
Onion Encryption Revisited: Relations Among Security Notions

Daichong Chao1, Liehuang Zhu2, Dawei Xu2, Tong Wu3, Chuan Zhang2, and Fuchun Guo4

1 School of Computer Science and Technology, Beijing Institute of Technology, China
chaodaichong@163.com

2 School of Cyberspace Science and Technology, Beijing Institute of Technology, China
liehuangz@bit.edu.cn,xudw@ccu.edu.cn,chuanz@bit.edu.cn

3 School of Computer and Communication Engineering, University of Science and Technology Beijing, China
tongw@ustb.edu.cn

4 Institute of Cybersecurity and Cryptology, School of Computing and Information Technology, University of
Wollongong, Australia
fuchun@uow.edu.au

Abstract. This paper compares the relative strengths of prominent security notions for onion en-
cryption within the Tor setting, specifically focusing on CircuitHiding (EUROCRYPT 2018, an
anonymity flavor notion) and OnionAE (PETS 2018, a stateful authenticated encryption flavor no-
tion). Although both are state-of-the-art, Tor-specific notions, they have exhibited different defini-
tional choices, along with variations in complexity and usability. By employing an indirect approach,
we compare them using a set of onion layer-centric notions: IND$-CPA, IPR/IPR+, and INT-
sfCTXT, to compare with the two, respectively. Since the same notion set that implies OnionAE
does not imply CircuitHiding, and vice versa, this leads to the conclusion that OnionAE and Cir-
cuitHiding are mutually separable. Therefore, neither notion fully expresses satisfactory security on
its own. Importantly, IND$-CPA, IPR+ (a stronger variant of IPR), and INT-sfCTXT collectively
and strictly imply OnionAE and CircuitHiding. Given their onion layer-centric and thus simpler
nature, this provides a practical approach to simultaneously satisfying CircuitHiding and OnionAE.
While the formal treatment of (general) public-key onion routing has been relatively well-studied,
formal treatment tailored to Tor remains insufficient, and thus our work narrows this gap.

Keywords: Onion encryption · Tor · Onion routing · Anonymity · Notion relationship

1 Introduction

The importance of onion encryption (OE) within the widely used anonymity network Tor [15] is funda-
mental. The existing different approaches to cryptographic treatment pertaining to OE have impeded a
comprehensive understanding of the security essence in this specific context. In this paper, we compare
two prominent security notions relating to OE in the Tor setting, clarifying their relations and thereby
promoting understanding of OE security.

1.1 Tor and OE

Tor [15] is widely considered the most influential anonymity network today, consisting of over 7,000
volunteer-operated relay nodes that provide anonymity services to over two million daily users [30]. To
achieve this, Tor employs onion routing technology [32], establishing a multi-hop secure channel–circuit
formed by multiple intermediate relays, thereby hiding the communication relationship between a Tor
browser (sender) and its destination from a local observer. For onion routing, Tor employs OE, which
involves multiple isomorphic layers of symmetric encryption in an iterative manner. In a circuit, the relay
nodes involved are also called onion routers (OR); the sender is called onion proxy (OP); the first onion
router is often called the entry node, and the last onion router is often called the exit node.

Regarding OE, its working details and current cryptographic choice merit more attention. An OP
shares a symmetric key with each OR and performs multiple layers of encryption successively for a
message. The output ciphertext–an onion, which is encapsulated into a fixed-size data unit–cell, is then
passed along to the remaining ORs in the designated order, with each OR stripping off one layer of
encryption. Finally, at the exit node, an integrity check is performed to verify the authentication of
the incoming cell. The current OE scheme adheres to the MAC-then-encrypt paradigm. It involves the
computation of a four-byte running SHA1 digest, followed by three isomorphic layers of 128-bit AES
counter-mode encryption. The running state and the counter value for AES encryption collectively form
the state of the current OE scheme, rendering it stateful. (For more detailed information on Tor and OE,

2 Daichong Chao, Liehuang Zhu, Dawei Xu , Tong Wu, Chuan Zhang, and Fuchun Guo

refer to [14].) It is worth mentioning that the current OE scheme is susceptible to tagging attacks [16,31],
which leverage the malleability of AES counter mode to comprise a circuit’s unlinkability (thus a user’s
anonymity). The Tor team has emphasized the defense against tagging attacks [25], and a series of OE
proposals [23,24,4,12] have been put forward.

On August 15, 2023, the Tor team updated the status of proposal 308 [12], marking it as “super-
seded.” [29] This indicates that the Tor team is cautious about choosing an alternative OE scheme, and
they are eager to have a well-designed one. Therefore, researching the security foundation of OE is crucial.

1.2 CircuitHiding and OnionAE

CircuitHiding [13] and OnionAE [35] are two Tor-specific notions, both of them designed to mitigate
crypto tagging attacks. The former adopts the anonymity flavor, while the latter follows the stateful
authenticated encryption (AE) flavor. CircuitHiding and OnionAE embrace different philosophical per-
spectives and setting-oriented considerations, coupled with differences in complexity and usability.

In [13], Degabriele and Stam provide an anonymity-flavor notion called CircuitHiding. This notion
characterizes the ability of an OE scheme to preserve anonymity against a static-corruption network
adversary A2, who may corrupt multiple ORs (thus possessing their corresponding secret information)
and introduce cryptographic deviations adaptively on these nodes. In the notion’s game, two sufficiently
general network topologies, W0 and W1, are specified by another adversary A1, based on the relevant
validation rules specified by predicate VALID. Each network topology comprises multiple circuits (created
by multiple users), with a portion of ORs being corrupted by the adversary A2. A2 is provided with two
types of oracles: an encryption oracle denoted as ENC, used for outputting cells that it can manipulate
(e.g., tagging, replaying, reordering, inserting) at a corrupt OR at the front of the circuit, and a network
oracle denoted as NET, used for outputting cells that it can obtain at a corrupt OR at the back of the
circuit. A2’s goal is to guess the actual interacting network topology, with the corresponding advantage
expected to be negligible. Given the intricate nature of the network topology, CircuitHiding provides
detailed descriptions of various aspects of the Tor setting, including topology (circuit) bookkeeping,
stateful circuit building, and cell routing. Besides, CircuitHiding incorporates some crucial technical
tricks to ensure meaningful cryptographic treatment. However, these factors lead to an increase in the
complexity of the notion. To some extent, the complexity of this notion trades off its usability for one’s
intuition5.

Definition 1 (CircuitHiding advantage, informal). The CircuitHiding advantage of adversary A =
(A1,A2) against an OE scheme Π is defined by

AdvCircuitHiding
A,Π = Pr[AW1

2 = 1]− Pr[AW0
2 = 1] (1)

We direct readers to Appendix A.1 for a detailed/formal description of the CircuitHiding experiment.
Another notion by Rogaway and Zhang [35], OnionAE, extends the conventional AE notion to the Tor

setting, highlighting the AE requirements of a single circuit. At first glance, OnionAE draws inspiration
from work [34] for nonce-based authenticated encryption, which employs a single game that encompasses
both confidentiality and authentication. More specifically, OnionAE specifies an indistinguishability-
based game with two possible worlds, G0 and G1. G0 is the real world instantiated with a practical OE
scheme, providing an encryption oracle (denoted as Enc) for the OP and a decryption oracle (denoted as
Dec) for each OR6. G1 is the ideal world that explicitly defines the expected properties of the encryption
and decryption oracles of a circuit. Very importantly, the ideal world G1 highlights that the intermediate
decryption oracles provide independent randomness (compared to the encryption oracle) and the last
decryption oracle outputs consistent authentication failure for the exit node (since the circuit goes out-
of-sync). Anyway, compared to the network-level anonymity formalism in CircuitHiding, OnionAE ’s
single-circuit formalism appears to be more simple and easy to use7. However, the differences in their
definitional choice have also blurred an understanding of whether there is a connection between the two.

5 A classical and similar example in cryptography is semantic security for privacy, which has a strong intuitive
appeal but weak usability.

6 Reference [35] mentions that there is only one decryption oracle that takes an OR index as an input parameter.
For the convenience of this paper, we refer to each OR as having a separate decryption oracle.

7 In our opinion, OnionAE is still somewhat hard to work with, mainly because the authentication property for
the exit node and the randomness property for the intermediate decryption oracles are coupled together via
the out-of-sync (unsilenced) concept of a circuit. See details in Appendix A.2.

Onion Encryption Revisited: Relations Among Security Notions 3

Definition 2 (OnionAE advantage, informal). The OnionAE advantage of adversary A against an
OE scheme Π is defined by

AdvOnionAE
A,Π = Pr[AG1 = 1]− Pr[AG0 = 1] (2)

We direct readers to Appendix A.2 for a detailed/formal description of the OnionAE experiment.

1.3 Our contributions

We provide a number of novel results to understand better CircuitHiding and OnionAE. Interestingly, we
show that OnionAE and CircuitHiding are mutually separable. However, IND$-CPA (indistinguishability
from random bits under chosen-plaintext attack), IPR+ (enhanced independent pseudorandomness of the
intermediate nodes), and INT-sfCTXT (stateful ciphertext integrity) collectively imply these two. Before
delving further into these results, we first explain our methodology, which is directly related to them.
Methodology. To compare OnionAE and CircuitHiding, an obvious obstacle is that they involve dif-
ferent adversary types. The former deals with an adversary with corruption power (possessing secret in-
formation about corrupted nodes), while the latter deals with an ordinary adversary without corruption
power. If OnionAE implies CircuitHiding, an explicit black-box reduction is infeasible (because OnionAE
adversaries do not know how to simulate CircuitHiding adversaries). Therefore, we employ an indirect
approach rather than directly providing corresponding reductions or counterexamples. Especially, we em-
ploy a set of onion layer-centric notions, IND$-CPA, IPR/IPR+ (IPR: independent pseudorandomness
of the intermediate nodes), and INT-sfCTXT, to compare with them, respectively. The deeper reason
behind this approach is that the implementation of any security notion for OE ultimately depends on the
security requirements for individual onion layers. By respectively identifying a suitable set of onion layer-
centric notions implying CircuitHiding and OnionAE, we may also potentially determine the relationship
between the two. This approach not only accomplishes the comparison but also precisely describes the
relationship between them8.

Among the above notions, IND$-CPA [33,7] is a randomness-flavor variant of IND-CPA. IPR/IPR+

is a Tor-specific notion introduced in this paper, saying that for the outer n − 1 (n: the number of
OR nodes in a circuit) onion layers, decryptions of out-of-sync ciphertexts on the decryption side are
indistinguishable from uniformly random strings, regardless of the inputs and outputs on the encryption
side. Both IPR and IPR+ aim at stymying tagging attacks, with the latter being a stronger variant of the
former in terms of randomness. Additionally, INT-sfCTXT [6] is a conventional stateful AE notion for
ciphertext integrity, roughly stating that when an adversary sends an illegal ciphertext to the decryption
side, any subsequent ciphertext it sends will encounter authentication failure. IND$-CPA is applicable
to all onion layers, IPR/IPR+ is applicable to the outer n − 1 onion layers, while INT-sfCTXT is only
applicable to the innermost onion layer (consistent with Tor’s end-to-end authentication). To prove that
OnionAE and CircuitHiding are mutually separable, it is sufficient to show that the same notion set that
implies OnionAE does not imply CircuitHiding, and vice versa.
Relations. The relations can first be presented from two directions.

In the direction towards the separation “OnionAE ⇏ CircuitHiding”, Theorem 1 demonstrates that
“IND$-CPA ∧ IPR ∧ INT-sfCTXT” (read “∧” as “and”) implies OnionAE ; however, Theorem 4 shows
that “IND$-CPA ∧ IPR ∧ INT-sfCTXT” (via a counterexample) does not imply CircuitHiding. Therefore,
this separation holds.

In the direction towards the separation “CircuitHiding ⇏ OnionAE ”, Theorem 2 establishes that
OnionAE implies INT-sfCTXT, indicating that INT-sfCTXT is a necessary property of OnionAE ; The-
orem 3 indicates that IND$-CPA ∧ IPR+ implies CircuitHiding ; however, Theorem 5 shows that “IND$-
CPA ∧ IPR+” (via a counterexample not satisfying INT-sfCTXT) does not imply OnionAE. Therefore,
this separation holds also.

Overall, based on Theorem 3, we infer that “IND$-CPA ∧ IPR+ ∧ INT-sfCTXT” implies CircuitHid-
ing ; based on Theorem 1, we deduce that “IND$-CPA ∧ IPR+ ∧ INT-sfCTXT” implies OnionAE, given
that IPR+ is a stronger variant of IPR in terms of randomness. IND$-CPA, IPR+, and INT-sfCTXT
collectively and strictly imply both OnionAE and CircuitHiding.
Implications for Design and Evaluation. Since neither CircuitHiding nor OnionAE fully expresses
satisfactory security of OE on its own, and the new notion set “IND$-CPA ∧ IPR+ ∧ INT-sfCTXT” is
much simpler, a convenient approach in OE’s design and evaluation is to use this notion set to provide
the necessary security. For an experienced cryptographer, it might be possible to use this notion set to
8 Therefore, from this perspective, our work differs significantly from most cryptographic definitional works.

4 Daichong Chao, Liehuang Zhu, Dawei Xu , Tong Wu, Chuan Zhang, and Fuchun Guo

OnionAE

CircuitHiding

IND$-CPA IPR INT-sfCTXT Thm. 1

IND$-CPA IPR+ INT-sfCTXT

IND$-CPA IPR+

Thm. 3

C
o

r.
 1

C
o

r.
2

INT-sfCTXT

Thm. 2

Thm. 4

implication
separation

trivial implication
trivial separation

IND$-CPA IPR+ INT-sfCTXT CircuitHiding

IND$-CPA IPR+ INT-sfCTXT OnionAE

Cor. 3

Cor. 4

Thm. 5

Fig. 1. Relationships among OnionAE, CircuitHiding, involving IND$-CPA, IPR/IPR+, and INT-sfCTXT. Nor-
mal arrows are implications established; barred arrows are separations; * denotes a trivial result. The red indi-
cates the relevant results for “OnionAE ⇏ CircuitHiding,” while the orange represents the relevant results for
“CircuitHiding ⇏ OnionAE ”. Remarkably, OnionAE and CircuitHiding are mutually separable. Thus, neither
sufficiently expresses the security of OE.

quickly check the security of an OE scheme, avoiding costly fixes or security breaches post-deployment.
Moreover, since IND$-CPA, IPR+, and INT-sfCTXT are all onion layer-centric, we may consider the
design of different onion layers independently, reducing the complexity during the design phase.

1.4 Related work

Camenisch and Lysyanskaya [8] define an ideal functionality within the Universal Composability (UC)
framework for public-key onion routing and additionally introduce several game-based properties that
collectively imply this ideal functionality. Consequently, they also provide a convenient proof strategy
for securely realizing their ideal functionality. Leveraging this proof strategy, Danezis and Goldberg
[11] proposed a popular cryptographic packet format, Sphinx, which has been used in multiple onion
routing and mix networks [9,10,28,37]. However, Kuhn et al. [20] identified flaws in the proof strategy
and introduced new game-based properties that imply the ideal functionality as originally defined by
Camenisch and Lysyanskaya. Subsequently, both Ando and Lysyanskaya [1] and Kuhn et al. [21] extended
the unified ideal functionality and the corresponding game-based properties to handle replies. Recently,
Scherer et al. [38] adapted Kuhn et al.’s work [21] to the service model, where the receiver does not
participate in the onion routing protocol (as in Tor), aiming to restore a suitable analytical framework
for Sphinx to match its original design purpose.

One commonality among the works [8,20,1,21,38] is that they all propose (or use) an ideal func-
tionality to elegantly describe security requirements and, more importantly, propose a set of easy-to-use
game-based properties that imply the functionality. The notion set we introduced plays a similar role.
However, due to subtle differences between public-key onion routing and the Tor setting, the results
of works [8,20,1,21,38] may not be directly applicable to Tor. This is at least because: (1) Public-key
onion routing focuses on a global adversary, while Tor considers a local adversary. (2) Public-key onion
routing integrates routing and onion encryption into one ciphertext-oriented structure. Tor adopts a
circuit-oriented architecture, delegating routing largely to an orthogonal circuit extend protocol. Due to
the integration of routing, public-key onion routing ciphertexts additionally contain encrypted routing
information and keys, significantly increasing ciphertext’s size. In contrast, Tor’s cells are fixed-sized and
small to support low-latency communication. (3) Onion routers in public-key onion routing are stateless,
while Tor operates in a stateful AE setting and needs to defend against replay, dropping, and reordering
attacks at least. (4) The definition of malleability attacks in works [20,21,38] is stricter than that in Tor.
Tor favors end-to-end authentication, taking authentication failures at the exit node due to midway ma-
nipulation as granted, whereas works [20,21] consider such scenarios insecure. Therefore, an independent
treatment of Tor’s security is desirable.

Backes et al. [5] give an ideal functionality called FOR within the UC framework, encompassing
various life-cycle phases of Tor, such as circuit building, cell construction, and cell routing. As for OE,
they identified an exact property known as predictably malleable onion secrecy (one of the conditions

Onion Encryption Revisited: Relations Among Security Notions 5

for implying FOR). This notion appears to resemble more of a characterization of the properties of the
current OE scheme employed by Tor. It rightly captures the malleability of AES counter mode, thereby
overlooking the need to defend against tagging attacks. Therefore, we omit it for comparison in this paper.
In contrast, both Rogaway and Zhang [35] and Degabriele and Stam [13] have reconsidered security notions
in the Tor setting. We were curious about the relationship between the two and conducted this study. In
addition to CircuitHiding, Degabriele and Stam also present notions for confidentiality and integrity. We
briefly mention them in Appendix C, showing that OnionAE is, in fact, stronger than them.

2 Preliminaries

2.1 Notations

We use lowercase letters to denote integers and strings, while bold lowercase letters denote one-dimensional
vectors. For n ∈ N, {0, 1}n denotes the set of all n-bit binary strings. We denote the set of all positive
integers up to n by [n] := {1, ..., n}. We write ε to denote the empty string and {0, 1}∗ to denote the
set of arbitrary-length strings. For x ∈ {0, 1}∗, |x| denotes its length. For x, y ∈ {0, 1}∗, x ⊕ y denotes
their bitwise XOR and x∥y denotes their concatenation. For a non-negative integer z, ⟨z⟩l denotes the
unsigned l-bit binary representation of z. For a one-dimensional vector x, denote by xk its k-th element,
and by |x| its size. Additionally, [] denotes an empty list (vector). We use Euler-style uppercase letters to
denote sets (K,M,C, etc. representing different spaces) and calligraphic-style uppercase letters to denote
algorithms (K, E ,D,A, etc.) Commonly, A denotes an adversary which may be a randomized algorithm.
In addition, we use sans-serif font to denote oracle predicates (Enc, Dec, sfVer, etc.). For a finite set X,
x←$ X denotes the uniform and random sampling of x from X. If D is a distribution over X, we denote
by x←$ D the element x sampled from X according to D. We use ⊥ to indicate an authentication failure.
For an oracle predicate, it returns to indicate an output is suppressed as part of the notion’s definition.
Conventionally, we use a vector of nodes p := [v0, v1, ..., vn] to denote a circuit, where v0 refers to the
OP, v1 refers to the first OR node, and vn refers to the last OR node.

2.2 Syntax

As our treatment objects (notions) rely on different syntaxes, we list them and provide the corresponding
interpretations, i.e., syntax commonality, to enable our comparisons.

Syntax in CircuitHiding Conceptually, an OE scheme Π = (G, E ,D,D) includes four subroutines,
with associated OR space P ⊆ {0, 1}∗, state space Ω, message space M ⊆ {0, 1}∗, cell space C ⊆ {0, 1}∗,
encryption state space Σ ⊆ {0, 1}∗, local circuit index space W, and decryption state spaces T ⊆ {0, 1}∗
and T ⊆ {0, 1}∗.

– G : Pn+1×Ω → Ω×Σ×Tn×Tn
is a stateful (probabilistic) algorithm that, for a circuit size n ≥ 3, it takes

a path p ∈ Pn+1 and an (unspecified) state variable ω ∈ Ω, updates the state variable ω, and outputs
an initial encryption state σ ∈ Σ for the OP (p[0]) and two initial decryption state vectors (t ∈ Tn

and t ∈ T
n
) for the OR nodes of the built circuit. Especially, |t| =

∣∣t∣∣ = n, where each component in
t and t is added to the corresponding local vectors τ and τ . For example, for circuit p = [a, b, c, d],
τ b.append(t[1]), τ c.append(t[2]), τ d.append(t[3]), τ b.append(t[1]), τ c.append(t[2]), τ d.append(t[3]).

– E : M×Σ → Σ × C× P is a deterministic stateful algorithm used by an OP that takes in a plaintext
m ∈M, an encryption state σ[w] ∈ Σ (where w represents the OP’s local circuit index). It updates the
encryption state σ[w] and outputs a cell c ∈ C, the first OR d ∈ P in the circuit.

– D : T∗ × C× P→W ∪ {⊥} is a deterministic algorithm used by an OR. It takes in a decryption state
vector τ∈ T∗, an input cell c ∈ C, the source OR s ∈ P, and returns a local circuit index w ∈ W for
determining the actual decryption state (i.e., τ [w]∈ T) or a special symbol ⊥ which indicates a failure
event to associate the cell c to a circuit.

– D : T×C×P→ T× (M∪C∪ {⊥})× (P∪ {⊘}) is a deterministic stateful algorithm used by an OR. It
takes in a decryption state τ [w]∈ T, a cell c ∈ C, and the source OR s ∈ P, and updates τ [w], outputs
a string m ∈ (M ∪ C) (cell or decrypted message, depending on OR’s location) or a special symbol ⊥
indicating a decryption failure, and returns the next OR d ∈ P or a special symbol ⊘ indicating the
conceptual end of a circuit.

6 Daichong Chao, Liehuang Zhu, Dawei Xu , Tong Wu, Chuan Zhang, and Fuchun Guo

Remark 1 (Routing behavior in CircuitHiding’s syntax). A remarkable part in CircuitHiding ’s syntax is
that, besides OE, it considers routing behavior from an intuitive perspective, thereby reflecting some
Tor-specific routing design choices and matching its own anonymity-oriented formalism. In terms of the
treatment object, the focus is on the cell, which includes both the cell header and payload (onion)
components. The payload portion, also commonly referred to as the onion, is derived from the original
plaintext through onion encryption. The header portion is composed of a four-byte circuit identifier
and a single-byte command field. The former determines which circuit a cell is associated with, and
the latter indicates what action should be taken with the cell’s payload (e.g., whether circuit extending
or cell’s relaying). A notable example of an attack that compromises anonymity by manipulating the
header portion is the relay early attack [2], and reference [13] provides another example (see [13], Section
6.3). As for encryption, E outputs the first OR explicitly. As for decryption, the two-stage model (D,D)
formulates a clear division of responsibilities: the former for figuring out the relevant circuit and the latter
for the actual onion decryption. As emphasized in reference [13], “Our split in two stages, coupled with
the restrictions on how the state looks and can be affected, guarantees that the processing of cells for
one circuit cannot unduly influence the later processing of a cell associated to a different circuit,” this
approach provides a separation of the cell’s routing and decryption state’s updating, thus facilitating the
independence of individual circuits.

Remark 2 (Statefulness of G). The reason for G being stateful is due to updating ω. Although ω is un-
specified in the syntax section of [13], it is later described as a set of triples recording first-hop information
for the description of proposal 261 [24]. Therefore, we may treat ω as an environment variable recording
the available circuits in an OP.

Syntax in OnionAE An OE scheme is a triple Π = (K, E ,D), with associated message space M ⊆
{0, 1}∗, ciphertext (onion) space C ⊆ {0, 1}∗, key space K ⊆ {0, 1}∗, encryption state space Σ, and
decryption state space S ⊆ {0, 1}∗ (conventionally, S = Σ).

– K : N→ K∗ is a probabilistic algorithm that, given a circuit size n ≥ 3, outputs a list of n+ 1 strings
(k0, k1, k2, ..., kn) in the key space K (k0 for encryption and the rest for decryption).

– E : K×M×Σ → C×Σ is a deterministic algorithm that takes in the encryption key k0 ∈ K, a plaintext
m ∈M, an encryption state σ ∈ Σ. It outputs a ciphertext c ∈ C and an updated encryption state σ.

– D : K×C× S → (M∪C∪ {⊥})× S is a deterministic algorithm. It takes in a decryption key k ∈ K, an
input ciphertext c ∈ C, a decryption state s ∈ S. It outputs an updated decryption state s, a decrypted
string m ∈M∪C (onion or message, depending on the OR’s location) or a special symbol ⊥ indicating
a decryption failure.

Syntax commonality between CircuitHiding and OnionAE At first glance, CircuitHiding and
OnionAE correspond to different syntaxes, thus putting their notion comparison in an incomplete posi-
tion; yet, actually, they share a high commonality from another perspective.

Deliberately or by chance, their differences are mainly due to different understandings of which compo-
nents belong to OE and different note-taking habits. Obviously, the syntax in OnionAE is quite succinct,
listing the essentials for OE. The complexity in CircuitHiding is mainly caused by considering routing
behavior additionally, although the corresponding abstraction is very intuitive and concise. One distinc-
tion between them is that CircuitHiding focuses on the cell, while OnionAE only focuses on the onion.
As mentioned in Remark 1, the two-stage model (D,D) views figuring out the relevant circuit as an
independent choice. Besides, both E and D consider outputting the relevant OR to be forwarded to.
Although reference [13] emphasizes that “On the one hand, it reflects practical protocol designs such as
Tor, without being overly prescriptive on quite how routing has to work”, in the Tor network, when an
OR knows which circuit identifier a cell comes from, it does know where the cell goes to, regardless of
the actual decryption. Hence, the next OR d ∈ P for D can be migrated to D, without introducing any
misunderstanding of OE. Furthermore, the differences between G and K are mainly caused by different
note-taking habits, like state vector versus individual state, considering an environment variable (ω) ver-
sus not considering such a variable, treating n as a conventional parameter versus treating it as an input
variable, considering encryption/decryption states in G beforehand versus providing them in E and D
directly, and treating the generated keys as part of encryption/decryption states versus listing them in E
and D explicitly. Especially, we believe the omission of encryption/decryption states in K for OnionAE
is likely accidental, since they actually appear in E and D.

Hence, by restricting OE to consider only the onion portion and excluding the cell header, and aligning
those different note-taking habits, the syntaxes of CircuitHiding and OnionAE are essentially identical.

Onion Encryption Revisited: Relations Among Security Notions 7

Our adopted syntax In spirit, we follow the syntax of OnionAE. We only focus on the common onion
portion; for CircuitHiding, we no longer consider the cell header. This allows for a fair comparison of
the two, avoiding meaningless discussions. As demonstrated by the example of header manipulation in
reference [13], even if an OE scheme is OnionAE secure in its onion portion, we can still compromise
CircuitHiding as long as its cell header is not designed with sufficient security. This separation result is
somewhat redundant and holds little significance for the community. Perhaps more importantly, focusing
on the onion portion encourages us to accurately reveal the security essence of OE (in terms of the
onion portion). This is helpful for guiding the design and evaluation of OE schemes. So, unless otherwise
specified in the subsequent text, ciphertext refers to onion. Yet, for elegance and greater concreteness,
and for potential needs, we have made minor adjustments and expansions to the syntax of OnionAE.

Firstly, regarding K, we adjust it to K : N→ K∗×Σ∗. It outputs a list of 2n+2 strings (k0, k1, ..., kn, s0,
s1, ..., sn), where the first half belongs to the key space K, and the second half belongs to the state space
Σ (k0, s0 for encryption and the rest for decryption).

Furthermore, we decompose E and D into (E1, ..., En) and (D1, ..., Dn) respectively, where E1 is the
encryption algorithm for the outermost onion layer, and so forth, with En being the algorithm for the
innermost onion layer. (D1, ...,Dn) follows a similar interpretation. Formally, E i : K × C × Σ → C × Σ
(i ∈ [n − 1]) and En : K ×M × Σ → C × Σ. And so forth, Di : K × C × Σ → C × Σ (i ∈ [n − 1]) and
Dn : K×C×Σ → (M∪{⊥})×Σ. This aligns with Tor’s end-to-end authentication, while the intermediate
onion layers solely involve encryption and decryption (we rule out the leaky-pipe feature). In Section 3, we
will use these refined notations to formalize our onion layer-centric cryptographic experiments (Definition
3, 4, and 5).

2.3 Conventions

We make a convention that all primitives and security experiments in our paper share a common security
parameter r. Hence, the terminology “probabilistic polynomial time (PPT)” and “negligible” is relative
to r. We leave out r for convenience hereinafter. We assume that M = {0, 1}n1 and C = {0, 1}n2 with
n1 ≤ n2 (n1 and n2 are polynomials in r.) In addition, n is the number of OR nodes in a circuit. We use
c(i) and c(i) to denote the “correct” ciphertext sequence and the actual received ciphertext sequence at
the i-th OR, respectively.

3 Newly Introduced Notions for Comparison

Firstly, we describe the newly introduced notions IND$-CPA, IPR/IPR+, INT-sfCTXT. For IND$-CPA,
we provide a re-formalization to align it with the Tor setting, facilitating its comparison with IPR/IPR+.
Clearly, IPR+ is a stronger variant of IPR in terms of providing randomness when the circuit goes
out-of-sync. INT-sfCTXT is directly adopted from Bellare et al. [6].

Definition 3 (IND$-CPA advantage). Let Π = (K, E ,D) be an OE scheme. For any i-th (i ∈ [n])
onion layer of Π and b ∈ {0, 1}, the advantage of an adversary A playing the IND$-CPA security game
ExpIND$-CPA-(i,b)

Π,A , as described in Figure 2, is defined by:

AdvIND$-CPA-(i)
A,Π =Pr

[
ExpIND$-CPA-(i,1)

Π,A = 1
]
− Pr

[
ExpIND$-CPA-(i,0)

Π,A = 1
]

(3)

IND$-CPA ensures a very basic level of privacy for each onion layer. It says that each onion layer
provides fresh randomness upon each encryption, making the resulting ciphertext indistinguishable from
a uniformly random string. Distinguished from the traditional definition of IND$-CPA [33,7], in Definition
3, an adversary A is provided with two oracles: an actual encryption oracle Enc and an additional helper
oracle Proc, with the requirement that the input to Enc is the output of Proc. Essentially, Proc prepares the
intermediate ciphertexts (the encryption result of the previous onion layer) needed for Enc as inputs, and
the inputs to Enc are no longer wholly adaptive. This adjustment considers the inherent characteristics
of OE schemes. On the one hand, the input to the Enc oracle is inherently the encryption result of the
previous onion layer. On the other hand, in some OE schemes9 (such as proposal 295 [4] and proposal
308 [12] using a GCM-RUP variant), the encryption nonce is included in the output of the previous
layer, making it part of the intermediate ciphertext input to the next onion layer; then the encryption
9 Appendix D provides an introduction to the Tor proposals on OE [23,24,4,12], offering further insight into the

current research on OE schemes.

8 Daichong Chao, Liehuang Zhu, Dawei Xu , Tong Wu, Chuan Zhang, and Fuchun Guo

nonce serve as the initial counter of AES counter mode computation for the remaining part of the input
intermediate ciphertext. In such cases, achieving IND$-CPA as defined traditionally is not feasible. To
provide meaningful treatment, appropriate weakening is necessary here.

Exp
IND$-CPA-(i,b)
Π,A

(k0, k1, ..., kn, s0, s1, ..., sn)← K

c(i+1) ← [], p← 1, u← 1

b′ ← AProc(·,i),Enc(·,i,b)

return b′

Enc(m, i, b)

require u < p and m = c
(i+1)
u

(c, si)← Ei(ki,m, si)

if b = 1

c←$ {0, 1}n2

u← u+ 1

return c

Proc(m, i)

require |m| = n1

if i = n

c
(i+1)
p ← m

else

cn+1 ← m

for j ← n downto i+ 1 do

(cj , sj)← Ej(kj , cj+1, sj)

c
(i+1)
p ← ci+1

p← p+ 1

return c
(i+1)
p−1

Fig. 2. Experiment of IND$-CPA. Adversary A is provided with two oracles: Enc(·, i, b) and Proc(·, i). Proc(·, i)
takes an original plaintext as input, which undergoes n − i iterations of encryption, generating an intermediate
ciphertext that is recorded in the ciphertext sequence c(i+1). Enc(·, i, b) takes an in-order ciphertext from c(i+1)

as input, which undergoes the encryption of the i-th onion layer, producing an output, either the final ciphertext
or a uniformly random string, depending on the challenge bit b. p and u are counter values used for in-order
bookkeeping.

Definition 4 (IPR advantage). Let Π = (K, E ,D) be an OE scheme. For any i-th (i ∈ [n− 1]) onion
layer of Π and b ∈ {0, 1}, the advantage of an adversary A playing the IPR security game ExpIPR-(i,b)

Π,A ,
as described in Figure 3 (with the boxed parts), is defined by:

AdvIPR-(i)
A,Π = Pr

[
ExpIPR-(i,1)

Π,A = (∗, 0)
]
+ Pr

[
ExpIPR-(i,0)

Π,A = (∗, 0)
]
+∣∣∣Pr

[
ExpIPR-(i,1)

Π,A = (1, ∗)
]
− Pr

[
ExpIPR-(i,0)

Π,A = (1, ∗)
]∣∣∣ (4)

IPR aims to provide an additional dimension of randomness beyond IND$-CPA to stymie crypto-
graphic tagging attacks. It says that when an adversary introduces an illegal ciphertext into the circuit,
causing the circuit (onion layer) to go out-of-sync10, in the vast majority of cases, the output on the de-
cryption side is indistinguishable from an independently and uniformly random string, regardless of the
inputs and outputs on the encryption side11. The only exception is that when the input on the decryption
side equals the output on the encryption side, the output on the decryption side remains consistent with
the input on the encryption side. The former case, which involves random output, is aimed at stymying
tagging attacks from a common perspective: when an adversary corrupts the precursor node of a relay
node and introduces ciphertext manipulation (e.g., tagging), the uniform randomness of decryption will
result in receiving meaningless garbage at the successor node, preventing the adversary from gaining any
useful information for correlation through any disparity between encryption and decryption. The latter
case may represent a seemingly reasonable but actually incorrect understanding that stymying tagging
attacks only requires achieving the former case, and there is no impact when the output on the decryption
side equals the input on the encryption side. This viewpoint will be negated by the counterexample for
Theorem 4 later, where a simple stateful method is applied, leading to a construction that, although sat-
isfying IPR, does not satisfy CircuitHiding. In fact, the latter case is likely to occur for stateful encryption
schemes when employing a relatively trivial stateful method, as is the case with the counterexample for
10 In the stateful context, the concept of out-of-sync is of great importance. It is first introduced in the seminal

work [6] to describe a situation where the ciphertext received by the decryption party does not match the
ciphertext generated by the encryption party. Reference [13] extends it to the circuit context and formalizes
it within CircuitHiding. Reference [35] uses the equivalent term “unsilenced” to describe out-of-sync within
OnionAE. IPR/IPR+ also formalizes it within itself.

11 This is also why we named this notion ’independent pseudorandomness of the intermediate node’ (IPR).

Onion Encryption Revisited: Relations Among Security Notions 9

Exp
IPR-(i,b)
Π,A , Exp

IPR+-(i,b)
Π,A

require i ∈ [n− 1]

(k0, k1, ..., kn, s0, s1, ..., sn)← K

c(i+1) ← [], c(i) ← []

p← 1, u← 1, v ← 1

sync← 1, equal← 1

b′ ← AProc′(·),Enc(·,i),Dec(·,i,b)

return (b′, equal)

Proc′(m, i)

require |m| = n1

cn+1 ← m

for j ← n downto i+ 1 do

(cj , sj)← Ej(kj , cj+1, sj)

c
(i+1)
p ← ci+1

p← p+ 1

return ci+1

Enc(m, i)

require u < p and m = c
(i+1)
u

(c, si)← Ei(ki,m, si)

c
(i)
u ← c

u← u+ 1

return c

Dec(c, i, b)

// initially, s
′
i = si

(c′, s′i)← Di(ki, c, s
′
i)

if v ≥ u or c 6= c
(i)
v

sync← 0

if sync = 0

if v < u and c = c
(i)
v

if c′ 6= c
(i+1)
v

equal← 0

else

if b = 1

c′ ←$ {0, 1}n2

v ← v + 1

if sync = 1

return
return c′

Fig. 3. Experiments of IPR and IPR+. The IPR experiment has additional dashed rectangular boxes compared to
the IPR+ experiment. Adversary A is provided with three oracles: Proc′(·, i), Enc(·, i), and Dec(·, i, b). Proc′(·, i)
takes an original plaintext as input, producing an intermediate ciphertext that is recorded in the ciphertext
sequence c(i+1). Enc(·, i) takes an in-order ciphertext from c(i+1) as input, generating an i-th onion layer encrypted
ciphertext that is recorded in the ciphertext sequence c(i). Dec(·, i, b) takes an out-of-sync ciphertext as input and
returns an output, either the decrypted ciphertext or a uniformly random string, which depends on the challenge
bit b. The flag sync indicates whether the i-th onion layer goes out-of-sync. p, u, and v are counter values;
the former two are used for in-order bookkeeping between Proc′(·, i) and Enc(·, i); the latter two (along with the
ciphertext sequence c(i)) are used for out-of-sync bookkeeping (through setting sync). Solely for IPR, the outcome
flag equal is introduced and Dec (·, i, b) embodies an additional dashed box for capturing the only exception case.

Theorem 4. Our other ongoing work indicates that proposal 295 [4] has similar issues. Therefore, the
latter case is not entirely a result of our artificial design; it also reflects a practical oversight, or what can
be termed as insecure practice.

Technically, in the IPR experiment, as shown in Figure 3, an adversary A is provided with three
oracles: a helper oracle Proc’, an actual encryption oracle Enc, and a decryption oracle Dec. Proc’ serves
as a helper oracle for Enc, preparing the needed intermediate ciphertexts for the latter. The encryption
oracle Enc returns the actual encryption-side output for the i-th onion layer. The decryption oracle Dec
suppresses those in-sync ciphertexts, and based on the challenge bit b and the input out-of-sync ciphertext
c, determines the output. Specifically, when b equals 0, Dec returns the decryption of the out-of-sync
ciphertext c for the i-th onion layer; when b equals 1, Dec returns a uniformly random string. In order to
capture the latter case, namely that the output on the decryption side equals the input on the encryption
side when the input on the decryption side is the output on the encryption side, a binary outcome flag
equal is introduced. When the latter case occurs, Dec sets equal to 1. The IPR experiment returns both
the guessing bit b′ and the flag equal. Correspondingly, the IPR advantage consists of two parts: one
part (Pr

[
ExpIPR-(i,1)

Π,A = (∗, 0)
]
+ Pr

[
ExpIPR-(i,0)

Π,A = (∗, 0)
]
) quantifies the probability of equal being 1,

while the other part (
∣∣∣Pr

[
ExpIPR-(i,1)

Π,A = (1, ∗)
]
− Pr

[
ExpIPR-(i,0)

Π,A = (1, ∗)
]∣∣∣) quantifies the probability

of distinguishing the decryptions of out-of-sync ciphertexts from uniformly random strings from a typical
perspective.

Definition 5 (IPR+ advantage). Let Π = (K, E ,D) be an OE scheme. For any i-th (i ∈ [n−1]) onion
layer of Π and b ∈ {0, 1}, the advantage of an adversary A playing the IPR+ security game ExpIPR+-(i,b)

Π,A ,

10 Daichong Chao, Liehuang Zhu, Dawei Xu , Tong Wu, Chuan Zhang, and Fuchun Guo

as described in Figure 3 (without the boxed parts), is defined by

AdvIPR+-(i)
A,Π =Pr

[
ExpIPR+-(i,1)

Π,A = 1
]
− Pr

[
ExpIPR+-(i,0)

Π,A = 1
]

(5)

IPR+ is an enhanced version of IPR, removing the only exception case in the latter. IPR+ says that
when the circuit (onion layer) goes out-of-sync, all12 the outputs on the decryption side remain indistin-
guishable from an independently and uniformly random string, regardless of the inputs and outputs on
the encryption side. The adversary would find it difficult to gain any useful information from the decryp-
tion side. This is precisely a crucial step in defending against tagging attacks (this will be confirmed by
Theorem 3 later). Technically, in the IPR+ experiment, the dashed box in the Dec oracle is removed and
only the guessing bit b′ is returned.

Definition 6 (INT-sfCTXT advantage). Let Π = (K, E ,D) be a stateful AE scheme. The advantage
of an adversary A playing the INT-sfCTXT security game ExpINT-sfCTXT

Π,A , as described in Figure 4, is
defined by

AdvINT-sfCTXT
A,Π = Pr

[
ExpINT-sfCTXT

Π,A = 1
]

(6)

INT-sfCTXT [6] says that when an adversary sends an illegal ciphertext to the last relay node, besides
this (first) illegal ciphertext, any subsequent ciphertext it sends will encounter authentication failure.
In this game, the adversary is provided with two oracles: an encryption oracle Enc and a decryption
(verification) oracle sfVer. Enc produces the output on the encryption side, while sfVer returns the output
on the decryption side. Specifically, sfVer only responds to out-of-sync ciphertexts, suppressing queries
related to in-sync ciphertexts. The counters u, v, and the ciphertext sequence c are used for out-of-sync
bookkeeping. INT-sfCTXT provides a robust characterization of ciphertext integrity in a stateful setting.

4 Notion Relationships

4.1 Preliminary theorems

Section 4.1 will provide one side of the coin (i.e., implication results) for the overall separation results.
In Section 4.2, we will present the other side of the coin (i.e., separation results) required for the overall
separation results.

ExpINT-sfCTXT
Π (A)

(k, δ, ̺)← K
u← 0, v ← 0, c← []

sync← 1, win← 0

AEnc(·),sfVer(·)

return win

Enc(m)

(c, δ)← E(k,m, δ)

u← u+ 1; cu ← c

return c

sfVer(c)

v ← v + 1

(m, ̺)← D(k, c, ̺)
if v > u or c 6= cv

then sync← 0

if sync = 0 and m 6=⊥
then win← 1

if m 6=⊥
then m←

return m

Fig. 4. Experiment of INT-sfCTXT. Here, E and D actually represent En and Dn, respectively.

To show IND$-CPA ∧ IPR ∧ INT-sfCTXT ⇒ OnionAE, we need Lemma 1, to show that when the
OnionAE adversary introduces the first out-of-sync ciphertext in the real world G0, it inevitably triggers
the out-of-sync concept in INT-sfCTXT of the innermost onion layer. This allows us to substitute the
authentication guarantee of OnionAE with INT-sfCTXT, enabling an IND$-CPA or IPR adversary to
simulate the OnionAE adversary when needed.

12 When we say IPR+ is a stronger variant of IPR, we refer to it in terms of randomness. IPR+ does not imply
IPR due to IPR’s the only exception case. A reader needs to make an accurate conceptual understanding.

Onion Encryption Revisited: Relations Among Security Notions 11

Lemma 1. Let Π be an OE scheme that is IPR secure. For any OnionAE adversary A against Π, when
it introduces the first out-of-sync ciphertext on the i-th Dec oracle (i ≤ n) in the real world G0, there
exists an IPR-(i) adversary B such that: A violates the out-of-sync concept in INT-sfCTXT at the n-th
Dec oracle with a probability of at most (n− 1) · (1

2n2
+ AdvIPR-(i)

B,Π) + 1
2n2

, where B introduces only one
(i.e., the first caused by A) out-of-sync ciphertext to its own Dec(·, i, b) oracle (with b = 0).

Proof sketch. The core of the proof lies in identifying the cases in which the OnionAE adversary can
violate the out-of-sync concept in INT-sfCTXT. Given the adaptive nature of the OnionAE adversary,
we thoroughly examine all possible scenarios in the real world G0 to identify exceptional cases and derive
upper bounds for their probabilities. Specifically, due to the unique position of the n-th Dec oracle, we
split the analysis into two main cases: one concerning the first out-of-sync ciphertext targeting the n-th
Dec oracle and another concerning the first out-of-sync ciphertext targeting the i-th Dec oracle (i < n).

In the first main case, there is only one sub-case in which A has the opportunity to succeed by relying
on random guessing for the predetermined correct ciphertext. The probability of this occurring is bounded
by 1

2n2
. As a representative sub-case of the second main case, and the one with the highest exceptional

probability, the first out-of-sync (and modified) ciphertext targets the first Dec oracle. In this case,
constrained by IPR, the adversary A has at most (n− 1) · (1

2n2
+AdvIPR-(i)

B,Π)+ 1
2n2

probability to violate
the out-of-sync concept in INT-sfCTXT of the innermost onion layer. The reasoning is summarized as
follows: If A directly queries the n-th Dec oracle with a guessing input, the probability is bounded by 1

2n2
.

If A directly queries the i-th Dec oracle (1 ≤ i < n) with a guessing input such that the output of the i-th
Dec oracle equals the predetermined correct ciphertext, the probability is bounded by AdvIPR-(i)

B,Π + 1
2n2

.
A has n− 1 such opportunities.

A detailed proof for Lemma 1 is provided in Appendix E.1.

Theorem 1 (IND$-CPA ∧ IPR ∧ INT-sfCTXT ⇒ OnionAE). Let Π = (K, E ,D) be an OE
scheme. For any OnionAE adversary A, making at most polynomial-bounded queries on Enc and Dec
oracles, there exists an INT-sfCTXT adversary B using all these queries, an IND$-CPA adversary C using
all the queries on Enc and the first n−1 Dec oracles, an IPR adversary F1 using all the queries on Enc and
the first n− 1 Dec oracles, and IPR adversary F2 using only one (i.e., the first caused by A) out-of-sync
query on the i-th Dec oracle (with i indicating the position associated with the first out-of-sync query),
such that: AdvOnionAE

A,Π ≤ AdvINT−sfCTXT
B,Π +AdvIND$−CPA

C,Π +AdvIPRF1,Π + (n− 1) · (1
2n2

+AdvIPR-(i)
F2,Π

) + 1
2n2

.

Proof sketch. The proof involves three rounds of game hopping. We first hop from the real-world G0 in
OnionAE to a scenario where, when the OnionAE adversary introduces the first out-of-sync ciphertext,
it triggers the out-of-sync concept in INT-sfCTXT of the innermost onion layer. Using Lemma 1, the
advantage gap for this hopping is bounded by (n− 1) · (1

2n2
+ AdvIPR-(i)

F2,Π
) + 1

2n2
.

We then hop to a new game where the last Dec oracle always returns ⊥ for any received out-of-sync
ciphertext. To bound the advantage gap for this hopping, we construct an INT-sfCTXT adversary B
that uses all the queries made by A to break the INT-sfCTXT game. B utilizes the keys and initial state
information of the outer n− 1 onion layers to perfectly simulate the OnionAE game.

Next, we hop to another game where both the Enc oracle and the first n−1 Dec oracles always output
a uniformly random string upon receiving a query. At this point, the final game becomes identical to the
ideal-world G1 in OnionAE. Since the last Dec oracle always returns ⊥ upon receiving an out-of-sync
ciphertext, we only need to show that the outputs of the Enc oracle and the first n − 1 Dec oracles
prior to the last hopping are computationally indistinguishable from a uniformly random string for the
OnionAE adversary A. If all onion layers satisfy IND$-CPA, and the outer n − 1 onion layers satisfy
the IPR property, the above conclusion holds. First, if the outermost onion layer satisfies IND$-CPA,
then the outputs of the Enc oracle fulfill the required condition. For the i-th Dec oracle (1 ≤ i < n), two
cases need to be considered further. If the i-th Dec oracle receives a query that matches the ciphertext
at the corresponding position in the “correct” ciphertext sequence c(i), even if this Dec oracle has already
received an out-of-sync ciphertext, the IPR property ensures that the oracle always outputs a ciphertext
that is the encryption result of the (i+1)-th onion layer. If the i-th Dec oracle receives a query that does
not match the ciphertext at the corresponding position in c(i), the IPR property ensures that the oracle
outputs a (pseudo)random string. Therefore, overall, the advantage gap for this hopping is bounded by
the advantage of an IND$-CPA adversary C and the advantage of an IPR adversary F1. Both C and F1

use at most all the queries to the Enc oracle and the first n− 1 Dec oracles.
A detailed proof for Theorem 1 is provided in Appendix E.2.

Theorem 2 (OnionAE ⇒ INT-sfCTXT). Let Π = (K, E ,D) be an OE scheme. For any INT-
sfCTXT adversary A of the innermost onion layer, making at most polynomial-bounded queries on Enc

12 Daichong Chao, Liehuang Zhu, Dawei Xu , Tong Wu, Chuan Zhang, and Fuchun Guo

and sfVer oracles, there exists an OnionAE adversary B using all these queries, such that: AdvINT−sfCTXT
A,Π ≤

AdvOnionAE
B,Π .

Proof. The proof is intuitive. As a special case of OnionAE, the front n− 1 nodes of the circuit remain
in-sync, with only the queries to the last node causing the circuit to become out-of-sync. In this case,
we construct adversary B for OnionAE by invoking adversary A to access the Enc and Dec oracles on
the circuit. We utilize the output of the (n− 1)-th Dec oracle of B as the response to adversary A’s Enc
oracle and the output of the last Dec oracle as the response to A’s sfVer oracle. Adversary B provides a
perfect simulation for adversary A. When adversary A generates a valid ciphertext query to sfVer that
decrypts correctly, adversary B breaks the OnionAE game.

Theorem 3 (IND$-CPA ∧ IPR+ ⇒ CircuitHiding). Let Π = (K, E ,D) be an OE scheme. For
any CircuitHiding adversary A, making q1 queries to ENC and q2 queries to NET, there exists an IPR+

adversary B1 making at most q1 queries to its Proc′ and Enc oracles and q2 queries to its Dec oracle,
an IPR+ adversary B2 introducing only one out-of-sync ciphertext to its Dec oracle, and an IND$-
CPA adversary C making at most q1 queries to its Proc and Enc oracles, such that: AdvCircuitHiding

A,Π ≤
2l · (AdvIPR

+

B1,Π +AdvIND$−CPA
C,Π + (nmax − 3) · (AdvIPR

+

B2,Π + 1
2n2

)), where l is the number of circuits with an
honest proxy in the network topology W0 (or W1) and nmax is the maximum circuit length.

Proof sketch. The proof involves three rounds of game hopping. Firstly, we further constrain the impact
of the first out-of-sync vector query to the NET oracle, ensuring that this query not only causes the first
OR of the honest middle segment in each circuit (that has an honest OP and two corrupt segments)
to receive an out-of-sync ciphertext but also causes the out-of-sync concept to propagate iteratively to
the last OR of the honest middle segment. For this hopping, the advantage gap is bounded using the
identical-until-bad model. When an OR receives an out-of-sync ciphertext, its decryption output remains
an out-of-sync ciphertext for the next OR. The probability of the bad event is bounded by AdvIPR+

B2,Π+ 1
2n2

.
There can be at most nmax − 3 honest ORs before the last OR of the honest middle segment.

Next, we replace the decryption layer associated with the last OR of the honest middle segment by
outputting a uniformly random string upon receiving an out-of-sync ciphertext, thus providing the same
observed distribution at the second corrupt segment in the two worlds W0 and W1. For this hopping,
we construct an IPR+ adversary B1 on each altered circuit which invokes queries to the ENC and NET
oracles to break the independent pseudorandomness of the replaced onion layer as per Definition 5. With
a standard hybrid argument, the advantage gap is bounded by 2l ·AdvIPR+

B1,Π .
Finally, we replace the encryption layer associated with the honest OR of the first entry edge of each

circuit that has an honest OP (either one or two corrupt segments) by outputting a uniformly random
string upon receiving an intermediate ciphertext. This operation will result in the same observed distribu-
tion at the first corrupt segment in the scope of those altered circuits. Here, we construct an IND$-CPA
adversary C on each circuit that invokes the queries to the ENC oracle, breaking the pseudorandomness
of the replaced onion layer as per Definition 3. Since the type of circuit that has a corrupt OP does not
contribute to the distinguishing advantage, A has no advantage in distinguishing the two worlds in the
final game.

A detailed proof for Theorem 3 is provided in Appendix E.3.

Remark 3 (Role differences among different onion layers). More precisely, in the proof of Theorem 3, we
actually only rely on the fact that the onion layers corresponding to the honest ORs between the first and
second corrupt segments (if any) satisfies IND$-CPA ∧ IPR+. This indicates that, for CircuitHiding, the
security role is entirely borne by the onion layers corresponding to these honest ORs. Specifically, in the
typical topology setting (W0, W1) in CircuitHiding as shown in Figure 5, where each topology contains
only two circuits and each circuit consists of exactly three ORs, the security role is entirely fulfilled by
the onion layer corresponding to the honest middle OR (v5). As shown in Lemma 1, when the outer n−1
onion layers satisfy IPR, INT-sfCTXT replaces the authentication property of OnionAE. Therefore, it
is evident that the security roles of different onion layers differ. Hence, when different onion layers can
be treated heterogeneously, we might explore other questions, such as the security role played by the
outermost onion layer and whether all onion layers are necessary in the Tor setting.

4.2 Separations

This subsection presents the corresponding separation results, specifically Theorem 4 and Theorem 5.
Before discussing the specifics of these theorems, we first recap the LBE scheme in [35], as the relevant
counterexamples for both theorems are derived from it.

Onion Encryption Revisited: Relations Among Security Notions 13

v1

v3

v2

v4

v5

v6 v7

v1

v3

v2

v4

v5

v6 v7

W0 W1

Fig. 5. A typical topology setting (W0, W1) in CircuitHiding, with red nodes as corrupt ORs and cyan nodes as
honest OPs and ORs.

Recapping the LBE scheme in [35]. The LBE scheme in [35] is adapted from "Design 1: Large-block
encryption" in Tor proposal 202 [23] by removing the leaky-pipe design. In this scheme, each onion
layer employs a tweakable (wide-block) block cipher (TBC) [22], denoted as (E, D), for encryption and
decryption. Compared to a block cipher, a TBC accepts an additional parameter, the tweak, as input
to provide a second dimension of randomness13, which is desirable for onion encryption. For end-to-end
authentication, the innermost onion layer follows the encode-then-encipher paradigm. It appends a string
of all zeros 0n2−n1 to the plaintext m as part of the input for authentication. This extended input of
length n2 is then encrypted by the TBC at each layer. Importantly, the tweak at each layer encodes the
cumulative ciphertext history up to that point, effectively acting as a state. Any midway manipulation
will corrupt the tweak and cause decryption that outputs random garbage.

We present a counterexample denoted as Π∗ (Figure 6) for Theorem 4. Π∗ essentially retains the
original design, where each onion layer employs a TBC, and the innermost onion layer follows the encode-
then-encipher paradigm. The only modification in Π∗ lies in changing the stateful method of the outer
n−1 onion layers to a simple counter value, as opposed to the original ciphertext cumulating method. This
subtle adjustment still allows Π∗ to satisfy IND$-CPA ∧ IPR ∧ INT-sfCTXT, thus satisfying OnionAE.
However, in the CircuitHiding game, the adversary can easily determine the actual interacting world.

Theorem 4 (IND$-CPA ∧ IPR ∧ INT-sfCTXT ⇏ CircuitHiding). There exists an OE scheme
Π = (K, E ,D) that is IND$-CPA ∧ IPR ∧ INT-sfCTXT secure, but not CircuitHiding secure.

Proof sketch. (1) IND$-CPA. Π∗ utilizes a non-repeating state (either a counter value or a cumulative
string) as a tweak for the adopted TBC in each layer. As the tweaks differ, every onion layer provides an
independent pseudorandom permutation for each encryption. If the TBC satisfies the STPRP property,
IND$-CPA holds.

(2) IPR. For any i-th (i ∈ [n− 1]) onion layer, if the ciphertext received by the Dec oracle is the same
as the ciphertext generated in the same occurrence by the Enc oracle, then, because both the encryption
and decryption sides use the same counter value as a tweak, the decryption at the Dec oracle will match
the intermediate ciphertext input into the Enc oracle. If the ciphertexts differ, due to the STPRP property
of the TBC, the decryption of the Dec oracle will be a random string.

(3) INT-sfCTXT. The innermost onion layer maintains a non-repeating tweak by ciphertext cumu-
lating. When the sfVer(·) oracle receives the first out-of-sync ciphertext, the STPRP property of the
TBC ensures that the encoding part 0n2−n1 is decrypted into a random string (leading to authentication
failure). Furthermore, all subsequent tweaks on the decryption side will deviate from those used on the
encryption side. Consequently, all subsequent out-of-sync ciphertexts will result in authentication failure.

(4) ¬CircuitHiding. We construct a CircuitHiding adversary A such that AdvCircuitHiding
A,Π∗ is close to

1. The first-stage adversary A1 specifies the topology setting (W0, W1) as shown in Figure 5 for the
second-stage adversary A2. To distinguish W0 and W1, A2 queries two plaintexts at both v1 and v2,
but the first plaintext received by v1 is not equal to the first plaintext received by v2. At both v3 and
v5, A2 decrypts the two received ciphertexts normally, but tampers with the first decryption result by
13 The standard security for TBC is defined as STPRP (strong tweakable pseudorandom permutation). Further

descriptions of TBC and STPRP are provided in Appendix B.

14 Daichong Chao, Liehuang Zhu, Dawei Xu , Tong Wu, Chuan Zhang, and Fuchun Guo

K(n)
for i← 1 to n do

ki ←$ K

ctri ← 0, ui ← ε

si ← (ctri, ui)
k← (k1, ..., kn)
s← (s1, ..., sn)
return (k, k1..., kn, s, s1..., sn)
D(ki, c, si)
parse si as (ctri, ui)
if i = n

c′ ← D(ki, ui, c)
ui ← ui∥c

else

c′ ← D(ki, ⟨ctri⟩l, c)
ctri ← ctri + 1

si ← (ctri, ui)
if i = n and c′[n1 + 1..n2] = 0n2−n1

then return (c′[1..n1], si)
if i = n

return (⊥, si)
return (c′, si)

E(k,m, s)
parse k as (k1, ..., kn)
parse s as (s1, ..., sn)
for i← 1 to n do

parse si as (ctri, ui)
c←m∥0n2−n1

for i← n downto 1 do

if i = n
c← E(ki, ui, c)
ui ← ui∥c

else

c← E(ki, ⟨ctri⟩l, c)
ctri ← ctri + 1

for i← n downto 1 do

si ← (ctri, ui)
s← (s1, ..., sn)
return (c, s)

Fig. 6. Counterexample Π∗ for Theorem 4. (E, D) denotes a TBC at each layer, where E is the encryption function
and D is the decryption function. si represents the formal state at the i-th layer, which is either instantiated as
a counter value ctri (1 ≤ i < n) or as a cumulative string ui (i = n). c′ represents the decryption output at the
n-th layer, and c′[n1 + 1..n2] denotes its substring starting from n1 + 1 and ending at n2.

flipping the last bit. At v6, A2 uses corrupted key and state to reverse engineer the encryption of the first
plaintext received by v1, and further uses this encryption to reset the decryption state at v6. Similarly,
at v7, A2 uses corrupted key and state to reverse engineer the encryption of the first plaintext received
by v2, and uses this encryption to reset the decryption state at v7. This operation leads to the following:
In W1, both the second ciphertexts reaching v6 and v7 will be correctly decrypted, while in W0, both
the second ciphertexts reaching v6 and v7 will fail to decrypt with negligible probability of exception.
This discrepancy arises because, under the IPR property of the onion layer associated with the honest
middle OR v5, in W1, the reverse engineering and state-resetting operation synchronize the encryption
and decryption tweaks at the innermost onion layer of the two circuits. In contrast, inW0, due to the fact
that the first plaintexts received by v1 and v2 differ, the reverse engineering and state-resetting operation
fails to synchronize the encryption and decryption tweaks at the innermost onion layer of the two circuits,
causing both the second ciphertexts reaching v6 and v7 to fail decryption. A detailed proof for Theorem
4 is provided in Appendix E.4.

Based on Theorem 1 and Theorem 4, we obtain Corollary 1.

Corollary 1 (OnionAE ⇏ CircuitHiding). There exists an OE scheme that is OnionAE secure, but
not CircuitHiding secure.

We present a counterexample denoted as Π§ (Figure 7) for Theorem 5. Π§ retains the core design
of the LBE scheme, where each onion layer employs a TBC, and the innermost onion layer follows the
encode-then-encipher paradigm. The only modification in Π§ lies in changing the stateful method of
the innermost onion layer to a simple counter value, as opposed to the original ciphertext cumulating
method. This subtle adjustment ensures that Π§ satisfies IND$-CPA ∧ IPR+, but it no longer satisfies
INT-sfCTXT. Consequently, Π§ fails to satisfy OnionAE.

Theorem 5 (IND$-CPA ∧ IPR+ ⇏ OnionAE). There exists an OE scheme Π = (K, E ,D) that is
IND$-CPA ∧ IPR+ secure, but not OnionAE secure.

Onion Encryption Revisited: Relations Among Security Notions 15

K(n)
for i← 1 to n do

ki ←$ K

ctri ← 0, ui ← ε

si ← (ctri, ui)
k← (k1, ..., kn)
s← (s1, ..., sn)
return (k, k1..., kn, s, s1..., sn)
D(ki, c, si)
parse si as (ctri, ui)
if i = n

c′ ← D(ki, ⟨ctri⟩l, c)
ctri ← ctri + 1

else

c′ ← D(ki, ui, c)
ui ← ui∥c

si ← (ctri, ui)
if i = n and c′[n1 + 1..n2] = 0n2−n1

then return (c′[1..n1], si)
if i = n

return (⊥, si)
return (c′, si)

E(k,m, s)
parse k as (k1, ..., kn)
parse s as (s1, ..., sn)
for i← 1 to n do

parse si as (ctri, ui)
c←m∥0n2−n1

for i← n downto 1 do

if i = n
c← E(ki, ⟨ctri⟩l, c)
ctri ← ctri + 1

else

c← E(ki, ui, c)
ui ← ui∥c

for i← n downto 1 do

si ← (ctri, ui)
s← (s1, ..., sn)
return (c, s)

Fig. 7. Counterexample Π§ for Theorem 5. (E, D) denotes a TBC at each layer, where E is the encryption function
and D is the decryption function. si represents the formal state at the i-th layer, which is either instantiated as
a counter value ctri (i = n) or as a cumulative string ui (1 ≤ i < n). c′ represents the decryption output at the
n-th layer, and c′[n1 + 1..n2] denotes its substring starting from n1 + 1 and ending at n2..

Proof sketch. (1) IND$-CPA. Each onion layer in Π§ satisfies IND$-CPA because it uses a non-
repeating state (either a counter or cumulative string) as a tweak for the TBC. When the TBC satisfies
the STPRP property, IND$-CPA follows trivially.

(2) IPR+. The outer n − 1 onion layers use a non-repeating tweak ui via ciphertext cumulating.
When the decryption oracle Dec receives the first out-of-sync ciphertext, the STPRP property of the
TBC guarantees that it is decrypted into a random string. As a result, the tweaks on the decryption
side will diverge from those on the encryption side, leading to the continued decryption of all out-of-sync
ciphertexts into random strings. Hence, when the TBC satisfies STPRP, IPR+ trivially holds.

(3) ¬INT-sfCTXT (¬OnionAE). We demonstrate a straightforward attack against INT-sfCTXT secu-
rity. The adversary A first obtains two legitimate ciphertexts c1, c2 for messages m1,m2 via the encryption
oracle. A then submits a modified version of c1 (by flipping its last bit) to the verification oracle, which
fails to decrypt due to the STPRP property of the TBC. However, when A subsequently submits the
unmodified c2, it decrypts correctly because the verification oracle uses the same tweak ctrn as was used
during encryption. This violates the INT-sfCTXT security notion, as a successful decryption occurs after
an out-of-sync query. Therefore, AdvINT-sfCTXT

A,Π§ = 1. A detailed proof for Theorem 5 is provided in
Appendix E.5.

Based on Theorem 3 and Theorem 5, we obtain Corollary 2.

Corollary 2 (CircuitHiding ⇏ OnionAE). There exists an OE scheme that is CircuitHiding secure,
but not OnionAE secure.

4.3 Summary

Based on Theorem 3, we have Corollary 3.

Corollary 3 (IND$-CPA ∧ IPR+ ∧ INT-sfCTXT ⇒ CircuitHiding). If an OE scheme is IND$-
CPA ∧ IPR+ ∧ INT-sfCTXT secure, it is CircuitHiding secure.

Based on Theorem 1, we have Corollary 4.

16 Daichong Chao, Liehuang Zhu, Dawei Xu , Tong Wu, Chuan Zhang, and Fuchun Guo

Corollary 4 (IND$-CPA ∧ IPR+ ∧ INT-sfCTXT ⇒ OnionAE). If an OE scheme is IND$-CPA
∧ IPR+ ∧ INT-sfCTXT secure, it is OnionAE secure.

Given that OnionAE and CircuitHiding are mutually separable, we recommend using the combination
“IND$-CPA ∧ IPR+ ∧ INT-sfCTXT” to simultaneously satisfy CircuitHiding and OnionAE. Another
notable feature of this combination is that all notions are onion layer-centric and, thus, easy to use14.

Remark 4 (Existence of the combination). It is trivial to obtain an OE scheme that satisfies IND$-CPA ∧
IPR+ ∧ INT-sfCTXT; simply set the stateful method of the innermost onion layer in the counterexample
Π§ for Theorem 5 to ciphertext cumulating. This construction is precisely the LBE scheme in [35], where
the authors provided a weaker treatment compared to ours.

5 Limitation and Future Work

To facilitate a comparison between CircuitHiding and OnionAE, this paper focuses on the onion part.
Therefore, the results of this paper establish a common necessary security formalism for OE. However, the
onion part corresponds only to one of the highly severe covert channel vectors related to the Tor protocol,
namely cryptographic tagging, while ignoring cell header manipulation and dropped cells. All three of
these are serious protocol information leaks, as recently recognized by the Tor team [27]. Although the
proposed new combination helps enhance OE security, it does not address the other two leaks. In this
sense, the newly introduced notion set seems to regress compared to CircuitHiding, as the latter also
considers cell header manipulation. To address the real-world problems faced by Tor, it is imperative to
propose a stronger security model that simultaneously considers all three leak vectors.

Regarding future work, on the one hand, we may explore how to construct a reasonable and stronger
security model to address protocol information leaks as a whole. Since protocol leaks caused by dropped
cells seem to involve semantic awareness, we may attempt to introduce a zero-knowledge framework to
integrate with the current security notions, which may involve reintegration of the security notions. On
the other hand, we may also investigate whether the security principles revealed by the treatment in this
paper (such as the heterogeneous roles of different onion layers) are helpful in constructing a secure and
efficient OE scheme, which we believe is also a valuable endeavor.

References

1. Ando, M., Lysyanskaya, A.: Cryptographic shallots: A formal treatment of repliable onion encryption. In:
Nissim, K., Waters, B. (eds.) Theory of Cryptography - 19th International Conference, TCC 2021, Raleigh,
NC, USA, November 8-11, 2021, Proceedings, Part III. Lecture Notes in Computer Science, vol. 13044, pp.
188–221. Springer (2021). https://doi.org/10.1007/978-3-030-90456-2_7

2. (arma), R.D.: Tor security advisory: "relay early" traffic confirmation attack (July 2014), https://blog.
torproject.org/tor-security-advisory-relay-early-traffic-confirmation-attack/

3. Ashur, T., Dunkelman, O., Luykx, A.: Boosting authenticated encryption robustness with minimal mod-
ifications. In: Katz, J., Shacham, H. (eds.) Advances in Cryptology - CRYPTO 2017 - 37th Annual In-
ternational Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part III.
Lecture Notes in Computer Science, vol. 10403, pp. 3–33. Springer, Santa Barbara, CA, USA (2017).
https://doi.org/10.1007/978-3-319-63697-9_1

4. Ashur, T., Dunkelman, O., Luykx, A.: 295-relay-crypto-with-adl (February 2018), https://gitweb.
torproject.org/torspec.git/tree/proposals/295-relay-crypto-with-adl.txt

5. Backes, M., Goldberg, I., Kate, A., Mohammadi, E.: Provably secure and practical onion routing. In: Proceed-
ings of the 2012 IEEE 25th Computer Security Foundations Symposium. p. 369–385. CSF ’12, IEEE Computer
Society, USA (2012). https://doi.org/10.1109/CSF.2012.32, https://doi.org/10.1109/CSF.2012.32

6. Bellare, M., Kohno, T., Namprempre, C.: Breaking and provably repairing the ssh authenticated encryption
scheme: A case study of the encode-then-encrypt-and-mac paradigm. ACM Trans. Inf. Syst. Secur. 7(2),
206–241 (2004). https://doi.org/10.1145/996943.996945

7. Boldyreva, A., Degabriele, J.P., Paterson, K.G., Stam, M.: On symmetric encryption with distinguishable
decryption failures. In: Moriai, S. (ed.) Fast Software Encryption - 20th International Workshop, FSE 2013,
Singapore, March 11-13, 2013. Revised Selected Papers. Lecture Notes in Computer Science, vol. 8424, pp.
367–390. Springer, Singapore (2013). https://doi.org/10.1007/978-3-662-43933-3_19

14 A discerning reader may notice that verifying IND$-CPA, IPR, and INT-sfCTXT properties in Theorem 4, and
verifying IND$-CPA, IPR+, and INT-sfCTXT properties in Theorem 5 are relatively straightforward.

https://doi.org/10.1007/978-3-030-90456-2_7
https://doi.org/10.1007/978-3-030-90456-2_7
https://blog.torproject.org/tor-security-advisory-relay-early-traffic-confirmation-attack/
https://blog.torproject.org/tor-security-advisory-relay-early-traffic-confirmation-attack/
https://doi.org/10.1007/978-3-319-63697-9_1
https://doi.org/10.1007/978-3-319-63697-9_1
https://gitweb.torproject.org/torspec.git/tree/proposals/295-relay-crypto-with-adl.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/295-relay-crypto-with-adl.txt
https://doi.org/10.1109/CSF.2012.32
https://doi.org/10.1109/CSF.2012.32
https://doi.org/10.1109/CSF.2012.32
https://doi.org/10.1145/996943.996945
https://doi.org/10.1145/996943.996945
https://doi.org/10.1007/978-3-662-43933-3_19
https://doi.org/10.1007/978-3-662-43933-3_19

Onion Encryption Revisited: Relations Among Security Notions 17

8. Camenisch, J., Lysyanskaya, A.: A formal treatment of onion routing. In: Shoup, V. (ed.) Advances in Cryp-
tology - CRYPTO 2005: 25th Annual International Cryptology Conference, Santa Barbara, California, USA,
August 14-18, 2005, Proceedings. Lecture Notes in Computer Science, vol. 3621, pp. 169–187. Springer, Santa
Barbara, California, USA (2005). https://doi.org/10.1007/11535218_11

9. Chen, C., Asoni, D.E., Barrera, D., Danezis, G., Perrig, A.: HORNET: high-speed onion routing at the
network layer. In: Ray, I., Li, N., Kruegel, C. (eds.) Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, Denver, CO, USA, October 12-16, 2015. pp. 1441–1454. ACM
(2015). https://doi.org/10.1145/2810103.2813628

10. Chen, C., Asoni, D.E., Perrig, A., Barrera, D., Danezis, G., Troncoso, C.: TARANET: traffic-analysis resistant
anonymity at the network layer. In: 2018 IEEE European Symposium on Security and Privacy, EuroS&P 2018,
London, United Kingdom, April 24-26, 2018. pp. 137–152. IEEE (2018). https://doi.org/10.1109/EUROSP.
2018.00018

11. Danezis, G., Goldberg, I.: Sphinx: A compact and provably secure mix format. In: 30th IEEE Symposium on
Security and Privacy (SP 2009), 17-20 May 2009, Oakland, California, USA. pp. 269–282. IEEE Computer
Society (2009). https://doi.org/10.1109/SP.2009.15

12. Degabriele, J.P., Melloni, A., Stam, M.: Counter galois onion: A new proposal for forward-secure
relay cryptography (September 2019), https://gitweb.torproject.org/torspec.git/tree/proposals/
308-counter-galois-onion.txt

13. Degabriele, J.P., Stam, M.: Untagging tor: A formal treatment of onion encryption. In: Nielsen, J.B., Rijmen,
V. (eds.) Advances in Cryptology - EUROCRYPT 2018 - 37th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings,
Part III. Lecture Notes in Computer Science, vol. 10822, pp. 259–293. Springer, Tel Aviv, Israel (2018).
https://doi.org/10.1007/978-3-319-78372-7_9

14. Dingledine, R., Mathewson, N.: Tor protocol specification (2024), https://gitweb.torproject.org/
torspec.git/tree/tor-spec.txt

15. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion router. In: Proceedings of the
13th Conference on USENIX Security Symposium - Volume 13. p. 21. SSYM’04, USENIX Association, USA
(2004)

16. Fu, X., Ling, Z.: One cell is enough to break tor’s anonymity. In: Proceedings of Black Hat Technical Security
Conference. pp. 578–589 (2009)

17. Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ and the problem that it solves.
In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 9056, pp. 15–44. Springer (2015). https://doi.
org/10.1007/978-3-662-46800-5_2

18. Hogan, K., Servan-Schreiber, S., Newman, Z., Weintraub, B., Nita-Rotaru, C., Devadas, S.: Shortor: Improving
tor network latency via multi-hop overlay routing. In: 43rd IEEE Symposium on Security and Privacy, SP
2022, San Francisco, CA, USA, May 22-26, 2022. pp. 1933–1952. IEEE (2022). https://doi.org/10.1109/
SP46214.2022.9833619

19. Jansen, R., Traudt, M., Geddes, J., Wacek, C., Sherr, M., Syverson, P.: KIST: kernel-informed socket transport
for tor. ACM Trans. Priv. Secur. 22(1), 3:1–3:37 (2019). https://doi.org/10.1145/3278121

20. Kuhn, C., Beck, M., Strufe, T.: Breaking and (partially) fixing provably secure onion routing. In: 2020 IEEE
Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA, May 18-21, 2020. pp. 168–185. IEEE
(2020). https://doi.org/10.1109/SP40000.2020.00039

21. Kuhn, C., Hofheinz, D., Rupp, A., Strufe, T.: Onion routing with replies. In: Tibouchi, M., Wang, H.
(eds.) Advances in Cryptology - ASIACRYPT 2021 - 27th International Conference on the Theory and
Application of Cryptology and Information Security, Singapore, December 6-10, 2021, Proceedings, Part II.
Lecture Notes in Computer Science, vol. 13091, pp. 573–604. Springer (2021). https://doi.org/10.1007/
978-3-030-92075-3_20

22. Liskov, M.D., Rivest, R.L., Wagner, D.A.: Tweakable block ciphers. J. Cryptol. 24(3), 588–613 (2011)
23. Mathewson, N.: Two improved relay encryption protocols for tor cells (June 2012), https://gitweb.

torproject.org/torspec.git/tree/proposals/202-improved-relay-crypto.txt
24. Mathewson, N.: Aez for relay cryptography (October 2015), https://gitweb.torproject.org/torspec.git/

tree/proposals/261-aez-crypto.txt
25. Mathewson, N.: Cryptographic directions in tor: past and future. In: Real World Cryptography Conference

(2016)
26. pavel: Tor 2023: Year in review (December 2023), https://blog.torproject.org/2023-year-in-review/
27. Perry, M.: Prioritizing protocol information leaks in tor (December 2023), https://spec.torproject.org/

proposals/344-protocol-info-leaks.html
28. Piotrowska, A.M., Hayes, J., Elahi, T., Meiser, S., Danezis, G.: The loopix anonymity system. In: Kirda, E.,

Ristenpart, T. (eds.) 26th USENIX Security Symposium, USENIX Security 2017, Vancouver, BC, Canada,
August 16-18, 2017. pp. 1199–1216. USENIX Association (2017)

29. Project, T.T.: mark old counter galois onion proposal as superseded (December 2023), https://gitlab.
torproject.org/tpo/core/torspec/-/commit/c49b5ad4e27df87dc317e79636b3de90198bf719

https://doi.org/10.1007/11535218_11
https://doi.org/10.1007/11535218_11
https://doi.org/10.1145/2810103.2813628
https://doi.org/10.1145/2810103.2813628
https://doi.org/10.1109/EUROSP.2018.00018
https://doi.org/10.1109/EUROSP.2018.00018
https://doi.org/10.1109/EUROSP.2018.00018
https://doi.org/10.1109/EUROSP.2018.00018
https://doi.org/10.1109/SP.2009.15
https://doi.org/10.1109/SP.2009.15
https://gitweb.torproject.org/torspec.git/tree/proposals/308-counter-galois-onion.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/308-counter-galois-onion.txt
https://doi.org/10.1007/978-3-319-78372-7_9
https://doi.org/10.1007/978-3-319-78372-7_9
https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt
https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt
https://doi.org/10.1007/978-3-662-46800-5_2
https://doi.org/10.1007/978-3-662-46800-5_2
https://doi.org/10.1007/978-3-662-46800-5_2
https://doi.org/10.1007/978-3-662-46800-5_2
https://doi.org/10.1109/SP46214.2022.9833619
https://doi.org/10.1109/SP46214.2022.9833619
https://doi.org/10.1109/SP46214.2022.9833619
https://doi.org/10.1109/SP46214.2022.9833619
https://doi.org/10.1145/3278121
https://doi.org/10.1145/3278121
https://doi.org/10.1109/SP40000.2020.00039
https://doi.org/10.1109/SP40000.2020.00039
https://doi.org/10.1007/978-3-030-92075-3_20
https://doi.org/10.1007/978-3-030-92075-3_20
https://doi.org/10.1007/978-3-030-92075-3_20
https://doi.org/10.1007/978-3-030-92075-3_20
https://gitweb.torproject.org/torspec.git/tree/proposals/202-improved-relay-crypto.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/202-improved-relay-crypto.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/261-aez-crypto.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/261-aez-crypto.txt
https://blog.torproject.org/2023-year-in-review/
https://spec.torproject.org/proposals/344-protocol-info-leaks.html
https://spec.torproject.org/proposals/344-protocol-info-leaks.html
https://gitlab.torproject.org/tpo/core/torspec/-/commit/c49b5ad4e27df87dc317e79636b3de90198bf719
https://gitlab.torproject.org/tpo/core/torspec/-/commit/c49b5ad4e27df87dc317e79636b3de90198bf719

18 Daichong Chao, Liehuang Zhu, Dawei Xu , Tong Wu, Chuan Zhang, and Fuchun Guo

30. Project, T.T.: Tor metrics portal (jul 2023), https://metrics.torproject
31. 23rd Raccoond, T.: Analysis of the relative severity of tagging attacks (March 2012), https://archives.

seul.org/or/dev/Mar-2012/msg00019.html
32. Reed, M.G., Syverson, P.F., Goldschlag, D.M.: Anonymous connections and onion routing. IEEE J. Sel. Areas

Commun. 16(4), 482–494 (1998). https://doi.org/10.1109/49.668972
33. Rogaway, P., Bellare, M., Black, J.: OCB: A block-cipher mode of operation for efficient authenticated en-

cryption. ACM Trans. Inf. Syst. Secur. 6(3), 365–403 (2003). https://doi.org/10.1145/937527.937529
34. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap problem. In: Proceedings

of the 24th Annual International Conference on The Theory and Applications of Cryptographic Tech-
niques. p. 373–390. EUROCRYPT’06, Springer-Verlag, Berlin, Heidelberg (2006). https://doi.org/10.1007/
11761679_23, https://doi.org/10.1007/11761679_23

35. Rogaway, P., Zhang, Y.: Onion-ae: Foundations of nested encryption. Proc. Priv. Enhancing Technol. 2018(2),
85–104 (2018). https://doi.org/10.1515/popets-2018-0014

36. Rogaway, P., Zhang, Y.: Simplifying game-based definitions - indistinguishability up to correctness and its
application to stateful AE. In: Shacham, H., Boldyreva, A. (eds.) Advances in Cryptology - CRYPTO 2018 -
38th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings,
Part II. Lecture Notes in Computer Science, vol. 10992, pp. 3–32. Springer, Santa Barbara, CA, USA (2018).
https://doi.org/10.1007/978-3-319-96881-0_1

37. Schadt, D., Coijanovic, C., Weis, C., Strufe, T.: Polysphinx: Extending the sphinx mix format with better
multicast support. In: IEEE Symposium on Security and Privacy, SP 2024, San Francisco, CA, USA, May
19-23, 2024. pp. 4386–4404. IEEE (2024). https://doi.org/10.1109/SP54263.2024.00044

38. Scherer, P., Weis, C., Strufe, T.: Provable security for the onion routing and mix network packet format sphinx.
Proc. Priv. Enhancing Technol. 2024(4), 755–783 (2024). https://doi.org/10.56553/POPETS-2024-0140

39. Shrimpton, T., Terashima, R.S.: A modular framework for building variable-input-length tweakable ciphers.
In: Sako, K., Sarkar, P. (eds.) Advances in Cryptology - ASIACRYPT 2013 - 19th International Conference
on the Theory and Application of Cryptology and Information Security, Bengaluru, India, December 1-5,
2013, Proceedings, Part I. Lecture Notes in Computer Science, vol. 8269, pp. 405–423. Springer (2013).
https://doi.org/10.1007/978-3-642-42033-7_21

https://metrics.torproject
https://archives.seul.org/or/dev/Mar-2012/msg00019.html
https://archives.seul.org/or/dev/Mar-2012/msg00019.html
https://doi.org/10.1109/49.668972
https://doi.org/10.1109/49.668972
https://doi.org/10.1145/937527.937529
https://doi.org/10.1145/937527.937529
https://doi.org/10.1007/11761679_23
https://doi.org/10.1007/11761679_23
https://doi.org/10.1007/11761679_23
https://doi.org/10.1007/11761679_23
https://doi.org/10.1007/11761679_23
https://doi.org/10.1515/popets-2018-0014
https://doi.org/10.1515/popets-2018-0014
https://doi.org/10.1007/978-3-319-96881-0_1
https://doi.org/10.1007/978-3-319-96881-0_1
https://doi.org/10.1109/SP54263.2024.00044
https://doi.org/10.1109/SP54263.2024.00044
https://doi.org/10.56553/POPETS-2024-0140
https://doi.org/10.56553/POPETS-2024-0140
https://doi.org/10.1007/978-3-642-42033-7_21
https://doi.org/10.1007/978-3-642-42033-7_21

Onion Encryption Revisited: Relations Among Security Notions 19

A Detailed Notions

A.1 Detailed CircuitHiding

We provide the detailed description of CircuitHiding game in [13] for completeness. The formalization of
the CircuitHiding game is provided in Figure 8, directly borrowing from [13].

CircuitHiding provides an anonymity-flavor treatment, namely, how effectively the cryptographic ca-
pabilities of an OE scheme can hide the topology of the circuits within Tor from an adversary with static
corruption power. To this end, it considers a multiple-user network setting (rather than a single circuit in
OnionAE), where multiple users create several circuits, across different OP nodes. To better match the
anonymity formalism, CircuitHiding integrates some technical parts for routing processing and topology
(circuit) bookkeeping (As mentioned in Section 2.2, its syntax considers routing behavior besides OE),
providing detailed descriptions of the Tor setting. Furthermore, it takes into account critical aspects to
ensure the soundness and meaningfulness of this cryptographic treatment. Next, we explain its technical
designs in more detail.

Game CircuitHiding

(W0,W1,Pc, st)← A1

if ¬VALID(W0,W1,Pc)

return false

∀i synci ← true

̺← ε; n← 0; b←$ {0, 1}
INIT− CIRC(Wb)

τPc ← {(v,σv , τv , τv) | v ∈ Pc}
b′ ← AENC,NET

2 (st, τPc)

return b′ = b

NET(z)

∀i assci ← 0;x← []

for i′ = 1 to |z|
(s, v, c)← z[i′]

w ← D(τv , s, c)

if s /∈ Pc ∨ v ∈ Pc ∨ w =⊥
return

for i′ = 1 to |z|
(s, v, c)← z[i′]; c∗ ← c

w ← D(τv , s, c)

(τv [w], d, c)← D(τv [w], s, c)

(i, j)← map−1(v, w)

while d /∈ Pc ∧ d 6= ⊘
s← v, v ← d

w ← D(τv , s, c)

(τv [w], d, c)← D(τv [w], s, c)

if d ∈ Pc

x.append(v, d, c)

if d ∈ Pc ∨ i ∈ INOP

assci ← assci + 1

if c∗ 6= Qi.dequeue()

synci ← false

if
∨

i∈IEN
(synci ∨ assci 6= 1)

return
return sort(x)

INIT− CIRC(W)

for i = 1 to |W|
n← n+ 1; pn ←W[i]

(̺, σ, t, t)← G(̺,pn)

syncn ← true

σpn[0].append(σ)

for j = 1 to |pn|
v ← pn[j]

τv .append(t[j])

τv .append(t[j])

if EN(pn,Pc) ∧ pn[0] /∈ Pc

IEN ← IEN ∪ {i}
if NOP(pn,Pc)

INOP ← INOP ∪ {i}
foreach v

Shuffle(σv , τv , τv)

ENC(i, m)

(v, w)← map(i, 0)

if v ∈ Pc

return
(σv [w], d, c)← E(σv [w],m)

while d /∈ Pc

s← v, v ← d

w ← D(τv , s, c)

(τv [w], d, c)← D(τv [w], s, c)

(v∗, d∗, c∗)← (v, d, c)

while d ∈ Pc

s← v, v ← d

w ← D(τv , s, c)

(τv [w], d, c)← D(τv [w], s, c)

if d 6= ⊘
(i, j)← map−1(v, w)

Qi.enqueue(c)

return (v∗, d∗, c∗)

Fig. 8. The CircuitHiding game in reference [13].

20 Daichong Chao, Liehuang Zhu, Dawei Xu , Tong Wu, Chuan Zhang, and Fuchun Guo

In CircuitHiding, an indistinguishability game is played between a two-stage adversary A (A1 and
A2) and a challenger. In this game, A1 generates two generic (and default indistinguishable) network
topologies W0 and W1, in which some of their ORs are designated as corrupted nodes (by the set Pc).
The challenger instantiates a randomly sampled topology Wb (b ←$ {0, 1}), and the relevant corrupt
states is provided with A2. The actual adversary A2, with static corruption power, can query two oracles
to interact with Wb: an encryption oracle, ENC, which outputs cells that the adversary can manipulate
(e.g., tagging, replaying, reordering, inserting) at a corrupt OR at the front of the circuit, and a network
oracle, NET, which outputs cells that the adversary can obtain at a corrupt OR at the back of the circuit.
After making polynomial-bounded adaptively chosen queries on ENC and NET, A2 is asked to guess the
actual interacting topology (W0 or W1).

Critically, to ensure a fair starting point,W0 andW1 should provide no prior advantage to A2. That is,
the choice of topologies by A1 should not allow A2 to trivially win. In CircuitHiding, a network topology
consists of several circuits, some of which contain OR nodes corrupted by A2. Notably, CircuitHiding
permits generic topologies, allowing the circuits in W0 and W1 to vary in form. For example, a circuit’s
length can exceed the typical three-node length of Tor; an adversary may corrupt a contiguous sequence
of nodes (referred to as a "corrupt segment" in [13]), instead of just the entry node in a canonical tagging
attack; and a circuit may include honest OR nodes following a second corrupt segment. Accordingly, for
the notion’s soundness, the predicate VALID in CircuitHiding is introduced to verify a set of conditions
that prevent trivial wins. For example, W0 and W1 must contain an equal number of circuits, and each
circuit in both topologies must include at least one corrupt OR node. (For further details on the VALID
predicate and how to prepare a valid pair of W0 and W1, refer to [13].)

In terms of the notion’s effectiveness, CircuitHiding especially considers those circuits with an honest
OP. To this end, two sets of circuit indices, IEN and INOP, are introduced. The former tracks the indices
of all circuits that have an honest proxy and contain an entry edge (an edge from a corrupt OR to an
honest OR, where the predicate EN returns true), and the latter tracks those in IEN that do not have a
second corrupt segment. The rationale here is that only the circuits in IEN (possibly) provide meaningful
observation information for an adversary. It’s important to note that the size of IEN\INOP may be less
than that of IEN. Therefore, the adversary should not be able to infer the source of cells received at a
second corrupt segment from the entry edges.

Furthermore, CircuitHiding incorporates some crucial technical tricks to ensure a meaningful cryp-
tographic treatment. As CircuitHiding involves a multi-user setting with multiple circuits, specific tech-
niques are used to avoid trivial wins based on time-based analysis. First, a shuffle operation is performed
at the end of INIT− CIRC to randomize the states observable by the adversary, thus disconnecting the
nodes’ local view from the order in which circuits were created. To facilitate this, the functions map and
map−1 are adopted to switch on local and global perspectives. Second, the NET oracle enforces collective
access, restricting the adversary to interact with the honest segments of IEN in parallel with an input vec-
tor z. Additionally, the NET oracle explicitly requires that all circuits are out-of-sync (with bookkeeping
performed via the queue Qi and the variable synci) and that only one input cell is present (using assci
for this purpose), thereby preventing trivial wins.

It is important to note that CircuitHiding confines the adversary’s influence to the network interface
of the corrupt OR nodes. The adversary gains access to the OR’s state information, including future
updates, can observe all incoming cells to that OR, and has full control over the cells sent to other OR
nodes. Thus, in conjunction with the two-stage model, it ensures that the processing of cells in one circuit
does not impact another. Furthermore, each cell consistently follows its intended trajectory, maintaining
trajectory integrity as per reference [13]. These conditions simply the analysis of CircuitHiding, intuitively
reducing the multi-user notion to a single-circuit one intuitively.

A.2 Detailed OnionAE

Rooted in a different philosophical approach, OnionAE focuses on the AE properties of a single circuit,
instead of a network-level anonymity formalism in CircuitHiding. The formal description of OnionAE
game is provided in Figure 9.

OnionAE offers a tailored AE treatment for OE. In contrast to the classical stateful AE notions such as
INT-sfCTXT and IND-sfCCA [6], the most notable feature in OnionAE is the provision of an encryption
oracle for the OP and a decryption oracle for each OR in the circuit. This means that it provides multiple
decryption oracles simultaneously, thereby aligning with the Tor setting. An adversary can query these
oracles arbitrarily, thereby enabling various adversarial behaviors, including replaying, reordering, and
more. In this regard, this capability is essentially equivalent to that found in CircuitHiding, assuming
that the stateful information from corrupt ORs in CircuitHiding is not considered.

Onion Encryption Revisited: Relations Among Security Notions 21

Formally, in the OnionAE game, the adversary’s goal is to distinguish between two possible worlds: the
real-world game G0, instantiated by a practical OE scheme, and the ideal-world game G1, which specifies
the expected properties for OE (similar to nonce-based AE notions RUPAE [3] and IND$-CCA3 [34]).
Both G0 and G1 involve three types of the oracle: the Key oracle for initialization, the Enc oracle for OP
encryption, and the Dec oracles for decryption at each OR in the circuit. The adversary A is allowed to
make polynomial-bounded adaptive queries on the Enc and (each) Dec oracles.

Similar to other conventional stateful AE notions, such as INT-sfCTXT and IND-sfCCA [6], OnionAE
employs crucial bookkeeping techniques to meaningfully address statefulness in the context of Tor. A key
feature is the predicate Ψ, called Silence, which tracks the synchronization status of the circuit. Specifically,
Ψ monitors all queries made so far to determine whether they form a stack of end-to-end chains, which
would indicate the expected correctness of the OE scheme Π. As a result, adversarial behaviors such as
such as replaying or reordering can be captured by Ψ. When Ψ returns true, the n-th layer decryption
oracle Dec suppresses its output to prevent trivial wins. However, if Ψ returns false, it remains false,
and the circuit becomes unsilenced (out-of-sync). In fact, in reference [35], a more simplified notion
choice driven by the oracle silencing technique [36] was preferred, which automatically suppresses oracle
responses. Nevertheless, for convenience, we adopt the concrete silencing predicate used in that work,
avoiding the introduction of additional background complexity.

In terms of the expected properties, the ideal-world game G1 adopts the IND$ randomness flavor for
confidentiality. Specifically, it defines that the Enc oracle outputs a uniformly random string; for the first
n-1 ORs in a circuit, the Dec oracle also outputs a uniformly random string. Regarding authenticity, when
the circuit becomes unsilenced, the n-th Dec always outputs a ⊥ symbol indicating an authentication
failure.

G0 (real world)

Key(n′)

if n 6=⊥ then return Err

q ← 0

n←n′

(k0, k1, ..., kn)←$ K(n)
Enc(m)

if n =⊥ then return Err

q++

(c, u)← E(k0,m, u)

(xq .type, xq .msg, yq)← (Enc,m, c)

return c

Dec(c, i)

if n =⊥ then return Err

q++

(d, si)← D(ki, c, si)
(xq .type, xq .ctxt, xq .idx, yq)← (Dec, c, i, d)

if Ψ(n, x1, y1, ..., xq−1, yq−1, xq) then yq ←
return yq

G1 (ideal world)

Key(n′)

if n 6=⊥ then return Err

q ← 0

n←n′

Enc(m)

if n =⊥ then return Err

q++

c←$ C

(xq .type, xq .msg, yq)← (Enc,m, c)

return c

Dec(c, i)

if n =⊥ then return Err

q++

if i = n then d←⊥
else d←$ C

(xq .type, xq .ctxt, xq .idx, yq)← (Dec, c, i, d)

if Ψ(n, x1, y1, ..., xq−1, yq−1, xq) then yq ←
return yq

Ψ(n, x1, y1, ..., xq−1, yq−1, xq)

v ← 0

for i ∈ [n] do wi ← 0

for i ∈ [q − 1] do

if xi.type = Enc then v ← v + 1; (Mv, Cv)← (xi.msg, yi)

else j ← xi.idx;wj ← wj + 1; (S[wj][j − 1], D[wj][j])← (xi.ctxt, yi)

wn++;S[wn][n-1]← xq.ctxt

return (xq.idx = n) ∧ (v ≥ wn) ∧ ((∀t ∈ [wn]) Ct = S[t][0]) ∧ ((∀t ∈ [wn − 1]) D[t][n] 6=⊥)
∧ ((∀t ∈ [wn] ∀j ∈ [n− 1]) D[t][j] = S[t][j])

Fig. 9. The OnionAE notion in reference [35]. (The original symbol for indicating a suppression event is ⊥; for
semantic unity, we use instead. Likewise, the original symbol for indicating a decryption failure is ♢; we use ⊥
instead.)

22 Daichong Chao, Liehuang Zhu, Dawei Xu , Tong Wu, Chuan Zhang, and Fuchun Guo

B Tweakable Block Cipher

A tweakable block cipher [22] is a pair of functions (E, D), with E : K×T×M→ C and D : K×T×C→M,
where K is the key space, T the tweak space, M the message space, and C the ciphertext space. M = C. T
may be {0, 1}∗. A tweakable wide-block block cipher is a specific type of tweakable block cipher designed
to handle inputs of varying lengths.

An STPRP adversary A’s goal is to distinguish two worlds G0 and G1, where G0 is instantiated with
(Ek, Dk) and G1 is instantiated with (π, π−1). Here, k is chosen uniformly at random from K; Ek/Dk
denotes Ek(·, ·)/Dk(·, ·); (π, π−1) is a family of independent, uniformly distributed random permutations
over M/C indexed by T. The STPRP advantage of A with respect to (E, D) is defined by:

AdvSTPRP
A,(E,D) = Pr

[
AG0 = 1

]
− Pr

[
AG1 = 1

]
.

C Authentication and Confidentiality in [13]

Authentication. In [13], a notion of plaintext integrity (referred to as PINT) is proposed. In this notion,
if an adversary can generate a successfully decrypted plaintext that was not originally sent by the honest
OP, the adversary wins the game. PINT is considered weaker than the authentication in OnionAE, as
it primarily emphasizes plaintext integrity, while the authentication in OnionAE focuses on ciphertext
integrity. Additionally, PINT considers the presence of an adversary with corruption power.
Confidentiality. In [13], a left-or-right flavor of confidentiality notion is proposed to capture security
under chosen cell attacks. Intuitively, OnionAE encompasses this notion, as OnionAE inherently implies
the left-or-right confidentiality notion (based on the triangle inequality principle). However, the notion
in [13] employs a plaintext-oriented suppression, meaning that its concept of out-of-sync is weaker than
that of OnionAE. In this regard, OnionAE appears to provide a stronger characterization.

D Tor proposals on OE

After the recognition of the severity of cryptographic tagging attacks [31], proposal 202 [23] initiated
the process of replacing the current OE scheme, a process that has now been underway for over a
decade. Given that OE is foundational to the Tor network, and Tor has continuously prioritized enhancing
user experience [19,18,26], the Tor team has been exceptionally cautious in selecting a new scheme for
implementation.

In proposal 202 [23], Mathewson presented two candidate schemes: ’short-MAC-and-pad’ and ’Large-
block encryption’. The former is a hop-by-hop authentication scheme that utilizes a MAC and a stream
cipher (e.g., AES counter-mode encryption). Each OR checks a MAC value and re-pads the cell to its
chosen length before decryption. The latter, in contrast, is an end-to-end authentication scheme utilizing
a tweakable wide-block block cipher. Subsequent proposals—261 [24], 295 [4], and 308 [12]—opted for
end-to-end authentication. This decision was driven by the fact that hop-by-hop authentication would
reduce the actual transmission weight of messages, which is detrimental to low-latency performance.
Additionally, hop-by-hop authentication may introduce challenges related to circuit length and position
leakage.

Proposal 261 [24] is an instantiation and improvement of ’Large-block encryption’ from Proposal 202.
It employs the AEZ construction [17] as a tweakable wide-block block cipher for enhanced efficiency.
Additionally, by leveraging a Davies-Meyer-type configuration for computing a running value in the
tweak encoding method, proposal 261 also aims to provide forward security. However, AEZ is complex to
implement and relies on heuristic security analysis. Proposal 261 was deprecated in 2018.

Both proposal 295 [4] and proposal 308 [12] adopt a stateful variant of GCM-RUP [3], introducing
randomness in the decryption of manipulated ciphertext. In implementing onion encryption, the GCM-
RUP variant uses a portion of the previous onion layer’s ciphertext as the nonce for AES counter-mode
encryption. Additionally, the output of the inner TBC is incorporated into the ciphertext and serves as the
nonce for the next onion layer’s GCM-RUP variant. Despite the similarities, there are subtle differences
in how the stateful methods are applied in the two proposals. Proposal 295 [4] uses the running digest of
GHASH in the inner TBC as the state, whereas proposal 308 [12] uses the nonce as the state. Proposal
295 utilizes a PIV construction [39] in the innermost onion layer for end-to-end authentication, while
proposal 308 adopts a key-evolving technique in the innermost layer to ensure forward secrecy and forward
authentication. Both proposals leverage mature building blocks, such as GHASH (or POLYVAL) and the
AES block cipher, aiming to strike an optimal balance between security and performance. However,

Onion Encryption Revisited: Relations Among Security Notions 23

proposal 308 was superseded on August 15, 2023, with no identified successor, leaving proposal 295 as
the only open proposal for OE.

E Proof details

E.1 Detailed proof for Lemma 1

Proof. To ensure clarity throughout the proof, we introduce certain notations and conventions.
Let c∗ represent the first out-of-sync ciphertext in the OnionAE experiment. We associate c∗ with the

i-th Dec oracle, where the 0-th Dec oracle corresponds to the Enc oracle. We denote Σi and Σi−1 as the
cumulative number of received query ciphertexts at the i-th and (i−1)-th Dec oracles, respectively, when
c∗ occurs. Especially, Σn represents the cumulative number of received query ciphertexts at the n-th Dec
oracle when c∗ occurs (in the first main case mentioned below), or when the n-th Dec oracle receives
one additional query ciphertext after c∗ occurs (in the second main case mentioned below). Furthermore,
Σ0 denotes the cumulative number of received query plaintexts at the Enc oracle when Σn takes effect.
We define the k-th round as the horizontal bookkeeping when the Enc oracle or a Dec oracle receives a
k-th query. The k-th round is considered complete when both the Enc oracle and each Dec oracle have
undergone a k-th query.

There are two major cases to consider:

(I). i = n. c∗ targets the n-th Dec oracle. In this case, Σi = Σn, Σi−1 = Σn−1. Three subcases need
further consideration:

(1) Σi ≤ Σi−1 ≤ Σ0. This case corresponds to c∗ not being equal to the decryption output of the (n− 1)-
th Dec oracle, thereby disrupting the stack of end-to-end chains on the circuit at the Σn-th round.
Therefore, c∗ corresponds to the first out-of-sync and modified ciphertext of INT-sfCTXT. In this
case, the exceptional probability is zero.

(2) Σi > Σi−1 = Σ0. This case corresponds to c∗ being a direct query to the n-th Dec oracle within the
Σn-th round, while the cumulative number of queried ciphertexts at the previous n − 1 Dec oracles
and the Enc oracle is Σn−1. Therefore, c∗ corresponds to the first out-of-sync and inserted ciphertext
of INT-sfCTXT. In this case, the exceptional probability is zero.

(3) Σ0 ≥ Σi > Σi−1. This case corresponds to c∗ being a direct query to the n-th Dec oracle within the
Σn-th round, while the Enc oracle has been queried at least Σn times. Since the adversary A does not
know the ground truth of c(n)Σn

, the probability of violating INT-sfCTXT’s out-of-sync is 1
2n2

.
(II). i < n. c∗ targets one of the front n− 1 Dec oracles. There are four subcases to further consider.
(4) Σn ≤ Σi ≤ Σi−1 ≤ Σ0. This case corresponds to c∗ not being equal to the decryption output of the

(i − 1)-th Dec oracle (thus a modified ciphertex), thereby disrupting the stack of end-to-end chains
on the circuit at the Σi-th round. Meanwhile, when the adversary A queries the n-th Dec oracle, the
n-th Dec oracle has been queried at most Σi times. The adversary A has two possible ways to violate
the out-of-sync concept in INT-sfCTXT for the Σi-th round. One is by directly querying the n-th
Dec oracle with a guessed input, with an exceptional probability of 1

2n2
. The other is by querying the

n-th Dec oracle using the output of the (n− 1)-th Dec oracle. In this case, the exceptional probability
depends on the probability that the output of the (n−1)-th Dec oracle is equal to c(n)Σn

. If the adversary
A directly queries the (n − 1)-th Dec oracle (with a guessing input), according to Definition 4, the
exceptional probability is bounded by 1

2n2
+ AdvIPR-(n-1)

B,Π , where B introduces only one out-of-sync
ciphertext to its own Dec(·, n− 1, 0) oracle. If the adversary A queries the (n− 1)-th Dec oracle using
the output of the (n− 2)-th Dec oracle, this case can be reduced to the probability that the output of
the (n−2)-th Dec oracle is equal to c(n−1)

Σn
. Therefore, based on induction, the exceptional probability

in the second case is bounded by (n − i) · (1
2n2

+ AdvIPR-(i)
B,Π) + 1

2n2
, where B introduces only one

(i.e., the first caused by A) out-of-sync ciphertext to its own Dec(·, i, 0) oracle15. For any intermediate
round d (Σn ≤ d < Σi, if Σn < Σi), similarly and clearly, the exceptional probability is less than
(n− i) · (1

2n2
+ AdvIPR-(i)

B,Π) + 1
2n2

.
(5) Σn = Σi > Σi−1 = Σ0. This case corresponds to c∗ being a direct query to the i-th Dec oracle within

the Σn-th round, while the (Σn − 1)-th round has been completed and the entire circuit maintains
the stack of end-to-end chains. When querying the n-th Dec oracle for the Σn-th time, the Enc oracle
has only been queried Σn − 1 times. Therefore, c(n)Σn

corresponds to the first out-of-sync and inserted
ciphertext of INT-sfCTXT. In this case, the exceptional probability is zero.

15 For convenience, here we use AdvIPR-(i)
A,Π to replace the IPR advantage of other onion layers, and the same

applies below.

24 Daichong Chao, Liehuang Zhu, Dawei Xu , Tong Wu, Chuan Zhang, and Fuchun Guo

(6) Σn ≤ Σi−1 < Σi ∧ Σi ≤ Σ0. This case corresponds to c∗ being a direct query to the i-th Dec oracle
within the Σi-th round, when the Σn-th round is yet to be completed. The adversary A may violate
the out-of-sync concept in INT-sfCTXT either during the Σi-th round or in some d-th intermediate
round (Σn ≤ d < Σi−1, if Σn < Σi−1). By analogy with case (4), the exceptional probability is
bounded by (n− i) · (1

2n2
+ AdvIPR-(i)

B,Π) + 1
2n2

.
(7) Σ0 ≥ Σn = Σi > Σi−1. This case corresponds to c∗ being a direct query to the i-th Dec oracle within

the Σn-th round. Meanwhile, when querying the n-th Dec oracle for the Σn-th time, the Enc oracle
has been queried at least Σn times. Since the Enc oracle has been queried at least Σn times, referring
to case (4), the exceptional probability is bounded by (n− i) · (1

2n2
+ AdvIPR-(i)

B,Π) + 1
2n2

.

Considering all the above cases, the adversary A can violate the out-of-sync concept in INT-sfCTXT
with a probability of at most (n− 1) · (1

2n2
+ AdvIPR-(i)

B,Π) + 1
2n2

, which is negligible.

E.2 Detailed proof for Theorem 1

Proof. The specific game hopping process is as follows.
Game G0: This corresponds to the unchanged real world G0

16 in OnionAE.
Game G1: In this game, when the OnionAE adversary introduces the first out-of-sync ciphertext, it
triggers the out-of-sync concept in INT-sfCTXT of the innermost onion layer.

By Lemma 1, the advantage gap from G0 to G1 is bounded by (n − 1) · (1
2n2

+ AdvIPR-(i)
F2,Π

) + 1
2n2

,
where F2 introduces only one out-of-sync ciphertext to its own Dec(·, i, b) oracle.
Game G2: In this game, when A queries the last Dec oracle with an out-of-sync ciphertext, the last Dec
oracle always returns ⊥. Namely, no out-of-sync ciphertext is correctly decrypted.

To bound the advantage gap from G1 to G2, we construct an INT-sfCTXT adversary B, using all
the queries made by A to break the INT-sfCTXT game. Specifically, B utilizes the keys and initial state
information of the outer n− 1 onion layers to simulate the OnionAE game perfectly.
B works as follows:

– B initializes the symmetric keys and initial states for the outer n− 1 onion layers.
– When A queries the Enc oracle with plaintext m, B first queries its own Enc oracle using m and

obtains the intermediate ciphertext c. Then B applies the onion encryption layer by layer using the
available keys and states to compute the final ciphertext c, following the onion encryption rules. B
updates the relevant encryption states. The ciphertext c is returned to the OnionAE adversary A.

– When A queries one of the front n − 1 Dec oracles with ciphertext c, B uses the corresponding key
and state for the specified layer to decrypt c, obtaining the decrypted ciphertext c′. B updates the
relevant decryption state. The result c′ is returned to A.

– When A queries the n-th Dec oracle with ciphertext c, B queries its own sfVer oracle using c. It
obtains the response m and returns m to A.

It is evident that the above simulation satisfies that the advantage gap of A from G1 to G2 is bounded
by AdvINT−sfCTXT

B,Π .
Game G3: In this game, both the Enc oracle and the first n− 1 Dec oracles always output a uniformly
random string for each query (and, of course, the last Dec oracle always returns ⊥ for any received out-
of-sync ciphertext). Consequently, game G3 is identical to the ideal world G1 in OnionAE. Since the last
Dec oracle always returns ⊥, it can be trivially simulated by any adversary. To bound the advantage gap
from G2 to G3, we only need to prove that the outputs of the Enc and the first n− 1 Dec oracles in game
G2 are computationally indistinguishable from a uniformly random string for A.

Recall that the output of the Enc oracle in G2 is the result of encryption by the outermost onion
layer. If the outermost onion layer satisfies IND$-CPA, the output of the Enc oracle is computationally
indistinguishable from a uniformly random string, regardless of what the query plaintext m to Enc is.

When examining the i-th Dec oracle (1 ≤ i < n), we can further consider two cases:
(1) If the j-th query to the i-th Dec oracle (i.e., c(i)j) matches a predetermined ciphertext (i.e., c(i)j),

the output of the oracle corresponds to the result of encryption by the (i+ 1)-th onion layer, specifically
c(i+1)
j . This is guaranteed by two aspects:

16 Although the naming of G0 here conflicts with its earlier usage, readers should be able to distinguish between
them based on the context.

Onion Encryption Revisited: Relations Among Security Notions 25

(a). c(i)j is still an in-sync query (i.e., the i-th Dec oracle has not yet received any out-of-sync cipher-
text). In this case, the decryption of the i-th Dec oracle is clearly equal to c(i+1)

j .
(b). c(i)j is an out-of-sync query (i.e., the i-th Dec oracle has already received an out-of-sync ciphertext).

In this case, by the guarantee of IPR-(i), the decryption of the i-th Dec oracle remains equal to c(i+1)
j .

Therefore, regardless of the scenario, if the (i+ 1)-th onion layer satisfies IND$-CPA, the decryption
of the i-th Dec oracle is computationally indistinguishable from a uniformly random string, irrespective
of the plaintext m queried to the Enc oracle. Thus, the advantage gap of the adversary A from G2 to
G3 can be collectively covered by the advantage of another IND$-CPA adversary C and the advantage
of another IPR adversary F1, denoted as AdvIND$−CPA

C,Π and AdvIPR
F1,Π , respectively. Here, both C and F1

uses at most all the queries to the Enc oracle and the first n− 1 Dec oracles.
(2) If the j-th query to the i-th Dec oracle (i.e., c(i)j) is not equal to a predetermined ciphertext c(i)j ,

it triggers the independent randomness of the i-th Dec oracle. Consequently, the output of the i-th Dec
oracle remains computationally indistinguishable from a uniformly random string, regardless of the query
plaintext m to the Enc oracle. It follows that the advantage gap of adversary A from G2 to G3 can be
solely covered by the advantage of an IPR adversary F1, denoted as AdvIPR

F1,Π . Here, F1 uses at most all
these queries on Enc and the first n− 1 Dec oracles.

For AdvIND$−CPA
C,Π and AdvIPR

D,Π , we omit the specific reduction process because the properties of
Definition 3 and 4 are self-evident. Considering all things together, the result of Theorem 1 can be
characterized.

E.3 Detailed proof for Theorem 3

Proof. The specific game hopping process is as follows.
Game G0: This corresponds to the unchanged CircuitHiding game.
Game G1: In this game, in both W0 and W1, when the CircuitHiding adversary A makes the first
out-of-sync vector query to the NET oracle, the last OR of the honest middle segment in each circuit that
has an honest OP and two corrupt segments (i.e., circuits in the set IEN\INOP) receives an out-of-sync
ciphertext. In other words, for the circuits in IEN\INOP, not only does the first OR of the honest middle
segment receive an out-of-sync ciphertext due to this NET query, but the out-of-sync concept propagates
iteratively to the last OR of the honest middle segment (if the honest middle segment consists of multiple
ORs).

To bound the advantage gap from G0 to G1, we use the identical-until-bad model for reasoning. When
an OR receives an out-of-sync ciphertext, its decryption output remains an out-of-sync ciphertext for the
next OR. By the IPR+ property, the bad probability is bounded by AdvIPR+

B2,Π + 1
2n2

, where the IPR+

adversary B2 introduces only one out-of-sync ciphertext to its Dec oracle. Since there can be at most
nmax− 3 honest ORs before the last OR of the honest middle segment, it follows that the advantage gap
from G0 to G1 is bounded by 2l(nmax − 3) · (AdvIPR+

B2,Π + 1
2n2

).
Game G2: In this game, in both W0 and W1, we replace the decryption layer associated with the last
OR of the honest middle segment in each circuit in the set IEN\INOP by outputting a uniformly random
string whenever an out-of-sync ciphertext is received.

To bound the advantage gap from G1 to G2, we construct an IPR+ adversary B1 for each circuit,
which invokes queries to the ENC and NET oracles and simulates them for the CircuitHiding adversary
A by querying its Proc′, Enc, and Dec oracles, thus breaking the independent pseudorandomness of the
replaced onion layer as per Definition 5 (IPR+). Specifically, consider a fixed circuit. B1 initializes the
symmetric keys and states for the onion layers that encrypt after the replaced onion layer (with the
corrupt keys and states associated with the first corrupt segment being directly provided to B1).
– WhenA queries the ENC oracle with a plaintext m, B1 first queries its Proc′ oracle using m and obtains

an intermediate ciphertext c. Then, B1 queries its Enc oracle using c to obtain another intermediate
ciphertext c′. Subsequently, B1 performs the remaining onion-layer encryptions using the keys and
states associated with the first corrupt segment and the honest ORs preceding the last OR of the
honest middle segment, producing the final ciphertext c. B1 updates the relevant encryption states.
Finally, c is returned to A.

– When A queries the NET oracle with a ciphertext c, B1 first performs the relevant onion-layer
decryptions using the available keys and states associated with the honest ORs preceding the last
OR of the honest middle segment, obtaining an intermediate ciphertext c. Then, it queries its Dec
oracle using c to obtain the final ciphertext c′. B1 updates the relevant decryption states. Finally, c′

is returned to A.

26 Daichong Chao, Liehuang Zhu, Dawei Xu , Tong Wu, Chuan Zhang, and Fuchun Guo

Clearly, B1 perfectly simulates the ENC and NET oracles for A. Using a standard hybrid argument,
the advantage gap from G1 to G2 is bounded by 2l ·AdvIPR+

B1,Π .
Game G3: In this game, for both W0 and W1, we replace the encryption layer associated with the
honest OR of the first entry edge of each circuit that have an honest OP (i.e., circuits in the set IEN) by
outputting a uniformly random string whenever an intermediate ciphertext is input.

To bound the advantage gap from G2 to G3, we construct an IND$-CPA adversary C on each circuit
that invokes the queries to the ENC oracle and simulates the ENC oracle for the CircuitHiding adversary
A by querying its Proc and Enc oracles, thereby breaking the pseudorandomness of the replaced onion
layer as per Definition 3 (IND$-CPA). Specifically, consider a fixed circuit. C is directly provided with
the symmetric keys and states associated with the first corrupt segment. When A queries the ENC oracle
with a plaintext m, C first queries its Proc oracle using m and obtains an intermediate ciphertext c. Then,
it queries its Enc oracle using c to obtain another intermediate ciphertext c′. Subsequently, C performs
the remaining onion-layer encryptions using the corrupt keys and states, producing the final ciphertext
c. C updates the relevant encryption states. Finally, c is returned to A. Clearly, C perfectly simulates the
ENC oracle for A. Using a standard hybrid argument, the advantage gap from G2 to G3 is bounded by
2l ·AdvIND$−CPA

C,Π .
Thus far, in both W0 and W1, the encryption layer associated with the honest OR of the first entry

edge of each circuit in IEN outputs a uniformly random string for each inputted intermediate ciphertext,
and the last OR in the honest middle segment of each circuit in IEN\INOP outputs a uniformly random
string for each received out-of-sync ciphertext. Further, since the uniformly random strings produced by
the encryption layer associated with the honest OR of the first entry edge would undergo encryption
by the encryption layers of the first corrupted segment and the relevant keys and states associated with
the first corrupt segment in W0 and W1 are identically distributed, the outputs of the ENC oracle in
both W0 and W1 are also identically distributed. Additionally, as the outputs from the ENC oracle and
those from the NET oracle are now independent, the circuits in IEN do not contribute any distinguishing
advantage for the CircuitHiding adversary A. Recall that in CircuitHiding, a circuit with a corrupt
OP is required to be identical in both W0 and W1 by the predicate VALID. Furthermore, everything
that happens within such a circuit is is deterministic for the adversary. Therefore, in the final game
G3, A has no advantage in distinguishing between the two worlds. Putting everything together we have
AdvCircuitHiding

A,Π ≤ 2l · (AdvIPR+

B1,Π + AdvIND$−CPA
C,Π + (nmax − 3) · (AdvIPR+

B2,Π + 1
2n2

)).

E.4 Detailed proof for Theorem 4

Proof. We proceed to demonstrate that Π∗ satisfies IND$-CPA ∧ IPR ∧ INT-sfCTXT and that Π∗ does
not satisfy CircuitHiding.
Claim 1. Π∗ satisfies IND$-CPA for all onion layers.

Verifying that all onion layers of Π∗ satisfy IND$-CPA is relatively straightforward. Π∗ employs a non-
repeating state (either a counter value or a cumulative string) as a tweak for the TBC (E, D). Therefore,
upon each encryption, a new and non-repeating tweak is generated for the next encryption. As the tweaks
differ, every onion layer provides an independent pseudorandom permutation for each encryption. Thus,
if the TBC (E, D) employed by Π∗ satisfies STPRP, IND$-CPA for all onion layers holds.
Claim 2. Π∗ satisfies IPR for the outer n− 1 onion layers.

For the i-th (i ∈ [n− 1]) onion layer and any non-zero integer k, if the k-th actual received ciphertext
at the decryption side (i.e., the Dec oracle) denoted as c(i)j equals the k-th ciphertext generated at the
encryption side (i.e., the Enc oracle) denoted as c(i)j , the decryption of c(i)j is the intermediate ciphertext
(i.e., c(i+1)

j) for generating c(i)j , because the encryption function E and the decryption function D use the
same counter value for tweak. If c(i)j ̸= c(i)j , although E and D use the same counter value, due to the
STPRP property of the TBC, the decryption of c(i)j is indistinguishable from a uniformly random string.
Finally, if c(i)j consumes a counter unused by E yet, the decryption of c(i)j is also indistinguishable from
a uniformly random string due to the STPRP property of the TBC.
Claim 3. Π∗ satisfies INT-sfCTXT for the innermost onion layer.

Note that the innermost onion layer maintains a non-repeating state un by ciphertext cumulating,
using it as a tweak. On the decryption side (i.e., the sfVer(·) oracle), when the first out-of-sync ciphertext
is received, the tweakable block cipher (E, D)—due to its STPRP property—decrypts the encoding part
0n2−n1 into a random string. As a result, all subsequent tweaks on the decryption side will deviate from
those used on the encryption side (i.e., the Enc(·) oracle). Consequently, the encoding part 0n2−n1 of

Onion Encryption Revisited: Relations Among Security Notions 27

all subsequent out-of-sync ciphertexts will also be decrypted into random strings. Furthermore, when
the TBC (E, D) is replaced by a family of independent, uniformly distributed random permutations,
the adversary’s probability of successfully authenticating out-of-sync ciphertexts is bounded by q

2n2−n1

(negligible), where q is the total number of such ciphertexts received by the decryption side.
Claim 4. Π∗ does not satisfy CircuitHiding.

We construct an CircuitHiding adversary A with AdvCircuitHiding
A,Π∗ close to 1.

A1 first outputs the topology setting (W0, W1) as shown in Figure 5, where W0 = [[v1, v3, v5,
v7],[v2, v4, v5, v6]], W1 = [[v1, v3, v5, v6],[v2, v4, v5, v7]], and v3, v4, v6, v7 are corrupted ORs. After
Wb (b ←$ {0, 1}) is validated by the predicate VALID and initialized by the procedure INIT-CIRC, A2 is
provided with the relevant corrupt keys and states. For an interacting world Wb, adversary A2 operates
as follows:

1. A2 queries the ENC oracle with the pairs (1, m1), (1, m2), (2, m3), (2, m4) (where m1 ̸= m3) and
receives the corresponding responses: (v1, v3, c1), (v1, v3, c2), (v2, v4, c3), (v2, v4, c4).

2. At v3,A2 decrypts ciphertexts c1 and c2, obtaining c′1 and c′2, respectively. Similarly, at v4,A2 decrypts
c3 and c4, yielding c′3 and c′4. A2 then submits two queries to the NET oracle: [(v3, v5, c′1 ⊕ 1)), (v4,
v5, c′3 ⊕ ∥1))] and [(v3, v5, c′2), (v4, v5, c′4)]. The first query, [(v3, v5, c′1 ⊕ 1)), (v4, v5, c′3 ⊕ ∥1))],
cause both circuits in Wb to go out of sync, as the last bit of both c′1 and c′3 is flipped. As a result,
both queries are valid and the NET oracle does not return for them. Finally, A2 receives the sorted
responses: [(v5, v6, c′′1), (v5, v7, c′′3)] and [(v5, v6, c′′2), (v5, v7, c′′4)].

3. A2 uses the corrupted key kv6 and initial state sv6 of v6 to encrypt m1 reversely, obtaining a hypoth-
esized correct version ca (i.e., the ciphertext reaching v6 without flipping) for the first ciphertext (i.e.,
c′′1) arriving at v6. Then, adversary A2 uses ca to reset the decryption state required for the second
ciphertext arriving at v6 (i.e., c′′2).
Likewise, adversary A2 uses the corrupted key kv7 and initial state sv7 of v7 to encrypt m3 reversely,
obtaining a hypothesized correct version cb for the first ciphertext (i.e., c′′3) arriving at v7. Then,
adversary A2 uses cb to reset the decryption state required for the second ciphertext (i.e., c′′4) arriving
at v7.

4. At v6, A2 decrypts the second ciphertext c′′2 using the reset decryption state.
At v7, A2 decrypts the second ciphertext c′′4 using the reset decryption state.
If decryption is successful at both v6 and v7, determine that Wb is W1; otherwise, determine that Wb

is W0.

When Wb is W1, v6 and v1 belong to the same circuit. The second ciphertext reaching v6 (i.e., c′′2)
is indeed the encryption of m2 by the innermost onion layer. This holds true because, although c′1 ⊕ 1
causes c′′1 to be random garbage, the decryption of c′2 remains intact due to the IPR property of the
onion layer associated with v5. Furthermore, the reset state at v6 is indeed the tweak used to encrypt m2

at v1. Therefore, using the reset state, the second ciphertext c′′2 is guaranteed to be correctly decrypted.
Similarly, at v7, its second ciphertext c′′4 is guaranteed to be correctly decrypted.

When Wb is W0, v6 and v1 belong to different circuits, but v6 and v2 share the same circuit. In
this case, the second ciphertext reaching v6 (i.e., c′′2) is actually the encryption of m4 by the innermost
onion layer. To correctly decrypt c′′2 , it is necessary to reverse engineer the encryption of m3 by using
the corrupted state at v6. However, adversary A2 uses the corrupted state at v6 to reverse engineer
the encryption of m1. Since m1 ̸= m3, the two related ciphertexts are not identical. Therefore, for the
encryption of m4, the tweak used for decryption at v6 is different from the one used for encryption at
v2, and v6 will deterministically fail to decrypt (with negligible probability of exception). Similarly, the
second ciphertext reaching v7 (i.e., c′′4) will also fail to decrypt, with negligible probability of exception.

Therefore, W0 and W1 can be clearly distinguished. AdvCircuitHiding
A,Π∗ is (almost) 1.

E.5 Detailed proof for Theorem 5

Proof. We consecutively demonstrate that Π§ satisfies IND$-CPA and IPR+, but does not satisfy INT-
sfCTXT.
Claim 1. Π§ satisfies IND$-CPA for all onion layers.

The reason that all onion layers satisfy IND$-CPA, as outlined in the proof of Claim 1 in Theorem
4, is that Π§ employs a non-repeating state (either a counter value or or a cumulative string) as a
tweak for the TBC (E, D). When the TBC used by Π§ satisfies the STPRP property, IND$-CPA follows
straightforwardly.

28 Daichong Chao, Liehuang Zhu, Dawei Xu , Tong Wu, Chuan Zhang, and Fuchun Guo

Claim 2. Π§ satisfies IPR+ for the outer n− 1 onion layers.
The outer n− 1 onion layers maintain a non-repeating state ui through ciphertext cumulating, which

is used as a tweak. When the decryption oracle Dec receives the first out-of-sync ciphertext, the STPRP
property of the TBC (E, D) ensures that it is decrypted into a random string. Subsequently, all tweaks on
the decryption side will differ from those on the encryption side, and any further out-of-sync ciphertexts
will continue to be decrypted into random strings. Therefore, when the TBC (E, D) satisfies STPRP, IPR+

holds trivially.
Claim 3. Π§ does not satisfy INT-sfCTXT for the innermost onion layer.

We construct an adversary A that easily breaks the INT-sfCTXT experiment.

1. A queries the Enc(·) oracle with plaintexts m1 and m2, obtaining ciphertexts c1 and c2.
2. Then, A flips the last bit of c1 and queries the sfVer(·) oracle with the modified ciphertext. This

first out-of-sync ciphertext will fail to decrypt (with a negligible probability of exception), due to the
STPRP property of the tweakable block cipher (E, D).

3. Finally, A directly queries the sfVer(·) oracle with c2. Since the sfVer(·) oracle uses the same tweak
ctrn as the one used in the Enc oracle for encrypting m2, c2 decrypts correctly.

Thus, A breaks the INT-sfCTXT experiment with AdvINT-sfCTXT
A,Π§ = 1.

	Onion Encryption Revisited: Relations Among Security Notions

