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Abstract

Private information retrieval (PIR) allows a client to query a public

database privately and serves as a key building block for privacy-

enhancing applications. Minimizing query size is particularly im-

portant in many use cases, for example, when clients operate on

low-power or bandwidth-constrained devices. However, existing

PIR protocols exhibit large query sizes: to query 2
25

records, the

smallest query size of 14.8 kB is reported in Respire [Burton et

al., CCS’24]. Respire is based on fully homomorphic encryption

(FHE), where a common approach to lower the client-to-server

communication cost is transciphering. When combining the state-

of-the-art transciphering [Bon et al., CHES’24] with Respire, the

resulting protocol (which we refer to as T-Respire) has a 336 B query

size, while incurring a 16.2x times higher server computation cost

than Respire.

Our work presents the Pirouette protocol, which achieves a

query size of just 36 B without transciphering. This represents a 9.3x

reduction compared to T-Respire and a 420x reduction to Respire.

For queries over 2
25

records, the single-core server computation

in Pirouette is only 2x slower than Respire and 8.1x faster than

T-Respire, and the server computation is highly parallelizable. Fur-

thermore, Pirouette requires no database-specific hint for clients

and naturally extends to support queries over encrypted databases.
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1 Introduction

Private information retrieval (PIR) allows a client to retrieve a

record from a public database without revealing to the database

server which record is queried. While PIR is directly used for pri-

vate database queries, it also is a key building block for various

privacy-enhancing applications, such as private contact discov-

ery [16, 37] and tracing [79], safe browsing [55], privacy-preserving

genome imputation [46], and secure collision-risk assessment for

satellites [57].

This work focuses on single-server [56] PIR protocols rather than

multi-server [30] ones, as ensuring that multiple servers do not col-

lude is hard in practice. For a PIR protocol to be non-trivial, the com-

munication cost must be much smaller than the database size; oth-

erwise, the client could simply download the entire database. The

first single-server PIR scheme with polylogarithmic communica-

tion was introduced in [20], with subsequent improvements [22, 43]

leveraging different algebraic structures.

More recent single-server PIR protocols [4, 5, 19, 36, 50, 59,

67, 68, 70, 75] often employ fully homomorphic encryption (FHE)

schemes [17, 18, 27, 39, 40]. FHE typically incurs significant commu-

nication overhead due to the ciphertext expansion factor, defined

as the ratio of ciphertext size to plaintext size. Nevertheless, mini-

mizing query size is essential in many PIR applications, particularly

when clients operate on low-power devices or when queries are

transmitted over long distances, such as in satellite-to-ground com-

munication. On the other hand, lowering the response size may not

be as critical, as PIR responses are not always sent back to the client

but instead can be used as inputs for further computations.

Developing FHE-based PIR protocols with small query sizes

while maintaining computation costs reasonable is both crucial

and challenging. Prior works [19, 67, 70] arrange the database as a

hypercube for computation efficiency. Consequently, a PIR query

consists of encrypted indices for all dimensions, which are then

compressed into a single ciphertext. With this query packing tech-

nique, the smallest query size of 14.8 kB for N = 2
25

records is

reported in Respire [19].

To further lower the query size, a common approach in FHE

applications [6, 31] is transciphering [71]. In this approach, the

client uses a classical symmetric scheme Π to encrypt the query

indices, producing ciphertexts with an expansion factor close to

one, which are then sent to the server. The server evaluates the

decryption of Π homomorphically to obtain FHE encryptions of the

query indices. The combination of the state-of-the-art transcipher-

ing method [9, 14] and Respire, which is referred to as T-Respire

throughout the paper, gives 336B for N = 2
25

records, at the cost

of 16.2x increase of running time compared to Respire.

The Pirouette protocol. This work introduces the Pirouette

protocol, a query-efficient single-server PIR protocol without tran-

sciphering. While the Pirouette database uses polynomial rings

in the hypercube structure as in [19, 67], the Pirouette query is a

fresh learning with errors (LWE) [76] ciphertext instead of a ring

learning with errors (RLWE) [64] ciphertext. This fresh LWE ci-

phertext consists of (𝑛 + 1) components of modulus 𝑞, with the first

𝑛 components sampled uniformly from Z𝑞 and the final component

consisting of a linear combination of the 𝑛 random values and the

secret key, added to the encoded query index and a small random

value. To reduce the query size, the client only needs to send the

(𝑛 + 1)-th component together with a PRG seed to generate the

first 𝑛 components pseudorandomly [25]. Furthermore, we design a

novel procedure that enables the server to homomorphically extract

the query indices for each dimension of the hypercube database

from the LWE ciphertext. These encrypted query indices are then

used to homomorphically select the requested record.

In terms of performance, for N = 2
25

records, the query size of

Pirouette is only 36B, of which 32B are dedicated to the PRNG

seed. The 36B query size is 9.3x smaller than T-Respire and 420x

smaller than Respire. The single-core server computation in Pirouette

is only 2x slower than Respire and 8.1x faster than T-Respire. The

server computation in Pirouette is also highly parallelizable; the
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concrete performance is shown in Section as demonstrated in Ta-

ble 6.

While conventional PIR protocols only consider a public data-

base, the Pirouette protocol can be easily extended to querying

an encrypted database. For N = 2
25

encrypted records, the query

size remains 36B and the throughput is about 7.2x slower when

compared to the unencrypted setting.

1.1 Technical overview

In Pirouette, the client does not need to download any database-

specific hint; the user only needs to send the evaluation key(s) of

the homomorphic scheme to the server, and this corresponds to

the entire offline phase. Our protocol follows a similar hypercube

database structure and record selection procedure as Respire [19].

Figure 1 illustrates the Pirouette protocol using toy parameters

N = 2
5
, and the key steps are explained below.

Starting point: the Respire protocol. Respire considers a (1 +
𝜈2 + 𝜈3)-dimensional hypercube database with entries encoded

as polynomials, where the first dimension has size 2
𝜈1

and the

remaining dimensions have size 2. This results in a database with

N = 2
𝜈1+𝜈2+𝜈3

records, each indexed by a tuple (𝛼, 𝛽1, . . . , 𝛽𝜈2+𝜈3 )
where 𝛼 ∈ [2𝜈1 ] and 𝛽𝑖 ∈ {0, 1} for all 𝑖 ∈ [1, 𝜈2+𝜈3]. Each plaintext
element encodes 2

𝜈3
records.

The Respire query is an RLWE ciphertext that can be expanded

into (1) RLWE encryptions of the one-hot encoding of 𝛼 , consist-

ing of 2
𝜈1
encryptions of binary values, (2) RGSW encryptions of

𝛽1, . . . , 𝛽𝜈2 , and (3) RGSW encryptions of 𝛽𝜈2+1, . . . , 𝛽𝜈2+𝜈3 . Using (1)
and (2), the server homomorphically selects the plaintext polyno-

mial corresponding to the requested record. The server then applies

(3) to obtain the RLWE encryption of the requested record, which is

further compressed using ModSwitch and RingSwitch operations.

LWE ciphertext in PIR query. In this work, transmitting an

LWE ciphertext (combined with PRG compression) is the key to

reducing query size. Specifically, the client sends LWE(idx), where
idx ∈ [N] is the query index within a size-N database. Since

N is typically large (e.g. 2
25
), the LWE ciphertext requires high

precision. Our implementation uses a 25-bit plaintext modulus and

32-bit ciphertext modulus for LWE. This differs from conventional

LWE-based applications [7, 28, 32] that typically considers a small

plaintext modulus of 4 or 5 bits. Upon receiving the query, the

server homomorphically converts it into formats compatible with

the (plain or encrypted) hypercube database.

Decomposing high-precision LWE. The server first performs

a homomorphic bit decomposition to the LWE query LWE(idx),
and outputs ⌈log

2
N⌉ LWE ciphertexts, each encrypting a single

bit idx𝑖 ∈ Z2 such that idx =
∑⌈log

2
N⌉−1

𝑖=0
idx𝑖 · 2𝑖 . Conventional bit

decomposition based on programmable bootstrapping is practically

constrained to a small precision of 𝜈 = 5 bits and requires 𝜈 expen-

sive BlindRotate operations. For practical PIRs, however, the pre-
cision ⌈log

2
N⌉ ≫ 5 is much higher. Our proposed method, as de-

tailed in Section 3.1, supports high-precision bit decomposition us-

ing only approximately
3⌈log

2
N⌉

5
BlindRotate operations. For sub-

sequent computation, these ciphertexts {LWE(idx𝑖 )}𝑖∈[0,⌈log
2
N⌉−1]

are converted to RGSW ciphertexts.

Leveraging RLWE
′
ciphertexts. In Respire, database records are

encoded into the plaintext space R𝑡 and the one-hot encoding of

the first-dimension query index consists of RLWE ciphertexts. Since

the noise growth in their multiplication is linear in 𝑡 , Respire is best

suited for databases with small records to control the noise growth.

In contrast, Pirouette encodes database records as polynomi-

als with modulus 𝑞, e.g. 𝑑 (𝑋 ) ∈ R𝑞 , and uses RLWE
′
ciphertexts

for the one-hot encoding of the first-dimension query index. The

construction of these RLWE
′
ciphertexts is detailed in Section 3.2,

and multiplying a record with an RLWE
′
ciphertext only gives

logarithmic noise growth in 𝑞. Specifically, given a vector g =

[1, 𝐵, 𝐵2, . . . , 𝐵ℓ−1] ∈ Nℓ
with ℓ =

⌊
log𝐵 (𝑞)

⌋
+1 and 𝑑 (𝑋 ) ∈ R𝑞 , we

may always obtain {𝑑𝑖 (𝑋 )}0≤𝑖<ℓ such that

∑
𝑖 𝑑𝑖 (𝑋 ) · g[𝑖] = 𝑑 (𝑋 ).

More importantly it holds that | |𝑑𝑖 (𝑋 ) | |∞ < 𝐵 where | | · | |∞ is the

max-norm of the coefficient vector of a polynomial. Then, for an

RLWE
′
ciphertext c = [c0∥ · · · ∥cℓ−1], the product is computed as∑

𝑖 𝑑𝑖 (𝑋 ) · c𝑖 and the noise now grows proportionally to ℓ ·𝐵. There-
fore, this approach allows Pirouette to use more efficient FHE

parameters and support large database records. Our construction

of one-hot encoded RLWE
′
ciphertexts is detailed in Section 3.2.

Querying an encrypted database. The Pirouette protocol can

be extended to support queries over an encrypted database. This

is useful in scenarios where a data owner stores encrypted data in

a public cloud, which answers queries from authenticated clients

without knowing either the data or the query index. For example,

in [13], organizations such as the National Institutes of Health (NIH)

store encrypted genotype-phenotype data on the cloud to support

queries from authenticated doctors.

In this setting, the database consists of RLWE encryptions of

polynomials that encode plaintext records arranged, structured in

the same hypercube format. The client still sends an LWE query

LWE(idx), which is bit-decomposed by the server and converted

into RGSWciphertexts {RGSW(idx𝑖 )}𝑖∈[0,⌈log
2
N⌉−1] . These RGSW

ciphertexts are then used as control bits in CMUXes to homomor-

phically select the encrypted record.

1.2 Related work

Single-server PIR with linear server computation. Early the-

oretical works [8, 20, 22, 43] have shown that non-trivial single-

server PIR protocols can achieve polylogarithmic communication

complexity, and the computation grows at least linearly to the data-

base size N . The effort to design practical PIR protocols has since

motivated extensive research [1, 4, 5, 19, 36, 41, 49, 50, 59, 63, 67, 68,

70, 75], with most constructions leveraging fully homomorphic en-

cryption and exploring various trade-offs between communication

and computation.

Broadly speaking, these practical constructions can be classified

into the following three categories.

• schemes with a client-specific hint, where the server stores
a hint (such as evaluation keys in FHE-based PIR proto-

cols [1, 4, 5, 19, 41, 63, 67, 70, 75]) for each client. In prior

works, queries are RLWE ciphertexts of minimum tens

of kilobytes [4, 19, 67, 70], which will be expanded by the

server using techniques such as oblivious expansion [4] and
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Figure 1: Processing a Pirouette query with 𝜈1 = 𝜈2 = 2 and 𝜈3 = 1. The preparation step (Phase 0) includes bit decomposition,

LWE-to-RGSW conversion, and the construction of a 𝜈1-bit selector composed of RLWE
′
ciphertexts. Phase 1 handles the first

dimension processing using the 𝜈1-bit selector. Phase 2 performs folding to retrieve the desired plaintext ring element using 𝜈2
RGSW ciphertexts. Finally, Phase 3 retrieves the corresponding database record within the subring using 𝜈3 RGSW ciphertexts.

We refer to Section 4 for more details.

coefficient expansion algorithm [5, 23]. Our Pirouette pro-

tocol reduces the query size to tens of bytes by transmitting

an LWE ciphertext.

• schemes with a database-specific hint, where a client needs
to store a large database-dependent hint that can be hun-

dreds of megabytes in size [36, 50]. This setup not only

demands large storage from a resource-constraint client,

but also requires the hint to be updated whenever the data-

base changes. For schemes in this category, query sizes are

hundreds of kilobytes, but the throughput is much faster.

• schemes without hints, where the server performs a pre-

processing without a need to send any hint to the client.

Schemes in this category [49, 59, 68] eliminate the need

for offline communication, but query sizes are of orders of

megabytes.

Sublinear preprocessing PIR. The linear computation bound

for PIR can be bypassed by considering a preprocessing model [8].

Schemes such as [33, 34, 45, 58, 77, 81, 83] perform a client-dependent

offline phase with𝑂 (N) cost, enabling the server to answer queries
in sublinear time with demonstrated concrete efficiency. On the

other hand, an RLWE-based doubly-efficient PIR (DEPIR) scheme

was constructed by Lin et al. [60], removing the need for client-

dependent preprocessing while still providing sublinear online com-

plexities. Since then, DEPIR has attracted growing research inter-

est [61, 74], but no concrete efficiency has been achieved until

now [73].

Querying encrypted databases. Querying encrypted databases

through an encrypted index is referred to as blind array access

in [7], which serves as a building block for sorting encrypted arrays.

Additionally, SQL queries over encrypted databases are investi-

gated in [11, 12, 82], and the work [13] presents a secure queryable

database for storing and analyzing genotype-phenotype data.

Transciphering. Transciphering is a common approach to reduce

client-to-server communication, where a client encrypts the data

using some block or stream cipher Π, and the server decrypts Π
homomorphically. One line of the work [35, 51, 66] focuses on

designing ciphers whose decryption circuits are optimized for ho-

momorphic evaluation. These FHE-friendly ciphers, however, are

typically not standardized or used in real-world deployments. An-

other line of work [2, 9, 14, 78] aims to evaluate standardized ciphers

such as AES efficiently in FHE and assesses their practicality.

2 Preliminaries

2.1 Notation

Given 𝑎, 𝑏 ∈ Z, let [𝑎, 𝑏] denote the set {𝑎, 𝑎 + 1, . . . , 𝑏}, and let [𝑎]
denote [1, 𝑎]. For an integer 𝑞, let Z𝑞 denote the ring of integers

modulo 𝑞. For a power-of-two 𝑁 , let K = Q[𝑋 ] (𝑋𝑁 + 1), R =

Z[𝑋 ] (𝑋𝑁 + 1) and R𝑞 = R/(𝑞R). We use lowercase bold such as

u for (row) vectors and uppercase bold such as U for matrices. The

inner product between two vectors u and v is denoted as ⟨u, v⟩.
Given a probability distribution 𝜒 , let 𝑎← 𝜒 denote that 𝑎 is

sampled from 𝜒 . Given a set 𝑆 , let 𝑎
$← 𝑆 denote that 𝑎 is sampled

uniformly random from 𝑆 .

2.2 Private information retrieval

We recall the definition of single-server PIR with client-specific

hints, where a client holds a reusable secret key sk and uploads the

associated evaluation key evk to the server. The evaluation key evk
3
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will be used to answer queries from this client. Similar to [19, 67],

we allow the server to preprocess the database offline, which allows

efficient query answering during the online phase.

Definition 2.1 (PIR with client-specific hints [19, 30, 67]). The
single-server PIRΠPIR = (Setup,Query,Answer, Extract)with client-
specific hints consists of efficient algorithms with the following

properties:

• Setup(1𝜆, {𝑑𝑖 }𝑖∈[N] ) → (sk, evk, db). Given the security

parameter 𝜆 and the N records in the database, output

the secret key sk, the public evaluation key evk, and the

preprocessed database db.
• Query(sk, idx) → qu. Given the secret key sk and an index

idx ∈ [N], output the query qu.
• Answer(qu, evk, db) → ans. Given the query qu, the eval-

uation key evk and the preprocessed database db, output
the answer ans.

• Extract(ans, sk) → 𝑑idx. Given the answer ans and the

secret key sk, output the record 𝑑idx.

The following properties are essential for PIR algorithms:

• Correctness: If both the client and the server execute the

protocol correctly, the client should recover the requested

entry. Formally, a PIR protocol has correctness error 𝛿 if on

any size-N database {𝑑𝑖 }𝑖∈[N] , the following probability

Pr

 𝑑idx =
ˆ𝑑idx

��������
(sk, evk, db) ← Setup(1𝜆, {𝑑𝑖 }𝑖∈[N] )

qu←Query(sk, idx)
ans←Answer(qu, evk, db)

ˆ𝑑idx← Extract(ans, sk)


is at least 1 − 𝛿 .

• Security: The server should learn nothing about the index

queried by the client. Precisely, a PIR protocol is (𝑇, 𝜖)-
secure if, for any adversary A running in time 𝑇 and any

two indices idx, idx′ ∈ [N], the following holds.��
Pr

[
A(1N , qu) = 1

�� qu←Query(sk, idx)
]

− Pr
[
A(1N , qu) = 1

�� qu←Query(sk, idx′)
] �� ≤ 𝜖.

2.3 Learning with errors and ring learning with

errors

The security of our PIR schemes relies on the hardness of the learn-

ing with errors (LWE) problem [76] and the ring learning with

errors (RLWE) problem [64, 65].

2.3.1 LWE. The LWE problem is parametrized by a dimension 𝑛,

integer modulus 𝑞, and an error distribution 𝜒 over Z.

Definition 2.2 (LWE distribution Ds,𝜒 ). Given s ∈ Z𝑛𝑞 , the LWE
distributionDs,𝜒 over Z𝑛𝑞 × Z𝑞 is sampled by choosing a uniformly

random a ∈ Z𝑛𝑞 and error 𝑒← 𝜒 , and outputting (a, 𝑏 = ⟨a, s⟩ +
𝑒 mod 𝑞) ∈ Z𝑛𝑞 × Z𝑞 .

We can represent𝑚 ≥ 1 LWE instances with the same secret

s ∈ Z𝑛𝑞 in the matrix form (A, b = A ·s+e mod 𝑞), where A ∈ Z𝑚×𝑛𝑞

and b, e ∈ Z𝑚𝑞 . Below we describe two versions of the LWE problem,

both conjectured to be hard for appropriately chosen parameters. In

practice, concrete security estimates of LWE instances are typically

estimated using Albrecht et al.’s lattice estimator [3].

Definition 2.3 (Search LWE). The search LWE problem is to re-

cover s ∈ Z𝑛𝑞 from𝑚 LWE instances (A, b = A·s+e mod 𝑞) sampled

according to the distribution Ds,𝜒 .

Definition 2.4 (Decision LWE). The decision LWE problem is to

distinguish 𝑚 LWE instances (A, b = A · s + e mod 𝑞) sampled

according to the distribution Ds,𝜒 , from (A, b)
$←Z𝑛𝑞 × Z𝑞 .

2.3.2 RLWE. The RLWE problem extends the LWE problem to

structured algebraic rings. This work only focuses on the ring R, a
cyclotomic ring with a power-of-two cyclotomic order.

Definition 2.5 (RLWE distribution Ds,𝜒 ). Given s ∈ R𝑞 and an

error distribution 𝜒 over R𝑞 , the RLWE distribution Ds,𝜒 over R2𝑞
is sampled by choosing a uniformly random a ∈ R𝑞 and an error

e← 𝜒 , and outputting (a, b = a · s + e mod 𝑞) ∈ R2𝑞 .

Then we describe the two versions of the RLWE problem. To date,

no known attack on RLWE problems exploits its additional ring

structure compared to LWE. Therefore, the security of an RLWE

instance is estimated by transforming it to a corresponding LWE

instance with the same dimension, modulus, and an appropriate

error distribution.

Definition 2.6 (Search RLWE). The search RLWE problem is to re-

cover s ∈ R𝑞 from𝑚 RLWE instances {(a𝑖 , b𝑖 = a · s + e mod 𝑞)}𝑖∈[𝑚]
sampled according to the RLWE distribution Ds,𝜒 .

Definition 2.7 (Decision RLWE). The decision RLWE problem is

to distinguish𝑚 RLWE instances {(a𝑖 , b𝑖 = a · s + e mod 𝑞)}𝑖∈[𝑚]
sampled according to the RLWE distribution Ds,𝜒 , from 𝑚 uni-

formly sampled pairs

{
(a𝑖 , b𝑖 )

$←R2𝑞
}
𝑖∈[𝑚]

.

Compared to LWE, RLWE provides better efficiency and amor-

tized storage. The efficiency comes from operating over ring el-

ements in R, enabling faster multiplications via the fast Fourier

transform (FFT). In terms of storage, a single RLWE sample con-

tains the same information as 𝑁 LWE samples, but it only requires

2𝑁 log𝑞 bits instead of (𝑁 2 + 𝑁 ) log𝑞 bits. Therefore, Phase 1-3 of

the Pirouette protocol operates over R and relies on the hardness

of RLWE for security.

However, when storing a single element, an LWE sample is

smaller than an RLWE sample. Thus, the Pirouette protocol achieves

a low query size by transmitting an LWE sample, relying on the

hardness of LWE in this phase.

2.4 FHE primitives

The Pirouette protocol adopts a cross-scheme approach, leverag-

ing all of the BFV [17, 40], GSW [44], FHEW [39] and TFHE [27]

homomorphic encryption schemes, along with state-of the-art opti-

mizations [24, 29, 31, 42, 47, 48, 62, 69, 80]. This subsection outlines

the relevant FHE ciphertext types, basic operations and subroutines.

2.4.1 FHE ciphertexts. Previous PIR works such as [36, 50] use

LWE ciphertexts, and [19, 67, 70] use RLWE ciphertexts and the ring

variant of the Gentry-Sahai-Waters (GSW) [44] (RGSW) ciphertexts.

In contrast, this work incorporates all three types of ciphertexts,

additionally utilizing RLWE
′
ciphertexts to minimize noise growth.
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Let 𝑡 denote a plaintext modulus, 𝑞 ≫ 𝑡 denote a ciphertext

modulus, and Δ = ⌊𝑞/𝑡⌉ denote a scaling factor. Given a base 𝐵𝑞 , let

g = [1, 𝐵𝑞, 𝐵2𝑞, . . . , 𝐵ℓ−1𝑞 ] ∈ Zℓ𝑞 denote the gadget vector of length

ℓ = ⌊log𝐵 (𝑞)⌋ + 1, and G = diag(g⊺, g⊺) ∈ Z2ℓ×2𝑞 denote the gadget

matrix.

• LWE𝑛,𝑞s (𝑚) = (a, 𝑏) ∈ Z𝑛+1𝑞 denotes an LWE ciphertext

that satisfies

𝑏 = ⟨a, s⟩ +𝑚 + 𝑒 mod 𝑞,

where s ∈ Z𝑛 is the secret key,𝑚 ∈ Z𝑞 is (the encoding of)

a message, and 𝑒 ∈ Z is an error in a pre-determined error

distribution. If𝑚 encodes a message𝑚 ∈ Z𝑡 as𝑚 = Δ ·𝑚,

the ciphertext can also be denoted as LWE𝑛,𝑞s (𝑚,Δ).
• RLWE𝑁,𝑞

𝑠 (𝑚) = (𝑎, 𝑏) ∈ R2𝑞 denotes an RLWE ciphertext

that satisfies

𝑏 = 𝑎 · 𝑠 +𝑚 + 𝑒 mod 𝑞,

where 𝑠 ∈ R is the secret key,𝑚 ∈ R𝑞 is (the encoding of)

a message, and 𝑒 ∈ R is an error in a pre-determined error

distribution. If𝑚 encodes a message𝑚 ∈ R𝑡 as𝑚 = Δ ·𝑚,

the ciphertext can also be denoted as RLWE𝑁,𝑞
𝑠 (𝑚,Δ).

• RLWE′𝑁,𝑞
𝑠 (𝑚) = (a⊺, b⊺) ∈ Rℓ×2𝑞 denotes an RLWE

′
ci-

phertext that satisfies

b⊺ = a⊺ · 𝑠 +𝑚 · g⊺ + e⊺ mod 𝑞

where 𝑠 ∈ R is the secret key,𝑚 ∈ R𝑞 is (the encoding of)

a message, and 𝑒 ∈ R is an error in a pre-determined error

distribution. In other words,

RLWE′𝑁,𝑞
𝑠 (𝑚) =

[
RLWE𝑁,𝑞

𝑠 (𝑚)∥ RLWE𝑁,𝑞
𝑠 (𝐵𝑞𝑚)∥ · · ·

∥ RLWE𝑁,𝑞
𝑠 (𝐵ℓ−1𝑞 𝑚)

]
.

• RGSW𝑁,𝑞
𝑠 (𝑚) = (a⊺, b⊺) ∈ R2ℓ×2𝑞 denotes an RGSW ci-

phertext that satisfies

b⊺ = a⊺ · 𝑠 +𝑚 · G ·
[
−𝑠
1

]
+ e⊺ mod 𝑞

where 𝑚 ∈ {0,±𝑋 𝑣
: 𝑣 ∈ [0, 𝑁 − 1]} is a message en-

coded under the secret key 𝑠 ∈ R, and e ∈ R2ℓ𝑞 is an error

term in a pre-determined error distribution. In other words,

RGSW𝑁,𝑞
𝑠 (𝑚) =

[
RLWE′𝑁,𝑞

𝑠 (−𝑠 ·𝑚)∥ RLWE′𝑁,𝑞
𝑠 (𝑚)

]
.

2.4.2 FHE basic operations. Fully homomorphic encryption allows

computation over ciphertexts. The basic homomorphic operations

used in this work are as follows.

• Add denotes the homomorphic addition between (i) two

ciphertexts of the same type (e.g. LWE or RLWE) encrypted
under the same secret key, or (ii) one ciphertext and one

plaintext.

• Mult denotes the homomorphic multiplication between (i)

two ciphertexts encrypted under the same secret key, such

as two RLWE ciphertexts, one RGSW ciphertext and one

RLWE/RLWE′/RGSW ciphertext, or (ii) one ciphertext and

one plaintext.

• Aut𝜎𝑖 denotes the homomorphic automorphism that maps

RLWE(𝑚) to RLWE(𝜎𝑖 (𝑚)), where 𝜎𝑖 : 𝑚(𝑋 ) → 𝑚(𝑋 𝑖 )
denotes an automorphism in the Galois group Gal(K/Q).

• ModSwitch𝑞→𝑞′ denotes the modulus switching operation

(i) from LWE𝑛,𝑞s (𝑚) to LWE𝑛,𝑞
′

s (𝑚) for𝑚 ∈ Z𝑞 , or (ii) from
RLWE𝑁,𝑞

𝑠 (𝑚) to RLWE𝑁,𝑞′
𝑠 (𝑚) for𝑚 ∈ R𝑞 .

• BlindRotate(LWE(𝑚), bsk, acc) denotes the blind rotation

operation, which takes ct = (a, 𝑏) = LWE𝑛,𝑞s (𝑚), the boot-
strapping key bsk, and the accumulator acc = RLWE(𝑇 (𝑋 ))
as inputs. The typical LWE modulus 𝑞 is 𝑁 or 2𝑁 , and let

𝜑 (ct) := 𝑏 − ⟨a, s⟩. Then the output is

RLWE
(
𝑇 (𝑋 ) · 𝑋𝜑 (ct) mod 2𝑁

)
with a constant noise level independent of ct. For brevity,
the explicit reference to input bsk can be omitted.

• SampleExtract(RLWE(𝑚), 𝑘) → LWE(𝑚𝑘 ) denotes the sam-

ple extraction that takes RLWE𝑁,𝑄
𝑠 (𝑚) and an index 𝑘 ∈

[0, 𝑁 − 1] as inputs, and outputs LWE𝑁,𝑄
−→𝑠
(𝑚𝑘 ) where𝑚𝑘

is the 𝑘-th coefficient of𝑚 and
−→𝑠 is the coefficient vector

of the RLWE secret 𝑠 .

2.4.3 FHE subroutines. This work uses the following subroutines

built from basic operations in FHE.

• CMUX (RGSW(𝑏),RLWE(𝑚0),RLWE(𝑚1)) → RLWE(𝑚𝑏 )
denotes a homomorphic CMUX gate. Given an RGSW𝑁,𝑞

𝑠

encryption of a control bit 𝑏 ∈ {0, 1} and RLWE𝑁,𝑞
𝑠 en-

cryptions of 𝑚0,𝑚1 ∈ R𝑞 , CMUX returns an RLWE𝑁,𝑞
𝑠

encryption of

𝑚𝑏 =𝑚0 + 𝑏 (𝑚1 −𝑚0) ∈ R𝑞 .

• RingSwitch𝑁→𝑁1

denotes the ring switching operation

from RLWE𝑁,𝑞
𝑠 (𝑚) to RLWE𝑁1,𝑞

𝑠1 (𝜅 (𝑚)) for 𝑚 ∈ R𝑞 and

𝑁1 | 𝑁 , where

𝜅 : R𝑁,𝑞 → R𝑁1,𝑞

𝑁−1∑︁
𝑖=0

𝑓𝑖𝑋
𝑖 ↦→

𝑁1−1∑︁
𝑖=0

𝑓𝑖 ·𝑁 /𝑁1
𝑋 𝑖 .

The ring switching procedure is essentially a homomorphic

trace operation composed of automorphisms, as explained

in [19, 42].

• LWEtoRGSW (LWE(𝑏)) → RGSW(𝑏) converts an LWE𝑛,𝑞s
encryption of a bit 𝑏 ∈ {0, 1} into an RGSW ciphertext

RGSW𝑁,𝑄
𝑠 (𝑏). This operation is also known as circuit boot-

strapping [27], and the state-of-the-art construction [80]

includes basic operations such as blind rotations and ho-

momorphic automorphisms.

3 Building Blocks

3.1 High-precision homomorphic bit

decomposition

In homomorphic bit decomposition, an LWE ciphertext encoding

𝑚 ∈ Z
2
𝑘 is converted into 𝑘 LWE ciphertexts, each encoding a

single bit 𝑚𝑖 ∈ Z2 such that 𝑚 =
∑𝑘−1
𝑖=0 𝑚𝑖 · 2𝑖 . Conventional

homomorphic bit decomposition using the programmable boot-

strapping [25] is practically limited to a small precision of 𝜈 bits

(typically 4 or 5), requiring 𝜈 expensive BlindRotate operations

5
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to produce 𝜈 bit-decomposed ciphertexts. To address this, we in-

stantiate the multi-value bootstrapping [21], reducing the number

of BlindRotate operations to just one while maintaining minimal

noise growth. Specifically, we consider input LWE ciphertexts with

modulus 𝑞 = 2𝑁 and construct lookup tables similar to [78]. The re-

sulting 𝜈-bit decomposition is presented in Algorithm 1 and serves

as the base algorithm of our high-precision bit decomposition.

Algorithm 1 𝜈-bit decomposition for LWE with modulus 𝑞 = 2𝑁

Input: Ciphertext ct = LWE𝑛,𝑞=2𝑁s (𝑚, 𝑁 /2𝜈−1), where 𝑚 =∑𝜈−1
𝑖=0 𝑚𝑖 · 2𝑖

Output: Ciphertexts {LWE𝑁,𝑞=𝑄

S (𝑚𝑖 , 𝑄/2)}𝑖∈[0,𝜈−1]
1: function BasicBitDecomp(ct, 𝜈)
2: acc← RLWE𝑁,𝑄

𝑆
(𝑄
4
)

3: ct𝐵𝑅 ← BlindRotate(ct, acc) ⊲

ct𝐵𝑅 = RLWE(𝑄
4
· (−1)𝑚𝜈−1 · 𝑋𝜑 (ct) mod 𝑁 )

4: 𝑝 (𝜈−1) ← ∑𝑁−1
𝑗=0 𝑋 𝑗

5: ct(𝜈−1) ← Add
(
Mult

(
𝑝 (𝜈−1) , ct𝐵𝑅

)
,
𝑄
4

)
6: ct(𝜈−1)𝑜𝑢𝑡 ← SampleExtract(ct(𝜈−1) , 0)
7: ct′

𝐵𝑅
← 2 · ct𝐵𝑅

8: for 𝑖 ← 0 to 𝜈 − 2 do
9: 𝑝 (𝑖 ) ← ∑𝑁−1

𝑗=1 LSB𝑖+1 (𝑁 − 𝑗)𝑋 𝑗

10: ct(𝑖 ) ← Mult
(
𝑝 (𝑖 ) , ct′

𝐵𝑅

)
11: ct(𝑖 )𝑜𝑢𝑡 ← SampleExtract(ct(𝑖 ) , 0)
12: end for

13: return {ct(𝑖 )𝑜𝑢𝑡 }𝑖∈[0,𝜈−1]
14: end function

To further extend the decomposition to 𝑘 = 𝑑 · 𝜈 bits, we apply

the digit decomposition method from [62] with a 𝜈-bit base, first

breaking a 𝑘-bit ciphertext into 𝑑 ciphertexts of 𝜈 bits. For the sake

of completeness, we recall the signature of [62, Algorithm 4] in

Algorithm 2. This step requires 2 · 𝑑 BlindRotate operations, and
the resulting intermediate ciphertexts are used as inputs to our base

bit decomposition algorithm, enabling efficient high-precision bit

decomposition. The complete algorithm is presented in Algorithm 3.

Notably, our algorithm is more efficient than directly applying

the digit decomposition method in [62] with a one-bit base. For bit

decomposition of 𝑘 = 𝑑 · 𝜈 bits, our method requires 3 · 𝑑 ≈ 3𝑘
5

BlindRotate operations while the one-bit base method requires 2𝑘

BlindRotate operations.

Algorithm 2 𝜈-bit digit decomposition

Input: Ciphertext ct = LWE𝑛,𝑞s (𝑚,𝑞/2𝑑 ·𝜈 ), where𝑚 =
∑𝑑−1
𝑖=0 𝑚𝑖 ·

2
𝑑 ·𝑖

and 𝑞 = 2
𝑘
for some 𝑘 ∈ Z

Output: Ciphertexts {LWE𝑛,𝑄=2𝑁

S (𝑚𝑖 , 𝑄/2𝜈 )}𝑖∈[0,𝑑−1]

3.2 Construction of 𝜈-bit selectors

A homomorphic selector selects messages based on encrypted con-

trol bits. Given two messages𝑚0,𝑚1 and an encrypted control bit

Algorithm 3 (𝑑 · 𝜈)-bit homomorphic bit decomposition

Input: Ciphertext ct = LWE𝑛,𝑞s (𝑚,𝑞/2𝑑 ·𝜈 ), where 𝑚 =∑𝑑 ·𝜈−1
𝑖=0 𝑚𝑖 · 2𝑖 and 𝑞/2(𝑑−1) ·𝜈 = 2𝑁

Output: Ciphertexts {LWE𝑁,𝑄

S (𝑚𝑖 , 𝑄/2)}𝑖∈[0,𝑑 ·𝜈−1]
1: function BitDecomp(ct, 𝑑, 𝜈)
2: {ct𝑘 }𝑘∈[𝑑 ] ← DigitDecomp(𝑞, 2𝑁, ct) ⊲ [62, Algorithm

4]

3: return {BasicBitDecomp(ct𝑘 , 𝜈)}𝑘∈[𝑑 ]
4: end function

Enc(𝑏), it homomorphically computes

Enc(𝑚𝑏 ) =𝑚0 + (𝑚1 −𝑚0) · Enc(𝑏). (1)

This concept extends to a 𝜈-bit selector, which operates on 2
𝜈
mes-

sages {𝑚𝑖 }𝑖∈[0,2𝜈−1] and𝜈 encrypted control bits {Ẽnc(𝑏 𝑗 )} 𝑗∈[0,𝜈−1] .
The selector outputs an encryption of 𝑚𝑏 where the index 𝑏 =∑

𝑗 𝑏 𝑗2
𝑗
. This requires generating 2

𝜈
ciphertexts {Enc(𝛿𝑖,𝑏 )}𝑖∈[0,2𝜈−1]

from the encrypted control bits and homomorphically computing

Enc(𝑚𝑏 ) =𝑚0 +
2
𝜈−1∑︁
𝑖=1

(𝑚𝑖 −𝑚0) · Enc(𝛿𝑖,𝑏 ) . (2)

In the Pirouette instantiation of the selector, messages𝑚𝑖 are

elements in R𝑞 and Enc(·) is the RLWE
′
encryption. This ensures

the noise growth during the computation of (1) and (2) remains low,

increasing only logarithmic in 𝑞. As a remark, the 𝜈-bit selector

in (2) is conceptually equivalent to the 2
𝜈
-ary CMUX gate in [52,

53], except that the CMUX gate uses RGSW ciphertexts to select

RLWE ciphertexts and our selector uses RLWE
′
ciphertexts to select

unencrypted elements in R𝑞 .
Furthermore, Pirouette instantiates Ẽnc() as RGSW encryp-

tions. The naiveway to generate 2
𝜈
ciphertexts {RLWE′ (𝛿𝑖,𝑏 )}𝑖∈[0,2𝜈−1]

from control bits {RGSW(𝑏 𝑗 )} 𝑗∈[0,𝜈−1] is to compute

𝜈−1∏
𝑗=0

(
RGSW(𝑏 𝑗 ) − 𝑖 𝑗

)
· RLWE′ (1), for all 𝑖 ∈ [0, 2𝜈 − 1],

where 𝑖 𝑗 is the bit decomposition of 𝑖 such that 𝑖 =
∑

𝑗 𝑖 𝑗2
𝑗
. However,

this method requires 2
𝜈 · 𝜈 RGSW-RLWE′ multiplications, making

it computationally expensive. To optimize this process, we reuse

intermediate results for different 𝑖 by constructing a binary tree,

where the leaves are desired ciphertexts {RLWE′ (𝛿𝑖,𝑏 )}𝑖∈[0,2𝜈−1]
and the inner nodes store intermediate results. As such, our opti-

mization instantiates the homomorphic traversal algorithm in [31]

with RLWE
′
ciphertexts.

Our tree starts from the root node, RLWE′ (1), and follows a

branching process. Each branching step takes a parent nodeRLWE′ (𝑛)
and a control bit RGSW(𝑏𝑖 ) as inputs, and outputs the following

left child LC and right child RC

LC(𝑛,𝑏𝑖 ) = Mult(RGSW(𝑏𝑖 ),RLWE′ (𝑛)) = RLWE′ (𝑏𝑖 · 𝑛)
RC(𝑛,𝑏𝑖 ) = 𝑛 − LC(𝑛,𝑏𝑖 ).

(3)

The resulting procedure requires only (2𝜈 − 1) RGSW-RLWE′ mul-

tiplications – just 1/𝜈 of the naive approach. We further present an

example in Figure 2 for illustration purposes.
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Figure 2: The construction of {RLWE′ (𝛿𝑖,𝑏 )}𝑖∈[0,23−1] from
{RGSW(𝑏𝑖 )}𝑖∈[0,2] for 𝑏2 = 0, 𝑏1 = 1, 𝑏0 = 0. RLWE′ ciphertexts
are represented as grey squares, while RGSW ciphertexts are

represented as yellow circles. The root node is RLWE′ (1);
given the controller bit RGSW(𝑏2 = 0), the left child LC(1, 0)
and right child RC(1, 0) are derived following the branching

algorithm (3). The process continues recursively, where each

node is generated from its parent node and the corresponding

control bit at that level.

4 Protocol

This section presents the Pirouette protocol and its extension to

querying encrypted databases.

4.1 The Pirouette protocol

At a high level, the Pirouette protocol builds upon the record-

retrieval framework established in [19, 41, 67, 70], particularly uti-

lizing the database structure and response compression technique

from [19]. It consists of three phases: first-dimension processing,

folding and rotation, each operating on independent RLWE and

RGSW ciphertexts.

Unlike prior works [19, 67, 70] that compress these RLWE and

RGSW ciphertexts into a query, Pirouette simplifies the query

process so that the querier only needs to send the LWE ciphertext

of the queried index. The server then homomorphically generates

the necessary input ciphertexts for different phases while keeping

noise growth minimal. Additionally, our approach removes the

small database record limitation in [19] by efficiently generating

and using RLWE
′
ciphertexts for the first-dimension processing

phase.

Below we present the Pirouette protocol.

Setup. For a given security parameter 𝜆, the cryptographic and

PIR-related parameters are defined as shown in Table 1. Each plain-

text element in R𝑁,𝑝 encodes 2
𝜈3
records, so a size-N database is

represented as
N
2
𝜈
3
:= 2

𝜈1+𝜈2
elements in the ring R𝑁,𝑝 . In addi-

tion to preprocessing the database, the setup algorithm samples

the collection of secret keys sk = {s ∈ Z𝑛, 𝑠 ∈ R𝑁 , 𝑠1 ∈ R𝑁1
}

and generates evaluation keys evk required for the key-switching

operations. Under the standard circular security assumption, the

evaluation key does not leak information about the secret key.

Query. Using the LWE secret key s ∈ Z𝑛 , the querier generates

qu = LWE𝑛,𝑞s (idx)

for the desired index idx ∈ [N].

Answer. Using the evaluation keys evk, the server homomorphi-

cally expands the query qu, referred to as Phase 0. Specifically,

the server computes {c̃t𝑘 }𝑘∈[0,log(N)−1] ← BitDecomp(qu) using
Algorithm 3, with appropriate parameters for the BasicBitDecomp
subroutine. Then the server performs

ct𝑘 ← LWEtoRGSW(c̃t𝑘 ),∀𝑘 ∈ [0, log(N) − 1]
using the conversion method in [80] along with necessary modulus

switching operations. Furthermore, we use the first 𝜈1 ciphertexts

{ct𝑘 }𝑘∈[0,𝜈1−1] to build a 𝜈1-bit selector {ct′𝑖 }𝑖∈[0,2𝜈1−1] that are
RLWE

′
ciphertexts.

Let db = {db𝑖 ∈ R𝑁,𝑝 }𝑖∈[0,2𝜈1+𝜈2−1] denote the preprocessed

database, wherewe define
®db𝑖 := [db𝑖 ·2𝜈2 , db𝑖 ·2𝜈2+1, . . . , db𝑖 ·2𝜈2+2𝜈2−1].

As in [19], the server then proceeds with the following computa-

tions using db and the output from Phase 0:

(1) First dimension: compute

[ct(1)
0

, . . . , ct(1)
2
𝜈
2−1] ←

2
𝜈
1−1∑︁
𝑖=0

Mult( ®db𝑖 , ct′𝑖 ),

where Mult( ®db𝑖 , ct′𝑖 ) is a 2
𝜈2
-array of RLWE ciphertexts,

and the 𝑗-th RLWE ciphertext is derived from the mul-

tiplication between the plaintext
®db𝑖 [ 𝑗] and the RLWE

′

ciphertext ct′
𝑖
.

(2) Folding: Let ct(2)
0, 𝑗

= ct(1)
𝑗

,∀𝑗 ∈ [0, 2𝜈2 − 1]. Then for each

𝑟 ∈ [𝜈2] and 𝑗 ∈ [0, 2𝜈2−𝑟 ], compute

ct(2)
𝑟,𝑗
← CMUX

(
ct𝜈1+𝑟 , ct

(2)
𝑟−1, 𝑗 , ct

(2)
𝑟−1, 𝑗+2𝜈2−𝑟

)
.

(3) Rotation: Let ct(3)
0

= ct(2)
𝜈2,0

. Then for each 𝑟 ∈ [𝜈3], compute

ct(3)𝑟 ← CMUX
(
ct𝜈1+𝜈2+𝑟 , ct

(3)
𝑟−1, 𝑋

−2𝜈3−𝑟 · ct(3)
𝑟−1

)
.

The final output ct(3)𝜈3 ∈ R
2

𝑁,𝑄
is an RLWE ciphertext, and the

server further performs ModSwitch𝑄→𝑄1
and RingSwitch𝑁→𝑁1

to obtain ans ∈ R2
𝑁1,𝑄1

.

Extract. Using the RLWE secret key 𝑠1 ∈ R𝑁1
, the querier decrypts

the received ciphertext ans to retrieve the desired record in R𝑁1,𝑝 .

Table 1: Setup parameters in Pirouette

Parameter Meaning

𝑛 LWE dimension

𝑞 LWE modulus for query

𝑁 RLWE dimension during computation

𝑄 RLWE modulus during computation

𝑁1 RLWE dimension for response

𝑄1 RLWE modulus for response

N total number of records in the database

R𝑁1,𝑝 a single database record

R𝑁,𝑝 plaintext ring element that packs
𝑁
𝑁1

records

𝜈1 bit-length of the first dimension

𝜈2 folding dimension, satisfying 𝜈1 + 𝜈2 = log (N · 𝑁1

𝑁
)

𝜈3 rotation dimension log
𝑁
𝑁1

7
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Furthermore, we describe the correctness and security of the

Pirouette protocol.

Correctness. Recall that (R)LWE samples include noise compo-

nents, whose variance may grow when combining or transforming

them. Hence, the overall correctness of any algorithm that outputs

a (R)LWE ciphertext c will be characterized on the one hand, by

the soundness of the approach and on the other hand by a failure

probability 𝜖 . This probability describes the likelihood that, after

decrypting and decoding c, we obtain a result that is different from

the expected message. Hence, once soundness is established, overall

correctness will depend on specific parameter choices, except for

pathological cases.

As Pirouette leverages a set of well-established algorithms, its

correctness hinges on the correctness of the individual components,

sometimes referred to atomic patterns [10]. The formulae giving

the failure probabilities of the building blocks used can be found

in their respective works. Specifically: [62] for DigitDecomp, [78]
for the analysis of BasicBitDecomp, [80] for LWEtoRGSW, [19]

for Respire and e.g. [25, 38] for the correctness of general FHE

primitives such as blind-rotation. During the evaluation, we deter-

mine a set of parameters such that the overall failure probability is

sufficiently low. In practice, a common choice of 𝜖 is 𝜖 ≤ 2
−40

.

Security. In line with previous works [1, 4, 5, 19, 36, 41, 49, 50, 59,

63, 67, 68, 70, 75] on PIR, our threat model considers an honest-but-

curious server, which follows the protocol correctly but tries to

deduce information from clients’ inputs. To reach the security goal,

the client encrypts its query before sending it to the server, which

performs homomorphic computations on ciphertexts. As such, the

server has access to the LWE query, RLWE ciphertexts generated

during the evaluation, and public evaluation keys evk. The client’s
security is guaranteed by the hardness of LWE and RLWE problems

along with the circular security assumption, commonly adopted in

most FHE-based applications including the previous PIR schemes.

4.2 Extending Pirouette to encrypted

databases

Pirouette can be extended to support private queries over en-

crypted databases, where a data owner outsources encrypted data

to a public cloud server. In this setting, the cloud can respond to

queries from authenticated clients without learning the underlying

data or the query index.

Precisely, the plaintext database structure is the same as Pirouette:

a size-N database is represented as
N
2
𝜈
3
:= 2

𝜈1+𝜈2
elements in the

ring R𝑁,𝑝 . The server however stores the RLWE encryptions of

these polynomials, ensuring data confidentiality from the server.

TheQuery and Extract procedures are identical to Pirouette; thus,
we only detail the Answer procedure performed below.

Answer. Using the evaluation keys evk, the server homomorphi-

cally expands the query qu, referred to as Phase 0. Specifically,

the server computes {c̃t𝑘 }𝑘∈[0,log(N)−1] ← BitDecomp(qu) using
Algorithm 3, with appropriate parameters for the BasicBitDecomp
subroutine. Then the server performs

ct𝑘 ← LWEtoRGSW(c̃t𝑘 ),∀𝑘 ∈ [0, log(N) − 1]

using the conversion method in [80] along with necessary modulus

switching operations.

Let db = {db𝑖 ∈ R𝑁,𝑝 }𝑖∈[0,2𝜈1+𝜈2−1] denote the preprocessed

database, and ct = {ct𝑖 = RLWE(db𝑖 )}𝑖∈[0,2𝜈1+𝜈2−1] denoted the

encrypted database stored in the server, which performs the follow-

ing computation using ct and the output from Phase 0:

(1) Folding: Let ct(1)
0, 𝑗

= ct𝑗 ,∀𝑗 ∈ [0, 2𝜈1+𝜈2 − 1]. Then for each

𝑟 ∈ [𝜈1 + 𝜈2] and 𝑗 ∈ [0, 2𝜈1+𝜈2−𝑟 ], compute

ct(1)
𝑟, 𝑗
← CMUX

(
ct𝜈1+𝜈2+𝑟 , ct

(1)
𝑟−1, 𝑗 , ct

(1)
𝑟−1, 𝑗+2𝜈1+𝜈2−𝑟

)
.

(2) Rotation: Let ct(2)
0

= ct(1)
𝜈2,0

. Then for each 𝑟 ∈ [𝜈3], compute

ct(2)𝑟 ← CMUX
(
ct𝜈1+𝜈2+𝑟 , ct

(2)
𝑟−1, 𝑋

−2𝜈3−𝑟 · ct(2)
𝑟−1

)
.

The final output ct(2)𝜈3 ∈ R
2

𝑁,𝑄
is an RLWE ciphertext, and the

server further performs ModSwitch𝑄→𝑄1
and RingSwitch𝑁→𝑁1

to obtain ans ∈ R2
𝑁1,𝑄1

.

5 Implementation and Evaluation

In this section, we evaluate Pirouette and compare it to Respire

and Respire in combination with a transciphering approach (T-

Respire). Our code is available as an uploaded artifact under Addi-

tional Materials with a README file that details installation and

benchmarking instructions.

5.1 Parameter selection and experimental setup

We implement our approach by relying on the OpenFHE library

and manually optimized routines in time-critical sections. We run

all experiments using an Intel(R) Xeon(R) Gold 6248R CPU with 512

GB of RAM, and give results for both the sequential and parallel

setting over 16 cores.

We optimize parameters separately for each sub-procedure used

by Pirouette, as recommended in [10], in order to provide a failure

probability of at most 2
−40

and a standard security parameter of

𝜆 = 128 bits. The security of our parameters was estimated through

Albrecht et al.’s lattice estimator [3]. We note that we rely on binary

keys i.e. the coefficients are sampled uniformly from {0, 1}.
Table 2 gives the relevant parameters for the digit decomposition

and subsequent bit decomposition. In Table 2, we specify several

values of the LWE dimension 𝑛. Indeed, the bit decomposition may

output LWE samples with a different dimension and modulus than

the input, through the use of modulus- and key-switching. We

exploit this fact to improve the performance of the subsequent

LWE to RGSW conversion, as a smaller LWE dimension 𝑛 has a

direct impact on the computational complexity of the BlindRotate
procedure which is linear in 𝑛 (see [26]).

Next, Table 3 describes the parameters employed for the scheme

switching step. The values 𝐵RGSW, ℓRGSW) denote the gadget basis
and gadget length for the resulting RGSW samples. Furthermore,

we note that ℓRGSW ≠
⌈
log𝐵RGSW

(𝑄)
⌉
+1. This is due to the fact that

we rely on an approximate gadget [25, 80] to improve performance.

Finally, we construct our 𝜈1-bit selectors with a basis of 𝐵 = 2
4
and

ℓ = 2 digits, and give the output parameters in Table 4 together

with the values of 𝜈𝑖 .
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Table 2: Parameters employed for bit-decomposition

Parameter 𝑛𝑖𝑛 𝑛𝑜𝑢𝑡 𝑁 log
2
(𝑞𝑖𝑛) log

2
(𝑞𝑜𝑢𝑡 ) log

2
(𝑄) log

2
(𝑄𝑘𝑠𝑘 ) 𝐵 𝐵𝑘𝑠𝑘 𝜎2

Value 1300 600 2
11

32 12 56 42 2
14

2
3

3.192

Table 3: Parameters employed for scheme-switching and subsequent evaluation of Phase 1 - 3. Note that during Phase 1, we

modulus switch to 𝑄 = 268496897 · 268460033 to exploit the CRT and decrease the number of modular additions/multiplications

Parameter 𝑛 𝑁 log
2
(𝑞) log

2
(𝑄) 𝐵 𝐵𝑟𝑔𝑠𝑤 ℓ𝑟𝑔𝑠𝑤 𝜎2

Value 512 2
11

12 56 2
8

2
4

8 3.192

Table 4: Parameters of the response and Respire dimensions.

Note that the values of 𝜈2 depend on each database size.

Parameter 𝑁1 𝑄1 𝜈1 𝜈2 𝜈3

Value 512 2
20

11 {7, 9, 12} 2

We note that we instantiate the PRNG query compression using

AES-CTR as described in [72]. Likewise, we use AES-CTR for our

transciphering benchmarks. We motivate this choice by observing

that both LWE and AES-CTR are unauthenticated and AES-CTR

allows for block-wise parallel transciphering.

5.2 Pirouette performance and benchmarks

We compare Pirouette to the combination of a state-of-the-art

transciphering method [9, 14] and Respire which we denote by

T-Respire and give an overview of our results in Table 5 and Table 6.

Furthermore, we give a breakdown of the timings in Figure 3.

We begin the discussion by observing that Pirouette has a

large overhead in terms of offline communication. Our approach

performs several blind-rotations which require blind-rotation keys.

It is possible to only use the same key for each one, however this

would come with a degradation of performance as the basis parame-

ter 𝐿 would need to be unified. Furthermore, during the execution of

Pirouette and Respire, most memory is consumed by the database

itself: as the database is known ahead of time, we apply number

theoretic transforms on each polynomial record. Unlike a DFT, the

NTT is in general not norm preserving, hence the transformed

records are significantly larger and e.g. the 8GB database consumes

128GB of RAM after this transformation.

We note that the best computation time and throughput are

given by Respire, which is not surprising as the least amount of

work is performed. Next is the parallelized version of Pirouette

followed by T-Respire and Pirouettewithout parallelization which
show similar results. Figure 3 visualizes the benefit obtained from

parallelization. In practice, a majority of the time is spent in the

LWEtoRGSW step, which needs to be repeated for every bit in the

index. However, since this conversion step is independent between

bits, it can be trivially parallelized obtaining major speedups. We

observe that parallelization of BasicBitDecomp has a minor impact

which is attributable to the fact that it is performed proportionally to

the number of digits to be decomposed, in our cases between 4 and

5 times. In the case of DigitDecomp, any variations in timings are

not due to the parallelization, but rather noise in the environment,

as the algorithm cannot be paralellized in a trivial manner.

Finally, Table 7 demonstrates the major benefit of our approach.

In all cases, Pirouette’s query size is the smallest by a factor of

100-400 when compared to respire, but also by a factor of 4-9 if we

combine respire and the transciphering approach. We stress that

in Pirouette’s case, 32 out of the 36B are dedicated to the seed of

the PRNG as we also choose a random IV. If we decide to always

use an IV equal to zero, the query size drops further to 20B.

5.3 Performance evaluation of Pirouette

extensions for encrypted databases

Weevaluate the option of applying Pirouette on encrypted databases

and give an overview of the results in Table 8. We note that we rely

on timings obtained from the sequential evaluation of Pirouette

in Subsection 5.2 to determine the timings, and do not implement

this approach.

We justify this extrapolation as follows.We observe that the noise

growth will, in fact be slower than for an unencrypted database: in

our setting CMUX only induces an additive noise growth, whereas

Respire’s Phase 1 the noise grows multiplicatively w.r.t. the norm

of the polynomials that encode our database. Furthermore, the

depth of subsequent CMUX performed before reaching Phase 3

corresponds to 𝜈1 + 𝜈2, compared to the unencrypted setting in

which the selector construction and Phase 2 already require a depth

of 𝜈1 + 𝜈2 and the noise growth of Phase 1 still needs to be taken

into account. Finally, it can be seen that the performance in the

encrypted database case is dominated by CMUX and the timings in

Table 8 are computed by determining the time necessary to perform

a single CMUX and scale this value by the number of products

necessary. For the timings in the parallelized setting, we note that

in the folding stage for a fixed 𝑟 all CMUXes may be computed

independently. Note that the timings obtained in this manner are

in fact an upper bound of the true performance, as more optimised

parameters may be determined that take the slower noise growth

into account.

Briefly, Table 8 implies that without parallelization, performing

the queries will quickly become too inefficient, with timings ranging

from 3 minutes to 1.5 hours. On the other hand, parallelizing the

process yields more practical timings ranging from 16 seconds to

less than 2 minutes.
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Table 5: Performance overview of Respire, T-Respire and T-Respire with parallelization (32 cores), using database sizes identical

as in [19].

Database Metric

Respire T-Respire T-Respire (par.)

2
20 × 256 B Offline Comm. 3.9MB 91MB 91MB

(256 MB) Query Size 4.1 KB 144B 144B

Response Size 2.0 KB 2.0 KB 2.0KB

Computation 1.5 s 217s 15s

Throughput 170MB/s 1.1MB/s 17MB/s
2
22 × 256 B Offline Comm. 3.9 MB 91MB 91MB

(1 GB) Query Size 7.7 KB 208B 208B

Response Size 2.0 KB 2.0 KB 2.0KB

Computation 4s 296s 22s

Throughput 256MB/s 3.4MB/s 46.2MB/s
2
25 × 256 B Offline Comm. 3.9 MB 91MB 91GB

(8 GB) Query Size 14.8 KB 336B 336B

Response Size 2 KB 2 KB 2KB

Computation 29.9 s 486s 59.8s

Throughput 273MB/s 16MB/s 136MB/s

Table 6: Overview of Pirouette performance, using database sizes identical as in [19] and 32-core parallelization.

Database Metric

Pirouette Pirouette (par. Phase 0) Pirouette (Full par.)

2
20 × 256 B Offline Comm. 1.2GB

(256 MB) Query Size 36B

Response Size 2.5KB

Computation 19s 8s 7s

Throughput 13MB/s 32MB/s 36MB/s
2
22 × 256 B Offline Comm. 1.2GB

(1 GB) Query Size 36B

Response Size 2.5KB

Computation 26s 12s 9s

Throughput 39MB/s 85MB/s 109MB/s
2
25 × 256 B Offline Comm. 1.2GB

(8 GB) Query Size 36B

Response Size 2.5KB

Computation 60s 51s 14s

Throughput 137MB/s 150MB/s 585MB/s

Table 7: Query size reduction factor using Pirouette

Database Size Respire T-Respire

256M 116x 4x

1GB 219x 5.7x

8GB 420x 9.3x

6 Conclusion

In this work we introduce Pirouette, a PIR protocol, that improves

on Respire [19] by significantly decreasing the query size. For a

database of 2
25

records, the query size is just 36B. Moreover, if the

query seed is set once by the server, then the query size drops to

Table 8: Extrapolated performance of Pirouette on en-

crypted databases. The parallelized setting uses 32 cores.

Database size 256MB 1GB 8GB

Time (s.) 202 788 6177

Time (s.) (par.) 16 42 101

only 32 bits, resulting in an exceptionally low expansion factor of

32/25 = 1.28.

However, certain aspects of the approach may be further im-

proved on. Specifically, we note thatmany subprocedures in Pirouette

utilize the blind-rotation technique first described in [26]. Recently,
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Figure 3: Breakdown of the time spent in Phase 0 of Pirouette for database sizes 256MB and 8GB

several works [15, 54] introduced blind-rotation approaches that

rely internally on the NTRU scheme. The primary advantage of

these methods is the superior performance in terms of time com-

plexity, which is roughly double that of conventional blind-rotation

algorithms. By incorporating these methods into Pirouette, the

overall computation time may be decreased substantially, which

we leave as future work.
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