
Efficient SPA Countermeasures using Redundant
Number Representation with Application to

ML-KEM

Rishub Nagpal1, Vedad Hadžić2, Robert Primas2, and Stefan Mangard1

1 Graz University of Technology, Graz, Austria, firstname.lastname@tugraz.at
2 Intel Labs, Portland, OR, United States, firstname.lastname@intel.com

Keywords: Power Analysis · Countermeasures · SASCA · ML-KEM

Abstract. Simple power analysis (SPA) attacks and their extensions,
profiled and soft-analytical side-channel attacks (SASCA), represent a
significant threat to the security of cryptographic devices and remain
among the most powerful classes of passive side-channel attacks. In this
work, we analyze how numeric representations of secrets can affect the
amount of exploitable information leakage available to the adversary.
We present an analysis of how mutual information changes as a result
of the integer ring size relative to the machine word-size. Furthermore,
we study the Redundant Number Representation (RNR) countermeasure
and show that its application to ML-KEM can resist the most powerful
SASCA attacks and provides a low-cost alternative to shuffling. We eval-
uate the performance of RNR-ML-KEM with both simulated and prac-
tical SASCA experiments on the ARM Cortex-M4 based on a worst-case
attack methodology. We show that RNR-ML-KEM sufficiently renders
these attacks ineffective. Finally, we evaluate the performance of the
RNR-ML-KEM NTT and INTT and show that SPA security can be
achieved with a 62.8% overhead for the NTT and 0% overhead for the
INTT relative to the ARM Cortex-M4 reference implementation used.

1 Introduction

In 2022, the National Institute of Standards and Technology (NIST) selected
the CRYSTALS-Kyber [Ava+21] and CRYSTALS-Dilithium [Duc+18] to serve
as the basis for new PQC standards and these algorithms were standardized as
FIPS203 [ST24b] under the name ML-KEM and FIPS204 [ST24a] (ML-DSA) in
August 2024.

Although these algorithms are thought to be resistant against quantum crypt-
analysis, side-channel analysis (SCA) attacks still pose a threat to the security
of their implementations. These attacks exploit information leakage about secret
data from physical side-effects such as the power consumption, timing or elec-
tromagnetic radiation of a device computing a cryptographic algorithm [KJJ99;
Koc96; QS01]. Power SCA attacks can be categorized as either simple power
analysis (SPA), where an adversary inspects a small number of measurements

of leaky functions (“traces”), or differential power analysis (DPA), where an
adversary has access to a large number of traces. The discovery of SCA has
motivated the design of countermeasures intended to minimize the amount of
information leakage from these side-channels by e.g., increasing the number of
traces needed to extract secret information. Countermeasures against DPA such
as masking, where sensitive variables are split into t+ 1 randomized shares, are
well-studied and proven effective [ISW03; DDF19; Cha+99]. In contrast, devel-
oping countermeasures against SPA attacks is still a challenging topic. Profiled or
template attacks [CRR02] and their extensions [SLP05; CK13; CK14; Cas+23;
SA08; Ren+11; Bro+19; VGS14; Mas+23] are a particularly strong class of SPA
attacks which use powerful statistical models of device leakage to perform key-
recovery. These attacks can circumvent masking [BS21] and can recover secrets
with a single attack trace cf. [CRR02]. Countermeasures against SPA typically
employ masking and randomize or shuffle the order of operations between ex-
ecutions to make it more difficult to perform profiling, but are costly in terms
of performance [Vey+12]. SPA has been shown to be effective against several
cryptographic algorithms such as the AES, RSA, ECC and post-quantum can-
didates including ML-KEM and Dilithium [Bol+19; KPP20; Ngo+21; Ham+21;
Her+23a; Str+23; HME24; Qia+24; KPP20; Bro+24].

Lattice-based cryptography is particularly susceptible to a more optimal form
of template attacks known as Soft-Analytical Side-Channel Attacks (SASCA)
[VGS14]. These attacks exploit knowledge of device operations, combining leak-
ages from multiple points in a trace into a factor graph encoding. An inference
method like loopy belief propagation (BP) then computes posterior probabilities
of secret-key variables based on these leakages. The Number Theoretic Transform
(NTT) operation, which is essential to lattice-based cryptography efficiently, is
susceptible to SASCA [PPM17; PP19; Her+23a] and shuffling countermeasures
are particularly costly [Rav+20]. Hence, it is important to find SPA countermea-
sures for the NTT which are cheap to implement and effective against powerful
attacks such as SASCA.

Related Works. Zijlstra et al. proposed applying Redundant Number Represen-
tation (RNR) to general RLWE public-key cryptographic schemes [ZBT19]. This
technique randomizes secret-key coefficients with multiples of the group order
to hide their values. Later, Heinz et al. showed that this technique is effective
against DPA and fault attacks against ML-KEM [HP23] when using a large re-
dundancy factor. Recently, Tosun et al. observed side-channel distinguishers in
the distribution of Hamming weights due to the signed modular reduction arith-
metic used in lattice-based cryptoschemes and utilized these distinguishers to
enhance DPA attacks on both ML-KEM and ML-DSA [TMS24]. Although not
studied by Tosun et al., these distinguishers have huge implications on the ef-
fectiveness of SPA attacks. Previous SPA attacks on lattice cryptography in the
literature may have unknowingly benefited from these distinguishers; therefore,
it is essential to thoroughly study the impact these distinguishers have on SPA
attacks.

2

Our Contributions. In this paper, we study the effectiveness of RNR against
SPA attacks to better understand how this technique can reduce the amount
of information leakage available to an adversary. In particular, we compare in-
formation leakage between different machine representations of data and show
that there exists optimal numerical representations for storing secrets. We apply
our findings to ML-KEM and show that the RNR-protected ML-KEM NTT-1 is
resistant to state-of-the-art SASCA attacks in both simulation and practice. Our
RNR-ML-KEM implementation incurs a 62.8% performance overhead to com-
pute the NTT and 0% overhead to compute the INTT on the ARM Cortex-M4.

Concretely:

– We analyze the power side-channel leakage of arbitrary integer rings which
are smaller than the machine-word size of a computing device and quantify
the information leakage from this discrepancy.

– We analyze the Redundant Number Representation (RNR) countermeasure,
which reduces the total information leakage by replacing a given integer ring
with a larger, harmonic ring which contains multiples of the original.

– In particular, we create a RNR implementation of ML-KEM and demon-
strate its effectiveness against SASCAs in simulation and on a ARM Cortex-
M4 embedded target.

– We then show that one of the best known SPA attack on ML-KEM, the
k-trace attack of Hamburg et al. [Ham+21], is rendered ineffective on RNR-
ML-KEM - without the need for additional countermeasures such as shuf-
fling.

– We open-source our implementations, datasets and additional scripts for the
broader SCA research community.3

2 Preliminaries

We provide a brief review of the ML-KEM algorithm and the Number Theoretic
Transform. Following, we go into detail on modular arithmetic and the algo-
rithms commonly implemented. Finally, we discuss Soft-Analytical Side-channel
Attacks implemented with belief propagation and metrics to evaluate the at-
tacks.

2.1 Lattice Cryptography

We briefly introduce the Module Learning with Errors (M-LWE) hard problem
proposed by Langlois and Stehlé [LS15], which merges the LWE [Reg05] and
Ring-LWE [LPR10] hard problems.

Let Zq be an integer ring modulo q and Rq = Zq [x] /(x
n+1) be the polyno-

mial ring of polynomials modulo xn+1 for some degree n. Further, let βη denote
the centered binomial distribution with parameter η, and U denote the uniform
distribution over Zq. Then, the Module-LWE problem is formally defined as
3 https://github.com/rishubn/rnr-kyber-spa

3

https://github.com/rishubn/rnr-kyber-spa

Algorithm 1 ML-KEM.PKE KeyGen [ST24b]
Output: pk, sk

1: (ρ, σ)← SHA3-512({0, 1, . . . , 255}32)
2: Â← SamplePolyMatrix(ρ)
3: s← SamplePolyCBDη1

(SHAKE-256η1(σ, 0))
4: e← SamplePolyCBDη1

(SHAKE-256η1(σ, 1))
5: ŝ← NTT(s)
6: ê← NTT(e)
7: t̂← Â ◦ ŝ+ ê
8: return pk = (t̂, ρ), sk = ŝ

Algorithm 2 ML-KEM.PKE Encryption [ST24b]
Input: pk = (t̂, ρ),message m ∈ Rq, seed r ∈ {0, 1, . . . , 255}32
Output: ciphertext c = (c1, c2)

1: Â← SamplePolyMatrix(ρ)
2: ŷ ← NTT(SamplePolyCBDη1

(SHAKE-256η1(r, 0)))
3: e1 ← SamplePolyCBDη1

(SHAKE-256η1(r, 1))
4: e2 ← SamplePolyCBDη2

(SHAKE-256η2(r, 2))

5: u← NTT-1(ÂT ◦ ŷ) + e1
6: v ← NTT-1(t̂T ◦ ŷ) + e2 +m
7: return c = (Compress(u), Compress(v))

(A, b) = ATs+ e, (1)

with s being the secret-key, A the public matrix sampled from U and e
an error vector sampled from βη. The decisional M-LWE problem asserts that
the tuple (A, b) is indistiguishable from a random sampling. The Kyber al-
gorithm [Bos+18] is a public-key encryption (PKE) scheme which is now stan-
dardized as ML-KEM. Kyber is converted into a KEM via the Fujisaki-Okamoto
(FO) transform [FO13; HHK17] and is conjectured to be IND-CCA2 secure. The
polynomial ring in ML-KEM is parameterized with q = 3329 and n = 256 for
all parameter sets. We give descriptions for the ML-KEM.PKE KeyGen (Algo-
rithm 1), the ML-KEM.PKE Encryption (Algorithm 2) and the ML-KEM.PKE
Decryption (Algorithm 3) algorithms and refer the reader to the ML-KEM spec-
ification [ST24b] for more details.

2.2 Number Theoretic Transform

The Number Theoretic Transform (NTT) is an algorithm analogous to the Dis-
crete Fourier Transform (DFT) which allows to compute the product of two
polynomials efficiently. We specify our description of the NTT on the polyno-
mial ring of ML-KEM where the prime modulus q = 3329 and n = 256 and
use the explanation of [ST24b]. Since there are 128 256-th roots-of-unity but no

4

Algorithm 3 ML-KEM.PKE Decryption [ST24b]
Input: ciphertext c = (c1, c2), sk = ŝ
Output: message m ∈ Rq

1: (u, v) = (Decompress(c1), Decompress(c2))
2: return m = v − NTT-1(ŝT ◦ NTT(u))

512-th root-of-unity, the NTT is considered partial. Therefore the polynomial
x256 + 1 is factored with small polynomials of degree 2,

(x256 + 1) =

127∏
i=0

(
x2 − ζ2i+1

)
.

We denote with ζn the n-th root-of-unity. The NTT of the polynomial a is:

NTT(a) = â = â0 + â1x+ . . . â255x
255,

where

âi =

127∑
j=0

a2jζ
(2i+1)j and â2i+1 =

127∑
j=0

a2j+1ζ
(2i+1)j .

Multiplication of polynomials in the NTT domain is done by NTT-1(NTT(f) ◦
NTT(g)). The basecase multiplication ĥ = f̂ ◦ ĝ is,

ĥ2i + ĥ2i+1x = (f̂2i + f̂2i+1x)(ĝ2i + ĝ2i+1x) mod
(
x2 − ζ2i+1

)
Implementing the NTT is similar to the DFT and common implementations

utilize the Cooley-Tuckey (CT) butterfly [CT65] and the Gentleman-Sande (GS)
butterfly [GS66] circuits. Hybrid designs utilize the CT butterfly on the forward
pass and the GS butterfly on the inverse pass to avoid necessary bit-reversal
steps. The incomplete ML-KEM NTT can be computed in seven butterfly layers.

2.3 Machine Representation of Integers

Computers natively work with integers in a finitely-sized domain Z2l , in contrast
to the infinitely large integer ring Z in mathematics. Here, l is usually referred
to as the word size of a machine integer, and represents the number of bits
needed to store the integer. Hence, an integer x is stored in a machine word
as 〈x〉l = x − 2l

⌊
x
2l

⌋
. Moreover, a stored integer can be interpreted either as

signed or unsigned. The unsigned interpretation of 〈x〉l is 〈x〉+l = 〈x〉l, meaning
that only integers x ∈

[
0, 2l

)
have an unique representation and subsequent

interpretation. The signed interpretation of 〈x〉l is given in two’s complement,
with 〈x〉±l = 〈x〉l − 2l

⌊
〈x〉l
2l−1

⌋
, where only integers in the x ∈

[
−2l−1, 2l−1

)
have

an unique representation and interpretation.

5

2.4 Modular Arithmetic

In this work, we are interested in addition and multiplication in modular integer
rings Zq. More precisely, we are especially interested in rings Zq where a canonical
representation of each element fits into a machine word, e.g., ∀x ∈ Zq : 〈x〉+l = x.
For more efficient computation, we often also impose the additional limitation
q ≤ 2l−1 to ensure that additions do not overflow.

The results of an addition or multiplication are not necessarily the canonical
representation of an element in Zq. In general, for x, y ∈

[
0, 2l−1

)
, we have

the (loose) result ranges z = x + y ∈
[
0, 2l

)
and w = x · y ∈

[
0, 22l

)
. While

this preserves congruence, i.e., 〈z〉+l = 〈x+ y〉+l ≡ x + y mod q and 〈w〉+2l =

〈x · y〉+2l ≡ xy mod q, one must reduce the results back to the appropriate range[
0, 2l−1

)
in order to perform further operations. Commonly, due to the methods

used for reduction, one goes a step further and reduces the results into their
canonical represesentation, e.g., the range [0, q), or a representation with at most
one redundant encoding e.g., the range [0, 2q). Effectively, such a reduction would
compute z, respectively w as

z = (x+ y)− q

⌊
x+ y

q

⌋
and w = (xy)− q

⌊
xy

q

⌋
.

While we have illustrated these operations in modular arithmetic with the
unsigned canonical representations, it is also possible to represent the elements
of Zq as signed numbers in the range

[
−
⌊
q
2

⌋
,
⌈
q
2

⌉)
, cf. Hua et al. [Hua+22;

Hua+24]. Here, having x, y ∈
[
−2l−2, 2l−2

)
is enough to prevent overflows or

underflows in z = x+ y and w = x · y. However, reductions are still necessary in
order to establish these congruence invariants across multiple modular arithmetic
operations.

In cryptographic implementations, the modular reduction is implemented
using contant-time algorithms such as the ones of Barrett’s [Bar86], Mont-
gomery’s [Mon85] and, most recently, Plantard’s[Hua+22]. For lattice cryptogra-
phy, the signed variants of these algorithms are perferred for computing the NTT
for performance reasons. A detailed description of the Barrett and Montgomery
reduction algorithms is given in Appendix A.

2.5 Soft-Analytical Side-Channel Attacks

Soft-Analytical Side-Channel Attacks (SASCAs) [VGS14] perform low-trace key-
recovery attacks on cryptographic implementations. SASCAs improve upon tem-
plate attacks by leveraging greater side-channel leakage using algorithmic knowl-
edge and probabilistic modeling. In SASCAs, the algorithm is represented as a
factor graph, encoding variables as circles and algorithmic operations as squares
(called factors), connected by edges to illustrate their relationships. Side-channel
leakage is incorporated through leakage factors which assign probability distri-
butions to variables. An inference method, such as belief propagation [Pea82],
computes marginal probabilities for secret-key variables which can then be used

6

in a rank estimation. We formally describe the loopy belief propagation variant
based on [VGS14; MM09; Nag+25] and refer readers there for additional details.

Let x be a set of n random variables, x ≡ {xi}i=1,...,n. The joint probability
of the set can be expressed as the factorization,

P (x) =
1

Z

m∏
j=1

fj(xI(j)).

Here, xI(j) is the subset of variables in x which correspond to the factor fj
and Z is a normalization constant. The corresponding factor graph G = (x,f , e)
is a bipartite graph which consists of the variable nodes x, factor nodes f and
edges e which connect subsets xI(j) to fj .

Marginal probability distributions of variable nodes are computed iteratively
using belief propagation [Pea82]. Updates occur in two steps per iteration t:
variables send messages to factors (Equation 2), then factors send messages back
to variables (Equation 3), repeating until convergence.

µ
xi→fj
(t+1) =

∏
j′∈I(i)\j

µ
fj′→xi

(t) . (2)

µ
fj→xi

(t) =
∑

k∈I(j)\i

fj(xk)
∏

i′∈I(j)\i

µ
xi′→fj
(t) . (3)

Finally, the marginal for a variable Pr[Xi = xi] is computed as the product
of all incoming messages:

Pr[Xi = xi] =
∏

{j|i∈I(j)}

µfj→xi . (4)

2.6 Information Theoretic Metrics.

The Mutual Information (MI) metric relates the amount of information learned
about a random variable X with its true leakage distribution L.

I [X;L] = H [X] +
∑
x∈X

Pr[x]
∑
`∈L

Pr[` | x] · log2 Pr[x | `] (5)

If the true leakage distribution is unknown, then a model of the leakage
distribution may be used for the quantity Pr [` | x]. If the leakage model differs
from the true leakage, then the MI cannot be captured, instead the Perceived
Information (PI) can be computed:

PI [X;L] = H [X] +
∑
x∈X

Pr[x]
∑
l∈Lm

Pr[l | x] · log2 Pr[x | l] (6)

The PI is a lower bound of the MI [Bro+19] that converges to the MI if the
model can match the true leakage distribution [Mas+23].

7

1
20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216

0

1

2

3

Signed
Unsigned
RNR±

RNR+

Fig. 1: Mutual information I [X;W (X)] for an integer ring element X ∈ Zq

and its Hamming weight W (X) in 16-bit machine words, for different ring sizes
q ∈

[
1, 216

)
.

3 Redundant Number Representation (RNR)

In this section, we first analyze the connection between the integer ring Zq, its
representation, and the information gain an adversary receives through Ham-
ming weights. Afterwards, we discuss ways of reducing the information leaked
through Hamming weight, and analyze the countermeasure called Redundant
Number Representation (RNR), which significantly reduces the leakage, effec-
tively eliminating it for ring sizes q far lower than the maximal representable
integers in an l-bit machine word.

3.1 Information Gain from Hamming Weights

In the Hamming weight leakage model we assume that the sum of all machine-
word bits are leaked to an adversary through the power side channel. In the
past, this model, while crude, has proven to closely match the realities of physical
observations. While noisy, observations of both power consumption and EM field
perturbations strongly correlate with the number of ‘1’ bits in the data processed
by a CPU.

However, the information contained within the Hamming weight of a machine
word is not constant and heavily depends on the actual data. For example, if
we know that a cryptographic algorithm works with bits, and each bit is stored
in a separate machine word, the information revealed through the Hamming
weight, and thus power side channels, is perfect, i.e., for X ∈ {0, 1}, we have
W (X) = X and thus I [X;W (X)] = 1. On the contrary, for cryptographic
algorithms that work with large integer rings, e.g., filling the whole machine
word with X ∈ Z2l , the Hamming weight W (X) leaks more information about
X in an absolute sense, with I [X;W (X)] ≈ 3 for l = 16, but this is due to the
high starting entropy of X, with H [X] = l = 16. Here, the relative information
gain I [X;W (X)] /H [X] is much lower.

8

Additionally, the representation of the integer ring Zq matters, that is, whether
we encode it in an unsigned manner as X ∈ [0, q) or in a signed manner with
X ∈

[
−
⌊
q
2

⌋
,
⌈
q
2

⌉)
. Here, due to the nature of two’s complement encoding for neg-

ative numbers, we expect that, for q � 2l, the Hamming weight W (X) directly
reveals whether X < 0 or X ≥ 0, i.e., about one additional bit of information
about X. Figure 1 illustrates the amount of information that W (X) leaks about
X for q ∈

[
1, 2l

)
and a machine-word size of l = 16.

In almost all cases, the signed integer ring representation leaks more infor-
mation through the Hamming weight. Prior work by Tosun et al. [TMS24] was
the first to observe this discrepancy and use it to build better distinguishers for
differential power analysis attacks on lattice-based post-quantum standardiza-
tion candidates which perform computations in prime fields, i.e., where q is a
prime number.

3.2 Reducing the Mutual Information

From the identity I [X;W (X)] = H [W (X)]−H [W (X) | X], it is apparent that
in order to reduce I [X;W (X)], one must either:

1. decrease the entropy H [W (X)], i.e., distribute the weights more evenly, or
2. increase the conditional entropy H [W (X) | X], i.e., make it less certain what

the weight W (X) is for any X ∈ Zq.

Here, for the encoding range [ql, qh) representing Zq, the entropies H [W (X)]
and H [W (X) | X] are defined as

H [W (X)] =−
l∑

w=0

Pr [W (X) = w] log2 (Pr [W (X) = w]) and

H [W (X) | X] =
∑

x∈[0,q)

Pr [X ≡ xmod q]H [W (X) | X ≡ xmod q] , ;

H [W (X) | X ≡ xmod q] =−
l∑

w=0

Pr [W (X) = w | X ≡ xmod q] ·

log2 (Pr [W (X) = w | X ≡ xmod q]) .

Additionally, the probabilities, assuming X is uniformly distributed in [ql, qh),
are

Pr [W (X) = w] =
|{x | ql ≤ x < qh,W (x) = w}|

qh − ql
,

Pr [X ≡ xmod q] =
|{x′ | ql ≤ x′ < qh, x

′ ≡ xmod q}|
qh − ql

, and

Pr [W (X) = w | X ≡ xmod q] =
|{x′ | ql ≤ x′ < qh,W (x′) = w, x′ ≡ xmod q}|

|{x′ | ql ≤ x′ < qh, x′ ≡ xmod q}|
.

From this perspective, we also see why both the unsigned encoding with
[ql, qh) = [0, q) and the signed encoding [ql, qh) =

[
−
⌊
q
2

⌋
,
⌈
q
2

⌉)
lead to high

9

mutual information I [X;W (X)] = H [W (X)], since H [W (X) | X] = 0 because
W (X) is completely determined by X, with Pr [W (X) = w | X ≡ xmod q] ∈
{0, 1}. Moreover, it is apparent that the signed encoding reveals more informa-
tion in most cases, as the probabilities Pr [W (X) = w] are better distributed,
i.e., look more uniform, leading to a larger H [W (X)].

In order to increase H [W (X) | X], one must necessarily get rid of the con-
straint that qh−ql = q, i.e., one must allow for redundant encodings of Zq, where
each remainder class x ∈ [0, q) has multiple x′ ∈ [ql, qh) such that x′ ≡ xmod q.
More importantly, one must redefine the operations of addition and multiplica-
tion, with the associated modular reductions, such that the results remain in the
full range [ql, qh).

3.3 The Redundant Number Representation (RNR)
Countermeasure

As outlined in the previous section, one can reduce the information about el-
ements of X ∈ Zq that is leaked through Hamming weights W (X), by increasing
the range domain [ql, qh) and thus also increasing the entropy H [W (X) | X ≡ xmod q].

In the following, we describe an implementation of Redundant Number Rep-
resentation (RNR), a countermeasure that achieves such an increased conditional
entropy by computing in the integer ring Zηq instead of Zq, where η is a positive
integer. Here, the workflow of RNR is as follows:

1. Start with algorithm that works in integer ring Zq, with inputs X = (Xi)
n
i=0

and outputs Y = (Yi)
m
i=0, where Xi, Yi ∈ Zq.

2. Determine η as the largest positive integer such that the algorithm opera-
tions do not overflow or underflow and break the congruences if they were
computed in Zηq.

3. Encode algorithm inputs Xi as X ′
i ∈ Zηq, where X ′

i = Xi + Kq and K is
sampled uniformly at random from [0, η) for unsigned representations and
from

[⌊
−η

2

⌋
,
⌈
η
2

⌉)
for signed representations.

4. Compute the algorithm while all operations are over Zηq.

5. Decode the outputs Y ′
i as Yi = Y ′

i − q
⌊
Y ′
i

q

⌋
, and return them as the results

of the algorithm.

Figure 1 shows the advantage of employing RNR, where we set η =
⌊
2l−1
q

⌋
because there are no operations computed. Impressively, RNR manages to virtu-
ally eliminate any information gained about X by knowing W (X) for q ≤ 2l/2,
with I [X;W (X)] < 0.5. After that point, for larger ring sizes q, the mutual
information increases, matching the non-RNR case at q = 2l−1.

In the rest of this work, we discuss an application of RNR to the ML-KEM
algorithm and show that RNR completely mitigates SASCAs.

10

4 Case Study: Applying Redundant Number
Representation to the ML-KEM NTT

In this section, we begin with an analysis of the information leakage present in the
ML-KEM NTT-1. Then, we compare between simulated SASCAs of the NTT-1

assuming signed and unsigned Hamming weight leakage using an attack similar
to the worst-case k-trace attack of Hamburg et al. [Ham+21]. Finally, we describe
how to implement RNR-protected ML-KEM and show that it sufficiently thwarts
the attack.

Mutual Information Analysis of the ML-KEM NTT. As described in Subsec-
tion 2.1, ML-KEM is parameterized on a polynomial ring parameterized by n =
256 and prime module q = 3329. The NTT function is an incomplete NTT which
takes as input a vector of the 256 polynomial coefficients in a = (ai)

255
i=0 , ai ∈ Zq

and consists of seven butterfly layers. Furthermore, efficient implementations
of the NTT store polynomial coefficients as signed 16-bit machine words e.g.,
〈ai〉±16 for performance reasons (cf. Algorithm 5, Algorithm 7, [Hua+22]). More-
over, the NTT and its inverse directly operate on the secret-key and thus requires
protections (cf. Algorithm 1, Algorithm 3).

The coefficients of an input polynomial can be modeled with a vector of 256
random variables, X = (Xi)

255
i=0 where Xi ∈ Zq. The entropy of each Xi is,

H [Xi] ≈ 11.701bits, and the total entropy an adversary needs to eliminate is,
H [X] =

∑
X H [Xi] ≈ 2995.4bits. The mutual information between a coefficient

Xi and its Hamming weight I [Xi;W (Xi)] ≈ 3.561bits in a signed 16-bit machine
word setting, 〈ai〉±16. Thus, an adversary learns

∑
X I [Xi;W (Xi)] ≈ 911.6bits

of information from the Hamming weights of the coefficients alone, and the
remaining entropy conditioned on this knowledge that must be eliminated is
H [X] −

∑
X I [Xi;W (Xi)] ≈ 2083.8bits. Following the analysis of Section 3,

storing coefficient as unsigned words, 〈ai〉16 would reduce the amount of in-
formation learned from the Hamming weight to 2.756bits and thus the total
(conditional) entropy to eliminate is raised to ≈ 2289.9bits. Thus, switching
from signed to unsigned storage of polynomial coefficients would reduce the in-
formation leakage from Hamming weights by ≈ 206.092bits in total.

The NTT butterfly operations further leak information jointly about the
polynomial coefficient operands. Let A,B ∈ Zq be random variables which rep-
resent butterfly inputs and A′, B′ ∈ Zq represent butterfly outputs. The joint
entropy of the inputs is, H [A,B] = log2 q2 ≈ 23.402bits. By enumerating the
joint Hamming weight distribution of every possible input (A,B) and output
(A′, B′) pairs, the information learned about A,B from knowing the Hamming
weights W (A) ,W (B) ,W (A′) ,W (B′) is,

I [A,B;W (A) ,W (B) ,W (A′) ,W (B′)] ≈ 13.879bits

for signed and ≈ 10.877bits for unsigned representations of the integers. It holds
that A and B are independent considering that the input polynomial coefficients
are randomly sampled, then the adversary learns an additional ≈ 1.5bits about

11

0 1 2 3 3.2
0

0.5

1

σ

Su
cc

es
s

R
at

e Signed
Unsigned
RNR±

RNR+

Fig. 2: SASCA on the signed, unsigned and the corresponding RNR variants of
the ML-KEM NTT-1 using simulated leakage traces.

each coefficient from signing after the first layer of butterflies from the Hamming
weights.

4.1 Comparing SASCAs on Different Machine representations.

SASCAs on ML-KEM typically exploit the (inverse-)NTT steps and such attacks
have been well-studied [PPM17; PP19; Ham+21; AER23]. The k-trace attack of
Hamburg et al. [Ham+21] describes a methodology to perform private-key re-
covery efficiently using a decryption oracle. In the attack, ciphertexts are crafted
such that a chosen number of polynomial coefficients will be equal to zero in the
NTT domain. Hence, the input to the NTT-1 transformation will be a sparse vec-
tor that is the product of the secret-key and the ciphertext NTT-polynomials:
NTT-1(ŝ◦NTT(u)). Then, combined with side-channel information, an adversary
can perform an efficient attack e.g., SASCA, to recover the NTT-1 sparse input
coefficients and solve for the secret-key. In our experimental analysis, we adapt
this attack under the simplified assumption that successfully recovering only a
block of 32 non-zero contiguous coefficients is sufficient. This scenario, originally
applicable only to Kyber1024 in Hamburg et al.’s work, was chosen for its effec-
tiveness in high-noise cases, which better allows to interpolate the effectiveness
of the RNR countermeasure. Furthermore, it assumes a more powerful adversary
requiring less profiling and attack effort. In our setting, an adversary needs to
eliminate ≈ 374.4bits of entropy in total.

Simulating SASCAs. As a starting point, we simulated SASCAs on the ML-
KEM NTT-1 using leakages generated from a Hamming weight leakage model.
In this model, a leakage trace, `, is generated from the Hamming weight of
an intermediate, x, plus the addition of normally distributed noise with mean
zero and standard deviation parameterized by σ, i.e., ` = HW(x)+N (0, σ). The
factor graph model of the NTT-1 consists of variable nodes representing the input
coefficients followed by the 7-layers GS-butterfly layers. We merge the arithmetic
butterfly operations into a single butterfly factor based on the work Pessl et
al., who showed that this improves the outcome of the belief propagation by
eliminating small loops [PP19]. In total, the factor graph contains 1792 factors.

12

Table 1: Parameter sets for implementing RNR-ML-KEM variants
Parameter RNR+ RNR±

η 5 9

Barrett Radix R 231 229

Montgomery q−1 39987 −22215

In our experiments, we compute the NTT-1 on a random sparse input vector
with 32 contiguous non-zero values, x =

(
x0, . . . x31, {0}224

)
with xi ∈ Zq. We

generate simulated Hamming weight leakages of the input vector and of the
vector after each butterfly layer in the NTT-1 for a given machine representation.
The leakages are assigned to the leakage factors in the factor graph and then
we run belief propagation for 25 iterations and use no additional heuristics, as
recommended by Nagpal et al. [Nag+25]. After BP, we compute the ranks of
the marginal distributions for each of the non-zero input coefficients and the
attack is considered successful if their sum is zero. In Figure 2, we compare
the impact of different machine representations on the SASCA. We report the
average success rate of 25 SASCA experiments for noise levels 0.1 ≤ σ ≤ 3.2 in
increments of 0.1. The SASCA performs demonstrably better for signed storage:
It achieves a 100% success rate until σ ≥ 3.0. In contrast, the SASCA attacking
unsigned storage does not fair so well: The performance of the attack degrades
significantly when σ ≥ 1.6. The implications of these results indicates that the
faster performance of the NTT from using the signed machine storage comes at
the cost of security. Overall, the total information available to the adversary is
decreased by 25.7bits by the change from signed to unsigned machine storage.

4.2 RNR-ML-KEM

From Section 3, it is clear that the ML-KEM integer field Zq is an ideal candi-
date for protection with RNR since the prime modulus is much smaller than the
maximum representable integer in both signed and unsigned 16-bit machine word
sizes. To do so, we define a larger integer ring whose module is the product of
the ML-KEM prime and an odd integer, η, such that ηq < 2l. We propose signed
and unsigned variants, denoted as RNR±-ML-KEM and RNR+-ML-KEM, with
parameters η± and η+ respectively. Here, according to the description of RNR
in Subsection 3.3 we must choose η± and η+ in such a way that no overflows
occur during the computation of the forward and inverse NTT, as well as other
operations in ML-KEM. The butterfly operation in the forward NTT takes coef-
ficients a and b, as well as a root of unity ζ, and produces the results a′ ≡ a+ bζ
mod p and b′ ≡ a− bζ mod p.

Signed case. For the signed case, assume that a, b ∈ [−c, c] and ζ ∈ [−z, z], and
that bζ is reduced with the signed Montgomery reduction to get the term t.
According to the definition of Montgomery reduction, the result t is in the range

13

[−u, u], with u = cz
216 +

η±q
2 . The results a′, b′ of the butterfly operation are thus

in the range [−c− u, c+ u]. In the first layer of the forward NTT operation, we
have c = η±q

2 and z = q
2 . We can then determine the upper bound for η± by

enforcing that the computation of a′ and b′ does not overflow, i.e., c+ u < 215.
Therefore,

η±q

2
+

(
η±q
2

q
2

216
+

η±q

2

)
< 215

η± ·
(
q +

q2

218

)
< 215

η± <
233

218q + q2
< 10

(7)

Hence, one can pick any η± ∈ [1, 9]. After performing a similar computation
for the inverse NTT and getting the same positive integer range for η±, we
pick η± := 9 for our implementation. Importantly, this forces us to perform
a Barret reduction on a′ and b′ in the forward NTT butterfly operation to
maintain the invariant a, b ∈ [−c, c] for the next layer of the forward NTT. For
the inverse NTT, one can perform fixpoint-based derivation to show that output
b′ produced via Montgomery reduction does not need to be additionally reduced
via a Barrett reduction. For smaller choices of η±, one may have to perform a
Barret reduction only after a number forward or inverse NTT layers, e.g., in the
conventional implementation with η± = 1, the forward NTT only performs a
Barrett reduction after the last NTT layer.

Unsigned case. For the unsigned case, the considerations are similar. Assume
that a, b ∈ [0, c] and ζ ∈ [0, z], and that t is the result of bζ reduced with
the unsigned Montgomery reduction. Consequently, t is in the range [0, u], with
u = cz

216 +η+q. We again determine the upper bound on η+ by enforcing that the
computation of a′ and b′ does not overflow. We compute a′ as usual, and therefore
have the constraint c+u < 216, while b′ must be cmoputed as b′ = a+

(⌈
u
q

⌉
q − t

)
to prevent underflows, and hence getting the constraint c +

(⌈
u
q

⌉
q − t

)
< c +

u+ q < 216. For the first layer, assuming c = η+q and z = q, we have

η+q +

(
η+q2

216
+ η+q

)
+ q < 216

η+ ·
(
2q +

q2

216

)
< 216 − q

η+ <
232 − 216q

217q + q2
< 10

(8)

A similar analysis of the butterfly operation in the inverse NTT confirms that
η+ ∈ [1, 9], and thus we can choose η+ := 9 and perform necessary Barrett reduc-
tions after additions and subtractions. Applying RNR to ML-KEM is straight-
forward, as it does not require additional randomness or operations: It requires

14

changes only to the rejection sampling used in the functions GeneratePolyMatrix,
SamplePolyCBD in Algorithm 1 and Algorithm 2 such that it outputs coefficients
in Zηq instead of Zq, and to modify the modular reduction parameters. As stated
above, for larger η, it may be necessary to reduce intermediate additions and
subtractions. We give pseudocode for implementing signed and unsigned RNR-
variants of the NTT/NTT-1 in Appendix B. With the above analysis, we use the
parameter sets given in Table 1 for our RNR to ML-KEM implementations dis-
cussed in the rest of this work. Analyzing the information learned from Hamming
weights similarly to the beginning of Section 4, RNR coefficients have greater en-
tropy: ≈ 14.871bits for X ∈ Zη±q and 14.023bits for X ∈ Zη+q, respectively. On
the other hand, RNR coefficients exhibits far less information leakage: 0.888bits
for X ∈ Zη±q (1.219bits in Zη+q resp.). The difference in leakage between RNR
variants is due to the smaller gap between storing integers integers in Zη±q with
the signed storage,

216 − η+q > 216−1 − η±q.

Revisiting the NTT butterfly analysis, the joint entropy for two random
variables representing integer coefficients in Zη±q is H [A,B] ≈ 29.741bits (≈
28.046bits for Zη+q resp.) and the information learned from knowing the Ham-
ming weights of A,B,A′, B′ ∈ Zηq is,

I [A,B;W (A) ,W (B) ,W (A′)W (B′)] ≈ 12.549bits

for coefficients in Zη±q (≈ 11.744bits in Zη+q resp.). The information learned
from the first butterfly layer due to signed representations is reduced to 0.804bits,
while at the same time, the overall entropy is higher. We next evaluated both
RNR-ML-KEM variants with the simulated SASCA experiments of Subsec-
tion 4.1, also depected in Figure 2. For all noise levels, the RNR± variant renders
the attack completely ineffective. When Hamming weights are known with cer-
tainty (σ ≤ 0.1), attacks on RNR+-ML-KEM succeed about 25% of the time.
Compared to the experiments on the unprotected ML-KEM, the experiments
show that RNR is effective at mitigating the attacks.

5 Experimental Analysis of RNR

In this section, we evaluate the effectiveness of the RNR countermeasure against
profiled SASCA attacks using both simulated and ARM Cortex-M4 traces of
the reference ML-KEM NTT implementation. In both simulated and practical
scenarios, we analyze the signed, unsigned, RNR± and RNR+ NTT implemen-
tations discussed in the previous sections. As in Subsection 4.1, we perform
the same chosen-ciphertext attack of Hamburg et al. [Ham+21] with the same
assumptions.

5.1 Attacking RNR-ML-KEM on the ARM Cortex-M4

To better understand how RNR performs on real devices, we analyzed the four
ML-KEM NTT implementations on the ARM Cortex-M4. Our experimental

15

0 2 4 6 8

·105

0

1

2

3

4

1

Signed

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·106

0

0.05

0.1

0.15

1

Unsigned

0 2 4 6 8

·105

0

0.02

0.04

0.06

0.08

1

RNR-Signed

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·106

0

0.02

0.04

0.06

0.08

1

RNR-Unsigned

Fig. 3: The SNR of the first intermediate in the third layer of the NTT-1 computed
from 100 000 profiling traces.

setup uses the Chipwhisperer CW308 UFO board [Inc24] with the STM32F303
target measured by the Picoscope 6404C oscilloscope. The measurement probe
is amplified via a 20dB external LNA. The target is clocked at 10MHz and
synchronized to the oscilloscope sampling frequency. We measure the full NTT-1

operation.

Profiling. The seven-layer NTT-1 used in ML-KEM, including the input vec-
tor, has 1792 intermediates which can be potentially profiled. We assume that
only the first 32 intermediates in the input to the NTT-1 are non-zero. This
leads to several interesting effects which benefit the profiling. First, the zeroed
intermediates are known with absolute certainty and templates do not need to
be constructed for those positions. Second, when a zeroed intermediate is an
operand to a GS-butterfly, the result is either the unchanged or inverted input
(prior to the ζ-multiplication). Thus the same value can appear in subsequent
layers of the NTT-1 causing an “amplification” effect which can be exploited for
a particular intermediate and results in a stronger template. Using both of these
facts, we reduced the number of needed templates to 864 and the quality of
templates in deeper layers of the NTT-1 is much better than shallow layers.

For each attack case, we built our templates as follows. We collected 100 000
profiling traces of the NTT-1 where the first 32 intermediate were random and the
rest zeroed. Then, we computed the signal-to-noise ratio (SNR) to find points-

16

1

INTT Layer
0 2 4 6

1

64

128

192

256

Signed

1

0 2 4 6
1

64

128

192

256

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

1

IN
T

T
In

te
rm

ed
ia

te

0 2 4 6
1

64

128

192

256

RNR-Signed

1

0 2 4 6
1

64

128

192

256

RNR-Unsigned

Fig. 4: The mean PI of the leakage models for all four cases as a result of profiling.
We computed for nine levels of intermediates of the NTT-1: The input, the seven
layers of GS butterflies and the final finite-field multiplication. The quantities
are given within ±0.1bits where possible with 95% confidence.

of-interest to build the models. The SNR for the first intermediate in the fourth
layer of the NTT-1 is shown in Figure 3. This position in the NTT-1 shows the
amplification effect: There are multiple peaks throughout the trace which can be
used for template building. The signed attack case shows high SNR peaks, with
several points above 1. To the right, the unsigned case already exhibits a strong
reduction in SNR, reducing the maximum SNR by an order-of-magnitude. On
the bottom row, both RNR implementations reduce the SNR by two orders-of-
magnitude compared to the signed case with the RNR± implementation having
the lowest SNR overall.

Next, after computing the SNR for every relevant intermediate, we selected
points-of-interest (POIs) above an arbitrarily selected threshold, sorting them
and selecting up to 1000 points per intermediate. We then constructed leakage
models using an LDA classifier (using the implementation of SCALib [CB23])
individually. The number of subspace dimensions was tuned per model using
a parameter sweep on a subset of intermediates. To assess the quality of the
models, we computed the average perceived information computed using a fresh
set of random traces, which we report in Figure 4 within ±0.1bits with 95%
confidence. In these plots, we show that RNR greatly reduces the quality of
the leakage models. For the signed and unsigned case, the models are able to

17

1

INTT Layer
0 2 4 6

1

64

128

192

256

Signed

1

0 2 4 6
1

64

128

192

256

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

1

IN
T

T
In

te
rm

ed
ia

te

0 2 4 6
1

64

128

192

256

RNR-Signed

1

0 2 4 6
1

64

128

192

256

RNR-Unsigned

Fig. 5: Guessing entropy of each intermediate in the ML-KEM NTT-1 after a
single-trace SASCA. 0 GE means the value is known without any uncertainty.
Note, the colormap is inverted to make it easier to compare to Figure 4.

predict the correct value with near certainty by the fourth layer of the NTT-1

due to the amplification effect. In particular for the unsigned case, the required
additional Barrett reduction step with known quantities in the first, second and
third layer further improves the quality of the models. The RNR implementations
are able to reduce the information the models can provide substantially. The
shallow layers of the NTT-1 have PI close to zero, and even with the amplification
effect, the maximum PI given by a model are 5.8bits and 7.8bits for RNR± and
RNR+ respectively. Thus, we conclude that RNR greatly increases the difficulty
of carrying out a template attack on the ML-KEM NTT-1 in this ideal adversarial
scenario.

Attack. We performed SASCAs on each implementation with our templates.
In Figure 5, we report the average guessing entropy of every intermediate in
the eight layers of the NTT-1 over 25 independent experiments for each point.
The attacks show that the inputs to both the signed and unsigned NTT-1 can
be recovered after a single-trace, consistent with our results from the simulated
SASCAs. Furthermore, the attack is rendered ineffective against both the RNR±

and RNR+ implementations and the SASCA is unable to significantly improve
the GE of the output of the templates. In the deeper layers, the belief propa-
gation is able to reduce the GE of some intermediates due to the many known

18

Table 2: Performance evaluation of the four implementations of the ML-
KEM-NTT-1 measured on the ARM Cortex-M4 compiled with arm-none-eabi-
gcc version 10.3.1 for -O0 and -O3 with flags -mcpu=cortex-m4 -mthumb -
mfloat-abi=soft. The results are reported in thousands (·103) of clock cycles.

Implementation
KCycles (·103)

-00 -03

Signed-NTT 127.02 26.48

Unsigned-NTT 158.00 36.75

RNR±-NTT 196.01 50.70

RNR+-NTT 260.52 84.74

Signed-NTT-1 202.04 42.61

Unsigned-NTT-1 270.39 64.91

RNR±-NTT-1 203.19 42.61

RNR+-NTT-1 305.59 91.15

zeroed coordinates. However, it is unable to significantly reduce the GE in shal-
lower layers due to the large uncertainty, which is a known problem with belief
propagation on high entropy distributions [Nag+25].

Discussion. In our attacks, we utilized an adversarial setting highly favorable to
the attacker in which they are able to craft ciphertexts to create many zeroed
coefficients in the input polynomial to the NTT-1, based on the k-trace attack of
Hamburg et al. [Ham+21]. This attack is effective against masked implementa-
tions of the NTT-1 since shares can be attacked in a divide-and-conquer approach
with SPA and the attack can be considered a worst-case scenario for evaluating
the security of NTT-1 implementations against SPA.

The result of our simulated and experimental SASCAs show that the signed
and unsigned implementation of the ML-KEM NTT-1 are highly vulnerable to
SPA attacks. Based on the analysis of Section 3 and the PI estimation in Figure 4,
it is clear that the integer ring used in ML-KEM is small enough relative to the
word-size to yield a large amount of information leakage that can be exploited.
After applying RNR, the information leakage is reduced substantially – enough
to render this worst-case attack ineffective.

Previous literature on SPA countermeasures on the ML-KEM NTT employ
combinations of masking and shuffling [ZBT19; Rav+20]. Such countermeasures
make it more difficult for an adversary to create templates and shuffling is a
known to be effective against SASCA [VGS14]. Ravi et al. proposed several
combinations of masking and shuffling to prevent SASCAs on ML-KEM and
Dilithium [Rav+20] between butterflies (“course-grained”) or within butterflies
(“fine-grained”). An evaluation by Hermelink et al. [Her+23b] showed that this
countermeasure was effective against SASCAs on the ML-KEM-NTT and re-

19

quires a more powerful adversary to execute an attack. However, the countermea-
sure of Ravi et al. comes with a significant performance overhead: They report
between 7%-78% performance overhead across all ML-KEM operations on the
ARM Cortex-M4 target. In contrast, RNR-ML-KEM achieves a similar margin
of security against SPA with lower implementation effort: Only constants in the
reduction algorithms and rejection sampling need to be adjusted. Furthermore,
RNR can be applied seamlessly on top of masking, if necessary. As masking is
generally required to protect against DPA attacks, RNR offers a low-cost yet ef-
fective alternative to shuffling. Heinz et al. suggested that RNR on ML-KEM may
demask certain coefficients if a ζ is a multiple of the redundancy factor η [HP23].
Our experimental results show that this is not an issue in the context of SPA
on the ML-KEM-NTT, even for the small η we chose. For further protections,
one can mask the input ciphertexts with randomly sampled integers r ∈ [0, η)
to prevent any such demasking. In Table 2 we report the clock cycles needed
to compute the ML-KEM-NTT and ML-KEM-NTT-1 on the ARM Cortex-M4
target for all four implementations we evaluate. With full optimizations (-O3),
applying RNR to the signed NTT incurs a performance overhead of 62.8% (resp.
42.7% for -O0) and, for the unsigned NTT, RNR incurs a 79.0% overhead (resp.
49.0% for -O0). Both RNR-variants require two additional barrett reductions to
ensure that intermediate sums do not exceed the 16-bit (signed) integer range.
In contrast, the baseline signed and the RNR± NTT-1 implementations achieve
the same performance since no additional changes are required to the NTT-1

other than changes to constants. On the otherhand, the RNR+ variant incurs
a 27.7% penalty compared to the unsigned counterpart. This is due to a 64-bit
multiplication in the Barrett reduction which is a costly operation on the ARM
Cortex-M4. Since RNR± suggests less information leakage from the analysis and
PI measurements and does not compromise on performance, it is our primary
recommendation for ML-KEM.

6 Conclusion

In this paper, we discuss the application of Redundant Number Representation
(RNR) to counter SPA and SASCA. We analyzed how information can leak as a
result of integer representations and reveal secrets more easily. We then applied
these strategies to protect the ML-KEM NTT-1, which deals directly with secrets,
and showed that RNR-ML-KEM renders worst-case SASCA attacks ineffective
in simulation and in practice on the ARM Cortex-M4. Finally, we show that
our RNR implementations achieve comparable performance to state-of-the-art
masking/shuffling countermeasures. In particular, we highlight that the signed
variant of the RNR-ML-KEM NTT-1 can compute with the same performance as
an unprotected version. Applying RNR to optimized ML-KEM implementations
as well as other schemes remain as directions for future works.

Acknowledgements. This research was funded in whole or in part by the Austrian
Science Fund (FWF) (FWF SFB project SPyCoDe 10.55776/F85).

20

A Modular Reduction Algorithms

Algorithm 4 Unsigned Barrett Reduction
Input: a ∈ [0, β), R = 2k

Output: x ∈ [0, q), x ≡ a mod q

1: v ←
⌊

R
q

⌉
/R . Pre-computed constant

2: t←
⌊
a·v
R

⌋
3: return x = a− (t · q)

Algorithm 5 Signed Barrett Reduction [Sei18]
Input: a ∈ [−β

2
, β
2
), R = 2k

Output: x ∈ [− q
2
, q
2
), x ≡ a mod q

1: v ←
⌊

2blog2(q)c−1β
q

⌉
. Pre-computed constant

2: t←
⌊

av

2blog2(q)c−1β

⌋
3: t← tq mod β
4: return x = a− t

Barrett Reduction [Bar86]. The Barrett reduction algorithm efficiently computes
the modular reduction without the use of division by approximating the multi-
plicative inverse of q with a constant that is proportional to a power of two. Let
β = 2l be the word-size large enough to fit the prime modulus q; if q < 216 then
β = 216 and if q < 232 then β = 232. The original unsigned Barrett reduction
computes a mod q = a− q · ba · ve with the quantity

v =

⌊
R

q

⌉
/R,

where R = 2k and k is an arbitrary integer such that v approximates q−1. The
signed Barrett reduction [Sei18] computes the symmetric modulus a mod ±q
using a tighter approximation of q−1 when 0 < q < β

2 ,

v =

⌊
2blog2 qc−1β

q

⌉
.

Montgomery Reduction [Mon85]. The Montgomery modular reduction algorithm
is similar to the Barrett reduction in that it computes remainders via approxi-
mation, but for a larger domain x ∈ [0, qβ). Consider that x is the product of
two integers x = ab such that 0 ≤ a < q and 0 ≤ b < q and the goal is to
compute x mod q. The algorithm requires the input x = ab to be in the so-called

21

Algorithm 6 Unsigned Montgomery Reduction
Input: a ∈ [0, qβ), q−1 mod β . q−1 mod β is pre-computed.
Output: x ∈ [0, 2q), x ≡ aβ−1 mod q

1: t← a(−q−1) mod β
2: return x← (a+ tq)/β . Division is implemented as right shift.

Algorithm 7 Signed Montgomery Reduction [Sei18]
Input: a ∈ [− qβ

2
, qβ

2
)

Output: x ∈ [−q, q), x ≡ aβ−1 mod q
1: v ← a(−q−1) mod ±β . q−1 pre-computed
2: t←

⌊
vq
β

⌋
3: return x =

⌊
a
β

⌋
− t

Montgomery domain by multiplying the quantity β mod q making the input to
the algorithm abβ mod q. Since the CT and GS butterfly circuits are used to
compute the NTT (and its inverse), the second multiplicand b is a power of
the root-of-unity ζ and thus bβ mod q can be precomputed. Precomputing these
constants in the Montgomery domain yields the output of the reduction in the
normal domain, saving additional operations for the translation [Alk+16]. The
signed variant(Algorithm 7) [Sei18] returns the signed result x ∈ [−q, q) with
slight modifications.

B NTT Algorithms

Algorithm 8 RNR±-NTT
Input: f ∈ Z256

η±q

Output: f̂ ∈ Z256
η±q

1: f̂ ← f
2: k ← 1; j ← 0
3: for len← 128; len ≥ 2; len← len/2 do
4: for start← 0; start < 256; start← j + len do
5: for j ← start; j < start + len; j ++ do
6: t← montgomery_reduceη±(ζk · f̂j+len)
7: . The additional barrett reductions in the addition and subtraction below

are only necessary for larger η± /
8: f̂j+len ← barrett_reduceη±(f̂j − t)

9: f̂j ← barrett_reduceη±(f̂j + t)
10: k ← k + 1

22

Algorithm 9 RNR+-NTT
Input: f ∈ Z256

η+q

Output: f̂ ∈ Z256
η+q

1: f̂ ← f
2: k ← 1; j ← 0
3: for len← 128; len ≥ 2; len← len/2 do
4: for start← 0; start < 256; start← j + len do
5: for j ← start; j < start + len; j ++ do
6: t← montgomery_reduceη+(ζk · f̂j+len)
7: . The additional barrett reductions in the addition and subtraction below

are only necessary for larger η+ /
8: f̂j+len ← barrett_reduceη+((η+ + 1) · q + f̂j − t)

9: f̂j ← barrett_reduceη+(f̂j + t)
10: k ← k + 1

Algorithm 10 RNR±-NTT-1

Input: f̂ ∈ Z256
η±q

Output: f ∈ Z256
η±q

1: f ← f̂
2: k ← 127; j ← 0
3: for len← 2; len ≤ 128; len← 2 · len do
4: for start← 0; start < 256; start← j + len do
5: for j ← start; j < start + len; j ++ do
6: t← fj
7: fj ← barrett_reduceη±(t+ fj+len)
8: fj+len ← fj+len − t
9: fj+len ← montgomery_reduceη±(ζk · fj+len)

10: k ← k − 1

Algorithm 11 RNR+-NTT-1

Input: f̂ ∈ Z256
η+q

Output: f ∈ Z256
η+q

1: f ← f̂
2: k ← 127; j ← 0
3: for len← 2; len ≤ 128; len← 2 · len do
4: for start← 0; start < 256; start← j + len do
5: for j ← start; j < start + len; j ++ do
6: t← fj
7: fj ← barrett_reduceη+(t+ fj+len)
8: . The additional barrett reduction is only necessary for larger η+ /
9: fj+len ← barrett_reduceη+((η+ + 1) · q + fj+len − t)

10: fj+len ← montgomery_reduceη+(ζk · fj+len)
11: k ← k − 1

23

References

[AER23] Guilhèm Assael, Philippe Elbaz-Vincent, and Guillaume Reymond.
“Improving Single-Trace Attacks on the Number-Theoretic Trans-
form for Cortex-M4”. In: IEEE International Symposium on Hard-
ware Oriented Security and Trust, HOST 2023, San Jose, CA, USA,
May 1-4, 2023. IEEE, 2023, pp. 111–121. doi: 10.1109/HOST55118.
2023.10133270.

[Alk+16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe.
“Post-quantum Key Exchange - A New Hope”. In: 25th USENIX Se-
curity Symposium, USENIX Security 16, Austin, TX, USA, August
10-12, 2016. USENIX Association, 2016, pp. 327–343. url: https:
//www.usenix.org/conference/usenixsecurity16/technical-
sessions/presentation/alkim.

[Ava+21] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lep-
oint, Vadim Lyubashevsky, John M Schanck, Peter Schwabe, Gregor
Seiler, and Damien Stehlé. “CRYSTALS-Kyber algorithm specifi-
cations and supporting documentation”. In: (2021). url: https://
pq-crystals.org/kyber/data/kyber-specification-round3-
20210804.pdf.

[Bar86] Paul Barrett. “Implementing the Rivest Shamir and Adleman Pub-
lic Key Encryption Algorithm on a Standard Digital Signal Proces-
sor”. In: Advances in Cryptology - CRYPTO ’86, Santa Barbara,
California, USA, 1986, Proceedings. Springer, 1986, pp. 311–323.
doi: 10.1007/3-540-47721-7_24.

[Bol+19] Madalina Bolboceanu, Zvika Brakerski, Renen Perlman, and De-
vika Sharma. “Order-LWE and the Hardness of Ring-LWE with
Entropic Secrets”. In: Advances in Cryptology - ASIACRYPT 2019
- 25th International Conference on the Theory and Application of
Cryptology and Information Security, Kobe, Japan, December 8-
12, 2019, Proceedings, Part II. Springer, 2019, pp. 91–120. doi:
10.1007/978-3-030-34621-8_4.

[Bos+18] Joppe W. Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler,
and Damien Stehlé. “CRYSTALS - Kyber: A CCA-Secure Module-
Lattice-Based KEM”. In: 2018 IEEE European Symposium on Secu-
rity and Privacy, EuroS&P 2018, London, United Kingdom, April
24-26, 2018. IEEE, 2018, pp. 353–367. doi: 10.1109/EUROSP.2018.
00032.

[Bro+19] Olivier Bronchain, Julien M. Hendrickx, Clément Massart, Alex Ol-
shevsky, and François-Xavier Standaert. “Leakage Certification Re-
visited: Bounding Model Errors in Side-Channel Security Evalua-
tions”. In: Advances in Cryptology - CRYPTO 2019 - 39th Annual
International Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 18-22, 2019, Proceedings, Part I. Springer, 2019, pp. 713–737.
doi: 10.1007/978-3-030-26948-7_25.

24

https://doi.org/10.1109/HOST55118.2023.10133270
https://doi.org/10.1109/HOST55118.2023.10133270
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://doi.org/10.1007/3-540-47721-7_24
https://doi.org/10.1007/978-3-030-34621-8_4
https://doi.org/10.1109/EUROSP.2018.00032
https://doi.org/10.1109/EUROSP.2018.00032
https://doi.org/10.1007/978-3-030-26948-7_25

[Bro+24] Olivier Bronchain, Melissa Azouaoui, Mohamed ElGhamrawy, Joost
Renes, and Tobias Schneider. “Exploiting Small-Norm Polynomial
Multiplication with Physical Attacks Application to CRYSTALS-
Dilithium”. In: IACR Trans. Cryptogr. Hardw. Embed. Syst. (2024),
pp. 359–383. doi: 10.46586/TCHES.V2024.I2.359-383.

[BS21] Olivier Bronchain and François-Xavier Standaert. “Breaking Masked
Implementations with Many Shares on 32-bit Software Platforms or
When the Security Order Does Not Matter”. In: IACR Trans. Cryp-
togr. Hardw. Embed. Syst. (2021), pp. 202–234. doi: 10.46586/
TCHES.V2021.I3.202-234.

[Cas+23] Gaëtan Cassiers, Henri Devillez, François-Xavier Standaert, and
Balazs Udvarhelyi. “Efficient Regression-Based Linear Discriminant
Analysis for Side-Channel Security Evaluations Towards Analytical
Attacks against 32-bit Implementations”. In: IACR Trans. Cryptogr.
Hardw. Embed. Syst. (2023), pp. 270–293. doi: 10.46586/TCHES.
V2023.I3.270-293.

[CB23] Gaëtan Cassiers and Olivier Bronchain. “SCALib: A Side-Channel
Analysis Library”. In: Journal of Open Source Software 8 (2023),
p. 5196. doi: 10.21105/joss.05196.

[Cha+99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Ro-
hatgi. “Towards Sound Approaches to Counteract Power-Analysis
Attacks”. In: Advances in Cryptology - CRYPTO ’99, 19th Annual
International Cryptology Conference, Santa Barbara, California,
USA, August 15-19, 1999, Proceedings. Springer, 1999, pp. 398–
412. doi: 10.1007/3-540-48405-1_26.

[CK13] Omar Choudary and Markus G. Kuhn. “Efficient Template At-
tacks”. In: Smart Card Research and Advanced Applications - 12th
International Conference, CARDIS 2013, Berlin, Germany, Novem-
ber 27-29, 2013. Revised Selected Papers. Springer, 2013, pp. 253–
270. doi: 10.1007/978-3-319-08302-5_17.

[CK14] Marios O. Choudary and Markus G. Kuhn. “Efficient Stochastic
Methods: Profiled Attacks Beyond 8 Bits”. In: Smart Card Re-
search and Advanced Applications - 13th International Conference,
CARDIS 2014, Paris, France, November 5-7, 2014. Revised Se-
lected Papers. Springer, 2014, pp. 85–103. doi: 10.1007/978-3-
319-16763-3_6.

[CRR02] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. “Template At-
tacks”. In: Cryptographic Hardware and Embedded Systems - CHES
2002, 4th International Workshop, Redwood Shores, CA, USA, Au-
gust 13-15, 2002, Revised Papers. Springer, 2002, pp. 13–28. doi:
10.1007/3-540-36400-5_3.

[CT65] James Cooley and John Tukey. “An Algorithm for the Machine
Calculation of Complex Fourier Series”. In: Mathematics of Compu-
tation 19 (1965), pp. 297–301. url: http://dx.doi.org/10.1090/
S0025-5718-1965-0178586-1.

25

https://doi.org/10.46586/TCHES.V2024.I2.359-383
https://doi.org/10.46586/TCHES.V2021.I3.202-234
https://doi.org/10.46586/TCHES.V2021.I3.202-234
https://doi.org/10.46586/TCHES.V2023.I3.270-293
https://doi.org/10.46586/TCHES.V2023.I3.270-293
https://doi.org/10.21105/joss.05196
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/978-3-319-08302-5_17
https://doi.org/10.1007/978-3-319-16763-3_6
https://doi.org/10.1007/978-3-319-16763-3_6
https://doi.org/10.1007/3-540-36400-5_3
http://dx.doi.org/10.1090/S0025-5718-1965-0178586-1
http://dx.doi.org/10.1090/S0025-5718-1965-0178586-1

[DDF19] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. “Unify-
ing Leakage Models: From Probing Attacks to Noisy Leakage”. In:
J. Cryptol. 32 (2019), pp. 151–177. doi: 10.1007/S00145-018-
9284-1.

[Duc+18] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
Peter Schwabe, Gregor Seiler, and Damien Stehlé. “CRYSTALS-
Dilithium: A Lattice-Based Digital Signature Scheme”. In: IACR
Trans. Cryptogr. Hardw. Embed. Syst. (2018), pp. 238–268. doi:
10.13154/TCHES.V2018.I1.238-268.

[FO13] Eiichiro Fujisaki and Tatsuaki Okamoto. “Secure Integration of
Asymmetric and Symmetric Encryption Schemes”. In: J. Cryptol.
26 (2013), pp. 80–101. doi: 10.1007/S00145-011-9114-1.

[GS66] W. M. Gentleman and G. Sande. “Fast Fourier Transforms: for fun
and profit”. In: Proceedings of the November 7-10, 1966, Fall Joint
Computer Conference. Association for Computing Machinery, 1966,
pp. 563–578. doi: 10.1145/1464291.1464352.

[Ham+21] Mike Hamburg, Julius Hermelink, Robert Primas, Simona Samard-
jiska, Thomas Schamberger, Silvan Streit, Emanuele Strieder, and
Christine van Vredendaal. “Chosen Ciphertext k-Trace Attacks on
Masked CCA2 Secure Kyber”. In: IACR Trans. Cryptogr. Hardw.
Embed. Syst. (2021), pp. 88–113. doi: 10.46586/TCHES.V2021.I4.
88-113.

[Her+23a] Julius Hermelink, Erik Mårtensson, Simona Samardjiska, Peter Pessl,
and Gabi Dreo Rodosek. “Belief Propagation Meets Lattice Reduc-
tion: Security Estimates for Error-Tolerant Key Recovery from De-
cryption Errors”. In: IACR Cryptol. ePrint Arch. (2023), p. 98. url:
https://eprint.iacr.org/2023/098.

[Her+23b] Julius Hermelink, Silvan Streit, Emanuele Strieder, and Katharina
Thieme. “Adapting Belief Propagation to Counter Shuffling of NTTs”.
In: IACR Trans. Cryptogr. Hardw. Embed. Syst. (2023), pp. 60–88.
doi: 10.46586/TCHES.V2023.I1.60-88.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. “A Mod-
ular Analysis of the Fujisaki-Okamoto Transformation”. In: The-
ory of Cryptography - 15th International Conference, TCC 2017,
Baltimore, MD, USA, November 12-15, 2017, Proceedings, Part I.
Springer, 2017, pp. 341–371. doi: 10.1007/978-3-319-70500-
2_12.

[HME24] Xunyue Hu, Quentin L. Meunier, and Emmanuelle Encrenaz. “Blind-
Folded: Simple Power Analysis Attacks using Data with a Single
Trace and no Training”. In: IACR Transactions on Cryptographic
Hardware and Embedded Systems 2025 (2024), pp. 475–496. doi:
10.46586/tches.v2025.i1.475-496.

[HP23] Daniel Heinz and Thomas Pöppelmann. “Combined Fault and DPA
Protection for Lattice-Based Cryptography”. In: IEEE Trans. Com-
puters 72 (2023), pp. 1055–1066. doi: 10.1109/TC.2022.3197073.

26

https://doi.org/10.1007/S00145-018-9284-1
https://doi.org/10.1007/S00145-018-9284-1
https://doi.org/10.13154/TCHES.V2018.I1.238-268
https://doi.org/10.1007/S00145-011-9114-1
https://doi.org/10.1145/1464291.1464352
https://doi.org/10.46586/TCHES.V2021.I4.88-113
https://doi.org/10.46586/TCHES.V2021.I4.88-113
https://eprint.iacr.org/2023/098
https://doi.org/10.46586/TCHES.V2023.I1.60-88
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.46586/tches.v2025.i1.475-496
https://doi.org/10.1109/TC.2022.3197073

[Hua+22] Junhao Huang, Jipeng Zhang, Haosong Zhao, Zhe Liu, Ray C. C.
Cheung, Çetin Kaya Koç, and Donglong Chen. “Improved Plan-
tard Arithmetic for Lattice-based Cryptography”. In: IACR Trans.
Cryptogr. Hardw. Embed. Syst. (2022), pp. 614–636. doi: 10.46586/
TCHES.V2022.I4.614-636.

[Hua+24] Junhao Huang, Haosong Zhao, Jipeng Zhang, Wangchen Dai, Lu
Zhou, Ray C. C. Cheung, Çetin Kaya Koç, and Donglong Chen. “Yet
Another Improvement of Plantard Arithmetic for Faster Kyber on
Low-End 32-bit IoT Devices”. In: IEEE Trans. Inf. Forensics Secur.
19 (2024), pp. 3800–3813. doi: 10.1109/TIFS.2024.3371369.

[Inc24] NewAE Technology Inc. Cw308 UFO Target Board. 2024. url:
https://www.newae.com/products/nae-cw308.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. “Private Circuits:
Securing Hardware against Probing Attacks”. In: Advances in Cryp-
tology - CRYPTO 2003, 23rd Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 17-21, 2003, Pro-
ceedings. Springer, 2003, pp. 463–481. doi: 10.1007/978-3-540-
45146-4_27.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. “Differential Power
Analysis”. In: Advances in Cryptology - CRYPTO ’99, 19th An-
nual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 15-19, 1999, Proceedings. Springer, 1999, pp. 388–
397. doi: 10.1007/3-540-48405-1_25.

[Koc96] Paul C. Kocher. “Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems”. In: Advances in Cryp-
tology - CRYPTO ’96, 16th Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 18-22, 1996, Pro-
ceedings. Springer, 1996, pp. 104–113. doi: 10.1007/3-540-68697-
5_9.

[KPP20] Matthias J. Kannwischer, Peter Pessl, and Robert Primas. “Single-
Trace Attacks on Keccak”. In: IACR Trans. Cryptogr. Hardw. Em-
bed. Syst. (2020), pp. 243–268. doi: 10.13154/TCHES.V2020.I3.
243-268.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. “On Ideal
Lattices and Learning with Errors over Rings”. In: Advances in
Cryptology - EUROCRYPT 2010, 29th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques,
Monaco / French Riviera, May 30 - June 3, 2010. Proceedings.
Springer, 2010, pp. 1–23. doi: 10.1007/978-3-642-13190-5_1.

[LS15] Adeline Langlois and Damien Stehlé. “Worst-case to average-case
reductions for module lattices”. In: Des. Codes Cryptogr. 75 (2015),
pp. 565–599. doi: 10.1007/S10623-014-9938-4.

[Mas+23] Loïc Masure, Gaëtan Cassiers, Julien M. Hendrickx, and François-
Xavier Standaert. “Information Bounds and Convergence Rates for
Side-Channel Security Evaluators”. In: IACR Trans. Cryptogr. Hardw.

27

https://doi.org/10.46586/TCHES.V2022.I4.614-636
https://doi.org/10.46586/TCHES.V2022.I4.614-636
https://doi.org/10.1109/TIFS.2024.3371369
https://www.newae.com/products/nae-cw308
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.13154/TCHES.V2020.I3.243-268
https://doi.org/10.13154/TCHES.V2020.I3.243-268
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/S10623-014-9938-4

Embed. Syst. (2023), pp. 522–569. doi: 10.46586/TCHES.V2023.
I3.522-569.

[MM09] Marc Mezard and Andrea Montanari. Information, Physics, and
Computation. Oxford University Press, Inc., 2009. isbn: 019857083X.

[Mon85] Peter L. Montgomery. “Modular multiplication without trial divi-
sion”. In: Mathematics of Computation 44 (1985), pp. 519–521.

[Nag+25] Rishub Nagpal, Gaëtan Cassiers, Robert Primas, Christian Knoll,
Franz Pernkopf, and Stefan Mangard. “On Loopy Belief Propa-
gation for SASCAs”. In: IACR Communications in Cryptology 1
(2025). doi: 10.62056/ayl8ksdja.

[Ngo+21] Kalle Ngo, Elena Dubrova, Qian Guo, and Thomas Johansson. “A
Side-Channel Attack on a Masked IND-CCA Secure Saber KEM
Implementation”. In: IACR Trans. Cryptogr. Hardw. Embed. Syst.
(2021), pp. 676–707. doi: 10.46586/TCHES.V2021.I4.676-707.

[Pea82] Judea Pearl. “Reverend Bayes on Inference Engines: A Distributed
Hierarchical Approach”. In: Proceedings of the Second AAAI Con-
ference on Artificial Intelligence. AAAI Press, 1982, pp. 133–136.
url: http://dl.acm.org/citation.cfm?id=2876686.2876719.

[PP19] Peter Pessl and Robert Primas. “More Practical Single-Trace At-
tacks on the Number Theoretic Transform”. In: Progress in Cryp-
tology - LATINCRYPT 2019 - 6th International Conference on
Cryptology and Information Security in Latin America, Santiago
de Chile, Chile, October 2-4, 2019, Proceedings. Springer, 2019,
pp. 130–149. doi: 10.1007/978-3-030-30530-7_7.

[PPM17] Robert Primas, Peter Pessl, and Stefan Mangard. “Single-Trace
Side-Channel Attacks on Masked Lattice-Based Encryption”. In:
Cryptographic Hardware and Embedded Systems - CHES 2017 -
19th International Conference, Taipei, Taiwan, September 25-28,
2017, Proceedings. Springer, 2017, pp. 513–533. doi: 10.1007/978-
3-319-66787-4_25.

[Qia+24] Zehua Qiao, Yuejun Liu, Yongbin Zhou, Yuhan Zhao, and Shuyi
Chen. “Single Trace is All It Takes: Efficient Side-channel Attack
on Dilithium”. In: IACR Cryptol. ePrint Arch. (2024), p. 512. url:
https://eprint.iacr.org/2024/512.

[QS01] Jean-Jacques Quisquater and David Samyde. “ElectroMagnetic Anal-
ysis (EMA): Measures and Counter-Measures for Smart Cards”.
In: Smart Card Programming and Security, International Confer-
ence on Research in Smart Cards, E-smart 2001, Cannes, France,
September 19-21, 2001, Proceedings. Springer, 2001, pp. 200–210.
doi: 10.1007/3-540-45418-7_17.

[Rav+20] Prasanna Ravi, Romain Poussier, Shivam Bhasin, and Anupam
Chattopadhyay. “On Configurable SCA Countermeasures Against
Single Trace Attacks for the NTT - A Performance Evaluation Study
over Kyber and Dilithium on the ARM Cortex-M4”. In: Security,
Privacy, and Applied Cryptography Engineering - 10th International

28

https://doi.org/10.46586/TCHES.V2023.I3.522-569
https://doi.org/10.46586/TCHES.V2023.I3.522-569
https://doi.org/10.62056/ayl8ksdja
https://doi.org/10.46586/TCHES.V2021.I4.676-707
http://dl.acm.org/citation.cfm?id=2876686.2876719
https://doi.org/10.1007/978-3-030-30530-7_7
https://doi.org/10.1007/978-3-319-66787-4_25
https://doi.org/10.1007/978-3-319-66787-4_25
https://eprint.iacr.org/2024/512
https://doi.org/10.1007/3-540-45418-7_17

Conference, SPACE 2020, Kolkata, India, December 17-21, 2020,
Proceedings. Springer, 2020, pp. 123–146. doi: 10.1007/978-3-
030-66626-2_7.

[Reg05] Oded Regev. “On lattices, learning with errors, random linear codes,
and cryptography”. In: Proceedings of the 37th Annual ACM Sym-
posium on Theory of Computing, Baltimore, MD, USA, May 22-24,
2005. ACM, 2005, pp. 84–93. doi: 10.1145/1060590.1060603.

[Ren+11] Mathieu Renauld, François-Xavier Standaert, Nicolas Veyrat-Charvillon,
Dina Kamel, and Denis Flandre. “A Formal Study of Power Vari-
ability Issues and Side-Channel Attacks for Nanoscale Devices”. In:
Advances in Cryptology - EUROCRYPT 2011 - 30th Annual In-
ternational Conference on the Theory and Applications of Crypto-
graphic Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings.
Springer, 2011, pp. 109–128. doi: 10.1007/978-3-642-20465-4_8.

[SA08] François-Xavier Standaert and Cédric Archambeau. “Using Subspace-
Based Template Attacks to Compare and Combine Power and Elec-
tromagnetic Information Leakages”. In: Cryptographic Hardware and
Embedded Systems - CHES 2008, 10th International Workshop,
Washington, D.C., USA, August 10-13, 2008. Proceedings. Springer,
2008, pp. 411–425. doi: 10.1007/978-3-540-85053-3_26.

[Sei18] Gregor Seiler. “Faster AVX2 optimized NTT multiplication for Ring-
LWE lattice cryptography”. In: IACR Cryptol. ePrint Arch. (2018),
p. 39. url: http://eprint.iacr.org/2018/039.

[SLP05] Werner Schindler, Kerstin Lemke, and Christof Paar. “A Stochas-
tic Model for Differential Side Channel Cryptanalysis”. In: Crypto-
graphic Hardware and Embedded Systems - CHES 2005, 7th Inter-
national Workshop, Edinburgh, UK, August 29 - September 1, 2005,
Proceedings. Springer, 2005, pp. 30–46. doi: 10.1007/11545262_3.

[ST24a] National Institute of Standards and Technology. Module-Lattice-
Based Digital Signature Standard. Tech. rep. U.S. Department of
Commerce, 2024.

[ST24b] National Institute of Standards and Technology. Module-Lattice-
Based Key-Encapsulation Mechanism Standard. Tech. rep. U.S. De-
partment of Commerce, 2024.

[Str+23] Emanuele Strieder, Manuel Ilg, Johann Heyszl, Florian Unterstein,
and Silvan Streit. “ASCA vs. SASCA - A Closer Look at the AES
Key Schedule”. In: Constructive Side-Channel Analysis and Secure
Design - 14th International Workshop, COSADE 2023, Munich,
Germany, April 3-4, 2023, Proceedings. Springer, 2023, pp. 65–85.
doi: 10.1007/978-3-031-29497-6_4.

[TMS24] Tolun Tosun, Amir Moradi, and Erkay Savas. “Exploiting the Cen-
tral Reduction in Lattice-Based Cryptography”. In: IEEE Access 12
(2024), pp. 166814–166833. doi: 10.1109/ACCESS.2024.3494593.

[Vey+12] Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie Kerckhof,
and François-Xavier Standaert. “Shuffling against Side-Channel At-

29

https://doi.org/10.1007/978-3-030-66626-2_7
https://doi.org/10.1007/978-3-030-66626-2_7
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1007/978-3-642-20465-4_8
https://doi.org/10.1007/978-3-540-85053-3_26
http://eprint.iacr.org/2018/039
https://doi.org/10.1007/11545262_3
https://doi.org/10.1007/978-3-031-29497-6_4
https://doi.org/10.1109/ACCESS.2024.3494593

tacks: A Comprehensive Study with Cautionary Note”. In: Advances
in Cryptology - ASIACRYPT 2012 - 18th International Conference
on the Theory and Application of Cryptology and Information Se-
curity, Beijing, China, December 2-6, 2012. Proceedings. Springer,
2012, pp. 740–757. doi: 10.1007/978-3-642-34961-4_44.

[VGS14] Nicolas Veyrat-Charvillon, Benoît Gérard, and François-Xavier Stan-
daert. “Soft Analytical Side-Channel Attacks”. In: Advances in Cryp-
tology - ASIACRYPT 2014 - 20th International Conference on the
Theory and Application of Cryptology and Information Security,
Kaoshiung, Taiwan, R.O.C., December 7-11, 2014. Proceedings,
Part I. Springer, 2014, pp. 282–296. doi: 10.1007/978-3-662-
45611-8_15.

[ZBT19] Timo Zijlstra, Karim Bigou, and Arnaud Tisserand. “FPGA Imple-
mentation and Comparison of Protections Against SCAs for RLWE”.
In: Progress in Cryptology - INDOCRYPT 2019 - 20th Interna-
tional Conference on Cryptology in India, Hyderabad, India, De-
cember 15-18, 2019, Proceedings. Springer, 2019, pp. 535–555. doi:
10.1007/978-3-030-35423-7_27.

30

https://doi.org/10.1007/978-3-642-34961-4_44
https://doi.org/10.1007/978-3-662-45611-8_15
https://doi.org/10.1007/978-3-662-45611-8_15
https://doi.org/10.1007/978-3-030-35423-7_27

	Efficient SPA Countermeasures using Redundant Number Representation with Application to ML-KEM

