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Abstract. At ASIACRYPT’19, Bonnetain et al. demonstrated that an
S-box can be distinguished from a permutation chosen uniformly at ran-
dom by quantifying the distances between their behaviors. In this study,
we extend this approach by proposing a deep learning-based method to
quantify distances between two different S-boxes and evaluate similari-
ties in their design structures. First, we introduce a deep learning-based
framework that trains a neural network model to recover the design struc-
ture of a given S-box based on its cryptographic table. We then interpret
the decision-making process of our trained model to analyze which coef-
ficients in the table play significant roles in identifying S-box structures.
Additionally, we investigate the inference results of our model across var-
ious scenarios to evaluate its generalization capabilities. Building upon
these insights, we propose a novel approach to quantify distances between
structurally different S-boxes. Our method effectively assesses structural
similarities by embedding S-boxes using the deep learning model and
measuring the distances between their embedding vectors. Furthermore,
experimental results confirm that this approach is also applicable to
structures that the model has never seen during training. Our findings
demonstrate that deep learning can reveal the underlying structural sim-
ilarities between S-boxes, highlighting its potential as a powerful tool for
S-box reverse-engineering.

Keywords: S-box reverse-engineering · Design structure · Cryptographic
tables · Quantifying distances · Deep learning.

1 Introduction

In modern cryptography, block ciphers are designed based on Kerckhoffs’ prin-
ciple [53], which assumes that all aspects of the cipher’s specification and design
rationale, except for the secret key, are publicly accessible. This principle em-
phasizes transparency, asserting that cryptographic algorithms should be open
to foster trust and enable rigorous scrutiny and cryptanalysis by the community.
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Despite this principle, there are several cases where the designers exploit se-
cret structures to construct S-boxes, intentionally hiding these structures or even
presenting misleading design rationales. Historically, several standard encryption
algorithms, including DES [21], Skipjack [2], Streebog [23], and Kuznyechik [24],
have utilized secretly designed S-boxes. When an S-box is provided solely as
a lookup table, even with the full cipher specification disclosed, recovering the
underlying design rationale of the S-box is a challenging task. In this context,
research focused on recovering the hidden design structures behind an S-box
becomes indispensable.

S-box reverse-engineering is a critical technique that aims to recover the
methodologies used in the construction of an S-box from its lookup table, with
the goal of understanding the design rationale intended by its designers [16]. It is
of significant importance in cryptanalysis, as it can reveal underlying potential
weaknesses and backdoors within the S-box [7,46]. It can also contribute to opti-
mizing implementations. For example, replacing a monolithic lookup table with
multiple smaller ones can reduce memory usage, and implementing a bitslicing
approach can enhance execution efficiency by computing in parallel [11, 36].

Related Work and Motivation. The concept of anomalies of an S-box was
introduced to quantify the distance between the behavior of a given S-box and
those of an S-box chosen uniformly at random [16, 19, 46]. These distances are
calculated based on the distribution of maximum coefficients in a table such as
the Difference Distribution Table (DDT) and the Linear Approximation Table
(LAT), reflecting how good the cryptographic properties are. If the value of
anomalies for a given S-box significantly differs from that of random S-boxes, it
can be inferred that the S-box is not picked at random.

However, since the anomalies consider only the maximum value and its num-
ber of occurrences in the tables, they overlook other factors, such as positional
information and non-maximum coefficients. This loss of information could be
detrimental when an attacker tries to identify S-box design structures. For ex-
ample, Fig. 1 displays the distribution of the value of the coefficients of the
LAT (excluding the first row and column) and the linear anomaly of each S-box.
Since the anomaly only reflects the maximum coefficient value of the distribu-
tion, ICEBERG’s anomaly value is closer to Zorro’s than CLEFIA’s, even though
CLEFIA S0 is also constructed with SPN. However, a more detailed examination
of the lower-magnitude coefficients reveals that Zorro’s occurrence distribution
does not decrease as smoothly as ICEBERG’s, thereby enabling a clear distinc-
tion between these two S-boxes. This observation demonstrates the limitations of
relying solely on the anomaly to quantify the distance between S-boxes or iden-
tify their design structures, and highlights the importance of other coefficient
information as additional evidence.

Biryukov et al. proposed a method, called Pollock’s pattern recognition [16],
to distinguish an S-box from a random permutation and recover its hidden de-
sign structure. This method employs a heuristic approach to identify non-random
patterns within the visual representation of the cryptographic table of an S-box.
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Fig. 1. Coefficients of the LAT and linear anomaly of each S-box.

Since the method relies on human visual and cognitive abilities, its effective-
ness depends on an attacker’s expertise. We believe that applying deep learning
techniques to this pattern recognition can overcome the limitations of human vi-
sion. In this study, we present a new approach based on deep learning to extract
patterns that are difficult to identify from cryptographic tables.

Our Contribution. In this study, we propose deep learning-based approaches
for recovering S-box design structures and quantifying the distance between two
distinct S-boxes. First, we introduce a deep learning-based framework for re-
covering S-box design structures with cryptographic tables. Our experimental
results demonstrate that using the framework, our model can predict S-box
structures with high accuracy and can be effectively applied to new structures
without prior knowledge. Additionally, by analyzing which patterns within the
tables contribute to the model’s decision, we confirm that the model learns not
only the differences between design structure classes but also their similarities.
This indicates that our model learns the characteristics of the design structure,
rather than merely patterns for classification.

We also experimentally validate the robustness of the deep learning model in
recovering S-box structures across various scenarios. Our results show that the
model provides valid outcomes for S-boxes used in the wild and also for S-boxes
composed of modified structures based on the trained structures. For example,
our model successfully identifies both Feistel and Misty structures in S-boxes that
incorporate these designs. These results demonstrate the deep learning model’s
generalization capability to untrained structures. Furthermore, the model can
distinguish the number of rounds in S-boxes with untrained structures, high-
lighting the potential of deep learning in quantifying distances between S-boxes.

Building on these results, we propose a new method to quantify distances be-
tween two different S-boxes using embedding vectors extracted from the neural
network. By employing metrics such as Euclidean distance and cosine distance
in the embedding space, we quantitatively evaluate the similarities between S-
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boxes. Our experiments show that similar design structures are positioned closely
in the embedding space, while distinct structures are clearly separated. Addition-
ally, by applying the concept of anomaly detection through Support Vector Data
Description, we propose a method to measure how far a given S-box lies from a
specific structure. Our results demonstrate that the model can identify untrained
structures that are similar to trained ones, further confirming the model’s capa-
bility in capturing structural similarities. These findings underscore that deep
learning-based approaches are effective in quantifying structural similarities be-
tween S-boxes and can serve as a useful tool in S-box reverse-engineering.

2 Preliminaries

2.1 S-Box and its Structure

An S-box (Substitution-box) is a crucial component of symmetric-key cryptog-
raphy, performing non-linear operations by substituting each input value with a
corresponding output value. It plays a vital role in ensuring the security of mod-
ern encryption algorithms, as its presence is essential to achieve cryptographic
properties. One notable approach to designing an S-box, introduced in [44], in-
volves borrowing the structure of block ciphers to construct S-boxes from smaller
ones. Examples of these constructions can be found in Fig. 2. This methodol-
ogy remains widely used in the design of S-boxes to this day. The Feistel and
Misty structures, validated in block cipher design, underpin the S-boxes used in
Zorro [25], Robin [26], and CRYPTON 0.5 [41], and usually consist of 3 to 4
rounds.

An additional block cipher-based design, known as the Substitution-Permutation
Network (SPN) structure, is also widely used. We introduce a variation of SPN,
denoted Sbp, which employs a bitwise permutation for its permutation layer.
In this study, bitwise permutations are limited to permutations that shuffle at
least one bit from both the left and right sides. While we refer to the QARMA
S-boxes [4] for Sbp, we define a bpSbp structure based on the Midori S-boxes [6].
Block ciphers such as CLEFIA [54], Khazad [9], and ICEBERG [56] typically
employ up to 3 rounds in the construction of their S-boxes.

In addition, the Lai-Massey structure [39] and its derivative, the Bridge struc-
ture [13], are also used to construct S-boxes. There is another approach that does
not adopt block cipher structures, such as a finite field inverse-based S-box. Al-
though inversion-based S-boxes are known for their strong security advantages,
they come with the downside of higher implementation costs than block cipher-
based S-boxes [27,35]. This approach is widely used in ciphers such as AES [22],
ARIA [38], and Camellia [3].

2.2 Cryptographic Tables

The cryptographic characteristics of an S-box can be described using 2n × 2n

tables. These tables are essential for understanding the cryptographic strength
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Fig. 2. Block cipher-based S-box construction methods.

of S-boxes and provide insight to assess potential vulnerabilities from different
types of cryptanalysis. The definition of the cryptographic tables used in this
study is provided below.

DDT (Difference Distribution Table) evaluates the differential properties of
an S-box by showing the distribution of output differences for each input differ-
ence, which is crucial to assessing resistance to differential cryptanalysis [12]. Its
coefficient DDTS(∆i, ∆o) is defined as #{x ∈ {0, 1}n | S(x)⊕S(x⊕∆i) = ∆o},
where ∆i and ∆o are the input and output differences, respectively. Its maximum
value is called the differential uniformity except when ∆i = 0.

LAT (Linear Approximation Table) presents the linear relationships between
input and output bits, used in linear cryptanalysis [43] to identify biases that can
be exploited. The value of the LAT coefficient LATS(λi, λo) is #{x ∈ {0, 1}n | x·
λi = S(x) · λo} − 2n−1, where λi and λo are the input and output masks,
respectively. Its maximum value is called the linearity except when λo = 0.

Cid et al. [20] introduced a new cryptanalysis tool called BCT (Boomerang
Connectivity Table), which is related to boomerang attacks and analyzes the S-
box by mapping differential paths in both forward and backward directions. The
value of the BCT coefficient BCTS(∆i,∇o) is given by #{x ∈ {0, 1}n | S−1(S(x)⊕



6 D. Kwon et al.

∇o)⊕ S−1(S(x⊕∆i)⊕∇o) = ∆i}. Its maximum value is called the boomerang
uniformity except when ∆i,∇o = 0.

DLCT (Differential-Linear Connectivity Table), studied in detail by Bar-On
et al. [8], combines differential and linear cryptanalysis approaches to provide
insight into the susceptibility of ciphers to differential-linear attacks. The value
of DLCT coefficient DLCTS(∆,λ) is defined as #{x ∈ {0, 1}n | S(x) · λ =
S(x⊕∆) · λ} − 2n−1, where ∆ is a difference, and λ is a mask.

2.3 Anomalies of an S-Box

An anomaly of an S-box is used as a metric to quantify how rare or unlikely it is
for an S-box to satisfy the cryptographic properties (e.g., differential uniformity)
[16,46]. Let mF be the maximum value of coefficients in a 2n×2n table T of an S-
box F , and oF be the number of occurrences of the maximum value. The anomaly
for the table T can be expressed as A(T ) = − log2 (Pr [mG ≤ mF and oG ≤ oF ]),
where the probability is taken over all G in the same space as F . The anomaly
can be estimated as follows:

A(T ) = − log2

 oF∑
k=0

(
(2n − 1)2

k

)
· pkmF

·

mF−1∑
j=0

pj

(2n−1)2−k
 ,

where pi is the probability that T (a, b) = |i|. A high value of the anomaly
indicates that the given S-box has a property distinctive enough to be set apart
from a random permutation.

The differential and linear anomalies were proposed by Biryukov et al. [16],
and the concept of anomalies was more clearly defined in the later study by
Perrin [46], and Bonnetain et al. extended its application to boomerang uni-
formity [19]. This score can demonstrate that the given S-box exhibits unique
properties beyond those of a random S-box, thereby providing a potential means
of uncovering hidden design structures within S-boxes. However, it can only
quantify the distance from randomness and is unable to quantify the distance
between two different S-boxes. Also, the anomalies are affected only by the max-
imum value and its number of occurrences and do not consider other factors,
such as non-maximum coefficients and positional information.

2.4 Pollock Representation and Pattern Recognition

Biryukov et al. introduced Pollock’s pattern recognition, which transforms an
S-box into a visual representation, known as the Pollock representation, and
then identifies non-random patterns within the representation [16]. Their exper-
imental results demonstrated that this approach facilitates the differentiation
of specifically designed S-boxes from random ones through visual observation.
Also, the Pollock representation of LAT inspired new recovery attacks for the
4-round Feistel structure, as proposed in [17,48].
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However, the effectiveness and performance of this method depend on hu-
man capabilities in pattern recognition. As the number of rounds in an S-box
increases, its Pollock representation begins to resemble randomness more closely,
making it challenging to visually discern. An example of this scenario is illus-
trated in Fig. 3. Despite the S-box of ICEBERG having one more round than
that of CLEFIA, it becomes difficult to recognize any pattern that differs from
the random S-box. As demonstrated in [16], while the dents pattern is easily
recognized in CLEFIA, no clear pattern is found in Skipjack, making it indis-
tinguishable from the random S-box. In this situation, human vision alone is
insufficient to distinguish a random-looking S-box from a random S-box.

(a) CLEFIA’s S0 (b) ICEBERG’s S (c) Skipjack’s F (d) Random S-box

Fig. 3. The Pollock representation of the LAT for each S-box.

3 Deep Learning-based S-Box Structure Recovery

In this section, we introduce a deep learning-based framework for recovering
S-box design structures. Our framework comprises two main steps: dataset gen-
eration and model training.

3.1 A Framework for S-Box Structure Recovery

Dataset Generation: Constructing S-Boxes and Preprocessing. An S-
box design structure includes a construction function (CF), such as Feistel and
Misty, and its number of rounds. Each round uses a smaller inner S-box to form
its round function. For example, in an 8-bit Feistel S-box, the right 4-bit block
is processed by a 4-bit inner S-box, and the resulting output is XORed with the
left block. We employ random permutations as inner S-boxes, and each round
uses a different permutation. In our experiments, we generate 20,000 S-boxes for
each design structure, allocating 16,000 for training, 2,000 for validation, and
the remainder for testing.

After generating the S-box datasets, we preprocess the S-boxes by converting
them into cryptographic tables, such as the DDT, LAT, BCT, and DLCT. Previ-
ous studies focused on the distance between a given S-box and randomly selected
S-boxes by examining statistical anomalies derived from these tables [16,19,46].
However, since these anomalies capture only human-filtered information—such



8 D. Kwon et al.

as the maximum coefficient and its occurrences—they are not suitable for deep
learning-based methods due to significant information loss. Consequently, we do
not convert the cryptographic tables into anomalies but instead use the tables
themselves as training data. This approach can replace the power of human
vision with that of deep learning in Pollock’s pattern recognition. In our experi-
ments, we preprocess 8-bit S-boxes into cryptographic tables and then crop each
table to a 255× 255 size by excluding the first row and column.

Training and Prediction. Following our previous steps, we generate training
datasets for each S-box design structure, preparing us to begin training a neural
network. During the training phase, we load the S-box datasets corresponding
to each design structure, based on the classes we aim to classify. We then assign
a label that indicates the design structure of each S-box, grouping together S-
boxes with the same structure and separating those with different structures.
We implement the label data with one-hot encoding, representing each label as
an array. The number of dimensions in each encoded label is determined by the
number of classes, and an element of each dimension represents the probability
that the input belongs to the corresponding class. Finally, we train the model
using the prepared training data along with these labels.

Once training is complete, the trained neural network is used to infer the
design rationales of unknown S-boxes. To achieve this, the same preprocessing
applied to the training dataset must also be applied to the given S-boxes before
they are fed into the trained network. The network then outputs the probabilities
of being classified into each class for a given input. Through analyzing the output
probabilities, we are able to recover the design structure of the given S-box. The
overview of this process can be seen in Fig. 4.

Cryptographic
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Fig. 4. Overview of the framework for S-box structure recovery.

Neural Network Structure. Since a cryptographic table can be treated as
image data, we adopt a convolutional neural network architecture for our neural
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network, building upon the approach proposed by Kim et al. [34]. Following the
input layer, we attach a batch normalization layer and then add four convo-
lutional blocks. The convolution layer in each block consists of 32 filters with
kernel size 3 × 3, and their weights are initialized using the He normal initial-
izer [30]. Following each convolution layer, we connect a batch normalization
layer, a ReLU activation function, and a 2× 2 average pooling layer. After flat-
tening, we employ a fully connected layer with the Softmax activation function
for the output layer. The number of output nodes equals the number of classes
to be classified by the neural network. The cross-entropy function serves as the
loss function, and the trainable parameters are updated using the Adam opti-
mizer [37] to minimize the loss, with a batch size of 800.

Experimental Results. To evaluate our S-box structure recovery model per-
formance, we train networks to classify 15 types of S-box design structures: 2 to
4-round Feistel, 2 to 4-round Misty, 1 to 3-round Sbp, 1 to 3-round bpSbp, 1-
round Lai-Massey, 1-round Bridge, and an inversion-based structure. We denote
the model that classifies given S-boxes into these 15 classes as DL1table. We build
four models for each cryptographic table—DDT, LAT, BCT, and DLCT—and
train each model separately. The left plot in Fig. 5 shows the learning curve of
the models, where the x-axis denotes the number of training epochs, and the
y-axis denotes the validation accuracy. Our experimental results show that all
four models converge within 50 epochs.

1 10 20 30 40 50
Epoch

0.0
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0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Validation Accuracy per Epoch

DDT
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BCT
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DDT LAT BCT DLCT
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0.2

0.4

0.6

0.8
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Fig. 5. Results of training history and testset evaluation for each model.

On the right in Fig. 5, the model with BCT achieves the highest accuracy of
0.991, slightly outperforming the others, but all models achieve high accuracy,
over 0.979. Our results demonstrate that even though the Bridge structure has
not been researched for structural recovery, the model can be seamlessly ap-
plied to classify this structure with high accuracy without prior knowledge. This
strength contrasts with conventional structural recovery attacks [15–18], which
can only target specific structures and require structure-specific pre-analysis,
highlighting the broad applicability of our approach to new structures.
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3.2 Interpreting the Model’s Decision-Making Process

In this section, we aim to provide deeper insights into the input features on
which our model bases its decisions. To achieve this goal, we apply an attribution
method to score the contribution of each coefficient in the table. While previous
methods [45, 55, 58, 61] used in computer vision attribute individual samples
effectively, they cannot offer unified attributions across multiple samples within
a single class. Therefore, we propose a new attribution method that scores a
common attribution for S-boxes constructed with the same design structure.

Definition 1. Given N samples and the result of element-wise multiplication
between the n-th sample and its gradients denoted as Gn, an attribution score
S(i,j) for the position (i, j) is defined as follows:

S(i,j) =

N∑
n

sn(i,j), sn(i,j) ≡
{
1 if Gn

(i,j) ∈ Tn ∪Bn

0 otherwise
(1)

where Tn = argmax
A⊂Gn,|A|=k

∑
a∈A

a, Bn = argmin
A⊂Gn,|A|=k

∑
a∈A

a

According to Definition 1, the attribution score is determined by extracting
the top k and bottom k positions from G, which is the element-wise product of a
given sample and its gradients, and summing these values across samples within
the same class. In G, points with a positive value indicate the locations of input
features that positively contribute to the model’s decisions, while those with
a negative value suggest a negative influence. In this definition, both positive
evidence (Tn) and negative evidence (Bn) are weighted equally. The attribution
map visualizes this evidence, playing a crucial role in illustrating how much the
model’s decisions depend on specific positions of input features. Examples of the
attribution map are shown in Fig. 6. Darker colors represent greater influence,
while lighter colors indicate positions with less impact.

Representatively, attribution maps from DL1BCT across 15 different design
structures are presented in Fig. 6, with 2,000 test set samples (N) included in
each class and k set to 3,251 (5% of 65,025). In the attribution map of the 2-
round Feistel structure, the pattern of regularly spaced lines can be observed.
These lines are positioned where the lower 4-bit block is fixed to 0b1111 (= 15),
and the upper 4-bit block increments by 1 from 0 onwards (e.g., 15, 33, 63, ...). In
the attribution map of Misty, a similar pattern is observed, where the horizontal
lines align with those of the Feistel pattern, but the vertical lines differ. The
vertical lines are positioned where the upper 4-bit block increments by 1 from
1 onwards, and the lower 4-bit block is 1 less than the upper 4-bit block (e.g.,
16, 33, 50, ...). On the other hand, in the attribution map of Lai-Massey, the
pattern is reversed compared to Misty: the vertical lines align with those of the
Feistel pattern, while the horizontal lines differ.

In the attribution map of Sbp, the horizontal lines follow the same pattern
as in Feistel, but the vertical lines are positioned where the lower 4-bit block is
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(a) 2r. Feistel (b) 2r. Misty (c) 1r. Sbp (d) 1r. bpSbp (e) 1r. Lai-Massey

(f) 3r. Feistel (g) 3r. Misty (h) 2r. Sbp (i) 2r. bpSbp (j) 1r. Bridge

(k) 4r. Feistel (l) 4r. Misty (m) 3r.Sbp (n) 3r. bpSbp (o) Inversion

Fig. 6. The attribution map of each S-box design from DL1BCT.

fixed to 0b1111 and the Hamming weight of the upper 4-bit block increments
by one (e.g., 15, 31, 63, 127). Lastly, in the attribution map of bpSbp, both
the vertical and horizontal lines follow the same spacing as the vertical lines
in Sbp, with strong influence observed in areas with lower Hamming weight. It
can also be seen that the attribution maps for S-boxes, which are constructed
with different numbers of rounds but the same CF, show high contributions at
the same positions, although the patterns become less distinct as the rounds
deepen.

Interestingly, although we provide only labels indicating that each class is dif-
ferent—without any prior information about the relationships among classes—the
deep learning model can uncover similarities between them. For example, even
though we merely label 2-round, 3-round, and 4-round Feistel structures as dis-
tinct classes, the model recognizes shared features between them, as can be
observed in their attribution maps. In other words, even without providing in-
formation about relationships among different design structures, our model suc-
cessfully identifies both similarities and differences across these structures. These
findings suggest that the deep learning model does more than simply classify each
class; it actively learns the underlying design features of each S-box structure
and leverages this understanding to differentiate among the classes.
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4 Recovery Results on Untrained Structures

4.1 On Untrained but Derived Structures From Trained Ones

The performance of our model on the trained structures can be demonstrated
by the high accuracy presented in Section 3.1. In this section, we further in-
vestigate whether our model maintains its effectiveness when applied to actual
S-boxes. Table 1 presents the inference results of DL1BCT for real-world S-boxes.
Our model accurately predicts the design of S-boxes based on Inversion. There

Table 1. Prediction results on actual S-boxes.

Prediction (Output Probability)Cipher Design Type Top 1 Top 2 Top 3

AES [22] Inversion Inversion (1.000) 1r bpSbp (0.000) 2r Sbp (0.000)
ARIA S2 [38] Inversion Inversion (1.000) 1r bpSbp (0.000) 2r Sbp (0.000)
Camellia S1 [3] Inversion Inversion (1.000) 1r bpSbp (0.000) 2r Sbp (0.000)
Camellia S2 Inversion Inversion (1.000) 1r bpSbp (0.000) 2r Sbp (0.000)
Camellia S3 Inversion Inversion (1.000) 1r bpSbp (0.000) 2r Sbp (0.000)
Camellia S4 Inversion Inversion (1.000) 1r bpSbp (0.000) 2r Sbp (0.000)
CLEFIA S1 [54] Inversion Inversion (1.000) 1r bpSbp (0.000) 2r Sbp (0.000)
DBlock [60] Inversion Inversion (1.000) 1r bpSbp (0.000) 2r Sbp (0.000)
SEED S0 [40] Inversion Inversion (1.000) 1r bpSbp (0.000) 2r Sbp (0.000)
SEED S1 Inversion Inversion (1.000) 1r bpSbp (0.000) 2r bpSbp (0.000)
Midori SSb0 [6] 1r bpSbp 1r bpSbp (1.000) 2r bpSbp (0.000) 1r Lai-Massey (0.000)
Midori SSb1 1r bpSbp 1r bpSbp (1.000) 2r bpSbp (0.000) 1r Bridge (0.000)
Midori SSb2 1r bpSbp 1r bpSbp (0.992) 1r Sbp (0.005) 2r bpSbp (0.004)
Midori SSb3 1r bpSbp 1r bpSbp (1.000) 2r bpSbp (0.000) 1r Lai-Massey (0.000)
QARMA Σ0 [4] 1r Sbp 1r Sbp (1.000) 2r Sbp (0.000) 1r bpSbp (0.000)
QARMA Σ1 1r Sbp 1r Sbp (1.000) 1r bpSbp (0.000) 2r Sbp (0.000)
QARMA Σ2 1r Sbp 1r Sbp (1.000) 2r Sbp (0.000) 1r bpSbp (0.000)
QARMAv2 [5] 1r Sbp 1r Sbp (1.000) 2r Sbp (0.000) 1r bpSbp (0.000)
CLEFIA S0 [54] 2r SMP† 3r bpSbp (0.506) 3r Sbp (0.470) 4r Feistel (0.015)
CRYPTONv1 S0 [42] 2r SMP† 3r bpSbp (0.692) 3r Sbp (0.179) 4r Feistel (0.093)
CRYPTONv1 S1 2r SMP† 3r bpSbp (0.723) 3r Sbp (0.173) 4r Feistel (0.085)
CRYPTONv1 S2 2r SMP† 3r bpSbp (0.687) 3r Sbp (0.147) 4r Feistel (0.138)
CRYPTONv1 S3 2r SMP† 3r bpSbp (0.696) 3r Sbp (0.174) 4r Feistel (0.114)
Enocoro-80 [59] 2r SMP† 3r bpSbp (0.732) 3r Sbp (0.258) 4r Misty (0.009)
Twofish q0 [51] 2r SMP† 3r bpSbp (0.583) 4r Feistel (0.412) 3r Sbp (0.004)
Twofish q1 2r SMP† 3r bpSbp (0.695) 4r Feistel (0.238) 3r Sbp (0.059)
ICEBERG [56] 3r Sbp‡ 3r Sbp (0.864) 4r Misty (0.069) 3r bpSbp (0.035)
KHAZAD [9] 3r Sbp‡ 3r bpSbp (0.845) 3r Sbp (0.144) 4r Feistel (0.007)
SKINNY 8bit [10] 1r Generalized Feistel 1r bpSbp (0.938) 1r Sbp (0.053) 2r Sbp (0.006)
CS-cipher [57] 3r Feistel 3r Feistel (1.000) 1r Lai-Massey (0.000) 2r bpSbp (0.000)
CRYPTONv0.5 S0 [41] 3r Feistel 4r Feistel (0.718) 3r Feistel (0.282) 1r Lai-Massey (0.000)
CRYPTONv0.5 S1 3r Feistel 4r Feistel (0.831) 3r Feistel (0.169) 1r Lai-Massey (0.000)
Lilliput-AE [1] 3r Feistel 3r Feistel (0.997) 4r Feistel (0.002) 2r bpSbp (0.000)
Scream v3 [29] 3r Feistel 3r Feistel (0.999) 4r Feistel (0.001) 1r Lai-Massey (0.000)
Robin (iScream) [26,28] 3r Feistel 2r bpSbp (0.730) 1r Bridge (0.257) 3r bpSbp (0.012)
Fantomas [26] 3r Misty(5,3,5) 2r bpSbp (0.984) 2r Sbp (0.015) 1r Lai-Massey (0.001)
Zorro [25] 4r Feistel Linear Mix 4r Feistel (0.857) 3r bpSbp (0.070) 3r Sbp (0.063)
FLY (Littlun-1) [33] 1r Lai-Massey 1r Lai-Massey (1.000) 3r Feistel (0.000) 2r bpSbp (0.000)
Fox [31] 1r Lai-Massey 1r Lai-Massey (0.705) 4r Feistel (0.280) 3r Misty (0.008)
MD2 [32] Random 3r bpSbp (0.535) 4r Feistel (0.293) 3r Sbp (0.153)
newDES [52] Random 3r bpSbp (0.875) 3r Sbp (0.077) 4r Feistel (0.041)
Turing [49] Random 3r bpSbp (0.466) 4r Feistel (0.285) 3r Sbp (0.236)

r stands for the number of rounds.
† This structure adopts a matrix-based permutation layer.
‡ Without the final permutation.
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are instances of accurate predictions for other structures; however, in some cases,
the construction function is correct but its number of rounds is not. It is supposed
to stem from the difference between the structures that our model is trained on
and the actual structures in the S-boxes. For trained structures, such as Midori
and QARMA, since the model is trained on exactly the same structures as those
in the actual structures, the inference results are very accurate, including their
number of rounds.

Based on the results in Table 1, it can be observed that our model achieves
higher accuracy when the actual S-box structure closely resembles the trained
structures. Although the model is not perfectly accurate in some cases, it still
infers similar design structures. To further analyze this, we examine how our
model infers S-boxes with modified structures that are derived from those it
is trained on. We construct new S-boxes by combining the Feistel and Misty
structures to design slight variations of known design structures. Each S-box
consists of three rounds, where each round follows either Feistel or Misty. As a
result, we consider a total of six new structures, denoted as FFM (Feistel-Feistel-
Misty), FMF, FMM, MFF, MFM, and MMF. Moreover, to focus solely on structural
changes, we employ the same 4-bit inner S-boxes for the six structures. In other
words, we use distinct inner S-boxes for each round while employing the same
S-box in the corresponding rounds across all structures. The prediction results
for these structures are shown in Table 2. It can be seen that if Feistel is used
in the first round, our model classifies it as Feistel, whereas if Misty is used, the
model classifies it as Misty.

Table 2. Prediction results for the 8 design structures.

Feistel- Misty-Design
Structure FFF FFM FMF FMM MFF MFM MMF MMM

Predicted
Class

3-round
Feistel

2-round
Feistel

2-round
Feistel

2-round
Feistel

3-round
Misty

2-round
Misty

3-round
Misty

3-round
Misty

According to the results in Section 3.2, our model does not simply memorize
the inputs; rather, it learns the unique patterns of each design structure and uses
similarities and differences to distinguish them. Consequently, in a case such as
FMM, it can be conjectured that the next highest output probability (after Feistel)
would belong to Misty, and this conjecture is indeed confirmed by Fig. 7. Fig.
7 shows the output probabilities for three representative cases: FFM, FMM, and
MFF. As shown in Fig. 7, our model infers, with high confidence, the structure
employed in the first round of each S-box. It also can be observed that, except
the structure of the first round, the second-highest class corresponds to the other
structure that comprises the given S-box. These findings suggest that the model
can detect not only the main structure but also other hidden structures within
an S-box.



14 D. Kwon et al.

0.5

1.0 0.997

F2 F3 F4 M2 M3 M4 S1 S2 S3 bp1bp2bp3 Inv L1 B1
Predicted Structure

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

3.3e-04

7.5e-07

1.6e-03

2.9e-069.1e-086.6e-072.9e-069.5e-06

2.6e-04
1.6e-04

1.9e-052.5e-06

2.3e-04

3.5e-06

Ou
tp

ut
 p

ro
ba

bi
lit

y

(a) FFM

0.5

1.0 0.997

F2 F3 F4 M2 M3 M4 S1 S2 S3 bp1bp2bp3 Inv L1 B1
Predicted Structure

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

4.4e-04

2.1e-06

1.0e-03

4.2e-061.9e-074.4e-063.9e-063.6e-05

3.5e-04

8.3e-05
2.9e-051.0e-05

9.0e-05
3.8e-06

Ou
tp

ut
 p

ro
ba

bi
lit

y

(b) FMM

0.5

1.0 0.999

F2 F3 F4 M2 M3 M4 S1 S2 S3 bp1 bp2 bp3 Inv L1 B1
Predicted St uctu e

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00 1e−7

2.2e-14

1.1e-07

1.7e-13

2.2e-06 8.2e-07

2.5e-13
1.2e-08

2.9e-098.8e-153.6e-109.5e-134.0e-153.7e-123.5e-10

Ou
tp

ut
 p

ro
ba

bi
lit

y

(c) MFF

Fig. 7. Detailed visualization of output probabilities for FFM, FMM and MFF.

4.2 On Untrained and Unknown Structures

Despite the high likelihood that the design structures of Streebog’s π and Skip-
jack’s F are not included in our training datasets, we can infer the design sim-
ilarity between these S-boxes and related S-boxes. The inference results for the
S-boxes of Streebog and Skipjack can be seen in Figs. 8(a) and 8(b), respectively.
We believe that these inference results indicate the probability of classification
into the closest class among the structures that our model is trained on, rather
than directly predicting the design structure itself. For instance, according to
Table 1, our model inferred the S-boxes generated randomly, like the S-boxes
of MD2, Turing and newDES, as 3-round bpSbp. This implies that our model
considers the random S-boxes to be the closest to the 3-round bpSbp among the
trained structures. To verify this, we aggregate the prediction results for 2,000
random S-boxes and show the histogram in Fig. 8(c).
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Fig. 8. Prediction results on unknown S-boxes from DL1BCT.

Given that a trained neural network produces similar outputs for inputs with
close features, it can be hypothesized that comparing the output probabilities
of S-boxes can help infer the design similarities between them. According to the
existing studies in [47,48], S-boxes of BelT and Anubis are presumed to have de-
sign structures similar to the S-boxes of Streebog and Skipjack, respectively. The
inference results for the S-boxes can be found in Figs. 8(d) and 8(e), confirming
our hypothesis. These results strongly imply that the Streebog S-box does not
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belong to a random family, contrary to the claims of Russian cryptographers,
and this conclusion aligns with the claims made in the previous study using
the concept of anomalies [19]. However, similar to previous research, our model
demonstrates its limitation in identifying design structures. Nevertheless, these
findings indicate that our model can estimate the similarity between S-boxes,
even for untrained structures.

4.3 Recovering the Number of Rounds of Untrained Structures

As demonstrated in Section 4.2, the model faces limitations in recovering struc-
tures it has not been trained on. If no prior information about the design of
an S-box is available, is it possible to estimate at least its number of rounds?
To address this question, we investigate whether the number of rounds in an
S-box can be inferred without training its design structure. Our framework can
be easily adapted to perform different types of attacks, depending on how the
training dataset is structured. To recover the number of rounds, we present
a round identification model that classifies S-boxes constructed with different
numbers of rounds but the same CF. In our experiment, we denote this model as
DL2table, which is trained to classify S-boxes constructed with 2 to 7-round Misty
structures.

Each element in a neural network’s output for a sample represents a prob-
ability that the sample belongs to each class, and the class with the highest
probability becomes the predicted class by the model. When the model is a bi-
nary classification model, we can display the probability of being classified into
the first class, i.e. the first element of output, however, it is not possible for a
multi-class classification model. We introduce a new method for visualizing the
output probabilities of the round identification model. When output probabili-
ties of an n-class model are denoted as (p0, p1, ..., pn−1), we display the following
value:

y = ypred −
∑

i<ypred

pi +
∑

j>ypred

pj , where ypred = argmax
i

pi (2)

In Fig. 9, the x-axis represents the index of the sample, showing 2,000 samples
each from 2-round Feistel to 1-round Bridge in order, and the y-axis represents
the inference results according to equation (2). As observed in Fig. 9, samples
with design structures not considered in the training process, such as Feistel, Sbp,
and bpSbp, are not classified by rounds accurately, but the trend can be seen
where, akin to stairs, the classification gradually shifts to higher rounds as the
number of rounds increases. Considering that the 1-round Lai-Massey and Bridge
contain three inner S-boxes, even without prior training on these structures, the
model infers them somewhat correctly as either 3-round or 4-round that biased
towards 3-round. These findings suggest that, despite not being trained on the
design structures of given S-boxes, our model has the potential to effectively
distinguish their number of rounds.
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Fig. 9. Inference results for the 15 design structures from the DL2BCT model trained
only with the Misty structures.

5 Quantifying Distances Between S-boxes

The concept of anomalies of an S-box is introduced to quantify how rare an S-box
is with respect to certain properties, thereby measuring how far an S-box deviates
from randomly selected ones. However, while this method can reveal whether an
S-box is non-randomly generated, it is less suited to evaluating the similarity or
distance between two different S-boxes. To address this issue, we propose new
approaches that quantify distances using deep learning-based embeddings.

5.1 Revisiting the Conventional Method: Anomaly of an S-Box

First, before introducing a deep learning-based approach, we briefly revisit the
anomaly of an S-box. Fig. 10 displays the linear anomalies of random S-boxes
and those of S-boxes constructed with 15 different design structures, and each
class contains 100 samples. In Fig. 10(a), it seems that since the inner S-boxes of
each S-box are chosen uniformly at random without considering any properties,
it is hard to distinguish them from random S-boxes using positive anomalies. In
this case, we can consider applying the concept of negative anomalies proposed
by Bonnetain et al. [19]. However, as seen in Fig. 10(b), even with negative
anomalies, distinguishing 4-round Feistel, Misty, 3-round Sbp, and bpSbp from
random S-boxes remains challenging in some instances.
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Fig. 10. Linear anomalies of S-boxes constructed with each design structure.
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Additionally, the anomalies of Sbp and bpSbp S-boxes with the same inner
S-boxes are identical. This is because affine-equivalent S-boxes [14] have the
same values of anomalies. For example, given a 1-round Sbp S-box S and a
bitwise permutation P , the differences between the LAT of S and S◦P (1-round
bpSbp) lie solely in the rearrangement of coefficients, rather than their values.
Consequently, distinguishing between these S-boxes based on their anomalies
becomes infeasible. These results in Figs. 1 and 10 highlight the limitations of
the anomalies of an S-box in identifying S-box design structures.

5.2 Embedding S-Boxes using Multi-Class Classification Model

According to the results in Section 3.2, our model does not merely distinguish
the design structures of S-boxes but also recognizes their similarities. Building
on this observation, we propose a method that extracts each S-box’s embed-
ding vector from our trained classification model, then quantifies the distance
between these embeddings. Concretely, we use the output of the fully-connected
layer immediately before the final softmax layer in our neural network as the
embedding vector. Since the neural network learns to separate each class dis-
tinctly, it naturally forms clustered distributions in the embedding space based
on class. Consequently, a model with high classification accuracy tends to learn
an embedding space where each class is well separated. By leveraging these em-
bedding vectors, we quantify the distance between two S-boxes using various
metrics such as the Euclidean (L2) and the cosine distances.

We verify our proposed method by extracting embedding vectors for each
S-box from our trained DL1DDT model and then measuring their distances. Fig.
11 shows how far each structured S-box is from random S-boxes, using both the
L2 distance and the cosine distance. We set the mean embedding vector of 2,000
random S-boxes as the centroid of the random S-box embedding vectors. Each
point in Fig. 11 corresponds to a single S-box, and its position on the y-axis
indicates its distance from the centroid of random S-boxes.
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Fig. 11. Distances from the center of random permutations to each S-box.

As shown in Fig. 11, it can be observed that the design structures become
closer to the centroid of random S-boxes as the number of rounds increases.
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This trend appears in both L2 distance and cosine distance, and it demonstrates
that as the S-boxes become closer to random, the distances also decrease. These
observations suggest that similar to the conventional method, the distance to
random S-boxes can be quantified by measuring the distance from the centroid
of their embedding vectors.

Our method can also be applied to quantify distances between S-boxes with
different structures. Figs. 12(a) and 12(b) illustrate the distances from the cen-
troids of 3-round Feistel and 3-round Misty, respectively, to S-boxes constructed
with 2-round Feistel, 2-round Misty, 1-round Sbp and 1-round bpSbp. In Fig.
12(a), the closest S-boxes to 3-round Feistel are the 2-round Feistel S-boxes,
followed by the 2-round Misty S-boxes, and then the 1-round Sbp and bpSbp
S-boxes, in that order. Similarly, Fig. 12(b) shows that 2-round Misty is closest
to 3-round Misty, with Feistel as the next closest structure. These results con-
firm that S-boxes with more similar designs lie nearer in the embedding space,
highlighting the effectiveness of our embedding-based approach for evaluating
structural similarity.
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Fig. 12. Distances from the center of each structure to each S-box.

Fig. 12(c) displays the results of both the L2 distance and cosine distance
from the centroids of 3-round Misty. In both distance metrics, the structure clos-
est to 3-round Misty is 2-round Misty, which shares the same construction func-
tion. When considering only the L2 distance, it is difficult to distinguish between
the 1-round Sbp and bpSbp structures due to significant overlap; by contrast,
with the cosine distance, it becomes visually evident that these structures can be
differentiated. This indicates that using multiple distance metrics in the S-box
embedding space helps effectively distinguish between different structures.

5.3 Embedding S-Boxes using One-Class Classification Model

In order to train the classification model used in the embedding method intro-
duced in Section 5.2, a large amount of training data for the design structures to
be identified is required. However, in real-world scenarios, the number of samples
for unknown S-boxes is limited, and no prior information about their designs is
available, making it challenging to apply supervised or semi-supervised learning
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models. Moreover, the multi-class classification model-based embedding method
does not explicitly define the mapping of each sample in the embedding space.
The multi-class classification model is trained solely to predict correct labels,
thus there is no strong guarantee that distances between embedding vectors
reflect structural similarity.

To overcome these limitations, we apply Deep SVDD (Support Vector Data
Description) [50] as a one-class classification model, which is one of the unsuper-
vised anomaly detection methods. The primary goal of Deep SVDD is to map
input data into a latent space and minimize the distance between normal data
and the center. Samples that deviate significantly from the center are classified
as anomalies. The loss function for Deep SVDD is defined as follows:

L =
1

N

N∑
i=1

∥ϕ(xi; θ)− c∥2 + λ∥θ∥2

where ϕ(xi; θ) represents the neural network that maps the input data xi into
a latent space, c is the center of the latent space, θ is the set of parameters of
the neural network, and λ is a hyperparameter controlling the weight decay. The
first term in the loss function is designed to minimize the average L2 distance
between normal data points and the center c, so that normal data points clus-
ter around the center. The second term represents weight decay regularization,
which penalizes overly large parameter values to control model complexity and
mitigate overfitting.

The Deep SVDD model is trained on only one normal class. After training, it
can assess the similarity between an input S-box and the class it was trained on,
since embeddings from other classes are generally farther from the center in the
latent space. This approach functions as an anomaly detection method, where
data points far from the normal class are considered anomalies. While it is similar
to the existing approach, namely the anomaly of an S-box, it differs in that the
distance is not solely determined by the maximum value in a cryptographic table
but rather takes into account all the coefficients in the table. Furthermore, since
not only random S-boxes but also an S-box design structure can be set as a
normal class, our approach can quantify the distance between a given S-box
and a specified structure. By constructing individual Deep SVDD models for
known structures, the similarity of a given S-box to the trained structures can
be effectively evaluated.

To validate the proposed method, we conduct experiments with three Deep
SVDD models. Each model is trained on 2,000 samples from a single class:
Random S-box, 3-round Feistel, and 3-round Misty. The results of each model
are shown in Figs. 13(a), 13(b), and 13(c). As seen in Fig. 13(a), even though
the model is trained solely on Random S-boxes, the structures with different
rounds are distinguishable, which is consistent with the patterns observed in
Fig. 11. Figs. 13(b) and 13(c) demonstrate that S-boxes with similar structures
are closer in distance compared to those with different structures, consistent
with the observations in Figs. 12(a) and 12(b). Despite the model being trained
on only one class with fewer samples, the results align with those in Section 5.2,
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where models are trained on all classes. This consistency further supports the
effectiveness of the proposed approach. However, as observed in Figs. 13(b) and
13(c), the separation between similar structures and others is less evident than
in the classification model trained on various structures.
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Fig. 13. Results from the Deep SVDD models that were trained on each structure.

6 Conclusions

In this study, we introduce the deep learning-based framework for recovering the
design structures of S-boxes. Our framework trains a neural network to classify
the design structure of a given S-box based on its cryptographic table. Lever-
aging our framework, we propose new methods to quantify distances not only
from random S-boxes but also between different S-boxes. For example, while a
designer may intuitively infer that the Feistel structure is closer in distance to
the Misty structure than to the Sbp structure, our methods provide a quanti-
tative basis for such assessments using deep learning techniques. Our approach
offers broader applicability compared to conventional anomaly-based methods
and can be seamlessly applied to newly designed structures. Consequently, it is
expected to provide significant insights for cryptanalysts and designers in S-box
reverse-engineering. Furthermore, our findings indicate that deep learning can
enhance cryptanalysis in ways beyond serving as a neural distinguisher.
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