
Impossible Differential Attack on SAND-128

Nobuyuki Sugio[0000−0001−7313−1755]

Hokkaido University of Science, Sapporo, Japan
sugio-n@hus.ac.jp

Abstract. Impossible differential attack is one of the major cryptana-
lytical methods for symmetric-key block ciphers. In this paper, we eval-
uate the security of SAND-128 against impossible differential attack.
SAND is an AND-RX-based lightweight block cipher proposed by Chen
et al. in Designs, Codes and Cryptography 2022. There are two variants
of SAND, namely SAND-64 and SAND-128, due to structural differ-
ences. In this paper, we search for impossible differential distinguish-
ers of SAND-128 using the Constraint Programming (CP) and reveal
14-round impossible differential distinguishers. The number of 14-round
distinguishers is 214 × 7 = 114, 688. Furthermore, we demonstrate a key
recovery attack on 21-round SAND-128. The complexities for the at-
tack require 2124 data, 2127.2 encryptions, and 2122 bytes of memory,
respectively. Although this result currently achieves the best attack on
round-reduced SAND-128, this attack does not threaten the security of
SAND-128 against impossible differential attack.

Keywords: Impossible differential attack, lightweight cipher, SAND,
Constraint Programming

1 Introduction

Impossible differential attack was independently proposed by Biham et al. [1] and
Knudsen [2]. Impossible differential was defined as the differential with proba-
bility zero. This attack eliminates the key candidates which generate differential
with probability zero. In this technique, an attacker searches for an impossible
output differential Δ𝑌 corresponding to a given input differential Δ𝑋 over 𝑟-round
of the cipher. If such a pair of input-output differentials (Δ𝑋, Δ𝑌) exists, it is
termed as an 𝑟-round impossible differential distinguisher. This distinguisher can
be used to conduct a distinguishing attack or a key recovery attack against the
target cipher.

Boura et al. have formalized the necessary number of data, time, and memory
complexities for the impossible differential attack [3], [4]. In their method, an
attacker estimates the sets of all possible input difference Δ𝑖𝑛 (resp. those of
output difference Δ𝑜𝑢𝑡) of the target cipher using truncated differentials with
probability 1. Because the necessary number of data is depend on the sets of all
possible input difference Δ𝑖𝑛 (resp. those of output difference Δ𝑜𝑢𝑡), an attacker
needs to minimize them in order to attack the target cipher efficiently.

2 N. Sugio

Table 1. Attack Results on SAND-128

Number of rounds Type Data Time Memory Method

14 Distinguisher - - - Impossible Differential [5]

14 Distinguisher - - - Impossible Differential [15]

14 Distinguisher - - - Impossible Differential (Ours)

16 Distinguisher 2127 - - Integral [5]

17 Distinguisher 2127 - - Integral [17]

20 Key Recovery 2127 2119 276 Integral [17]

21 Key Recovery 2124 2127.2 2122 Impossible Differential (Ours)

SAND is proposed by Chen et al. in Designs, Codes and Cryptography 2022
[5]. SAND is a family of lightweight Feistel block ciphers (with 64- or 128-bit
block size, both using a 128-bit key) designed using only AND, rotation, and
XOR (AND-RX) operations, while enabling classical S-box-based cryptanalytic
techniques.

For security evaluation, the designers analyzed differential attack [6], linear
attack [7], and other cryptanalytical methods using Mixed Integer Linear Pro-
gramming (MILP). In the previous research on SAND-128, the designers applied
the method proposed in [8] to search for impossible differential distinguishers.
They fixed the number of active S-boxes in the input and output differences as
one, then performed an exhaustive search at nibble level. However, this method
limits the search space, potentially overlooking other impossible differential dis-
tinguishers.

Hadipour et al. proposed methods to search for impossible differential dis-
tinguishers using deterministic differentials [9], [10]. These approaches do not
require predefined input and output differences, allowing for a more efficient
search for impossible differential distinguishers.

1.1 Contributions of This Paper

In this paper, we evaluate the security of SAND-128 against impossible dif-
ferential attack. We firstly search for impossible differential distinguishers of
SAND-128 using the bit-based Hadipour et al.’s method [10] and reveal 14-round
impossible differential distinguishers. The number of 14-round distinguishers is
214 × 7 = 114, 688. Furthermore, we demonstrate a key recovery attack on 21-
round SAND-128. The attack results are summarized in Table 1.

1.2 Structure of This Paper

The structure of this paper is as follows. Section 2 provides related works on
SAND-128. Section 3 explains an overview of impossible differential attack. Sec-
tion 4 introduces constraint programming and the use of deterministic differen-
tials in searching for impossible differential distinguishers. Sections 5 describes
the structures of SAND-128. In Section 6, we illustrate 14-round impossible

Impossible Differential Attack on SAND-128 3

differential distinguishers and present a key recovery attack on 21-round SAND-
128. Section 7 provides a deeper discussion of the implications of our findings,
highlights the novelty of our approach, and outlines its limitations in the broader
context of cryptanalysis on SAND-128. Finally, Section 8 concludes the paper.

2 Related Works

The designers evaluated SAND’s security against various attacks such as dif-
ferential attack [6], linear attack [7], integral attack [12], impossible differential
attack [1], and zero-correlation linear attack [13], [14]. They searched for impos-
sible differentials and zero-correlation linear approximations using a nibble-level
search using the method proposed in [8]. As a result, they identified 14-round
distinguishers both impossible differential and zero-correlation for SAND-128
[5].

Zhang et al. developed a systematic search framework for AND-RX ciphers to
find impossible differential distinguishers [15]. Applying their method to SAND,
they found 456 types of 14-round impossible differential distinguisher of SAND-
128.

Mirzaie et al. applied the conventional bit-based division property technique
[16] to find integral distinguishers on reduced-round SAND-128 [17]. They dis-
covered a 17-round integral distinguisher with nine balanced bits. The data com-
plexity for the distinguisher is 2127. Building on this distinguisher, Mirzaie et al.
mounted a key recovery attack on 20-round SAND-128. The time and memory
complexities are 2119 encryptions and 276 bytes, respectively.

3 Impossible Differential Attack

Impossible differential attack was proposed by Biham et al. [1]. Impossible dif-
ferential was defined as the differential with probability zero. This attack elim-
inates the key candidates which generate differential with probability zero. In
this technique, an attacker searches for an impossible output differential Δ𝑌 cor-
responding to a given input differential Δ𝑋 over 𝑟-round of the cipher. If such
a pair of input-output differentials (Δ𝑋, Δ𝑌) exists, it is termed as an 𝑟-round
impossible differential distinguisher. This distinguisher can be used to conduct
a distinguishing attack or a key recovery attack against the target cipher.

Boura et al. have formalized the necessary number of data, time, and memory
complexities for the impossible differential attack [3], [4]. The following outlines
them. For more details, please refer to the references [3], [4].

Figure 1 illustrates the notations for an impossible differential attack. Let
Δ𝑋 and Δ𝑌 be input (resp. output) differences of the impossible differential. Let
𝑟Δ be the number of rounds of the impossible differential. Let Δ𝑖𝑛 and Δ𝑜𝑢𝑡 be
set of all possible input (resp. output) differences of the cipher. Let 𝑟𝑖𝑛 and 𝑟𝑜𝑢𝑡
be the number of rounds of the differential paths (Δ𝑋, Δ𝑖𝑛) or (Δ𝑌 , Δ𝑜𝑢𝑡).

The differential (Δ𝑋 → Δ𝑖𝑛) (resp. (Δ𝑌 → Δ𝑜𝑢𝑡)) occurs with probability 1
while the differential (Δ𝑖𝑛 → Δ𝑋) (resp. (Δ𝑜𝑢𝑡 → Δ𝑌)) is verified with probability

4 N. Sugio

!"

#

$

%&'

!"

(

%&'

(!" !")

(%&' %&')

Fig. 1. Notations for an impossible differential attack [3]

1
2𝑐𝑖𝑛 (resp. 1

2𝑐𝑜𝑢𝑡), where 𝑐𝑖𝑛 (resp. 𝑐𝑜𝑢𝑡) is the number of bit-conditions that have
to be verified to obtain Δ𝑋 from Δ𝑖𝑛 (resp. Δ𝑌 from Δ𝑜𝑢𝑡).

The probability that for a given key, a pair of inputs already satisfying the
differences Δ𝑖𝑛 and Δ𝑜𝑢𝑡 verifies all the (𝑐𝑖𝑛 + 𝑐𝑜𝑢𝑡) bit-conditions is 2−(𝑐𝑖𝑛+𝑐𝑜𝑢𝑡) .
Therefore, the probability that a key trial is kept in the candidate keys set is
𝑝𝑘 = (1 − 2−(𝑐𝑖𝑛+𝑐𝑜𝑢𝑡))𝑁 with 𝑁 different input (or output) pairs.

Boura et al. have formalized the smallest value of 𝑁, denoted by 𝑁𝑚𝑖𝑛, veri-
fying

𝑝𝑘 = (1 − 2−(𝑐𝑖𝑛+𝑐𝑜𝑢𝑡))𝑁𝑚𝑖𝑛 <
1

2

is approximately 𝑁𝑚𝑖𝑛 = 2𝑐𝑖𝑛+𝑐𝑜𝑢𝑡 . The cost of obtaining 𝑁 pairs of (Δ𝑖𝑛,Δ𝑜𝑢𝑡) is
evaluated as

𝐶𝑁 = max

{
min

Δ∈{Δ𝑖𝑛 ,Δ𝑜𝑢𝑡 }

{√
𝑁2𝑛+1−|Δ |

}
, 𝑁2𝑛+1−|Δ𝑖𝑛 |− |Δ𝑜𝑢𝑡 |

}
. (1)

The cost 𝐶𝑁 also represents the amount of needed data. The time complexity is

𝑇 =

(
𝐶𝑁 +

(
𝑁 + 2 |𝑘𝑖𝑛∪𝑘𝑜𝑢𝑡 | 𝑁

2𝑐𝑖𝑛+𝑐𝑜𝑢𝑡

)
𝐶′𝐸 + 2 |𝐾 | 𝑝𝑘

)
𝐶𝐸 , (2)

with 𝑁 such that 𝑝𝑘 = (1 − 2−(𝑐𝑖𝑛+𝑐𝑜𝑢𝑡))𝑁 < 1
2 , and where 𝐶′𝐸 is the ratio of

the cost of partial encryption to the full encryption, and where the last term
represents the brute-force search complexity.

Impossible Differential Attack on SAND-128 5

The only elements that need to be stored are the 𝑁 pairs. Therefore, the
memory complexity for the attack is determined by 𝑁.

4 Constraint Programming and Its Application to
Cryptanalysis

4.1 Constraint Programming

Constraint Programming (CP) is a programming paradigm that aims to solve
problems by employing mathematical and computational techniques to meet
specific conditions, known as constraints. Constraints C are conditions that the
values of variables must satisfy. They are expressed in mathematical or logical
form. Variables X are elements that can take on specific values. Each variable
has a domain D, which is the range of possible values it can assume. A constraint
problem consists of a set of variables and the constraints imposed on them. The
goal is to find a combination of variable values that satisfies all the constraints.

4.2 Application to Cryptanalysis

Hadipour et al. proposed the cell-wise model [9] and the bit-wise model [10] to
search for impossible differential distinguishers and zero-correlation linear trails
using CP. In the bit-wise model, specific constraints were set to track the en-
cryption and decryption processes for each round at the bit level and an attacker
could find bit-wise impossible differential distinguishers and zero-correlation lin-
ear trails of a target cipher. Specifically, Hadipour et al. applied it to ASCON
and this method discovered 5-round impossible differential distinguishers and
zero-correlation linear trails [10].

The following outlines the CP models for deterministic differential transi-
tions. For more details, please refer to the references [9], [10]. In the bit-wise
models, let integer variables 𝑋 and 𝑌 with the domain of {−1, 0, 1} to indicate
whether the differential is unknown, zero, or one, respectively.

CP model 1 (Branching) [10]

For 𝑓 : F2 → F𝑛2, 𝑓 (𝑥) = (𝑦0, 𝑦1, · · · , 𝑦𝑛−1), where 𝑦0 = 𝑦1 = · · · = 𝑦𝑛−1 = 𝑥, the
valid transitions for deterministic differential trails satisfy the following:

Branch(𝑋,𝑌 [0], · · · , 𝑌 [𝑛 − 1]) :=
𝑛−1∧
𝑖=0

(𝑌 [𝑖] = 𝑋),

where 𝑋 and 𝑌 [𝑖] are integer variables with the domain of {−1, 0, 1} for all 0 ≤
𝑖 ≤ 𝑛 − 1.

CP model 2 (XOR) [10]

6 N. Sugio

For 𝑓 : F𝑛2 → F2, 𝑓 (𝑥0, 𝑥1, · · · , 𝑥𝑛−1) = 𝑦, where 𝑦 = 𝑥0 ⊕ 𝑥1 ⊕ · · · ⊕ 𝑥𝑛−1, the
valid transitions for deterministic differential trails satisfy the following:

XOR(𝑋 [0], · · · , 𝑋 [𝑛 − 1], 𝑌) :=
{
if
∨𝑛−1
𝑖=0 (𝑋 [𝑖] = −1) then 𝑌 = −1

else 𝑌 =
∑𝑛−1
𝑖=0 𝑋 [𝑖] mod 2 endif

where 𝑋 [𝑖] and 𝑌 are integer variables with the domain of {−1, 0, 1} for all
0 ≤ 𝑖 ≤ 𝑛 − 1.

CP model 3 (S-box) [10]

CP model for S-box can be derived from differential distribution table (DDT).

The way how to encode deterministic behaviours of S-box using sbox analyzer
is explained in Appendix N of [10].

CP models to search deterministic differential distinguishers are constructed
as follows. We define integer variables 𝑋𝑈𝑟 and 𝑋𝐿𝑟 , 0 ≤ 𝑟 ≤ 𝑅 to represent the
active pattern of the internal state after 𝑟 rounds of a block cipher in the for-
ward and backward directions. CP models for deterministic differential trails in
forward and backward directions over 𝑅 rounds are independently constructed.
The constraints

∑𝑛−1
𝑖=0 𝑋𝑈0 [𝑖] ≠ 0 and

∑𝑛−1
𝑖=0 𝑋𝐿𝑅 [𝑖] ≠ 0 are added to exclude

all trivial solutions. The following constraints are added to ensure the inconsis-
tency between the two deterministic differential propagations at least one point
throughout the distinguisher:

𝐶𝑆𝑃 :=
𝑅−1∨
𝑟=0

(𝑛−1∨
𝑖=0

(𝑋𝑈𝑟 [𝑖] + 𝑋𝐿𝑟 [𝑖] = 1)
)

If CP models are feasible using a CP-solver, it means that there exist 𝑟-round
impossible differentials. Otherwise, one can not find any impossible differential
at 𝑟-round using deterministic differential trails.

5 Lightweight Block Cipher SAND-128

SAND is a lightweight block cipher proposed by Chen et al. [5]. It employs an
AND-RX structure and has two variants, SAND-64 and SAND-128, depending
on the block size. In this paper, we focus on SAND-128, which has a block size
of 128 bits and a secret key length of 128 bits. The recommended number of
SAND-128 is 54. In the following description, we set 𝑛 = 64.

5.1 Preliminaries

The notations used in the description of SAND-128 are defined as follows:

Impossible Differential Attack on SAND-128 7

– 𝑥 = (𝑥𝑛−1, 𝑥𝑛−2, . . . , 𝑥0): An 𝑛-bit variable, where 𝑥𝑛−1 represents the most
significant bit (MSB) and 𝑥0 represents the least significant bit (LSB). The
variable 𝑥 is represented using a 4 × 𝑛

4 array:

𝑥 =


𝑥𝑛−1 . . . 𝑥7 𝑥3
𝑥𝑛−2 . . . 𝑥6 𝑥2
𝑥𝑛−3 . . . 𝑥5 𝑥1
𝑥𝑛−4 . . . 𝑥4 𝑥0


– 𝑥 | |𝑦: Concatenation of variables 𝑥 and 𝑦
– 𝑥 ≪ 𝑠: Left shift of variable 𝑥 by 𝑠 bits
– 𝑥 ≪ 𝑡: Left cyclic shift of variable 𝑥 by 𝑡 bits
– 𝑥 ≪ 𝑛

4
𝑡: Variable 𝑥 is divided into four 𝑛

4 -bit words 𝑥 = (𝑥𝑛−1, 𝑥𝑛−2, . . . , 𝑥0) =
𝑥{3}| |𝑥{2}| |𝑥{1}| |𝑥{0}, and each word 𝑥{𝑖} undergoes a left cyclic shift by 𝑡
bits:

𝑥 ≪ 𝑛
4
𝑡 = (𝑥{3}≪ 𝑛

4
𝑡) | | (𝑥{2}≪ 𝑛

4
𝑡) | | (𝑥{1}≪ 𝑛

4
𝑡) | | (𝑥{0}≪ 𝑛

4
𝑡).

– 𝑥 ⊙ 𝑦: Bitwise AND operation
– 𝑥 ⊕ 𝑦: Bitwise XOR operation
– 𝑥 [𝑖]: The 𝑖-th nibble (4-bit) of variable 𝑥. Given 𝑥 = (𝑥𝑛−1, 𝑥𝑛−2, . . . , 𝑥0):

𝑥 [𝑛4 − 1] = (𝑥𝑛−1, 𝑥𝑛−2, 𝑥𝑛−3, 𝑥𝑛−4),
...

𝑥 [1] = (𝑥7, 𝑥6, 𝑥5, 𝑥4),
𝑥 [0] = (𝑥3, 𝑥2, 𝑥1, 𝑥0).

5.2 State Loading

Let 𝑃 = (𝑃𝑙, 𝑃𝑟) be the plaintext, where 𝑃𝑙 = (𝑃𝑙𝑛−1, . . . , 𝑃𝑙1, 𝑃𝑙0) represents the
left 𝑛-bit part and 𝑃𝑟 = (𝑃𝑟𝑛−1, . . . , 𝑃𝑟1, 𝑃𝑟0) represents the right 𝑛-bit part. The
variables 𝑃𝑙 and 𝑃𝑟 are represented as 4 × 𝑛

4 arrays:

𝑃𝑙 =


𝑃𝑙𝑛−1 . . . 𝑃𝑙7 𝑃𝑙3
𝑃𝑙𝑛−2 . . . 𝑃𝑙6 𝑃𝑙2
𝑃𝑙𝑛−3 . . . 𝑃𝑙5 𝑃𝑙1
𝑃𝑙𝑛−4 . . . 𝑃𝑙4 𝑃𝑙0

 =

𝑥0{3}
𝑥0{2}
𝑥0{1}
𝑥0{0}

 , 𝑃𝑟 =

𝑃𝑟𝑛−1 . . . 𝑃𝑟7 𝑃𝑟3
𝑃𝑟𝑛−2 . . . 𝑃𝑟6 𝑃𝑟2
𝑃𝑟𝑛−3 . . . 𝑃𝑟5 𝑃𝑟1
𝑃𝑟𝑛−4 . . . 𝑃𝑟4 𝑃𝑟0

 =

𝑦0{3}
𝑦0{2}
𝑦0{1}
𝑦0{0}


The input (𝑥0, 𝑦0) for the first round is assigned row by row from plaintext

𝑃:

𝑥0 = 𝑃𝑙𝑛−1 . . . 𝑃𝑙7 𝑃𝑙3 | | . . . | |𝑃𝑙𝑛−4 . . . 𝑃𝑙4 𝑃𝑙0 = 𝑥0{3}| |𝑥0{2}| |𝑥0{1}| |𝑥0{0}
𝑦0 = 𝑃𝑟𝑛−1 . . . 𝑃𝑟7 𝑃𝑟3 | | . . . | |𝑃𝑟𝑛−4 . . . 𝑃𝑟4 𝑃𝑟0 = 𝑦0{3}| |𝑦0{2}| |𝑦0{1}| |𝑦0{0}
Let 𝐶 = (𝐶𝑙, 𝐶𝑟) be the ciphertext, where 𝐶𝑙 = (𝐶𝑙𝑛−1, . . . , 𝐶𝑙1, 𝐶𝑙0) repre-

sents the left 𝑛-bit part and 𝐶𝑟 = (𝐶𝑟𝑛−1, . . . , 𝐶𝑟1, 𝐶𝑟0) represents the right 𝑛-bit
part. The ciphertext 𝐶 is assigned row by row from the round 𝑅 output (𝑥𝑅, 𝑦𝑅):

𝐶𝑙 =


𝐶𝑙𝑛−1 . . . 𝐶𝑙7 𝐶𝑙3
𝐶𝑙𝑛−2 . . . 𝐶𝑙6 𝐶𝑙2
𝐶𝑙𝑛−3 . . . 𝐶𝑙5 𝐶𝑙1
𝐶𝑙𝑛−4 . . . 𝐶𝑙4 𝐶𝑙0

 =

𝑥𝑅{3}
𝑥𝑅{2}
𝑥𝑅{1}
𝑥𝑅{0}

 , 𝐶𝑟 =

𝐶𝑟𝑛−1 . . . 𝐶𝑟7 𝐶𝑟3
𝐶𝑟𝑛−2 . . . 𝐶𝑟6 𝐶𝑟2
𝐶𝑟𝑛−3 . . . 𝐶𝑟5 𝐶𝑟1
𝐶𝑟𝑛−4 . . . 𝐶𝑟4 𝐶𝑟0

 =

𝑦𝑅{3}
𝑦𝑅{2}
𝑦𝑅{1}
𝑦𝑅{0}



8 N. Sugio

5.3 Round Function

The round function of SAND-128 is illustrated in Figure 2. Let (𝑥𝑟 , 𝑦𝑟) denote the
input of round 𝑟, 𝑠𝑘𝑟 denote the round key, and (𝑥𝑟+1, 𝑦𝑟+1) denote the output.
The round function consists of two types of nonlinear functions, 𝐺0 and 𝐺1, as
well as a linear function 𝑃𝑛. In addition, the parameters 𝛼 and 𝛽 are fixed as
𝛼 = 0 and 𝛽 = 1.

!" #"

!" $%/& '

(%

!")* #")*

!" $%/& +
,-"

.0

.*

Fig. 2. Round function of SAND-128

Let the input to 𝐺0 and 𝐺1 be an 𝑛-bit variable 𝑥 = 𝑥{3}| |𝑥{2}| |𝑥{1}| |𝑥{0} and
the output be 𝑦 = 𝑦{3}| |𝑦{2}| |𝑦{1}| |𝑦{0}. The function 𝐺0 is defined as follows:

𝑦{3} = 𝑦{0} ⊙ 𝑥{1} ⊕ 𝑥{3},
𝑦{2} = 𝑥{2},
𝑦{1} = 𝑥{1},
𝑦{0} = 𝑥{3} ⊙ 𝑥{2} ⊕ 𝑥{0}.

Similarly, the function 𝐺1 is defined as follows:

𝑦{3} = 𝑥{3},
𝑦{2} = 𝑥{3} ⊙ 𝑥{1} ⊕ 𝑥{2},
𝑦{1} = 𝑦{2} ⊙ 𝑥{0} ⊕ 𝑥{1},
𝑦{0} = 𝑥{0}.

The linear function 𝑃𝑛 transforms the input word 𝑥{𝑖} = (𝑥 𝑛
4
·𝑖+ 𝑛

4
−1, . . . , 𝑥 𝑛

4
·𝑖+1, 𝑥 𝑛

4
·𝑖)

into the output word 𝑦{𝑖} according to the following equation:

𝑦 𝑛
4
·𝑖+𝑝 𝑛

4
(𝑗) = 𝑥 𝑛

4
·𝑖+ 𝑗 , for 0 ≤ 𝑗 < 𝑛

4
, 0 ≤ 𝑖 < 4.

Impossible Differential Attack on SAND-128 9

The linear function 𝑃𝑛 can be regarded as applying the permutation 𝑝16 to each
of the four 𝑛

4 -bit words in parallel. The permutation 𝑝16 is defined in Table 2.

Table 2. Permutation 𝑝16 in SAND-128

𝑗 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

𝑝16 (𝑗) 14 15 8 9 2 3 12 13 6 7 0 1 10 11 4 5

5.4 Key Schedule

SAND-128 generates round keys 𝑠𝑘𝑟 (0 ≤ 𝑟 < 𝑅) from a 128-bit secret key 𝐾.
The secret key is treated as a concatenation of two 64-bit words: 𝐾 = 𝐾1 | |𝐾0.
Figures 3 and 4 illustrate the key schedule of SAND-128.

(!"#)
$

%&'" %&

* + 1

Fig. 3. Key schedule of SAND-128

*[15] *[14] *[13] *[2] *[1] *[0]

*′[15] *′[14] *′[13] *′[12] *′[1] *′[0]

⋘ 1

≪ 3

⋯

⋯

⋯

Fig. 4. Operation 𝐴16

The constant 𝑖 +1 (0 ≤ 𝑖 < 𝑅−2) is a round-dependent constant. The update
of the linear feedback shift register (LFSR) is defined as:

𝐾 𝑖+2 ← (𝐴16)3 (𝐾 𝑖+1) ⊕ 𝐾 𝑖 ⊕ (𝑖 + 1).

The operation 𝐴16 processes data in 4-bit units and is applied to 𝐾 𝑖+1 for three
times in succession. The round key 𝑠𝑘𝑟 (0 ≤ 𝑟 < 𝑅) is loaded from 𝐾𝑟 as follows:

𝐾𝑟 =


𝐾𝑟63 . . . 𝐾

𝑟
7 𝐾

𝑟
3

𝐾𝑟62 . . . 𝐾
𝑟
6 𝐾

𝑟
2

𝐾𝑟61 . . . 𝐾
𝑟
5 𝐾

𝑟
1

𝐾𝑟60 . . . 𝐾
𝑟
4 𝐾

𝑟
0

 ,

10 N. Sugio

𝑠𝑘𝑟 = 𝐾𝑟63 . . . 𝐾
𝑟
3 | |𝐾𝑟62 . . . 𝐾𝑟2 | |𝐾𝑟61 . . . 𝐾𝑟1 | |𝐾𝑟60 . . . 𝐾𝑟0 .

The operation 𝐴16 is also nibble-oriented, with the 64-bit input 𝑋 split into
16 nibbles 𝑋 [15] | | · · · | |𝑋 [1] | |𝑋 [0]. Then, the output is calculated as follows.

(𝑋 [15]≪ 1) ⊕ 𝑋 [0] | |𝑋 [15] ⊕ (𝑋 [15] ≪ 3) | |𝑋 [14] | |𝑋 [13] | | · · · | |𝑋 [2] | |𝑋 [1] .

6 Impossible Differential Attack on SAND-128

6.1 Construction of the CP Model

We construct a constraint programming (CP) model to search for impossible
differential distinguishers of SAND-128 using the method explained in Section
4. The domain of the following integer variables is defined as {−1, 0, 1}, where
each value represents an unknown, 0, and 1 differences, respectively.

Based on the round function illustrated in Figure 2, we define 64-bit integer
variables 𝑋𝑈𝑟 and 𝑌𝑈𝑟 (0 ≤ 𝑟 ≤ 𝑅), which represent the internal state differences
in the forward (encryption) direction. Similarly, we define 64-bit integer variables
𝑋𝐿𝑟 and 𝑌𝐿𝑟 (0 ≤ 𝑟 ≤ 𝑅), which represent the internal state differences in the
backward (decryption) direction. The variables 𝑋𝑈0 and 𝑌𝑈0 (as well as 𝑋𝐿0

and 𝑌𝐿0) represent the input differences, while 𝑋𝑈𝑅 and 𝑌𝑈𝑅 (as well as 𝑋𝐿𝑅
and 𝑌𝐿𝑅) represent the output differences after 𝑅 rounds.

The construction of the CP model in the forward (encryption) direction using
𝑋𝑈𝑟 and 𝑌𝑈𝑟 is described below. We define 64-bit integer variables Δ𝑃𝑙 and Δ𝑃𝑟 ,
which represent the plaintext differences, and impose the following constraints:

𝑋𝑈0 = StateLoading(Δ𝑃𝑙),
𝑌𝑈0 = StateLoading(Δ𝑃𝑟).

We define 64-bit integer variables 𝐺0𝑈𝑟 and 𝐺1𝑈𝑟 (1 ≤ 𝑟 ≤ 𝑅) to represent
the output differences of the nonlinear functions 𝐺0 and 𝐺1, and impose the
following constraints:

𝐺0𝑈𝑟 = 𝐺0 (𝑋𝑈𝑟),
𝐺1𝑈𝑟 = 𝐺1 (𝑋𝑈𝑟 ≪ 𝑛

4
1).

The constraints for 𝐺0 and 𝐺1 can be derived from the differential distribution
table (DDT). In this paper, we refer to Appendix N of [10] and use the S-box
analyzer1 to derive the constraints for 𝐺0 and 𝐺1.

We define 64-bit integer variables 𝑃𝑈𝑟 (1 ≤ 𝑟 ≤ 𝑅) to represent the output
differences of the linear function 𝑃𝑛, and impose the following constraint:

𝑃𝑈𝑟 = 𝑃𝑛 (XOR(𝐺0𝑈𝑟 , 𝐺1𝑈𝑟)).

For the round function output, the following constraints are imposed:

𝑋𝑈𝑟+1 = XOR(𝑌𝑈𝑟 , 𝑃𝑈𝑟),
𝑌𝑈𝑟+1 = 𝑋𝑈𝑟 .

1 https://github.com/hadipourh/sboxanalyzer

Impossible Differential Attack on SAND-128 11

By constructing these constraints for each round 𝑟 (0 ≤ 𝑟 ≤ 𝑅), the CP model
for the forward (encryption) direction is completed. Similarly, the CP model for
the backward (decryption) direction can be constructed using integer variables
𝑋𝐿𝑟 and 𝑌𝐿𝑟 .

Additionally, we introduce the following constraints to eliminate trivial solu-
tions: ∑𝑛−1

𝑖=0 𝑋𝑈0 [𝑖] +
∑𝑛−1
𝑖=0 𝑌𝑈0 [𝑖] ≠ 0,∑𝑛−1

𝑖=0 𝑋𝐿𝑅 [𝑖] +
∑𝑛−1
𝑖=0 𝑌𝐿𝑅 [𝑖] ≠ 0.

Finally, to ensure that there is at least one contradiction between the deter-
ministic difference propagation paths in the forward (encryption) and backward
(decryption) directions, we introduce the following constraints:{ 𝑅−1∨

𝑟=0

(𝑛−1∨
𝑖=0

(𝑋𝑈𝑟 [𝑖] + 𝑋𝐿𝑟 [𝑖] = 1)
)}
∨
{ 𝑅−1∨
𝑟=0

(𝑛−1∨
𝑖=0

(𝑌𝑈𝑟 [𝑖] + 𝑌𝐿𝑟 [𝑖] = 1)
)}
.

If the constructed CP model is satisfiable in the CP solver, it indicates the
existence of an 𝑟-round impossible differential distinguisher.

6.2 Impossible Differential distinguishers of SAND-128

We implemented the CP model constructed in the previous section using MiniZ-
inc2, and employed OR-Tools3 as a CP solver. The computing environment used
in this study is summarized in Table 3.

Table 3. Computing Environment

Environment Details

OS Windows 11

Platform MiniZinc 2.9.2

Solver OR-Tools CP-SAT 9.12.4544

CPU AMD Ryzen 9 5950X

Memory 128 GB

As a result of searching for impossible differential distinguishers of SAND-
128, we obtained a solution in approximately five minutes, revealing 14-round
impossible differential distinguishers of SAND-128. The number of 14-round dis-
tinguishers is 214 × 7 = 114, 688. The results are presented in Tables 4 and 5.
In both tables, the nibble-wise symbols 0 and ? denote 0 = 0000 and ? =????,
respectively.

In addition, when attempting to search for 15-round impossible differential
distinguishers, the result was UNSATISFIABLE, and no valid solution could be
obtained.
2 https://www.minizinc.org/
3 https://developers.google.com/optimization

12 N. Sugio

Table 4. 14-round Impossible Differentials of SAND-128 (Left 64-bit)

𝑃𝑙 0 0 0 0 0 0 0 0 0 0 ?0?? 0 0 0 0 0
𝑋𝑈0 0 0 00?0 0 0 0 0 0 0 0 00?0 0 0 0 00?0 0
𝑋𝑈1 000? ?000 0 ?000 000? 0 0 0100 000? ?000 0 ?000 000? ?000 0 ??00
𝑋𝑈2 0 ? 00?0 0??0 0 ??11 0 0?00 0 ???0 00?0 0??0 0 ? 00?0 0??0
𝑋𝑈3 ?00? ? ??00 ?0?? 000? 0??? ?100 01?? ?00? ? ?000 ?0?? ?00? ? ??00 ?
𝑋𝑈4 ? ? ???0 0??? ???1 ??0? ??00 0??? ???0 ? ???0 0??? ? ? ???0 0???
𝑋𝑈5 ? ? ? ?0?? ? ? ? 01?? ? ? ? ?0?? ? ? ? ?

𝑋𝑈6 ? ? ? ? ? ?? 1 ? ? ? ? ? ? ? ? ? ? ?
𝑋𝑈7 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

𝑋𝑈14 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

𝑋𝐿0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

𝑋𝐿5 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

𝑋𝐿6 ? ? ? ? ? ?? 0 ? ? ? ? ? ? ? ? ? ? ?
𝑋𝐿7 ? ? ? ?0?? ? 0??? ? 00?? ? ? ? ?0?? ? ? ? ?0??
𝑋𝐿8 ???0 ? ???0 0??? ??00 ??0? ??00 0??? ???0 ? ???0 0??? ???0 ? ???0 0???
𝑋𝐿9 000? 0??? ?000 ?0?? 000? 0??? 0 00?? 000? 0??? ?000 ?0?? 000? 0??? ?000 ?0??
𝑋𝐿10 0 ???0 00?0 0?00 0 ??00 0 0?00 0 ???0 00?0 0?00 0 ???0 00?0 0?00
𝑋𝐿11 000? 0 0 ?000 000? 0 0 0 000? 0 0 ?000 000? 0 0 ?000
𝑋𝐿12 0 0 00?0 0 0 0 0 0 0 0 00?0 0 0 0 00?0 0
𝑋𝐿13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝑋𝐿14 0 0 00?0 0 0 0 0 0 0 0 00?0 0 0 0 00?0 0
𝐶𝑙 0 0 0 0 0 0 0 0 0 0 ?0?? 0 0 0 0 0

Impossible Differential Attack on SAND-128 13

Table 5. 14-round Impossible Differentials of SAND-128 (Right 64-bit)

𝑃𝑟 0 0 0 ? ?0?? 0 0 0 0 0 0 0 ?0?? 010? 0 0
𝑌𝑈0 000? ?000 0 ?000 000? 0 0 0100 000? ?000 0 ?000 000? ?000 0 ??00
𝑌𝑈1 0 0 00?0 0 0 0 0 0 0 0 00?0 0 0 0 00?0 0
𝑌𝑈2 000? ?000 0 ?000 000? 0 0 0100 000? ?000 0 ?000 000? ?000 0 ??00
𝑌𝑈3 0 ? 00?0 0??0 0 ??11 0 0?00 0 ???0 00?0 0??0 0 ? 00?0 0??0
𝑌𝑈4 ?00? ? ??00 ?0?? 000? 0??? ?100 01?? ?00? ? ?000 ?0?? ?00? ? ??00 ?
𝑌𝑈5 ? ? ???0 0??? ???1 ??0? ??00 0??? ???0 ? ???0 0??? ? ? ???0 0???
𝑌𝑈6 ? ? ? ?0?? ? ? ? 01?? ? ? ? ?0?? ? ? ? ?

𝑌𝑈7 ? ? ? ? ? ?? 1 ? ? ? ? ? ? ? ? ? ? ?
𝑌𝑈8 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

𝑌𝑈14 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

𝑌𝐿0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

𝑌 𝐿6 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

𝑌𝐿7 ? ? ? ? ? ?? 0 ? ? ? ? ? ? ? ? ? ? ?
𝑌𝐿8 ? ? ? ?0?? ? 0??? ? 00?? ? ? ? ?0?? ? ? ? ?0??
𝑌𝐿9 ???0 ? ???0 0??? ??00 ??0? ??00 0??? ???0 ? ???0 0??? ???0 ? ???0 0???
𝑌𝐿10 000? 0??? ?000 ?0?? 000? 0??? 0 00?? 000? 0??? ?000 ?0?? 000? 0??? ?000 ?0??
𝑌𝐿11 0 ???0 00?0 0?00 0 ??00 0 0?00 0 ???0 00?0 0?00 0 ???0 00?0 0?00
𝑌𝐿12 000? 0 0 ?000 000? 0 0 0 000? 0 0 ?000 000? 0 0 ?000
𝑌𝐿13 0 0 00?0 0 0 0 0 0 0 0 00?0 0 0 0 00?0 0
𝑌𝐿14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
𝐶𝑟 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 N. Sugio

6.3 Key Recovery Attack on 21-Round SAND-128

Using the 14-round impossible differential distinguishers shown in Tables 4 and
5, we perform a key recovery attack on 21-round SAND-128, as illustrated in
Figure 5. For simplicity, the StateLoading process is omitted. Additionally, the
round function is abbreviated as 𝐹. In Figure 5, the locations where differences
exist are highlighted in red. The data, time, and memory complexities for the
key recovery attack are estimated using the method proposed in [3], [4].

At 𝑟𝑖𝑛 = 4, the bit conditions required to obtain the output difference at
the fourth round (Δ𝑥4,Δ𝑦4) from the plaintext difference (Δ𝑥0,Δ𝑦0) are 𝑐𝑖𝑛 =
28 + 20 + 12 + 8 = 68. Additionally, the number of key bits involved is 𝑘𝑖𝑛 = 28
bits (𝑠𝑘0 = 16 bits，𝑠𝑘1 = 8 bits，𝑠𝑘2 = 4 bits).

Similarly, at 𝑟𝑜𝑢𝑡 = 3, the bit conditions required to obtain the output differ-
ence at the 18th round (Δ𝑥18,Δ𝑦18) from the ciphertext difference (Δ𝑥21,Δ𝑦21)
are 𝑐𝑜𝑢𝑡 = 24 + 16 + 8 = 48. Additionally, the number of key bits involved is
𝑘𝑜𝑢𝑡 = 12 bits (𝑠𝑘19 = 4 bits，𝑠𝑘20 = 8 bits).

To reduce the number of key candidates by at least half, the necessary num-
ber of differential pairs (Δ𝑖𝑛,Δ𝑜𝑢𝑡) is 𝑁𝑚𝑖𝑛 = 268+48 = 2116. The computational
complexity to obtain these differential pairs is estimated from Equation (1) as
follows:

𝐶𝑁 = max
{{√

21162128+1−51
}
, 21162128+1−70−51

}
= 2124

This computational complexity 𝐶𝑁 also represents the necessary number of
plaintexts. The total time complexity required for the key recovery attack is
estimated from Equation (2) as follows:

𝑇 =

(
2124 +

(
2116 + 228+12

)
× 7

21
+ 2128 × 1

2

)
≈ 2127.2

which corresponds to the number of 21-round SAND-128 encryptions.
Additionally, the memory required to store 𝑁𝑚𝑖𝑛 differential pairs is estimated

as:

𝑀 = 2116 × 128 × 4 × 1

8
= 2122

bytes. The attack result is summarized in Table 1.

Impossible Differential Attack on SAND-128 15

14-round Impossible Differential Distinguisher

!"#

!"$

!"%

!"#&

!"#'

!"$(

Δ*$ Δ+$

Δ*% Δ+%

Δ*, Δ+,

Δ*#' Δ+#'

Δ*$(Δ+$(

Δ*#& Δ+#&

Δ*(Δ+(

Δ*$# Δ+$#

!"(

Δ*# Δ+#

Fig. 5. Key Recovery Attack on 21-Round SAND-128

16 N. Sugio

7 Discussions

This section provides a deeper discussion of the implications of our findings,
highlights the novelty of our approach, and outlines its limitations in the broader
context of cryptanalysis on SAND-128.

7.1 Advantages of the CP-Based Search Method

The use of Constraint Programming (CP) with the bit-wise deterministic dif-
ferential model allowed us to efficiently discover a large number of impossible
differential distinguishers of SAND-128. Compared to previous works that relied
on fixed input/output differences at the nibble level [5] or the systematic search
framework [15], the CP-based approach can search for impossible differential
distinguishers in wider solution space. This flexibility led to the discovery of
214 × 7 = 114,688 14-round impossible differential distinguishers, exceeding the
diversity of existing results.

7.2 Interpretation of the UNSAT Result for 15 Rounds

When attempting to find impossible differentials over 15 rounds, the CP solver
returned an UNSATISFIABLE result. While this does not formally prove their
nonexistence, it suggests that such distinguishers are unlikely under the current
bit-based modeling assumptions. This observation is consistent with earlier re-
sults [5], and supports the designers’ claim that SAND-128 maintains resistance
against this class of attack up to 14 rounds.

7.3 Theoretical vs. Practical Impact

Although our key recovery attack on 21-round SAND-128 is purely theoretical, it
demonstrates the non-random behavior of the cipher under reduced rounds. This
adds to the cryptanalytic understanding of SAND and may serve as a foundation
for future attacks with reduced complexity, either through optimization or hybrid
techniques.

7.4 Comparison with Other Cryptanalytic Techniques

Our approach complements other cryptanalytic results such as integral attacks [17].
While integral attacks have shown slightly lower time complexities, they remain
limited to fewer rounds. Our 21-round analysis demonstrates the depth of prop-
agation that impossible differentials can achieve, despite larger complexities de-
mand. Therefore, the CP-based framework provides a valuable alternative and
can be combined with other techniques for future explorations.

Impossible Differential Attack on SAND-128 17

7.5 Limitations and Future Potential

A limitation of the current CP model lies in its computational complexity and
symbolic abstraction, which may restrict its applicability for higher rounds or
more complex structures. Additionally, the model assumes deterministic behav-
ior, which could miss probabilistic characteristics exploitable in other forms of
analysis. Future work could consider extending this approach to search related-
key differentials, combining CP with SMT/SAT solving, or leveraging algebraic
representations tailored to the AND-RX structure.

8 Conclusion

In this paper, we conducted an impossible differential attack on the lightweight
block cipher SAND-128. We demonstrated that a key recovery attack on 21-
round SAND-128 can be applicable using impossible differential distinguishers.
The complexities for the attack require 2124 data, 2127.2 encryptions, and 2122

bytes of memory, respectively. Although this result currently achieves the best
attack on round-reduced SAND-128, this attack does not threaten the security
of SAND-128 against impossible differential attack.

References

1. Biham, E., Biryukov, A., and Shamir, A.: Cryptanalysis of Skipjack reduced to 31
rounds using impossible differentials”, Advances in Cryptology-EUROCRYPT’99,
vol. 1592 of LNCS, pp. 12–23 (1999).

2. Knudsen L.: DEAL-a 128-bit block cipher, Complexity, 258(2), 1998.
3. Boura, C., Naya-Plasencia, M., and Suder, V.: Scrutinizing and Improving Impos-

sible Differential Attacks: Applications to CLEFIA, Camellia, LBlock and Simon,
Proc. 20th International Conference on the Theory and Application of Cryptol-
ogy and Information Security, ASIACRYPT 2014, Vol. 8873 of LNCS, pp.179-199,
Springer-Verlag (2014).

4. Boura, C., Lallemand, V., Naya-Plasencia, M., and Suder, V.: Making the Impos-
sible Possible, Cryptology, Vol. 31, pp.101–133, Springer-Verlag (2018).

5. Chen, S., Fan, Y., Sun, L., Fu, Y., Zhou, H., Li, Y., Wang, M., Wang W., and
Guo, C.: SAND: an AND-RX Feistel lightweight block cipher supporting S-box-
based security evaluations, Designs, Codes and Cryptography, Vol. 90, pp. 155–198
(2022).

6. Biham, E., and Shamir, A.: Differential Cryptanalysis of the Data Encryption
Standard”, Springer-Verlag, New York, pp. 79-88 (1993).

7. Matsui, M.: Linear Cryptanalysis Method for DES Cipher, Proc. Workshop on the
Theory and Application of Cryptographic Techniques, EUROCRYPT ’93, Vol.
765 of LNCS, pp.386–397, Springer-Verlag (1993).

8. Cui T., Jia K., Fu K., Chen S., Wang M.: New automatic search tool for impossible
differentials and zero-correlation linear approximations, IACR Cryptology ePrint
Archive, Report 2016/689 (2016).

9. Hadipour, H., Sadeghi, S. and Eichlseder, M.: Finding the impossible: Automated
search for full impossible differential, zero-correlation, and integral attacks, Proc.
EUROCRYPT 2023, Vol. 14007 of LNCS, pp. 128–157, Springer-Verlag (2023).

18 N. Sugio

10. Hadipour, H., Gerhalter, S., Sadeghi, S. and Eichlseder, M.: Improved Search for
Integral, Impossible Differential and Zero-Correlation Attacks, Application to As-
con, ForkSKINNY, SKINNY, MANTIS, PRESENT and QARMAv2, IACR Trans-
actions on Symmetric Cryptology, Vol. 2024, No. 1, pp. 234–325 (2024).

11. Sun, L., Gerault, D., Wang, W., Wang, M. (2020). On the Usage of Deterministic
(Related-Key) Truncated Differentials and Multidimensional Linear Approxima-
tions for SPN Ciphers, IACR Transactions on Symmetric Cryptology, Vol. 2020(3),
pp.262-287, (2020).

12. Knudsen, L. R., and Wagner, D.: Integral cryptanalysis, Proc. of Fast Software
Encryption, FSE2002, Vol. 2365 of LNCS, pp.112-127. Springer-Verlag, (2002).

13. Bogdanov, A., Wang, M.: Zero Correlation Linear Cryptanalysis with Reduced
Data Complexity, Proc. of the 19th International Workshop on Fast Software En-
cryption, FSE 2012, Vol. 7549 of LNCS, pp. 29–48, (2012).

14. Bogdanov, A., and Rijmen, V.: Linear hulls with correlation zero and linear crypt-
analysis of block ciphers, Designs, Codes and Cryptography, Vol. 70, pp. 369-383,
(2014).

15. Zhang, K., Wang, S., Lai, X., Wang, L., Guan, J., Hu, B.: Impossible Differential
Cryptanalysis and a Security Evaluation Framework for AND-RX Ciphers, IEEE
Transactions on Information Theory, Vol. 70, no. 8, pp. 6025–6040, (2024).

16. Xiang, Z., Zhang, W., Bao, Z., and Lin, D.: Applying MILP Method to Searching
Integral Distinguishers Based on Division Property for 6 Lightweight Block Ci-
phers, Proc. 22nd International Conference on the Theory and Application of Cryp-
tology and Information Security, ASIACRYPT2016, Vol.10031 of LNCS, pp.648-
678, Springer-Verlag (2016).

17. Mirzaie, A., Ahmadi, S., Aref, M. R.: Division Property-Based Integral Attack
on Reduced-Round SAND-128, ISC International Journal of Information Security
(ISeCure), Vol. 16, no. 3, (2024).

