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Abstract. As one of the famous quantum algorithms, Simon’s algo-
rithm enables the efficient derivation of the period of periodic functions
in polynomial time. However, the complexity of constructing periodic
functions has hindered the widespread application of Simon’s algorithm
in symmetric-key cryptanalysis. Currently, aside from the exhaustive
search-based testing method introduced by Canale et al. at CRYPTO
2022, there is no unified model for effectively searching for periodic dis-
tinguishers. Although Xiang et al. established a link between periodic
function and truncated differential theory at ToSC 2024, their approach
lacks the ability to construct periods using unknown differentials and
does not provide automated tools. This limitation underscores the in-
adequacy of existing methods in identifying periodic distinguishers for
complex structures. In this paper, we address the challenge of advanc-
ing periodic distinguishers for symmetric-key ciphers. First, we propose
a more generalized theory for constructing periodic distinguishers, ad-
dressing the limitations of Xiang et al.’s theory in handling unknown
differences. We further extend our theory to probabilistic periodic distin-
guishers, thereby extending the separability property proposed by Hodžić
et al. in 2020. As a result, our theory can cover a wider range of periodic
distinguishers. Second, we introduce a novel symbolic representation to
simplify the search of periodic distinguishers. Based upon this represen-
tation, we propose the first fully automated SMT-based search model,
which efficiently addresses the challenges of manual searching in com-
plex structures. Finally, we extend the model to SPN structures based
on our new theory. Our model has broad applicability through signif-
icant advancements in analyzing generalized Feistel structures (GFSs)
and SPN-based ciphers. As a general model, we have achieved new quan-
tum distinguishers with the following round configurations: 10 rounds for
GFS-4F, 10 rounds for LBlock, 10 rounds for TWINE, and 16 rounds for
Skipjack-B, improving the previous best results by 2, 2, 2, and 3 rounds,



respectively. In the domain of SPN-based ciphers, our model has enabled
the identification of novel periodic distinguishers, including the first 9-
round distinguisher for SKINNY and the first 12-round distinguisher for
CRAFT. These achievements lay the foundation for quantum cryptanal-
ysis of SPN-based ciphers using Simon’s algorithm.

Keywords: Quantum cryptanalysis · Automated search model · Simon’s algo-
rithm · Generalized Feistel structure · SPN structure

1 Introduction

Quantum computing represents a significant paradigm shift in computation, with
the potential to solve specific classes of problems with exponential speedup com-
pared to classical computing systems. Among its most significant implications is
its impact on cryptography, where quantum algorithms challenge the foundation
of classical cryptographic security.

Grover’s algorithm [12], which provides a quadratic speedup for unstruc-
tured search problems, has played an important role in evaluating the quantum
threat to symmetric-key ciphers. The theoretical perspective suggests that the
primary quantum vulnerability for symmetric-key ciphers arises from Grover’s
algorithm, necessitating a doubling of key lengths to maintain security levels
equivalent to those in classical systems. However, this strategy may not fully
address the broader spectrum of quantum attacks. Simon’s algorithm [26], on
the other hand, poses a more substantial challenge by reducing the complexity of
the exponential-time periodicity search algorithm in classical computing to poly-
nomial time in the quantum setting. Despite its theoretical importance, Simon’s
algorithm has not been extensively applied in the cryptanalysis of primitives.
This gap is largely attributable to the incomplete theoretical framework and the
lack of robust methodologies for constructing periodic functions of symmetric-
key ciphers based on Simon’s approach.

Addressing this gap is essential for advancing the theoretical foundations of
symmetric cryptography. In recent years, the cryptographic community has di-
rected significant efforts toward exploring the construction of periodic functions
for various cryptographic primitives based on Simon’s algorithm. A seminal con-
tribution was made at CRYPTO 2016 by Kaplan et al. [18], who demonstrated
for the first time that widely deployed modes of operation for authentication and
authenticated encryption, such as CBC-MAC, GCM, and OCB etc., are com-
pletely compromised utilizing Simon’s algorithm. Subsequently, at ASIACRYPT
2017, Leander and May [21] made a pioneering advance by proposing the Grover-
meet-Simon algorithm. They showed that the use of whitening keys, such as
FX construction, does not enhance quantum security. Another progress was
achieved at ASIACRYPT 2019 by Bonnetain et al. [5], who refined the Grover-
meet-Simon algorithm to achieve an optimized trade-off between quantum time
complexity and classical data requirements for EM and FX constructions. At

2



ASIACRYPT 2021, Bonnetain et al. [6] introduced a novel methodology for ap-
plying Simon’s algorithm, termed quantum linearization attacks. This approach
successfully compromised numerous parallelizable MACs that were previously
considered secure under classical beyond-birthday-bound security assumptions.
The core principle underlying these attacks is that the successful construction
of a periodic function enables the execution of an attack on the cryptographic
structure with significantly reduced computational complexity.

The central challenge in quantum cryptanalysis with Simon’s algorithm lies
in the construction of periodic functions for complex structures. For the Feistel
structure with two branches, it is relatively easy to construct the periodic func-
tion. Kuwakado and Morii [20] proposed a 3-round periodic distinguisher, while
Ito et al. [16] introduced a 4-round periodic distinguisher for the Feistel structure
using the quantum chosen-ciphertext attack. In contrast, constructing periodic
functions for more intricate designs, such as the Generalized Feistel Structure
(GFS) with increased number of branches, presents significant challenges. While
several heuristic manual deduction methods [11,10,8,27] have been used to iden-
tify periodic functions of various GFS instances, these approaches are inherently
limited. Such manual methods become increasingly impractical for identifying
periodic functions as the number of branches in the structure grows. Further-
more, these techniques are unsuitable for analyzing newly designed structures.

There is an urgent need for a generalized and automated framework to effi-
ciently evaluate the security of various cryptographic structures against quantum
attacks with Simon’s algorithm. Currently, three main approaches have been ex-
plored in the literature. First, in 2020, Hodžić et al. [14] attempted to summarize
the general properties of periodic function construction. However, their work was
not able to encompass many effective periodic functions. Second, at CRYPTO
2022, Canale et al. [7] proposed the first automated algorithm to identify peri-
odic functions. Their method involved examining all possible circuits and testing
each one for periodicity by instantiating the function in small dimensions. Al-
though this approach is effective for structures with few branches, it suffers from
scalability issues as the number of branches increases, making it impractical for
more complex designs. Third, in order to simplify the construction of periodic
distinguishers, Xiang et al. [30] established the links between periodic functions
and truncated differentials at ToSC 2024. Although their framework can be used
to identify periodic distinguishers for various GFSs, it lacks the ability for con-
structing periods using unknown differentials and does not provide automated
tools, limiting its practical utility.

Substitution-Permutation Network (SPN) is one fundamental structure for
block ciphers, prominently exemplified by AES [9] and SKINNY [2]. SPN struc-
tures exhibit stronger avalanche properties compared to Feistel networks. How-
ever, it is more difficult to identify effective periodic distinguishers for SPN-based
ciphers. Consequently, existing methods for searching effective periodic distin-
guishers are difficult to be applied to SPN structures. For example, for SKINNY
block cipher with 4 × 4 branch configuration, the fact that all branches pass
through the S-box in each round leads to unknown differentials to appear very
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quickly. This renders the truncated differential theory [30] proposed by Xiang
et al. inapplicable, as it relies on predictable differential propagation patterns.
Additionally, the use of Maximum Distance Separable (MDS) matrices in SPN
structures further complicates the search for periodic distinguishers by intro-
ducing strong diffusion properties that disrupt traditional analytical approaches.
Furthermore, the automated method proposed by Canale et al. [7], which involves
examining all input circuits, instantiating them, and testing each for periodic-
ity, becomes impractical for SPN structures due to their increased complexity.
This limitation underscores the inadequacy of existing methods in addressing the
unique challenges of searching periodic distinguishers for SPN-based ciphers.

1.1 Our Contributions

In this paper, we address the challenges of constructing periodic distinguishers
for symmetric-key primitives. We propose a new generalized theoretical frame-
work for building periodic distinguishers and, based on this framework, present
the first efficient automated search model tailored for Generalized Feistel Struc-
tures (GFSs). Additionally, we extend this model to Substitution-Permutation
Network (SPN)-based block ciphers. Our key contributions are summarized as
follows:

More generalized theory for constructing periodic distinguishers. Our
constructed theory consists of two parts, the polynomial-time periodic distin-
guisher (see Theorem 3) and the probabilistic periodic distinguisher (see The-
orem 4). The polynomial-time periodic distinguisher not only accounts for the
input difference value of x and αb (α0 and α1 are two distinct constants) for
the input branches, but also incorporates the values and difference value after
the round functions. This advancement addresses the limitation of information
loss inherent in Xiang et al.’s truncated differential theory [30], enabling the
construction of periodic functions even in the presence of certain unknown dif-
ferences. As a direct consequence, we achieve a one-round improvement in the
distinguisher for GFS-2F [24]. Furthermore, we extend the theory to probabilistic
periodic distinguishers based on the collisions of αb. While previous approaches
typically involved an arbitrary selection of αb, our work demonstrates that when
αb satisfies certain properties (see Definition 3), it becomes possible to iden-
tify the potential new periodic function. This extends the separability property
in [14]. The periodicity occurs only for particular choices of α0 and α1, which
we can search for using Grover’s algorithm. This turns the distinguisher into a
Grover-meet-Simon algorithm [21,5].

First fully automated SMT-based search model for periodic distin-
guishers. Based on our generalized theory, we implement the first fully auto-
mated SMT-based search model for periodic distinguishers, which significantly
differs from the circuit instantiations method in [7]. Our model utilizes simpli-
fied symbols representations to identify the differences of x, αb, and the output
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values of the round functions, while ensuring that the tail satisfies the peri-
odicity. As a broad application of our model, we discover the first quantum
periodic distinguishers with the following round configurations: 10 rounds for
GFS-4F [24], 16-round Skipjack-B [19,4,8], 10 rounds for LBlock [29], and 10
rounds for TWINE [28], improving the previous best results by 2, 3, 2 and 2
rounds, respectively. As the first example, the 16-round periodic distinguisher
we present for Skipjack-B outperforms existing classical distinguishers in the
classical setting. Based on the birthday problem, we prepare 2

16
2 values of x.

For each x, we encrypt x for α0 and α1. We store the corresponding outputs in
order to find a pair of x that satisfies the possible period. The final complexity is
about 29. However, the classic impossible differential distinguisher requires the
complexity at least 232 [4].

Table 1: The periodic distinguishers of different structures. qCPA is the quantum
chosen-plaintext attack. qCCA is the quantum chosen-ciphertext attack. N is
the size of the internal state of the structure.

Structure Type Attack #Rounds Complexity Reference

GFS-2F GFS qCPA
5 O(N) [31]

6 O(2
N
4 ) [31]

6 O(N) Section 5.1

GFS-4F GFS qCPA
8 O(N) [31]
10 O(N) Section 5.1

Skipjack-B-type GFS qCPA
13 O(N) [8]
16 O(N) Section 5.2

LBlock Feistel

qCPA 3 O(N) [20]
qCCA 4 O(N) [16]
qCPA 8 O(N) [30]
qCPA 8 O(N) Section 5.3

qCPA 10 O(2
N
16 ) Section 5.3

TWINE GFS qCPA
8 O(N) Section 5.3

10 O(2
N
16 ) Section 5.3

SKINNY SPN qCPA
7 O(N) Section 6.1

9 O(2
5N
32 ) Section 6.1

CRAFT SPN qCPA
8 O(N) Section 6.2

12 O(2
5N
16 ) Section 6.2

Piccolo-type Feistel-SP qCPA 4 O(N) Section 7

Extending the periodic distinguishers to SPN structure. As another
significant application of the automated model, this paper presents the first
construction of periodic distinguishers for SPN structure. For SKINNY [2], we
discover the first 7-round polynomial-time periodic distinguisher and the first
9-round exponential-time periodic distinguisher. For CRAFT [3], we achieve
the first 8-round polynomial-time periodic distinguisher and the first 12-round
exponential-time periodic distinguisher. Furthermore, for the Feistel-SP struc-
ture, such as Piccolo [25] with MDS matrices, we extend the models to in-
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corporate the propagation through the MDS. These advancements significantly
broaden the applicability of Simon’s algorithm in symmetric-key cryptanalysis
and are expected to influence the design of future structures. Table 1 summarizes
these results.

1.2 Organization

In Section 2, we provide essential definitions and an introduction to quantum
algorithms. In Section 3, we present the approach for constructing periodic dis-
tinguishers. The automated SMT-based searching model is introduced in Sec-
tion 4. Section 5 and Section 6 introduce the application of the model. Section 7
discusses the model for MDS matrices. Section 8 concludes the paper with a
summary of our theory.

2 Preliminaries

2.1 Notation

We define E : {0, 1}N → {0, 1}N as a block cipher with a block size of N . We
also define f : {0, 1}n → {0, 1}n as a Boolean function. The unitary operator Uf

is defined as Uf :
∑

x,y |x⟩|y⟩ →
∑

x,y |x⟩|y⊕ f(x)⟩. For a cipher, f i
j denotes the

j-th round function applied in the i-th round. When there is only one function
in each round, we denote it as f i instead of f i

0.

2.2 Simon’s Algorithm

Consider a function f : {0, 1}n → {0, 1}n that is guaranteed to be periodic
with period s, meaning f(x) = f(x ⊕ s) for a non-zero s. The goal of Simon’s
algorithm is to determine the period s. The algorithm is shown in Algorithm 1.
Kaplan et al. [18] show that after cn queries, the period s can be recovered.

Theorem 1 ([18]). If p0 = maxt∈{0,1}n\{0,s} Prx[f(x) = f(x ⊕ t)] < 1, then
Simon’s algorithm returns s with cn queries and O(n) qubits, with probability at
least 1− (2( 1+p0

2 )c)n.

Usually, we have p0 < 1
2 . Otherwise, f will exhibit highly non-random char-

acteristics. Under this assumption, when we apply Simon’s algorithm to f , it
returns s with a probability of at least 1− 2n ·

(
3
4

)cn
.

Distinguisher without recovering the period. Ito et al. [16] further relax
the condition by focusing on the dimension of the vector space. Let C be a block
cipher E or a random permutation Π ({0, 1}n → {0, 1}n). Obtaining η = O(n)
vectors, if the dimension of Y is not n, we can distinguish E from Π with a
high probability. Algorithm 2 shows the process. The algorithm simplifies the
analysis by removing the requirement to bound the probability of collisions other
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Algorithm 1 The process of Simon’s algorithm

1: Prepare two n-qubit registers initialized to the zero state |0⟩⊗n |0⟩⊗n.
2: Apply a Hadamard transform to the first register:

(H⊗n ⊗ I) |0⟩⊗n |0⟩⊗n .

3: Apply the oracle Uf , we have

|ψ1⟩ =
1√
2n

∑
x

|x⟩ |f(x)⟩ .

4: Measure the second register in the computational basis yields a value f(z) and
collapses the first register to the state:

|ψ2⟩ =
1√
2
(|z⟩+ |z ⊕ s⟩).

5: Apply again the Hadamard transform H⊗n to the first register yields

|ψ3⟩ =
1√
2

1√
2n

∑
y∈{0,1}n

(−1)y·z (1 + (−1)y·s) |y⟩.

6: Measure the first register to get the output value y, which is guaranteed to satisfy
y · s = 0.

than the period, which is adopted by this paper to search for the period of the
function.

Truncated outputs of quantum oracles. Hosoyamada and Sasaki [15] intro-
duced the truncated outputs of quantum oracles, which can be used to obtain
truncated outputs E|u, where E|u represents the output of E truncated to the
branch u. This paper focuses more on how to search for periods and therefore
does not emphasize circuit implementation.

2.3 Grover-Meet-Simon Algorithm

At ASIACRYPT 2017, Leander and May [21] proposed the Grover-meet-Simon
algorithm, which combines Simon’s algorithm with Grover’s algorithm. Based on
this work, Bonnetain et al. [5] reduced the number of queries by reusing internal
states. We now provide a brief introduction to the problem.

Definition 1 (Grover-meet-Simon problem). Let f : {0, 1}m × {0, 1}n →
{0, 1}d be a function such that there exists some u ∈ {0, 1}m for which f(u, ·)
hides a non-trivial period su with a probability of 2−m. The goal is to find any tu-
ple (u, su) ∈ Us, where Us := {(u, su) : u ∈ {0, 1}m, su is the period of f(u, ·)}.

The Grover-meet-Simon algorithm operates as follows:

– Attacker makes a guess for u (this forms the Grover part of the algorithm).
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Algorithm 2 Distinguisher without recovering the period
1: Prepare an empty set Y .
2: for 1 ≤ i ≤ η do
3: Following the process of Simon’s algorithm, measure the first register and add

the obtained vector y to Y .
4: end for
5: Calculate the dimension d of the vector space spanned by Y .
6: if d = n then
7: return C is Π.
8: else
9: return C is E.
10: end if

– For the correct guess, the attacker identifies a periodic function, which is
then detected using Simon’s algorithm.

Grover’s algorithm serves as an outer loop with a running time of approximately
O(2m/2), while Simon’s algorithm acts as an inner loop with polynomial com-
plexity.

Theorem 2 (Proposition 2 in [5]). Suppose that m is in O(n). The compu-
tation of finding u is done in time O

(
(n3 + nTf )2

m/2
)
, where Tf is the time

required to evaluate f once.

In this paper, we are more focused on how to automate the search for periodic
distinguishers. Thus, we assume that there exists a O(1)-time quantum circuit
capable of efficiently implementing a function f or a structure E and simplify the
complexity as O(2

m
2 ), ignoring the polynomial factors in Theorem 2. We leave

other details, such as how to implement the function s on a quantum computer,
for future work.

2.4 Link between Periodic Functions and Truncated Differentials

We first introduce the distinguisher from Kuwakado and Morii [20], and then pro-
vide a simple example of Xiang et al.’s technique below. Kuwakado and Morii’s
work distinguishes the Feistel structure (see Fig. 1) from a random permutation.
The three-round Feistel structure is defined by (x3

L, x
3
R) = E(x0

L, x
0
R), where

E : {0, 1}2n → {0, 1}2n and the two halves of the input are denoted as x0
L and

x0
R, then for round i, the transformation is given by:

xi
L = xi−1

R ⊕ f i(xi−1
L ), xi

R = xi−1
L ,

where f i is the round function. They define a function f(b, x) that takes as input
a bit b and a string x, XORed with two arbitrary constants α0 and α1:

f : {0, 1} × {0, 1}n → {0, 1}n,
b, x 7→ x3

R ⊕ αb,

f(b, x) = f2(x⊕ f1(αb)).
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f(b, x) satisfies the periodic property required by Simon’s algorithm and s =
1∥(f1(α0)⊕ f1(α1)) is the period of f :

f(b, x) = f(b⊕ 1, x⊕ f1(α0)⊕ f1(α1)).

part 1

part 2

Fig. 1: 3-round Feistel structure with the truncated differential periodicity.

At ToSC 2024, Xiang et al. studied the link between periodic functions and
truncated differentials [30]. In Xiang et al.’s theory [30], the distinguisher is
divided into two parts. Part 1 is a truncated differential (δ, s) → (s ⊕ f1(δ), δ),
where δ = α0 ⊕ α1 and Part 2 is a truncated differential (0, δ) → (?, δ), where
f1(δ) is defined by f1(α0)⊕f1(α1). By setting x = f1(α0)⊕f1(α1), the output of
the truncated differential in Part 1 will connect with the input of the truncated
differential in Part 2. Then, we can find a 3-round periodic distinguisher (δ, s) →
(?, δ). The second δ is used to construct the periodic function in Xiang et al.’s
truncated differential theory.

3 Generalized Method of Periodic Construction

In this section, we present a generalized method for constructing periodic dis-
tinguishers. It consists of two theorems:

– Theorem 3: A unified method to construct quantum periodic distinguishers
in polynomial time.
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– Theorem 4: New probabilistic periodic distinguisher. The distinguisher holds
only when α0 and α1 satisfy certain properties, where α0 and α1 are distinct
constants.

3.1 A General Method for Constructing Periodic Distinguishers

We note that there are various methods for constructing periodic functions,
which complicates the automatic search for suitable distinguishers. To address
this, we first define the concepts of periodic functions and periodic distinguishers.

truncated truncated

search period

truncated

truncated

truncated

truncated

when

Fig. 2: The process of the construction of periodic distinguisher.

Let Er : (u0
0, u

0
1, . . . , u

0
t−1) → (ur

0, u
r
1, . . . , u

r
t−1) denote an r-round function

with t branches, where each branch is n bits, and ui
j represents the j-th branch

during the i-th round. Assume that the input of Er can be written with disjoint
variables as

(x, αb, c) ∈ {0, 1}n × {0, 1}e1 × {0, 1}e2 , n+ e1 + e2 = tn = N, e1 ≥ 1, e2 ≥ 0,

where x is a variable, while αb and c are constants. For convenience, we use
∆αb and ∆f(αb) to represent the differences of α0 ⊕ α1 and f(α0) ⊕ f(α1),
respectively. For any constant t, we have ∆t = 0. Fig. 2-left illustrates the core
idea of the periodic distinguisher. Define the periodic function g:

g : {0, 1}n → {0, 1}n,
x 7→ ∆ur

i ,

g(x) = Er(x, α0, c)|ur
i
⊕ Er(x, α1, c)|ur

i
,

(1)
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where ∆ur
i is the difference of the values ur

i when b = 0 and b = 1. The con-
struction method of the periodic function will be explained in Theorem 3. We
note that a similar function also appears in [27].

When the period s is known, Algorithm 3 can be applied in the distinguishing
attack.

Algorithm 3 The process of the distinguishing attack.

1: Choose α0 ̸= α1 and c randomly.
2: Construct a quartet of plaintexts (P1, P2, P3, P4). For b = 0, P1 = (x, α0, c); for
b = 1, P2 = (x, α1, c). Assume that s ∈ {0, 1}n is the possible period. Let x′ = x⊕s.
Then, P3 = (x′, α0, c) and P4 = (x′, α1, c).

3: The ciphertexts are C1 = Er(x, α0, c), C2 = Er(x, α1, c), , C3 = Er(x′, α0, c), and
C4 = Er(x′, α1, c).

4: We focus solely on the i-th branch, thus truncating the ciphertext to this branch.
u1 = C1|ur

i
, u2 = C2|ur

i
, u3 = C3|ur

i
, and u4 = C4|ur

i
.

5: Compute g(x) ⊕ g(x′). If s is the period of g, we have g(x) ⊕ g(x′) = 0 for any
x ∈ {0, 1}n. Otherwise, this probability is negligible.

In the quantum setting, this process can be simplified (see Fig. 2-right). The
period s does not need to be predetermined, and the quartet of plaintexts is not
required. For b = 0 and b = 1, the encryption function E is accessed separately,
and the outputs are XORed to obtain the periodic function g. Simon’s algorithm
can then be used to search for s from g(x).

Based on the method shown in Fig. 2-right, we define the periodic distin-
guisher represented by

(s, δ, 0) → (?, . . . , ?, 0, ?, . . . , ?). (2)

In the input, s denotes the site of x as g(x)⊕g(x⊕s) = 0, δ = ∆αb represents the
difference of αb, and 0 = ∆c is the difference of c. In the output, 0 corresponds
to the branch ur

i and can be used to construct the periodic function g(x), while
? indicates a branch without periodicity.

In this paper, each periodic function corresponds to a unique periodic dis-
tinguisher. Therefore, unless otherwise specified, we assume that the two are
interchangeable without ambiguity. Next, we introduce how to search for peri-
odic distinguishers, or construct periodic functions.

3.2 Polynomial-Time Periodic Distinguisher

At PQCrypto 2020, Hodžić et al. [14] presented the separability property based
on an observation regarding the construction of Simon’s algorithm, including the
strong separability property, semi-strong separability property, and weak sepa-
rability property. However, the types of periodic functions are still limited, and
it remains unclear which weak separability properties can be used for periodic
construction.

We define four functions: F,G, P,Q : {0, 1}∗ → {0, 1}n. Each function takes
an input of arbitrary length and produces an n-bit output. F (x, y) is defined as
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a function that depends only on the input x and y. The same definition applies
to G,P and Q. We now present the following definition.

Definition 2 (Differential separability property). A branch ur
i satisfies

the differential separability property if ur
i is represented as

ur
i = Er(x, αb, c)|ur

i
= F (x⊕G(αb, c), c)⊕ P (x, c)⊕Q(αb, c).

Compared with Hodžić et al.’s definition [14], our definition allows any un-
known difference caused individually by αb or x. It directly leads to their inabil-
ity to construct a polynomial-time 5-round distinguisher (only 4 rounds in [14]),
whereas our definition allows for the 5-round distinguisher.

In the following, Theorem 3 establishes that if a branch ur
i satisfies the dif-

ferential separability property, it can always be used to construct a periodic
function. Next, we focus solely on the existence of a branch that satisfies the
differential separability property.

Theorem 3 (Polynomial-time periodic distinguisher). Given a block ci-
pher Er, if an output branch ur

i satisfies the differential separability property,
g(x) is always a periodic function.

Proof. g(x) is defined by Equation (1). We have

g(x) = Er(x, α0, c)|ur
i
⊕ Er(x, α1, c)|ur

i

= ∆F (x⊕G(αb, c), c)⊕∆P (x, c)⊕∆Q(αb, c)

= ∆F (x⊕G(αb, c), c)⊕∆Q(αb, c).

Set s = ∆G(αb, c) = G(α0, c)⊕G(α1, c), then for any x:

g(x⊕ s) = ∆F (x⊕ s⊕G(αb, c), c)

= ∆F (x⊕G(αb, c), c)

= g(x).

Through our construction, aside from F (x⊕G(αb, c), c), the other terms ei-
ther depend only on x and thus get canceled out, or depend only on αb, resulting
in a fixed differential value Q(α0, c)⊕Q(α1, c). The period can always be set to
s = ∆G(αb, c) to satisfy g(x⊕ s) = g(x). ⊓⊔

Remark 1. As shown in Equation (2) and Theorem 3, we are only interested in
the differences of x, c, and αb, rather than their specific values. The following
explains this in detail:

– Only when x ⊕ x′ = s, ensuring g(x) ⊕ g(x′) = 0. The function F (x ⊕
G(αb, c), c) is the essential characteristic determining periodicity. For any
α0 ̸= α1, the difference of x equals ∆G(αb, c), which is the period s.

– For α0 and α1, the only constraint is ∆αb = α0 ⊕ α1 ̸= 0.
– The difference ∆c is always zero, meaning c does not affect the construction

of the periodicity in g(x). Thus, we can omit c in our theory and set it as a
constant 0 in the periodic distinguisher.

12



Example 1 (Improvement to Xiang et al.’s truncated differential theory in [30]).
GFS-2F [24] is a type of GFS, proposed by Nyberg at ASIACRYPT 1996. Fig. 3
shows the improvement of our theory.

Using the truncated differential theory from [30], a 5-round distinguisher

(s, δ, 0, 0)
5r→ (0, 0, ?, ?) is found. In the subsequent round, every branch has an

unknown difference.
For the same input, a 6-round distinguisher (s, δ, 0, 0)

6r→ (0, ?, ?, ?) is identi-
fied based on Theorem 3. u6

0 satisfies the differential separability property:

u0
2 ⊕ f3

1 (u
0
1 ⊕ f1

0 (u
0
2))⊕ f4

0 (u
0
3 ⊕ f2

1 (u
0
2)⊕ f3

0 (u
0
0 ⊕ f1

1 (u
0
3)⊕ f2

0 (u
0
1 ⊕ f1

0 (u
0
2)))).

The corresponding periodic function is

g(x) = E6(x, α0, u
0
2, u

0
3)|u6

0
⊕ E6(x, α1, u

0
2, u

0
3)|u6

0

= ∆f3
1 (αb ⊕ C1)⊕∆f4

0 (C2 ⊕ f3
0 (x⊕ f2

0 (αb ⊕ C3)⊕ C4)),

where u0
2, u

0
3 are random constants, C1 = f1

0 (u
0
2), C2 = u0

3⊕f2
1 (u

0
2), C3 = f1

0 (u
0
2),

and C4 = f1
1 (u

0
3) are also constants. Then, set the period as s = ∆f2

0 (αb ⊕ C3).
For any x, we have g(x⊕ s)⊕ g(x) = 0.

Fig. 3: The 6-round periodic distinguisher for GFS-2F.

3.3 Probabilistic Periodic Distinguisher

In this section, we utilize the collisions of ∆αb to enhance the periodic distin-
guisher. The difference of initial ∆αb affects the propagation of the periodic
distinguisher, even though these values were chosen randomly in Kuwakado and
Morii’s work [20]. Thus, we propose a method to construct the probabilistic pe-
riodic distinguisher, which can be solved by the Grover-meet-Simon algorithm.

13



Definition 3 (Probabilistic periodic distinguisher problem). For any
x, α0, α1, c, let f : {0, 1}n ×{0, 1}e1 ×{0, 1}e1 ×{0, 1}e2 → {0, 1}n be a function
such that there exists some (α0, α1) ∈ {0, 1}2e1 for which f(·, α0, α1, c) hides
a non-trivial period su with a probability of 2−p. The goal is to find any tuple
(α0, α1, su) ∈ Us, where Us := {(α0, α1, su) : (α0, α1) ∈ {0, 1}2e1 , su is the period
of f(·, α0, α1, c)}.

The simple example below is a demonstration of the probabilistic periodic
distinguisher.

17 rounds

Fig. 4: The 18-round periodic distinguisher of CAST-256.

Example 2 (18-round Distinguisher for CAST-256 [1]). In [27], Sun et al. pro-
posed a 17-round periodic distinguisher of CAST-256: (0, 0, s, δ) → (0, ?, ?, ?)
from (u22

0 , u22
1 , u22

2 , u22
3 ) to (u39

0 , u39
1 , u39

2 , u39
3 ).

With the new technique, we found a 18-round probabilistic periodic dis-
tinguisher (δ0, δ1, 0, s) → (0, ?, ?, ?), as shown in Fig. 4, where δ is from two
branches by δ = δ0||δ1. We have δ0 = α0

0 ⊕ α0
1, δ

1 = α1
0 ⊕ α1

1, and αb = α0
b ||α1

b .
Only the constraint ∆F (α0

b) = ∆α1
b holds, u22

0 is 0 in the distinguisher because
of ∆u22

0 = 0. Then, u39
0 can satisfy the differential separability property. The

probability is 2−n, where n is the length of one branch. Using the Grover-meets-
Simon algorithm, we can find the period with a complexity of O(2n/2) (ignoring
polynomial factors). The full distinguishers are shown in Appendix J.

We refer to this phenomenon, in which α0, α1 must satisfy specific conditions,
as a collision. The collision resets the zero difference in the periodic function.

Accordingly, we propose the following theorem about the probabilistic pe-
riodic distinguisher using the same periodic function. The proof is similar to
Theorem 3.

Theorem 4 (Probabilistic periodic distinguisher). If after some collisions
with probability 2−p, a branch ur

i satisfies the differential separability property,
ur
i can be used to construct an r-round periodic distinguisher with probability

2−p.

Discussion on the theoretical probability and the practical collision
probability. Given the randomness of the key, for any two arbitrary functions
f1 and f2, the values f1(α0), f1(α1), f2(α0), and f2(α1) are unpredictable. On
average, the probability of a collision, where ∆f1(αb) = ∆f2(αb) in two n-
bit branches, is about 2−n. We use this average probability as an estimate of

14



complexity. On the other hand, if multiple collisions need to be satisfied, it is
essential to determine which constraints are necessary. Therefore, we provide
two algorithms to evaluate the probability.

– Algorithm 4 describes the procedure for determining the theoretical proba-
bility. The probability can be computed based on the rank of all collisions. If
Algorithm 4 detects incompatible constraints, the probability is 0. If the two
constraints require only a single collision, Algorithm 4 allows us to reduce
the theoretical complexity by computing the rank.

– Algorithm 5 uses data to validate the practical collision probability. This test
is based on the instantiation of the structure, which is similar to [7], where
we randomly generate permutations, constants, keys, etc., and then perform
repeated testing. If the rank is ℓ, we conduct 2n·ℓ+4 tests. On average, a
period occurs approximately 24 times.

Algorithm 4 The process of calculate the theoretical probability.

Input: The collisions c0, c1, . . . , cℓ−1, the number of bits n in the branch.
Output: The theoretical probability of the collisions.
1: Form a system of equations S = {c0, c1, . . . , cℓ−1}.
2: if the system of equations S has incompatible constraints then
3: return 0.
4: end if
5: Compute the rank of S, denoted by rS .
6: return the theoretical probability 2−n·rs .

Here, we adopt an assumption from traditional distinguisher searches. The
constraints of differences in different rounds are assumed to be independent after
passing through the random round keys and S-boxes. In Appendix C, we present
the experiments on distinguishers generated by the automated model between
the theoretical distinguishers and the practical probability.

Next, we provide the constraints on the degrees of freedom, which are de-
termined by the number of initial choices of α0 and α1. Note that an e1-bit
αb can introduce 22e1 degrees of freedom. If the probability of the periodic dis-
tinguisher is 2−p, then on average, 2p choices are required to obtain a feasible
solution, which costs 2p degrees of freedom. Thus, we roughly set p ≤ 2e1, and
the exact complexity can be computed by our algorithms.

We present an example of the probabilistic periodic distinguisher.

Example 3. Assume ur
i = F (x ⊕ G(αb, c), c) ⊕ P (x, c) ⊕Q(αb, c) ⊕ R0(x, αb, c),

where R0(x, αb, c) = R0(R1(x)⊕R2(αb)⊕R3(αb)⊕R4(c)). According to Defini-
tion 2, ur

i does not satisfy the separability property. Define the periodic function:

g(x) = Er(x, α0, c)|ur
i
⊕ Er(x, α1, c)|ur

i

= ∆F (x⊕G(αb, c), c)⊕∆R0(x, αb, c)⊕∆Q(αb, c).
(3)
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Algorithm 5 The process of the practical probability verification.

Input: The collisions c0, c1, . . . , cℓ−1 for the r-round cipher Er, where each branch is
n bits.

Output: The actual probability of the collisions.
1: Let T denote the number of successful verifications.
2: for t from 0 to 2n·ℓ+4 do
3: Generate random values of x ∈ {0, 1}n, α0 ∈ {0, 1}e1 , α1 ∈ {0, 1}e1 , c ∈ {0, 1}e2

and random keys.
4: Calculate Er(x, α0, c) and E

r(x, α1, c) and verify whether the intermediate val-
ues satisfy the system of equations S or verify whether the period exists. If it is
satisfied, let T = T + 1.

5: end for
6: return the practical probability T

2n·ℓ+4 .

If ∆R2(αb) = ∆R3(αb) holds, we have R2(α0)⊕R3(α0) = R2(α1)⊕R3(α1) = c′,
where c′ is a constant. Equation (3) reduces to g(x) = ∆F (x ⊕ G(αb, c), c) ⊕
∆Q(αb, c), which has a period∆G(αb, c). The probability is 2−n. When α0, α1 do
not satisfy the condition, the probability of g(x⊕ s) = g(x) becomes negligible.
For the degrees of freedom, 22n is sufficiently large for the attack.

4 Automated SMT-based Searching Model

Automating the search for periodic distinguishers remains an open problem for
complex structures.

– As the number of rounds increases, the cipher function becomes more com-
plex, making it increasingly difficult to determine the existence of a period
by exhaustively searching all possible inputs.

– Manually deriving a probabilistic periodic distinguisher is also extremely
challenging.

In this section, we achieve the automated search for periods for complex
structures. We first introduce several symbols that represent all types of states
in a distinguisher, simplifying the search process. With these new symbols, all
states and their combinations can be easily represented. We then propose the
first automated SMT-based model to address this open problem.

4.1 Symbols Used in Our Model

Before introducing the model, we define all relevant operations and specify the
three operations used in it.

– R: the keyed round function R taking a round key.
– XOR: the XOR operation between two branches.
– SPLIT: the branching operation.
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We omit the round key and constant in our model, which does not affect the
periodicity of the function.

To identify the separability property, 7 types of states are defined based
on Definition 2 (see Table 2). We use the symbol ⊥ (the state that loses its
periodic properties) and 5-bit variables (the leftmost bit is the least signifi-
cant bit), corresponding to (0s, R(x), x, R(δ), δ), where 0s indicates a function
like “F (x⊕G(αb, c), c)”, to represent all the states.

Table 2: Notations for used symbols in our model.

Symbol Encoding Meaning

0 (0, 0, 0, 0, 0) The zero difference
δ (0, 0, 0, 0, 1) δ = ∆αb where α0, α1 are chosen randomly
x (0, 0, 1, 0, 0) The period difference s between x and x⊕ s

R(x) (0, 1, 0, 0, 0) Indicating a function like “P (x, c)”
R(δ) (0, 0, 0, 1, 0) Indicating a function like “Q(αb, c)”
0s (1, 0, 0, 0, 0) Indicating a function like “F (x⊕G(αb, c), c)”
? ⊥ The unknown difference

According to Definition 2 and Theorem 3, a branch ui
j has the periodicity

when it can be represented by ui
j = F (x⊕G(αb, c), c)⊕P (x, c)⊕Q(αb, c). States

0s, R(x), and R(δ) represent F (x⊕G(αb, c), c), P (x, c), and Q(αb, c), respectively.
ui
j can be written by 0s ⊕ R(x)⊕ R(δ), which is encoded by (1, 1, 0, 1, 0), where

the meaning of the encoding is the XOR value of the terms corresponding to the
bits being 1. In general, (1, ∗, ∗, ∗, ∗) always satisfies the separability property,
where ∗ represents either 0 or 1. We can always obtain a path that uses our
symbols

(x, δ, 0) → (?, . . . , ?, 0s ⊕ ∗, ?, . . . , ?),

where ∗ represents any state except from ?. The path corresponds to a periodic
distinguisher (s, δ, 0) → (?, . . . , ?, 0, ?, . . . , ?) (see Equation (2)).

Using our symbolic representation, the process of searching for periods be-
comes more efficient, eliminating the need to handle numerous algebraic equa-
tions. Even without the automated model, employing these symbols enables
faster identification of periodic distinguishers compared to manual methods.

4.2 SMT-based Automated Model

In this section, we propose a unified automated model to identify branches that
satisfy the separability property from complex polynomials derived from multiple
inputs. Our approach mainly uses the SMT solver, STP, to solve these models.
Further details on the SMT problem are provided in Appendix A.

The complete propagation rules of our model are provided below, including
the initial constraints and the propagation rules of SPLIT, R, and XOR.

Modelling the initial constraints. Assume that there is an r-round path with
n branches: (u0

0, u
0
1, . . . , u

0
n−1)

r→ (ur
0, u

r
1, . . . , u

r
n−1). The model is subject to the

following constraints:
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1. Each u0
i (0 ≤ i ≤ n− 1) must be one of {x, δ, 0, x⊕ δ}.

2. At least one element in (u0
0, u

0
1, . . . , u

0
n−1) must be δ, and x or x⊕ δ can

appear only once.
3. At least one element in (ur

0, u
r
1, . . . , u

r
n−1) must be (1, ∗, ∗, ∗, ∗) or (0, 0, 1, ∗, ∗).

Constraints 1 and 2 ensure that the initial values are valid. Constraint 3 ensures
that the tail satisfies the separability property or still maintains a direct relation-
ship with the input. The encoding (0, 0, 1, ∗, ∗) actually represents a weakened
function “F (x⊕G(αb, c), c)”, where F is identify function. Since (0, 0, 1, ∗, ∗) only
occurs in the case of a small number of rounds, we ignore it in the tail of our
model. Based on these constraints, we can always find a path from {x, δ, 0, x⊕ δ}
to 0s ⊕ ∗.

Modelling the propagation rules of SPLIT. Let SPLIT duplicate a state
without modifying it. That is, for each state u, the output states v, w of SPLIT
satisfy u = v = w.

Modelling the propagation rules of R. R indicates that the current state
undergoes a round function. The following property shows the rules.

Property 1. The complete rules of R are:

x, R(x), R(x)⊕ x
R→ R(x), (4)

δ, R(δ), R(δ)⊕ δ
R→ R(δ), (5)

0
R→ 0, 0s

R→ 0s, (6)

x⊕ δ, x⊕ R(δ), x⊕ R(δ)⊕ δ
R→ 0s (only once) or ⊥ (others), (7)

others
R→ ⊥. (8)

Proof. After applying the round function R, the new states R(x) and R(δ) rep-
resent the outputs for x and δ, respectively. Assume that R(x)⊕ x represents
P (x, c) ⊕ x. R(R(x)⊕ x) is also R(x), representing P ′(x, c) := R(P (x, c) ⊕ x),
where P ′ is a function. In general, we define any function that only contains
x and c as R(x). Although this may result in R(x) not being a permutation,
it generally does not affect the propagation of the period. Our model is more
concerned with which initial values are included in this branch. The same rule
applies to δ. Thus, Equations (4) and (5) are proved.

Next, we prove Equation (6). The transformation 0
R→ 0 is trivial. By defi-

nition, assume that 0s represents a term F (x⊕G(αb, c), c), where the period is
∆G(αb, c). The output of R is F ′(x⊕G(αb, c), c) := R(F (x⊕G(αb, c), c)), where
F ′ is a function. This still satisfies the definition of 0s, and the period ∆G(αb, c)
remains unchanged.

Next, we prove Equation (7). We assume that multiple occurrences can hap-
pen from x⊕ δ, x⊕ R(δ), x⊕ R(δ)⊕ δ to 0s. Let us consider a counterexample:

– A branch u with the state x⊕ R(δ) represents the term x⊕G1(αb, c). After
R, we have u′ = R(x⊕G1(αb, c)), where the implied period is ∆G1(αb, c).
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– A branch v with the state x⊕ R(δ) represents x⊕G2(αb, c). After R, we have
v′ = R(x⊕G2(αb, c)), where the implied period is ∆G2(αb, c).

If two branches u′ and v′ have the states 0s, errors may arise in state propagation.
Let us discuss this case by case.

– ∆G1(αb, c) = ∆G2(αb, c). The two branches have the same period. w := u′⊕
v′ = R(x⊕G1(αb, c))⊕R(x⊕G2(αb, c)). We construct the periodic function
g(x) = ∆R(x ⊕ G1(αb, c)) ⊕ ∆R(x ⊕ G2(αb, c)). Setting s = ∆G1(αb, c) =
∆G2(αb, c), we have g(x⊕s) = R(x⊕s⊕G1(α0, c))⊕R(x⊕s⊕G1(α1, c))⊕
R(x⊕ s⊕G2(α0, c))⊕R(x⊕ s⊕G2(α1, c)) = ∆R(x⊕G2(αb, c))⊕∆R(x⊕
G1(αb, c)) = g(x). u′ ⊕ v′ → w implies the rule 0s ⊕ 0s → 0s.

– ∆G1(αb, c) ̸= ∆G2(αb, c). The two branches have different periods. w :=
u1 ⊕ u2 = R(x ⊕ G1(αb, c)) ⊕ R(x ⊕ G2(αb, c)) loses its periodicity. This
situation must be avoided, as 0S from different branches should not interact.

Thus, we allow the occurrence of x⊕ δ, x⊕ R(δ), x⊕ R(δ)⊕ δ
R→ 0s through R

to happen only once, which ensures that the case ∆G1(αb, c) ̸= ∆G2(αb, c) will
not happen. Although we may lose some precision for certain special structures,
this constraint ensures that the 0s in the model always implicitly share the same
period. As a generalized model, we consider this to be necessary.

Now, we can ensure that the first 0s is always generated by Equation (7) and

all other 0s are either copies or combinations of 0s by 0s
R→ 0s and 0s⊕ 0s = 0s,

containing the same periods.
Equation (8) shows that for all branches where the period cannot be identi-

fied, we denote them by ⊥. ⊓⊔

In the proof, we need to add new constraints for Equation (7). We assign a
Boolean variable si for each application of R, let Σ(si) = 1, and set{

si = 1, if x⊕ δ
R→ 0s or x⊕ R(δ)

R→ 0s or x⊕ R(δ)⊕ δ
R→ 0s,

si = 0, if x⊕ δ
R→ ⊥ or x⊕ R(δ)

R→ ⊥ or x⊕ R(δ)⊕ δ
R→ ⊥.

Modelling the propagation rules of XOR. For XOR, we need to consider the
possibility of collisions. Let the input states be u = (u0, u1, u2, u3, u4) and v =
(v0, v1, v2, v3, v4), and the output state be w = (w0, w1, w2, w3, w4).

Note that only w3 and w4 may be affected by the collisions. We first consider
the rules for w0, w1, w2, which are established in Property 2.

Property 2. If u = ⊥ or v = ⊥, then w = ⊥. Otherwise, the complete rules of
(w0, w1, w2) are:

w0 = max(u0, v0), w1 = max(u1, v1), w2 = u2 ⊕ v2.

Proof. Fig. 5 shows the propagation of states. In the proof of Property 1, we
have proven 0s ⊕ 0s = 0s. As long as the two branches with states 0s imply the
same period, the equation 0s ⊕ 0s = 0s always holds. The constraint is satisfied
by Equation (7). We prove a more generalized case for different round functions:

19



– u has the state 0s, representing F1(x⊕G(αb, c), c),
– v has the state 0s, representing F2(x⊕G(αb, c), c),

where F1 and F2 are different functions. Equation (7) that u and v have the
same implied period ∆G(αb, c). Let w := u ⊕ v = F1(x ⊕ G(αb, c), c) ⊕ F2(x ⊕
G(αb, c), c). We prove that the branch w also has the same period. The periodic
function is g(x) = ∆F1(x ⊕ G(αb, c), c) ⊕ ∆F2(x ⊕ G(αb, c), c). Setting s =
∆G(αb, c), g(x⊕s) = F1(x⊕s⊕G(α0, c), c)⊕F1(x⊕s⊕G(α1, c), c)⊕F2(x⊕s⊕
G(α0, c), c)⊕ F2(x⊕ s⊕G(α1, c), c) = g(x). Thus, w = u⊕ v can be written by
F ′(x ⊕ G(αb, c), c) and also has the state 0s. On the other hand, if the periods
of u and v are different, this rule does not hold.

Any

Fig. 5: The rules of (w0, w1, w2).

The state x represents the term x. Thus, we have x ⊕ x → 0. According to
the definition of R(x), R(x)⊕ R(x) → R(x) is also trivial. ⊓⊔

Now, we consider the rules of w3, w4, i.e., R(δ) and δ. In order to compute
the number of collisions, we assign a Boolean variable xi for each XOR operation.
xi = 1 indicates that the collision occurs. We first consider the rules without
collisions. That is, xi always be 0.

Property 3. The rules of (u3, u4, v3, v4) → (w3, w4, xi) without collisions are:{
(0, 0, v3, v4) => (v3, v4, 0), (u3, u4, 0, 0) => (u3, u4, 0),

(0, 1, 0, 1) => (0, 0, 0), (0, 1, 1, 1) => (1, 0, 0), (1, 1, 0, 1) => (1, 0, 0).

The proof is similar and therefore omitted. Fig. 6 shows the rules.

Fig. 6: The rules of (w3, w4, xi) without collisions.

Next, we consider the propagation rules where collisions may occur.

Property 4. The rules of (u3, u4, v3, v4) → (w3, w4, xi) with collisions are:
((1, 0, 0, 1) OR (0, 1, 1, 0)) => ((1, 1, 0) OR (0, 0, 1)),

((1, 1, 1, 1) OR (1, 0, 1, 0)) => ((1, 0, 0) OR (0, 0, 1)),

((1, 1, 1, 0) OR (1, 0, 1, 1)) => ((1, 1, 0) OR (0, 0, 1) OR (0, 1, 1)).
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Proof. If there is no collision, the rule is the same as R(x) (see Fig. 7). When a
collision occurs, we have the following properties. The output of δ ⊕ R(δ) is 0.
The output of R(δ) ⊕ R(δ) is 0. For the states R(δ) and R(δ)⊕ δ, there are two
cases:

– R(δ) and R(δ) has a collision, the output is δ.
– R(δ) and R(δ)⊕ δ has a collision, the output is 0.

⊓⊔

 

(one collision)

 

(one collision)

(one collision) (one collision)

Fig. 7: The rules of (w3, w4, xi) with collisions.

For Property 4, we define an integer variable X to count the number of colli-
sions and set Σ(xi) = X. On average, the probability of a collision occurring in
each n-bit branch is 2−n. Thus, the required probability of collisions is calculated
by 2−n·X . Additionally, we impose the constraint X ≤ t−1, where t denotes the
number of branches. If X = 0, a distinguisher with polynomial time complexity
is returned. Once the distinguisher is generated, Algorithms 4 and 5 can provide
the exact probability.

As an application, we reproduced various distinguishers for Type-1/2/3 GFS
and achieved the highest number of rounds (see Appendix K).

Extending the tail of the periodic distinguisher. Notably, a linear com-
bination of multiple non-periodic branches in the tail may sometimes produce
a value that satisfies periodicity. While all possibilities can be manually verified
after the model returns a periodic distinguisher, we introduce a mask encoding
at the end of the current model to automate the search for potential linear com-
binations. This approach simplifies the tail verification process and enhances the
model’s completeness, although it does not yield improved results. This part of
the content is placed in Appendix B. Skipping this encoding will not affect the
understanding of the overall model.

5 Application on GFS-2F/4F, Skipjack-Type Structure,
LBlcok, and TWINE

In this section, we apply the automated model to GFS-2F/4F, Skipjack-type
structure, LBlcok, and TWINE, improving the distinguishers.
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5.1 Application on GFS-2F/4F

GFS-2F and GFS-4F [24] are two types of GFSs proposed by Nyberg at ASI-
ACRYPT 1996 that are resistant to both differential and linear attacks. In [31],
the authors provided a 5-round periodic distinguisher for GFS-2F and a 8-round
periodic distinguisher for GFS-4F. They also obtained a 6-round distinguisher
for GFS-2F with complexity 2

N
4 .

Table 3: The periodic distinguishers of GFS-2F/4F.

Structure #Rounds Input Output Complexity Reference

GFS-2F
5 - - O(N) [31]

6 - - O(2
N
4 ) [31]

6 (s, δ, 0, 0) (0, ?, ?, ?) O(N) Our model

GFS-4F
8 - - O(N) [31]
10 (s, δ, 0, 0, 0, 0, 0, 0) (0, ?, ?, ?, ?, ?, ?, ?) O(N) Our model

Using our model, we find a new 6-round periodic distinguisher of GFS-2F
without the need for probability, as well as the first 10-round periodic distin-
guisher of GFS-4F in complexity O(N). Table 3 shows the input/output pattern
of each distinguisher. The 6-round periodic distinguisher has been explained in
Section 3.1. We introduce the 10-round distinguisher below, the other results are
explained in Appendix D.

The 10-round periodic distinguisher of GFS-4F. We extensively use colors
while depicting distinguishers. In order to have a better explanation, we take the
10-round distinguisher of GFS-4F (see Fig. 8) for illustration.

Solid red, blue, and black lines represent x, δ and 0 in the model, respectively.
Red and blue lines become dashed lines after passing through the round function
R. A solid purple line represents x⊕ R(δ), indicating the existence of an explicit
period. After passing through R, the explicit period will be hidden within the
dashed purple line (0s). According to Property 7, the rule of (the solid purple
line → the dashed purple line) occurs only once. Finally, A solid gray line (0s ⊕
∗) indicates which branch still retains the separability property. According to
Theorem 3, we can construct the periodic function. The period s is∆f4

0 (αb⊕C2),
where C2 = f1

2 (u
0
6)⊕ f2

1 (u
0
4)⊕ f3

0 (u
0
2 ⊕ f1

1 (u
0
5)⊕ f2

0 (u
0
3 ⊕ f1

0 (u
0
4))) is a constant.

The complete periodic function is provided in Appendix D.

5.2 Application on Skipjack-Type Structure

Skipjack [23] is the encryption algorithm developed by the NSA for the Clipper
chip and Fortezza PC card. The published description of Skipjack characterizes
the rounds as either Rule A or Rule B (see Fig. 9). In [19], Knudsen and Wagner
considered different combinations of the two rules. Furthermore, in [4], Blondeau
et al. used the impossible differential attack and zero-correlation linear attack
to show the 16-round distinguishers for two common variants:
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Fig. 8: The 10-round periodic distinguisher for GFS-4F.

Fig. 9: The round function of Rule A (left) and Rule B (right).
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– Skipjack-A: only use Rule A as the round function,

– Skipjack-B: only use Rule B as the round function.

Then, Cui et al. [8] provided the first 13-round periodic distinguishers for the
two variants Skipjack-A and Skipjack-B.

In this section, we apply our model to Skipjack-A and Skipjack-B, and find
the first 16-round polynomial-time periodic distinguisher of Skipjack-A/B. Ap-
pendix E depicts the periodic distinguishers. Based on the following observation,
we present only the results for Skipjack-B, as the periodic distinguishers of both
variants can be transformed into each other.

Observation 1 As Rule B is basically the inverse of Rule A with minor posi-
tioning differences, any periodic distinguisher of Skipjack-B based on qCPA can
be transformed into the periodic distinguisher of Skipjack-A based on qCCA.

The first 16-round polynomial-time distinguisher of Skipjack-B with
qCPA. Our model finds a 16-round periodic distinguisher of Skipjack-B:

(δ, 0, 0, s⊕ δ)
16r→ (0, ?, ?, ?).

In the input, the states in the model are (δ, 0, 0, x⊕ δ). After one round, the
states are (0, 0, x, δ). Since the initial difference can be controlled by the adver-
sary, the XOR of the two δ results in 0 based on Property 3. This distinguisher is
three rounds longer than the previous quantum distinguisher and is the longest
distinguisher of Skipjack-B in polynomial time. It can be transformed into a 16-
round distinguisher of Skipjack-A based on qCCA. Even in the classical setting,
the distinguisher still surpasses the impossible differential and zero-correlation
linear distinguishers.

Applying the 16-round periodic distinguisher in the classical setting.
Usually, for GFS, impossible differential and zero-correlation linear distinguish-
ers are the most effective attacks. For Skipjack-B, in [4], Blondeau et al. showed

a 16-round zero-correlation distinguisher (u, u, 0, 0)
16r−−→ (0, v, 0, 0) and a 16-

round impossible differential distinguisher (δ, δ, 0, 0)
16r−−→ (γ, 0, 0, 0). The data

complexity is not less than O(22n), where n is the size of one branch.

Our distinguisher can be achieved in polynomial time using Simon’s algo-
rithm. In the classical setting, based on the birthday problem, we prepare 2

n
2

values of x and store the corresponding outputs in order to find a pair of x
that satisfies the possible period with data complexity O(2

n
2 ). For each x, we

perform encryption once for b = 0 and once for b = 1. The total complexity is
about O(2

n
2 ), and the success probability exceeds 50%.

This result demonstrates that the proposed distinguisher is not only more ef-
fective in the quantum setting but also outperforms the traditional distinguishers
in the classical setting. We hope this provides a good example of the application
of periodic distinguishers in the cryptanalysis of GFSs.
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5.3 Application on LBlock and TWINE

LBlock [29] is a variant of Feistel structures with the only difference that a left
circular shift is performed on the right branch. TWINE [28] is a variant of GFS
and is designed for multiple platforms.

In [16], Ito et al. proposed a 4-round periodic distinguisher for Feistel struc-
ture and can be applied to LBlock. If each S-box is treated as a branch, LBlock
is similar to the Twine. The instantiated method in [7] is difficult to apply to
such a large number of inputs. Considering the permutation of the S-box posi-
tions, Xiang et al. [30] propose the first 8-round distinguisher for LBlock. Using
the equivalence of LBlock and TWINE [17], a 8-round periodic distinguisher for
TWINE can be constructed easily.

Our model also provides a 8-round periodic distinguisher of LBlock. Further-
more, with 4 collisions, the first 10-round distinguisher is discovered for both
LBlock and TWINE. Table 4 summarizes the results. The conditions of 10-round
periodic distinguisher for LBlock are ∆u1

0 = 0, ∆u1
3 = 0, ∆u2

0 = 0, and ∆u4
5 = 0,

and the conditions of 10-round periodic distinguisher for TWINE are ∆u1
8 = 0,

∆u1
14 = 0, ∆u2

4 = 0, and ∆u4
0 = 0. The other distinguishers are explained in

Appendix F. We observed that the occurrence of collisions originates from a
specific difference of ∆αb. For the 10-round distinguisher for LBlock/TWINE,
by choosing the input of the distinguisher, the probability of one collision is
improved to 2−2. Thus, the probability of the distinguisher can be reduced to
2−8.

Table 4: The periodic distinguishers of LBlock and TWINE.

Cipher #Rounds Input Output Complexity Reference

LBlock

3 - - O(N) [20]
4 - - O(N) [16]
8 - - O(N) [30]
8 (0, 0, 0, 0, 0, 0, s, 0, 0, 0, 0, 0, 0, 0, 0, δ) (?, ?, ?, ?, ?, ?, ?, ?, ?, 0, ?, ?, ?, ?, ?, ?) O(N) Our model

10 (0, δ, δ, 0, 0, 0, 0, 0, 0, s, δ, δ, 0, δ, 0, 0) (?, ?, ?, ?, ?, ?, ?, ?, ?, 0, ?, ?, ?, ?, ?, ?) O(2
N
16 ) Our model

TWINE
8 (0, 0, δ, s, 0, 0, 0, δ, 0, 0, 0, 0, 0, 0, 0, 0) (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, 0) O(N) Our model

10 (0, 0, 0, 0, 0, 0, δ, δ, 0, s, 0, δ, 0, 0, δ, δ) (?, 0, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?) O(2
N
16 ) Our model

6 Extending Periodic Distinguishers to SPN Structure

SPN is another fundamental structure in cryptographic design. It is typically
considered to have at least 4 × 4 state, making it increasingly difficult for the
instantiated circuit search method [7] to determine the existence of a period by
exhaustively searching through all possible inputs. On the other hand, the fast
diffusion of the SPN structure makes it challenging for the truncated differential
theory [30] to propagate through a large number of rounds. To date, no periodic
distinguisher has been proposed for any SPN structure.

In this section, we successfully apply the automated model to the SPN struc-
ture, and propose the first periodic distinguishers for SKINNY and CRAFT. All
the distinguishers are structural attacks that do not depend on the properties
of internal components and block size N . Note that we adopt an assumption
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from traditional distinguisher searches: The constraints of differences in differ-
ent rounds are assumed to be independent after passing through the random
round keys and S-boxes.

6.1 New Periodic Distinguishers of SKINNY

SKINNY [2] is a family of lightweight block ciphers which adopt the SPN struc-
ture. The internal states are represented as 4 × 4 arrays of cells with each cell
being a nibble in case of 64-bit internal state or a byte in case of 128-bit internal
state. The round function is described in Fig. 10.

SC AC

ART ShiftRows MixColumns

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Fig. 10: The SKINNY round function: SubCells(SC), AddConstants(AC),
AddRoundTweakey(ART), ShiftRows(SR), MixColumns(MC).

Notice that the transformation MixColumns maps a column (a, b, c, d)T into
(a⊕c⊕d, a, b⊕c, a⊕c)T , the word-based operations can be used to generate proba-
bilistic distinguishers. For SubCells, let it be the operation R in our model. Since
constants and keys do not affect the difference reviewing the trail of the periodic
distinguisher, the two transformations AddConstants and AddRoundTweakey can
be omitted. Our model requires that the input be x or δ and the period must be
included in R(x⊕ δ) or R(x⊕ R(δ)). However SubCells prevents the occurrence
of a period before passing through R.

Fortunately, the values before SubCells in the first round are known, which
allows us to construct an inverse operation SubCells−1 to address this issue.
Let Er be the r-round function of SKINNY, Er

1 be the function obtained by
removing the first SubCells operation from Er, and Er

2 be the function that
first applies the SubCells−1 operation to the input, followed by Er. We have
Er

1 ◦ SubCells ◦ SubCells−1(x, αb, c) = Er
1(x, αb, c).

Table 5 shows the results of periodic distinguishers for SKINNY. We use
superscripts to indicate the positions in the cipher. For example, for the 7-
round distinguisher of SKINNY, αb = (α5

b , α
6
b , α

8
b , α

9
b , α

15
b ) and the difference is

δ = (δ5, δ6, δ8, δ9, δ15). Unlike previous distinguishers, the difference δ in this
distinguisher needs to first satisfy constraints in the input difference: δ5 = δ8 =
δ15 and δ6 = δ9. Also, the 9-round distinguisher must first satisfy constraints in
the input difference: δ1 = δ4 = δ11, and δ2 = δ8. These constraints are used to
generate zero differences after MixColumns. We can control the initial differences,
ensuring that the probability does not increase.

Let the j-th branch before and after the i-th round of MixColumns be denoted
as SRi

j and MCi
j , respectively. The 9-round distinguisher requires the follow-

ing constraints with complexity O(2
3N
16 ). In round 2, we have the constraints
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Fig. 11: The 9-round periodic distinguisher for SKINNY (left) and the 12-round
periodic distinguisher for CRAFT (right).

∆SR2
0 = ∆SR2

8, ∆SR2
4 = ∆SR2

8, ∆SR2
10 = ∆SR2

14, and ∆SR2
6 = ∆SR2

10,
which affect ∆MC2

0 , ∆MC2
12, ∆MC2

8 , ∆MC2
2 , and ∆MC2

10. In round 3, we
have the constraints ∆SR3

9 = ∆SR3
13, and ∆SR3

5 = ∆SR3
9, which affect ∆MC3

1

and ∆MC3
9 . Fig. 11 shows the 9-round periodic distinguishers. Appendix G

shows other periodic distinguishers.

Based on our assumption, the constraints of different rounds are considered
independent after AddRoundTweakey and SubCells operations, which are used
to calculate the theoretical probability. Experiments have verified that this prob-
ability is reasonable.

We apply the distinguishers in the classical setting and compare with the
best current differential-linear distinguishers in [13]. If the bias is ϵ, we set the
complexity to ( 1ϵ )

2 for a simple comparison. The complexity of 7-/8-/9-round
differential-linear distinguisher for SKINNY-64 is 210/217.74/229.88. The com-
plexity of our distinguisher is 23/27/227, where we add 23 to search for a period.
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Table 5: The periodic distinguishers of SKINNY and CRAFT.

Cipher #Rounds Input Output Complexity

SKINNY
7 (0, 0, 0, 0, 0, δ5, δ6, 0, δ8, δ9, 0, 0, s, 0, 0, δ15) (?, ?, ?, ?, 0, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?) O(N)

9 (0, δ1, δ2, δ3, δ4, 0, 0, δ7, δ8, 0, 0, δ11, s, δ13, 0, 0) (?, ?, ?, ?, ?, ?, 0, 0, 0, ?, ?, ?, ?, 0, ?, ?) O(2
3N
16 )

CRAFT
7+1 (s, 0, 0, 0, 0, 0, 0, 0, δ8, 0, 0, 0, 0, 0, 0, 0) (?, ?, ?, ?, 0, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?) O(N)

11+1 (0, δ1, δ2, 0, 0, δ5, s, δ7, 0, δ9, 0, δ11, δ12, δ13, δ14, δ15) (?, ?, ?, ?, ?, ?, 0, ?, ?, ?, ?, ?, ?, ?, ?, ?) O(2
5N
16 )

It shows that our distinguishers achieve better performance for the same number
of rounds.

6.2 New Periodic Distinguishers of CRAFT

CRAFT [3] is a lightweight tweakable block cipher, the internal states are repre-
sented as 4× 4 arrays of cells with each cell being a nibble. The round function
is described in Fig. 12. For stronger diffusion, PermuteNibbles uses different
methods, such as RShift, Shuffle, and LShift. S-box is not included in the
last round.

MixColumns maps a column (a, b, c, d)T into (a ⊕ c ⊕ d, b ⊕ d, c, d)T . Then,
AddRoundConstants and AddTweakey can be omitted, and we let S-box be the
operation R in our model. However, if the difference with unknown values passes
R, the periodicity will vanish. Since our model requires that the input is x or δ
and the period is included in R(x⊕ δ) or R(x⊕ R(δ)), x must occur in the first
two lines. The periodic point 0s always occurs in the first round.

As a result, we find a 8-round distinguisher with probability 1 and a 12-
round probabilistic periodic distinguisher. The latter is shown in Fig. 11. The
8-round distinguisher is also the first polynomial-time distinguisher of CRAFT.
The previous distinguisher in the same round requires the probability 2−4 in [22].
Since the last round has no S-box, the difference in the head of the last round
is known. Therefore, we can omit the final round. For example, If the output of
the 12-th round is known, the difference of the output of the 11-th round will
also be known. Table 5 shows the 7-/11-round distinguishers.

15 12 13 14

10 9 8 11

6 5 4 7

1 2 3 0

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

MC

R Shift

Shuffle

Shuffle

L Shift

SB

SB

SB

SB

Fig. 12: The CRAFT round function, including MixColumns(MC),
AddRoundConstants(RC), AddTweakey(RT), PermuteNibbles(PN), and S-
box(SB).

Let the j-th branch before and after the i-th round of MixColumns be denoted
as Si−1

j and MCi
j . In the input of the 12-round periodic distinguisher, we need

to set δ5 = δ13, δ2 = δ14, and δ7 = δ11 = δ15, but the probability does not
increase with these constraints. The 12-round distinguisher requires the following

28



constraints with complexity O(2
5N
16 ). In round 2, we have the constraints ∆S1

0 =
∆S1

12, ∆S1
2 = ∆S1

10, ∆S1
3 = ∆S1

15, and ∆S1
7 = ∆S1

15, which affect ∆MC2
0 ,

∆MC2
2 , ∆MC2

3 , and ∆MC2
7 . In round 3, we have ∆S2

0 = ∆S2
12, ∆S2

4 = ∆S2
12,

and ∆S2
1 = ∆S2

9 , which affect ∆MC3
0 , ∆MC3

4 , and ∆MC3
1 . In round 4, we have

∆S3
1 = ∆S3

13 and ∆S3
5 = ∆S3

13, which affect ∆MC4
1 and ∆MC4

5 . In round 5, we
have∆S4

2 = ∆S4
10, which affects∆MC5

2 . Appendix H shows other distinguishers.
Note that we also adopt the assumption that the constraints of differences in
different rounds are independent.

7 Further Discussion on Modelling MDS Matrices

We have proven that the model is highly applicable to various structures and
ciphers. However, for ciphers that include MDS matrices, there is currently no
effective method to describe periodic attacks. In this section, we take Piccolo [25]
as an example to illustrate how our model can be applied to this type of cipher.

Piccolo is a lightweight block cipher using the Feistel-SP structure, proposed
by Shibutani et al. for extremely constrained devices. The round function for
Piccolo is shown in Fig. 13, including S-box and MixColumns. For Feistel-SP
structure, there exists a 3-round periodic distinguisher based on qCPA and a
4-round distinguisher based on qCCA [16]. The more complex permutation used
in Piccolo makes it difficult for these attacks to be directly applied. It remains
unknown whether a better distinguisher can be found by decomposing the round
function.

Fig. 13: The round function of Piccolo.

Adapting the model for Piccolo. In Piccolo, each branch is 16 bits. To apply
the model to Piccolo, we split each 16-bit branch into four 4-bit branches (see
Fig. 13) and we made the following modifications:

1. We propose an approximate strategy for modeling MDS matrices. As long as
the difference of x or δ changes, we treat it as R(x) or R(δ). This constraint
is necessary because once the difference changes, the cancellation property,

29



such as δ⊕δ = 0, is lost. For example, for a column of inputs (x0, x1, x2, x3),
the output y0 can be expressed as y0 = R(x0)⊕ R(x1)⊕ x2 ⊕ x3.

2. We relax the initial constraints. We hope all the state x come from an unsplit
16-bit branch of Piccolo. That is, at the head, x appears at most four times.
However, in the actual model, we find that even without restricting the num-
ber of occurrences of x, the model still produces the same result. Therefore,
we remove this restriction on the number of x in the head of Piccolo. This
modifies the initial constraints of the previous model.

3. We relax the rule of R. In Equation (7), only one branch with state x ⊕ δ,
x⊕ R(δ), or x⊕ R(δ)⊕ δ can generate the state 0s, and the others are set to
⊥. Because of the modification of x, we limit the rule x ⊕ δ, x ⊕ R(δ), x ⊕
R(δ)⊕ δ

R→ 0s to a maximum of 4 times. This modification is reasonable.
For each x, the implicit period is the same, and the final distinguisher has at
most four implicit periods from four different x. In the previous proof, the
output after XORing 0s with different periods was ⊥. However, if the 0s are
generated by different branches with x, it is also possible for the output to
be 0s.

Relaxing the model’s constraints invalidates our original proof of its correct-
ness. To address this, we introduce an additional testing phase to verify whether
the implicit period remains consistent for each x and to search for the actual
period of each result returned by the model. Finally, we successfully identify the
first 4-round polynomial-time periodic distinguisher:

(0, 0, 0, 0, 0, 0, 0, 0, δ, δ, 0, 0, s, s, s, s)− > (?, ?, ?, ?, 0, 0, 0, 0, ?, ?, ?, ?, ?, ?, ?, ?).

In the first round, we set (u0
8, u

0
9) = (αb, βb), where α0 ̸= α1, β0 ̸= β1. The

input of the periodic function is x = x12||x13||x14||x15 ∈ {0, 1}4×4. Then, let

Eb := E4(u0
0, u

0
1, u

0
2, u

0
3, u

0
4, u

0
5, u

0
6, u

0
7, αb, βb, u

0
10, u

0
11, x12, x13, x14, x15),

where u0
0, u

0
1, u

0
2, u

0
3, u

0
4, u

0
5, u

0
6, u

0
7, u

0
10, u

0
11 are random constants, || represents bit

concatenation, and b ∈ {0, 1}. The modified periodic function is:

g : {0, 1}16 → {0, 1}16,
x 7→ ∆(u4

4||u4
5||u4

6||u4
7),

g(x) = (E0|u4
4
)||(E0|u4

5
)||(E0|u4

6
)||(E0|u4

7
)⊕ (E1|u4

4
)||(E1|u4

5
)||(E1|u4

6
)||(E1|u4

7
).

Actually, we recombine the outputs of these four branches into a single 16-bit
value. For the period value s ∈ {0, 1}16, g(x ⊕ s) = g(x) for any x ∈ {0, 1}16.
Our experiment also verifies the periodic distinguisher. Appendix I provides a
detailed explanation.

Discussion on modelling MDS matrices. Using our approximate strategy,
we can also automate the search for the number of rounds in periodic distin-
guishers of ciphers with MDS matrices. There are two open problems. First, we
aim to develop a more precise model for MDS matrices instead of relying on the
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approximate strategy. Second, when the number of initial x increases, we want
to explore whether there is a more precise model that ensures the correctness
of the output distinguisher without requiring an additional testing phase. As
the first proposed symbolic model, we leave these two problems as directions for
future work.

8 Conclusion

This paper presents a significant advancement in quantum cryptanalysis of
symmetric-key schemes by introducing an automated approach for discovering
periodic distinguishers. The proposed methodology for Simon’s algorithm offers
a more refined and systematic framework compared to existing techniques. A key
contribution is the development of probabilistic periodic distinguishers using the
Grover-meet-Simon algorithm, which enhances the identification of effective pe-
riodic distinguishers through optimized strategies for selecting initial differences.
This theoretical framework significantly broadens the scope of detectable peri-
odic distinguishers. The SMT-based model demonstrates extensive applicability,
achieved through significant advancements in the analysis of both generalized
Feistel structures and substitution-permutation network (SPN) ciphers. This
framework enables the discovery of optimized periodic distinguishers for numer-
ous cryptographic constructions, including generalized Feistel structures (e.g.,
GFS-2F/4F, Skipjack-type structures, CAST-256, LBlock, and TWINE) as well
as SPN-based designs (e.g., SKINNY and CRAFT). Our findings reveal that pe-
riodic distinguishers, as identified through our automated model, demonstrate ef-
fects that differ from traditional methods. Notably, these distinguishers not only
prove effective in quantum cryptanalysis but also exhibit new insight in classical
cryptanalysis settings. We anticipate that future research will further explore
these distinguishers and potentially extend their application to a wider range
of cryptographic primitives by providing improved periodic analysis methodolo-
gies. The results from our automated model suggest that periodic analysis may
establish a novel cryptanalytic technology. However, some challenges remain,
particularly in developing more precise analytical models for ciphers with MDS
matrices, which represents a critical direction for future investigation.
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Appendix

A SMT Problem

In recent years, the application of automated search tools in cryptography has
become more and more extensive. The SAT problem belongs to the deterministic
problem, and it is also the first problem to be proved to be NP-complete. To
solve it, boolean expressions are usually encoded in Conjunctive Normal Form
(CNF) as the inputs of a SAT solver.

Extending SAT to include the theory of modulus (satisfiability modulo theo-
ries, abbreviated as SMT) enriches the forms of CNF expressions, which can in-
clude linear constraints, arrays, and more. Compared to methods based on SAT
problems, those based on SMT are more flexible and applicable to a broader
range of scenarios, making them particularly suitable for use in the field of cryp-
tography.

This paper primarily uses the solver of the SMT problem, STP, to automat-
ically solve our new proposed models. CVC formats are among the commonly
used file-based input languages in STP. We list some CVC language references
and two examples as follows.

Table 6: Usage of the STP solver.

Name Symbol Example

Concatenation @ t1@t2@ . . .@tn
Extraction i : j x[31 : 26]

Bitwise XOR BVXOR BVXOR(t1, t2)

Bitvector AND BVPLUS BVPLUS (n, t1, t2, . . . , tn)

Less Than Or Equal To BVLE BVLE (t1, t2)

Greater Than or Equal To BVGE BVGE (t1, t2)

Not Equal to NOT NOT(t1 = t2)

If Then => t1 => t2

B Extending the Tail of the Periodic Distinguisher

We observe that for certain structures, a linear combination of multiple non-
periodic branches in the tail can generate a value that satisfies the periodicity.
Therefore, in this section, we propose a method that combines our automation
model to simultaneously search for distinguishers and tail extensions. Since only
special structures can be further extended, we have placed this part of the content
in the appendix. Skipping this part will not affect the reader’s understanding of
the model.

Here, we discuss how to further extend the number of rounds after obtaining
the tail ur

i of a constructible periodic function.
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Definition 4 (Linear trail with known values). Set a r′-round linear trail
of E from tail to head. Let Γ j

i represents the mask of uj
i in the linear trail

(r ≤ j ≤ r+ r′) and (Γ j
0 , . . . , Γ

j
n−1) ̸= (0, . . . , 0). Towards to the round function

R, the XOR operation XOR, and the branching operation SPLIT, the trail satisfies
the following rules:

– 0
R−→ 0, 1

R−→ 0,

– (u0, u1)
XOR−−→ u2, where u2 = u0 &u1,

– u0
SPLIT−−−→ (u1, u2), where u1 = u0, u2 = u0.

Lemma 1. Assume the r′-round linear trail with known values satisfies Defini-
tion 4. Let there be t (1 ≤ t ≤ n−1) masks of 1 at the head and t′ (1 ≤ t′ ≤ n−1)
masks of 1 at the tail. If the values corresponding to these t′ masks are known,
then the values at the head of the linear trail with masks of 1 are also known.

– For R, the output values are always indeterminate due to the unknown key.

– For XOR, (u0, u1)
XOR−−→ u2 requires values of u0, u1 to calculate u2.

– For SPLIT, u0
SPLIT−−−→ (u1, u2) indicates that if u0 is known, then the other

two values are also known.

Fig. 14 shows a linear path with known values. In these two structures, a is
unknown (“unknown” means a is a combination of all the inputs and cannot be
separated) and b satisfies the separability property. We set the masks (Γa, Γb) =
(0, 1). In the left, the masks Γc = Γf = 1 and Γd = Γe = 1, and Γf = 1. We
have a 1-round linear path with known values from (Γe, Γf ) to (Γa, Γb) with
(1, 1) → (0, 1) and b = e⊕ f . In the right, Γc is the output of F and must be 0.
Then, Γd = 0. We cannot calculate b.

r rounds r rounds

Fig. 14: An example illustrating a linear path.

As long as an r-round trail exists, the distinguisher can be extended by r
additional rounds.

Based on the above discussion, if there exists an output ur
i of Er satisfying

the (probability) separability property and a r′-round linear trail with known
values connected by ur

i , we can construct an (r+r′)-round periodic distinguisher.
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Modelling the propagation rules of linear trail. Assume that there are an
r-round differential trail and an r′-round linear trail. We set masks (Γ r

0 , Γ
r
1 , . . . , Γ

r
n−1)

for the tail (ur
0, u

r
1, . . . , u

r
n−1) of the differential trail. We define a new Boolean

variable maski for each branch. If ur
0 does not satisfy the separability property,

then set maski = 0. Then, let Σ(maski) = 1, as at least one branch satisfying
the separability property needs to be calculated The other rules are consistent
with Lemma 1.

C Validations of the Model

To validate the correctness of our model, we successfully replicated all the cur-
rently optimal periodic distinguishers, Type-1/2/3 GFS, GFS-2F/4F, Skipjack-
B, LBlock, TWINE, Piccolo, SKINNY, and CRAFT, and constructed small
circuit structures. We apply random keys and constants for each structure to
search for periods and can consistently find the actual period by constructing a
periodic function. Table 7 shows the results.

Table 7: The experiments of periodic distinguishers.

Structure #Rounds Theoretical probability Experimental probability

Type-I GFS 9 1 1

Type-II GFS 5 1 1

Type-III GFS 5 1 1

GFS-2F 6 1 1

GFS-4F 10 1 1

Skipjack-B 16 1 1

LBlock 8 1 1

LBlock 10 2−8 2−8

Twine 8 1 1

Twine 10 2−8 2−8

Piccolo 4 1 1

SKINNY 7 1 1

SKINNY 8 2−4 2−3.5

SKINNY 9 2−24 2−23

CRAFT 7+1 1 1

CRAFT 8+1 2−4 2−3.5

CRAFT 9+1 2−12 2−11

CRAFT 10+1 2−24 2−22
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D More Explanations for GFS-4F

For the 10-round distinguisher, we have

u10
0 = u0

6 ⊕ f3
3 (u

0
5)⊕ f4

2 (u
0
3 ⊕ f1

0 (u
0
4))

⊕ f5
1 (u
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0
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0
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0 (u
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4)))))).

The periodic function is constructed by

g(x) = E10(x, α0, u
0
2, u

0
3, u

0
4, u

0
5, u

0
6, u

0
7)|u10

0
⊕ E10(x, α1, u

0
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0
3, u
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0
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0

= ∆f5
1 (αb ⊕ C1)⊕∆f6

0 (f
5
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0 (αb ⊕ C2)⊕ C3)⊕ C4),
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0
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0
4, u

0
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0
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0
7 are constants, C1 = f1
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4))) are also constants.

E More Explanations for Skipjack and Its Variant

In this section, we show the periodic distinguishers for Skipjack and its variant
Skipjack-B.

– 15-round periodic distinguisher for Skipjack is shown in Fig. 15, where u14
1

can be calculated by u15
0 ⊕ u15

3 .

– 16-round periodic distinguisher for Skipjack-B is shown in Fig. 16.
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Fig. 15: 15-round distinguisher of Skipjack.
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Fig. 16: 16-round distinguisher of Skipjack-B.

F 8/10-round Periodic Distinguishers for LBlock/TWINE

In this section, we present the periodic distinguishers for LBlock/TWINE.

– 8-round periodic distinguisher for LBlock is shown in Fig. 17.

– 8-round periodic distinguisher for TWINE is shown in Fig. 18.

– 10-round periodic distinguisher for LBlock is shown in Fig. 19, requiring 4
collisions.

– 10-round periodic distinguisher for TWINE is shown in Fig. 20, requiring 4
collisions.
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Fig. 17: 8-round distinguisher of LBlock.
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Fig. 18: 8-round distinguisher of TWINE.
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: collision

Fig. 19: 10-round distinguisher of LBlock.
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: collision

Fig. 20: 10-round distinguisher of TWINE.

44



G Periodic Distinguishers for SKINNY

In this section, we present the periodic distinguishers for SKINNY. The ad-
vantages of our distinguishers lie in its independence from specific components,
while maintaining low complexity.

– 7-round periodic distinguisher for SKINNY is shown in Fig. 21.
– 9-round periodic distinguisher for SKINNY is shown in Fig. 22, requiring 6

collisions.

AC Round 1ART
SR

AC Round 2SB ART
SR

AC Round 3SB ART
SR

AC Round 4SB ART
SR

AC Round 5SB ART
SR

AC Round 6SB ART
SR

AC Round 7SB ART
SR

Fig. 21: 7-round distinguisher of SKINNY.
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Fig. 22: 9-round distinguisher of SKINNY.
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H Periodic Distinguishers for CRAFT

In this section, we present the periodic distinguishers for CRAFT. The final
round is omitted.

– 8-round periodic distinguisher for CRAFT is shown in Fig. 23.

– 12-round periodic distinguisher for CRAFT is shown in Fig. 24, requiring 10
collisions.
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Fig. 23: 8-round distinguisher of CRAFT.
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Fig. 24: 12-round distinguisher of CRAFT.
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I 4-round Periodic Distinguisher for Piccolo

We present the 4-round periodic distinguishers for Piccolo, which is shown
in Fig. 25.

Fig. 25: 4-round distinguisher of Piccolo.

J 17/18-round Periodic Distinguishers for CAST-256

In this section, we present the periodic distinguishers for CAST-256.

– 17-round periodic distinguisher for CAST-256 is shown in Fig. 26. The first
two rounds are encryption, and the following 15 rounds are decryption.

– 18-round periodic distinguisher for CAST-256 is shown in Fig. 27, requiring
1 collision. The first three rounds are encryption, and the following 15 rounds
are decryption.
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Fig. 26: 17-round distinguisher of CAST-256.

50



: collision

Fig. 27: 18-round distinguisher of CAST-256.
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K A Reinterpretation of Original Periodic Distinguishers
for Type-1/2/3 GFS

The round function for Type-1 GFS is shown in Fig. 28.

Fig. 28: The round function of Type-1 GFS.

The decryption round function for Type-1 GFS is shown in Fig. 29.

Fig. 29: The decryption round function of Type-1 GFS.

The round function for Type-2 GFS is shown in Fig. 30.

Fig. 30: The round function of Type-2 GFS.
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The round function for Type-3 GFS is shown in Fig. 31.

Fig. 31: The round function of Type-3 GFS.

In this section, we present the periodic distinguishers for Type-1/2/3 GFS.

– 9-round periodic distinguisher for Type-1 GFS is shown in Fig. 32.
– 15-round periodic distinguisher (CCA) for Type-1 GFS is shown in Fig. 33.
– 5-round periodic distinguisher for Type-2 GFS is shown in Fig. 34.
– 5-round periodic distinguisher for Type-3 GFS is shown in Fig. 35.

All distinguishers are derived from our model and are consistent with the current
best results. This demonstrates the powerful effectiveness of our model.
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Fig. 32: 9-round distinguisher of Type-1 GFS.
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Fig. 33: 15-round distinguisher (CCA) of Type-1 GFS.
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Fig. 34: 5-round distinguisher of Type-2 GFS.
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Fig. 35: 5-round distinguisher of Type-3 GFS.
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