to

some user 𝑢 𝑗 ) as the union of that leaf and its direct path:

4
We only consider in this paper the most common case of a binary Ratchet Tree, even

if [10] has shown that ternary trees could be more efficient for some parameter ranges

of the CGKA.

https://anonymous.4open.science/r/SUMAC-5F5A
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P𝑥 (𝑢 𝑗 ,T) := {ℓ𝑗 } ∪ P(𝑢 𝑗 ,T) (1)

The copath CP(𝑢 𝑗 ,T) of a user 𝑢 𝑗 in a tree T is the set of the

siblings of all the nodes in its extended direct path – except for the

root that has no sibling.

3 The World of Group Key Agreement Schemes
We detail in this part the main types of group key agreement proto-

cols – the Multicast Key Agreement (MKA), the Continuous Group

Key Agreement (CGKA) and the Administrated-CGKA (A-CGKA)

–, that have been designed for different use cases and therefore

have evolved separately. As a side contribution of this paper, we

generalize the definitions of these protocols, unify their syntax and

show that the A-CGKA can be seen as a generalization of the two

other protocols, as discussed in Section 3.4.

General Changes in the Definitions. Group key exchange con-

structions have initially been designed so that every group oper-

ation is performed separately of the others (in what we call the

separate-operations paradigm). Subsequently, the definition of a

CGKA has been adapted to the Propose & Commit (P&C) paradigm,

after this concept was adopted by the MLS IETF working group for

the version 8 of its draft [3]. In a P&C protocol, group members

are allowed to ask for group operations through proposals. The ac-
cepted changes are then validated altogether in an operation named

commit, which enhances the protocol efficiency.

In order to be as generic as possible, we have modified the orig-

inal definitions of the protocols below so that both the separate-

operations and the propose & commit paradigms remain compatible.

To do so, the commit algorithm takes as inputs a vector

#»
𝑃 of propos-

als sent by other users and a vector
#»
𝑜𝑝 of group operations initiated

by the committer itself.

#»
𝑃 is empty in the separate-operations set-

ting, whereas in the P&C framework, both vectors may be filled
5
.

3.1 Multicast Key Agreement
In addition to these general changes, we have adapted the definition

of an MKA from [9] regarding the matter of out-of-band commu-

nication. Indeed, an MKA needs unicast private communication

between the group manager and a user one wants to add or up-

date, in order to send it its new leaf secret generated by the group

manager. [9] considers this leaf secret as an out-of-band value that

must be sent separately through a secure point-to-point channel

between the group manager and that user. In our definition below,

we include this process within the MKA protocol, in order not to

depend on a parallel Secure Messaging protocol
6
.

Definition 3.1 (Multicast Key Agreement (MKA) (adapted from [9])).
An MKA scheme is a group key agreement protocol consisting of

the following algorithms:

5
Indeed, in many P&C protocols, every commit is associated with the automatic path

update of the committer, which should be seen as a group operation from
#»
𝑜𝑝 .

6
In practice, we allow unicast exchanges between users, as usually considered in the

architectural designs of CGKAs (such as MLS [6]). Therefore, when a PKI is used and

users have public encryption keys associated with them, this exchange consists in

sending the group manager a fresh public encryption key, and the latter then sends

the user its new leaf secret, encrypted under this public key.

• Initialize: group manager 𝑔𝑚 or user 𝑢𝑖 creates its initial

state, respectively 𝛾 and 𝛿𝑖 :

𝛾 ← init(𝑔𝑚) / 𝛿𝑖 ← init(𝑢𝑖 )
• Create Group: group manager 𝑔𝑚 creates an initial mem-

ber group G =

(
gid,

(
𝑔𝑚, (𝑢𝑘 )𝑛𝑘=1

) )
from a list of 𝑛 users

and a unique group ID gid, updating in accordance its initial
state 𝛾 into 𝛾 ′, yielding the new group G, an initial group

key 𝐼 and an associated commit message
7 𝐶:

(𝛾 ′,G, 𝐼 ,𝐶) ← create-group(𝛾, (𝑢𝑘 )𝑛𝑘=1)
• Propose: user 𝑢𝑖 , with state 𝛿𝑖 , proposes a group operation

𝑜𝑝 ∈ O to apply on user𝑢 𝑗
8
withinG, generating a proposal

message 𝑃 and an updated state 𝛿 ′
𝑖
:

(𝛿 ′𝑖 , 𝑃) ← propose(𝛿𝑖 , gid, 𝑜𝑝 (𝑢 𝑗 ))
• Commit: the group manager, with state 𝛾 , takes as input

a possibly empty vector of proposals

#»
𝑃 sent by users, and

a possibly empty vector of group operations
#»
𝑜𝑝 that it has

generated itself. After updating its state accordingly, it gen-

erates a new group key 𝐼 ′ and sends a commit message 𝐶

to the existing and to the potential new users:

(𝛾 ′, 𝐼 ′,𝐶) ← commit(𝛾, gid, #»
𝑃 ,

#»
𝑜𝑝)

• Process: user 𝑢𝑖 , with state 𝛿𝑖 , processes a commit mes-

sage 𝐶 it has received. After checking this message was

released by the group manager, it updates its state accord-

ingly and computes the new group key 𝐼 ′ resulting from

these changes. In case of failure, and notably if the commit

message does not originate from the group manager, 𝑢𝑖
aborts the ongoing process and returns a failure value ⊥:
(𝛿 ′𝑖 , 𝐼

′)/⊥ := process(𝛿𝑖 , gid,𝐶)

The set O of group operations in an MKA is the following:

• add (𝑢 𝑗 ): new user 𝑢 𝑗 is added to the member group G;
• remove (𝑢 𝑗 ): user𝑢 𝑗 is removed from themember groupG;
• update (𝑢 𝑗 ): user 𝑢 𝑗 has its state updated;

3.2 Continuous Group Key Agreement
At a high level, a Continuous Group Key Agreement (CGKA) is

a protocol between an arbitrary number 𝑛 of equal users, which

generates a group key 𝐼 evolving over time – through the concept

of epoch – in order to maintain the security properties of Forward

Secrecy (FS) and Post-Compromise Security (PCS) (cf. below) de-

spite the changes in the group membership and the deprecation of

the users’ keying material.

3.2.1 Definition. Originating from [1], the definition of a CGKA

has been adapted to the propose & commit paradigm in subsequent

works. Our definition relies on that of [2].

7
This commit message is also called control message and noted 𝑇 in several papers

on group key agreements. It may be divided into a broadcast component𝐶𝑏𝑑𝑐𝑡 , one

or several part(s) 𝐶𝑔 sent to groups of users and messages 𝐶𝑖𝑛𝑑 sent in unicast to

individual users.

8
In practice, MKAs could limit users’ proposals to specific operations and targets, for

instance allowing users to only propose to update or remove themselves.
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Definition 3.2 (Continuous Group KeyAgreement (adapted from [2])).
A CGKA is a group key agreement protocol consisting of the fol-

lowing algorithms:

• Initialize: user𝑢𝑖 creates its initial state 𝛿𝑖 : 𝛿𝑖 ← init(𝑢𝑖 )
• Create Group: initial user 𝑢1 creates an initial member

group G =

(
gid, (𝑢𝑘 )𝑛𝑘=1

)
from a list of𝑛 users and a unique

group ID gid, updating in accordance its initial state 𝛿1
into 𝛿 ′

1
, yielding the new group G, an initial group key 𝐼

and an associated commit message 𝐶:

(𝛿 ′
1
,G, 𝐼 ,𝐶) ← create-group(𝛿1, (𝑢𝑘 )𝑛𝑘=1)

• Propose: user 𝑢𝑖 , with state 𝛿𝑖 , proposes a group operation

𝑜𝑝 ∈ O to apply on user𝑢 𝑗 within G, generating a proposal
message 𝑃 and an updated state 𝛿 ′

𝑖
:

(𝛿 ′𝑖 , 𝑃) ← propose(𝛿𝑖 , gid, 𝑜𝑝 (𝑢 𝑗 ))
• Commit: user 𝑢𝑖 , with state 𝛿𝑖 , takes as input a possibly

empty vector of proposals

#»
𝑃 sent by other users, and a

possibly empty vector of group operations
#»
𝑜𝑝 that it has

generated itself. After updating its state accordingly, it gen-

erates a new group key 𝐼 ′ and sends a commit message 𝐶

to the existing and to the potential new users:

(𝛿 ′𝑖 , 𝐼
′,𝐶) ← commit(𝛿𝑖 , gid,

#»
𝑃 ,

#»
𝑜𝑝)

• Process: user 𝑢𝑖 , with state 𝛿𝑖 , processes a commit mes-

sage 𝐶 it has received. After checking the validity of this

message, it updates its state accordingly and computes the

new group key 𝐼 ′ resulting from these changes. In case of

failure, 𝑢𝑖 aborts the ongoing process and returns a failure

value ⊥: (𝛿 ′𝑖 , 𝐼
′)/⊥ := process(𝛿𝑖 , gid,𝐶)

The set O of group operations in a CGKA is the following:

• add (𝑢 𝑗 ): new user 𝑢 𝑗 is added to the member group G;
• remove (𝑢 𝑗 ): user𝑢 𝑗 is removed from themember groupG;
• update (𝑢 𝑗 ): user 𝑢 𝑗 has its state updated;

3.3 Administrated-CGKA
An administrated-CGKA (A-CGKA) is a variant of CGKA, originally

described by [2], in which groupmembers, belonging to themember

group G, are split into two subgroups:

• a first one (G𝑎) composed of 𝑛𝑎 privileged users called

administrators, that have the right to perform group opera-

tions;

• another one (G𝑢 ) whose 𝑛𝑢 members, named standard users,
have no privilege and therefore are solely allowed to take

part in the group conversation, to propose group operations

and to initialize their own state.

We adapt beneath the definition of an A-CGKA from [2] in order

to be more generic regarding the processes of adding and remov-

ing administrators. Indeed, in the original definition of [2], it is

not possible to add administrators directly from the outside or to

remove them directly from the member group. Instead, adminis-

trators are standard users that are granted administration rights;

removing administrators revokes their rights but keeps them in

the group conversation, as standard users. Yet, some protocols are

more adapted to directly adding or removing administrators from

the outside. This is precisely the case of SUMAC, for which the

partitioning between the admin and the user worlds implies that

a standard user upgraded to the admin status is in fact removed

from the member group and then added as a new administrator

(cf. Section 4).

Consequently, we consider two types of operations that change

themembership of the admin group: in the add-admin and remove-
admin operations, administrators are added to (removed from) the

admin group directly from (to) the outside, without temporarily

being standard users. In parallel, we define the migration opera-

tions of upgrade-user and downgrade-admin, which change the

status of standard users into administrators, and conversely.

Definition 3.3 (Administrated-CGKA (adapted from [2])). An Ad-

ministrated Continuous Group KeyAgreement (A-CGKA) is a group

key agreement protocol where group members are divided between

𝑛𝑎 administrators 𝑎𝑖 and 𝑛𝑢 standard users 𝑢𝑖 , and which consists

of the following algorithms:

• Initialize: group member𝑚𝑖 ∈ {𝑎𝑖 , 𝑢𝑖 } creates its initial
state 𝛾𝑖 (for an administrator) or 𝛿𝑖 (for a standard user):

𝛾𝑖 ← init(𝑎𝑖 ) / 𝛿𝑖 ← init(𝑢𝑖 )
• Create Group: initial administrator 𝑎1 creates an initial

member group G from a list 𝐿𝑎 = (𝑎𝑘 )𝑛𝑎𝑘=1 of 𝑛𝑎 adminis-

trators, a list 𝐿𝑢 = (𝑢𝑘 )𝑛𝑢𝑘=1 of 𝑛𝑢 users and a unique group

ID gid, updating in accordance its initial state 𝛾1 into 𝛾
′
1
,

yielding the new member group G (composed of the admin

group G𝑎 = (gid, 𝐿𝑎) and user group G𝑢 = (gid, 𝐿𝑢 )), an
initial group key 𝐼 and an associated commit message 𝐶:

(𝛾 ′
1
, (G𝑎,G𝑢 ), 𝐼 ,𝐶) ← create-group(𝛾1, 𝐿𝑎, 𝐿𝑢 )

• Propose: group member𝑚𝑖 , with state 𝛾𝑖 or 𝛿𝑖 , proposes

a group operation 𝑜𝑝 ∈ O to apply on group member𝑚 𝑗

within G, generating a proposal message 𝑃 and an updated

state 𝛾 ′
𝑖
or 𝛿 ′

𝑖
: (𝛾 ′𝑖 /𝛿

′
𝑖 , 𝑃) ← propose(𝛾𝑖/𝛿𝑖 , gid, 𝑜𝑝 (𝑚 𝑗 ))

• Commit: administrator 𝑎𝑖 , with state 𝛾𝑖 , takes as input a

possibly empty vector of proposals

#»
𝑃 sent by other group

members and a possibly empty vector of group operations

#»
𝑜𝑝 that it has generated itself. It updates its state accord-

ingly, generates a new group key 𝐼 ′ and sends a commit

message 𝐶 to the existing and potentially new users:

(𝛾 ′𝑖 , 𝐼
′,𝐶) ← commit(𝛾𝑖 , gid,

#»
𝑃 ,

#»
𝑜𝑝)

• Process: group member𝑚𝑖 , with state 𝛾𝑖 or 𝛿𝑖 , processes a

commit message 𝐶 it has received. After checking that the

message comes from an administrator, it updates its state

accordingly and computes the new group key 𝐼 ′ resulting
from these changes. In case of failure, and notably if the

commit message does not originate from an administrator,

𝑚𝑖 aborts the ongoing process and returns a failure value

⊥: (𝛾 ′𝑖 /𝛿
′
𝑖 , 𝐼
′)/⊥ := process(𝛾𝑖/𝛿𝑖 , gid,𝐶)

The set O of group operations in an A-CGKA is the follow-

ing:

– add-admin (𝑎 𝑗 ): new admin 𝑎 𝑗 is added to the admin

group G𝑎 directly while joining the member group G;
– remove-admin (𝑎 𝑗 ): admin 𝑎 𝑗 is removed from the

entire member group G;
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– update-admin (𝑎 𝑗 ): admin 𝑎 𝑗 has its state updated;

– add-user (𝑢 𝑗 ): new standard user 𝑢 𝑗 is added to the

user group G𝑢 ;
– remove-user (𝑢 𝑗 ): standard user 𝑢 𝑗 is removed from

the member group G;
– update-user (𝑢 𝑗 ): standard user 𝑢 𝑗 has its state up-

dated;

– upgrade-user (𝑢 𝑗 ): standard user 𝑢 𝑗 becomes an ad-

ministrator and leaves G𝑢 to join G𝑎 ;
– downgrade-admin (𝑎 𝑗 ): admin 𝑎 𝑗 becomes a stan-

dard user and leaves G𝑎 to join G𝑢 .

3.4 A Unified View of Group Key Agreements
It emerges, from the above definitions with an harmonized syntax,

that the Administrated-CGKA protocol is a generalization of both

the regular CGKA and the MKA, depending on the number of

administrators within the member group G:
• A CGKA is an A-CGKA where all group members are ad-

ministrators: G𝑎 = G and G𝑢 = ∅.
• An MKA is an A-CGKA with a single administrator 𝑔𝑚:

G𝑎 = {𝑔𝑚}.
Consequently, the functionalities and – above all – the security of

all these protocols can be studied solely within the framework of

the A-CGKA.

3.4.1 Epochs. The notion of epoch represents the evolution over

time of a member group in a group key agreement scheme. An

epoch 𝑡 denotes the period between two consecutive group opera-

tions in the member group, and thus corresponds to a single group

key
9
. Each commit therefore changes the epoch, in the view of a

user processing it.

3.4.2 Security Considerations. A group key agreement must en-

force the following security properties, that are informally stated

below and that are captured in the security game from Section 5.1.1.

• Privacy: the group key is pseudorandom for any adversary

that has access to the whole transcript of the handshake.

• Forward Secrecy (FS): the corruption of one or several

group members does not leak the secrets of past epochs.

More specifically, forward secrecy for an epoch 𝑡1 is achieved

at an epoch 𝑡2 > 𝑡1 when any group member corruption

occurring from epoch 𝑡2 does not leak any secret up to 𝑡1.

• Post-Compromise Security (PCS): it represents the abil-
ity of the protocol to heal from group member corruption.

It is achieved at an epoch 𝑡2, after a single or multi-member

corruption occurred at epoch 𝑡1 < 𝑡2, provided that the

adversary remains passive between these two epochs.

4 SUMAC Protocol
We describe in this part our SUMAC protocol, which uses as core-

components a TMKA and a CGKA. As the specific features of the

tree structure of a TMKA are essential for SUMAC, we firstly detail

9
In an A-CGKA, it is possible to have a more fine-grained time perspective by distin-

guishing admin and user epochs (between two consecutive changes in respectively

the admin and user groups), in addition to the global epoch. This distinction is not

made in our paper.

that protocol, as well as the regeneration and derivation algorithms

used as subroutines in SUMAC.

4.1 Tree-Based MKA
Definition 4.1 (Tree-Based Multicast Key Agreement (TMKA)). A

tree-based multicast key agreement is an MKA (cf. Definition 3.1)

that follows the logical key hierarchy from [17], in which the key

graph is a rooted tree named Ratchet Tree, whose leaves are associ-

ated with the standard users from the group and where the group

manager 𝑔𝑚 is located at the root.

Nota 1: We focus in this paper on TMKAs using exclusively

secret-key encryption schemes. The augmented TMKA from [9,

section 7], that uses public-key cryptography instead of the secret-

key one in order to achieve a one-round PCS for the group manager,

is not considered here as it looses the main advantage of being a

centralized protocol.

Nota 2: The version of TMKA we use in SUMAC differs from the

original one [9] on three points:

• For simplicity sake, we have not considered updatable secret-

key encryption schemes that permit FS and PCS to oc-

cur more quickly than with regular encryption schemes.

SUMAC remains nevertheless fully compatible with these

primitives, as it uses TMKA almost as a black-box protocol.

• In the add and update operations, unicast conversation be-

tween a user and the group manager is needed. [9] ensures

this exchange by considering separate secure channels be-

tween the group manager and each user. In particular, the

leaf secret associated with 𝑢 𝑗 , that the group manager must

transmit to that user, is sent through that channel and is

therefore only considered in [9] as an out-of-band value.

That channel removes the need to exchange the user’s pub-

lic key (step 1 of the add and update operations), which
decreases – in appearance only – the protocol’s communi-

cation cost
10
. Moreover, as the channel is authenticated, it

is useless as well to use a Public Key Infrastructure (PKI)

and to transmit public signature keys to authenticate the

group members. However, in that case again, the commu-

nication cost of the authentication does not decrease and is

solely reported to the separate Secure Messaging protocol

that builds these point-to-point channels. In our paper, all

these mechanisms are included in the TMKA, in order to

be able to compare that protocol – and SUMAC afterwards

– with others that are self-sufficient, such as the CGKAs.

• In the original TMKA, similarly as in TreeKEM, an inter-

nal node that has no descendants coming from one of its

children is blanked (which means that all its state is emp-

tied) since that node appears redundant with its filled child.

However, the regeneration process used in SUMAC (cf. Sec-

tion 4.2) needs that all internal nodes in the TMKA’s Ratchet

Tree remain filled. Therefore, the operations from SUMAC

avoid that blanking process and instead update these nodes.

10
In practice, the exchange of that public key is included in the Secure Messaging

protocol managing the secure channels between the group manager and the users.
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We describe hereunder and in Figure 2 the group operations of

a TMKA: add, remove and update. The associated algorithms are

given in Appendix E (Figure 14 p.26 and Figure 15 p.30).

4.1.1 Add User / Update User. User 𝑢 𝑗 is added to the member

group G or updated with the following steps:

(1) 𝑢 𝑗 sends to the groupmanager a public encryption key𝑝𝑘𝑖+1
𝑗

that it has generated itself (potentially with a public signa-

ture key, according to the policy of credentials rotation).

(2) The group manager locally updates the Ratchet Tree by

associating 𝑢 𝑗 to an empty leaf (in case of an add-user).
In order to maintain the properties of forward secrecy and

post-compromise security, the path 𝑃 (𝑢 𝑗 ) of 𝑢 𝑗 in the tree

must be updated; to do so:

• The group manager 𝑔𝑚 randomly draws a new secret

from the key space K , called leaf secret, known only

by 𝑔𝑚 and (ultimately) by 𝑢 𝑗 :
𝑙𝑠𝑖+1𝑗

$← K (2)

• This leaf secret is derived along 𝑢 𝑗 ’s path (of length

ℎ𝑢 ), up to the tree root, generating intermediary path
secrets:
𝑝𝑠𝑖+1

1
:= derive(𝑙𝑠𝑖+1𝑗 , “path”) (3)

∀ℓ ∈ J2, ℎ𝑢K , 𝑝𝑠𝑖+1ℓ := derive(𝑝𝑠𝑖+1ℓ−1, “path”) (4)

From these leaf and path secrets derive symmetric keys

associated with these nodes and used for encryption

(𝑘𝑒 ) and potentially other functionalities (integrity...):

𝑘𝑖+1
e𝑗

:= derive(𝑙𝑠𝑖+1𝑗 , “enc”) (5)

∀ℓ ∈ J1, ℎ𝑢K , 𝑘𝑖+1
eℓ

:= derive(𝑝𝑠𝑖+1ℓ , “enc”) (6)

• The path secret at the root of the tree is derived to

yield a new group key:

𝐼 𝑖+1 := derive(𝑝𝑠𝑖+1𝑟𝑜𝑜𝑡 , “key”) (7)

(3) The group manager unicasts to 𝑢 𝑗 its leaf secret, encrypted

under 𝑝𝑘𝑖+1
𝑗

. In practice, public-key cryptography is used

according to the HPKE paradigm
11

[5]. This ciphertext

corresponds to 𝑐1 in Figure 2.

(4) The group manager broadcasts to the group a ciphertext

message composed of all the path secrets 𝑝𝑠ℓ previously

generated, each encrypted under the secret encryption key

𝑘𝑖𝑒𝑐𝑝-𝑐ℎ (ℓ ) of its child node in 𝑢 𝑗 ’s copath (ciphertexts 𝑐2

and 𝑐3 in Figure 2).

4.1.2 Remove User. User 𝑢 𝑗 is removed from the member group

with the following steps:

(1) The group manager locally updates the Ratchet Tree by

blanking the leaf associated with the removed user and by

updating its direct path 𝑃 (𝑢 𝑗 ), as for an add or update
operation.

(2) The secret-key ciphertexts are sent to the relevant recipient

in the Ratchet Tree, as previously. No HPKE encryption is

used in this case.

11
Also known as KEM-DEM, the Hybrid Public-Key Encryption (HPKE) framework

consists in drawing a random symmetric encryption key and encrypting it under

the recipient’s public key. The content of the message is then encrypting under the

symmetric key, using a secret-key cryptosystem.

Figure 2: Overview of the group operations in a TMKA, as
detailed in Section 3.1. All changes in the tree structure re-
lated to these operations (update of the direct path of the
concerned user, encryption of the refreshed path secrets, gen-
eration of the new common secret) are similar to those of a
TreeKEM-like CGKA [8] [4].

4.2 Derivation and Regeneration Subroutines
4.2.1 Derivation. Our protocol derives a secret with a Key Deriva-

tion Function (KDF) 𝐻 taking as input that secret and a context-

dependent label label and yielding a pseudorandom output mapping

the key space K : 𝑠′ := derive(𝑠, label) = 𝐻 (𝑠, label).
This function 𝐻 is modeled in the standard model as a pseudo-

random function (PRF) using the secret 𝑠 as its key and the label as

its input.

4.2.2 Regeneration. A central process in SUMAC is what we call

the regeneration of secrets. Post-compromise security implies to

regularly refresh all the secrets known by any group member, with

the help of fresh entropy – contrary to forward secrecy that can be

more easily achieved with a simple derivation of these secrets. In

SUMAC, the number of secrets to refresh is large, considering the

admin CGKA and the 𝑛𝑎 user TMKAs, and it is consequently useful

to carry out this operation efficiently w.r.t. the communication cost.

To do so, our regeneration algorithm uses a regeneration set
12 R,

which comprises the entropy needed for the refreshment of the

set S of secrets. It combines together these two sets in such a way

that the set S′ of regenerated secrets can be retrieved only by

knowing both the original secrets and the regeneration values.

This secure combination of two secrets 𝑠1 and 𝑠2 is carried out

by a key combiner 𝐹 taking as inputs these two secrets and yielding

a pseudorandom output mapping the key space K . This function 𝐹

is modeled in the standard model as a dual pseudorandom function

(dPRF).

The algorithms of derivation and regeneration are detailed in Fig-

ure 16 (Appendix E, p.31).

12
This regeneration set does not necessarily have the same size as the set of secrets

to be regenerated; in fact a single regeneration value would suffice to refresh an

arbitrary number of secrets. Nevertheless, in practice, the security model associated

with SUMAC, in which any combination of administrators and standard users may be

corrupt, implies to associate a different regeneration value with each input secret.
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4.3 Description of SUMAC
SUMAC is an administrated-CGKA (A-CGKA), in the sense of Defi-

nition 3.3, that uses as sub-protocols a CGKA and 𝑛𝑎 instances of a

TMKA (with 𝑛𝑎 the number of administrators).

• Administrators from the admin group G𝑎 are linked to-

gether through the CGKA, which yields an admin key 𝐼𝑎
known by the administrators only.

• In parallel, each administrator 𝑎𝑖∈J1,𝑛𝑎K is appointed group

manager of a TMKA instance, with a user tree T𝑢𝑖 where
all standard users from the user group G𝑢 are located at

the leaves. Each tree generates a user key 𝐼𝑢𝑖 known by all

standard users and by the single admin 𝑎𝑖 managing it.

• The various group operations from SUMAC derive a group

key 𝐼𝑔 , known by every group members and that serves as

a shared secret to establish the group conversation.

We describe beneath how SUMAC performs the group operations

of an A-CGKA, considering separately admin and user operations

that are implemented quite differently. These operations are de-

scribed in pseudo-code in Figure 17 (Appendix E, p.33).

4.3.1 Admin Group Operations. Committer 𝑎𝑐 (associated with a

proposing admin 𝑎𝑝 for an add-admin) performs an operation

𝑜𝑝 ∈ {add-admin, remove-admin,update-admin} on adminis-

trator 𝑎 𝑗 as follows:

(1) For all these three operations, 𝑎𝑐 carries out in the admin-

istration CGKA the operation corresponding to 𝑜𝑝 . Each

administrator therefore receives from the committer 𝑎𝑐 the

information needed to compute the common CGKA secret,

from which are derived both the new admin key 𝐼𝑎 and

the new group key 𝐼𝑔 . The latter is subsequently broadcast

by 𝑎𝑐 to the standard users (a single message suffices, en-

crypted under the user key 𝐼 𝑖+1𝑢𝑐
which is known both by 𝑎𝑐

and all the standard users).

(2) In a remove-admin, the state of the removed administra-

tor 𝑎 𝑗 – including notably its whole user tree T𝑢 𝑗
– is simply

erased (cf. Figure 5).

(3) In an update-admin, a regeneration process is carried out

on the whole user tree T𝑢𝑐 of the committer. 𝑎𝑐 therefore

generates a regeneration set R derived from its own user

tree (R := derive(T 𝑖+1
𝑢𝑐

, “regen”)), that it sends in unicast to
the updated admin 𝑎 𝑗 . The latter uses that set to regenerate

its whole user treeT𝑢 𝑗
. In parallel, standard users regenerate

their direct path inT𝑢 𝑗
, using regeneration sets derived from

their path in T 𝑖+1
𝑢𝑐

(cf. Figure 3).

(4) In an add-admin (with at least two already existing admin-

istrators), the process is complicated by the fact that the

user tree T𝑢 𝑗
of the new administrator is initially empty,

which prevents any regeneration. Consequently, the com-

mit for an add-admin operation must be preceded by a

proposal, compulsorily by another administrator 𝑎𝑝 . In that

proposal, 𝑎𝑝 includes a temporary user tree T 𝑖+1
𝑢 𝑗

for 𝑎 𝑗 that

is derived from its own tree: T 𝑖+1
𝑢 𝑗

:= derive(T 𝑖
𝑢𝑝
, “regen”).

A regeneration process may then be applied on that tem-

porary tree, with the regeneration set R yielded by the

Figure 3: Description of the update-admin operation in
SUMAC.

Figure 4: Description of the add-admin operation in SUMAC.

committer 𝑎𝑐 as for an update-admin operation. Figure 4

details these steps.

4.3.2 User Group Operations. Committer 𝑎𝑐 performs an operation

𝑜𝑝 ∈ {add-user, remove-user,update-user} on standard user 𝑢 𝑗
as follows (cf. Figures 6, 7 and 8):

(1) For all these three operations, 𝑎𝑐 carries out, in the tree

T𝑢𝑐 that it manages, the TMKA operation corresponding to
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Figure 5: Description of the remove-admin operation in
SUMAC.

𝑜𝑝 (cf. Section 4.1). Each standard user therefore receives

from 𝑎𝑐 the information needed to update the nodes from

its direct path in T𝑢𝑐 that it has in common with the added/

removed/ updated standard user 𝑢 𝑗 .

(2) A regeneration process spreads the changes from T𝑢𝑐 to the
other user trees T𝑢𝑖≠𝑐 :
• For an add-user or a remove-user, a regeneration set

R is created by 𝑎𝑐 by derivation of the updated path of

𝑢 𝑗 in T𝑢𝑐 :R := derive(P(𝑢 𝑗 ,T 𝑖+1
𝑢𝑐
), “regen”). It is then

broadcast by 𝑎𝑐 to the admin group G𝑎 , and the other

administrators regenerate 𝑢 𝑗 ’s path in their own user

tree. In an update-user, the same process happens on

the extended path of 𝑢 𝑗 (thus also including 𝑢 𝑗 ’s leaf,

cf. Equation (1)):

R := derive(P𝑥 (𝑢 𝑗 ,T 𝑖+1
𝑢𝑐
), “regen”).

• Each standard user 𝑢𝑖 , that has a partial view of all
the user trees, is able to locally compute its own re-

generation set R𝑖 , derived from the nodes in T𝑢𝑐 that

were updated by the TMKA in the previous step. It

then regenerates these nodes in the trees T𝑢𝑖≠𝑐 , with
that same regeneration set.

• The new group key 𝐼𝑔 is derived from the top regenera-

tion node, common to all the regeneration sets since it

is derived from the root of the user tree T𝑢𝑐 . The new
group key is thus naturally known by the committer

and all the standard users, as well as by the other ad-

ministrators as soon as they receive the committer’s

regeneration set R.
The main advantage of such a regeneration process, in

terms of communication cost, is to update 𝑛𝑎 − 1 user trees
with only one broadcast message of size logarithmic in the

number of standard users.

(3) In an add-user, contrary to the other two user operations,

the leaf associated with𝑢 𝑗 in user treesT𝑢𝑖≠𝑐 is still empty at

that point. Moreover, 𝑢 𝑗 does not know (and must not, due

to forward secrecy) its direct path in these trees. Therefore,

all administrators 𝑎𝑖≠𝑐 must subsequently draw a random

leaf secret related to𝑢 𝑗 ’s leaf in their user tree, and transmit

to𝑢 𝑗 (possibly in unicast) that leaf secret and the previously

regenerated direct path of 𝑢 𝑗 in that tree. In practice, this

step is carried out progressively: temporarily,𝑢 𝑗 is attached

to the root of the trees T𝑢𝑖≠𝑐 and every communication

sent to standard users in these trees must be encrypted

under that user’s own public key
13
. Then, each time an

administrator commits, it checks beforehand whether it

has standard users straightly attached to the root of its user

tree, and the case being, it sends them the secrets of their

direct paths
14
.

4.3.3 Upgrade User / Downgrade Admin. Due to the strict partition-
ing between administrators and standard users in SUMAC, imposed

by security constraints, it is not possible to change in one step the

status of a group member. Indeed, each type of group members

knows secret information that is not compatible with the other

category: an administrator has a full view of its user tree, whereas

a standard user only knows its path in this tree but also knows its

path on all the other user trees. Consequently, SUMAC changes

the status of a group member in two steps, by firstly removing it

from the member group – which updates the secret elements this

member had knowledge of – and then adding it as a new member

of the other type.

We note that in the propose & commit paradigm, instead of

carrying out this operation in two separate commits – and therefore,

two different epochs, which would imply some unavailability time

for the migrating group member, in between these two commits –,

the two steps mentioned above can be executed in a row. In that

case, group members still perform the two operations composing

this migration process; nevertheless, the intermediary group key 𝐼𝑔
yielded by the first operation is not used.

These steps are detailed in Figure 17 for the separate-operations

framework, thus within two different commits.

4.3.4 Limit Case: Adding a Second Administrator. A limit case of

SUMAC is the operation of adding a second administrator to the

admin group. Indeed, the regular add-admin operation uses a pair

of administrators (𝑎𝑝 , 𝑎𝑐 ), without which the partitioning between

administrators is not respected (and may be hard to achieve, even

after several updates of that new administrator, depending on the

corrupt standard users in the considered security game). When

there exists only one administrator in G𝑎 , it is therefore impossible

to implement that add-admin operation as mentioned above, and

the new administrator 𝑎 𝑗 must create its own user tree by itself

and distribute to every standard user its direct path (hence a cost

of 𝑛𝑢 (log(𝑛𝑢 ) + 1) secrets to transmit, encrypted in HPKE). This

unwanted use case may happen in two situations:

• At the beginning of the group history, when the admin

group G𝑎 is progressively built. In this inevitable case (un-

less the group sticks to a single administrator), the induced

13
This process is similar to the mechanism of merged leaves in MLS, where new users

are attached higher in the Ratchet Tree, initially directly to the root, as long as the

nodes in their direct path have not been updated.

14
This operation can also be optimized, for instance by updating at the same time that

users’ siblings.
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Figure 6: Description of the update-user operation in SUMAC.

Figure 7: Description of the add-user operation in SUMAC.

cost is very small since the number of existing standard

users remains low at that point.

• When a large group is built in MKA (with a single adminis-

trator), before switching to the multi-administrator setting.

This case may imply an important overhead. However, we

esteem that this situation is unlikely to occur frequently

in real use-cases, since the single-administrator or multi-

administrator setting is generally determined at the begin-

ning of a group history, and even frequently depends on the

application using the A-CGKA protocol. The applicative

Figure 8: Description of the remove-user operation in
SUMAC.

layer may also incite the first administrator to quickly add

at least another peer in order to avoid such an inconvenient

overhead (as well as to avoid the case where the single

administrator leaves the conversation).

We underline that a group with two administrators works fine

as long as none of them leaves prematurely the admin group, in

which case we fall back on the previous limit case.

4.3.5 Authentication of the Messages. In an A-CGKA, the messages

sent by the administrators (similarly to those sent by the groupman-

ager in an MKA) must be authenticated so that any group member

processing a commit message can check that it indeed originates

from a privileged group member. No authentication is required

by default for the standard users, since any change proposed by

a (potentially impersonated) standard user must be subsequently

validated by an administrator.

However, in SUMAC, we require that any proposal or commit

message is authenticated with a digital signature. This implies that

any group member, including standard users, must generate its own

signature key-pair, refresh it regularly and distribute its fresh public

key to the whole group. In addition, any administrator processing

a proposal message and any group member processing a commit

message must check its authenticity and the legitimacy of its sender

before taking it into account.

5 Correctness and Security
The correctness and security analyses of SUMAC as an A-CGKA

rely on the framework of [2]. This work is itself based on [1] – for

the security of a regular CGKA – upon which it adds, as additional

constraint inherent to the administrated feature of an A-CGKA, the

potential of an adversary to win the security game by forging a
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commit message on behalf of an administrator, instead of breaking

the indistinguishability property of the group key.

We display here the high level description of our security model

and the security results. The correctness analysis and the security

proof are given in Appendix B.

5.1 Security Model
5.1.1 A-CGKA Security Game. Originating from the model of [2],

the security of SUMAC is assessed trough a key indistinguisha-

bility security game KIND between a challenger C and an active

and adaptive adversary A. It nevertheless differs from its original

model on two points: firstly, the concept of key indistinguishability

in SUMAC does not concern a single group key but a tuple of ad-

min, user and group keys. Moreover, the A-CGKA security against

impersonation attacks is assessed in this paper regarding admin-

istrators and standard users (and therefore against the forgery of

both proposal and commit messages), whereas [2] only considers

the case of admin impersonation (and the forgery of a commit).

The challenger starts by tossing a coin 𝑏 in order to determine

if the security game occurs in the real (𝑏 = 0) or in the random

(𝑏 = 1) world. Then, the adversary can make a sequence of queries

to some oracles, in any arbitrary order, in order to simulate the

evolution of the member group over time (create – at the beginning

of the experiment –, propose and commit oracles) or the potential
attacks carried out during the group history (reveal, corrupt and
inject oracles). A challenge oracle must also be queried during the

experiment in order to test the ability of the adversary to break the

key indistinguishability of the protocol. These oracles are:

(1) O𝑐𝑟𝑒𝑎𝑡𝑒 (𝑎𝑐 , (𝑎ℓ )ℓ , (𝑢ℓ )ℓ ): at the beginning of the security

game, administrator 𝑎𝑐 creates a member group G with

admin and user subgroups G𝑎 = (gid, (𝑎ℓ )𝑛𝑎ℓ=1) and G𝑢 =

(gid, (𝑢ℓ )𝑛𝑢ℓ=1).
(2) O𝑝𝑟𝑜𝑝𝑜𝑠𝑒 (𝑚𝑖 ,𝑚 𝑗 , 𝑃 ): group member𝑚𝑖 proposes to imple-

ment a proposal 𝑃 , corresponding to a group operation as

given in the list of definition 3.3, for group member𝑚 𝑗 .

(3) O𝑐𝑜𝑚𝑚𝑖𝑡
(𝑎𝑐 ,

#»
𝑃 ,

#»
𝑜𝑝): administrator 𝑎𝑐 implements group op-

erations issued from a vector

#»
𝑃 of legitimate proposals

and/or a vector of self-initiated operations
#»
𝑜𝑝 .

(4) O𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑚 𝑗 , 𝑡
𝑖 ,𝐶): sends to group member𝑚 𝑗 the commit

message 𝐶 at epoch 𝑡𝑖 and makes𝑚 𝑗 process that commit.

(5) O𝑒𝑥𝑝𝑜𝑠𝑒 (𝑚 𝑗 , 𝑡
𝑖
)
15
: leaks to the adversary the private state

of group member𝑚 𝑗 at the epoch 𝑡
𝑖
of the query.

(6) O𝑟𝑒𝑣𝑒𝑎𝑙 (𝑡𝑖 ): leaks to the adversary the tuple of common

keys (𝐼 𝑖𝑎, (𝐼 𝑖𝑢ℓ
)𝑛𝑎
ℓ=1
, 𝐼 𝑖𝑔) for the epoch 𝑡𝑖 of the query.

(7) O𝑖𝑛 𝑗𝑒𝑐𝑡 (𝑚 𝑗 ,𝑚𝑠𝑔 ∈ {𝐶𝑎𝑑𝑚,𝐶𝑢𝑠𝑟 ,𝐶𝑖𝑛𝑑 , 𝑃}, 𝑡𝑖 ): the adversary
tries to forge either a commit or a proposal message at

epoch 𝑡𝑖 and to send it to group member𝑚 𝑗 (for a commit)

or admin 𝑎 𝑗 (for a proposal) for processing. If that member

successfully processes it, the forgery succeeds (which is

represented by the forgery predicate forge below) and the

challenge bit 𝑏 is given to the adversary. Otherwise the

oracle returns ⊥. As prerequisite, the admin impersonation-

safe safeadm and the user impersonation-safe safeusr pred-

icates (explained beneath) must be satisfied.

15
Corresponds to the O𝑐𝑜𝑟𝑟𝑢𝑝𝑡 oracle in some related works.

(8) O𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒 (𝑡𝑖 ): Let 𝑘0𝑎 = 𝐼 𝑖𝑎 , (𝑘0𝑢ℓ
)ℓ = (𝐼 𝑖𝑢ℓ

)𝑛𝑎
ℓ=1

and 𝑘0𝑔 = 𝐼 𝑖𝑔 be

respectively the real admin key, user keys and group key at

the epoch 𝑡𝑖 of that challenge query and 𝑘1𝑎 , (𝑘1𝑢ℓ
)ℓ and 𝑘1𝑔

be fresh random keys from the key spaceK . Then, if either

the cgka-safe safecgka or the forgery predicate forge is

satisfied, the tuple of keys (𝑘𝑏𝑎 , (𝑘𝑏𝑢ℓ
)ℓ , 𝑘𝑏𝑔 ) – with 𝑏 the coin

tossed by the challenger at the beginning of the security

game – is given to the adversary. If none of these predicates

is satisfied, the adversary gets nothing.

At the end of the game, the adversary outputs a bit
ˆ𝑏 and wins

if
ˆ𝑏 = 𝑏 (as stated above, the adversary knows the challenge bit in

case of a successful impersonation of an administrator or a stan-

dard user). We call the A-CGKA scheme (𝑡, 𝑞, 𝜖)-A-CGKA-secure if
for any adversary A making at most 𝑞 queries to the oracles and

running in time 𝑡 , its advantage advKIND in winning the key indis-

tinguishability game, with respect to the safe and forgery predicates

safecgka , safeadm , safeusr and forge , remains bounded by 𝜖 :

advKINDA-CGKA
safecgka,safeadm,safeusr,forge (A

O ) =
���� Pr[ ˆ𝑏 = 𝑏

]
− 1

2

���� ≤ 𝜖
5.1.2 Safe Predicates. In order to disregard in the A-CGKA security

game trivial attacks that cannot be avoided, we use predicates that

guarantee that none of these unwanted attacks occur at the time

of query of the challenge oracle. The concept of cgka-safe pred-

icate – noted here safecgka – originates from the regular CGKA

world [1]; it prevents the trivial leakage of the group key. [2] ex-

tends this notion to the trivial impersonation of an administrator in

their A-CGKA security model, with the admin impersonation-safe

predicate
16 safeadm.

As we extend in our paper the scope of potential adversarial im-

personations by considering that of a standard user, we additionally

determine a user impersonation-safe predicate safeusr, which is

similar to its admin counterpart and which prevents trivial forgery

of a proposal message by an impersonated standard user. As ex-

plained above, the reason for this new predicate is that even if an

A-CGKA controls the changes in the member group by granting

commit rights to admins only, standard users still have the ability to

propose changes through possibly malicious proposals that could

then be naively validated by an honest committer. In particular,

a self-removal forged proposal sent by an impersonated standard

user would be most probably validated by the committer and thus

would lead to a dishonest change in the group membership.

In practice, the forgery of proposals is already (informally) taken

into account by some CGKAs such as in MLS, where every hand-

shake message – proposals included – is signed by its emitter.

5.1.3 Forgery Predicate. In addition to the safe predicate, the forgery
predicate, noted forge and also issued from [2], formalizes the fact

that the forgery of either a commit or a proposal message, rep-

resented by an adversarial query to the inject oracle, has been
accepted by a processing group member, making it successful. In

that case, the adversary wins the security game, provided that the

admin impersonation-safe predicate safeadm (for both a forged

commit and a forged proposal) and the user impersonation-safe

predicate safeusr (only for a forged proposal) are also respected.

16
Stated in [2] as the “admin predicate”.
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5.2 Security Results
We prove the security of SUMAC by relying on that of the un-

derlying admin CGKA cgka (that matches the framework of [2,

Figure 3]), of the user TMKA tmka (according to [9, Figure 2]) and

of the encryption schemes and key derivation functions, whose

security models are recalled in Figures 10 and 11 (Appendix A,

p.15). Our security proof, given in Appendix B, is established in the

standard model. It lies in the separate-operations framework, for

sake of simplicity, but could easily be extended in a future work to

the propose & commit paradigm.

Theorem 5.1 (Security of SUMAC). Let cgka be a (𝑡𝑐𝑔𝑘𝑎, 𝑞, 𝜖𝑐𝑔𝑘𝑎)-
secure CGKA and tmka be a (𝑡𝑡𝑚𝑘𝑎, 𝑞, 𝜖𝑡𝑚𝑘𝑎)-secure tree-based MKA.
Let E1 be a (𝑡ℎ𝑝𝑘𝑒 , 𝜖ℎ𝑝𝑘𝑒 )-IND-CPA secure HPKE mechanism, E2 a
(𝑡𝑎𝑒𝑎𝑑 , 𝜖𝑎𝑒𝑎𝑑 )-IND-CPA secure AEAD17 scheme, S a (𝑡𝑠𝑖𝑔, 𝜖𝑠𝑖𝑔)-SUF-
CMA secure signature scheme and 𝐻 and 𝐹 key derivation functions
modeled respectively as a (𝑡𝐻 , 𝜖𝐻 )-secure pseudorandom function and
a (𝑡𝐹 , 𝜖𝐹 )-secure dual-PRF.

Then SUMAC, implemented with cgka as its admin CGKA, tmka
as its user MKA and 𝐹 , 𝐻 , E1, E2 and S as its auxiliary functions,
is (𝑡𝑠𝑢𝑚𝑎𝑐 , 𝑞, 𝜖𝑠𝑢𝑚𝑎𝑐 )-A-CGKA secure, with 𝑡𝑠𝑢𝑚𝑎𝑐 ≈ 𝑡𝑐𝑔𝑘𝑎 ≈ 𝑡𝑡𝑚𝑘𝑎

and 𝜖𝑠𝑢𝑚𝑎𝑐 s.t.:
𝜖𝑠𝑢𝑚𝑎𝑐 ≤ 𝑞2𝜖𝑠𝑖𝑔 + 𝜖𝑐𝑔𝑘𝑎 + 𝜖𝑡𝑚𝑘𝑎 + 𝑞 ·

(
2𝜖𝑎𝑒𝑎𝑑 + (𝑛𝑢 + 1) · 𝜖ℎ𝑝𝑘𝑒

+ (2𝑛𝑢 − 1 + (𝑛𝑢 − 1) (log2 (𝑛𝑢 ) + 1)) · 𝜖𝐹 (8)

+ (5𝑛𝑢 + log2 (𝑛𝑢 ) + 2) · 𝜖𝐻
)

6 Performances
This section presents the performances of SUMAC with respect to

the traditional metrics of communication and storage (memory)

costs. We underline that the main purpose of our algorithm is

to decrease the communication cost of an A-CGKA, hence this

factor is dealt with more details than the other one. These costs are

assessed for several group sizes, with numbers of standard users

and administrators of (24, 22), (28, 24) and (216, 28). We have set

the number of administrators to the square root of the number of

standard users (the need for administrators indeed does not grow

linearly with the number of standard users). This choice, that we

esteem realistic, is arbitrary; however our simulations have shown

that this ratio does not anyway strongly influence the performances

of our protocol.

We state beneath the main results of our performance analysis;

the related computations are detailed in Appendix D.

6.1 Storage Cost
Table 1 (Appendix D.1, p.21) displays the results of our analysis on

the storage cost of the aforementioned protocols. It shows a great

improvement brought by SUMAC in that matter, with a gain w.r.t.

TreeKEM and IAS-TK (that have the same storage cost) between

25% and 96% for administrators, and ranging from 74% to more than

99% for standard users.

This improvement comes from the fact that in SUMAC, the public

states of the user trees are no longer composed of public keys –

very cumbersome in the post-quantum framework – but of much

more compact secret keys. Moreover, even if standard users have a

17
Authenticated Encryption scheme with Associated Data.

transversal view on all 𝑛𝑎 user Ratchet Trees, they do no need to

keep a complete view of these trees, but instead only record their

direct path in these trees, of length logarithmic in the number of

users.

6.2 Communication Cost
6.2.1 Framework of the Analysis. We study here the communi-

cation cost induced in SUMAC by the eight group operations of

an A-CGKA, and we compare these costs with those of the two

A-CGKAs from [2], implemented upon TreeKEM: IAS-TK and DGS-

TK. We also include TreeKEM in this performance analysis; since

the CGKA operations do not precisely match that of an A-CGKA,

we compare the add, remove and update operations of TreeKEM
with both the admin and the user operations of the A-CGKAs.

In order to avoid any bias in this comparison, we consider the

separate-operations paradigm, where group operations are carried

out independently the one from another, contrary to what is done in

the propose & commit setting. Indeed, because the latter enables to

group any combination of any number of group operations within

a commit, the performances of a protocol in that framework greatly

depends on the arbitrary choice of proposals to be implemented,

which makes difficult to impartially compare several protocols.

Regarding the message distribution method (cf. Appendix D.3.1),

our analysis is made in the broadcast-only distribution setting. The

idea is indeed to remain generic by considering the most basic De-

livery Service. We nevertheless underline that SUMAC also allows

the group-distributionmethod – contrary to TreeKEM, DGS-TK and

IAS-TK –, which is far more efficient since messages addressed

to administrators or standard users are only distributed to their

corresponding subgroups instead of the entire member group.

6.2.2 Results. The results depicted in Table 4 (Appendix D.3, p.28)

show a significant reduction in communication cost with SUMAC,

compared with TreeKEM and the IAS-TK and DGS-TK A-CGKAs,

especially in the post-quantum setting due to the use of secret-key

cryptography.

In all the admin and user operations, the communication cost

of SUMAC appears always lower than that of TreeKEM, IAS-TK

and DGS-TK. SUMAC performs particularly well in user operations

(add-user, remove-user, update-user), in which the communi-

cation cost of SUMAC is between 42 and 97% lower than that of

TreeKEM and IAS-TK. The best performances of SUMAC occur in a

large group in the PQ setting, where the cost is divided by a factor 17

to 37. Even for the admin operations (add-admin, remove-admin,
update-admin), SUMAC has a communication cost 27% to 60%

lower than TreeKEM, depending on the operation considered.

On the other hand, SUMAC is less efficient than IAS-TK and DGS-

TK
18

for the two – less frequent – migration operations of upgrade
and downgrade, due to the partitioning between administrators

and standard users in SUMAC.

The overall performances of SUMAC therefore depend on the

sequence of group operations that are carried out during the mem-

ber group history. In particular, SUMAC would be best used by

privileging adding new administrators straightly from outside the

member group, instead of upgrading existing standard users. Since

18
No comparison is possible with TreeKEM for these migration operations, because

this one is not administrated.
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the most frequent operations that are expected to be performed

(update of the administrators and any operation on the numerous

standard users) induce a lower communication cost with SUMAC

than its competitors, we can infer that in general, our protocol

behaves much more efficiently than DGS-TK, IAS-TK and even

than TreeKEM. The comparison with TreeKEM underlines that the

administrated setting, far from being a costly burden, can be turned

into an advantage in terms of performances by using an adequate

protocol design.
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A Omitted Preliminaries
We state hereunder some primitives that are either at the edge of

our study (such as the A-CGKA-FA below) or that are preliminaries

omitted from the main body, for lack of space.

A.1 Administrated-CGKA with Flexible
Authorizations

Informally, an Administrated-CGKA with Flexible Authorizations

(A-CGKA-FA) is a variant of the A-CGKA from Definition 3.3, con-

ceptualized by [15], where the administration rights are given to the

administrators and the standard users according to a fine-grained

policy, captured by our notion of authorization sets. These ones

depict the group operations allowed for each type of group member,

considering separately the cases of a proposal and of a commit.

Definition A.1 (A-CGKA-FA). AnAdministrated ContinuousGroup

Key Agreement with Flexible Authorizations (A-CGKA-FA) is a

group key agreement protocol where group members are divided

between administrators and standard users, and consisting of a

set O of group operations, associated with authorizations, and of

the algorithms beneath.

• Initialize: group member𝑚𝑖 ∈ {𝑎𝑖 , 𝑢𝑖 } creates its initial
state 𝛾𝑖 (for an administrator) or 𝛿𝑖 (for a standard user):

𝛾𝑖 ← init(𝑎𝑖 ) / 𝛿𝑖 ← init(𝑢𝑖 )
• Create Group: initial group member 𝑚1 creates an ini-

tial member group G from a list 𝐿𝑎 = (𝑎𝑘 )𝑛𝑎𝑘=1 of 𝑛𝑎 ad-

ministrators, a list 𝐿𝑢 = (𝑢𝑘 )𝑛𝑢𝑘=1 of 𝑛𝑢 users and a unique

group ID gid, updating in accordance its initial state 𝛾1/𝛿1
into 𝛾 ′

1
/𝛿 ′

1
, yielding the new member group G (composed

of the admin group G𝑎 = (gid, 𝐿𝑎) and user group G𝑢 =

(gid, 𝐿𝑢 )), an initial group key 𝐼 and an associated commit

message 𝐶:

(𝛾 ′
1
/𝛿 ′

1
, (G𝑎,G𝑢 ), 𝐼 ,𝐶) ← create-group(𝛾1/𝛿1, 𝐿𝑎, 𝐿𝑢 )

• Propose: group member𝑚𝑖 , with state 𝛾𝑖 or 𝛿𝑖 , proposes a

group operation 𝑜𝑝 ∈ A𝑝𝑟𝑜𝑝

𝑎𝑑𝑚/𝑢𝑠𝑟 to apply on group mem-

ber𝑚 𝑗 within G, generating a proposal message 𝑃 and an

updated state 𝛾 ′
𝑖
or 𝛿 ′

𝑖
:

(𝛾 ′𝑖 /𝛿
′
𝑖 , 𝑃) ← propose(𝛾𝑖/𝛿𝑖 , gid, 𝑜𝑝 (𝑚 𝑗 ))

• Commit: group member𝑚𝑖 , with state 𝛾𝑖 or 𝛿𝑖 , takes as

input a possibly empty vector of proposals

#»
𝑃 sent by other

group members and a possibly empty vector of group op-

erations
#»
𝑜𝑝 that it has generated itself, s.t. ∀𝑜𝑝 ∈ #»

𝑜𝑝, 𝑜𝑝 ∈
A𝑐𝑜𝑚

𝑎𝑑𝑚/𝑢𝑠𝑟 . Considering only the legitimate
19

operations

from these two vectors,𝑚𝑖 updates its state accordingly,

generates a new group key 𝐼 ′ and sends a commit mes-

sage 𝐶 to the existing and potentially new users:

(𝛾 ′𝑖 /𝛿
′
𝑖 , 𝐼
′,𝐶) ← commit(𝛾𝑖/𝛿𝑖 , gid,

#»
𝑃 ,

#»
𝑜𝑝)

• Process: group member𝑚𝑖 , with state 𝛾𝑖 or 𝛿𝑖 , processes

a commit message 𝐶 it has received. After checking the

legitimacy of this message
19
, it updates its state accord-

ingly and computes the new group key 𝐼 ′ resulting from

these changes. In case of failure, and notably if the commit

message is not legitimate,𝑚𝑖 aborts the ongoing process

and returns a failure value ⊥:
(𝛾 ′𝑖 /𝛿

′
𝑖 , 𝐼
′)/⊥ := process(𝛾𝑖/𝛿𝑖 , gid,𝐶)

The set O of group operations in an A-CGKA-FA is the following:

19
A group operation from a Proposal or a Commit is legitimate if it belongs to the

authorization set A𝑝𝑟𝑜𝑝/𝑐𝑜𝑚
𝑎𝑑𝑚/𝑢𝑠𝑟 of the group member at its origin.
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• add-admin (𝑎 𝑗 ): new admin 𝑎 𝑗 is added to the admin

group G𝑎 directly while joining the member group G;
• remove-admin (𝑎 𝑗 ): admin 𝑎 𝑗 is removed from the entire

member group G;
• update-admin (𝑎 𝑗 ): admin 𝑎 𝑗 has its state updated;

• add-user (𝑢 𝑗 ): new standard user 𝑢 𝑗 is added to the user

group G𝑢 ;
• remove-user (𝑢 𝑗 ): standard user 𝑢 𝑗 is removed from the

member group G;
• update-user (𝑢 𝑗 ): standard user 𝑢 𝑗 has its state updated;

• upgrade-user (𝑢 𝑗 ): standard user 𝑢 𝑗 becomes an adminis-

trator and leaves G𝑢 to join G𝑎 ;
• downgrade-admin (𝑎 𝑗 ): admin 𝑎 𝑗 becomes a standard

user and leaves G𝑎 to join G𝑢 .

We define A𝑝𝑟𝑜𝑝

𝑎𝑑𝑚
, A𝑐𝑜𝑚

𝑎𝑑𝑚
, A𝑝𝑟𝑜𝑝

𝑢𝑠𝑟 and A𝑐𝑜𝑚
𝑢𝑠𝑟 as subsets of O cor-

responding to the authorized operations for administrators and

standard users in a proposal and in a commit.

A.2 Signature Security Game
Definition A.2 (SUF-CMA Security for a Digital Signature). A

digital signature scheme S is said to be (𝑡, 𝜖)-secure against strong
existential forgery under chosen message attacks (SUF-CMA) if, for

any adversaryA running in polynomial-time 𝑡 , the probability that

this adversary wins the security game (given by Pr[A𝑠𝑢𝑓 -𝑐𝑚𝑎

𝑆
= 1])

is bounded by 𝜖 , where the probability is taken over the choice of

the challenger and adversary’s random coins.

SUF-CMAAS
1 : (𝑠𝑝𝑘, 𝑠𝑠𝑘) ← key-gen()
2 : 𝑄 := ∅

3 : (𝑚,𝜎) ← AO
𝑠𝑖𝑔𝑛

(𝑠𝑝𝑘)
4 : require(𝑚,𝜎) ∉ 𝑄
5 : if verif (𝑠𝑝𝑘, 𝜎,𝑚) = ⊤ then :

6 : return 1 // successful forgery

7 : else :

8 : return 0

O𝑠𝑖𝑔𝑛 (𝑚)
1 : 𝜎 ← sign(𝑠𝑠𝑘,𝑚)
2 : 𝑄 := 𝑄 ∪ {(𝑚,𝜎)}
3 : return 𝜎

Figure 9: SUF-CMA security game for a digital signature
scheme.

A.3 Security and Correctness of an Encryption
Scheme

A.3.1 IND-CPA Security of an Encryption Scheme. The security

game corresponding to the IND-CPA security of public-key and

secret-key encryption schemes, with two experiments IND-CPAAE (𝑏),
𝑏 ∈ {0, 1}, is detailed in Figure 10.

We say the the encryption scheme E is (𝑡, 𝜖)-IND-CPA secure if

for any adversary A = (A1,A2) running in polynomial-time 𝑡 , its

advantage in winning the security game by guessing the experiment

bit 𝑏 is bounded by 𝜖 :

advIND−CPAE (A) =
���� Pr[ ˆ𝑏 = 𝑏

]
− 1

2

���� ≤ 𝜖 (9)

IND-CPAA
PKE
(𝑏)

1 : (𝑝𝑘, 𝑠𝑘) ← key-gen()
2 : (𝑚0,𝑚1, 𝑠𝑡) ← A1 (𝑝𝑘)

3 : 𝑐∗ ← enc(𝑝𝑘,𝑚𝑏 )

4 :
ˆ𝑏 ← A2 (𝑝𝑘, 𝑐∗,𝑚0,𝑚1, 𝑠𝑡)

5 : return ˆ𝑏

IND-CPAA
SKE
(𝑏)

1 : 𝑘 ← key-gen()

2 : (𝑚0,𝑚1, 𝑠𝑡) ← AO
𝑒𝑛𝑐

1
()

3 : 𝑐∗ ← enc(𝑘,𝑚𝑏 )

4 :
ˆ𝑏 ← AO

𝑒𝑛𝑐

2
(𝑐∗,𝑚0,𝑚1, 𝑠𝑡)

5 : return ˆ𝑏

O𝑒𝑛𝑐 (𝑚)
1 : 𝑐 ← enc(𝑘,𝑚)
2 : return 𝑐

Figure 10: IND-CPA security games for a public-key encryp-
tion scheme (left) – including HKPE constructions – and a
secret-key encryption scheme (right), comprising the AEAD
mechanisms.

A.3.2 Worst-Case Correctness. We say that a secret-key encryption

scheme E is perfectly correct if we have:

∀𝑚 ∈ M,∀𝑘 ← key-gen(), dec(𝑘, enc(𝑘,𝑚)) =𝑚 (10)

Perfect correctness for a public-key encryption scheme (PKE)

is defined similarly. However, many PKEs, especially in the post-

quantum framework, do not reach this property and it appears

useful to statistically bound their correctness error.

Definition A.3 (Worst-Case Correctness (from [14])). The worst-
case correctness of a public-key encryption scheme PKE, with a

message spaceM and a randomness space R, is defined as:

𝛿𝑤𝑐 := E
(𝑝𝑘,𝑠𝑘 )←key-gen( )

(
Max

𝑚∈M

{
Pr

𝑟 ∈R

[
dec

(
𝑠𝑘, enc(𝑝𝑘,𝑚; 𝑟 )

)
≠𝑚

]})
(11)

A.4 PRF and Dual-PRF Security
Informally, a pseudorandom function (PRF) is a keyed function

𝐹 : K × X → Y whose outputs are indistinguishable from a

random distribution from the output space Y. A dual-PRF (dPRF)

is a function that behaves as a PRF even when reversing the roles

of its key 𝑘 ∈ K and its input 𝑥 ∈ X.
The security of a PRF is established with a real-random secu-

rity game described in Figure 11. We say that the function 𝐹 is a

(𝑡, 𝜖)-secure PRF if, for any adversary A running in polynomial-

time 𝑡 , the probability that this adversary wins the security game

(by guessing the experiment bit 𝑏) is bounded by 𝜖 .

advPRFF (A) =
���� Pr[ ˆ𝑏 = 𝑏

]
− 1

2

���� ≤ 𝜖 (12)

Beforehand, we define Fun(X,Y) as the set of all functions de-
fined over X and Y.
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PRFA
𝐹
(𝑏)

1 : if 𝑏 = 0 then :

2 : 𝑘 ← $K
3 : 𝑓 := 𝐹 (𝑘, ·)
4 : else :

5 : 𝑓 ← $ Fun(X,Y)

6 :
ˆ𝑏 ← AO

𝑝𝑟 𝑓

()

7 : return ˆ𝑏

O𝑝𝑟 𝑓 (𝑥)
1 : 𝑦 := 𝑓 (𝑥)
2 : return 𝑦

Figure 11: Security game for a pseudorandom function.

B Security Analysis
This appendix details and proves the security results from Sec-

tion 5.2, firstly by analyzing – in the framework of SUMAC – the

safe and impersonation predicates used in the security game, and

then by proving our main security result: Theorem 5.1.

B.1 Safe Predicates
This part is dedicated to assessing the three safe predicates safecgka,

safeadm and safeusr for SUMAC.

B.1.1 CGKA Safe Predicate of SUMAC. [2] distinguishes in their

study the part of the cgka-safe predicate that is intrinsic to any

CGKA – that they call the optimal safe predicate safecgka-opt – and

the additional part of that predicate that originates from a given

protocol Π – noted safeΠ
cgka-add –, s.t.:

safeΠ
cgka = safecgka-opt ∧ safeΠ

cgka-add (13)

According to their analysis, safecgka-opt covers the following

unavoidable attacks:

• querying the challenge oracle right after a reveal oracle
query or another challenge query;

• corrupting a group member, with a query to the expose
oracle, at the challenge epoch or before it updates its states

after that epoch.

safecgka-opt therefore ensures that only one reveal or challenge
query may be performed per epoch, and that for an expose query
on a group member𝑚 𝑗 :

• this one was outside the member group at the challenge

time,

• or it had updated its keys before the challenge epoch (post-

compromise security),

• or the exposure occurred after the challenge epoch and the

update of the member’s keys (forward secrecy).

We now determine the additional features of the cgka-safe pred-

icate in SUMAC.

Proposition B.1 (SUMAC cgka-Safe Predicate). Let us con-
sider SUMAC implemented with an administration CGKA cgka and
a Tree-based MKA tmka. Then, its cgka-safe predicate safesumac

cgka can
be expressed as:

safesumac
cgka = safecgka-opt ∧ safecgka

cgka-add ∧ safetmka
cgka-add (14)

Proof. The proof comes straightly from the design of SUMAC.

Let us assume that the admin CGKA cgka has an additional cgka-

safe predicate safecgka
cgka-add associated with it and that is not re-

spected. Then, by definition of that predicate, nothing prevents the

adversary from carrying out a trivial attack – other than the attacks

captured by the optimal cgka-safe predicate – resulting in leaking

the challenge admin key 𝑘∗𝑎 (after derivation of the related cgka

key 𝐼𝑐𝑔𝑘𝑎). Since the security game of SUMAC is built on the in-

distinguishability of the tuple of keys (𝐼𝑎, (𝐼𝑢ℓ
)𝑛𝑎
ℓ=1
, 𝐼𝑔), leaking that

admin key suffices to make the adversary win the security game

with an overwhelming advantage. Similarly, if the TMKA tmka has
an additional cgka-safe predicate safetmka

cgka-add that is violated – and

since all user trees have the same structure –, the adversary is able

to recover the challenge user keys (𝑘∗𝑢ℓ
)𝑛𝑎
ℓ=1

and win in consequence

the security game with a very high probability.

Conversely, as the admin key and user keys only depend (respec-

tively) on the admin CGKA and the TMKA algorithms
20
, they are

not trivially leaked to the adversary if the two cgka-safe predicates

safecgka
cgka and safetmka

cgka are simultaneously respected. Moreover,

the challenge group key 𝑘∗𝑔 , which is output indirectly from the

CGKA – if the previous group operation queried by the adversary

is an admin operation – or from the TMKA – if the last operation

is a user one –, is not leaked either to the adversary when these

additional predicates are all respected. □

B.1.2 Impersonation Safe Predicates. Similarly to the cgka-safe

predicate, the impersonation-safe predicates of anA-CGKA– safeadm
regarding the safety of the administrators and safeusr for the stan-
dard users– can be each expressed as the logical conjonction of an

intrinsic general impersonation predicate safeimp-opt, independent
of the protocol and of the type of group member considered, and an

additional predicate safeΠ
adm-add (resp. safeΠ

usr-add) that depends on
the features of the protocol Π and the type of member it is applied

on:

safeΠ
adm = safeimp-opt ∧ safeΠ

adm-add (15)

safeΠ
usr = safeimp-opt ∧ safeΠ

usr-add (16)

In particular, safeimp-opt excludes any impersonation on a previ-

ously corrupt group member that has not refreshed yet its signature

key-pair.

Proposition B.2 (SUMAC Impersonation Safe Predicates).

Let us consider SUMAC implemented with an administration CGKA
cgka and a Tree-based MKA tmka, respectively associated with
impersonation-safe predicates21 safecgka

adm and safetmka
usr . Then, its ad-

min and user impersonation-safe predicates safesumac
adm and safesumac

usr
can be expressed as:

20
More specifically, the user key of the committer is straightly issued from the TMKA

protocol, whereas the other user keys are output by the regeneration of their tree with

the regeneration set, which itself solely depends on the TMKA protocol.

21
The user impersonation-safe predicate of the TMKA captures trivial impersonation

attacks carried out on standard users but does not cover impersonation attacks on

the group manager. This is not an issue for the security of SUMAC, since the group

managers of the user trees are the administrators, themselves protected from trivial

attacks by the admin impersonation-safe predicate.
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safesumac
adm = safecgka

adm = safeimp-opt ∧ safecgka
adm-add (17)

safesumac
usr = safetmka

usr = safeimp-opt ∧ safetmka
usr-add (18)

Proof. The proof is straightforward. The authentication of ad-

ministrators, which aims to prevent the impersonation of these

group members, is managed solely by the admin CGKA. Therefore,

the scope of trivial impersonation attacks on the users of that CGKA

considered by its impersonation-safe predicate safecgka
adm matches

precisely that of the admin impersonation attacks in SUMAC, asso-

ciated with the predicate safesumac
adm .

Similarly, the authentication of standard users in SUMAC is

exclusively performed by the TMKA protocol which is applied on

the user trees. Consequently, the trivial attacks on the users in the

TMKA, captured by safetmka
usr , correspond to that of the standard

users in SUMAC, associated with the predicate safesumac
usr . □

B.2 Proof of Theorem 5.1
We recall here the theorem stating the security of SUMAC:

Theorem 5.1 (Security of SUMAC). Let cgka be a (𝑡𝑐𝑔𝑘𝑎, 𝑞, 𝜖𝑐𝑔𝑘𝑎)-
secure CGKA and tmka be a (𝑡𝑡𝑚𝑘𝑎, 𝑞, 𝜖𝑡𝑚𝑘𝑎)-secure tree-based MKA.
Let E1 be a (𝑡ℎ𝑝𝑘𝑒 , 𝜖ℎ𝑝𝑘𝑒 )-IND-CPA secure HPKE mechanism, E2 a
(𝑡𝑎𝑒𝑎𝑑 , 𝜖𝑎𝑒𝑎𝑑 )-IND-CPA secure AEAD22 scheme, S a (𝑡𝑠𝑖𝑔, 𝜖𝑠𝑖𝑔)-SUF-
CMA secure signature scheme and 𝐻 and 𝐹 key derivation functions
modeled respectively as a (𝑡𝐻 , 𝜖𝐻 )-secure pseudorandom function and
a (𝑡𝐹 , 𝜖𝐹 )-secure dual-PRF.

Then SUMAC, implemented with cgka as its admin CGKA, tmka
as its user MKA and 𝐹 , 𝐻 , E1, E2 and S as its auxiliary functions,
is (𝑡𝑠𝑢𝑚𝑎𝑐 , 𝑞, 𝜖𝑠𝑢𝑚𝑎𝑐 )-A-CGKA secure, with 𝑡𝑠𝑢𝑚𝑎𝑐 ≈ 𝑡𝑐𝑔𝑘𝑎 ≈ 𝑡𝑡𝑚𝑘𝑎

and 𝜖𝑠𝑢𝑚𝑎𝑐 s.t.:

𝜖𝑠𝑢𝑚𝑎𝑐 ≤ 𝑞2𝜖𝑠𝑖𝑔 + 𝜖𝑐𝑔𝑘𝑎 + 𝜖𝑡𝑚𝑘𝑎 + 𝑞 ·
(
2𝜖𝑎𝑒𝑎𝑑 + (𝑛𝑢 + 1) · 𝜖ℎ𝑝𝑘𝑒

+ (2𝑛𝑢 − 1 + (𝑛𝑢 − 1) (log2 (𝑛𝑢 ) + 1)) · 𝜖𝐹 (8)

+ (5𝑛𝑢 + log2 (𝑛𝑢 ) + 2) · 𝜖𝐻
)

Proof. Let us consider the event 𝐸1 in which the inject ora-
cle provides the adversary with the guessing bit 𝑏 of the security

game and the event 𝐸2 in which, conversely, this oracle outputs ⊥
(intuitively, these events respectively correspond to an imperson-

ation attack and to an attack against the key indistinguishability of

SUMAC). As we have Pr[𝐸1] + Pr[𝐸2] = 1, we can study these two

events separately.

Our proof is structured as follows:

• in Appendix B.2.1, we determine the advantage of the ad-

versary in winning the security game by forging a commit

or a proposal (event 𝐸1).

• Then, in Appendix B.2.2 and Appendix B.2.3, we assess the

adversarial advantage against the key indistinguishability

of SUMAC in the framework of event 𝐸2, for respectively

admin and user operations. To do so, we use an hybrid ar-

gument going from experiment KIND0
sumac of the A-CGKA

security game – which corresponds to the real execution of

22
Authenticated Encryption scheme with Associated Data.

the protocol and gives the adversary, during the challenge

query, the real tuple of keys (𝑘0𝑎, (𝑘0𝑢ℓ
)ℓ , 𝑘0𝑔 ) – to experi-

ment KIND1
sumac where the output values – especially the

common keys – are randomized.

The overall advantage of an adversary against the KIND security

of SUMAC is then bounded by the sum of the advantages found for

these two events 𝐸1 and 𝐸2 above. □

B.2.1 Event 𝐸1: Impersonation Attack. Let us consider the event
𝐸1 in which the inject oracle, requested upon a group member

𝑚 𝑗 ∈ {𝑎 𝑗 , 𝑢 𝑗 }, outputs a guessing bit and makes the impersonating

adversary A against SUMAC win the A-CGKA security game. Our

analysis framework is based on that of [2].

We firstly detail beneath a lemma, whose syntax is adapted

from [2], which states that a successful query to the inject oracle
in the A-CGKA security game of SUMAC corresponds to a valid

forgery of a signature key-pair.

LemmaB.3. LetA be an impersonating A-CGKA adversary against
SUMAC, trying to win the security game by successfully forging a
message through the inject oracle. If the answer of that oracle to a
query O𝑖𝑛 𝑗𝑒𝑐𝑡 (𝑚 𝑗 ∈ {𝑎 𝑗 , 𝑢 𝑗 },𝑚𝑠𝑔 ∈ {𝐶𝑏𝑑𝑐𝑡 ,𝐶𝑖𝑛𝑑 ,𝐶𝑎𝑑𝑚,𝐶𝑢𝑠𝑟 , 𝑃}, 𝑡𝑖 )
is a valid 𝑣 ≠ ⊥, then A can parse the message𝑚𝑠𝑔 = (𝑚𝑠𝑔, 𝜎𝑚𝑠𝑔)
and efficiently derive a public signature key 𝑠𝑝𝑘 s.t.
SIG.verif (𝑠𝑝𝑘, 𝜎𝑚𝑠𝑔,𝑚𝑠𝑔) = ⊤.

Proof. Let us consider a query of an adversary A to the inject
oracle O𝑖𝑛 𝑗𝑒𝑐𝑡 (𝑚 𝑗 ,𝑚𝑠𝑔, 𝑡

𝑖 ) of SUMAC in order to forge a message

𝑚𝑠𝑔 w.r.t. a group member𝑚 𝑗 at epoch 𝑡
𝑖
, which results in a valid

output 𝑣 ≠ ⊥. Since the inject oracle in the A-CGKA security

game (cf. Section 5.1.1) consists in making the group member𝑚 𝑗

process the injected signed message 𝑚𝑠𝑔, then according to the

process algorithm of SUMAC (detailed in Figure 18), 𝑚 𝑗 parses

that signed message into a (𝑚𝑠𝑔, 𝜎) pair (line 2) and verifies the

associated signature (line 3) with one of the public signature keys

associated with the group members, that were previously broadcast

within commit messages (according to lines 2-5 of the adm-com
algorithm in Figure 18 and line 1 of usr-com). Then, only a success

to that signature verification leads to a valid output of the process
algorithm (instead of the failure symbol ⊥), therefore to the forgery
predicate forge = 1 and the generation of a valid output 𝑣 ≠ ⊥ to

the inject oracle. □

Therefore, in order to carry out a valid simulation, our secu-

rity reduction must guess correctly the query in which the forged

signature key-pair has been generated and the query of the first suc-

cessful injection of the adversary A. Consequently, we divide the

event 𝐸1 into events (𝐸1,𝑖, 𝑗 )𝑖, 𝑗∈J1,𝑞K, which correspond to a forgery

realized at query 𝑞 𝑗 on a signature-message pair associated with a

signature key-pair generated at query 𝑞𝑖 . Then, by the union bound,

we have:

Pr[E1] ≤
∑︁

𝑖, 𝑗∈J1,𝑞K

Pr[E1,i,j] (19)

advKIND𝐸1
(A) ≤

∑︁
𝑖, 𝑗∈J1,𝑞K

advKIND𝐸1,𝑖,𝑗
(A) (20)

We now consider that the event 𝐸1,𝑖, 𝑗 holds. Then, the (imperson-

ating) adversaryA against SUMAC can be used by an adversary B
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trying to break the SUF-CMA security of the signature scheme S
used in our protocol (cf. Appendix A.2 for the SUF-CMA security

game of a signature scheme).

To do so, B locally simulates the A-CGKA oracles for A, during

its 𝑞𝑖 − 1 first queries. This simulation does not raise any issue,

especially since for any query 𝑞 𝑗 ′< 𝑗 to the inject oracle, B simulates

for A by returning an output 𝑣 = ⊥.
Let now (𝑠𝑝𝑘∗, 𝑠𝑠𝑘∗) be the signature key-pair sampled by the

challenger of B in the security game of the signature scheme. At

query 𝑞𝑖 (which corresponds to a query to either the propose or the
commit oracle, associated with an add-adm or a full-upd-adm
operation – if the inject oracle is requested on an administrator –

or an add-usr or a full-upd-usr otherwise), B replaces the fresh

signature key 𝑠𝑝𝑘′ of the concerned group member by its challenge

public key 𝑠𝑝𝑘∗.
Then, for each query between 𝑞𝑖 and 𝑞 𝑗 , when the signature

by 𝑠𝑠𝑘′ is required, the adversary B uses its own signature oracle

to provide a valid signature associated with the propose or commit

messages needed to be signed, and returns that signature to A
in order to keep the simulation going. Similarly, when the public

signature key 𝑠𝑝𝑘′ needs to be forwarded, it is replaced by 𝑠𝑝𝑘∗.
At query 𝑞 𝑗 made byA to the inject oracle, B parses the injected

signed message𝑚 = (𝑚,𝜎𝑚) and returns to its own challenger the

pair (𝑚,𝜎𝑚). Given the fact that:

• the injection query 𝑞 𝑗 > 𝑞𝑖 is related to the challenge

signature key 𝑠𝑝𝑘∗ of B;
• the oracle returns a valid output 𝑣 ≠ ⊥ (according to the

initial assumption 𝐸1,𝑖, 𝑗 );

then, according to Lemma B.3, the message-signature pair issued

fromA’s injection attempt is valid and associated with 𝑠𝑝𝑘∗ (i.e. we
have SIG.verif (spk∗, 𝜎m, m̂) = ⊤), with a probability

Pr = advKIND𝐸1,𝑖,𝑗
(A). Consequently, in the framework of the

event 𝐸1,𝑖, 𝑗 , B wins its signature security game with an advan-

tage 𝜖𝑠𝑖𝑔 at least equal to that of the adversary A in the A-CGKA

security game:

advKIND𝐸1,𝑖,𝑗
(A) ≤ 𝜖𝑠𝑖𝑔 (21)

⇒ 𝜖
𝐸1

𝑠𝑢𝑚𝑎𝑐 = advKIND𝐸1
(A) ≤ 𝑞2𝜖𝑠𝑖𝑔 (22)

We now focus on the event 𝐸2 that corresponds to an attack

against the key indistinguishability of SUMAC. Figure 12 represents

the instructions carried out during either an admin operation (add-
adm, rem-adm, upd-adm) or a user operation (add-usr, rem-
usr, upd-usr) of SUMAC

23
. We consequently study separately, in

the following parts, the hybrid arguments for each type of these

operations. The security of our protocol is determined w.r.t. the

cgka-safe predicate of SUMAC.

B.2.2 Event 𝐸2: Randomization of an Admin Operation. Firstly, we
study the implications of the cgka-safe predicate of SUMAC, which

is based on that of its component CGKA and TMKA (cf. Proposi-

tion B.1). The optimal predicate safecgka-opt implies that none of

the standard users nor the administrators is compromised – through

a current or previous expose query that has not been healed with

23
The migration operations upgrade and downgrade are decomposed into their

component subroutines and therefore count both as an admin and a user operation.

an update – at the challenge epoch 𝑡∗ = 𝑡𝑖+1. Given that the group

operation leading to that epoch is an admin operation performed

on some 𝑎 𝑗 , that same optimal cgka-safe predicate states that no

standard user and no administrator other than 𝑎 𝑗 was still com-

promised at the epoch 𝑡𝑖 preceding 𝑡∗. Moreover, the user keys

𝐼 𝑖𝑢ℓ
= 𝐼 𝑖+1𝑢ℓ

, ℓ ∈ J1, 𝑛𝑎K \{ 𝑗} do not change between the epochs 𝑡𝑖

and 𝑡𝑖+1 and the optimal predicate safecgka-opt also requires the

safety of these keys (no reveal query from epoch 𝑡𝑖 ). Finally, the

design of a TMKA (cf. Figure 15) implies that the update of any stan-

dard user comes with the update of its direct path in its user tree.

Therefore, according to safetmka
cgka-add , all user trees in the group,

except T 𝑖
𝑢 𝑗

and T 𝑖+1
𝑢 𝑗

, are entirely safe (i.e. non-compromised) at the

epochs 𝑡𝑖 and 𝑡𝑖+1 = 𝑡∗.

We now proceed to the randomization of the lines in the algo-

rithms of SUMAC, that lead to the common keys evaluated in the

security game:

• G0: This game corresponds to the experiment KIND0
sumac

for an admin operation.

• G1: In this game, we replace the output of the admin CGKA

cgka by random values, in particular the cgka key 𝐼 𝑖+1
𝑐𝑔𝑘𝑎

(line 1 of Figure 12, left column). The structure and the

content of the commit message are not studied here since

we use the admin CGKA as a black-box. Nevertheless, the

randomization of the encrypted secret elements is already

taken into account in the security bound of that CGKA.

Consequently, we can straightly deduce that the advan-

tage 𝜖1 of any adversary A𝐺0-𝐺1
in distinguishing the two

games 𝐺0 and 𝐺1 is bounded by that of an adversary A′
against the CGKA security of cgka, considering the respect
of the additional cgka-safe predicate of cgka: 𝜖1 ≤ 𝜖𝑐𝑔𝑘𝑎 .

• G2: We replace in line 4 the input 𝐼 𝑖+1𝑔 of the AEAD scheme

by a random value. The user key 𝐼 𝑖𝑢𝑐 used as encryption key

being secret due to the respect of the cgka-safe predicate,

as stated above, then the advantage of any adversary in

distinguishing game 1 from game 2 is bounded by that of

an adversary against the CPA security of the AEAD scheme:

𝜖2 ≤ 𝜖𝑎𝑒𝑎𝑑 .
• G3: Similarly, we replace here the input of the HPKE scheme

in lines 7 and 10 by random values. 𝑎 𝑗 ’s secret key 𝑠𝑘
𝑖+1
𝑗

being fresh, the adversarial advantage in distinguishing

this game from the previous one is bounded by the security

bound of the HPKE mechanism: 𝜖2 ≤ 2𝜖ℎ𝑝𝑘𝑒 .

• G4: We replace the output of the regeneration function from

line 11 – conceptualized in the standardmodel as a dual-PRF

(dPRF) and in the ROM as a random oracle, applied to each

pair of values of its input sets – by a set of 2𝑛𝑢 − 1 random
coins. This replacement is made possible by the secrecy

of the respective inputs T𝑢 𝑗

𝑖+1
:= derive(T 𝑖

𝑢𝑝
, “regen”) and

R := derive(T 𝑖
𝑢𝑐
, “regen”) due to the respect of the cgka-

safe predicate of SUMAC. The advantage for an adversary

trying to distinguish this game from the previous one is thus

bounded by the dPRF security bound for each regenerated

value: 𝜖4 ≤ (2𝑛𝑢 − 1) · 𝜖𝐹 , with 𝜖𝐹 the advantage of a dual-

PRF adversary against the regeneration function.
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• G5: At this final stage, we are able to replace in lines 2, 3, 6,

9 and 12 the output of the derivation function
24
, which is

formalized in the standard model as a pseudorandom func-

tion (PRF) and in the ROM as a random oracle. Considering

that these derivations of lines 6 and 9 are applied on entire

user trees with 2𝑛𝑢 − 1 nodes (for binary trees), the overall

advantage – in the standard model – of any adversary in

distinguishing𝐺5 from𝐺4 is bounded by: 𝜖5 ≤ (4𝑛𝑢+1) ·𝜖𝐻 ,

with 𝜖𝐻 the advantage of a PRF adversary against the deriva-

tion function 𝐻 .

This game corresponds to the experiment KIND1
sumac of

the A-CGKA security game of SUMAC.

B.2.3 Event 𝐸2: Randomization of a User Operation. We proceed

similarly for a user operation, as described in Figure 12 (right col-

umn).

As the user operation leading to the challenge epoch 𝑡∗ = 𝑡𝑖+1

concerns a single standard user 𝑢 𝑗 , the optimal cgka-safe predicate

safecgka-opt requires all the other standard users and all the admin-

istrators to be non-compromised at the epochs 𝑡𝑖 and 𝑡𝑖+1 = 𝑡∗. In
addition, that predicate states that the admin key 𝐼 𝑖𝑎 = 𝐼 𝑖+1𝑎 is not

revealed through a reveal query at epoch 𝑡𝑖 or 𝑡𝑖+1.

• The initial game𝐺0 corresponds to the experimentKIND0
sumac

of the A-CGKA security game of SUMAC.

• Game 𝐺1 corresponds to the replacement of the commit-

ter’s user key 𝐼 𝑖+1𝑢𝑐
yielded by the commit algorithm of the

TMKA in line 1, by a random key from the key space. Since

the safety predicate of the TMKA is respected, we have:

𝜖1 ≤ 𝜖𝑡𝑚𝑘𝑎 .

• In game 𝐺2, we replace the regeneration set R (of maxi-

mum size log
2
(𝑛𝑢 ) + 1) output by the derivation function

in lines 2 and 5 by a random value. This replacement is

made possible by the designs of SUMAC and of a TMKA:

any user operation, such as the one undergone by standard

user 𝑢 𝑗 from epoch 𝑡𝑖 to epoch 𝑡𝑖+1, indeed updates the

(extended) direct path of that user in the committer’s tree.

Consequently, distinguishing this game from the previous

one can be bounded as follows: 𝜖2 ≤ (log2 (𝑛𝑢 ) + 1)𝜖𝐻 .

• In game 𝐺3, the input to the AEAD scheme (line 7) is ran-

domized. The encryption key 𝐼 𝑖𝑎 being safe due to the opti-

mal cgka-safe predicate, we can rely on the CPA-security

of the AEAD scheme et therefore have: 𝜖3 ≤ 𝜖𝑎𝑒𝑎𝑑 .
• In game 𝐺4, the input to the HPKE scheme (line 14) is

randomized. The encryption is carried out with fresh en-

cryption key-pairs belonging to 𝑢 𝑗 , which leads to: 𝜖4 ≤
(𝑛𝑢 − 1) · 𝜖ℎ𝑝𝑘𝑒 (since the HPKE encryption algorithm is

called in each of the 𝑛𝑢 − 1 user trees other than the com-

mitter’s).

• Thanks to the previous randomization of the R in game𝐺2,

game 𝐺5 replaces the output of the regeneration algorithm

in lines 10 and 12, of maximum size log
2
(𝑛𝑢 ) + 1, by a ran-

dom value, for each of the 𝑛𝑢 − 1 calls to that function. The
advantage in distinguishing this game from the previous

one is:

𝜖5 ≤ (𝑛𝑢 − 1) (log2 (𝑛𝑢 ) + 1) · 𝜖𝐹 .
24
Once again, this replacement is possible because the inputs to the derivation function

are secret, thanks to the cgka-safe predicate of SUMAC.

• Finally, in game 𝐺6, the 𝑛𝑢 outputs of the derivation func-

tion used in lines 6 and 15 are also randomized, giving an

advantage 𝜖6 ≤ 𝑛𝑢 · 𝜖𝐻 .

Therefore, for an adversary issuing 𝑞 queries in the A-CGKA

security game that lead to 𝑞𝑎 admin operations and 𝑞𝑢 user op-

erations (s.t. 𝑞𝑎 + 𝑞𝑢 ≤ 𝑞), we bound its advantage as follows
25
,

considering that the event 𝐸2 is occurring:

𝜖
𝐸2

𝑠𝑢𝑚𝑎𝑐 ≤ 𝜖𝑐𝑔𝑘𝑎 + 𝜖𝑡𝑚𝑘𝑎 + (𝑞𝑎 + 𝑞𝑢 ) · 𝜖𝑎𝑒𝑎𝑑
+ (2𝑞𝑎 + 𝑞𝑢 (𝑛𝑢 − 1)) · 𝜖ℎ𝑝𝑘𝑒
+ (𝑞𝑎 (2𝑛𝑢 − 1) + 𝑞𝑢 (𝑛𝑢 − 1) (log2 (𝑛𝑢 ) + 1)) · 𝜖𝐹
+ (𝑞𝑎 (4𝑛𝑢 + 1) + 𝑞𝑢 (log2 (𝑛𝑢 ) + 𝑛𝑢 + 1)) · 𝜖𝐻
≤ 𝜖𝑐𝑔𝑘𝑎 + 𝜖𝑡𝑚𝑘𝑎 + 𝑞 ·

(
2𝜖𝑎𝑒𝑎𝑑 + (𝑛𝑢 + 1) · 𝜖ℎ𝑝𝑘𝑒

+ (2𝑛𝑢 − 1 + (𝑛𝑢 − 1) (log2 (𝑛𝑢 ) + 1)) · 𝜖𝐹
+ (5𝑛𝑢 + log2 (𝑛𝑢 ) + 2) · 𝜖𝐻

)
(23)

C Correctness Analysis
C.1 Correctness Model
Similarly to the security study, the correctness of SUMAC as an

A-CGKA is analyzed in the framework set up by [2, 3.3]. We recall

beneath the general ideas of this framework and invite the reader

to refer directly to that seminal work (including its Figure 2 that

details the correctness game) for details.

Correctness is studied in that work as a game against an adver-

sary A that performs 𝑞 queries to some oracles – similar to that

of the security game – in order to make the member group evolve

over time. Correctness is ensured if all group members that have

processed the commit messages related to these queries end up with

identical views of the group key(s) and of the group membership

(including the membership of its admin and user subgroups).

In each of the oracles, the correctness of the A-CGKA is assessed

through “reward” conditions, which make the adversary win the

correctness game (CORRa-cgka (A) = 1) if at least one of them

is true. More specifically, a check-same-group-state function

is evaluated at each oracle, which checks that for two different

states given in argument, their views of the common keys and of

the membership of the admin and user groups are identical. Some

additional reward conditions are also present in the oracles.

An A-CGKA is said to be (𝑞, 𝛿𝑎-𝑐𝑔𝑘𝑎)-correct if, for any adver-

sary A issuing 𝑞 oracle queries in the correctness game, we have:

Pr

[
CORRa-cgka (A) = 1

]
≤ 𝛿𝑎-𝑐𝑔𝑘𝑎 . (24)

C.2 Correctness of SUMAC
The correctness of SUMAC is based on those of the underlying

CGKA and TMKA – themselves assessed through the same cor-

rectness game as an A-CGKA [2, 3.3] – and on the worst-case

correctness of a PKE recalled in Appendix A.3.2.

25
The advantages of the CGKA and TMKA protocols are already given considering 𝑞

adversarial queries.
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Admin operation
1 : (𝐼 𝑖+1

𝑐𝑔𝑘𝑎
,𝐶𝑎𝑑𝑚) ← CGKA.commit() // 𝐺0

2 : 𝐼 𝑖+1𝑎 := derive(𝐼 𝑖+1
𝑐𝑔𝑘𝑎

, “path”) // 𝐺0 −𝐺4

3 : 𝐼 𝑖+1𝑔 := derive(𝐼 𝑖+1
𝑐𝑔𝑘𝑎

, “key”) // 𝐺0 −𝐺4

4 : 𝐶𝑢𝑠𝑟 ← AEAD.enc(𝐼 𝑖𝑢𝑐 , 𝐼
𝑖+1
𝑔 ) // 𝐺0 −𝐺1

5 : if add-adm then :

6 : T𝑢 𝑗

𝑖+1
:= derive(T 𝑖

𝑢𝑝
, “regen”) // 𝐺0 −𝐺4

7 : 𝐶𝑖𝑛𝑑 ← HPKE.enc(𝑝𝑘𝑖+1𝑗 ,T𝑢 𝑗

𝑖+1) // 𝐺0 −𝐺2

8 : if add-adm or upd-adm then :

9 : R := derive(T 𝑖
𝑢𝑐
, “regen”) // 𝐺0 −𝐺4

10 : 𝐶′
𝑖𝑛𝑑
← HPKE.enc(𝑝𝑘𝑖+1𝑗 ,R) // 𝐺0 −𝐺2

11 : T 𝑖+1
𝑢 𝑗

:= regen(T𝑢 𝑗

𝑖+1
,R) // 𝐺0 −𝐺3

12 : 𝐼 𝑖+1𝑢 𝑗
:= derive(T 𝑖+1

𝑢 𝑗
.root, “key”) // 𝐺0 −𝐺4

User operation
1 : (𝐼 𝑖+1𝑢𝑐

,𝐶𝑢𝑠𝑟 ) ← TMKA.commit() // 𝐺0

2 : if upd-usr then :

3 : R := derive(P𝑥 (𝑢 𝑗 ,T 𝑖+1
𝑢𝑐
), “regen”) // 𝐺0 −𝐺1

4 : else :

5 : R := derive(P(𝑢 𝑗 ,T 𝑖+1
𝑢𝑐
), “regen”) // 𝐺0 −𝐺1

6 : 𝐼 𝑖+1𝑔 := derive(R .root, “key”) // 𝐺0 −𝐺5

7 : 𝐶𝑎𝑑𝑚 ← AEAD.enc(𝐼 𝑖𝑎,R) // 𝐺0 −𝐺2

8 : for ℓ ≠ 𝑐 do :

9 : if upd-usr then :

10 : P𝑥 (𝑢 𝑗 ,T 𝑖+1
𝑢ℓ
) := regen(P𝑥 (𝑢 𝑗 ,T 𝑖

𝑢ℓ
),R) // 𝐺0 −𝐺4

11 : else :

12 : P(𝑢 𝑗 ,T 𝑖+1
𝑢ℓ
) := regen(P(𝑢 𝑗 ,T 𝑖

𝑢ℓ
),R) // 𝐺0 −𝐺4

13 : if add-usr then :

14 : 𝐶𝑖𝑛𝑑 ← HPKE.enc(𝑝𝑘𝑖+𝑥𝑗 ,P𝑥 (𝑢 𝑗 ,T 𝑖+𝑥
𝑢ℓ
)) // 𝐺0 −𝐺3

15 : 𝐼 𝑖+1𝑢ℓ
:= derive(T 𝑖+1

𝑢ℓ
.root, “key”) // 𝐺0 −𝐺5

Figure 12: Admin and user group operation in SUMAC, in the experiment KIND0
sumac (real world) of the A-CGKA security game.

In the experiment KIND1
sumac (random world), all these lines leading to the challenge values need to be randomized.

Theorem C.1 (Correctness of SUMAC). Let SUMAC be imple-
mented with a (𝑞, 𝛿𝑐𝑔𝑘𝑎)-correct admin CGKA cgka, a (𝑞, 𝛿𝑡𝑚𝑘𝑎)-
correct TMKA tmka, an HPKE encryption scheme relying on a 𝛿𝑝𝑘𝑒 -
correct PKE and a perfectly correct AEAD mechanism. Then, w.r.t. an
adversary A against the correctness of the A-CGKA and issuing, in
the correctness game, 𝑞𝑎 queries to the commit oracle related to admin
operations and 𝑞𝑢 queries to that oracle related to user operations s.t.
𝑞𝑎 +𝑞𝑢 ≤ 𝑞, SUMAC is a (𝑞, 𝛿𝑎-𝑐𝑔𝑘𝑎)-correct A-CGKA protocol, with:

𝛿𝑎-𝑐𝑔𝑘𝑎 = 𝑛𝑎 · 𝛿𝑐𝑔𝑘𝑎 + 𝑛𝑢 · 𝛿𝑡𝑚𝑘𝑎 + (2𝑞𝑎 + 𝑛𝑎𝑞𝑢 ) · 𝛿𝑝𝑘𝑒 (25)

Proof. We now prove the correctness of SUMAC w.r.t. the cor-

rectness game mentioned above, based on the correctness of the

underlying primitives. To do so, we analyze the oracles at disposal

to the adversary A, in order to assess if their use in SUMAC could

break the correctness property.

According to the definition of an A-CGKA, only a commit or a
create-group oracle may change either the group membership or the

common key
26
, knowing that the create-group operation is itself

a wrapper around a commit. All the information comprised in a

proposal message output by the propose oracle is recalled in the

associated commit message. The changes related to that proposal

and that commit are then taken into account by the other group

members via the process operation, which is part of the deliver
oracle.

Therefore, all misinterpretation by a processing group mem-

ber – which leads to breaking the correctness of the protocol –

comes from the processing of a commit. The only exception to that

statement with SUMAC is for an add-adm operation, where an

26
Which is, in the case of SUMAC, the tuple (𝐼𝑎, (𝐼𝑢ℓ )

𝑛𝑎
ℓ=1

, 𝐼𝑔 ) composed of the admin

key, all the user keys and the group key.

encrypted temporary user tree is sent directly by the proposing

administrator to the new one, without being recalled by the commit-

ter. Therefore, a bad processing of that specific add-adm proposal

by the new admin may also break the correctness of SUMAC.

Therefore, the correctness of SUMAC is assessed by studying:

• the processing of an add-adm proposal;

• the processing of a commit related to any operation.

The inspection of SUMAC algorithms of prop-process, adm-
com-process and usr-com-process (cf. Figure 18, p.36) shows

that the correctness of these processing operations relies on the

processing algorithms of the underlying CGKA and TMKA as well

as on the public-key decryption algorithm from the HPKE scheme –

since we consider perfectly correct secret-key encryption schemes,

the symmetric part of the HPKE mechanism as well as the AEAD

construction are not taken into account in this correctness analysis.

• add-adm proposal: the processing of such a proposal

corresponds to a single HPKE decryption (line 1 of prop-
process in Figure 18) by a single administrator.

• Commit for an admin operation: in this type of opera-

tion, all administrators (𝑛𝑎 for an add-adm or a upd-adm,

𝑛𝑎 − 1 for a rem-adm) run the process algorithm of the

admin CGKA cgka (line 4 of adm-com-process). In addi-

tion, in a upd-adm or in an add-adm, the updated/new

administrator uses the decryption algorithm of the HPKE

scheme (line 8).

On the other hand, the standard users do not run any algo-

rithm that influences the correctness of the protocol.

• Commit for a user operation: in a upd-usr or a rem-
usr, all standard users (𝑛𝑢 and 𝑛𝑢 − 1, respectively) run the

process algorithm of the user TMKA (usr-com-process,
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lines 8 and 20). In an add-usr, the 𝑛𝑢 − 1 already existing

users run the TMKA process algorithm (line 8), while the

new user runs anHPKE decryption for each of the𝑛𝑎 TMKA

trees (line 17).

The administrators do not use any algorithmwith an impact

on the correctness of SUMAC.

Consequently, for an adversary that queries 𝑞𝑎 times the deliver
oracle of SUMAC in the correctness game after an admin operation

and 𝑞𝑢 times after a user operation (with the number 𝑞 of queries

s.t. 𝑞 ≥ 𝑞𝑎 + 𝑞𝑢 ), the number 𝑥 of calls to the CGKA, TMKA and

HPKE algorithms with an impact on the correctness of the protocol

is bounded as follows:

𝑥 ≤ 𝑞𝑎 (𝑛𝑎 · CGKA.process + 2 · HPKE.dec)
+ 𝑞𝑢 (𝑛𝑢 · TMKA.process + 𝑛𝑎 · HPKE.dec)

≤ 𝑛𝑎𝑞 · CGKA.process + 𝑛𝑢𝑞 · TMKA.process

+ (2𝑞𝑎 + 𝑛𝑎𝑞𝑢 ) · HPKE.dec (26)

As the CGKA and TMKA protocols are respectively 𝛿𝑐𝑔𝑘𝑎 and

𝛿𝑡𝑚𝑘𝑎-correct w.r.t. an adversary issuing 𝑞 requests, whereas the

PKE scheme within the HPKE construction is 𝛿𝑝𝑘𝑒 -correct w.r.t. to

a single decryption query, we have:

𝛿𝑎-𝑐𝑔𝑘𝑎 ≤ 𝑛𝑎 · 𝛿𝑐𝑔𝑘𝑎 + 𝑛𝑢 · 𝛿𝑡𝑚𝑘𝑎 + (2𝑞𝑎 + 𝑛𝑎𝑞𝑢 ) · 𝛿𝑝𝑘𝑒 (27)

which concludes the proof. □

D Details on the Performances of SUMAC
We detail in this section the analyses of the storage, computational

and communication costs whose results are displayed in Section 6.

D.1 Storage Cost
We consider here simplified protocols where the state of a node

simply consists in the keying material used by the protocol (en-

cryption and signature key-pairs and group key). In this setting,

the storage cost of the main group key agreement schemes can be

approximated as follows:

D.1.1 TMKA. Since a TMKA relies on secret-key cryptography,

a node in the Ratchet Tree only has a private state, comprising a

secret encryption key (other keys derived from the leaf or path

secret used to generate the encryption key may also be used for

other purpose (derivation...), but are not considered here since their

existence highly depends on the precise TMKA protocol). All these

values have a size of |𝑠𝑒𝑐 |, depending on the security parameter.

A standard user 𝑢 𝑗 stores the (private) states of its leaf and

of all the nodes in its direct path (storage cost of (ℎ + 1) |𝑠𝑒𝑐 |)
and additionally records its own signature key-pair and the public

signature key of the group manager. In parallel, the group manager

must maintain a complete view of the whole Ratchet Tree (2𝑛 − 1
encryption keys, one group key derived from the root and 𝑛 public

signature keys for the standard users) and also has its own signature

key-pair. The storage cost of a TMKA in a tree of height ℎ = log(𝑛)
is therefore of:

Table 1: Compared storage costs per user of DGS-TreeKEM,
TreeKEM and SUMAC, in the classical and post-quantum
frameworks. This table underlines the high performances
of our protocol, especially in the PQ framework – due to
the use of secret-key cryptography – and for the standard
users, which no longer need to record a complete view of the
member group.

Setting Number of Storage Cost per User (kB) Gain

std

users

admins

DGS-

TK

(IAS-)

TreeKEM

SUMAC

SUMAC

/ TK (%)

Administrator

Class.

16 4 2.4 2.0 1.5 25.6

256 16 27.6 26.4 18.1 31.3

65,536 256 6,333 6,317 4,219 33.2

PQ

16 4 70.4 56.1 13.7 75.6

256 16 717 670 70.3 89.5

65,536 256 158,562 157,937 6,923 95.6

Standard user

Class.

16 4 2.0 2.0 0.5 74.1

256 16 26.4 26.4 2.9 89.0

65,536 256 6,317 6,317 78 98.8

PQ

16 4 56.1 56.1 0.9 98.5

256 16 670 670 5.2 99.2

65,536 256 157,937 157,937 148 99.9

���𝛿𝑡𝑚𝑘𝑎
𝑗

��� = 2 |𝑠𝑝𝑘 | + |𝑠𝑠𝑘 | + (ℎ + 1) |𝑠𝑒𝑐 | (28)���𝛾𝑡𝑚𝑘𝑎
��� = (𝑛 + 1) |𝑠𝑝𝑘 | + |𝑠𝑠𝑘 | + 2𝑛 |𝑠𝑒𝑐 | (29)

D.1.2 TreeKEM. In a TreeKEM-like CGKA, each user 𝑢 𝑗 stores in

its public state 𝑝𝑢𝑏 (𝛾 𝑗 ) a complete view of the Ratchet Tree, which

comprises the public state of all nodes in that tree. Moreover, it

stores in its private state 𝑝𝑟𝑖𝑣 (𝛾 𝑗 ) the private state of its leaf and of

all the nodes in its direct path.

In our simplified setting, the public (resp. private) state of an

internal node in TreeKEM, root excepted, simply consists in a public

(resp. private) encryption key, that of a leaf includes public (resp.

private) encryption and signature keys and that of the tree root is

empty (resp. comprises the group key of size |𝑠𝑒𝑐 |). In this frame-

work, the storage cost of user 𝑢 𝑗 in a tree of height ℎ = log(𝑛)
is: ���𝛾𝑡𝑟𝑒𝑒𝑘𝑒𝑚𝑗

��� = ��𝑝𝑢𝑏 (𝛾 𝑗 )�� + ��𝑝𝑟𝑖𝑣 (𝛾 𝑗 )����𝑝𝑢𝑏 (𝛾 𝑗 )�� = |RT| = (2𝑛 − 2) |𝑝𝑘 | + 𝑛 |𝑠𝑝𝑘 | (30)��𝑝𝑟𝑖𝑣 (𝛾 𝑗 )�� = ℎ |𝑠𝑘 | + |𝑠𝑠𝑘 | + |𝑠𝑒𝑐 |
D.1.3 SUMAC. In SUMAC, an administrator stores an entire TMKA

Ratchet Tree (as a regular group manager in a TMKA protocol) as

well as a CGKA user state in the admin CGKA, plus a group key

of size |𝑠𝑒𝑐 |. When implemented with a TreeKEM-like CGKA, an

administrator storage cost in SUMAC, in a group with 𝑛𝑢 standard

users and 𝑛𝑎 administrators, in an admin Ratchet Tree of height

ℎ𝑎 = log(𝑛𝑎), is:
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���𝛾𝑠𝑢𝑚𝑎𝑐
𝑗

��� = ���𝛾𝑡𝑚𝑘𝑎
��� + ���𝛿𝑡𝑟𝑒𝑒𝑘𝑒𝑚𝑗

��� + |𝑠𝑒𝑐 |
= (𝑛𝑢 + 1) |𝑠𝑝𝑘 | + |𝑠𝑠𝑘 | + (2𝑛𝑢 ) |𝑠𝑒𝑐 |
+ (2𝑛𝑎 − 2) |𝑝𝑘 | + 𝑛𝑎 |𝑠𝑝𝑘 | + ℎ𝑎 |𝑠𝑘 | + |𝑠𝑠𝑘 | + |𝑠𝑒𝑐 |

= (2𝑛𝑎 − 2) |𝑝𝑘 | + (𝑛𝑢 + 𝑛𝑎 + 1) |𝑠𝑝𝑘 | + ℎ𝑎 |𝑠𝑘 |
+ 2 |𝑠𝑠𝑘 | + (2𝑛𝑢 + 1) |𝑠𝑒𝑐 | (31)

A standard user in SUMAC needs to store the state of a standard

user in a TMKA, for 𝑛𝑎 TMKA trees (one for each administrator),

along with the group key. However, it only generates a single en-

cryption key-pair for all the TMKA trees, which reduces the storage

cost.���𝛿𝑠𝑢𝑚𝑎𝑐
𝑗

��� = 𝑛𝑎 ���𝛿𝑡𝑚𝑘𝑎
𝑗

��� − (𝑛𝑎 − 1) ( |𝑠𝑝𝑘 | + |𝑠𝑠𝑘 |) + |𝑠𝑒𝑐 |
= (𝑛𝑎 + 1) |𝑠𝑝𝑘 | + |𝑠𝑠𝑘 | + (𝑛𝑎 (ℎ𝑢 + 1) + 1) |𝑠𝑒𝑐 | (32)

D.1.4 IAS and DGS A-CGKAs. Straightforwardly, IAS has the same

storage cost as the underlying user CGKA provided that the latter

already uses signatures to authenticate its users.

Regarding DGS-TK (implemented using TreeKEM both as its user

and admin CGKAs), the storage cost of a standard user is identical

to that of the user CGKA (in a tree bearing 𝑛𝑡 = 𝑛𝑎 + 𝑛𝑢 leaves, of

height ℎ𝑡 = log(𝑛𝑡 )). An administrator, on the other hand, needs

to record not only its state from the user CGKA but also that from

the admin CGKA (except for the signature keys, that are already

recorded in the user CGKA state). Moreover, instead of storing the

group key as in the user CGKA, the administrator stores the admin

signature key-pair generated from the admin common secret.���𝛾𝑑𝑔𝑠-𝑡𝑘𝑗

��� = (2(𝑛𝑡 + 𝑛𝑎) − 2) |𝑝𝑘 | + (𝑛𝑡 + 1) |𝑠𝑝𝑘 | + (ℎ𝑡 + ℎ𝑎) |𝑠𝑘 |
+ 2 |𝑠𝑠𝑘 | + |𝑠𝑒𝑐 | (33)���𝛿𝑑𝑔𝑠-𝑡𝑘𝑗

��� = (2𝑛𝑡 − 2) |𝑝𝑘 | + 𝑛𝑡 |𝑠𝑝𝑘 | + ℎ𝑡 |𝑠𝑘 | + |𝑠𝑠𝑘 | + |𝑠𝑒𝑐 | (34)

D.1.5 Results. The storage cost of the studied protocols are de-

tailed, for the same parameters as with the communication cost,

in Table 1.

D.2 Computational Cost
In addition to our main studies on the communication and stor-

age costs, we have started an on-going experiment to compare the

computation costs of TreeKEM and SUMAC, using our implementa-

tion of SUMAC (from https://anonymous.4open.science/r/SUMAC-

5F5A) on a laptop with a processor Intel 12th Gen Intel(R) Core(TM)

i5-1245U at 4.4 GHz and 16 GB of RAM.

As any slight change in the implementations of these protocols

may change drastically their performances, it is impossible to run

directly the existing implementations of MLS (for instance the open-

source implementation of OpenMLS) and we need to use our own

version of TreeKEM that we have implemented for the admin CGKA

of SUMAC.

The preliminary results of our survey, limited for the moment

to the computational cost of the generation of a commit, for the

add-user operation in the classical setting, are stated in Table 2.

They show that with that operation, SUMAC does not suffer from

any computational overhead w.r.t. TreeKEM and on the contrary

appears much lighter than that CGKA. These early and partial re-

sults seem consistent with the architectures of these two protocols.

Indeed, the cost of a commit grows with the number of encryp-

tions to perform in order to transmit the group key to the entire

group. Both TreeKEM and SUMAC have an asymptotic logarith-

mic communication cost, hence an asymptotically equal number of

ciphertexts to generate. However:

• The centralized setting of a TMKA allows user trees in

SUMAC to remain more structured than the Ratchet Tree in

TreeKEM (due to the mechanism of unmerged leaves used
by the latter at each group operation, whereas SUMAC

straightly updates the paths of the concerned users instead

of blanking them). Therefore, the number of ciphertexts

for a commit in SUMAC is much closer to the logarithmic

lower bound than it is in TreeKEM.

• Moreover, SUMAC uses a secret-key encryption scheme to

generate these ciphertexts, computationally more efficient

than classical public-key encryption mechanisms such as

the ones based on elliptic curves.

A full study of the computational costs will be included in the

final version of this paper.

D.3 Communication Cost
D.3.1 Message Distribution. Ourmetric considers the average com-

munication cost per user of the protocol, both upwards (from the

emitter of the message to the Delivery Service (DS), i.e. the Cen-

tral Server) and downwards (from the DS to the recipient(s) of the

message). The way the DS distributes messages within the group de-

pends on the functionalities offered by the Delivery Service (cf. Fig-

ure 13). Some works have considered an advanced server capable of

distributing to the relevant recipient pieces of broadcast messages;

this setting is called server-aided and has led to modifying the de-

sign of the group key exchange protocol in order to take advantage

of this advanced functionality (cf. [13] for instance). Nevertheless,

most works, and in particular the MLS standard [7], consider a basic

DS in a framework named broadcast-only, that is solely capable of

relaying broadcast messages to the whole group. Despite its name,

this basic server can also distribute unicast messages to a single

recipient.

The design of an A-CGKA, where administrators and standard

users belong to separate groups G𝑎 and G𝑢 , also allows a distribu-

tion setting that is an in-between of the broadcast-only and the

server-aided settings: we call it the group-distribution framework.

In that case, the DS knows which group members belong to which

subgroup of the member group G and therefore distinguishes broad-

cast messages sent to all group members from the ones addressed

either to the administrators or to the standard users
27
. This set-

ting, as it stands, unfortunately causes privacy issues since the DS

knows the identity of the administrators in the member group;

consequently, we have mainly studied the performances of our

protocol in the broadcast-only setting. Nevertheless, we provide

below the general formulas of the communication costs, that fit

both the broadcast-only and the group-distribution settings.

27
The server is also able, in this group-distribution setting, to deliver unicast messages.

https://anonymous.4open.science/r/SUMAC-5F5A
https://anonymous.4open.science/r/SUMAC-5F5A
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Table 2: Compared computational costs of a commit gener-
ation in SUMAC and TreeKEM, in the classical framework,
for an add-user operation.

Operation Number of Computational cost (ms) of

std users TreeKEM SUMAC

add-usr
16 2 0.50

256 11 0.77

1,024 117 1.06

Figure 13: Message distribution modes in a Secure Group
Messaging protocol. The setting historically considered by
default is the broadcast-only one, where the Delivery Service
ensured by the Central Server is only capable of forwarding
collective messages to the whole group, while being also able
of transmitting unicast messages to a single recipient. In
the most sophisticated server-aider, each part of a broadcast
message is sent only to the relevant recipient, enhancing the
delivery efficiency. Our group-distribution setting is a trade-
off between these two modes, which enables the Delivery
Service to forward broadcast messages to subgroups of the
member group, in our case G𝑎 and G𝑢 .

To any message𝑚 sent within SUMAC, we associate the follow-

ing distribution coefficients:

• message to/from the Authentication Service (AS): the coef-

ficient 𝑔𝑎𝑠 :=
1

𝑛𝑡
;

• unicast message: the coefficient 𝑔𝑖𝑛𝑑 := 2

𝑛𝑡
;

• message sent to the admin groupG𝑎 or to the user groupG𝑢 ,
of resp. cardinalities 𝑛𝑎 and 𝑛𝑢 : 𝑔𝑎 :=

𝑛𝑎+1
𝑛𝑡
/ 𝑔𝑢 :=

𝑛𝑢+1
𝑛𝑡

;

• message broadcast to the member group G: 𝑔 :=
𝑛𝑡+1
𝑛𝑡

.

Then, in the broadcast-only setting, we have: 𝑔𝑎 = 𝑔𝑢 := 𝑔, as

any collective message is broadcast to all group members.

D.3.2 Notations. In addition to the general notations of Section 2.1,
we detail below some notations used in our performance analy-

sis. We recall notably that [·] denotes optional fields or lines of
algorithm that may be left empty.

In this section, we denote the size (i.e. the bit-length) of secret

and public encryption keys by |𝑠𝑘 | and |𝑝𝑘 |; that of a signature and
of a signature key-pair are noted |𝜎 |, |𝑠𝑝𝑘 | and |𝑠𝑠𝑘 |. The size of a
group member’s index is given by |𝑖𝑑 |. The size of the credentials
used to authenticate group members – that comprise their public

signature key – is given by |𝑠𝑝𝑘 |.
Finally, |𝑐𝑡𝑎𝑒𝑎𝑑 (𝑥) | and |𝑐𝑡ℎ𝑝𝑘𝑒 (𝑥) | corresponds to the size of

the ciphertext associated with a plaintext composed of 𝑥 secrets,

each respecting the security parameter (therefore, in our case, of

32 byte-long each), for either an AEAD or an HPKE encryption.

D.3.3 Proposals and Signatures. The communication costs assessed

in this part correspond to that of a SGM protocol operating within

the separate-operations paradigm, where each group operation is

performed independently of the other. In practice, most recent SGM

protocols use the propose & commit framework, that groups to-

gether several operations and thus permits to save some bandwidth.

However, this paradigm makes it more difficult to compare several

protocols, since any combination of proposals can be emitted during

a group lifetime; we could compare some of these combinations but

the arbitrary choice of the selected sets would make the comparison

less objective as the separate-operations setting.

We consequently consider operations carried out by a committer

on its own initiative, without any previous proposal. The only

exception to this is the add-admin operation of SUMAC, that must

comprise a preliminary proposal where a temporary user tree is

given to the joining administrator.

As in regular CGKAs, all handshake messages exchanged be-

tween group members (even those sent by standard users) are

signed in order to prevent any user impersonation. The rotation of

the group members’ signature keys is independent of that of the

encryption keys; the underlying idea is that the private signature

keys can be protected in tamper-proof modules and are therefore

harder to corrupt than the other secrets from a member’s private

state. In order to remain generic, our algorithms for a TMKA and

SUMAC (Figures 14, 15, 17 and 18) consider two types of update op-

erations: in the partial one part-upd, only the encryption key-pair

is refreshed (this corresponds to the standard update in TreeKEM)

whereas in a full-update full-upd, both the encryption and the

signature key-pairs are renewed.

D.3.4 Key Delivery. The key delivery of group members to the

group administrators is carried out by two separate mechanisms.

• The first one corresponds to the add of a new groupmember.

In its init algorithm (register-keys auxiliary function), this
one locally generates new encryption and signature key-

pairs and push them to the Authentication Service (AS),

which is a Public Key Infrastructure (PKI), hosted by the

central server and that we assume honest and incorruptible.

This message is not signed by the emitter. Subsequently,

when an administrator needs to get that member’s keys,

it demands these keys to the AS through the get-keys
function that consists in sending to the AS a signed request

regarding the group member, to which the AS responds

with a signed message comprising the requested keys.

• On the other hand, when a group member refreshes its

keys after an update operation, its new public key(s) may
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be transmitted to the administrators in the proposal mes-

sage that initiated that operation. However, when the group

operation is initiated without any proposal – which is pre-

cisely the case considered in our performance analysis –,

the key delivery process is modeled with another auxil-

iary function named request-keys. In that sub-routine,

the administrator performing the commit directly contacts

in unicast the relevant group member to request its new

key(s) and the latter answers with a signed message with

the requested key(s). These functions have the following

communication cost:

|regist(pk, spk) | = 𝑔𝑎𝑠 ( |𝑝𝑘 | + |𝑠𝑝𝑘 |) (35)

|get(pk, [spk]) | = 𝑔𝑎𝑠 ( |𝑝𝑘 | [+|𝑠𝑝𝑘 |] + 2|𝜎 |) (36)

|req(pk, [spk]) | = 𝑔𝑖𝑛𝑑 ( |𝑝𝑘 | [+|𝑠𝑝𝑘 |] + 2|𝜎 |) (37)

We are now able to compute the communication costs of the

protocols we want to compare : the TMKA and the TreeKEM-like

CGKA that are both used by SUMAC as sub-routines, SUMAC

itself, as well as the two administrated-CGKAs from [2] applied on

TreeKEM: IAS-TreeKEM and DGS-TreeKEM.

D.3.5 Communication Cost of a TMKA. The exchanges between
group members that occur during the various group operations of a

TMKA are highlighted in blue in Figures 14, 15 and 16. They permit

to compute the communication cost associated with that protocol.

The communication cost of a TMKA, in a user tree of height ℎ𝑢 ,

is the following:

𝑐𝑡𝑚𝑘𝑎
𝑝𝑎𝑟𝑡 -𝑢𝑝𝑑

= 𝑔𝑖𝑛𝑑 ( |req(𝑝𝑘) | + |𝐶𝑖𝑛𝑑 |) + 𝑔𝑢 |𝐶𝑢𝑠𝑟 |

= 𝑔𝑢 (ℎ𝑢 |𝑐𝑡𝑎𝑒𝑎𝑑 (1) | + |𝜎 |)

+ 𝑔𝑖𝑛𝑑 ( |𝑝𝑘 | + |𝑐𝑡ℎ𝑝𝑘𝑒 (1) | + 3|𝜎 |) (38)

𝑐𝑡𝑚𝑘𝑎
𝑓 𝑢𝑙𝑙-𝑢𝑝𝑑

= 𝑔𝑖𝑛𝑑 ( |req(𝑝𝑘, 𝑠𝑝𝑘) | + |𝐶𝑖𝑛𝑑 |) + 𝑔𝑢 |𝐶𝑢𝑠𝑟 |
= 𝑐𝑝𝑎𝑟𝑡 -𝑢𝑝𝑑 + 𝑔𝑖𝑛𝑑 |𝑠𝑝𝑘 |

= 𝑔𝑢 (ℎ𝑢 |𝑐𝑡𝑎𝑒𝑎𝑑 (1) | + |𝜎 |) + 𝑔𝑖𝑛𝑑 ( |𝑝𝑘 | + |𝑠𝑝𝑘 |

+ |𝑐𝑡ℎ𝑝𝑘𝑒 (1) | + 3|𝜎 |) (39)

𝑐𝑡𝑚𝑘𝑎
𝑎𝑑𝑑

= 𝑔𝑎𝑠 ( |regist(𝑝𝑘, 𝑠𝑝𝑘) | + |get(𝑝𝑘, 𝑠𝑝𝑘) |)
+ 𝑔𝑖𝑛𝑑 |𝐶𝑖𝑛𝑑 | + 𝑔𝑢 |𝐶𝑢𝑠𝑟 |

= 𝑔𝑢 (ℎ𝑢 |𝑐𝑡𝑎𝑒𝑎𝑑 (1) | + |𝜎 |) + 𝑔𝑖𝑛𝑑 ( |𝑐𝑡ℎ𝑝𝑘𝑒 (1) | + |𝜎 |)
+ 𝑔𝑎𝑠 (2|𝑝𝑘 | + 2|𝑠𝑝𝑘 | + 2|𝜎 |) (40)

𝑐𝑡𝑚𝑘𝑎
𝑟𝑒𝑚 = 𝑔𝑢 |𝐶𝑢𝑠𝑟 | = 𝑔𝑢 (ℎ𝑢 |𝑐𝑡𝑎𝑒𝑎𝑑 (1) | + |𝜎 |) (41)

D.3.6 Communication Cost of a TreeKEM-like CGKA. Similarly,

the group operations of a TreeKEM-like CGKA, performed in a

Ratchet Tree of height ℎ, induce the costs beneath. We consider

here commits realized without any preliminary proposal (as in

the following analysis for SUMAC). When fresh encryption (and

possibly signature) material is required, the exchanges are there-

fore realized during the commit trough the unicast communication

of the register-keys, get-keys and request-keys auxiliary func-

tions
28
.

For all these operations, a path update of the committer is carried

out, which implies to broadcast to all group members (since they all

have the same status), within the commit message, the ℎ updated

public encryption keys of the committer and of its path (except

for the tree root, that has no public key) and the ℎ encrypted path

secrets from that user’s direct path.

Finally, in an add operation, the arriving user is provided (in

unicast) with a copy of the Ratchet Tree, mainly composed of the

encryption public keys of every node in that tree (root excepted)

and the public signature keys of the existing users: |RT| = (2𝑛 −
2) |𝑝𝑘 | + 𝑛 |𝑠𝑝𝑘 |.

𝑐𝑡𝑟𝑒𝑒𝑘𝑒𝑚
𝑝𝑎𝑟𝑡 -𝑢𝑝𝑑

= |req(𝑝𝑘) | + 𝑔((ℎ + 1) |𝑝𝑘 | + ℎ |𝑐𝑡ℎ𝑝𝑘𝑒 (1) | + |𝜎 |)

= 𝑔((ℎ + 1) |𝑝𝑘 | + ℎ |𝑐𝑡ℎ𝑝𝑘𝑒 (1) | + |𝜎 |) + 𝑔𝑖𝑛𝑑 ( |𝑝𝑘 | + 2|𝜎 |)
(42)

𝑐𝑡𝑟𝑒𝑒𝑘𝑒𝑚
𝑓 𝑢𝑙𝑙-𝑢𝑝𝑑

= |req(𝑝𝑘, 𝑠𝑝𝑘) | + 𝑔((ℎ + 1) |𝑝𝑘 | + |𝑠𝑝𝑘 |

+ ℎ |𝑐𝑡ℎ𝑝𝑘𝑒 (1) | + |𝜎 |)

= 𝑔((ℎ + 1) |𝑝𝑘 | + |𝑠𝑝𝑘 | + ℎ |𝑐𝑡ℎ𝑝𝑘𝑒 (1) | + |𝜎 |)
+ 𝑔𝑖𝑛𝑑 ( |𝑝𝑘 | + |𝑠𝑝𝑘 | + 2|𝜎 |) (43)

𝑐𝑡𝑟𝑒𝑒𝑘𝑒𝑚
𝑎𝑑𝑑

= |regist(𝑝𝑘, 𝑠𝑝𝑘) | + |get(𝑝𝑘, 𝑠𝑝𝑘) | + 𝑔((ℎ + 1) |𝑝𝑘 |

+ |𝑠𝑝𝑘 | + ℎ |𝑐𝑡ℎ𝑝𝑘𝑒 (1) | + |𝜎 |) + 𝑔𝑖𝑛𝑑 |RT|

= 𝑔((ℎ + 1) |𝑝𝑘 | + |𝑠𝑝𝑘 | + ℎ |𝑐𝑡ℎ𝑝𝑘𝑒 (1) | + |𝜎 |)
+ 𝑔𝑖𝑛𝑑 ( |RT|) + 𝑔𝑎𝑠 (2|𝑝𝑘 | + 2|𝑠𝑝𝑘 | + 2|𝜎 |) (44)

𝑐𝑡𝑟𝑒𝑒𝑘𝑒𝑚𝑟𝑒𝑚 = 𝑔(ℎ( |𝑝𝑘 | + |𝑐𝑡ℎ𝑝𝑘𝑒 (1) |) + |𝜎 |) (45)

D.3.7 Communication Cost of SUMAC. We detail in Table 3 the

generic communication costs associated with each group operation

in SUMAC. We note that these costs notably depend on the underly-

ing TMKA and CGKA protocols. The costs depicted in our analysis

are based on a TreeKEM-like admin CGKA.We underline that when

the number of administrators is low, it may appear easier and even

more efficient to use a more naive CGKA for these administrators,

such as the Pairwise protocol.

D.3.8 Communication Costs of DGS-TreeKEM and IAS-TreeKEM.
IAS (Individual Admin Signature) and DGS (Dynamic Group Sig-

nature) are two plugins developed in [2], which turn any CGKA

into an A-CGKA. The high-level idea of these mechanisms is given

below (cf. that paper to dive into more details).

28
In practice, in TreeKEM, this freshmaterial is provided by the concerned user through

a proposal. However, for the fairness of our study, we did not consider this process, as

proposals are broadcast and consequently would have increased the communication

cost of that CGKA.
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IAS. In this protocol, each groupmember in the CGKAhas an (up-

to-date) list of the administrators in the member group, along with

their associated public signature keys. Every proposal related to an

administration task must be signed by one of the administrators,

except for self-removals that can be signed by a fresh signature

key of the concerned users. The committer – which must be an

administrator – checks that the proposals are correctly signed and

then broadcasts a control message 𝑇𝑖𝑎𝑠 and, if needed, a Welcome

message𝑊𝑖𝑎𝑠 based on these of the underlying CGKA, respectively

additionally comprising its new public signature key 𝑠𝑝𝑘′𝑐 and the

updated list of administrators adminList.

For the sake of the performance comparison with SUMAC, we

slightly modify IAS as follows:

• We do not take into account the administrators list sent to

during the commit (since it only comprises the IDs of the

administrators, but not their signature public keys that are

already transmitted via the regular CGKA, in the copy of the
Ratchet Tree that is part of the CGKA welcome message).

• Contrary to [2], the CGKA upon which IAS relies in our

study signs all its handshake messages, and all its group

members thus have signature keys that are regularly up-

dated – similarly to TreeKEM. The refreshment of an admin-

istrator’s signature key during an update-admin operation

is therefore already carried out by the CGKA (considering

that every admin undergoes a full update). The only addi-

tional signature operation in IAS, compared to the underly-

ing CGKA, is the automatic signature refreshment of the

committer.

• A welcome message𝑊 in the original IAS is sent together

with the associated control message 𝑇 , which permits to

sign only one message but that does not take advantage of

the unicast capability of the delivery service. Consequently,

for a fair performance comparison with SUMAC, we con-

sider a variation of IAS where the control message 𝑇 and

the welcome message𝑊 are signed and sent separately (the

former in broadcast, the latter in unicast), which allows to

send the large welcome message to a single recipient in-

stead of to the whole group, therefore greatly decreasing

the bandwidth of the protocol, at the cost of only an extra

signature.

The migration operations of upgrade-user and downgrade-
admin with IAS simply imply to communicate to the whole group

the change of membership in the admin group. This implies one

signed broadcast commit message, along with the credentials corre-

sponding to the refreshed signature key of the committer. Therefore,

the communication cost of the modified IAS protocol, using a black-

box CGKA, is the following, with 𝑜𝑝 ∈ {add, rem,upd} (either for
admins or standard users) and𝑚𝑖𝑔 ∈ {upgrade, downgrade}:

𝑐𝑖𝑎𝑠𝑜𝑝 = 𝑐
𝑐𝑔𝑘𝑎
𝑜𝑝 + 𝑔 |𝑠𝑝𝑘 | (46)

𝑐𝑖𝑎𝑠𝑚𝑖𝑔 = 𝑔( |𝑠𝑝𝑘 | + |𝜎 |) (47)

DGS. In this protocol, the administrators use a common adminis-

tration signature key to authenticate the administration messages.

This admin key needs regular rotation, especially due to the changes

in the admin group membership. A dedicated admin CGKA (called

cgka) takes care of updating this unique admin signature key, in ad-

dition to the regular user CGKA (called simply cgka). Consequently,
an administrative commit (that concerns an administrator) implies

to run both CGKAs (with the same operation) and to broadcast

the new admin signature public key. By contrast, a regular com-

mit does not refresh the admin signature key-pair – contrary to

IAS – and consequently has the same communication cost as the

user CGKA. Finally, the migration operations of upgrade-user and
downgrade-admin require to add or remove a group member to

or from the admin CGKA cgka, which updates the admin signature

key-pair (and implies to transmit, once again, the signature public

key to the whole group).

Thus, the communication cost of DGS is as follows, with 𝑎𝑑𝑚-𝑜𝑝

and 𝑢𝑠𝑟 -𝑜𝑝 denote respectively the add, remove and update oper-
ations carried out on administrators and standard users.

𝑐
𝑑𝑔𝑠

𝑎𝑑𝑚-𝑜𝑝
= 𝑐

cgka
𝑎𝑑𝑚-𝑜𝑝

+ 𝑐cgka
𝑎𝑑𝑚-𝑜𝑝

+ |𝑠𝑝𝑘 | (48)

𝑐
𝑑𝑔𝑠
𝑢𝑠𝑟 -𝑜𝑝 = 𝑐

cgka
𝑢𝑠𝑟 -𝑜𝑝 (49)

𝑐
𝑑𝑔𝑠

𝑢𝑝𝑔𝑟𝑎𝑑𝑒
= 𝑐

cgka
𝑎𝑑𝑑
+ |𝑠𝑝𝑘 | (50)

𝑐
𝑑𝑔𝑠

𝑑𝑜𝑤𝑛𝑔𝑟𝑎𝑑𝑒
= 𝑐

cgka
𝑟𝑒𝑚 + |𝑠𝑝𝑘 | (51)

D.3.9 Results. The communication cost of these protocols, as-

sessed for specific parameters (group size, classical or post-quantum

framework, in the broadcast-only setting), is depicted in Table 4

below.

E Algorithms of a TMKA and SUMAC
We provide below the pseudocode description and the algorithms of

the group operations in a TMKA (Figures 14 and 15) and in SUMAC

(Figures 17 and 18), along with the auxiliary functions used by both

these protocols (Figure 16).

The term send(𝑥 → 𝑦,𝑚𝑠𝑔) means that sender 𝑥 transmits to

recipient 𝑦 (which can be itself either a group or a single group

member) the message𝑚𝑠𝑔.

F Large Size Figures
We put beneath the figures related to a TMKA (Figure 2 from Sec-

tion 3.1) and to SUMAC (Figure 1 from Section 1 and Figures 3, 4, 5,

6, 7 and 8 from Section 4.3) in larger sizes than in the main body,

so as to remain readable even after being printed.



Bon et al.

add ([𝑢𝑝 , ] 𝑢 𝑗 ,T 𝑖
)

// Add of user 𝑢 𝑗 by 𝑔𝑚, possibly proposed by 𝑢𝑝
// 𝑢 𝑗 : Initialization of its state

1 : 𝛿𝑖+1𝑗 ← init(𝑢 𝑗 ), 𝑝𝑘𝑖+1𝑗 := 𝛿𝑖+1𝑗 .pk

// 𝑢𝑝 (possibly 𝑢 𝑗 ): potential add proposal

2 : if 𝑢𝑝 ≠ 𝑢 𝑗 then :

3 :

[
(𝛿𝑖+1𝑝 , 𝑃 = (add(𝑢 𝑗 ), 𝜎𝑝 ))

← propose(𝛿𝑖𝑝 , gid, add(𝑢 𝑗 ))
]

4 : else :

5 :

[
(𝛿𝑖+1𝑗 , 𝑃 = (add(𝑢 𝑗 ), 𝑝𝑘𝑖+1𝑗 , 𝜎 𝑗 ))

← propose(𝛿𝑖𝑗 , gid, add(𝑢 𝑗 ))
]

6 :

[
send(𝑢𝑝 → 𝑔𝑚, 𝑃)

]
// 𝑔𝑚 : commit

7 : (𝛾𝑖+1, 𝐼 𝑖+1, (𝐶𝑢𝑠𝑟 ,𝐶𝑖𝑛𝑑 )) ← commit(𝛾𝑖 , gid, 𝑃/add(𝑢 𝑗 ))
8 : send(𝑔𝑚 → G𝑢 ,𝐶𝑢𝑠𝑟 )
9 : send(𝑔𝑚 → 𝑢 𝑗 ,𝐶𝑖𝑛𝑑 )

remove ([𝑢𝑝 , ] 𝑢 𝑗 ,T 𝑖
)

// Removal of user 𝑢 𝑗 by 𝑔𝑚, possibly proposed by 𝑢𝑝
// 𝑢𝑝 : potential remove proposal

1 :

[
(𝛿𝑖+1𝑝 , 𝑃 = (rem(𝑢 𝑗 ))) ← propose(𝛿𝑖𝑝 , gid, rem(𝑢 𝑗 ))

]
2 :

[
send(𝑢𝑝 → 𝑔𝑚, 𝑃)

]
// 𝑔𝑚 : commit

3 : (𝛾𝑖+1, 𝐼 𝑖+1,𝐶𝑢𝑠𝑟 ) ← commit(𝛾𝑖 , gid, 𝑃/rem(𝑢 𝑗 ))
4 : send(𝑔𝑚 → G𝑢 ,𝐶𝑢𝑠𝑟 )

update (𝑢 𝑗 , 𝑡𝑦𝑝𝑒 ∈ {“full”, “part”},T 𝑖
)

// Update of user 𝑢 𝑗 by 𝑔𝑚, possibly self-proposed

// 𝑢 𝑗 : potential self-update proposal

1 :

[
(𝛿𝑖+1𝑗 , 𝑃 = (upd(𝑢 𝑗 , 𝑡𝑦𝑝𝑒), 𝑝𝑘𝑖+1𝑗 , 𝜎 𝑗 ))

← propose(𝛿𝑖𝑗 , gid,upd(𝑢 𝑗 , 𝑡𝑦𝑝𝑒))
]

2 :

[
send(𝑢 𝑗 → 𝑔𝑚, 𝑃)

]
// 𝑔𝑚 : commit

3 : (𝛾𝑖+1, 𝐼 𝑖+1, (𝐶𝑢𝑠𝑟 ,𝐶𝑖𝑛𝑑 )) ← commit(𝛾𝑖 , gid, 𝑃/upd(𝑢 𝑗 , 𝑡𝑦𝑝𝑒))
4 : send(𝑔𝑚 → G𝑢 ,𝐶𝑢𝑠𝑟 )
5 : send(𝑔𝑚 → 𝑢 𝑗 ,𝐶𝑖𝑛𝑑 )

Figure 14: Pseudo-code description of the group operations in a TMKA, as described in Section 4.1. Optional lines are within
brackets. 𝑘𝑖𝑒𝑐𝑝-𝑐ℎ (ℓ ) denotes the (symmetric) encryption key of the child node 𝑣𝑐ℎ of 𝑣ℓ (with path secret 𝑝𝑠ℓ ) in the copath of 𝑢 𝑗 .
Exchanges are depicted in blue. When a fresh encryption public key is needed by the group manager (add or update operations),
it is either provided within a self-update proposal or it is requested by the group manager within the commit algorithm
(cf. Figure 15), thus generating additional communication.
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Table 3: Detailed generic communication cost of a no-proposal commit for the various group operations in SUMAC, when
relying on a TreeKEM-based admin CGKA. The formulas from this table correspond to the group distribution method from Ap-
pendix D.3.1, but are applicable to the broadcast-only framework by modifying the values of the distribution coefficients to
𝑔𝑎 = 𝑔𝑢 := 𝑔 and by removing the extra signatures in red, within brackets. Moreover, the elements in blue, within brackets,
correspond to the additional cost of full-updates, compared to partial ones.

Group Ops Exchanges Communication Cost

add-admin

1 : init⇒ register-keys(𝑝𝑘, 𝑠𝑘) 𝑔𝑎𝑠 ( |𝑝𝑘 | + |𝑠𝑝𝑘 |)
2 : propose⇒ get-keys(𝑝𝑘) 𝑔𝑎𝑠 ( |𝑝𝑘 | + 2|𝜎 |)
3 : send(𝑎𝑝 → G𝑎, 𝑃𝑎𝑑𝑚) 𝑔𝑎 ( |𝜎 |)
4 : send(𝑎𝑝 → 𝑎 𝑗 , 𝑃𝑖𝑛𝑑 ) 𝑔𝑖𝑛𝑑 ( |𝑐𝑡ℎ𝑝𝑘𝑒 (2𝑛𝑢 − 1) | + |𝜎 |)
5 : commit⇒ get-keys(𝑝𝑘, 𝑠𝑝𝑘) 𝑔𝑎𝑠 ( |𝑝𝑘 | + |𝑠𝑝𝑘 | + 2|𝜎 |)
6 : send(𝑎𝑐 → G𝑎,𝐶𝑎𝑑𝑚) 𝑔𝑎 ((ℎ𝑎 + 1) |𝑝𝑘 | + |𝑠𝑝𝑘 | + ℎ𝑎 |𝑐𝑡ℎ𝑝𝑘𝑒 (1) | + |𝜎 |)
7 : send(𝑎𝑐 → G𝑢 ,𝐶𝑢𝑠𝑟 ) 𝑔𝑢 ( |𝑐𝑡𝑎𝑒𝑎𝑑 (1) | [+|𝑠𝑝𝑘 | + |𝜎 |])
8 : send(𝑎𝑐 → 𝑎 𝑗 ,𝐶𝑖𝑛𝑑 ) 𝑔𝑖𝑛𝑑 ( |𝑐𝑡ℎ𝑝𝑘𝑒 (2𝑛𝑢 − 1) | + 𝑛𝑢 |𝑠𝑝𝑘 | + |RT𝑎𝑑𝑚 | + |𝜎 |)

Total
𝑔𝑎 ((ℎ𝑎 + 1) |𝑝𝑘 | + |𝑠𝑝𝑘 | + ℎ𝑎 |𝑐𝑡ℎ𝑝𝑘𝑒 (1) | + 2|𝜎 |) +
𝑔𝑢 ( |𝑐𝑡𝑎𝑒𝑎𝑑 (1) | [+|𝑠𝑝𝑘 | + |𝜎 |]) + 𝑔𝑖𝑛𝑑 (𝑛𝑢 |𝑠𝑝𝑘 | + 2|𝑐𝑡ℎ𝑝𝑘𝑒 (2𝑛𝑢 −
1) | + |RT𝑎𝑑𝑚 | + 2|𝜎 |) + 𝑔𝑎𝑠 (3|𝑝𝑘 | + 2|𝑠𝑝𝑘 | + 4|𝜎 |)

remove-admin

4 : send(𝑎𝑐 → G𝑎,𝐶𝑎𝑑𝑚) 𝑔𝑎 (ℎ𝑎 ( |𝑝𝑘 | + |𝑐𝑡ℎ𝑝𝑘𝑒 (1) |) + |𝜎 |)
5 : send(𝑎𝑐 → G𝑢 ,𝐶𝑢𝑠𝑟 ) 𝑔𝑢 ( |𝑐𝑡𝑎𝑒𝑎𝑑 (1) | [+|𝜎 |])
Total 𝑔𝑎 (ℎ𝑎 ( |𝑝𝑘 | + |𝑐𝑡ℎ𝑝𝑘𝑒 (1) |) + |𝜎 |) + 𝑔𝑢 ( |𝑐𝑡𝑎𝑒𝑎𝑑 (1) | [+|𝜎 |])

[full-]update-

admin

3 : commit⇒ request-keys(𝑝𝑘, [𝑠𝑝𝑘]) 𝑔𝑖𝑛𝑑 ( |𝑝𝑘 | [+|𝑠𝑝𝑘 |] + 2|𝜎 |)
4 : send(𝑎𝑐 → G𝑎,𝐶𝑎𝑑𝑚) 𝑔𝑎 ((ℎ𝑎 + 1) |𝑝𝑘 | [+|𝑠𝑝𝑘 |] + ℎ𝑎 |𝑐𝑡ℎ𝑝𝑘𝑒 (1) | + |𝜎 |)
5 : send(𝑎𝑐 → G𝑢 ,𝐶𝑢𝑠𝑟 ) 𝑔𝑢 ( |𝑐𝑡𝑎𝑒𝑎𝑑 (1) | [+|𝑠𝑝𝑘 | + |𝜎 |])
6 : send(𝑎𝑐 → 𝑎 𝑗 ,𝐶𝑖𝑛𝑑 ) 𝑔𝑖𝑛𝑑 ( |𝑐𝑡ℎ𝑝𝑘𝑒 (2𝑛𝑢 − 1) | + |𝜎 |)

Total
𝑔𝑎 ((ℎ𝑎 + 1) |𝑝𝑘 | [+|𝑠𝑝𝑘 |] + ℎ𝑎 |𝑐𝑡ℎ𝑝𝑘𝑒 (1) | + |𝜎 |) +
𝑔𝑢 ( |𝑐𝑡𝑎𝑒𝑎𝑑 (1) | [+|𝑠𝑝𝑘 | + |𝜎 |]) + 𝑔𝑖𝑛𝑑 ( |𝑝𝑘 | [+|𝑠𝑝𝑘 |] +
|𝑐𝑡ℎ𝑝𝑘𝑒 (2𝑛𝑢 − 1) | + 3|𝜎 |)

add-user

1 : init⇒ register-keys(𝑝𝑘, 𝑠𝑘) 𝑔𝑎𝑠 ( |𝑝𝑘 | + |𝑠𝑝𝑘 |)
7 : commit⇒ get-keys(𝑝𝑘, 𝑠𝑝𝑘) 𝑔𝑎𝑠 ( |𝑝𝑘 | + |𝑠𝑝𝑘 | + 2|𝜎 |)
8 : send(𝑎𝑐 → G𝑎,𝐶𝑎𝑑𝑚) 𝑔𝑎 ( |𝑐𝑡𝑎𝑒𝑎𝑑 (ℎ𝑢 ) | + |𝑝𝑘 | + |𝑠𝑝𝑘 | + |𝜎 |)
9 : send(𝑎𝑐 → G𝑢 ,𝐶𝑢𝑠𝑟 ) 𝑔𝑢 (ℎ𝑢 |𝑐𝑡𝑎𝑒𝑎𝑑 (1) | [+|𝜎 |])
10 : send(𝑎𝑐 → 𝑢 𝑗 ,𝐶𝑖𝑛𝑑 ) 𝑔𝑖𝑛𝑑 ( |𝑐𝑡ℎ𝑝𝑘𝑒 (1) | + 𝑛𝑎 |𝑠𝑝𝑘 | + |𝜎 |)
19 : for ℓ ∈ [1..𝑛𝑎]\{𝑐} do :

𝑔𝑖𝑛𝑑 (𝑛𝑎 − 1) ( |𝑐𝑡ℎ𝑝𝑘𝑒 (ℎ𝑢 + 1) | + |𝜎 |)send(𝑎ℓ → 𝑢 𝑗 ,𝐶𝑖𝑛𝑑 (𝑢 𝑗 ))

Total
𝑔𝑎 ( |𝑐𝑡𝑎𝑒𝑎𝑑 (ℎ𝑢 ) | + |𝑝𝑘 | + |𝑠𝑝𝑘 | + |𝜎 |) +𝑔𝑢 (ℎ𝑢 |𝑐𝑡𝑎𝑒𝑎𝑑 (1) | [+|𝜎 |]) +
𝑔𝑖𝑛𝑑 (𝑛𝑎 |𝑠𝑝𝑘 | + (𝑛𝑎 − 1) |𝑐𝑡ℎ𝑝𝑘𝑒 (ℎ𝑢 + 1) | + |𝑐𝑡ℎ𝑝𝑘𝑒 (1) | +𝑛𝑎 |𝜎 |) +
𝑔𝑎𝑠 (2|𝑝𝑘 | + 2|𝑠𝑝𝑘 | + 2|𝜎 |)

remove-user

4 : send(𝑎𝑐 → G𝑎,𝐶𝑎𝑑𝑚) 𝑔𝑎 ( |𝑐𝑡𝑎𝑒𝑎𝑑 (ℎ𝑢 ) | + |𝜎 |)
5 : send(𝑎𝑐 → G𝑢 ,𝐶𝑢𝑠𝑟 ) 𝑔𝑢 (ℎ𝑢 |𝑐𝑡𝑎𝑒𝑎𝑑 (1) | [+|𝜎 |])
Total 𝑔𝑎 ( |𝑐𝑡𝑎𝑒𝑎𝑑 (ℎ𝑢 ) | + |𝜎 |) + 𝑔𝑢 (ℎ𝑢 |𝑐𝑡𝑎𝑒𝑎𝑑 (1) | [+|𝜎 |])

[full-]update-

user

3 : commit⇒ request-keys(𝑝𝑘, [𝑠𝑝𝑘]) 𝑔𝑖𝑛𝑑 ( |𝑝𝑘 | [+|𝑠𝑝𝑘 |] + 2|𝜎 |)
4 : send(𝑎𝑐 → G𝑎,𝐶𝑎𝑑𝑚) 𝑔𝑎 ( |𝑐𝑡𝑎𝑒𝑎𝑑 (ℎ𝑢 + 1) | + |𝑝𝑘 | [+|𝑠𝑝𝑘 |] + |𝜎 |)
5 : send(𝑎𝑐 → G𝑢 ,𝐶𝑢𝑠𝑟 ) 𝑔𝑢 (ℎ𝑢 |𝑐𝑡𝑎𝑒𝑎𝑑 (1) | [+|𝜎 |])
6 : send(𝑎𝑐 → 𝑢 𝑗 ,𝐶𝑖𝑛𝑑 ) 𝑔𝑖𝑛𝑑 ( |𝑐𝑡ℎ𝑝𝑘𝑒 (1) | + |𝜎 |)

Total
𝑔𝑎 ( |𝑐𝑡𝑎𝑒𝑎𝑑 (ℎ𝑢 + 1) | + |𝑝𝑘 | [+|𝑠𝑝𝑘 |] + |𝜎 |) +
𝑔𝑢 (ℎ𝑢 |𝑐𝑡𝑎𝑒𝑎𝑑 (1) | [+|𝜎 |])+𝑔𝑖𝑛𝑑 ( |𝑝𝑘 | [+|𝑠𝑝𝑘 |]+|𝑐𝑡ℎ𝑝𝑘𝑒 (1) |+3|𝜎 |)

upgrade-user

SUMAC.remove-user
SUMAC.add-admin

downgrade-

admin

SUMAC.remove-admin
SUMAC.add-user
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Table 4: Compared communication costs per user of the group operations – carried out separately – with DGS-TreeKEM,
IAS-TreeKEM, TreeKEM and SUMAC, both for the classical and post-quantum frameworks, in the broadcast-only setting. The
rightmost columns display the relative performances of SUMAC with respect to IAS-TreeKEM – which stands as the most
efficient A-CGKA – and TreeKEM.

Group Setting Number of Communication Cost per User (Byte) Gain (%) of SUMAC w.r.t.

Operation

std

users

admins DGS-TK IAS-TK TreeKEM SUMAC IAS-TK TreeKEM

add-

admin

Classical

16 4 1,176 834 800 582 30.1 27.2

256 16 1,681 1,188 1,156 740 37.7 36.0

65,536 256 2,817 1,952 1,920 1,120 42.6 41.7

PQ

16 4 25,241 18,212 18,178 7,637 58.1 58.0

256 16 37,874 27,033 27,001 11,227 58.5 58.4

65,536 256 65,348 45,521 45,489 20,210 55.6 55.6

remove-

admin

Classical

16 4 805 571 538 269 52.9 50.0

256 16 1,349 931 899 450 51.7 50.0

65,536 256 2,496 1,696 1,664 832 50.9 50.0

PQ

16 4 17,151 12,247 12,214 4,939 59.7 59.6

256 16 30,367 21,021 20,989 9,378 55.4 55.3

65,536 256 58,097 39,505 39,473 18,624 52.9 52.8

part / full

update-

admin

Classical

16 4 891 / 965 614 / 651 581 / 618 370 / 406 39.8 / 37.6 36.4 / 34.2

256 16 1,414 / 1,479 964 / 997 932 / 964 543 / 576 43.7 / 42.3 41.7 / 40.3

65,536 256 2,560 / 2,624 1,728 / 1,760 1,696 / 1,728 928 / 960 46.3 / 45.5 45.3 / 44.5

PQ

16 4 19,887 / 19,961 13,615 / 13,652 13,582 / 13,618 6,520 / 6,557 52.1 / 52.0 52.0 / 51.9

256 16 32,762 / 32,827 22,219 / 22,251 22,186 / 22,219 10,704 / 10,737 51.8 / 51.7 51.8 / 51.7

65,536 256 60,465 / 60,529 40,689 / 40,721 40,657 / 40,689 19,936 / 19,968 51.0 / 51.0 51.0 / 50.9

add-user

Classical

16 4 800 834 800 399 52.1 50.1

256 16 1,156 1,188 1,156 528 55.6 54.3

65,536 256 1,920 1,952 1,920 883 54.8 54.0

PQ

16 4 18,178 18,212 18,178 2,239 87.7 87.7

256 16 27,001 27,033 27,001 1,961 92.7 92.7

65,536 256 45,489 45,521 45,489 2,301 94.9 94.9

remove-

user

Classical

16 4 538 571 538 252 55.9 53.1

256 16 899 931 899 434 53.4 51.8

65,536 256 1,664 1,696 1,664 816 51.9 51.0

PQ

16 4 12,214 12,247 12,214 319 97.4 97.4

256 16 20,989 21,021 20,989 562 97.3 97.3

65,536 256 39,473 39,505 39,473 1,072 97.3 97.3

part / full

update-

user

Classical

16 4 581 / 618 614 / 651 581 / 618 322 / 358 47.7 / 45.0 44.6 / 42.0

256 16 932 / 964 964 / 997 932 / 964 483 / 516 49.9 / 48.3 48.2 / 46.5

65,536 256 1,696 / 1,728 1,728 / 1,760 1,696 / 1,728 864 / 896 50.0 / 49.1 49.1 / 48.1

PQ

16 4 13,582 / 13,618 13,615 / 13,652 13,582 / 13,618 1,838 / 1,874 86.5 / 86.3 86.5 / 86.2

256 16 22,186 / 22,219 22,219 / 22,251 22,186 / 22,219 1,800 / 1,833 91.9 / 91.8 91.9 / 91.8

65,536 256 40,657 / 40,689 40,689 / 40,721 40,657 / 40,689 2,288 / 2,320 94.4 / 94.3 94.4 / 94.3

upgrade-

user

Classical

16 4 376 67 - 834 -1,141.7 -

256 16 525 64 - 1,173 -1,726.3 -

65,536 256 897 64 - 1,936 -2,925.0 -

PQ

16 4 7,062 67 - 7,956 -11,739.3 -

256 16 10,873 64 - 11,789 -18,253.0 -

65,536 256 19,859 64 - 21,282 -33,152.3 -

downgrade-

admin

Classical

16 4 267 67 - 668 -894.0 -

256 16 450 64 - 977 -1,421.5 -

65,536 256 832 64 - 1,715 -2,579.7 -

PQ

16 4 4,938 67 - 7,178 -10,582.1 -

256 16 9,378 64 - 11,339 -17,553.0 -

65,536 256 18,624 64 - 20,926 -32,595.9 -
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init(𝑖𝑑)
// Initialization of the group manager’s state

1 : if 𝑖𝑑 = 𝑔𝑚 then :

2 : (𝑠𝑝𝑘𝑖𝑔𝑚, 𝑠𝑠𝑘𝑖𝑔𝑚) ← SIG.key-gen()
3 : register-keys(𝑠𝑝𝑘𝑖𝑔𝑚) // Upload to the Authent. Service

4 : 𝛾𝑖 := (𝑠𝑠𝑘𝑖𝑔𝑚, 𝑠𝑝𝑘𝑖𝑔𝑚)
5 : return 𝛾𝑖

// Initialization of a user’s state

6 : elseif 𝑖𝑑 = 𝑢 𝑗 then :

7 : (𝑠𝑝𝑘𝑖𝑗 , 𝑠𝑠𝑘
𝑖
𝑗 ) ← SIG.key-gen()

8 : (𝑝𝑘𝑖𝑗 , 𝑠𝑘
𝑖
𝑗 ) ← PKE.key-gen()

9 : register-keys(𝑠𝑝𝑘𝑖𝑗 , 𝑝𝑘
𝑖
𝑗 ) // Upload to the Authent. Service

10 : 𝛿𝑖𝑗 := ((𝑠𝑠𝑘
𝑖
𝑗 , 𝑠𝑘

𝑖
𝑗 ), (𝑠𝑝𝑘

𝑖
𝑗 , 𝑝𝑘

𝑖
𝑗 ))

11 : return 𝛿𝑖𝑗

create-group(𝛾𝑖 , (𝑢𝑘 )𝑛𝑢𝑘=1)
// Creation of a member group G

1 : G := ((𝑢𝑘 )𝑛𝑢𝑘=1, 𝑔𝑖𝑑)
2 :

#»
𝑜𝑝 := (add(𝑢𝑘 ))𝑢𝑘 ∈G

3 : (𝛾𝑖+1, 𝐼 𝑖+1,𝑇 ) ← commit(𝛾𝑖 , gid,∅, #»
𝑜𝑝)

4 : return 𝛾𝑖+1,G, 𝐼 𝑖+1,𝑇

process(𝛿𝑖
𝑘
, gid,𝐶)

// Authenticating the message

1 : (𝐶𝑢𝑠𝑟 = (𝑢 𝑗 ,𝐶𝑇 ), 𝜎𝑢𝑠𝑟 , [𝐶𝑖𝑛𝑑 , 𝜎𝑖𝑛𝑑 ]) := parse(𝐶)
2 : if ⊥ := SIG.verif (𝑠𝑝𝑘𝑔𝑚, 𝜎𝑢𝑠𝑟/𝑖𝑛𝑑 ) then :

3 : return ⊥
// If 𝑢𝑘 is the new/updated user 𝑢 𝑗

4 : if 𝐶𝑖𝑛𝑑 ≠ ∅ then :

5 : if 𝑢𝑘 ≠ 𝑢 𝑗 then :

6 : return ⊥
7 : else :

8 : 𝑙𝑠𝑖+1𝑗 := HPKE.dec(𝑠𝑘𝑖+1𝑗 ,𝐶𝑖𝑛𝑑 )
9 : 𝑙𝑒𝑛 := ℎ(T )
10 : (𝐼 𝑖+1,P(𝑢𝑘 ,T 𝑖+1)) := derive-path(𝑙𝑠𝑖+1𝑗 , 𝑙𝑒𝑛)

// If 𝑢𝑘 is not user 𝑢 𝑗

11 : else :

12 : 𝑣ℓ := find-common-ancestor(𝑢 𝑗 , 𝑢𝑘 )
13 : 𝑝𝑠ℓ := USKE.dec(𝑘𝑒𝑐𝑝-𝑐ℎ (ℓ ) , 𝑐𝑡ℓ ∈ 𝐶𝑇 )
14 : 𝑙𝑒𝑛 := ℎ(T ) − ℎ(𝑣ℓ )
15 : (𝐼 𝑖+1,P(𝑢𝑘 ,T 𝑖+1, )) := derive-path(𝑝𝑠ℓ , 𝑙𝑒𝑛)
16 : 𝛿𝑖+1

𝑘
:= 𝛿𝑖

𝑘
, 𝛿𝑖+1

𝑘
.𝑃𝐴𝑇𝐻 := P(𝑢𝑘 ,T 𝑖+1)

17 : return 𝛿𝑖+1
𝑘
, 𝐼 𝑖+1
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propose(𝛿𝑖𝑝 , gid, 𝑜𝑝 (𝑢 𝑗 ))
// Case by default

1 : 𝑃 := (𝑜𝑝 (𝑢 𝑗 )), 𝛿𝑖+1𝑝 := 𝛿𝑖𝑝

// Self proposal of update

2 : if 𝑜𝑝 = upd and 𝑢𝑝 = 𝑢 𝑗 then :

3 : (𝑝𝑘𝑖+1𝑗 , 𝑠𝑘𝑖+1𝑗 ) ← PKE.key-gen()

4 : 𝛿𝑖+1𝑝 .pk := 𝑝𝑘𝑖+1𝑗 , 𝛿𝑖+1𝑝 .sk := 𝑠𝑘𝑖+1𝑗

5 : 𝑃 := (𝑜𝑝 (𝑢 𝑗 ), 𝛿𝑖+1𝑝 .pk)
// Full update (refreshment of the signature key)

6 : if upd.type = full then :

7 : (𝑠𝑝𝑘𝑖+1𝑗 , 𝑠𝑠𝑘𝑖+1𝑗 ) ← SIG.key-gen()

8 : 𝛿𝑖+1𝑝 .spk := 𝑠𝑝𝑘𝑖+1𝑗 , 𝛿𝑖+1𝑝 .ssk := 𝑠𝑠𝑘𝑖+1𝑗

9 : 𝑃 := (𝑜𝑝 (𝑢 𝑗 ), 𝛿𝑖+1𝑝 .pk, 𝛿𝑖+1𝑝 .spk)
// Self proposal of add

10 : elseif 𝑜𝑝 = add and 𝑢𝑝 = 𝑢 𝑗 then :

11 : 𝛿𝑖+1𝑝 ← init(𝑢𝑝 )

12 : 𝑃 := (𝑜𝑝 (𝑢 𝑗 ), 𝛿𝑖+1𝑝 .pk, 𝛿𝑖+1𝑝 .spk)

13 : 𝑃 := (𝑃, 𝜎 ← SIG.sign(𝛿𝑖+1𝑝 .ssk, 𝑃))
14 : return 𝛿𝑖+1𝑝 , 𝑃

commit(𝛾𝑖 , gid, #»
𝑃 ,

#»
𝑜𝑝)

// Processing and validating the pending operations

1 : (𝑜𝑝𝑖 )𝑖 := validate-ops( #»
𝑃 ,

#»
𝑜𝑝)

2 : for 𝑜𝑝 (𝑢 𝑗 ) ∈ (𝑜𝑝𝑖 )𝑖 do :

// Add or update operation

3 : if 𝑜𝑝 (𝑢 𝑗 ) ∈ {add,upd} then :

4 : if 𝑜𝑝 (𝑢 𝑗 ) = add and 𝑝𝑘𝑖+1𝑗 = 𝑠𝑝𝑘𝑖+1𝑗 = ∅ then :

5 : (𝑝𝑘𝑖+1𝑗 , 𝑠𝑝𝑘𝑖+1𝑗 ) ← get-keys(𝑢 𝑗 , (pk, spk))

6 : elseif 𝑜𝑝 (𝑢 𝑗 ) = full-upd and 𝑝𝑘𝑖+1𝑗 = 𝑠𝑝𝑘𝑖+1𝑗 = ∅ then :

7 : (𝑝𝑘𝑖+1𝑗 , 𝑠𝑝𝑘𝑖+1𝑗 ) ← request-keys(𝑢 𝑗 , (pk, spk))

8 : elseif 𝑜𝑝 (𝑢 𝑗 ) = part-upd and 𝑝𝑘𝑖+1𝑗 = ∅ then :

9 : 𝑝𝑘𝑖+1𝑗 ← request-keys(𝑢 𝑗 , pk)

10 : 𝑙𝑠𝑖+1𝑗

$← K

11 : P(𝑢 𝑗 ,T 𝑖+1) ← path-update(𝑢 𝑗 , ℎ(T 𝑖+1), 𝑙𝑠𝑖+1𝑗 )

12 : 𝐶𝑖𝑛𝑑 := HPKE.enc(𝑝𝑘𝑖+1𝑗 , 𝑙𝑠𝑖+1𝑗 )

13 : 𝐶𝑖𝑛𝑑 := (𝐶𝑖𝑛𝑑 , 𝜎𝑖𝑛𝑑 ← SIG.sign(𝛾𝑖+1 .ssk,𝐶𝑖𝑛𝑑 ))
// Remove operation

14 : else :

15 : delete(𝑢 𝑗 )
16 : P(𝑢 𝑗 ,T 𝑖+1) ← path-update(𝑢 𝑗 , ℎ(T 𝑖+1))
17 : 𝐶𝑖𝑛𝑑 := ∅

// Update of the group manager’s state

18 : 𝛾𝑖+1 := 𝛾𝑖 , 𝛾𝑖+1 .tree := T 𝑖+1

// Computation of the group key

19 : 𝐼 𝑖+1 := derive(T 𝑖+1 .root, “path”)
20 : 𝐶𝑇 ← (USKE.enc(𝑘𝑖𝑒𝑐𝑝-𝑐ℎ (ℓ ) , 𝑝𝑠

𝑖+1
ℓ ))𝑣ℓ ∈P(𝑢 𝑗 ,T𝑖+1 )

21 : 𝐶𝑢𝑠𝑟 := (𝑢 𝑗 ,𝐶𝑇 )

22 : 𝐶𝑢𝑠𝑟 := (𝐶𝑢𝑠𝑟 , 𝜎𝑢𝑠𝑟 ← SIG.sign(𝛾𝑖+1 .ssk,𝐶𝑢𝑠𝑟 ))
23 : return 𝛾𝑖+1, 𝐼 𝑖+1,𝐶 := (𝐶𝑢𝑠𝑟 ,𝐶𝑖𝑛𝑑 )

Figure 15: Algorithms of a TMKA, as defined in Definition 3.1, with the associated auxiliary functions.
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path-update(𝑢 𝑗 , 𝑙𝑒𝑛[, 𝑙𝑠𝑖+1𝑗
])

// If the leaf secret is provided (add, update)

1 : if 𝑙𝑠𝑖+1𝑗 ≠ ∅ then :

2 : 𝑝𝑠𝑖+1
1

:= derive(𝑙𝑠𝑖+1𝑗 , “path”)
// If the leaf secret is null (remove)

3 : else :

4 : 𝑝𝑠𝑖+1
1

$← K
// Derivation of the upper path secrets

5 : (𝐼 𝑖+1,P(𝑢 𝑗 ,T 𝑖+1)) := derive-path(𝑝𝑠𝑖+1
1
, 𝑙𝑒𝑛)

6 : return (𝐼 𝑖+1,P(𝑢 𝑗 ,T 𝑖+1))

derive-path(𝑠𝑒𝑐, 𝑙𝑒𝑛)
// Path derivation from the initial leaf/path secret

1 : 𝑝𝑠0 := 𝑠𝑒𝑐

2 : for ℓ ∈ J1, 𝑙𝑒𝑛K do :

3 : 𝑝𝑠𝑖+1ℓ := derive(𝑝𝑠𝑖+1ℓ−1, “path”)
// Computation of the new group key

4 : 𝐼 𝑖+1 := derive(𝑝𝑠𝑖+1
𝑙𝑒𝑛
, “path”)

5 : return (𝐼 𝑖+1,P(𝑢 𝑗 ,T 𝑖+1) = (𝑝𝑠ℓ )𝑙𝑒𝑛ℓ=1)

derive(S, “label”)
// Derivation of a set S of nodes with hash function H

1 : S′ := ∅
2 : for 𝑠 ∈ S do :

3 : 𝑠′ := H(𝑠, “label”)
4 : S′ := S′ ∪ {𝑠′}
5 : return S′

regen(S = (𝑠𝑖 )𝑚𝑖=1,R = (𝑟𝑖 )𝑚𝑖=1)
// Regeneration of a set S of nodes with hash function G

1 : S′ := ∅
2 : for 𝑖 ∈ [1..𝑚] do :

3 : 𝑠′𝑖 := G(𝑠𝑖 , 𝑟𝑖 )
4 : S′ := (𝑠′𝑖 )

𝑚
𝑖=1

5 : return S′

request-keys(𝑟𝑜𝑙𝑒,𝑢 𝑗 , (𝑘𝑒𝑦𝑇𝑦𝑝𝑒ℓ ∈ {𝑝𝑘, 𝑠𝑝𝑘})ℓ )
1 : // Actions of the committer (com)

2 : if 𝑟𝑜𝑙𝑒 = com then :

3 : 𝑅𝑒𝑞 := (encode(𝑘𝑒𝑦𝑇𝑦𝑝𝑒ℓ ))ℓ
4 : 𝑅𝑒𝑞 := (𝑅𝑒𝑞, 𝜎 ← SIG.sign(𝑠𝑠𝑘𝑖+1𝑐 , 𝑅𝑒𝑞))
5 : send(committer→ 𝑢 𝑗 , 𝑅𝑒𝑞)

// Actions of the recipient 𝑢 𝑗

6 : elseif 𝑟𝑜𝑙𝑒 = 𝑢 𝑗 then :

7 : for 𝑘𝑒𝑦𝑇𝑦𝑝𝑒 ∈ (𝑘𝑒𝑦𝑇𝑦𝑝𝑒ℓ )ℓ do :

8 : if 𝑘𝑒𝑦𝑇𝑦𝑝𝑒 = 𝑝𝑘 then :

9 : (𝑝𝑘𝑖+1𝑗 , 𝑠𝑘𝑖+1𝑗 ) ← PKE.key-gen()

10 : 𝑘𝑒𝑦 := 𝑝𝑘𝑖+1𝑗

11 : elseif 𝑘𝑒𝑦𝑇𝑦𝑝𝑒 = 𝑠𝑝𝑘 then :

12 : (𝑠𝑝𝑘𝑖+1𝑗 , 𝑠𝑠𝑘𝑖+1𝑗 ) ← SIG.key-gen()

13 : 𝑘𝑒𝑦 := 𝑠𝑝𝑘𝑖+1𝑗

14 : �𝐾𝑒𝑦𝑠 := (𝑘𝑒𝑦ℓ )ℓ
15 : 𝐾𝑒𝑦𝑠 := (�𝐾𝑒𝑦𝑠, 𝜎 ← SIG.sign(𝑠𝑠𝑘𝑖+1𝑗 ,�𝐾𝑒𝑦𝑠))
16 : send(𝑢 𝑗 → committer, 𝐾𝑒𝑦𝑠)

Figure 16: Auxiliary algorithms potentially used in a Group Key Agreement protocol. Exchanges are depicted in blue.
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add-admin ((𝑎𝑝 , 𝑎𝑐 ), 𝑎 𝑗 )
// Add admin 𝑎 𝑗 by 𝑎𝑐 , after proposal by 𝑎𝑝
// 𝑎 𝑗 : Initialization of its state

1 : 𝛾𝑖𝑗 ← init(𝑎 𝑗 ), 𝑝𝑘𝑖𝑗 := 𝛾
𝑖
𝑗 .pk, 𝑠𝑝𝑘

𝑖
𝑗 := 𝛾

𝑖
𝑗 .spk

// 𝑎𝑝 : compulsory add proposal

2 : (𝛾𝑖+1𝑝 , 𝑃 = (𝑃𝑎𝑑𝑚, 𝑃𝑖𝑛𝑑 ))
← propose(𝛾𝑖𝑝 , gid, add(𝑎 𝑗 ))

3 : send(𝑎𝑝 → G𝑎, 𝑃𝑎𝑑𝑚)
4 : send(𝑎𝑝 → 𝑎 𝑗 , 𝑃𝑖𝑛𝑑 )

// 𝑎𝑐 : commit

5 : (𝛾𝑖+1𝑐 , (𝐼 𝑖+1𝑔 , 𝐼 𝑖+1𝑢𝑐
), (𝐶𝑎𝑑𝑚,𝐶𝑢𝑠𝑟 ,𝐶𝑖𝑛𝑑 ))
← commit(𝛾𝑖𝑐 , gid, 𝑃𝑎𝑑𝑚)

6 : send(𝑎𝑐 → G𝑎,𝐶𝑎𝑑𝑚)
7 : send(𝑎𝑐 → G𝑢 ,𝐶𝑢𝑠𝑟 )
8 : send(𝑎𝑐 → 𝑎 𝑗 ,𝐶𝑖𝑛𝑑 )

// 𝑎 𝑗 : processing 𝑃𝑖𝑛𝑑

9 : 𝛾 𝑗
𝑖+1 ← process(𝛾𝑖𝑗 , 𝑃𝑖𝑛𝑑 )

// all but 𝑎𝑐 : processing the commit message

10 : for 𝑘 ∈ J1, 𝑛𝑎K \{𝑐, 𝑗} do :

11 : (𝛾𝑖+1
𝑘
, (𝐼 𝑖+1𝑔 , 𝐼 𝑖+1𝑢𝑘

),⊤) ← process(𝛾𝑖
𝑘
,𝐶𝑎𝑑𝑚)

12 : for 𝑘 ∈ J1, 𝑛𝑢K do :

13 : (𝛿𝑖+1
𝑘
, (𝐼 𝑖+1𝑔 , (𝐼 𝑖+1𝑢ℓ

)𝑛𝑎
ℓ=1
),⊤) ← process(𝛿𝑖

𝑘
,𝐶𝑢𝑠𝑟 )

14 : (𝛾𝑖+1𝑗 , (𝐼 𝑖+1𝑔 , 𝐼 𝑖+1𝑢 𝑗
),⊤) ← process(𝛾𝑖𝑗 , (𝐶𝑎𝑑𝑚,𝐶𝑖𝑛𝑑 ))

remove-admin ([𝑚𝑝 , ] 𝑎𝑐 , 𝑎 𝑗 )
// Remove admin 𝑎 𝑗 by 𝑎𝑐 , poss. proposed by𝑚𝑝

// 𝑚𝑝 : potential remove proposal

1 :

[
(𝑠𝑡𝑖+1𝑝 , 𝑃 = (rem(𝑢 𝑗 )))

← propose(𝑠𝑡𝑖𝑝 , gid, rem(𝑎 𝑗 ))
]

2 :

[
send(𝑚𝑝 → G𝑎, 𝑃)

]
// 𝑎𝑐 : commit

3 : 𝛾𝑖+1𝑐 , (𝐼 𝑖+1𝑔 , 𝐼 𝑖+1𝑎 ), (𝐶𝑎𝑑𝑚,𝐶𝑢𝑠𝑟 )
← commit(𝛾𝑖𝑐 , gid, 𝑃/rem(𝑎 𝑗 ))

4 : send(𝑎𝑐 → G𝑎,𝐶𝑎𝑑𝑚)
5 : send(𝑎𝑐 → G𝑢 ,𝐶𝑢𝑠𝑟 )

// all but 𝑎𝑐 : process

6 : for 𝑘 ∈ J1, 𝑛𝑎K \{𝑐} do :

7 : (𝛾𝑖+1
𝑘
, (𝐼 𝑖+1𝑔 , 𝐼 𝑖+1𝑎 ),⊤) ← process(𝛾𝑖

𝑘
,𝐶𝑎𝑑𝑚)

8 : for 𝑘 ∈ J1, 𝑛𝑢K do :

9 : (𝛿𝑖+1
𝑘
, 𝐼 𝑖+1𝑔 ,⊤) ← process(𝛿𝑖

𝑘
,𝐶𝑢𝑠𝑟 )

add-user ([𝑚𝑝 , ] 𝑎𝑐 , 𝑢 𝑗 )
// Add user 𝑢 𝑗 by 𝑎𝑐 , possibly proposed by𝑚𝑝

// 𝑢 𝑗 : Initialization of its state

1 : 𝛿𝑖𝑗 ← init(𝑢 𝑗 ), 𝑝𝑘𝑖𝑗 := 𝛿
𝑖
𝑗 .pk

// 𝑚𝑝 (possibly 𝑢 𝑗 ): potential add proposal

2 : if 𝑚𝑝 ≠ 𝑢 𝑗 then :

3 :

[
(𝑠𝑡𝑖+1𝑝 , 𝑃 = (add(𝑢 𝑗 ), 𝜎𝑝 )) ← propose(𝑠𝑡𝑖𝑝 , gid, add(𝑢 𝑗 ))

]
4 : else :

5 :

[
(𝛿𝑖+1𝑗 , 𝑃 = (add(𝑢 𝑗 ), 𝑝𝑘𝑖+1𝑗 , 𝜎 𝑗 )) ← propose(𝛿𝑖𝑗 , gid, add(𝑢 𝑗 ))

]
6 :

[
send(𝑚𝑝 → G𝑎, 𝑃)

]
// Stage 1

// 𝑎𝑐 : commit

7 : (𝛾𝑖+1𝑐 , (𝐼 𝑖+1𝑔 , 𝐼 𝑖+1𝑢𝑐
), (𝐶𝑎𝑑𝑚,𝐶𝑢𝑠𝑟 ,𝐶𝑖𝑛𝑑 )) ← commit(𝛾𝑖𝑐 , gid, 𝑃/add(𝑢 𝑗 ))

8 : send(𝑎𝑐 → G𝑎,𝐶𝑎𝑑𝑚)
9 : send(𝑎𝑐 → G𝑢 ,𝐶𝑢𝑠𝑟 )
10 : send(𝑎𝑐 → 𝑢 𝑗 ,𝐶𝑖𝑛𝑑 )

// all but 𝑎𝑐 : process

11 : for 𝑘 ∈ J1, 𝑛𝑎K \{𝑐} do :

12 : (𝛾𝑖+1
𝑘
, (𝐼 𝑖+1𝑔 , 𝐼 𝑖+1𝑢𝑘

),⊤) ← process(𝛾𝑖
𝑘
,𝐶𝑎𝑑𝑚)

13 : for 𝑘 ∈ J1, 𝑛𝑢K do :

14 : (𝛿𝑖+1
𝑘
, (𝐼 𝑖+1𝑔 , (𝐼 𝑖+1𝑢ℓ

)𝑛𝑎
ℓ=1
),⊤) ← process(𝛿𝑖

𝑘
,𝐶𝑢𝑠𝑟 )

15 : // Stage 2

// 𝑎ℓ≠𝑐 : subsequent commits by other admins

16 : for ℓ ∈ J1, 𝑛𝑎K \{𝑐} do :

17 : (𝛾𝑖+𝑥ℓ , (𝐼 𝑖+𝑥𝑔 , 𝐼 𝑖+𝑥𝑢ℓ
), (𝐶𝑖𝑛𝑑 (𝑢 𝑗 ), . . . )) ← commit(𝛾𝑖+𝑥−1ℓ , gid, . . . )

18 : // We consider here only the message sent to 𝑢 𝑗

19 : send(𝑎ℓ → 𝑢 𝑗 ,𝐶𝑖𝑛𝑑 (𝑢 𝑗 ))
// 𝑢 𝑗 : process

20 : (𝛿𝑖+𝑥𝑗 , (𝐼 𝑖+𝑥𝑔 , (𝐼 𝑖+𝑥𝑢ℓ
)𝑛𝑎
ℓ=1
),⊤) ← process(𝛿𝑖+𝑥−1𝑗 , (𝐶𝑖𝑛𝑑 (𝑢 𝑗 ), . . . ))

remove-user ([𝑚𝑝 , ] 𝑎𝑐 , 𝑢 𝑗 )
// Remove user 𝑢 𝑗 by 𝑎𝑐 , possibly proposed by𝑚𝑝

// 𝑚𝑝 : potential remove proposal

1 :

[
(𝑠𝑡𝑖+1𝑝 , 𝑃 = (rem(𝑢 𝑗 ))) ← propose(𝑠𝑡𝑖𝑝 , gid, rem(𝑢 𝑗 ))

]
2 :

[
send(𝑚𝑝 → G𝑎, 𝑃)

]
// 𝑎𝑐 : commit

3 : (𝛾𝑖+1𝑐 , (𝐼 𝑖+1𝑔 , 𝐼 𝑖+1𝑢𝑐
), (𝐶𝑎𝑑𝑚,𝐶𝑢𝑠𝑟 )) ← commit(𝛾𝑖𝑐 , gid, 𝑃/rem(𝑢 𝑗 ))

4 : send(𝑎𝑐 → G𝑎,𝐶𝑎𝑑𝑚)
5 : send(𝑎𝑐 → G𝑢 ,𝐶𝑢𝑠𝑟 )

// all but 𝑎𝑐 : process

6 : for 𝑘 ∈ J1, 𝑛𝑎K \{𝑐} do :

7 : (𝛾𝑖+1
𝑘
, (𝐼 𝑖+1𝑔 , 𝐼 𝑖+1𝑢𝑘

),⊤) ← process(𝛾𝑖
𝑘
,𝐶𝑎𝑑𝑚)

8 : for 𝑘 ∈ J1, 𝑛𝑢K do :

9 : (𝛿𝑖+1
𝑘
, (𝐼 𝑖+1𝑔 , (𝐼 𝑖+1𝑢ℓ

)𝑛𝑎
ℓ=1
),⊤) ← process(𝛿𝑖

𝑘
,𝐶𝑢𝑠𝑟 )
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update-admin (𝑎𝑐 , 𝑎 𝑗 )

// Update admin 𝑎 𝑗 by 𝑎𝑐 , possibly self-proposed

// 𝑎 𝑗 : potential self-update proposal

1 :

[
(𝛾𝑖+1𝑗 , 𝑃 = (upd(𝑎 𝑗 , 𝑡𝑦𝑝𝑒), 𝛾𝑖+1𝑗 .pk, 𝜎 𝑗 ))

← propose(𝛾𝑖𝑗 , gid,upd(𝑎 𝑗 , 𝑡𝑦𝑝𝑒))
]

2 :

[
send(𝑎 𝑗 → G𝑎, 𝑃)

]
// 𝑎𝑐 : commit

3 : (𝛾𝑖+1𝑐 , 𝐼 𝑖+1𝑔 , (𝐶𝑎𝑑𝑚,𝐶𝑢𝑠𝑟 ,𝐶𝑖𝑛𝑑 ))
← commit(𝛾𝑖𝑐 , gid, 𝑃/upd(𝑎 𝑗 , 𝑡𝑦𝑝𝑒))

4 : send(𝑎𝑐 → G𝑎,𝐶𝑎𝑑𝑚)
5 : send(𝑎𝑐 → G𝑢 ,𝐶𝑢𝑠𝑟 )
6 : send(𝑎𝑐 → 𝑎 𝑗 ,𝐶𝑖𝑛𝑑 )

// all but 𝑎𝑐 : process

7 : for 𝑘 ∈ J1, 𝑛𝑎K \{𝑐} do :

8 : (𝛾𝑖+1
𝑘
, (𝐼 𝑖+1𝑔 , [𝐼 𝑖+1𝑢 𝑗

]),⊤) ← process(𝛾𝑖
𝑘
,𝐶𝑎𝑑𝑚)

9 : for 𝑘 ∈ J1, 𝑛𝑢K do :

10 : (𝛿𝑖+1
𝑘
, (𝐼 𝑖+1𝑔 , 𝐼 𝑖+1𝑢 𝑗

),⊤) ← process(𝛿𝑖
𝑘
,𝐶𝑢𝑠𝑟 )

downgrade-admin ((𝑎𝑐1 , 𝑎𝑐2 ), 𝑎 𝑗 )
// Downgrade of admin 𝑎 𝑗 into user 𝑢 𝑗 by 𝑎𝑐1 and 𝑎𝑐2

1 : ((𝛾𝑖+1ℓ )
𝑛𝑎
ℓ=1
, (𝛿𝑖+1ℓ )

𝑛𝑢
ℓ=1
, 𝐼 𝑖+1𝑎 , (𝐼 𝑖+1𝑢ℓ

)𝑛𝑎
ℓ=1
, 𝐼 𝑖+1𝑔 )

← remove-admin(𝑎𝑐1 , 𝑢 𝑗 )
2 : ((𝛾𝑖+2ℓ )

𝑛𝑎
ℓ=1
, (𝛿𝑖+2ℓ )

𝑛𝑢
ℓ=1
, 𝐼 𝑖+2𝑎 , (𝐼 𝑖+2𝑢ℓ

)𝑛𝑎
ℓ=1
, 𝐼 𝑖+2𝑔 )

← add-user(𝑎𝑐2 , 𝑎 𝑗 )

update-user (𝑎𝑐 , 𝑢 𝑗 )
// Update user 𝑢 𝑗 by 𝑎𝑐 , possibly self-proposed

// 𝑢 𝑗 : potential self-update proposal

1 :

[
(𝛿𝑖+1𝑗 , 𝑃 = (upd(𝑢 𝑗 , 𝑡𝑦𝑝𝑒), 𝛿𝑖+1𝑗 .pk, 𝜎 𝑗 ))

← propose(𝛿𝑖𝑗 , gid,upd(𝑢 𝑗 , 𝑡𝑦𝑝𝑒))
]

2 :

[
send(𝑢 𝑗 → G𝑎, 𝑃)

]
// 𝑎𝑐 : commit

3 : (𝛾𝑖+1𝑐 , (𝐼 𝑖+1𝑔 , 𝐼 𝑖+1𝑢𝑐
), (𝐶𝑎𝑑𝑚,𝐶𝑢𝑠𝑟 ,𝐶𝑖𝑛𝑑 ))
← commit(𝛾𝑖𝑐 , gid, 𝑃/upd(𝑢 𝑗 , 𝑡𝑦𝑝𝑒))

4 : send(𝑎𝑐 → G𝑎,𝐶𝑎𝑑𝑚)
5 : send(𝑎𝑐 → G𝑢 ,𝐶𝑢𝑠𝑟 )
6 : send(𝑎𝑐 → 𝑢 𝑗 ,𝐶𝑖𝑛𝑑 )

// all but 𝑎𝑐 : process

7 : for 𝑘 ∈ J1, 𝑛𝑎K \{𝑐} do :

8 : (𝛾𝑖+1
𝑘
, (𝐼 𝑖+1𝑔 , 𝐼 𝑖+1𝑢𝑘

),⊤) ← process(𝛾𝑖
𝑘
,𝐶𝑎𝑑𝑚)

9 : for 𝑘 ∈ J1, 𝑛𝑢K do :

10 : (𝛿𝑖+1
𝑘
, (𝐼 𝑖+1𝑔 , (𝐼 𝑖+1𝑢ℓ

)𝑛𝑎
ℓ=1
),⊤) ← process(𝛿𝑖

𝑘
,𝐶𝑢𝑠𝑟 )

upgrade-user ((𝑎𝑐1 , 𝑎𝑐2 ), 𝑢 𝑗 )
// Upgrade of user 𝑢 𝑗 into admin 𝑎 𝑗 by 𝑎𝑐1 and 𝑎𝑐2

1 : ((𝛾𝑖+1ℓ )
𝑛𝑎
ℓ=1
, (𝛿𝑖+1ℓ )

𝑛𝑢
ℓ=1
, 𝐼 𝑖+1𝑎 , (𝐼 𝑖+1𝑢ℓ

)𝑛𝑎
ℓ=1
, 𝐼 𝑖+1𝑔 )

← remove-user(𝑎𝑐1 , 𝑢 𝑗 )
2 : ((𝛾𝑖+2ℓ )

𝑛𝑎
ℓ=1
, (𝛿𝑖+2ℓ )

𝑛𝑢
ℓ=1
, 𝐼 𝑖+2𝑎 , (𝐼 𝑖+2𝑢ℓ

)𝑛𝑎
ℓ=1
, 𝐼 𝑖+2𝑔 )

← add-admin(𝑎𝑐2 , 𝑎 𝑗 )

Figure 17: Pseudo-code description of the group operations in SUMAC, carried out in the separate-operations paradigm. In this
figure, the actions are performed by one or several committing administrator(s) 𝑎𝑐 (or 𝑎𝑐1 and 𝑎𝑐2 ) upon a standard user 𝑢 𝑗 or
another administrator 𝑎 𝑗 . The reader is invited to refer to Section 3.2 and Section 4.1 for the operations carried out by a CGKA
and a TMKA, seen as black-boxes, as well as to Figure 16 for the subroutines of derivation and regeneration of a set of nodes.
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init(𝑚 𝑗 ∈ {𝑎 𝑗 , 𝑢 𝑗 })
// Initialization of a group member’s state

1 : (𝑝𝑘𝑖𝑗 , 𝑠𝑘
𝑖
𝑗 ) ← PKE.key-gen()

2 : (𝑠𝑝𝑘𝑖𝑗 , 𝑠𝑠𝑘
𝑖
𝑗 ) ← SIG.key-gen()

3 : register-keys(𝑝𝑘𝑖𝑗 , 𝑠𝑝𝑘
𝑖
𝑗 ) // Upload to the Authent. Service

4 : 𝑠𝑡𝑖𝑗 ∈ {𝛾
𝑖
𝑗 , 𝛿

𝑖
𝑗 } := ((𝑠𝑘

𝑖
𝑗 , 𝑠𝑠𝑘

𝑖
𝑗 ), (𝑝𝑘

𝑖
𝑗 , 𝑠𝑝𝑘

𝑖
𝑗 ))

5 : return 𝑠𝑡𝑖𝑗

create-group(𝛾𝑖
1
, (𝑎𝑘 )𝑛𝑎𝑘=1, (𝑢𝑘 )

𝑛𝑢
𝑘=1

)

// Creation of a member group G
1 : G𝑎 := (gid, (𝑎𝑘 )𝑛𝑎𝑘=1)
2 : G𝑢 := (gid, (𝑢𝑘 )𝑛𝑢𝑘=1)
3 : G = G𝑎 ∪ G𝑢

// Adding firstly administrators, then standard users

4 :
#»
𝑜𝑝 := ((add(𝑎𝑘 ))𝑎𝑘 ∈G𝑎 , (add(𝑢𝑘 ))𝑢𝑘 ∈G𝑢 )

5 : (𝛾𝑖+1
1
, 𝐼 𝑖+1,𝐶) ← commit(𝛾𝑖

1
, gid,∅, #»

𝑜𝑝)
6 : return 𝛾𝑖+1

1
,G, 𝐼 𝑖+1,𝐶

propose(𝑠𝑡𝑖𝑝 ∈ {𝛾𝑖𝑝 , 𝛿𝑖𝑝 }, gid, 𝑜𝑝 (𝑚 𝑗 ))
// 𝑚𝑝 : default proposal by𝑚𝑝 for𝑚 𝑗

1 : �𝑃𝑎𝑑𝑚 := 𝑜𝑝 (𝑚 𝑗 ), 𝑃𝑖𝑛𝑑 = ∅, 𝑠𝑡𝑖+1𝑝 := 𝑠𝑡𝑖𝑝

// 𝑚 𝑗 : self proposal of upd-usr or upd-adm

2 : if 𝑜𝑝 = upd and𝑚𝑝 =𝑚 𝑗 then :

3 : (𝑝𝑘𝑖+1𝑗 , 𝑠𝑘𝑖+1𝑗 ) ← PKE.key-gen()

4 : 𝑠𝑡𝑖+1𝑝 .pk := 𝑝𝑘𝑖+1𝑗 , 𝑠𝑡𝑖+1𝑝 .sk := 𝑠𝑘𝑖+1𝑗

5 : �𝑃𝑎𝑑𝑚 := (upd(𝑢 𝑗 ), 𝑠𝑡𝑖+1𝑝 .pk)
// Full update (refreshment of the signature key)

6 : if upd.type = full then :

7 : (𝑠𝑝𝑘𝑖+1𝑗 , 𝑠𝑠𝑘𝑖+1𝑗 ) ← SIG.key-gen()

8 : 𝑠𝑡𝑖+1𝑝 .spk := 𝑠𝑝𝑘𝑖+1𝑗 , 𝑠𝑡𝑖+1𝑝 .ssk := 𝑠𝑠𝑘𝑖+1𝑗

9 : �𝑃𝑎𝑑𝑚 := (�𝑃𝑎𝑑𝑚, 𝑠𝑡𝑖+1𝑝 .spk)
// 𝑢 𝑗 : self proposal of add-user

10 : elseif 𝑜𝑝 = add-usr and𝑚𝑝 = 𝑢 𝑗 then :

11 : 𝛿𝑖+1𝑗 ← init(𝑢 𝑗 )

12 : �𝑃𝑎𝑑𝑚 := (add-usr(𝑢 𝑗 ), 𝛿𝑖+1𝑗 .pk, 𝛿𝑖+1𝑗 .spk)
// 𝑎𝑝 : proposal of add-admin for 𝑎 𝑗

13 : elseif 𝑜𝑝 = add-adm then :

14 : (𝑝𝑘𝑖+1𝑗 ) ← request-keys(𝑎 𝑗 , pk)

15 : �𝑃𝑎𝑑𝑚 := (add-adm(𝑎 𝑗 ))

// Creation of a temporary user tree T𝑢 𝑗

𝑖+1
for 𝑎 𝑗

16 : T𝑢 𝑗

𝑖+1
:= derive(T 𝑖

𝑢𝑝
)

17 : 𝑃𝑖𝑛𝑑 ← HPKE.enc(𝛾𝑖+1𝑗 .pk,T𝑢 𝑗

𝑖+1)

18 : 𝑃𝑖𝑛𝑑 := (𝑃𝑖𝑛𝑑 , 𝜎 ← SIG.sign(𝛾𝑖+1𝑝 .ssk, 𝑃𝑖𝑛𝑑 ))

19 : 𝑃𝑎𝑑𝑚 := (�𝑃𝑎𝑑𝑚, 𝜎 ← SIG.sign(𝑠𝑡𝑖+1𝑝 .ssk, �𝑃𝑎𝑑𝑚))
20 : return 𝑠𝑡𝑖+1𝑝 , 𝑃 := (𝑃𝑎𝑑𝑚, 𝑃𝑖𝑛𝑑 )



SUMAC

commit(𝛾𝑖𝑐 , gid,
#»
𝑃 ,

#»
𝑜𝑝)

// Validating the pending operations

1 : (𝑜𝑝𝑖 )𝑖 := validate-ops( #»
𝑃 ,

#»
𝑜𝑝)

// Case of new users still attached to the root of tree T 𝑖
𝑢𝑐

2 : (𝑢ℓ )ℓ := rooted-users(𝛾𝑖𝑐 .tree)
3 : for 𝑢ℓ ∈ (𝑢ℓ )ℓ do :

4 : if rem-usr(𝑢ℓ ) ∉ (𝑜𝑝𝑖 )𝑖 then

5 : 𝑙𝑠𝑖+1ℓ

$← K
6 : P𝑥 (𝑢ℓ ,T 𝑖+1

𝑢𝑐
) := 𝑙𝑠𝑖+1ℓ ∪ P(𝑢ℓ ,T 𝑖

𝑢𝑐
)

7 : 𝐶𝑖𝑛𝑑 (ℓ) ← HPKE.enc(𝛿𝑖ℓ .pk,P𝑥 (𝑢ℓ ,T
𝑖+1
𝑢𝑐
))

// Carrying out the pending operations

8 : for 𝑜𝑝 (𝑚 𝑗 ) ∈ (𝑜𝑝𝑖 )𝑖 do :

// Getting public keys of𝑚 𝑗 if necessary

9 : if 𝑜𝑝 (𝑚 𝑗 ) = add and 𝑝𝑘𝑖+1𝑗 = 𝑠𝑝𝑘𝑖+1𝑗 = ∅ then :

10 : (𝑝𝑘𝑖+1𝑗 , 𝑠𝑝𝑘𝑖+1𝑗 ) ← get-keys(𝑚 𝑗 , (pk, spk))

11 : elseif 𝑜𝑝 (𝑚 𝑗 ) = full-upd and 𝑝𝑘𝑖+1𝑗 = 𝑠𝑝𝑘𝑖+1𝑗 = ∅ then :

12 : (𝑝𝑘𝑖+1𝑗 , 𝑠𝑝𝑘𝑖+1𝑗 ) ← request-keys(𝑚 𝑗 , (pk, spk))

13 : elseif 𝑜𝑝 (𝑚 𝑗 ) = part-upd and 𝑝𝑘𝑖+1𝑗 = ∅ then :

14 : 𝑝𝑘𝑖+1𝑗 ← request-keys(𝑚 𝑗 , pk)

15 : 𝑠𝑡𝑖+1𝑗 .pk := 𝑝𝑘𝑖+1𝑗 , [𝑠𝑡𝑖+1𝑗 .spk := 𝑠𝑝𝑘𝑖+1𝑗 ]
16 : // Distinction between admin and user commits

17 : if 𝑚 𝑗 = 𝑎 𝑗 then :

18 : (𝛾𝑖+1𝑐 , (𝐼 𝑖+1𝑔 , 𝐼 𝑖+1𝑎 ),𝐶) ← adm-commit(𝛾𝑖𝑐 , gid, 𝑜𝑝 (𝑎 𝑗 ), 𝛾+1𝑗 )
19 : elseif 𝑚 𝑗 = 𝑢 𝑗 then :

20 : (𝛾𝑖+1𝑐 , (𝐼 𝑖+1𝑔 , 𝐼 𝑖+1𝑢𝑐
),𝐶) ← usr-commit(𝛾𝑖𝑐 , gid, 𝑜𝑝 (𝑢 𝑗 ), 𝛿𝑖+1𝑗 )

21 : return 𝛾𝑖+1𝑐 , (𝐼 𝑖+1𝑔 , 𝐼 𝑖+1𝑎 /𝐼 𝑖+1𝑢𝑐
),𝐶

adm-commit(𝛾𝑖𝑐 , gid, 𝑜𝑝 (𝑎 𝑗 ), 𝛾𝑖+1𝑗
)

// Administrator commit by 𝑎𝑐 upon 𝑎 𝑗
// Commit for 𝑜𝑝 (𝑎 𝑗 ) in the admin CGKA

// 𝐶𝑎𝑑𝑚 issued by the CGKA comprises 𝑝𝑘𝑖+1𝑗 and 𝑠𝑝𝑘𝑖+1𝑗

1 : if 𝑜𝑝 ∈ {rem-adm,upd-adm} then :

2 : (𝛾𝑖+1𝑐 , 𝐼 𝑖+1
𝑐𝑔𝑘𝑎

,𝐶𝑎𝑑𝑚) ← CGKA.commit(𝛾𝑖𝑐 , gid, 𝑜𝑝 (𝑎 𝑗 ))

3 : 𝐶𝑖𝑛𝑑 := ∅
elseif 𝑜𝑝 = add-adm then :

4 : (𝛾𝑖+1𝑐 , 𝐼 𝑖+1
𝑐𝑔𝑘𝑎

, (𝐶𝑎𝑑𝑚,𝐶𝑖𝑛𝑑 )) ← CGKA.commit(𝛾𝑖𝑐 , gid, 𝑜𝑝 (𝑎 𝑗 ))

5 : 𝐶𝑖𝑛𝑑 := (𝐶𝑖𝑛𝑑 , (𝑠𝑝𝑘ℓ )𝑛𝑢ℓ=1) // Std users’ signature keys

// Add or update: creation by 𝑎𝑐 of the regeneration set

6 : if 𝑜𝑝 ∈ {add-adm,upd-adm} then :

7 : R = (𝑟𝑖 )2𝑛𝑢−1𝑖=1
:= derive(T 𝑖

𝑢𝑐
, “regen”)

8 : 𝐶′
𝑖𝑛𝑑
← HPKE.enc(𝛾𝑖+1𝑗 .pk,R)

9 : 𝐶𝑖𝑛𝑑 := (𝐶𝑖𝑛𝑑 ,𝐶′𝑖𝑛𝑑 )

10 : 𝐶𝑖𝑛𝑑 ← (𝐶𝑖𝑛𝑑 , SIG.sign(𝛾𝑖+1𝑐 .ssk,𝐶𝑖𝑛𝑑 ))
// Computation of the new admin and group keys

11 : 𝐼 𝑖+1𝑎 := derive(𝐼 𝑖+1
𝑐𝑔𝑘𝑎

, “path”)

12 : 𝐼 𝑖+1𝑔 := derive(𝐼 𝑖+1
𝑐𝑔𝑘𝑎

, “key”)

13 : 𝐶𝑢𝑠𝑟 ← AEAD.enc(𝐼 𝑖𝑢𝑐 , 𝐼
𝑖+1
𝑔 )

14 : 𝐶𝑢𝑠𝑟 ← (𝐶𝑢𝑠𝑟 , SIG.sign(𝛾𝑖+1𝑐 .ssk,𝐶𝑢𝑠𝑟 ))
15 : return 𝛾𝑖+1𝑐 , (𝐼 𝑖+1𝑔 , 𝐼 𝑖+1𝑎 ),𝐶 = (𝐶𝑎𝑑𝑚,𝐶𝑢𝑠𝑟 ,𝐶𝑖𝑛𝑑 )

usr-commit(𝛾𝑖𝑐 , gid, 𝑜𝑝 (𝑢 𝑗 ), 𝛿𝑖+1𝑗
)

// User commit by 𝑎𝑐 upon 𝑢 𝑗
// Commit for 𝑜𝑝 (𝑢 𝑗 ) in 𝑎𝑐 ’s TMKA

1 : (𝛾𝑖+1𝑐 , 𝐼 𝑖+1𝑢𝑐
, (𝐶𝑢𝑠𝑟 ,𝐶𝑖𝑛𝑑 )) ← TMKA.commit(𝛾𝑖𝑐 , gid, 𝑜𝑝 (𝑢 𝑗 ))

2 : if 𝑜𝑝 = add-usr then

3 : 𝐶𝑖𝑛𝑑 := (𝐶𝑖𝑛𝑑 , (𝑠𝑝𝑘ℓ )𝑛𝑎ℓ=1) // administrators’ signature keys

4 : 𝐶𝑖𝑛𝑑 ← (𝐶𝑖𝑛𝑑 , SIG.sign(𝛾𝑖+1𝑐 .ssk,𝐶𝑖𝑛𝑑 ))
// Creation by 𝑎𝑐 of the regeneration set

5 : if 𝑜𝑝 = add-usr or rem-usr then :

6 : R = (𝑟𝑖 )ℎ𝑢𝑖=1 := derive(P(𝑢 𝑗 ,T 𝑖+1
𝑢𝑐
))

7 : elseif 𝑜𝑝 = upd-usr then :

8 : R = (𝑟𝑖 )ℎ𝑢+1𝑖=1
:= derive(P𝑥 (𝑢 𝑗 ,T 𝑖+1

𝑢𝑐
))

// Creation of the admin message

9 : �𝐶𝑎𝑑𝑚 ← AEAD.enc(𝐼 𝑖𝑎,R)
10 : if 𝑜𝑝 ∈ {add-usr, full-upd-usr} then :

11 : �𝐶𝑎𝑑𝑚 := (�𝐶𝑎𝑑𝑚, 𝑝𝑘𝑖+1𝑗 , 𝑠𝑝𝑘𝑖+1𝑗 )
12 : elseif 𝑜𝑝 = part-upd-usr then :

13 : �𝐶𝑎𝑑𝑚 := (�𝐶𝑎𝑑𝑚, 𝑝𝑘𝑖+1𝑗 )

14 : 𝐶𝑎𝑑𝑚 ← (�𝐶𝑎𝑑𝑚, SIG.sign(𝛾𝑖+1𝑐 .ssk, �𝐶𝑎𝑑𝑚))
// Computation of the new group key

15 : 𝐼 𝑖+1𝑔 := derive(R .root = 𝑟1, “key”)
16 : return 𝛾𝑖+1𝑐 , (𝐼 𝑖+1𝑔 , 𝐼 𝑖+1𝑢𝑐

),𝐶 = (𝐶𝑎𝑑𝑚,𝐶𝑢𝑠𝑟 ,𝐶𝑖𝑛𝑑 )



Bon et al.

process(𝑠𝑡𝑖
𝑘
∈ {𝛾𝑖

𝑘
, 𝛿𝑖

𝑘
}, gid,𝑚𝑠𝑔 ∈ {𝐶, 𝑃𝑖𝑛𝑑 }, 𝛾𝑖𝑡 )

// Processing a message emitted by admin 𝑎𝑒

1 : 𝐼 𝑖+1𝑔 = ∅, ∀ℓ ∈ J1, 𝑛𝑎K , 𝐼 𝑖+1𝑢ℓ
= ∅

// Authenticating the message

2 : (𝑚𝑠𝑔, 𝜎) := parse(𝑚𝑠𝑔)
3 : if SIG.verif (𝛾𝑖𝑡 .spk, 𝜎,𝑚𝑠𝑔) = ⊥ then :

4 : return ⊥
// Different processing cases

5 : if 𝑚𝑠𝑔 = 𝑃𝑖𝑛𝑑 and𝑚𝑘 = 𝑎 𝑗 then :

6 : 𝛾𝑘
𝑖+1 ← prop-process(𝛾𝑖

𝑘
, gid, 𝑃𝑖𝑛𝑑 , 𝛾

𝑖
𝑡 )

7 : elseif 𝑚𝑠𝑔 = 𝐶 and𝑚𝑘 = 𝑎𝑘 then :

8 : (𝛾𝑖+1
𝑘
, (𝐼 𝑖+1𝑔 , (𝐼 𝑖+1𝑢ℓ

)𝑛𝑎
ℓ=1
)) ← adm-com-process(𝛾𝑖

𝑘
, gid,𝐶,𝛾𝑖𝑡 )

9 : elseif 𝑚𝑠𝑔 = 𝐶 and𝑚𝑘 = 𝑢𝑘 then :

10 : (𝛿𝑖+1
𝑘
, (𝐼 𝑖+1𝑔 , (𝐼 𝑖+1𝑢ℓ

)𝑛𝑎
ℓ=1
)) ← usr-com-process(𝛿𝑖

𝑘
, gid,𝐶,𝛾𝑖𝑡 )

11 : return 𝛾𝑘
𝑖+1/𝑠𝑡𝑖+1

𝑘
, (𝐼 𝑖+1𝑔 , (𝐼 𝑖+1𝑢ℓ

)𝑛𝑎
ℓ=1
)

adm-com-process(𝛾𝑖
𝑘
, gid,𝐶,𝛾𝑖𝑐 )

// Processing by 𝑎𝑘 of a commit message 𝐶 sent by 𝑎𝑐

1 : 𝐼 𝑖+1𝑎 := ∅

2 : (�𝐶𝑎𝑑𝑚, [𝐶𝑖𝑛𝑑 ]) := parse(𝐶)
// Admin operations

3 : if 𝑜𝑝 (𝑎 𝑗 ) ∈ {add-adm,upd-adm, rem-adm} then :

4 : 𝐼 𝑖+1
𝑐𝑔𝑘𝑎
← CGKA.process(�𝐶𝑎𝑑𝑚)

5 : 𝐼 𝑖+1𝑎 := derive(𝐼 𝑖+1
𝑐𝑔𝑘𝑎

, “path”)

6 : 𝐼 𝑖+1𝑔 := derive(𝐼 𝑖+1
𝑐𝑔𝑘𝑎

, “key”)
// Case where 𝑎𝑘 = 𝑎 𝑗

7 : if 𝑎𝑘 = 𝑎 𝑗 and 𝑜𝑝 (𝑎 𝑗 ) ∈ {add-adm,upd-adm} then :

8 : R := HPKE.dec(𝛾𝑖
𝑘
.sk,𝐶𝑖𝑛𝑑 )

9 : T 𝑖+1
𝑢𝑘

:= regen(T 𝑖
𝑢𝑘
,R)

10 : 𝐼 𝑖+1𝑢𝑘
:= derive(T 𝑖+1

𝑢𝑘
.root, “key”)

11 : elseif 𝑎𝑘 = 𝑎 𝑗 and 𝑜𝑝 (𝑎 𝑗 ) = rem-adm then :

12 : delete(𝛾𝑖
𝑘
)

// User operations

13 : elseif 𝑜𝑝 (𝑢 𝑗 ) ∈ {add-usr, rem-usr,upd-usr} then :

14 : R := AEAD.dec(𝛾𝑖
𝑘
.sk, �𝐶𝑎𝑑𝑚)

15 : if 𝑜𝑝 (𝑢 𝑗 ) = upd-usr then :

16 : P𝑥 (𝑢 𝑗 ,T 𝑖+1
𝑢𝑘
) := regen(P𝑥 (𝑢 𝑗 ,T 𝑖

𝑢𝑘
),R)

17 : else :

18 : P(𝑢 𝑗 ,T 𝑖+1
𝑢𝑘
) := regen(P(𝑢 𝑗 ,T 𝑖

𝑢𝑘
),R)

19 : 𝐼 𝑖+1𝑔 := derive(R .root, “key”)
20 : 𝐼 𝑖+1𝑢𝑘

:= derive(P(𝑢 𝑗 ,T 𝑖+1
𝑢𝑘
) .root, “key”)

21 : return 𝛾𝑖+1
𝑘
, (𝐼 𝑖+1𝑔 , 𝐼 𝑖+1𝑢𝑘

, 𝐼 𝑖+1𝑎 )

prop-process(𝛾𝑖
𝑗
, gid, 𝑃𝑖𝑛𝑑 , 𝛾

𝑖
𝑝 )

// New admin 𝑎 𝑗 processing proposal 𝑃𝑖𝑛𝑑 from 𝑎𝑝

// Recovering an initial temporary user tree T𝑢 𝑗

𝑖+1

1 : T𝑢 𝑗

𝑖+1
:= HPKE.dec(𝛾𝑖+1𝑗 .sk, 𝑃𝑖𝑛𝑑 )

// Creating a temporay new state 𝛾 𝑗
𝑖+1

2 : 𝛾 𝑗
𝑖+1

:= 𝛾𝑖𝑗 , 𝛾𝑖+1𝑗 .tree := T𝑢 𝑗

𝑖+1

3 : return 𝛾 𝑗 𝑖+1

usr-com-process(𝛿𝑖
𝑘
, gid,𝐶,𝛾𝑖𝑐 )

// Processing by 𝑢𝑘 of a commit message 𝐶 sent by 𝑎𝑐

1 : (𝐶𝑢𝑠𝑟 , [𝐶𝑖𝑛𝑑 ]) := parse(𝐶)
// Admin operations

2 : if 𝑜𝑝 (𝑎 𝑗 ) ∈ {add-adm,upd-adm, rem-adm} then :

3 : 𝐼 𝑖+1𝑔 := AEAD.dec(𝐼 𝑖𝑢𝑐 ,𝐶𝑢𝑠𝑟 )
4 : if 𝑜𝑝 (𝑎 𝑗 ) ∈ {add-adm,upd-adm} then :

5 : R := derive(P𝑥 (𝑢𝑘 ,T 𝑖
𝑢𝑐
), “regen”)

6 : 𝐼 𝑖+1𝑢 𝑗
:= derive(P(𝑢𝑘 ,T 𝑖+1

𝑢 𝑗
).root, “key”)

// User operations for 𝑢𝑘 ≠ 𝑢 𝑗

7 : elseif 𝑢𝑘 ≠ 𝑢 𝑗 and 𝑜𝑝 (𝑢 𝑗 ) ∈ {add-usr, rem-usr,upd-usr} then :

8 : P𝑥 (𝑢𝑘 ,T 𝑖+1
𝑢𝑐
), 𝐼 𝑖+1𝑢𝑐

:= TMKA.process(𝐶𝑢𝑠𝑟 )
9 : 𝑣𝑚 := common-ancestor(𝑢 𝑗 , 𝑢𝑘 )
10 : R := derive(P𝑥 (𝑣𝑚,T 𝑖

𝑢𝑐
), “regen”)

11 : 𝐼 𝑖+1𝑔 := derive(R .root, “key”)
12 : for ℓ ∈ J1, 𝑛𝑎K \{𝑐} do :

13 : P(𝑢𝑘 ,T 𝑖+1
𝑢ℓ
) := regen(P(𝑢𝑘 ,T 𝑖

𝑢ℓ
),R)

14 : 𝐼 𝑖+1𝑢ℓ
:= derive(P(𝑢𝑘 ,T 𝑖+1

𝑢ℓ
) .root, “key”)

// User operations for 𝑢𝑘 = 𝑢 𝑗

15 : elseif 𝑢𝑘 = 𝑢 𝑗 then :

// Subsequent recovery of new user 𝑢 𝑗 ’s secrets in other trees

16 : if 𝑜𝑝 (𝑢 𝑗 ) = add-usr and 𝐶𝑖𝑛𝑑 ≠ ∅ then :

17 : P𝑥 (𝑢𝑘 ,T 𝑖+1
𝑢𝑐
) := HPKE.dec(𝛿𝑖

𝑘
.sk,𝐶𝑖𝑛𝑑 )

18 : 𝐼 𝑖+1𝑢𝑐
:= derive(P(𝑢𝑘 ,T 𝑖+1

𝑢𝑐
) .root, “key”)

19 : elseif 𝑜𝑝 (𝑢 𝑗 ) = upd-usr then :

20 : P𝑥 (𝑢𝑘 ,T 𝑖+1
𝑢𝑐
), 𝐼 𝑖+1𝑢𝑐

:= TMKA.process(𝐶𝑢𝑠𝑟 )
21 : R := derive(P𝑥 (𝑣𝑚,T 𝑖+1

𝑢𝑐
), “regen”)

22 : 𝐼 𝑖+1𝑔 := derive(R .root, “key”)
23 : for ℓ ∈ J1, 𝑛𝑎K \{𝑐} do :

24 : P𝑥 (𝑢𝑘 ,T 𝑖+1
𝑢ℓ
) := regen(P𝑥 (𝑢𝑘 ,T 𝑖

𝑢ℓ
),R)

25 : 𝐼 𝑖+1𝑢ℓ
:= derive(P𝑥 (𝑢𝑘 ,T 𝑖+1

𝑢ℓ
) .root, “key”)

26 : elseif 𝑜𝑝 (𝑢 𝑗 ) = rem-usr then :

27 : delete(𝛿𝑖
𝑘
)

28 : return 𝛾𝑖+1𝑗 , (𝐼 𝑖+1𝑔 , (𝐼 𝑖+1𝑢ℓ
)𝑛𝑎
ℓ=1
)

Figure 18: Algorithms of SUMAC, as defined in Definition 3.3. The auxiliary functions are detailed in Figure 16.
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Figure 19: High-level design of SUMAC, composed of a CGKA between the administrators and an instance of a TMKA between
each admin and all the standard users. Dashed lines indicate the partitioning between the admin world (green), in which every
admin knows the admin key 𝐼𝑎 and the entire TMKA tree it manages, and user world (blue), where every standard user knows
(only) its direct path and the common key 𝐼𝑢𝑖 in all the user trees.
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Figure 20: Overview of the group operations in a TMKA, as detailed in Section 3.1. All changes in the tree structure related to
these operations (update of the direct path of the concerned user, encryption of the refreshed path secrets, generation of the
new common secret) are similar to those of a TreeKEM-like CGKA [8] [4].
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Figure 21: Description of the update-admin operation in SUMAC.



Bon et al.

Figure 22: Description of the add-admin operation in SUMAC.
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Figure 23: Description of the remove-admin operation in SUMAC.
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Figure 24: Description of the update-user operation in SUMAC.
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Figure 25: Description of the add-user operation in SUMAC.
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Figure 26: Description of the remove-user operation in SUMAC.
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