
Trilithium: Efficient and Universally Composable
Distributed ML-DSA Signing

Antonín Dufka1[0009−0003−5058−2571], Semjon Kravtšenko1[0009−0007−8204−9519],
Peeter Laud1[0000−0002−9030−8142], and Nikita Snetkov1,2[0000−0002−1414−2080]

1 Cybernetica AS, Mäealuse 2/1, 12618 Tallinn, Estonia
{antonin.dufka, semjon.kravtsenko, peeter.laud, nikita.snetkov}@cyber.ee

2 Tallinn University of Technology, Akadeemia tee 15a, 12618 Tallinn

Abstract. In this paper, we present Trilithium: a protocol for distributed
key generation and signing compliant with FIPS 204 (ML-DSA). Our
protocol allows two parties, “server” and “phone” with assistance of cor-
related randomness provider (CRP) to produce a standard ML-DSA sig-
nature. We prove our protocol to be secure against a malicious server
or phone in the universal composability (UC) model, introducing some
novel techniques to argue the security of two-party secure computation
protocols with active security against one party, but only active privacy
against the other. We provide an implementation of our protocol in Rust
and benchmark it, showing the practicality of the protocol.

Keywords: ML-DSA · Crystals-Dilithium · distributed signing · MPC
· Universal Composability · threshold signatures

1 Introduction

In summer of 2022, National Institute of Standards and Technology (NIST)
announced a selection of algorithms to become future cryptographic standards 3.
For key establishment algorithm (KEM) category Crystals-Kyber (ML-KEM) [8]
was selected; and for digital signatures – Crystals-Dilithium (ML-DSA) [35],
Falcon (FN-DSA) [39] and SPHINCS+ (SLH-DSA) [5] were chosen. In August
2024, NIST published a a set of finalized standards, FIPS 203-205 4. All selected
schemes are considered to be post-quantum secure (also known as quantum-safe)
i.e. resilient from both classical and quantum adversarial attacks 5.

Parallel to the initiative on post-quantum cryptography, NIST published a
draft of future call for multi-party threshold schemes [64]. The primary aim of
this call is to construct advanced specifications for threshold schemes, including
for NIST standardized and non-standardized cryptographic primitives. On top

3 https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-
2022

4 https://www.nist.gov/news-events/news/2024/08/nist-releases-first-3-finalized-
post-quantum-encryption-standards

5 https://www.etsi.org/technologies/quantum-safe-cryptography

2 Dufka et al.

of the interest from standardization agencies, distributed signatures are already
being used in real-life applications such as digital signing services 6, distributed
ledgers 7 and identity wallets 8 9.

Over the past few years, substantial number of works have studied the topic of
distributed signatures (both t-out-of-n and n-out-of-n). For quantum-vulnerable
schemes there exist efficient and practical distributed signing protocols: for RSA [43,
24, 11, 10, 19], ECDSA [41, 55, 30, 15, 29, 16, 13, 71, 53, 31, 49], probabilistic [62,
34, 60, 47, 54] and deterministic [61, 40, 37, 48] Schnorr signature schemes. There
is also a fair amount of post-quantum distributed signature schemes [46, 17, 3,
22, 33], especially in the area of lattice-based protocols [26, 9, 38, 1, 42, 68, 44].
While many of them can be considered efficient, none of them are interoper-
able with new standards, except Cozzo and Smart [20] protocols. Still, their
approach does not provide active security and directly could not be applied in
real-life applications without substantial modifications.

Two-party protocols are an important use-case for threshold signing, having
established a firm foothold in ecosystems with formalized frameworks of certifi-
cation and assurance. Smart-ID 10 is a deployment of two-party RSA signatures,
used by millions of residents of several European countries, and certified as a
Qualified Signature Creation Device (QSCD) 11. It is deployed as a central server,
keeping one share of every user’s signing key, while the second share is managed
by that user’s smartphone. It is interoperable with the rest of the ecosystem —
the signatures created with the Smart-ID service are indistinguishable from any
other RSA signatures and can be verified by anyone.

With the transition to quantum-safe primitives, currently deployed thresh-
old schemes have to be replaced. While there are several pathways towards in-
teroperability, certification-reliant ecosystems demand the use of standardized
cryptosystems. As ML-DSA appears to be on its way to becoming the default
postquantum-secure signature scheme 12, we ask: Can an efficient and actively
secure distributed protocol for ML-DSA be constructed? In this paper, we give
an affirmative answer to this question.

6 https://www.smart-id.com/
7 https://github.com/coinbase/cb-mpc
8 https://irma.app/docs/getting-started/
9 https://github.com/cleverbase/scal3

10 https://www.smart-id.com/
11 https://www.smart-id.com/e-service-providers/smart-id-as-a-qscd/
12 https://www.nist.gov/news-events/news/2024/08/nist-releases-first-3-finalized-

post-quantum-encryption-standards

Title Suppressed Due to Excessive Length 3

Our Contributions 13

1. We propose Trilithium 14, a protocol for distributed ML-DSA key generation
and signing, and prove it secure in the universal composability (UC) model.
– We give a framework for actively private multiparty computation proto-

cols in the UC model.
2. We provide an implementation and benchmarks of Trilithium.

Related work

While there exist numerous constructions of lattice-based threshold signature
schemes, as referenced above, our techniques are rather unrelated to them. Our
protocol is an instance of classical secret-sharing [51] based secure two-party /
multi-party computation [72, 18, 4, 27], with proofs given in the universal com-
posability model [12, 14].

While the execution of the ML-DSA key generation algorithm on top of a
2PC / MPC protocol set is relatively straightforward, if one can create small
private values (which may be reduced to the conversion of private values between
different moduli of sharing [63, 21]), the signature creation is trickier. Besides the
generation of small private values (same as key generation), it has two main parts:
high bits computation, and rejection sampling. The latter is mostly inequality
checking, for which a number of MPC protocols have been proposed [57, 2, 74]; we
are adapting [2] for our purposes. The high bits computation mostly consists of
division (with public divisor) together with truncation / rounding of the result.
Protocols for secure division have been proposed [7, 70, 69], but they are not
much related to our techniques. Our division protocol is highly specific to the
used divisor.

Our actively secure two-party protocols have subprotocols that provide active
security against one of the parties, but only active privacy against the other
party. This consideration of privacy as a separate goal is inspired by [6, 65].
Similar considerations are present in certain offline precomputation protocols of
MPC protocol sets [36], but our methods of composition appear to be novel.

2 Preliminaries

2.1 Notation

Let a
$← A denote a uniformly random sampling of an element a from the set

A. Symbol ⊥ is used to indicate a failure or rejection. Z denotes the set of
integers, N the set of non-negative integers, Zq the set of integers modulo q. The
set {0, 1, . . . , n − 1} is denoted by [n]. Let Rq denote the ring of polynomials

13 Some results of this work were presented in [50]
14 Since Crystals-Dilithium (ML-DSA submission name to NIST PQC competition) was

inspired by Star Trek series, we decided to call our protocol Trilithium, a compound
from Star Trek Generations

4 Dufka et al.

Zq[X]/(Xn +1), where q is a prime number and n ∈ N. We denote scalar values
(including polynomials) by italic letters, vectors by bold lowercase latters, and
matrices by bold uppercase letters.

For α ∈ N and x ∈ Z, let x′ = x mod± α denote centered modulo reduction,
where x′ ≡ x (mod α) and either −α

2 < x′ ≤ α
2 (if α is even) or −α−1

2 ≤ x′ ≤
α−1
2 (if α is odd).

For an element x ∈ Zq, its infinity norm is defined as ∥x∥∞ = |x mod± q|,
where |x| denotes the absolute value of the element. For an element p ∈ Rq, its
infinity norm is defined as ∥p∥∞ = maxi∥pi∥∞. For a vector v, it is ∥v∥∞ =
maxi ∥vi∥∞.

Let v ∈ [B]. The characteristic vector of v is a vector cv(v) = (t0, t1, . . . , tB−1),
where tv = 1 and ti = 0 for all i ̸= v. The length of cv(v), i.e. the upper bound
B will be clear from the context.

2.2 ML-DSA (Module-Lattice-based Digital Signature Algorithm)

Module-Lattice-Based Digital Signature Algorithm (ML-DSA) is a quantum-
safe digital signature scheme. ML-DSA follows Fiat-Shamir with Aborts [56]
paradigm and its security relies on hardness of MLWE, MSIS and SelfTargetM-
SIS problems.

Ducas et al. [35, Fig. 1] present a “template” signature scheme, which is
later improved to Crystals-Dilithium and ML-DSA by significantly shortening
the public key and adding some hints to signatures. The integrity properties
of the “template” scheme are no worse than those of ML-DSA. The public key
is shortened by simply cutting off some of its bits. Given a public key and a
signature of the “template” scheme, one can compute the hints for ML-DSA,
resulting in a valid ML-DSA signature. Hence it is sufficient to give a two-
party protocol for key generation and signing in the “template” scheme; both
parties locally store the public key of the “template” scheme resulting from the
key generation protocol, publish it without the to-be-cut-off bits, and locally add
the hints to the signatures produced by the signing protocol. In the following, let
us describe the “template” scheme; see [35] and FIPS 204 [59] for the description
of the full scheme.

The parameters of the “template” scheme are a prime number q, data sizes
k, ℓ, n, τ , and value sizes γ1, γ2, η. Also define α = 2γ2 and β = η · τ . The values
must such that α divides (q − 1). We use the ring Rq = Zq[X]/(Xn + 1). Let
Sm ⊆ Rq [resp. S̄m ⊆ Rq] for m ∈ N denote the set of polynomials with all
coefficients between −m [resp. −m + 1] and m. Let Bτ ⊆ S1 denote the set of
polynomials with exactly τ non-zero coefficients.

Given a value w ∈ Zq = {0, . . . , q − 1}, we define HighBits(w) ∈ Zq as 0
if w′ = q − 1, and ⌊w′/α⌋ otherwise, where w′ = (w + α/2 − 1) mod q. This
definition is equivalent to [35, Fig. 3]. Also equivalent is defining LowBits(w) :=
(w − α · HighBits(w)) mod q. One commonly uses superscript (·)H and (·)L for
high and low bits. The definitions of high and low bits are extended from Zq to
Rq coefficient-wise, and to vectors of polynomials component-wise.

Title Suppressed Due to Excessive Length 5

Output: Keypair pk , sk
A

$← Rk×ℓ
q ; // Generated from a seed

(s1, s2)
$← Sℓ

η × Sk
η

t← A · s1 + s2
return pk = (A, t), sk = (s1, s2)

Algorithm 1: Key generation in “template” scheme

Input: Keypair (A, t; s1, s2), message digest µ
Output: Signature σ = (z, c), or ⊥
y

$← S̄ℓ
γ1

; // Follows [59], not [35]
w← A · y
c ∈ Bτ ← H(µ,wH)
z← y + c · s1
r0 ← LowBits(w − c · s2)
if ∥z∥∞ < γ1 − β and ∥r0∥∞ < γ2 − β then

return (z, c)
else

return ⊥

Algorithm 2: Signing attempt in “template” scheme: SignAtt

The signature scheme employs “hashing into a ball”. It defines a hash function
H, based on SHAKE [58], whose output is uniformly distributed in Bτ . See [35,
59] for its precise description.

The key generation algorithm of the “simplified” scheme [35, Fig. 1] is given
in Alg. 1. The algorithm for a single signing attempt is given in Alg. 2. If Alg. 2
returns ⊥, then the signer is expected to rerun it, with newly selected y. The
ML-DSA specification has picked the parameters so, that the average number of
reruns is 4 to 5. In this paper, we give a two-party protocol for Alg. 2. This does
not reduce the security of our protocols — the frequency of retries is independent
of the private key.

Our protocols also make use of the verification algorithm of the template
scheme. The verification consists of making sure that ∥z∥∞ < γ1−β, computing
x0 ← A · z− c · t, and checking that c = H(µ,xH

0). Note that x0 = w − c · s2.

Let us recall the values of the most important parameters in the three pa-
rameter sets of ML-DSA [59]: q = 223−213+1, α ∈ {190464, 523776}, η ∈ {2, 4},
γ1 ∈ {217, 219}. We depend on certain properties of these values to make our
protocols efficient.

6 Dufka et al.

2.3 Module Short Integer Solution

While the unforgeability of ML-DSA, and hence also the property of our pro-
tocols to constitute a secure threshold signature scheme is based on certain
lattice-based hardness assumptions, we also “independently” use one of these as-
sumptions to show that an adversarial party cannot cheat. Let us state it here.
Given parameters q, n,m, η ∈ N, the MSIS assumption [52] states that for a uni-
formly sampled A

$← Rn×m
q it is infeasible to find a non-zero vector x ∈ Rm+n

q ,
such that [A|I] · x = 0 (mod q) and ∥x∥∞ ≤ η.

2.4 Secure Multiparty Computation

Our protocol, Trilithium, is an instance of secret-sharing based secure multi-
party computation (MPC) protocols, where the intermediate values have been
additively shared (often modulo “the ML-DSA modulus” q) between two parties:
the Phone and the Server. In these protocols, a private value v ∈ Zq is stored
as JvK = (JvKP, JvKS), where v = JvKP + JvKS, Phone knows the random value
JvKP ∈ Zq and Server knows the value (also random) JvKS ∈ Zq. We may write
JvK(q) to emphasize that sharing is done modulo q.

There exist protocols for arithmetic operations with additively shared values.
While linear (including affine) operations can be performed locally by Phone and
Server, others require communication between paries. Such non-linear operations
may benefit from some correlated random values (CR) distributed before the
protocol start. For certain operations, e.g. multiplication, there exist protocols
for generating CR [45]. Alternatively, some deployments may warrant the use
of a trusted party, the Correlated Randomness Provider (CRP) to generate and
distribute CR. In this paper, we have chosen the CRP approach.

Storing v as JvK does not prevent a malicious party from tampering with
its value by changing its share. It can be avoided with the help of (homomor-
phic) “message authentication codes” (MACs) [4, 27]. In this paper, we use so-
called BeDOZa-style MACs [4], where the Phone and the Server have random
private MAC keys ∆P, ∆S, respectively, and the value v is stored as ⟨⟨v⟩⟩ =
(JvK, JMSK, JMPK), where MS = JvKP · ∆S and MP = JvKS · ∆P. We call MS
“Server’s MAC on JvK” and MP “Phone’s MAC on JvK”. Affine operations with
MAC-ed values ⟨⟨v⟩⟩ are still possible without communication.

Whenever the Phone P sends its share JvKP to a Server S, it must accompany
it with JMSKP. S is able to verify the correctness of the MAC by checking whether
JvKP ·∆S = JMSKS + JMSKP. If P tries to change JvKP, then its MAC share has to
be correspondingly changed, and this task is as hard as guessing the random ∆S.
The probability of guessing is 1/q; and if this value is too large for given q, then
several independent MAC keys ∆ and MACs can be used. Independent MAC
keys ∆(qi) are also used if the protocol makes use of several different moduli qi.
Instead of shares of the MACs, their digests can be communicated, hence MACs
do not noticeably contribute to the online complexity of protocols.

While Trilithium two-party protocol (including an honest CRP) is secure
against a malicious P or a malicious S, it includes subprotocols that by their

Title Suppressed Due to Excessive Length 7

– On input (corrupt, sid ,X) from S before the initialization, mark that party X is
corrupted and send (corrupted, sid) to X.

– On input (keygen, sid) from both P and S, use Alg. 1 to generate a new keypair
(A, t; s1, s2). Send (pkey, sid ,A, t) to S. If neither party is corrupted, then receive
(proceed, sid) from the adversary, otherwise receive (update, sid ,A′, t′) from the
adversary. Send (pkey, sid ,A, t) to the honest party(s) in Z, and (pkey, sid ,A′, t′)
to the corrupted party (if any). Accept no further (keygen)-commands.

– On input (sign, sid , µ) from both the P and S, compute
σ ← SignAtt(A, t; s1, s2;µ). Send (signature, sid , µ, σ) to S. If neither party is
corrupted, then receive (proceed, sid) from the adversary, otherwise receive
(update, sid , σ′) from the adversary. Send (signature, sid , σ) to the honest party(s)
in Z, and (signature, sid , σ′) to the the corrupted party (if any).

Functionality 1: FML-DSA: ideal functionality for the 2-party ML-DSA

own provide security only against a malicious P and a semi-honest S, while still
providing privacy against a malicious S. Here “privacy” means that nothing is
learned from the messages exchanged by the protocol. However, a malicious S
may be able to change the outputs of such protocols, as well as learn something
from its public outputs. In the following, we say that such (sub-)protocols are
“AP-secure”, while we call protocols with active security against both parties
“AA-secure”. This is made formal in Sec. 4. In our AP-secure protocols, we often
use the representation ⟨|v|⟩ = (JvK, JMSK) for private values.

Let us introduce notation to explicitly refer to the components of ⟨⟨v⟩⟩ =
(JvK, JMSK, JMPK), where MS and MP are Server’s and Phone’s MACs on JvK.
Denote the three components of ⟨⟨v⟩⟩ by v⟨⟨v⟩⟩, ms⟨⟨v⟩⟩, and mp⟨⟨v⟩⟩ respectively.
We may also write e.g. mp⟨⟨v⟩⟩S for JMPKS. The notation v⟨|v|⟩ and ms⟨|v|⟩ has
similar meaning. We will use this notation in the security proofs, in order to
avoid introducing separate notations for the components of secret-shared values.

2.5 Universal Composability

We prove the security of our protocols in the Universal Composability (UC)
framework [12] (our notation is more similar to the functionally equivalent re-
active simulatability framework [66]). Our real system ΠML-DSA and ideal func-
tionality FML-DSA (given in
Func. 1) expose an interface to the environment Z that corresponds to two
parties, called P(hone) and S(erver) being able to run a single instance of key
generation, and any number of signings. We will construct the protocol ΠML-DSA
and show that it securely implements FML-DSA, meaning that for each adversary
A against it, there exists an adversary S, such that no environment Z can dis-
tinguish whether it is running in the collection Z∥ΠML-DSA∥A or Z∥FML-DSA∥S.
We demonstrate the existence of S by constructing a simulator Sim and showing
that S = Sim∥A is a suitable choice. This is shown by arguing that no Z∥A can
distinguish ΠML-DSA from FML-DSA∥Sim.

8 Dufka et al.

In our proof, we make heavy use of composability: if an ideal functionality F ′

is a component in the protocol Π that securely implements the ideal functionality
F , and if Π ′ is a secure implementation of F ′, then Π, where F ′ is replaced
with Π ′, also securely implements F . We say that Π securely implements F
in F ′-hybrid model. In particular, the CRP will be modeled as a set of ideal
functionalities.

A protocol Π is hence implemented by a system consisting of several exe-
cuting components. In our setting, this system always contains two machines,
MP andMS, executing the protocol logic on behalf of P and S. These machines
expose an interface to the environment Z. Besides these two machines, the sys-
tem may also contain a number of ideal components Fi. These components may
correspond to subprotocols, or to the generation of CR. In practice, the former
are replaced with their secure implementations, while the latter are collected to
another party — the CRP.

The machines MP and MS take commands from the environment, send
messages to each other, issue commands to the ideal components in Π, receive
answers from them, and give answers back to the environment. One ofMP and
MS may receive the corrupt-command from the adversary at the beginning of the
execution. In this case, this machineM hands all control over to the adversary:
it sends to the adversary all commands / messages / answers it receives from the
environment, the other machine or the ideal components, and it will send out
only the answers / messages / commands as told by the adversary. Note that
the latter includes the answer thatM sends to the environment.

3 Trilithium: Server-Supported ML-DSA Signature
Scheme

In this section, we define Trilithium and describe our subprotocols, using the
notation typical for MPC protocols. Our descriptions are bottom-up, starting
with small operations and finishing with the protocols for key generation and
signing. We give informal correctness and security arguments together with the
descriptions; formal security arguments are given in the next section.

In our protocols, we make use of the protocol randbit() that takes no inputs
and returns ⟨⟨b⟩⟩(q) for a random b ∈ {0, 1} and a modulus q that will be clear
from the context. We use the bit conversion protocol convbit(⟨⟨b⟩⟩(2)) that takes
a bit b shared modulo 2, and returns ⟨⟨b⟩⟩(q) — the same bit shared modulo
q. Obviously, we also make use of protocols for adding and multiplying shared
values, and for generating public random values modulo some prime number Q
(called pubrand()). All these protocols are standard, and described e.g. in [73].
We use the CRP for any correlated randomness that these protocols require.

3.1 Declassification

Let us start with the declassification protocol declassify given in Alg. 3. As dis-
cussed in Sec. 2.4, it involves the checking of MACs, using the MAC keys ∆

(q)
P

Title Suppressed Due to Excessive Length 9

Input: ⟨⟨v⟩⟩ = (JvK, JMSK, JMPK), where v ∈ Zq, MS = JvKP ·∆S and
MP = JvKS ·∆P

Output: v
1 S→ P: JvKS and JMPKS

2 P: stop if JvKS ·∆P − JMPKP ̸= JMPKS

3 P→ S: JvKP and JMSKP

4 S: stop if JvKP ·∆S − JMSKS ̸= JMSKP

5 P and S: return JvKP + JvKS

Algorithm 3: Declassification protocol: declassify

Par: Q — a small prime number
Output: ⟨⟨v⟩⟩(q), v $← {0, . . . , Q− 1}
CR: ⟨⟨t⟩⟩(q), s.t. |t| = Q, t is a one-hot 0-1 vector

1 r ← pubrand() ∈ ZQ

2 return
∑Q−1

i=0 i · ⟨⟨t(i+r) mod Q⟩⟩
Algorithm 4: Generation of a small random value: Πgen_small

and ∆
(q)
S for the modulus q. The inputs to the declassification protocol are the

shares JvK of the value v, and the shares of Server’s MAC MS and Phone’s MAC
MP for this sharing JvK.

For a small modulus q, the shares of MACs would make up the lion’s share
of the communication. In our actual implementations, the shares of MACs are
actually not sent. Instead, the hash of all MAC shares to be sent in the current
round is computed, and only this hash value is sent to the other party. The other
party can compute the same hash from the values it holds, and verify that it
equals the one it received.

We see that Alg. 3 is asymmetric: P learns the value v first. This will later
be reflected in our security proofs.

Alg. 3 is also a good description of the declassification of ⟨|v|⟩, if we leave out
the checks related to P’s MAC. We get the AP-declassification by removing MP
and line 2 from Alg. 3.

3.2 Randomness generation

The protocol gen_small, parametrized by a small prime number Q and given in
Alg. 4, takes no inputs and returns a uniform random value ⟨⟨v⟩⟩(q), such that
0 ≤ v < Q. The correlated randomness used by this algorithm is a private 0-1
vector, where the position of the only value “1” is randomly selected by the CRP,
and unknown to P and S.

In the rest of Sec. 3 we distinguish between parameters (fixed at compile-
time) and inputs (known only at run-time) to a protocol. We write f [c](a) to
denote the invocation of a protocol f with parameter c and input a. We may
omit the parameters if they’re clear from the context. The correlated randomness
CR used by the protocols is assumed to be uniformly distributed, subject to the
listed constraints.

10 Dufka et al.

Par: ML-DSA parameters k, ℓ, η
Input: The matrix A of the public key
Output: The private key ⟨⟨s1⟩⟩, ⟨⟨s2⟩⟩

1 foreach i ∈ [k + ℓ], t ∈ [256] do
2 if η = 2 then
3 ⟨⟨ri,t⟩⟩ ← gen_small[5]()− 2
4 else // η = 4
5 ⟨⟨ri,t⟩⟩ ← 3 · gen_small[3]() + gen_small[3]()− 4

6 ⟨⟨s1⟩⟩ ← (
∑255

t=0 ri−1,tX
t)ℓi=1

7 ⟨⟨s2⟩⟩ ← (
∑255

t=0 ri+ℓ−1,tX
t)ki=1

8 return ⟨⟨s1⟩⟩, ⟨⟨s2⟩⟩
Algorithm 5: ML-DSA private key generation: keygen

3.3 Private key generation

Generation of private small random values is all that is needed for ML-DSA key
generation. The protocol keygen is given in Alg. 5. It generates the necessary
number of random values and arranges them as coefficients of polynomials (with
X denoting the formal variable). Here and in the following, we do not make
explicit whether polynomials are represented coefficient-wise or in the Number
Theoretic Transform (NTT) representation. Note that the conversion between
the two is a linear operation. Our implementation converts whereever reasonable.
In particular, the multiplications of polynomials are done using NTT.

It would perhaps be natural to have Alg. 5 also contain public key genera-
tion, starting from the generation of a random matrix A, and finishing with the
(linear) computation of ⟨⟨t⟩⟩ ← A · ⟨⟨s1⟩⟩+ ⟨⟨s2⟩⟩ and its declassification. For the
uniformity of our security arguments (Sec. 4), these steps are not included here.
But they are part of ΠML-DSA.

3.4 Zero equality checking protocol

A necessary sub-protocol in distributed signing is the equality check for values
shared modulo q. This is equivalent to checking whether a value is 0: the input
to zero_check, given in Alg. 6 is a value ⟨⟨v⟩⟩, and the output is ⟨⟨b⟩⟩, where
b = 1 iff v = 0. While protocols for this task have been proposed before [23],
our protocol is simplified by the guarantee v < B for a small upper bound B
parametrizing the zero_check protocol. With this guarantee, we can keep the
size of the correlated randomness proportional to B, not to the much larger
modulus q.

Let us show that if v < B then Alg. 6 indeed produces the correct result. We
have denoted a = ⌊q/B⌋. The vector t is constructed so that the bit t⌊m/a⌋ is
equal to 1, while all other bits are equal to 0. There are two cases.
Case 1: v = 0. Then d = m. The protocol outputs the secret-shared bit t⌊m/a⌋.
By the construction of the vector t, this bit is equal to 1.
Case 2: v ̸= 0. The protocol outputs the secret-shared bit t⌊d/a⌋. If we consider
all values as integers (i.e. elements of Z, not elements of Zq), then we can write

Title Suppressed Due to Excessive Length 11

Par: B ∈ N. Denote a = ⌊q/B⌋
Input: ⟨⟨v⟩⟩(q), where v < B
Output: ⟨⟨b⟩⟩(q), b ∈ {0, 1}, b = 1⇔ v = 0
CR: ⟨⟨m⟩⟩(q). ⟨⟨t⟩⟩(q), s.t. |t| = B + 1, t = cv(⌊m/a⌋)

1 d← declassify(⟨⟨m⟩⟩+ a · ⟨⟨v⟩⟩)
2 return ⟨⟨t⌊d/a⌋⟩⟩

Algorithm 6: Checking whether a value is 0: zero_check

⌊ da⌋ = ⌊ (m+av) mod q
a ⌋. We have m < q and av ≤ q

B · v < q
B · B = q. Hence

0 ≤ m+ av < 2q. Let us consider two cases.
Case 2a: m + av < q. Then ⌊ da⌋ = ⌊

m+av
a ⌋ = ⌊ma ⌋ + v ̸= ⌊ma ⌋. Hence by the

construction of the vector t, the bit t⌊d/a⌋ is equal to 0.
Case 2b: q ≤ m + av < 2q. Then d = m + av − q ≤ m + q

B · (B − 1) − q ≤
m+(q−a)−q = m−a. Hence ⌊ da⌋ ≤ ⌊

m−a
a ⌋ = ⌊

m
a ⌋−1. We obtain ⌊d/a⌋ ≠ ⌊m/a⌋,

hence the bit t⌊d/a⌋ is equal to 0.

3.5 Symmetric reshare to parts

In order to compute the high bits of a value w ∈ Zq, we have to decompose it
into high and low bits. Consider a vector r = (r0, r1, . . . , rn−1) ∈ Nn, such that
Rn ≥ 2q, where we denote R0 = 1 and Ri = Ri−1 · ri−1. Given a value v ∈ [2q],
there exist unique v0, v1, . . . , vn−1, such that 0 ≤ vi < ri and v =

∑n−1
i=0 Ri · vi.

We call (v0, . . . , vn−1) the representation of v in the mixed-radix base r, and call
the individual values vi the digits of v (wrt. r).

Our protocol symm_rp, called “symmetric reshare to parts” and parametrized
by a mixed-radix basis r, takes as input a shared value ⟨⟨w⟩⟩ and returns the
secret-shared digits of w in the representation of their characteristic vectors
(CV) (where the length of the CV of the i-th digit is ri). Actually, the digits
may correspond either to w or to w + q; this is chosen randomly by symm_rp,
given in Alg. 7.

We see that Alg. 7 begins by making public the value y = (w−s) mod q. The
loop that follows basically adds the values y and s, thus explaining why the result
randomly corresponds to either w or w + q (but never to 2q − 1). This addition
is digit-wise. To add a digit with the CV di, and the digit zi, we rotate the
vector to the right by zi positions, thereby increasing the index of the position
with “1” on it by zi. As the length of di is 2ri, this rotation (also with zi + 1)
cannot move the element 1 of the vector over its right end. The rotation with zi
corresponds to no carry coming into the i-th digit, while the rotation with zi+1
corresponds to the incoming carry. The actual carry bit, ci, is used to obliviously
choose between the two possibilities. The oblivious choice operation, b ? x : y is
defined to be x if b = 1, and y if b = 0. It can be computed as y + b · (x − y).
In Alg. 7 we use it for vector-valued x and y; in our implementation, the CR we
use is for scalar-vector multiplication.

During this addition, we have an outgoing carry at the i-th digit if that digit
is at least ri, hence we find that carry by summing up the indicator bits of the

12 Dufka et al.

Par: r = (r0, . . . , rn−1), where
∏

ri ≥ 2q
Input: ⟨⟨w⟩⟩(q)
Output: ⟨⟨b0⟩⟩(q), . . . , ⟨⟨bn−1⟩⟩(q), CV-s of digits of either w or w + q (but

never of 2q − 1)
CR: ⟨⟨s⟩⟩(q). ⟨⟨d0⟩⟩(2), . . . , ⟨⟨dn−1⟩⟩(2): CV-s of digits of s

1 ∀i: append ⟨⟨di⟩⟩ with ⟨⟨0⟩⟩-s, s.t. its length becomes 2ri
2 y ← declassify(⟨⟨w⟩⟩ − ⟨⟨s⟩⟩)
3 (z0, . . . , zn−1) ← the digits of y
4 for i = 0 to n− 1 do
5 ⟨⟨p′

i⟩⟩ ← rotate_right(⟨⟨di⟩⟩, zi)
6 ⟨⟨p′′

i ⟩⟩ ← rotate_right(⟨⟨di⟩⟩, zi + 1)
7 ⟨⟨pi⟩⟩ ← if i = 0 then ⟨⟨p′

0⟩⟩ else ⟨⟨ci⟩⟩ ? ⟨⟨p′′
i ⟩⟩ : ⟨⟨p′

i⟩⟩;
8 ⟨⟨ci+1⟩⟩ ←

∑2ri−1
j=ri

⟨⟨pi,j⟩⟩
9 foreach i ∈ [n], j ∈ [ri] do

10 ⟨⟨bi,j⟩⟩(q) ← convbit(⟨⟨pi,j⟩⟩(2) + ⟨⟨pi,j+ri⟩⟩(2))
11 return ⟨⟨b0⟩⟩, . . . , ⟨⟨bn−1⟩⟩

Algorithm 7: Symmetric reshare to parts: symm_rp

upper half of the vector pi. The final value of that digit comes either from the
lower (if there was no carry) or the upper (if there was carry) half of the vector
pi.

In our implementation, we first propagate all carries as in carry-lookahead
adders [32], and only afterwards compute the vectors pi. We use binomial tu-
ples [67] to compute the carries in a single round of communication. In this way,
the main loop only requires two communication rounds, instead of n − 1. The
binomial tuples will not become too large, because we use n = 5.

3.6 Distributed HighBits decomposition

The computation of the high bits of a secret-shared value is performed by the
high_bits protocol, given in Alg. 8. The algorithm begins by shifting w by α/2−1.
Indeed, according to the definition of high bits, we have wH = ⌊w′/α⌋, unless
w′ = q − 1, in which case wH = 0. We continue by splitting w′ (or w′ + q)
into five digits, let us call these digits d0, . . . , d4, their characteristic vectors are
b0, . . . ,b4.

Note that r0 · · · r3 = α. Hence, if the digits correspond to w′, then ⌊w′/α⌋ is
“basically” d4. If the digits correspond to w′ + q, then we have added the digits
of q to the digits of w′ to obtain d0, . . . , d4; the digits of q are (1, 0, 0, 0, s). To
handle both cases, we should return d4 if d4 < s, and return d4 − s otherwise.
This can be computed from b4 by finding its inner product with the constant
vector (0, 1, . . . , s− 1, 0, 1, 2, . . .).

There are exceptions, though. One of them is w′ = q − 1, in which case the
digits are (0, 0, 0, 0, s). We see that this is actually not an exception; we would
return d4 − s = 0 as we should. A true exception is that if the digits happen to
be (0, 0, 0, 0, s′), where s′ > s, then we should not return s′−s, but s′−s−1. We

Title Suppressed Due to Excessive Length 13

Par: ML-DSA parameter α = 2 · γ2. Let s = (q − 1)/α

Let r = (r0, . . . , r4) =

{
(31, 24, 16, 16, 2s+ 1), if α = 190464

(31, 33, 32, 16, 2s+ 1), if α = 523776

Input: ⟨⟨w⟩⟩
Output: ⟨⟨v⟩⟩, s.t. v = wH

1 ⟨⟨w′⟩⟩ ← ⟨⟨w⟩⟩+ (α/2− 1)
2 (⟨⟨b0⟩⟩, . . . , ⟨⟨b4⟩⟩)← symm_rp[r](⟨⟨w′⟩⟩)
3 ⟨⟨f⟩⟩ ←

∑3
i=0⟨⟨bi,0⟩⟩+

∑2s
i=s+1⟨⟨b4,i⟩⟩

4 ⟨⟨c⟩⟩ ← zero_check[6](5− ⟨⟨f⟩⟩)
5 return

(∑s−1
i=0 i · ⟨⟨b4,i⟩⟩

)
+

(∑2s
i=s(i− s) · ⟨⟨b4,i⟩⟩

)
− ⟨⟨c⟩⟩

Algorithm 8: Finding the high bits of a value: high_bits

Par: ML-DSA parameters k, ℓ, α, γ1
Input: A

1 foreach i ∈ [ℓ], t ∈ [256], u ∈ [(log γ1) + 1] do
2 ⟨⟨bi,t,u⟩⟩ ← randbit()

3 ⟨⟨y⟩⟩ ←
(∑255

t=0(−γ1 +
∑log γ1

u=0 2u · ⟨⟨bi−1,t,u⟩⟩) ·Xt
)ℓ
i=1

4 ⟨⟨w⟩⟩ =
(∑255

t=0⟨⟨wi−1,t⟩⟩ ·Xt
)k
i=1
← A · ⟨⟨y⟩⟩

5 foreach i ∈ [k], t ∈ [256] do
6 ⟨⟨wH

i,t⟩⟩ ← high_bits(⟨⟨wi,t⟩⟩)
7 return ⟨⟨y⟩⟩, ⟨⟨wH⟩⟩

Algorithm 9: Computing the FSwA commitment: gcom

check this by adding up the bits indicating this situation into f , and checking
that all these bits are 1 (i.e. 5− f is zero).

We point out that the feasibility of Alg. 8 very much relies on the smoothness
of α: we have managed to represent α as the product of a few numbers, none
of which are too big to have a vector of private values of this length. This
smoothness is not implied by the requirements of ML-DSA: while q−1 is required
to be divisible by a large power of 2 to enable NTT, the construction of ML-DSA
puts no further requirements on the odd prime factors of q − 1.

With the introduced algorithms, the computation of the commitment wH

and the secrets corresponding to it is straightforward. We record it in Alg. 9.
NTT is used for the multiplication of polynomials. The vector of polynomials
⟨⟨wH⟩⟩ will be declassified outside Alg. 9, the declassification is not included here
for the same reason as in Alg. 5.

3.7 Arguments to rejection sampling

With wH , we can compute the challenge c and use it to compute the response
⟨⟨z⟩⟩ = ⟨⟨y⟩⟩+c·⟨⟨s1⟩⟩. Before releasing ⟨⟨z⟩⟩, we have to perform the rejection check
on it. We also have to perform the rejection check on ⟨⟨r0⟩⟩ = LowBits(⟨⟨w⟩⟩ − c ·
⟨⟨s2⟩⟩). A rejection check makes sure that the value belongs to a segment. The
value and the segment can be shifted, such that the segment starts from 0, hence

14 Dufka et al.

the rejection check is an inequality check against a constant, for which we have
chosen to adapt the efficient two-party protocol (with CRP) by Attrapadung
et al. [2]. Their protocol works for rings Z2n , and has only passive security. We
have managed to adapt it to rings Zq, and to AP-security. This turns out to be
sufficient for an AA-secure ML-DSA protocol, as we explain below.

The computation of ⟨⟨r0⟩⟩ may be complicated due to the need to find the
low bits. Fortunately, it turns out that r0 passes the rejection check iff x =
LowBits(w) − c · s2 passes it. The sharing ⟨⟨x⟩⟩ is easy to compute, because
⟨⟨wL⟩⟩ = LowBits(⟨⟨w⟩⟩) is a linear combination of ⟨⟨w⟩⟩ and ⟨⟨wH⟩⟩.

Let us show that r0 ← LowBits(w − c · s2) passes the rejection check iff
x = LowBits(w) − c · s2 passes it with the same upper bound γ2 − β. By the
definition of LowBits, a coefficient of an element of r0 is between −γ2 and γ2.
The rejection check passes if all coefficients are actually between −γ2 + β + 1
and γ2 − β − 1.

A coefficient of an element of x may be outside the range [−γ2, γ2]; it is
between −γ2 − β and γ2 + β. In order to transform x to r0, we have to add
or subtract 2γ2 to all coefficients that are outside the range [−γ2, γ2]. If some
coefficient in x is currently outside [−γ2, γ2], then the addition or subtraction
will turn it to a value that will be rejected by the rejection check. Hence the
result of rejection-checking r0 will be the same as rejection-checking x.

3.8 Splitting shares to digits

An important step in [2] is locally splitting a share JvKP or JvKS into smaller
digits, and then thinking of these smaller digits as shares of (smaller) values and
working with them. For passive security and rings Z2n , this splitting is basically a
non-operation (as long as the basis elements are powers of 2, too), taking certain
bits from the shares. With active security and MACs on the shares, we need the
digits of the shares to obtain MACs, too. We cannot do the splitting so, that the
digits of both Phone’s and Server’s share get the MACs, but we can give MACs
to digits of one party’s share. This is done by the protocol asymm_rp, given in
Alg. 10. Similarly to Alg. 7, it takes a radix basis as a parameter. To simplify
this, we let all radixes be equal to r. Let split[r, d](v) return the length-d vector
of digits of the value v. Its inverse is split−1[r, d](v) =

∑d−1
i=0 ri · vi.

The input of the Alg. 10 is a value ⟨|v|⟩ = (JvK, JJvKP ·∆SK), where we have
denoted the second component with JV K. The correlated randomness contains a
random m known only to P, and Server’s MACs on both m and split(m), denoted
M and r, respectively. In the end result, split(m) will be Phone’s share, while
Server adjusts its share (before splitting it) by the difference of JvKP and m.

The input and output modulus of Alg. 10 do not have to be the same. In
fact, we need the outputs to be shared over a small modulus, in order to input
them to the protocols that are analogues to [2]. In Alg. 10, we make explicit,
over which modulus each value has been shared. Recall that for different moduli,
the Server has different MAC keys ∆S. Also, the radix r has to be small enough
for the additions in JpKP + JpKS to not overflow. In our implementation, we use
Q = 29, r = 15 and d = 6.

Title Suppressed Due to Excessive Length 15

Par: output modulus Q, radix r ≤ Q+1
2

, output length d

Input: ⟨|v|⟩(q) = (JvK(q), JV K(q))
Output: ⟨|p|⟩(Q), s.t. split−1(JpK(Q)

P + JpK(Q)
S) = v (mod q)

CR: m ∈ Zq to P. JMK(q) = Jm ·∆(q)
S K(q) and JrK(Q) = Jsplit(m) ·∆(Q)

S K(Q)

1 P: w ← JvK(q)P −m and Mw ← JV K(q)P − JMK(q)P
2 P→S: w,Mw

3 S: stop if Mw ̸= w ·∆(q)
S − (JV K(q)S − JMK(q)S)

4 S: ⟨|p|⟩(Q)
S ← (split((JvK(q)S + w) mod q), JrK(Q)

S)

5 P: ⟨|p|⟩(Q)
P ← (split(m), JrK(Q)

P)

6 return ⟨|p|⟩(Q)

Algorithm 10: Asymmetric reshare to parts: asymm_rp

Par: Input modulus Q, output modulus N
Input: ⟨|v|⟩(Q)

Output: ⟨|b|⟩(N), s.t. b is the CV of v
CR: ⟨|r|⟩(Q) and ⟨|d|⟩(N), s.t. d is the CV of r

1 f ← declassify(⟨|v|⟩(Q) − ⟨|r|⟩(Q))

2 ∀i ∈ [Q] : ⟨|bi|⟩(N) ← ⟨|d(i−f) mod Q|⟩(N)

3 return ⟨|b|⟩(N)

Algorithm 11: Characteristic vector: ch_vec

Par: Input modulus Q, radix r ≤ Q+1
2

, output modulus N

Input: ⟨|v|⟩(Q)

Output: ⟨|b|⟩(N), ⟨|c|⟩(N), indicating whether v = r − 1 and v ≥ r, respectively
1 ⟨|w|⟩ ← ch_vec[Q,N](⟨|v|⟩)
2 return ⟨|wr−1|⟩ and

∑Q−1
i=r ⟨|wi|⟩

Algorithm 12: Short overflow: short_of

Having split a private value into digits ⟨|p|⟩(Q), Attrapadung et al. [2] proceed
to convert these digits to characteristic vectors. The protocol for this conversion
is straightforward; it is given in Alg 11. The input and output modulus of this
protocol may be different, too.

3.9 Overflow

The inequality protocol of Attrapadung et al. [2] computes the overflows of
the to-be-compared private values. Given a vector p = (p0, . . . , pd−1), where
pi ≤ 2(r − 1) (such vector could privately be the output of Alg 10), we say that
p overflows if

∑d−1
i=0 ri · pi ≥ rd. The overflowing of ⟨|p|⟩ is computed in two

steps, first for a single digit (short_of, Alg. 12) and then for the entire vector
(long_of, Alg. 13).

Attrapadung et al. [2] have given an explanation on how Alg. 13 produces the
correct output, let us repeat this explanation here. The input to the long overflow
protocol (Alg. 13) is a multi-digit number p, where the least significant digit is

16 Dufka et al.

Par: Length d; input, “middle”, and output moduli Q,N,M satisfying N > 2d;
radix r ≤ (Q+ 1)/2

Input: ⟨|p|⟩(Q) of length d
Output: Bit ⟨|z|⟩(M), indicating whether p overflows

1 foreach i ∈ [d] do
2 (⟨|bi|⟩(N), ⟨|ci|⟩(N))← short_of[Q, r,N](⟨|pi|⟩)
3 ⟨|m|⟩(N) ←

∑d−1
i=1 2i−1 · ⟨|bi|⟩+

∑d−1
i=0 2i · ⟨|ci|⟩

4 ⟨|k|⟩(M) ← ch_vec[N,M](⟨|m|⟩)
5 return

∑N−1

i=2d−1⟨|ki|⟩
Algorithm 13: Long overflow: long_of

indexed as 0 and the most significant digit as d− 1. With the help of the short
overflow protocol, we find for each digit pi whether it overflows (indicated by the
bit ci) or “almost overflows” (indicated by the bit bi). Here “almost overflowing”
means that the overflowing is propagated: if the next lowest digit overflows then
this one will overflow as well. The whole number overflows if one of the following
cases occurs:

– cd−1 = 1, i.e. the most significant digit overflows;
– bd−1 = cd−2 = 1, i.e. the second most significant digit overflows, and this

propagates through the most significant digit;
– bd−1 = bd−2 = cd−3 = 1, i.e. the third most significant digit overflows, and

this propagates through the two most significant digits;
– etc.
– bd−1 = bd−2 = · · · = b1 = c0 = 1, i.e. the least significant digit overflows,

and this propagates through all digits.

Note that all these cases are mutually exclusive, because each pair of them
contains some position i, where one case has ci and the other one has bi. Both
bi and ci cannot be 1 at the same time.

Alg. 13 computes the weighted sum m of all bi and ci, such that this sum
will be at least 2d−1 iff one of the above cases is true. We see that for each case
given above, the weights given to the bits involved in this case sum up to exactly
2d−1. If some other bits are also set, then the sum can be greater than that.

It is also not difficult to see that if none of the cases hold, then the sum will
be less than 2d−1. Indeed, suppose that s is the greatest index where cs = 1, and
there exists some t ∈ {s + 1, . . . , d − 1}, such that bt = 0. Then the weighted
sum can be at most

s∑
i=0

2i +

d−1∑
i=s+1

2i−1 − 2t−1 = 2s+1 − 1 + 2d−1 − 2s − 2t−1 = 2d−1 − 1 + 2s − 2t−1,

which is less than 2d−1, because t− 1 ≥ s.

Title Suppressed Due to Excessive Length 17

Par: Length d; “middle” (×2) and output moduli Q,N,M satisfying N > 2d;
radix r ≤ (Q+ 1)/2

Input: ⟨|v|⟩(q), C ∈ N
Output: Bit ⟨|z|⟩(M) indicating whether v < C

1 ⟨|p|⟩(Q) ← asymm_rp[Q, r, d](⟨|v|⟩)
2 S: wS ← split−1(JpKS)

3 ⟨|a|⟩(Q) ← ⟨|p|⟩; JaKS := split(wS + rd − q)

4 ⟨|b|⟩(Q) ← ⟨|p|⟩; JbKS := split(((wS − C) mod q) + rd − q)

5 ⟨|c|⟩(M) ← ⟨|0|⟩; JcKS := wS ≥ C ? 1 : 0

6 ⟨|x|⟩(M) ← long_of[d,Q,N,M, r](⟨|a|⟩)
7 ⟨|y|⟩(M) ← long_of[d,Q,N,M, r](⟨|b|⟩)
8 return 1 + ⟨|x|⟩ − ⟨|y|⟩ − ⟨|c|⟩

Algorithm 14: Inequality of a private value and a constant: ineq

3.10 Inequality check

The inequality (wrt. a constant) is given in Alg. 14. Similarly to [2], we compute
the overflows of the values ⟨|v|⟩ and ⟨|v|⟩ − C, where the latter may roll over
modulo q. We are interested in overflows wrt. q, but Alg. 13 computes them wrt.
rd, hence we adjust Server’s share of v by adding rd − q to it. This addition
happens after we have split ⟨|v|⟩ to digits. We obtain the shares of digits of
⟨|v|⟩ − C similarly, doing the adjustments at server’s side after having split ⟨|v|⟩
into digits and obtained Server’s MACs on them. We use N = 67 and M = 71
as the moduli.

The correctness of Alg. 14 follows through the same arguments as the cor-
rectness of Attrapadung et al.’s inequality protocol [2]. Let us give a rehash of
these arguments.

We have the number v shared as (JvKP + JvKS) mod q, and the constant C.
Alg. 14 applies the asymmetric reshare to parts to it; if we ignore the plurality
of digits, then we can think of this operation as resharing JvK: we change JvKP
and JvKS (now denoted wS in Alg. 14), such that they are still the shares of v.
Let us write

– v1 := JvKP;
– v2 := JvKS;
– v′2 := (JvKS−C) mod q, meaning that either v′2 = v2−C or v′2 = v2 + q−C.

If we ignore the shift rd−q, and the plurality of digits, then we can think that the
shares of JaK are v1 and v2, while the shares of JbK are v1 and v′2. When computing
the overflows, we figure out the bit x indicating whether v1 + v2 ≥ q. Similarly,
the bit y indicates whether v1+v′2 ≥ q. We also have the bit c indicating whether
v2 ≥ C. It turns out that knowing the values of these three bits is sufficient to
figure out whether v < C. Let us consider all eight possibilities for the values of
the bits x, y, c, and figure out the output bit of the inequality check in each case.

000 v1 + v2 < q, v1 + v′2 < q, v2 < C. In this case, v′2 = v2 + q − C. We have
C = v2 − v′2 + q > v2 − v′2 + v1 + v′2 = v1 + v2, i.e. the result should be 1.

18 Dufka et al.

001 v1 + v2 < q, v1 + v′2 < q, v2 ≥ C. In this case, v′2 = v2 − C. We have
0 ≤ v1 + v2 −C < q. We have C ≤ (v1 + v2) mod q, i.e. the result should be
0.

010 v1 + v2 < q, v1 + v′2 ≥ q, v2 < C. In this case, v′2 = v2 + q − C. We have
C = v2 − v′2 + q ≤ v2 − v′2 + v1 + v′2 = v1 + v2, i.e. the result should be 0.

011 v1 + v2 < q, v1 + v′2 ≥ q, v2 ≥ C. In this case, v′2 = v2 − C. This case
is impossible, because subtraction means that v′2 ≤ v2, but the first two
inequalities mean that v′2 > v2.

100 v1 + v2 ≥ q, v1 + v′2 < q, v2 < C. In this case, v′2 = v2 + q − C > v2, but
also v′2 < q − v1 ≤ v2. This case is impossible.

101 v1 + v2 ≥ q, v1 + v′2 < q, v2 ≥ C. In this case, v′2 = v2 − C. We have
C = v2 − v′2 > v2 − q + v1, i.e. the result should be 1.

110 v1 + v2 ≥ q, v1 + v′2 ≥ q, v2 < C. In this case, v′2 = v2 + q − C. We have
C = v2 − v′2 + q > v2 − q + v1 (because v′2 < q and q > v1), i.e. the result
should be 1.

111 v1 + v2 ≥ q, v1 + v′2 ≥ q, v2 ≥ C. In this case, v′2 = v2 − C. We have
C = v2 − v′2 ≤ v2 − q + v1, i.e. the result should be 0.

We see that in all six cases that are actually possible, the result is 1+ x− y− c.
Alg. 14 allows us to perform rejection checks on ⟨⟨z⟩⟩ and ⟨⟨x⟩⟩, as shown in

Alg. 15, albeit it provides only privacy, but no correctness against a malicious
Server. Moreover, when the result of rejection check is opened, it may give Server
some information on z and x. Rejection check with AP-security is still useful:
if the declassified result of rejection check is “OK”, then we first declassify z
only to the Phone. The Phone verifies the signature (z, c) and only on success
sends it to the Server. If the Server interfered with the computations and caused
the rejection check result to be “OK”, but (z, c) does not verify, then the Phone
recognizes that the Server is malicious. If the Server caused the rejection check
result to be “not OK”, even though it should have been “OK”, then the Server
only reduced the amount of information it would have learned: if the Server
hadn’t tampered with the computations, it would have learned the entire z (and
also x; it can be computed from the signature and the public key) from the
signature. If the Server tampered with the computations of the rejection check
in a manner that didn’t change its result, then it would have received at least
as much information about z and x also by not tampering. Hence the Server’s
best tactic is to not tamper.

Alg. 15 invokes the ineq protocol (with parameters d,Q,N,M, r), and then
computes the long conjunction over the results. We see that it adds up the
negations of the bits, and then returns whether the result is 0. Actually, the
vector v is much longer than the modulus M , hence the sum may wrap around.
The Phone will consider this wraparound as Server’s malicious behaviour. We
have chosen the modulus M = 71 so, that probability of the sum being at least
M is less than 2−256 if both parties behave honestly. Alg. 15 does not declassify
its output; the declassification is part of ΠML-DSA.

Title Suppressed Due to Excessive Length 19

Par: ML-DSA parameters, and d,Q,N,M, r (same as in Alg. 14)
Input:

(∑255
t=0⟨|zi−1,t|⟩ ·Xt

)ℓ
i=1

,
(∑255

t=0⟨|xi−1,t|⟩ ·Xt
)k
i=1

Output: A bit indicating whether rejection check is passed
1 foreach i ∈ [ℓ], t ∈ [256] do
2 ⟨|v256·i+t|⟩(M) ← ineq[d,Q,N,M, r](⟨|zi,t|⟩+ γ1 − β − 1, 2(γ1 − β)− 1)
3 foreach i ∈ [k], t ∈ [256] do
4 ⟨|v256·(i+ℓ)+t|⟩(M) ← ineq[d,Q,N,M, r](⟨|xi,t|⟩+ γ2 − β − 1, 2(γ2 − β)− 1)

5 ⟨|s|⟩(M) ←
∑length(v)−1

i=0 (1− ⟨|vi|⟩(M))

6 ⟨|b|⟩ ← ch_vec[M, 2](⟨|s|⟩(M))
7 return ⟨|b0|⟩

Algorithm 15: Rejection check: rej_check

Par: ML-DSA parameters, and d,Q,N,M, r
Input: A, t, ⟨⟨s1⟩⟩, ⟨⟨s2⟩⟩, µ
Output: Signature (z, c) on µ, or ⊥

1 ⟨⟨y⟩⟩, ⟨⟨wH⟩⟩ ← gcom[k, ℓ, α, γ1](A)

2 ⟨⟨wL⟩⟩ ← A · ⟨⟨y⟩⟩ − α · ⟨⟨wH⟩⟩
3 c← H(µ, declassify(⟨⟨wH⟩⟩))
4 ⟨⟨z⟩⟩ =

(∑255
t=0⟨⟨zi−1,t⟩⟩ ·Xt

)ℓ
i=1
← ⟨⟨y⟩⟩+ c · ⟨⟨s1⟩⟩

5 ⟨⟨x⟩⟩ =
(∑255

t=0⟨⟨xi−1,t⟩⟩ ·Xt
)k
i=1
← ⟨⟨wL⟩⟩ − c · ⟨⟨s2⟩⟩

6 if declassify(rej_check(⟨|z|⟩, ⟨|x|⟩)) then
7 S→P: JzKS

8 P: z← JzKS + JzKP

9 P: stop if ¬Verify((A, t), µ, (z, c))
10 P→S: z
11 return (z, c)

12 else return ⊥ ;
Algorithm 16: A signing attempt: sign_trilithium

3.11 Distributed signing

The entire signing attempt is given in Alg. 16.

4 Security of components

Each algorithm in Sec. 3 corresponds to a real system Π; the system ΠML-DSA is
the composition of the systems corresponding to Alg. 5 and Alg. 16. The security
analysis becomes more modular when we state the ideal functionalities securely
implemented by these systems.

Thus, for each of these algorithms, we will now describe an ideal functionality,
a real protocol for running this functionality, and possibly another ideal func-
tionality for generating the correlated randomness. We will then show that the
real protocol is a secure implementation of the ideal functionality in the hybrid
model that includes the correlated randomness generation, and all functionalities
for the sub-protocols invoked by the algorithm. We start with the declassification

20 Dufka et al.

– On input (corrupt, sid ,X) from S before the initialization, mark that X is
corrupted and send (corrupted, sid) to X.

– On input (init, sid ,∆P) from P and (init, sid ,∆S) from S: Store ∆P and ∆S. If
party X is corrupted, then send (globkeys,∆X) to the adversary.

– On input (declassify, sid , ⟨⟨v⟩⟩P) from P and (declassify, sid , ⟨⟨v⟩⟩S) from S (where
⟨⟨v⟩⟩X = (JvKX, JMSKX, JMPKX)), proceed as follows:
1. Notify S. If nobody corrupt, send (proceed?, sid) to S, get back

(proceed!, sid). If S corrupt, send (input, sid , ⟨⟨v⟩⟩S) to S and get back
(update, sid , ⟨⟨v⟩⟩S). If P corrupt, send (input, sid , ⟨⟨v⟩⟩P, JvKS, JMPKS) to S and
get back (update, sid , ⟨⟨v⟩⟩P). Update the component of ⟨⟨v⟩⟩ with the value
received from S.

2. Compute v ← JvKP + JvKS. Let the boolean bP [resp. bS] indicate whether MP

[resp. MS] verifies.
3. Output the result. Proceed as follows:

• If nobody corrupt: If bP, send (result, sid , v) to P, otherwise send
(result, sid ,⊥) to P. If bS ∧ bP, send (result, sid , v) to S, otherwise send
(result, sid ,⊥) to S.

• If P corrupt: send (result?, sid) to S. Receive back (result!, sid , v′, b).
Send (result, sid , v′) to P. If b∧ bS then send (result, sid , v) to S, otherwise
send (result, sid ,⊥) to S.

• If S corrupt: If ¬bP, then send (result, sid ,⊥) to P, S and S. Otherwise
send (result, sid , v) to P and (result?, sid , v, bS) to S. Get back
(result, sid , v′) and forward it to S.

Functionality 2: FAA
declassify: ideal functionality for declassification

from Sec. 3.1, then give the generic protocols and precomputation functionali-
ties, as much as these can be given, then go through the algorithms in Sec. 3,
and finish with the description of ΠML-DSA and its security proof in Sec. 5.

4.1 Declassification

Protocol and ideal functionality for AA security. The ideal functionality
for AA-secure declassification is given in Func. 2. Similarly to Alg. 3, it is asym-
metric with respect of the roles of P and S. We see that the steps of FAA

declassify
are typical for ideal functionalities: it first allows the adversary to adjust the
input(s) of corrupted party(-ies), then performs the actual computation (which,
in this case consists of recovering v and checking the MACs), then informs the
adversary of the result and allows it to control when the result is sent back and
which result is sent back to corrupted parties. In Func. 2 and below, we use X to
denote either S or P; the functionality allows one of the parties to be corrupted.

The description of Alg. 3 can be turned to the description of the real system
consisting of machines MP and MS; this description is given in Prot. 1. The
machines MP and MS follow this description when not corrupted, and act as
described in Sec. 2.5 when corrupted. To show that Prot. 1 securely implements

Title Suppressed Due to Excessive Length 21

– On input (corrupted, sid) from A to MX before the initialization, machineMX

sends (corrupted, sid) to X and becomes corrupted.
– On input (init, sid ,∆X) from X to MX: store ∆X. If MX is corrupt, send

(globkeys, sid ,∆X) to A.
– On input (declassify, sid , ⟨⟨v⟩⟩S) from S to MS, the machineMS works as follows:
• Send (msg1, sid , v⟨⟨v⟩⟩S, mp⟨⟨v⟩⟩S) to MP.
• Expect back (msg2, sid , v⟨⟨v⟩⟩P, ms⟨⟨v⟩⟩P).

∗ If the message was (msg2, sid ,⊥), then send (result, sid ,⊥) to S and do
not proceed further.

• Recover v ← v⟨⟨v⟩⟩P + v⟨⟨v⟩⟩S.
• Verify S’s MAC: check that v⟨⟨v⟩⟩P ·∆S = ms⟨⟨v⟩⟩P + ms⟨⟨v⟩⟩S
• If the MAC verifies, send (result, sid , v) to S.
• If the MAC does not verify, send (result, sid ,⊥) to S.

– On input (declassify, sid , ⟨⟨v⟩⟩P) from P to MP, the machineMP works as follows:
• Expect (msg1, v⟨⟨v⟩⟩S, mp⟨⟨v⟩⟩S) from MS.
• Recover v ← v⟨⟨v⟩⟩P + v⟨⟨v⟩⟩S.
• Verify P’s MAC: check that v⟨⟨v⟩⟩S ·∆P = mp⟨⟨v⟩⟩P + mp⟨⟨v⟩⟩S
• If the MAC verifies, send (msg2, sid , v⟨⟨v⟩⟩P, ms⟨⟨v⟩⟩P) toMS and (result, sid , v)

to P.
• If the MAC does not verify, send (msg2, sid ,⊥) to MS and (result, sid ,⊥) to

P.

Protocol 1: AA declassification protocol

Func. 2, we construct the simulator. As the corruptions of parties are static
(may only happen before the actual execution starts), our simulator is basically
a choice between three simulators: one for the case with not corrupted parties,
one for corrupted Phone, and one for corrupted Server. The first case is trivial;
the simulator internally executes both MP and MS and relays the scheduling
information between FML-DSA and A. Let us describe the construction of the
other two simulators.

Simulator for AA-secure declassification with corrupted Phone. Dur-
ing initialization, the simulator receives ∆P. During declassification, it receives
(input, sid , ⟨⟨v⟩⟩P, v⟨⟨v⟩⟩S, mp⟨⟨v⟩⟩S) from the ideal functionality and tells the ad-
versary that the share ⟨⟨v⟩⟩P is being declassified (as ifMP reporting that it got
the declassify-command from the environment). It creates and sends to A the
message (msg1, v⟨⟨v⟩⟩S, mp⟨⟨v⟩⟩S), as if MP was reporting to A that it received
this message fromMS.

If the adversary sends back (as the command to MP to send a message to
MS) the message (msg2, sid ,⊥), followed by the command to MP to output v′

to P, then the simulator sends the message (update, sid , ⟨⟨v⟩⟩P) back to the ideal
functionality, waits to receive (result?, sid) from the ideal functionality, and sends
back (result!, sid , v′, false) to the ideal functionality.

But if the message (msg2, sid , v⟨⟨v⟩⟩P, ms⟨⟨v⟩⟩P), intended forMP to send it to
MS, is sent by A to the simulator, again followed by v′ for P, then update ⟨⟨v⟩⟩P

22 Dufka et al.

with the components received from A and send (update, sid , ⟨⟨v⟩⟩P) back to the
ideal functionality. Wait to receive (result?, sid) from the ideal functionality, and
send back (result!, sid , v′, true) to the ideal functionality.

Simulator for AA-secure declassification with corrupted Server. Dur-
ing initialization, the simulator receives ∆S. During declassification, it receives
(input,
sid , ⟨⟨v⟩⟩S) from the ideal functionality and tells the adversary that the share
⟨⟨v⟩⟩S is being declassified. The simulator then expects to receive from the adver-
sary (asMS sending it toMP) the message (msg1, sid , v⟨⟨v⟩⟩S, mp⟨⟨v⟩⟩S). The sim-
ulator updates ⟨⟨v⟩⟩S with the components it received and sends (update, sid , ⟨⟨v⟩⟩S)
back to the ideal functionality.

Wait for the next message from the ideal functionality. If it is (result, sid ,⊥),
then send (msg2, sid ,⊥) to the adversary (as message from MP to MS). If the
message is (result?, sid , v, bS), then compute

– v⟨⟨v⟩⟩P ← v − v⟨⟨v⟩⟩S
– ms⟨⟨v⟩⟩P ←∆S · v⟨⟨v⟩⟩P − ms⟨⟨v⟩⟩S

and send (msg2, sid , v⟨⟨v⟩⟩P, ms⟨⟨v⟩⟩P) to A (as MS reporting receiving a mes-
sage from MP). If bS = true then send (result, sid , v) to the ideal functionality,
otherwise send (result, sid ,⊥) to the ideal functionality.

Protocol and ideal functionality for AP security. In Sec. 3.1 we have
already discussed how the protocol for AP-secure declassification would look
like: it would remove some message parts and checks from Alg. 3. Let us now
give the description explicitly in Func. 3 and Prot. 2. We notice that the ideal
functionality still ensures that if S is honest, then it learns either the to-be-
declassified value v or nothing at all. But if S is corrupt, then the adversary S
can freely add a change v̂ to the value that is received by P. Indeed, after S
has received the (input, sid , ⟨|v|⟩S)-message, it has to add v̂ to the v-component
of ⟨|v|⟩S in the update-message to impose the same change to v. This change does
not affect the validity of any MACs.

Simulator for AP-secure declassification with corrupted Phone. During
initialization, the simulator does not receive anything. During declassification,
it receives (input, sid , ⟨|v|⟩P, v⟨|v|⟩S) from the ideal functionality and tells the ad-
versary that the share ⟨|v|⟩P is being declassified (as ifMP reporting that it got
the declassify-command from P). It creates the message (msg1, v⟨|v|⟩S) and sends
it to A (as MP reporting to A that it received this message fromMS).

If the adversary sends back (as the command to MP to send a message to
MS) the message (msg2, sid ,⊥), followed by the command to MP to output v′

to P, then the simulator sends the message (update, sid , ⟨|v|⟩P) back to the ideal
functionality, waits to receive (result?, sid) from the ideal functionality, and sends
back (result!, sid , v′, false) to the ideal functionality.

Title Suppressed Due to Excessive Length 23

– On input (corrupt, sid ,X) from S before the initialization, mark that X is
corrupted and send (corrupted, sid) to X.

– On input (init, sid) from P and (init, sid ,∆S) from S: Store ∆S. If S is corrupted,
then send (globkeys,∆S) to the adversary.

– On input (declassify, sid , ⟨|v|⟩P) from P and (declassify, sid , ⟨|v|⟩S) from S, proceed
as follows:
1. Notify S.

• If nobody is corrupt, send (proceed?, sid) to S, get back (proceed!, sid).
• If P is corrupt, send (input, sid , ⟨|v|⟩P, JvKS) to S and get back

(update, sid , ⟨|v|⟩P).
• If S is corrupt, send (input, sid , ⟨|v|⟩S) to S and get back

(update, sid , ⟨|v|⟩S).
Update the component of ⟨|v|⟩ with the value received from S.

2. Recover v from ⟨|v|⟩. Let the boolean bS indicate whether ms⟨|v|⟩ verifies.
3. Output the result. Proceed as follows:

• If nobody is corrupt: Send (result, sid , v) to P. If bS, send it to S, too,
otherwise send (result, sid ,⊥) to S.

• If S is corrupt: send (result?, sid , v, bS) to S and (result, sid , v) to P. Let S
send back (result, sid , v′). Send (result, sid , v′) to S.

• If P is corrupt: send (result?, sid) to S. Receive back (result!, sid , v′, b).
Send (result, sid , v′) to P. If b ∧ bS, then send (result, sid , v) to S,
otherwise send (result, sid ,⊥) to S.

Functionality 3: AP-secure declassification

– On input (corrupted, sid) from A to MX before the initialization, machineMX

sends (corrupted, sid) to X and becomes corrupted.
– On input (init, sid ,∆S) from S to MS: store ∆S. If MS is corrupt, send

(globkeys, sid ,∆S) to A.
– On input (init, sid) from P to MP: (nothing).
– On input (declassify, sid , ⟨|v|⟩S) from S to MS, the machineMS works as follows:
• Send (msg1, sid , v⟨|v|⟩S) to MP.
• Expect back (msg2, sid , ⟨|v|⟩P).

∗ If the message was (msg2, sid ,⊥), then send (result, sid ,⊥) to S and do
not proceed further.

• Recover v ← v⟨|v|⟩P + v⟨|v|⟩S.
• Verify S’s MAC: check that v⟨|v|⟩P ·∆S = ms⟨|v|⟩P + ms⟨|v|⟩S
• If the MAC verifies, send (result, sid , v) to S.
• If the MAC does not verify, send (result, sid ,⊥) to S.

– On input (declassify, sid , ⟨|v|⟩P) from P to MP, the machineMP works as follows:
• Expect (msg1, v⟨|v|⟩S) from MS.
• Recover v ← v⟨|v|⟩P + v⟨|v|⟩S.
• Send (msg2, sid , ⟨|v|⟩P) to MS and (result, sid , v) to P.

Protocol 2: AP declassification protocol

24 Dufka et al.

But if the adversary sends back the message (msg2, sid , ⟨|v|⟩P) forMS, again
followed by v′ for P, then the simulator updates ⟨|v|⟩P and sends (update, sid , ⟨|v|⟩P)
back to the ideal functionality. Waits to receive (result?, sid) from the ideal func-
tionality, and sends back (result!, sid , v′, true) to the ideal functionality.

Simulator for AP-secure declassification with corrupted Server. Dur-
ing initialization, the simulator receives ∆S. During declassification, it receives
(input, sid , ⟨|v|⟩S) from the ideal functionality and tells the adversary that the
share ⟨|v|⟩S is being declassified.

The simulator expectsA to tellMS to send the first message (msg1, sid , Jv′KS)
toMP. The simulator then sends to the ideal functionality the message (update,
sid , (Jv′KS, ms⟨|v|⟩S)), effectively changing the to-be-declassified value by ε = Jv′KS−
JvKS.

The ideal functionality sends (result?, sid , v, bS) to the simulator. The simu-
lator computes

– JvKP ← v − JvKS
– ms⟨|v|⟩P ←∆S · JvKP − ms⟨|v|⟩S

and send (msg2, sid , ⟨|v|⟩P) to A (as if MS notifying A about the message it
received fromMP). The simulator gets v′ from the adversary (as the value that
S should receive) and sends (result, sid , v′) to the ideal functionality.

4.2 Ideal functionalities corresponding to algorithms

The ideal functionalities for all AA-secure protocols above are instances of the
generic functionality given in Func. 4. The functionality is parametrized by the
function f it is computing, which may be probabilistic. The functionality is
also parametrized by the privacy levels of its inputs: parts of the inputs are
secret-shared, while others are available in the open. The outputs are always
private; this is the reason we did not declassify the outputs of Alg. 5 or Alg. 9.
There is another constraint on outputs, less visible in Func. 4: the outputs may
not be linearly dependent on other outputs or inputs. For this reason, A · ⟨⟨y⟩⟩
was computed in both Alg. 9 and Alg. 16, and ⟨⟨t⟩⟩ was not computed in Alg. 5.
Finally, a predicate B limiting the domain of f is a parameter of the functionality.

Not all AA-secure protocols in Sec. 3 use all features of f in Func. 4. Clearly, if
a protocol is generating random values, then the corresponding f is randomized.
The function f for “symmetric reshare to parts” is also randomized: it is resharing
either v or v + q depending on whether r ≤ v or not, for a random r ∈ Zq. The
predicate B is materially used only in the functionality describing the “zero
check” (Alg. 6); for all others, B ≡ 1.

The ideal functionalities for all AP-secure protocols, except for Alg. 10, are
instances of the generic functionality given in Func. 5. Alg. 10 is not an instance,
because the shares of the outputs of that protocol are not uniformly distributed
over ZQ, and thus cannot be described in the manner allowed by Func. 5. Its
corresponding ideal functionality will be given in Func. 8.

Title Suppressed Due to Excessive Length 25

– On input (corrupt, sid ,X) from S before the initialization, mark that X is
corrupted and send (corrupted, sid) to X.

– On input (init, sid ,∆P) from P and (init, sid ,∆S) from S: Store ∆P and ∆S. If
party X is corrupted, then send (globkeys,∆X) to the adversary.

– On input (compute, sid , ⟨⟨vpriv⟩⟩P, vpub) from P and (compute, sid , ⟨⟨vpriv⟩⟩S, vpub)
from S, do the following:
• If a party X is corrupted, send vpub to S. Also send ⟨⟨vpriv⟩⟩X to the S, and

receive back an adjusted version of ⟨⟨vpriv⟩⟩X.
• Recover vpriv from the shares; check the MACs. If an honest party’s MAC

does not verify, then stop.
• Generate random r of the type expected by f .
• If B(vpriv, vpub) = 0, then send (vpriv, vpub) to S and get back w. Otherwise

compute w = f(vpriv, vpub, r).
• Randomly secret-share w (using ∆P and ∆S), resulting in ⟨⟨w⟩⟩.
• If X is corrupted, then send ⟨⟨w⟩⟩X to S.
• Wait for the adversary to permit to proceed; also get updated value of ⟨⟨w⟩⟩X.
• Send (result, sid , ⟨⟨w⟩⟩S) to S and (result, sid , ⟨⟨w⟩⟩P) to P.

Functionality 4: Generic AA-secure functionality for the function f

– On input (corrupt, sid ,X) from S before the initialization, mark that X is
corrupted and send (corrupted, sid) to X.

– On input (init, sid) from P and (init, sid ,∆S) from S: Store ∆S. If S is corrupted,
then send (globkeys,∆S) to the adversary.

– On input (compute, sid , ⟨|vpriv|⟩P, vpub) from P and (compute, sid , ⟨|vpriv|⟩S, vpub) from
S, do the following:
• If a party X is corrupted, send vpub to S. Also send ⟨|vpriv|⟩X to the adversary,

and receive back an adjusted version of ⟨|vpriv|⟩X.
• Recover vpriv from the shares; check the MACs. If S is honest, but the MACs

does not verify, then stop.
• Generate random r of the type expected by f .
• If S is honest, then compute w = f(vpriv, vpub, r).
• If S is corrupted, then randomly generate the output share ⟨|w|⟩S and send it

to the adversary.
• If S is corrupted, then receive the description of an algorithm A from the

adversary, compute w = A(⟨|vpriv|⟩P, r); it must have the correct format.
• Compute a sharing of w, giving ⟨|w|⟩. If ⟨|w|⟩S already exists, then compute
⟨|w|⟩P according to it and w and ∆S.

• If X is corrupted, then send ⟨|w|⟩X to S. Wait for the adversary’s permission
to proceed; also get updated ⟨|w|⟩X.

• Send (result, sid , ⟨|w|⟩S) to S and (result, sid , ⟨|w|⟩P) to P.

Functionality 5: Generic AP-secure functionality for the function f

26 Dufka et al.

– On input (init, sid ,∆P) from P and (init, sid ,∆S) from S: Store ∆P and ∆S. If
party X is corrupted, then send (globkeys,∆X) to the adversary.
• For AP-secure functionalities, the message from P does not contain ∆P.

– On input (crreq, sid) from both P and S, generate the random values according to
the desired distribution. Let RP be the values meant for P, and RS the values
meant for S.

– If no party is corrupted, then send (proceed?, sid) to S. If party X is corrupted,
then send (cr, sid ,RX) to S.

– Wait for S to send back (proceed!, sid) (if no party is corrupted) or
(update, sid ,R′

X) (if party X is corrupted). In the latter case, update RX := R′
X.

– Send (cr, sid ,RP) to P and (cr, sid ,RS) to S.

Functionality 6: Foffl
Alg : Generic ideal functionality for precomputations in an

algorithm “Alg”

We see that Func. 5 is parametrized similarly to Func. 4, except we have no
use for the predicate B. Note how we model the passive security (but active pri-
vacy) against S: if S is corrupted then it chooses the output of the functionality
on the basis of inputs, but cannot learn anything. The input to A includes ev-
erything that S does not yet know: the values ⟨⟨vpriv⟩⟩S and vpub may be included
in the description of A.

4.3 Defining precomputations

Certain algorithms in Sec. 3 (Alg. 4, Alg. 6, Alg. 7, Alg. 10, and Alg. 11) re-
quire the pre-distribution of values coming from a certain (joint) probability
distribution. In the UC framework, we model the generation of such values as
the availability of a certain ideal functionality, given in Func. 6. We see that it
is initialized by the MAC keys. Indeed, the correlated random values may need
MACs on them. The only protocol-specific part in this functionality is the actual
sampling of random values.

4.4 Protocols from Algorithms

In Sec. 3, we have described our signing protocol and its subprotocols in the form
of pseudocode typically used to present algorithms on top of MPC protocol sets.
Each one of these algorithms could alternatively be represented as a real system
in the UC framework, consisting of the machine MP, machine MS, and zero
or more ideal components F ; the description of such a real system would make
explicit certain details that are not mentioned in the algorithms.

A real system executing a protocol ΠAlg (given in Prot. 3) for an algorithm Alg
contains MP, MS, the functionalities Fsub for all subroutines that Alg invokes
(except for subroutines that involve only local computations), and Foffl

Alg if Alg
uses its own correlated randomness. Note that declassification is also realized
by a functionality; protocols with AA security include FAA

declassify while protocols
with AP security include FAP

declassify.

Title Suppressed Due to Excessive Length 27

– On input (corrupt, sid ,X) from S before any other commands, mark that X is
corrupted and send (corrupted, sid) to X.

– On input (init, sid ,∆X) from X to machine MX, store ∆X and send (init, sid ,∆X)
to all ideal components as coming from X. If X is corrupted, then send
(globkeys, sid ,∆X) to A. If ΠAlg is AP-secure, then there is no ∆P.

– On input (compute, sid , inputsX) from X to MX, it proceeds as follows:
1. If Alg uses correlated randomness, then send (crreq, sid) to Foffl

Alg . Get back
RX.

2. Execute steps of the algorithm Alg on inputsX and RX, adding to the
intermediate values intermX. In particular:
• In order to invoke a subroutine sub: come up with a session identifier sid ′

in a deterministic manner, e.g. adding the name of the invoked
subroutine and the line in Alg containing that invocation to sid . Send
(crreq, sid ′, argsX) to Fsub, where argsX contains the public, and shares of
the private arguments to sub. Get back (result, sid ′, resX) and add it to
intermX.

• In order to rearrange data (e.g. rotate vectors) or perform local
computations: do them.

• In order to perform linear computations on secret-shared values
(including the sharing of constants): perform them on local shares,
including the MAC shares.

• In order to send a message M (only in Alg. 10): send (msg, sid ,M) to
MX, where {X,X} = {P, S}.

• In order to receive a message M : receive (msg, sid ,M) from MX.
3. The execution has computed resX. Send (result, sid , resX) back to X.

Protocol 3: Generic two-party protocol from the description of an algorithm
“Alg”: ΠAlg

4.5 Pre-existing functionalities

In Sec. 3.2, we stated that we make use of certain two-party computation pro-
tocols from the literature, the description of which we do not give in this paper.
We still need to give the ideal functionalities corresponding to these protocols,
in order to use the UC framework to give the security proofs of the protocols
that we do describe. These protocols were the following:

– Generation of a public random value modulo q: pubrand(). The corresponding
ideal functionality Fpubrand is given in Func. 7.

– Generation of a random bit modulo q: randbit(). The functionality Frandbit is
an instance of Func. 4, where the function f takes no inputs and randomly
returns either 0 or 1. The secret-sharing is done modulo q.

– Bit conversion from mod-2 to mod-q: bitconv(⟨⟨b⟩⟩(2)). The functionality
Fbitconv is an instance of Func. 4, where the function f is the identity function,
inputs are shared modulo 2 and outputs are shared modulo q.

– If-then-else. The functionality Fite is an instance of Func. 4, where the func-
tion f takes three arguments: a bit b and two values (or equal-length vectors

28 Dufka et al.

– On input (corrupt, sid ,X) from S before any other commands, mark that X is
corrupted and send (corrupted, sid) to X.

– On input (generate, sid) from both P and S: sample a value v according to the
distribution D. Let vP ← v and vS ← v. Send (result, sid , v) to S. If party X is
corrupted, then receive (update, sid , vX) from S, otherwise receive (proceed, sid)
from S. Send (result, sid , vP) to P and (result, sid , vS) to S.

Functionality 7: Public randomness generation from the distribution D:
FD

pubrand

of values) x and y, all secret-shared with the same modulus. The function f
returns b · (x− y) + y.

4.6 Randomness generation

Alg. 4, parametrized with a small prime Q, gives an algorithm to generate a
secret-shared random value between 0 and Q− 1. It corresponds to the protocol
Πgen_small, which is an instance of Prot. 3. The protocol securely realizes the
ideal functionality Fgen_small that is an instance of Func. 4, where the function
f takes no arguments and returns a random value between 0 and Q − 1; the
output is secret-shared modulo q. The protocol Πgen_small is realized by a system
consisting of MP,MS, Fpubrand, and Foffl

gen_small (an instance of Func. 6).
In order to show that Πgen_small is at least secure as Fgen_small, we have to

construct a suitable simulator. As always, we present a construction for corrupted
P and another one for corrupted S.

Simulator for corrupted phone. During initialization, the simulator learns
Phone’s MAC keys via the message (globkeys,∆P) from Fgen_small.

During computation, the simulator gets notified of the start of the computa-
tion from the ideal functionality (normally, it would get the input share of P at
this point, but there are no inputs to this computation). The simulator notifies
A of that start (via a message presumably coming fromMP, telling A thatMP
received the compute-command from P). The simulator asks Fgen_small to proceed
(there are not inputs to update), and receives the output ⟨⟨v⟩⟩P. The simulator
generates a random value r ∈ ZQ and a random length-Q vector ⟨⟨t⟩⟩P, such that
its value at position r is equal to ⟨⟨v⟩⟩P. The simulator sends (cr, sid , ⟨⟨t⟩⟩P) (as
if coming from Foffl

gen_small) to A and gets back (update, sid , ⟨⟨t′⟩⟩P).
The simulator expects the message (generate, sid) from A (as command for

MP to send this to Fpubrand). The simulator (acting as Fpubrand) tells A that the
result is r; the adversary A may update this to r′.

The adversary now tells Fgen_small to proceed and, moreover, update the
output of P to ⟨⟨t′r′⟩⟩P.

Title Suppressed Due to Excessive Length 29

Simulator for corrupted server. The protocol is symmetric wrt. the roles of
Phone and Server. The simulator will be the same, with P and S swapped.

4.7 Key generation

Alg. 5 gives the algorithm for ML-DSA private key generation, such that the
result is secret-shared. The algorithm realizes the ideal functionality Fkeygen that
is a specialization of Func. 4, where the function f receives no inputs and returns
a fresh private key of ML-DSA. We define the protocol Πkeygen an instance of
Prot. 3, corresponding to Alg. 5.

The real system realizing Πkeygen consists of the machinesMP andMS, and
the ideal functionality Fgen_small. Let us construct simulators for corrupted P
and for corrupted S.

Simulator for corrupted phone. During initialization, the simulator learns
Phone’s MAC keys via the message (globkeys,∆P) from Fkeygen.

During computation, the simulator receives A from Fkeygen, indicating the
start of the computation. The simulator notified A and sends A to it (to A, the
origin of the message appears to beMP). The simulator asks Fkeygen to proceed;
it receives the shares ⟨⟨s1⟩⟩P, and ⟨⟨s2⟩⟩P and ⟨⟨t⟩⟩P.

The simulator turns ⟨⟨s1⟩⟩P and ⟨⟨s2⟩⟩P into the shares of the random values
that are presumably generated by Fgen_small. Let ⟨⟨ri,t⟩⟩P be one of the coef-
ficients of one of the polynomials in either ⟨⟨s1⟩⟩P or ⟨⟨s2⟩⟩P. If η = 2, then
define ⟨⟨r′i,t⟩⟩P ← ⟨⟨ri,t⟩⟩P + ⟨⟨2⟩⟩P, where ⟨⟨2⟩⟩ denotes the classification of the
constant 2. If η = 4 then let ⟨⟨r′i,t⟩⟩P be a random element of Zq and define
⟨⟨r′′i,t⟩⟩P ← ⟨⟨ri,t⟩⟩P − 3 · ⟨⟨r′i,t⟩⟩P + ⟨⟨4⟩⟩P.

The simulator waits for A’s command (to MP; supposed to be passed to
Fgen_small) to start some session of Fgen_small; the session identifier sid ′ used in
the activation indicates, which position of s1 or s2 this invocation corresponds to
(and in case of η = 4: whether it corresponds to upper or lower half of the private
value). The simulator sends back ⟨⟨r′i,t⟩⟩P or ⟨⟨r′′i,t⟩⟩P, according to the position
that A chose. The adversary A has to send the activations for all positions in s1
and s2. The adversary can also send updates to ⟨⟨r′i,t⟩⟩P and ⟨⟨r′′i,t⟩⟩P; the simulator
records these.

Once the generations of all small random values have been completed, the
simulator updates ⟨⟨s1⟩⟩P and ⟨⟨s2⟩⟩P, recomputing them with the updated ⟨⟨r′i,t⟩⟩P
and ⟨⟨r′′i,t⟩⟩P. The simulator tells Fkeygen to proceed, with updated ⟨⟨s1⟩⟩P and
⟨⟨s2⟩⟩P.

Simulator for corrupted server. The protocol is symmetric wrt. the roles of
Phone and Server. The simulator is the same as the one for corrupted Phone,
with P and S swapped.

30 Dufka et al.

4.8 Zero equality checking

Alg. 6 gives the algorithm for checking whether a private value ⟨⟨v⟩⟩ is equal to
0, with the precondition v < B, where B is a rather small bound. It corresponds
to a protocol Πzero_check, which is an instance of Prot. 3. The protocol realizes
the ideal functionality Fzero_check, which is an instance of Func. 4, where the
function f returns 1 iff v = 0 (and returns 0 otherwise). The predicate B returns
1 if v < B.

The protocol Πzero_check is realized by a system consisting of machines MP

and MS, as well as the functionalities FAA
declassify and Foffl

zero_check. The latter is an
instance of Func. 6. Let us present the simulators to show that Πzero_check is at
least as secure as Fzero_check.

Simulator for corrupted phone. During initialization, the simulator learns
Phone’s MAC keys via the message (globkeys,∆P) from Fkeygen.

During computation (with session ID sid), the simulator receives ⟨⟨v⟩⟩P from
Fzero_check, and forwards it to A (as if coming fromMP that reports the compute-
command from the environment). If the simulator does not also receive v, then
it knows that v < B. The simulator asks the ideal functionality to proceed,
learning ⟨⟨b⟩⟩P, where b is the output of the zero check.

The simulator generates a random u ∈ Zq, and random values ⟨⟨m⟩⟩P and
⟨⟨t⟩⟩P, except that the element ⟨⟨t⌊u/(⌊q/B⌋)⌋⟩⟩P is taken to be equal to ⟨⟨b⟩⟩P.
The simulator sends ⟨⟨m⟩⟩P and ⟨⟨t⟩⟩P to A, as if coming from Foffl

zero_check. The
adversary may send back adjustments to these values. Let ⟨⟨t′⟩⟩P the adjusted
value for ⟨⟨t⟩⟩P.

The simulator waits A to instructMP to declassify the value ⟨⟨d⟩⟩P = ⟨⟨m⟩⟩P+
⌊q/B⌋·⟨⟨v⟩⟩P. The simulator already knows ⟨⟨d⟩⟩P, because it is able to compute it
itself. Let ⟨̃⟨d⟩⟩P denote the value computed by the simulator, while ⟨̂⟨d⟩⟩P denotes
the value submitted by the adversary. The simulator now computes

– v⟨⟨d⟩⟩S ← u− v⟨̃⟨d⟩⟩P, and
– mp⟨⟨d⟩⟩S ← v⟨⟨d⟩⟩S ·∆S − mp⟨̃⟨d⟩⟩P,

and sends (input, sid , ⟨̂⟨d⟩⟩P, v⟨⟨d⟩⟩S, mp⟨⟨d⟩⟩S) to the adversary (as if coming from
FAA

declassify). The adversary A sends back an update to ⟨⟨d⟩⟩P. If the update is

not equal to ⟨̃⟨d⟩⟩P (at least for the v- and ms-parts), then the simulator tells
Fzero_check to stop. Otherwise the simulator sends (result?, sid) to the adversary
(as if coming from FAA

declassify) and gets back (result!, sid , u′, bcnt). If the boolean
bcnt is false then it tells Fzero_check to stop. If u′ ̸= u, then the simulator updates
⟨⟨b⟩⟩P to ⟨⟨t⌊u′/(⌊q/B⌋)⌋⟩⟩P.

At this point, the to-be-declassified value is fixed as u′, and the adversary is
able to find the output share ⟨⟨b⟩⟩P. The adversary can instruct MP to output
something else — ⟨⟨b′⟩⟩P — to the environment. The simulator tells Fzero_check to
proceed, with the output updated to ⟨⟨b′⟩⟩P. Note that if u′ ̸= u, and Fzero_check

Title Suppressed Due to Excessive Length 31

is used as a component in a larger protocol (e.g. signing), then the execution of
the whole protocol will halt at its next step.

If the simulator also received v at the time the computation was started,
then it first generates a random m ∈ Zq, and computes u ← (m + ⌊q/B⌋ ·
v) mod q. It continues as before, secret-sharing m and generating ⟨⟨t⟩⟩P so that
⟨⟨t⌊u/(⌊q/B⌋⟩⟩P = ⟨⟨b⟩⟩P.

Simulator for corrupted server. This is very similar to the simulator for
corrupted phone. The only difference arises from the asymmetry of declassifica-
tion.

The initialization of the components (during which the simulator learns ∆S)
works the same way, as does the receiving of the share ⟨⟨v⟩⟩S, the generation of the
shares of correlated randomness, the updating of the correlated randomness, the
computation of ⟨⟨d⟩⟩S and its submission to declassification. The simulator now
sends (input, sid , ⟨⟨d⟩⟩S) to A (as if coming from FAA

declassify). The simulator may
update it with its update-command, but in the end, the v- and mp-components
must be equal to ⟨⟨d⟩⟩S as computed by the simulator; if they are different then
the simulator tells Fzero_check to stop.

The simulator sends (result?, sid , u, true) to A (as if coming from FAA
declassify)

and gets back (result, sid , u′). If u′ ̸= u, then the simulator updates ⟨⟨b⟩⟩S to
⟨⟨t⌊u′/(⌊q/B⌋)⌋⟩⟩S. The adversary can instruct MS to output something else —
⟨⟨b′⟩⟩S — to the environment. The simulator tells Fzero_check to proceed, with the
output updated to ⟨⟨b′⟩⟩S.

4.9 Symmetric reshare to parts

Alg. 7 gives the algorithm for “splitting a private value into digits”, parametrized
with the basis r = (r0, . . . , rn−1). It corresponds to a protocol Πsymm_rp, an
instance of Prot. 3, which is at least as secure as the ideal functionality Fsymm_rp,
which is an instance of Func. 4, where

– the randomness r̂ is a random element of {0, . . . , q − 1};
– the function f(v, r̂) checks whether v ≥ r̂. If so, then f splits v into digits. If

not, then f splits v+q into digits. In either case, f returns the characteristic
vectors of these digits.

The protocol Πsymm_rp is realized by a system consisting of machines MP and
MS, as well as the ideal components FAA

declassify, Fite, Fconvbit and Foffl
symm_rp. The

latter is an instance of Func. 6, generating a random s ∈ Zq and the characteristic
vectors d0, . . . ,dn−1 of its digits. Let us present the simulators showing that
Πsymm_rp indeed securely realizes Fsymm_rp.

Simulator for corrupted phone. During initialization, the simulator learns
Phone’s MAC keys via the message (globkeys,∆P) from Fkeygen.

32 Dufka et al.

During computation, the simulator receives the input ⟨⟨w⟩⟩P from Fsymm_rp,
and sends it to A. Asks Fsymm_rp to proceed, and learns the output shares
⟨⟨b0⟩⟩P, . . . , ⟨⟨bn−1⟩⟩P.

The simulator is able to generate the values and random shares according
to the probability distribution that MP would see them distributed. This is
straightforward:

– ⟨⟨s⟩⟩P is a triple (v⟨⟨s⟩⟩P, ms⟨⟨s⟩⟩P, mp⟨⟨s⟩⟩P) of random elements of Zq (for the
MAC shares, a vector of random elements);

– similarly, each element of the vectors ⟨⟨di⟩⟩P is a triple of a random value
and two vectors of random values over Z2;

– the additional elements of extended vectors ⟨⟨di⟩⟩P are ⟨⟨0⟩⟩P;
– the argument to declassification is ⟨⟨w⟩⟩P − ⟨⟨s⟩⟩P;
– y is a random element of Zq;
– (z0, . . . , zn−1) are the digits of y;
– ⟨⟨p′

i⟩⟩P and ⟨⟨p′′
i ⟩⟩P are rotations of ⟨⟨di⟩⟩P by zi and (zi + 1) positions, re-

spectively;
– ⟨⟨p0⟩⟩P = ⟨⟨p′

0⟩⟩P;
– each element of the vectors ⟨⟨pi⟩⟩P (i ≥ 1) is a triple of a random value and

two vectors of random values over Z2;
– ⟨⟨ci⟩⟩P (i ≥ 1) is the sum (i.e. XOR, computed point-wise) of certain elements

of ⟨⟨pi⟩⟩P;
– arguments to convbit are sums (i.e. XORs) of certain bits in the vectors
⟨⟨pi⟩⟩P.

The simulator does not generate these values ahead of time, but only during
the simulated execution of the protocol together with the adversary A. It starts
with sending ⟨⟨s⟩⟩P and ⟨⟨di⟩⟩P to the adversary, as if coming from Foffl

symm_rp.
The adversary may adjust these values, but any adjustments to the v- or ms-
components will lead to the simulator instructing Fsymm_rp to stop execution; this
instruction may come either immediately or only at the time when the adjusted
value is used in FAA

declassify (for ⟨⟨s⟩⟩P) or in Fite (for ⟨⟨di⟩⟩P).
The adversary will ask MP to invoke FAA

declassify in order to obtain y. The
simulator simulates declassification identically to App. 4.8: there is again the
share ⟨̃⟨y⟩⟩P computed by the simulator, and the share ⟨̂⟨y⟩⟩P initially submitted
by the adversary as-if through MP and later corrected as-if through FAA

declassify.
There is the simulator computing components of ⟨⟨y⟩⟩S (on the basis of the value
y that it has chosen) and sending them to A. In the end, the adversary may try
to adjust y through the result-messages; this again leads to the stopping of the
execution later, at the point where the changed digit zi is handled in the main
loop.

The adversary will askMP to invoke Fite for n times in a row. If the adversary
adjusts the v- or ms-part of the outputs of Fite, then these will be caught either
in the next iteration (if they change the v- or ms-part of the share of the carry
bit), or in the invocation of Fconvbit.

The adversary will ask MP to invoke Fconvbit for
∑

r times. The simulator
will give it the components of ⟨⟨b0⟩⟩P, . . . , ⟨⟨bn−1⟩⟩P as results. The adversary

Title Suppressed Due to Excessive Length 33

may adjust these results. The simulator tells Fsymm_rp to proceed and to give
the adjusted values to P.

Simulator for corrupted server. The protocol is (almost) symmetric. The
simulator for corrupted server works almost the same as the simulator for cor-
rupted phone; the changes in handling asymmetric FAA

declassify are the same as in
App. 4.8.

4.10 Finding the high bits

Alg. 8 gives the algorithm for finding the high bits of a value ⟨⟨w⟩⟩. It corresponds
to a protocol Πhigh_bits, an instance of Prot. 3, which is at least as secure as the
ideal functionality Fhigh_bits, which is an instance of Func. 4, where the function f
computes the high bits of its argument. The real system implementing Πhigh_bits
consists of machines MP and MS, as well as ideal components Fsymm_rp and
Fzero_check. Let us construct the simulators showing that Πhigh_bits is at least as
secure as Fhigh_bits.

Simulator for corrupted phone. During initialization, the simulator learns
Phone’s MAC keys via the message (globkeys,∆P) from Fkeygen.

During computation, the simulator receives the input ⟨⟨w⟩⟩P from Fhigh_bits,
and sends it to A. Asks Fhigh_bits to proceed, and learns the output share ⟨⟨v⟩⟩P.

The simulator waits for A to ask MP to start the computation of Fsymm_rp
with the input share ⟨⟨w′⟩⟩P, where ⟨⟨w′⟩⟩P = ⟨⟨w⟩⟩P+⟨⟨α/2− 1⟩⟩P. The adversary
can change that input before Fsymm_rp begins. If the adversary changes either the
v-component or the ms-component of ⟨⟨w′⟩⟩P, then the simulator tells Fhigh_bits
to stop.

The simulator generates random vectors ⟨⟨b0⟩⟩P, . . . , ⟨⟨b4⟩⟩P and sends these
to the adversary as the output shares from Fsymm_rp. It also computes ⟨⟨g⟩⟩P ←
⟨⟨5⟩⟩P−

∑3
i=0⟨⟨bi,0⟩⟩P−

∑2s
i=s+1⟨⟨b4,i⟩⟩P. The adversary may change ⟨⟨b0⟩⟩P, . . . , ⟨⟨b4⟩⟩P.

The simulator waits for A to askMP to start the computation of Fzero_check
with the input share ⟨⟨g⟩⟩P. The adversary may change that input before Fzero_check
begins. But if its v- or ms-components differ from the values that the simulator
has previously computed, then the simulator tells Fhigh_bits to stop.

The simulator computes ⟨⟨c⟩⟩P ←
∑s−1

i=0 i·⟨⟨b4,i⟩⟩P+
∑2s

i=s(i−s)·⟨⟨b4,i⟩⟩P−⟨⟨v⟩⟩P.
The simulator sends ⟨⟨c⟩⟩P to the adversary as the output share from Fzero_check.
The adversary may now give an adjusted value of ⟨⟨v⟩⟩P to the simulator. The
simulator forwards this to Fhigh_bits and asks it to proceed.

Simulator for corrupted server. The protocol is symmetric wrt. the roles of
Phone and Server. The simulator is the same as the one for corrupted Phone,
with P and S swapped.

34 Dufka et al.

4.11 Commitment computation

Alg. 9 gives the algorithm for creating the secret ⟨⟨y⟩⟩ and the corresponding
FSwA commitment ⟨⟨wH⟩⟩. We consider it as a template for the protocol Πgcom

(an instance of Prot. 3). The inputs and outputs of the protocol Πgcom are the
same as those of the ideal functionality Fgcom. This functionality is an instance
of Func. 4, where the function f receives the public matrix A as an input and
returns a random vector y and wH = HighBits(A · y).

The protocol Πgcom is realized by a system consisting of the machines MP
andMS, as well as the ideal functionalities Fhigh_bits and Frandbit. Let us present
the simulators showing that Πgcom is at least as secure as Fgcom.

Simulator for corrupted phone. During initialization, the simulator learns
the MAC keys ∆P of the phone via the message (globkeys,∆P) from Fkeygen.

During computation, the simulator receives the input A from Fgcom, and
sends it to A. Asks Fgcom to proceed and learns the output shares ⟨⟨y⟩⟩P and
⟨⟨wH⟩⟩P.

The simulator waits for A to ask MP to start the computations of Frandbit.
The simulator comes up with random shares ⟨⟨bi,t,u⟩⟩P for i ∈ [ℓ], t ∈ [256], and
u ∈ [(log γ1) + 1], with the condition that the relevant linear combinations of
these shares were equal to the coefficients of the elements of ⟨⟨y⟩⟩P. Concretely,
for each i ∈ [ℓ] and t ∈ [256], the simulator

– randomly generates ⟨⟨bi,t,u⟩⟩P for u ∈ {1, . . . , log γ1},
– defines ⟨⟨bi,t,0⟩⟩P ← cfft(⟨⟨yi⟩⟩P)−

∑log γ1

u=1 2u · ⟨⟨bi,t,u⟩⟩P,

where cfft(p) denotes the coefficient of Xt in the polynomial p.
The simulator computes ⟨⟨w⟩⟩P ← A · ⟨⟨y⟩⟩P. Also, the simulator sends all

⟨⟨bi,t,u⟩⟩P to A, as output shares from the computations performed by Frandbit.
The adversary may adjust these shares, and the simulator will update ⟨⟨y⟩⟩P and
⟨⟨w⟩⟩P accordingly.

The simulator waits for A to askMP to start the computations of Fhigh_bits
for each coefficient of each element of ⟨⟨w⟩⟩P. The adversary may adjust these
inputs by communicating with (presumably) Fhigh_bits. But if adversary’s adjust-
ments either to ⟨⟨wi,t⟩⟩P or (earlier) to ⟨⟨bi,t,u⟩⟩P cause the v- or ms-components
of ⟨⟨w⟩⟩P to change from what the simulator originally computed, then the sim-
ulator will tell Fgcom to stop.

The simulator will send ⟨⟨wH⟩⟩P to the adversary as the output shares of
computations of Fhigh_bits. The adversary may adjust these; the simulator will
send adjusted ⟨⟨wH⟩⟩P (and also ⟨⟨y⟩⟩P) back to Fgcom and tell it to proceed.

Simulator for corrupted server. The protocol is symmetric wrt. the roles of
Phone and Server.

The simulator is the same as the one for corrupted Phone, with P and S
swapped.

Title Suppressed Due to Excessive Length 35

– On input (corrupt, sid ,X) from S before the initialization, mark that X is
corrupted and send (corrupted, sid) to X.

– On input (init, sid) from P and (init, sid ,∆S) from S: Store ∆S. If S is corrupted,
then send (globkeys,∆S) to the adversary.

– On input (compute, sid , ⟨|v|⟩P) from P and (compute, sid , ⟨|v|⟩S) from S, do the
following:
• If a party X is corrupted, send ⟨|v|⟩X to the adversary, and receive back an

adjusted version of ⟨|v|⟩X.
• Recover v from the shares; check the MACs. If S is honest, but the MACs

does not verify, then stop.
• Pick random vP ∈ Zq and put vS ← (v − vP) mod q.
• Let xP ← split(vP) and xS ← split(vS). Let r← xP ·∆(Q)

S . Secret-share r as
JrK(Q).

• Define ⟨|p|⟩P ← (xP, JrKP) and ⟨|p|⟩S ← (xS, JrKS).
• If X is corrupted, then send ⟨|p|⟩X to S. Wait for the adversary’s permission

to proceed; also get updated ⟨|p|⟩X.
• Send (result, sid , ⟨|p|⟩S) to S and (result, sid , ⟨|p|⟩P) to P.

Functionality 8: Fasymm_rp: Ideal functionality for asymmetric reshare to parts

4.12 Asymmetric reshare to parts

Alg. 10 gives the algorithm for splitting Phone’s share of a value into digits
and adding MACs to these digits. Alg. 10 is informally expected to have AP-
security, i.e. it offers security against a malicious Phone, but only privacy against
a malicious Server. We can define the protocol Πasymm_rp, an instance of Prot. 3,
on the basis of Alg. 10. The protocol is realized by a system consisting of the
machines MP and MS, as well as the ideal component Foffl

asymm_rp for correlated
randomness, which is an instance of Func. 6. Note that Foffl

asymm_rp is an AP-secure
functionality.

The ideal functionality Fasymm_rp securely realized by Πasymm_rp is given in
Func. 8. We see that its output are the digits xP and xS of the shares of a random
resharing of its input v; there are also Server’s MACs on the digits held by the
Phone. A notable omission in Func. 8 is the corrupted Server’s ability to define
the algorithm A running on the input. Indeed, as the server is actually passive
in Alg. 10, it does not get a chance to change the output so precisely; it can only
change its own output share.

In order to show that Πasymm_rp is at least as secure as Fasymm_rp, let us
present the simulators.

Simulator for corrupted phone. During the initialization, the simulator does
not get any information, because there is no ∆P. At the beginning of the compu-
tation, the simulator receives ⟨|v|⟩P = (JvKP, JV KP) from Fasymm_rp and forwards
it to the adversary (as if MP reporting to A about the start of the compu-
tation). The simulator asks the ideal functionality to continue and learns the
output ⟨|p|⟩P = (xP, JrKP).

36 Dufka et al.

The simulator computes m ← split−1(xP). It generates a random JMK(q)P . It
sends m, JMKP and JrKP to A, as if coming from Foffl

asymm_rp. The simulator waits
for the adversary to tell MP that it should send the message (w,Mw) to MS.
The simulator verifies that w = JvKP −m and Mw = JV KP − JMKP. If not, then
the simulator tells Fasymm_rp to stop. Otherwise, the simulator receives from A
the values thatMP should output to P; the simulator tells Fasymm_rp to update
P’s outputs with these values and to proceed.

Simulator for corrupted server. During the initialization, the simulator
learns ∆S and forwards this to A. At the beginning of the computation, the sim-
ulator receives ⟨|v|⟩S = (JvKS, JV KS) from Fasymm_rp and forwards it to the adver-
sary. The simulator asks the ideal functionality to continue and gets the output
⟨|p|⟩S = (xS, JrKS). The simulator computes vS = split−1(xS) and w ← vS − JvKS.
The simulator generates a random JMKS ∈ Zq and sends it and JrKS to A, as
if coming from Foffl

asymm_rp. The simulator tells A that MS received the message
w,Mw from MP, where Mw = w · ∆S − (JV KS − JMKS). The simulator then
expects A to tell it, what MS should output to the environment; the simulator
tells Fasymm_rp to update S’s outputs with these values and to proceed.

4.13 Characteristic vector

Alg. 11 gives the algorithm for computing the characteristic vector of a value
shared modulo Q, where the resulting bits are shared modulo N . We can define
an AP-secure protocol Πch_vec as an instance of Prot. 3, implementing Alg. 11.
The protocol Πch_vec is realized by a system consisting of machines MP and
MS, as well as the ideal components FAP

declassify and Foffl
ch_vec, where the latter is an

instance of Func. 6. Let us give the simulators showing that Πch_vec is a secure
implementation of Fch_vec, where the latter is an instance of Func. 5, where
the function f computes the characteristic vector of its input, the inputs to the
functionality are secret-shared modulo Q, and the outputs are shared modulo
N .

Simulator for corrupted phone. During the initialization, the simulator no-
tifies A of the initialization. At the beginning of the computation, the simulator
receives ⟨|v|⟩(Q)

P from Fch_vec and forwards it to A. The simulator asks the ideal
functionality to continue and receives the output ⟨|b|⟩(N)

P .
The simulator generates a random ⟨|r|⟩(Q)

P . It also generates a random f ∈ ZQ

and defines ⟨|di|⟩P ← ⟨|b(i+f) mod Q|⟩P for all i ∈ ZQ. The simulator sends ⟨|r|⟩(Q)
P

and ⟨|d|⟩P to A, as if coming from Foffl
ch_vec. The adversary may respond with

updates to ⟨|r|⟩(Q)
P and ⟨|d|⟩P; if there are updates to ⟨|r|⟩(Q)

P then the simulator
tells Fch_vec to stop.

The simulator computes ⟨|f |⟩P ← ⟨|v|⟩P − ⟨|r|⟩P and JfKS ← f − JfKP, and it
expects A to command MP to tell FAP

declassify to declassify ⟨|f ′|⟩P. The simulator

Title Suppressed Due to Excessive Length 37

sends (input, sid , ⟨|f ′|⟩P, JfKS) to A (as if coming from FAP
declassify) and expects

back an update to ⟨|f ′|⟩P. If the updated share is different from ⟨|f |⟩P, then the
simulator tells Fch_vec to stop. Otherwise, the simulator tells A that Server’s
MAC check passed; in response, A may update the declassified value f to f̂ .
The simulator tells Fch_vec to proceed, with the final result to P being updated
to the rotation of (updated) ⟨|d|⟩P by f̂ positions.

Simulator for corrupted server. During the initialization, the simulator re-
ceives ∆S from Fch_vec and forwards it to A. At the start of the execution with
session identifier sid , the simulator receives ⟨|v|⟩S from the ideal functionality and
forwards it to A. The simulator also receives ⟨|b|⟩S from the ideal functionality.

The simulator picks a random f ∈ ZQ. It generates a random r ∈ ZQ and
secret-shares it as ⟨|r|⟩ (uses ∆S) to compute the MAC. Let d be the characteristic
vector of r. The simulator secret-shares d as ⟨|d|⟩ with the additional constraint
that ⟨|di|⟩S = ⟨|b(i+f) mod Q|⟩S for each i ∈ ZQ. The simulator sends ⟨|r|⟩S and
⟨|d|⟩S to the adversary, as if coming from Foffl

ch_vec.
The simulator waits for A to instruct MS to declassify ⟨|g|⟩S. The simula-

tor sends (input, sid , ⟨|g|⟩S) to A (as if coming from FAP
declassify) and receives back

an update for it. The simulator knows that this represents the adversarially-
introduced error ε = JvKS − JrKS − JgKS in the value of v. The simulator defines
g ← f+ε and secret-shares g into ⟨|g|⟩, with the constraint that ⟨|g|⟩S has already
been given by the adversary. This “secret-sharing under a constraint” actually
means that the simulator computes

– JgKP ← g − JgKS, and
– ms⟨|g|⟩P ← JgKP ·∆S − ms⟨|g|⟩S.

Here all computations are modulo Q. Previously, ⟨|d|⟩(N) had been computed in
the same manner.

The simulator sends (result?, sid , g, true) to A, as if coming from FAP
declassify.

The adversary responds with (result, sid , g′) to FAP
declassify, which the simulator can

ignore. The simulator now creates the following description of an algorithm A
that would take ⟨|v|⟩P as an argument:

– Recover v from JvKP and JvKS.
– Return the characteristic vector of v + ε.

The simulator sends the description of A to the ideal functionality. The simulator
expects updated ⟨|b|⟩S from A, which it forwards to the ideal functionality, to be
outputted to S.

4.14 Short overflow

Alg. 12 gives the algorithm for computing the bits that indicate whether the
value v, secret-shared over a small modulus Q, is equal to a constant r − 1, or
is greater than or equal to r. The returned bits may be shared over a different

38 Dufka et al.

modulus N . We can define an AP-secure protocol Πshort_of as an instance of
Prot. 3, implementing Alg. 12. This protocol is realized by a system consisting of
the machinesMP andMS, as well as the ideal component Fch_vec. The protocol
securely implements the ideal functionality Fshort_of, which is an instance of
Func. 5, where the inputs are shared modulo Q, the outputs are shared modulo
N , and the function f computes the previously mentioned two bits. Let us
present the simulators showing that Πshort_of indeed is at least as secure as
Fshort_of.

Simulator for corrupted phone. During the initialization, the simulator no-
tifies A of the initialization. At the beginning of the computation, the simulator
receives ⟨|v|⟩(Q)

P from Fshort_of and forwards it to A. The simulator asks Fshort_of

to continue and receives the output shares ⟨|b|⟩(N)
P and ⟨|c|⟩(N)

P .
The simulator waits for A to instruct MP to invoke the computation of

Fch_vec with the argument ⟨|v|⟩P. If the argument received from A is the different
from what was received from Fshort_of earlier, then the simulator tells Fshort_of

to stop. The simulator generates a random vector ⟨|d|⟩(N)
P of length Q, with

constraints ⟨|dr−1|⟩P = ⟨|b|⟩P and
∑Q−1

i=r ⟨|di|⟩P = ⟨|c|⟩P. The simulator sends ⟨|d|⟩P
to A as output from Fch_vec. The adversary may sends adjustments to ⟨|d|⟩P; the
simulator will update ⟨|b|⟩P and ⟨|c|⟩P accordingly. The simulator tells Fshort_of to
proceed, with adjusted ⟨|b|⟩P and ⟨|c|⟩P.

Simulator for corrupted server. During the initialization, the simulator re-
ceives ∆S from the ideal functionality and forwards it to A. At the beginning
of the computation, the simulator receives ⟨|v|⟩S from the ideal functionality and
forwards it to A. Also receives the shares ⟨|b|⟩(N)

S and ⟨|c|⟩(N)
S of the output.

The simulator waits for A to instruct MS to invoke the computation of
Fch_vec with the argument ⟨|v|⟩S; the simulator responds (as Fch_vec) that com-
putation with ⟨|v|⟩S has indeed started. As Fch_vec is an instance of Func. 5, the
adversary now expects to receive its share of the output from this functional-
ity. The simulator thus generates a random ⟨|d|⟩(N)

S satisfying the constraints
⟨|dr−1|⟩S = ⟨|b|⟩S and

∑Q−1
i=r ⟨|di|⟩S = ⟨|c|⟩S, and sends it to the adversary. The

adversary now sends the description of the algorithm A that it expects to be
executed by Fch_vec. The algorithm A expects to get ⟨|v|⟩P as the input, and it
will return a vector of booleans, which may be the characteristic vector of v.

The simulator will now create the description of the following algorithm B
that takes ⟨|v|⟩P as the input:

1. compute d← A(⟨|v|⟩P), where d ∈ ZQ
N ;

2. let b← dr−1 and c←
(∑Q−1

i=r di
)
mod N ;

3. return b and c.

The simulator sends the description of B to Fshort_of. It will get updates from
A to ⟨|b|⟩(N)

S and ⟨|c|⟩(N)
S and forward these to Fshort_of, telling it to proceed with

outputs to P and S.

Title Suppressed Due to Excessive Length 39

4.15 Long overflow

Alg. 13 gives the algorithm for computing the bit indicating whether the length-d
vector of values p, secret-shared over a small modulus Q, is larger than rd, when
we interpret the elements of p as digits in basis r (and the digits themselves
are allowed to be larger than r − 1). The returned bit may be shared over a
different modulus M , and there is a “middle” modulus N for the bits indicating
the overflow of each single digit. We can define an AP-secure protocol Πlong_of
as an instance of Prot. 3, implementing Alg. 13. This protocol is realized by
a system consisting of the machines MP and MS, as well as ideal components
Fshort_of (with input modulus Q and output modulus N) and Fch_vec (with input
modulus N and output modulus M). The protocol securely implements the ideal
functionality Flong_of, which is an instance of Func. 5, where the inputs are shared
modulo Q, the outputs are shared modulo M , and the function f , applied to
(p0, . . . , pd−1), outputs whether

∑d−1
i=0 ripi is greater or equal to rd. Let us present

the simulators showing that Πlong_of indeed is at least as secure as Flong_of.

Simulator for corrupted phone. During the initialization, the simulator no-
tifies A of the initialization. At the beginning of the computation, the simulator
receives ⟨|p|⟩(Q)

P from Flong_of and forwards it to A. The simulator asks Flong_of to
continue and receives the output share ⟨|z|⟩(M)

P .The simulator generates random
⟨|bi|⟩(N)

P and ⟨|ci|⟩(N)
P for i ∈ [d].

The simulator waits for A to command MP to start the computation of
Fshort_of with each ⟨|pi|⟩P. The simulator simulates Fshort_of running and responds
that the shares of the output are ⟨|bi|⟩(N)

P and ⟨|ci|⟩(N)
P . The adversary may ask

Fshort_of to change either its inputs, but any such ask will result in the simulator
asking Flong_of to stop. Indeed, the ideal component Fshort_of of the real system
would catch such changes, because it checks the MACs. The adversary may also
ask Fshort_of to change its outputs; the simulator will ignore these requests.

The simulator computes ⟨|m|⟩P ←
∑d−1

i=1 2i−1 · ⟨|bi|⟩P+
∑d−1

i=0 2i · ⟨|ci|⟩P. It waits
for A to command MP to start the computation of Fch_vec with the argument
that should be equal to ⟨|m|⟩P. If it is not (after A has had the chance to ask
Fch_vec to change its inputs), then the simulator tells Flong_of to stop, because
Fch_vec would have caught a wrong MAC.

The simulator generates a random ⟨|k|⟩(M)
P of length N , with the constraint∑N−1

i=2d−1⟨|ki|⟩P = ⟨|z|⟩P. It tells A that the output of Fch_vec is ⟨|k|⟩P. The ad-
versary can submit its changes to ⟨|k|⟩P. The simulator recomputes ⟨|z|⟩P :=∑N−1

i=2d−1⟨|ki|⟩P and tells the adversary that this is P’s output from the protocol.
The adversary may change this ⟨|z|⟩P as well, the simulator sends the changed
value back to Flong_of and tells it to proceed with outputs.

Simulator for corrupted server. During the initialization, the simulator re-
ceives ∆S from the ideal functionality and forwards it to A. At the beginning
of the computation, the simulator receives ⟨|p|⟩S from the ideal functionality and

40 Dufka et al.

forwards it to A. Also receives the share ⟨|z|⟩(M)
S of the output, because Flong_of

is an instance of Func. 5.
The simulator waits for A to command MS to start the computation of

Fshort_of with each ⟨|pi|⟩S. The adversary expects to get back the shares of the
output; the simulator makes up random ⟨|bi|⟩S and ⟨|ci|⟩S and sends them to
A. The adversary then sends the descriptions of algorithms A0, . . . ,Ad−1 to
the simulator (these interactions for all the d invocations may be arbitrarily
interleaved).

The simulator waits for A to command MS to start the computation of
Fch_vec with ⟨|m|⟩(N)

S . If the adversary does not try to affect the computations
then ⟨|m|⟩S =

∑d−1
i=1 2i−1·⟨|bi|⟩S+

∑d−1
i=0 2i·⟨|ci|⟩S, but if the adversary is performing

an active attack, then it may be something else. The simulator now creates a
random ⟨|k|⟩(M)

S of length N , with the constraint
∑N−1

i=2d−1⟨|ki|⟩S = ⟨|z|⟩S. The
simulator sends ⟨|k|⟩(M)

S to the adversary, as if it being the output share of Fch_vec.
The adversary sends the description of an algorithm B to the simulator.

The simulator now constructs the following algorithm C that takes ⟨|p|⟩P as
an argument:

1. For each i ∈ [d], let (bi, ci) ← Ai(⟨|pi|⟩P). The values bi and ci are elements
of ZN .

2. For each i ∈ [d], compute ⟨|bi|⟩P from from bi and ⟨|bi|⟩S, using ∆S to compute
the MAC.

3. Similarly, compute ⟨|ci|⟩P for each i ∈ [d].
4. Let ⟨|m|⟩P ←

∑d−1
i=1 2i−1 · ⟨|bi|⟩P +

∑d−1
i=0 2i · ⟨|ci|⟩P.

5. Let k← B(⟨|m|⟩P). The elements of the vector k belong to ZM .
6. Return

∑N−1
i=2d−1 ki.

The simulator sends the description of C to Flong_of. It may get an update from
A to ⟨|z|⟩(M)

S , and will forward this to Flong_of, telling it to proceed with outputs
to P and S.

4.16 Inequality check

Alg. 14 gives the algorithm to compute the bit indicating whether a secret-
shared value is less than a constant. The input is shared over the modulus q,
while the output may be shared over some different modulus M , and there
are also moduli Q and N (all prime), radix r and length d parametrizing the
algorithm. We can define an AP-secure protocol Πineq as an instance of Prot. 3,
implementing Alg. 14. This protocol is realized by a system consisting of the
machines MP and MS, as well as ideal components Fasymm_rp (with output
modulus Q) and Flong_of (with input modulus Q, “middle” modulus N , and
output modulus M). The protocol securely implements the ideal functionality
Fineq, which is an instance of Func. 5, where the inputs are shared modulo q,
the output bit is shared modulo M , and the function f , applied to private v and
public C, outputs whether v < C. Let us present the simulators showing that
Πineq indeed is at least as secure as Fineq.

Title Suppressed Due to Excessive Length 41

Simulator for corrupted phone. During the initialization, the simulator no-
tifies A of the initialization. At the beginning of the computation, the simulator
receives ⟨|v|⟩P and C from the ideal functionality and forwards them to A. The
simulator asks Fineq to continue, and gets the output share ⟨|z|⟩(M)

P . The simula-
tor waits for A to instructMP to submit ⟨|v|⟩P to Fasymm_rp; the adversary may
further adjust it by sending message directly to Fasymm_rp. If the value finally
chosen by A is different from ⟨|v|⟩P, then the simulator instructs Fineq to stop.
Otherwise the simulator generates a random vector ⟨|p|⟩(Q)

P and sends it to the
adversary, as if coming from Fasymm_rp.

The simulator waits for A’s commands to MP to submit ⟨|p|⟩P to Flong_of
twice. The adversary is able to change the input to the two computations made
by Flong_of, but any change will lead to the simulator telling Fineq to stop. The
simulator generates random ⟨|x|⟩(M)

P and ⟨|y|⟩(M)
P satisfying the constraint ⟨|z|⟩P =

⟨|1|⟩P − ⟨|y|⟩P + ⟨|x|⟩p − ⟨|0|⟩P. The simulator sends ⟨|x|⟩P and ⟨|y|⟩P to A, as if
coming from the two computations done by Flong_of. The adversary can submit
its changes to ⟨|x|⟩P and ⟨|y|⟩P; the simulator will update ⟨|z|⟩P accordingly. The
simulator notifies A that the output for P is ⟨|z|⟩P, the adversary may change it,
the simulator tells Fineq to proceed with changed ⟨|z|⟩P.

Simulator for corrupted server. During the initialization, the simulator re-
ceives ∆S from the ideal functionality and forwards it to A. At the beginning
of the computation, the simulator receives ⟨|v|⟩S from the ideal functionality and
forwards it to A. Also receives the share ⟨|z|⟩(M)

S of the output, because Fineq is
an instance of Func. 5.

Wait for A to instruct S to submit ⟨|v|⟩S to Fasymm_rp. Inform (as Fasymm_rp)
A that ⟨|v|⟩S was submitted, allow A to update it. Let ε ∈ Zq be the difference
between the updated JvKS and the original JvKS received from Fineq. Generate
a random ⟨|p|⟩(Q)

S and send it to A as if coming from Fasymm_rp. Let wS ←
split−1(JpKS). Let ⟨|c|⟩(M)

S ← ⟨|0|⟩S; update JcKS to 1 if wS ≥ C.
Wait for A to instruct S to submit ⟨|a|⟩(Q)

S and ⟨|b|⟩(Q)
S to Flong_of for com-

putation. The adversary expects to get the output shares ⟨|x|⟩(M)
S and ⟨|y|⟩(M)

S .
The simulator randomly generates them, such that the constraint ⟨|z|⟩S = ⟨|1|⟩S+
⟨|x|⟩S − ⟨|y|⟩S − ⟨|c|⟩S is satisfied, and sends them to A. The adversary sends the
descriptions of algorithms A1 and A2 meant for the two computations of Flong_of.
These algorithms expect ⟨|p|⟩P as an input. The simulator creates the description
of the following algorithm B, expecting ⟨|v|⟩P as an input:

1. Recover v from JvKP and JvKS.
2. Let JpKP ← split(v + ε) − JpKS. I.e. JpKP is computed so that the condition

for the output of Alg. 10 holds, if we put (v + ε) mod q in the position of v
there.

3. Extend JpKP to ⟨|p|⟩P by computing P’s MAC share from JpKP, ∆S and S’s
MAC share.

4. Let x← A1(⟨|p|⟩P) and y ← A2(⟨|p|⟩P). Here x, y ∈ ZM .

42 Dufka et al.

5. Output (1 + x− y − c) mod M .

The simulator sends the description of B to Fineq. It may get an update from A
to ⟨|z|⟩(M)

S , and will forward this to Fineq, telling it to proceed with outputs to P
and S.

4.17 Rejection check

Alg. 15 gives the algorithm for the “second half” of a signing attempt: the rejec-
tion check. It takes a number of secret-shared values and returns 1 if all these
values are inside bounds. We can define an AP-secure protocol Πrej_check as an in-
stance of Prot. 3, implementing Alg. 15. The protocol Πrej_check is implemented
by a system consisting of machines MP and MS, and the ideal components
Fineq and Fch_vec (with parameters named in Alg. 15). The protocol Πrej_check
is at least as secure as the ideal functionality Frej_check, which is an instance of
Func. 5, where the function f receives z and x as private inputs, and outputs
a bit showing whether they all passed the rejection check. Let us present the
simulators that attest to this.

Simulator for corrupted phone. During the initialization, the simulator no-
tifies A of the initialization. At the beginning of the computation, the simulator
receives ⟨|z|⟩P and ⟨|x|⟩P from the ideal functionality and forwards them to A.
The simulator asks Frej_check to continue and receives the output share ⟨|b0|⟩(2)P .

The simulator waits for A to ask MP to start the computation of Fineq
for each coefficient of each element of ⟨|z|⟩P and ⟨|x|⟩P (shifted by appropri-
ate amount). The adversary has the chance to change these coefficients, but
any change will result in the simulator asking Frej_check to stop. The simulator
generates a random vector ⟨|v|⟩P (using the modulus M) of the correct length
(256 · (k + ℓ)), and uses the elements of this vector as Phone’s output shares
from all the computations of Fineq. The simulator sends the vector ⟨|v|⟩(M)

P to A,
element by element.

The simulator computes ⟨|s|⟩P ←
∑256(k+ℓ)−1

i=0 (⟨|1|⟩P − ⟨|vi|⟩P) and expects A
to askMP to start the computation of Fch_vec with the input ⟨|s|⟩P. If the input
is anything else (after the adversary has had its opportunity to change it by
communicating with (presumably) Fch_vec, then the simulator tells Frej_check to
stop. Otherwise, the simulator generates a random vector ⟨|b|⟩(2)P , where ⟨|b0|⟩P has
already been defined. The simulator sends ⟨|b|⟩P to the adversary. The adversary
may make changes; the simulator tells Frej_check to proceed, using the perhaps
changed ⟨|b0|⟩P.

Simulator for corrupted server. During the initialization, the simulator re-
ceives ∆S from the ideal functionality and forwards it to A. At the beginning
of the computation, the simulator receives ⟨|z|⟩S and ⟨|x|⟩S from the ideal func-
tionality and forwards them to A. The simulator also receives the output share
⟨|b0|⟩S from the adversary.

Title Suppressed Due to Excessive Length 43

The simulator waits forA to askMS to start the computation of Fineq for each
coefficient of each element of ⟨|z|⟩S and ⟨|x|⟩S (shifted by appropriate amount).
The adversary expects to get the output shares of the results of each comparison.
Hence the simulator generates a random ⟨|v|⟩S (of the correct length) and sends
it to A, element by element. The adversary responds by sending the algorithm
descriptions of the algorithms A0, . . . ,A256(k+ℓ)−1, each of them expecting a
share ⟨|zi|⟩P or ⟨|xi|⟩P as input and producing an element of ZM as output, to the
simulator.

The simulator computes ⟨|s|⟩S ←
∑256(k+ℓ)−1

i=0 (⟨|1|⟩S−⟨|vi|⟩S) and expects A to
askMS to start the computation of Fch_vec for ⟨|s|⟩S. The adversary expects to get
the output share of this computation; the simulator generates a random ⟨|b|⟩(2)S ,
where the element ⟨|b0|⟩S has already been received from Frej_check, and sends
⟨|b|⟩S to A. The adversary responds by sending to the simulator the description
of the algorithm B that takes a share ⟨|s|⟩(M)

t extsfP as input and returns a
vector of bits.

The simulator creates the description of the following algorithm C that takes
⟨|z|⟩P and ⟨|x|⟩P as input and outputs a bit:

1. Apply each of Ai to one of the elements of ⟨|z|⟩P or ⟨|x|⟩P, shifted by the
required amount (either by γ1 − β − 1 or by γ2 − β − 1). Let v ∈ Z256(k+ℓ)

M

be the vector of outputs from these algorithms Ai.
2. Let s ←

∑
i vi. Compute ⟨|s|⟩P so, that (⟨|s|⟩P, ⟨|s|⟩S) will be a secret-sharing

of s. This computation uses ∆S.
3. Let b← B(⟨|s|⟩P).
4. Return b0.

The simulator sends the description of C to Frej_check. It may get an update from
A to ⟨|b0|⟩(2)S , and will forward this to Frej_check, telling it to proceed with outputs
to P and S.

5 Security of the ML-DSA protocol

Protocol ΠML-DSA, given in Prot. 4, corresponds to Alg. 16, but it also contains
the rest of the functionality implementing FML-DSA (Func. 1) — initialization and
key generation. The system implementing ΠML-DSA consists of the two protocol
machinesMP andMS, and six ideal components that we have described above:
Fkeygen, Fgcom, Frej_check, FAA

declassify, FAP
declassify, and FU

pubrand, where U is the uniform
distribution over matrices A in the public key of ML-DSA.

To show that ΠML-DSA is at least as secure as FML-DSA, we need to construct
a simulator. We describe it for the case of corrupted phone, and for the case of
corrupted server.

5.1 Simulator for corrupted phone

Start. In the following, the adversaryA expects to send messages toMP and the
ideal components in ΠML-DSA, as well as receive messages from them. All these

44 Dufka et al.

– On input (corrupted, sid) from A or any ideal component to MX before the
initialization, machine MX sends (corrupted, sid) to X and becomes corrupted.

– On input (keygen, sid) from X to MX, machine MX generates MAC keys ∆X.
Sends (init, sid ,∆X) to all ideal components that have to be initialized (Messages
from MP to Frej_check and FAP

declassify do not include ∆P). Machine MX will then
1. send (generate, sid) to FU

pubrand and get back (result, sid ,A);
2. send (compute, sid) to Fkeygen and get back (result, sid , ⟨⟨s1⟩⟩X, ⟨⟨s2⟩⟩X);
3. Compute ⟨⟨t⟩⟩X ← A · ⟨⟨s1⟩⟩X + ⟨⟨s2⟩⟩X;
4. send (declassify, sid , ⟨⟨t⟩⟩X) to FAA

declassify and get back (result, sid , t).
It stores the received values and sends (pkey, sid ,A, t) back to X.

– On input (sign, sid , µ) from P to MP, the machineMP works as follows, where
X ≡ P:
1. Send (compute, sid ,A) to Fgcom and get back (result, sid , ⟨⟨y⟩⟩X, ⟨⟨wH⟩⟩X)
2. Compute ⟨⟨wL⟩⟩X ← A · ⟨⟨y⟩⟩X − α · ⟨⟨wH⟩⟩X
3. Send (declassify, sid , ⟨⟨wH⟩⟩X) to FAA

declassify and get back (result, sid ,wH)

4. Compute c← H(µ,wH), ⟨⟨z⟩⟩X ← ⟨⟨y⟩⟩X + c · ⟨⟨s1⟩⟩X,
⟨⟨x⟩⟩X ← ⟨⟨wL⟩⟩X − c · ⟨⟨s2⟩⟩X

5. Obtain ⟨|z|⟩X and ⟨|x|⟩X from ⟨⟨z⟩⟩X and ⟨⟨x⟩⟩X by forgetting the shares of P’s
MACs

6. Send (compute, sid , ⟨|z|⟩X, ⟨|x|⟩X) to Frej_check and get back (result, sid , ⟨|b|⟩X)
7. Send (declassify, sid , ⟨|b|⟩X) to FAP

declassify and get back (result, sid , b)
8. If b = 0, send (result, sid ,⊥) to X
9. If b = 1, then receive (ss, sid , JzKS) from MS. Recover z. Verify the signature

(z, c) on the message µ. If it verifies, send (sig, sid , z) to MS and
(signature, sid , (z, c)) to P. If it does not verify, then stop working.

– On input (sign, sid , µ) from S to MS, the machineMS works as follows:
1. Perform the steps (1)–(8) above, with X ≡ S
9. If b = 1, then send (ss, sid , JzKS) to MP. Receive (sig, sid , z) from MP. Verify

the signature (z, c) on the message µ. If it verifies, send (signature, sid , (z, c))
to S. If it does not verify, then stop working.

Protocol 4: ML-DSA protocol, ΠML-DSA

messages terminate or originate at the simulator Sim that we are constructing.
The messages seemingly going from MP to A are the reports of the messages
and queries that MP has received from other components of ΠML-DSA and the
environment Z, while the messages from A to MP are commands to send a
message to a certain component or Z. The simulator Sim has already received
from the adversary A the corruption query forMP, and forwarded to FML-DSA.

Key generation. On input (pkey, sid ,A, t) from FML-DSA, proceed as follows.
Generate the MAC keys ∆S. Notify A of the start of key generation; receive
MAC keys ∆P from it (as part of the (init)-queries thatMP has to send to ideal
components); send these keys back to A inside (globkeys)-queries from ideal
components.

Title Suppressed Due to Excessive Length 45

Receive A’s command toMP to send (generate, sid) to Fpubrand. Send (result,
sid ,A) to A.

Receive A’s command to MP to send (compute, sid ,A) to Fkeygen. Gener-
ate random ⟨⟨s1⟩⟩P and ⟨⟨s2⟩⟩P. Compute ⟨⟨t⟩⟩P ← A · ⟨⟨s1⟩⟩P + ⟨⟨s2⟩⟩P. Send
(result, sid , ⟨⟨s1⟩⟩P, ⟨⟨s2⟩⟩P) to A.

Receive A’s command to MP to send (declassify, sid , ⟨⟨t⟩⟩P) to FAA
declassify.

Compute JtKS ← t − JtKP and send (as if coming from FAA
declassify) the message

(input, sid , ⟨⟨t⟩⟩P, JtKS, JJtKS ·∆PKS) to A. Receive A’s updates to ⟨⟨t⟩⟩P. If A has
changed JtKP or Server’s MAC on it, then tell FML-DSA to stop. Send (result?, sid)
toA (as if coming from FAA

declassify), receive any updates to t, send these to FML-DSA
and allow it to proceed.

Signing. On input (signature, sid , µ, σ) from FML-DSA, where the signature σ is
(z, c), proceed as follows. The simulator finds x0 ← A · z− c · t, wH ← xH

0 , and
x← x0 − α ·wH .

The simulator randomly generates ⟨⟨z⟩⟩P and ⟨⟨wL⟩⟩P.
The simulator computes

– ⟨⟨y⟩⟩P ← ⟨⟨z⟩⟩P − c · ⟨⟨s1⟩⟩P
– ⟨⟨w⟩⟩P ← A · ⟨⟨y⟩⟩P
– ⟨⟨x⟩⟩P ← ⟨⟨wL⟩⟩P − c · ⟨⟨s2⟩⟩P
– ⟨⟨wH⟩⟩P ← α−1 · (⟨⟨w⟩⟩P − ⟨⟨wL⟩⟩P)
– JzKS ← z− JzKP

The simulator (as MP) notifies A that a signing session for µ has started.
Receive A’s command to MP to send (compute, sid ,A) to Fgcom. Send ⟨⟨y⟩⟩P
and ⟨⟨wH⟩⟩P to A, as if coming from Fgcom.

Receive A’s command to MP to send (declassify, sid , ⟨⟨wH⟩⟩P) to FAA
declassify,

and A’s updates to ⟨⟨wH⟩⟩P. Continue as in the simulation of declassification
during key generation; A will learn wH .

Receive A’s command toMP to send (compute, sid , ⟨|z|⟩P, ⟨|x|⟩P) to Frej_check.
The simulator already knows the expected values of ⟨|z|⟩P and ⟨|x|⟩P; if the ad-
versary submits something else, then the simulator treats it as a failure in ver-
ifying Server’s MACs and tells the ideal functionality to not output the signa-
ture. Simulator generates a random ⟨|b|⟩P and sends it to A, as if coming from
Frej_check. Following that, the simulator expects A’s command to MP to send
(declassify, sid , ⟨|b|⟩P) to FAP

declassify. Perform the declassification as above; A learns
that b = 1.

The simulator follows this up with (ss, sid , JzKS), presumably from MS to
MP. The simulator expects (sig, sid , z) from A (as if MP sent it to MS), and,
having received this, instructs the ideal functionality to output the signature.

But if the simulator received the query (signature, sid ,M,⊥) from FML-DSA,
then the simulator creates a random wH and computes c = H(M,wH). It also
creates random ⟨⟨y⟩⟩P and ⟨⟨wL⟩⟩P. It computes ⟨⟨z⟩⟩P, ⟨⟨w⟩⟩P, ⟨⟨y⟩⟩P, and ⟨⟨wH⟩⟩P
as before, and again sends ⟨⟨y⟩⟩P, ⟨⟨wL⟩⟩P, ⟨⟨wH⟩⟩P, and wH to the adversary
through the same interactions as before. It again expects to get back ⟨|z|⟩P and

46 Dufka et al.

⟨|x|⟩P from the adversary, sent as inputs to Frej_check. The simulator then tells
the adversary that the result of rejection checking is 0.

5.2 Simulator for corrupted server

Key generation. The key generation protocol and ideal functionality are sym-
metric between the Phone and the Server, except for the slight asymmetry of
FAA

declassify. Similarly, the simulator learns (A, t) from FML-DSA, generates ∆P, gets
∆S from the adversary, generates ⟨⟨s1⟩⟩S and ⟨⟨s2⟩⟩S and sends them to A. The
simulator then expects A to tellMS to submit (declassify, sid , ⟨⟨t⟩⟩′S) to FAA

declassify,
where ⟨⟨t⟩⟩′S is supposed to be equal to ⟨⟨t⟩⟩S = A · ⟨⟨s1⟩⟩S+ ⟨⟨s2⟩⟩S. The simulator,
acting as FAA

declassify, sends (input, sid , ⟨⟨t⟩⟩′S) back to A. The adversary A returns
(update, sid , ⟨⟨t⟩⟩′′S , t′) to the simulator. If ⟨⟨t⟩⟩′′S differs from ⟨⟨t⟩⟩S (except for the
share of Server’s MAC) then the simulator tells FML-DSA to stop. Otherwise the
simulator tells FML-DSA to return the public key to P, and the public key with
A’s updates (A′, t′) to S.

Successful signing. On input (signature, sid , µ, (z, c))) from FML-DSA, proceed
as follows. The simulator finds x0 ← A·z−c·t, wH ← xH

0 , and x← x0−α·wH . It
secret-shares z into ⟨⟨z⟩⟩, using ∆S and ∆P to compute the MACs. The simulator
randomly generates ⟨⟨wL⟩⟩S. The simulator computes

– ⟨⟨y⟩⟩S ← ⟨⟨z⟩⟩S − c · ⟨⟨s1⟩⟩S
– ⟨⟨w⟩⟩S ← A · ⟨⟨y⟩⟩S
– ⟨⟨x⟩⟩S ← ⟨⟨wL⟩⟩S − c · ⟨⟨s2⟩⟩S
– ⟨⟨wH⟩⟩S ← α−1 · (⟨⟨w⟩⟩S − ⟨⟨wL⟩⟩S)

The simulator also computes ⟨⟨wH⟩⟩P and ⟨⟨x⟩⟩P on the basis of ⟨⟨wH⟩⟩S, wH ,
⟨⟨x⟩⟩S, x, ∆P and ∆S. The simulator (as MS) notifies A that a signing session
for µ has started. Receives A’s command to MS to send (compute, sid ,A) to
Fgcom. Sends ⟨⟨y⟩⟩S and ⟨⟨wH⟩⟩S to A, as if coming from Fgcom.

Next, the simulator receivesA’s command toMS to send the message (declassify,
sid , ⟨⟨wH⟩⟩S) to FAA

declassify, and A’s updates to ⟨⟨wH⟩⟩S. Continue as in the simu-
lation of declassification during key generation; A will learn wH .

The simulator expects A to command MS to send to Frej_check the message
(compute, sid , ⟨|z|⟩S, ⟨|x|⟩S). The simulator generates a random ⟨|b|⟩S and sends it
back to A (as if coming from Frej_check. The simulator then receives the descrip-
tion of the algorithm A from A and applies it to ⟨|z|⟩P and ⟨|x|⟩P that it generated
while secret-sharing z and x. The algorithm returns a boolean b. The simulator
creates the share ⟨|b|⟩P, such that together with ⟨|b|⟩S it would declassify to b.

The simulator expects A to command MS to submit (declassify,
sid , ⟨|b|⟩S) to FAP

declassify. The simulator simulates the interaction of FAP
declassify, mak-

ing A learn b.
If b happened to be 0, then the simulator tells FML-DSA to not proceed. If

b = 1, then the simulator expects to receive (ss, sid , Jz′KS) from the adversary. If
Jz′KS is equal to JzKS, then the simulator sends (sig, sid , z) back to the adversary

Title Suppressed Due to Excessive Length 47

and allows FML-DSA to proceed. If Jz′KS is different from JzKS, then the simulator
sends nothing back to the adversary and tells the ideal functionality to not
proceed.

Indeed, sending a different Jz′KS corresponds to changing the signature (z, c)
into (z+ zδ, c), where zδ = Jz′KS − JzKS can be computed by the simulator. The
size of the individual elements of zδ is bounded by 2(γ1 − β). For the changed
signature to verify, the equality (A ·z)H = (A · (z+zδ))H must hold, or we have
a collision of the hash function H. This equality implies that A · zδ ≈ 0, i.e. we
have a short solution x for the task (A | I) · x = 0.

Unsuccessful signing. On input (signature, sid , µ,⊥) from FML-DSA, the simu-
lator Sim proceeds as follows. It generates a random ⟨⟨w⟩⟩, secret-shares ⟨⟨wH⟩⟩
and computes ⟨⟨wL⟩⟩ ← ⟨⟨w⟩⟩ −α · ⟨⟨wH⟩⟩. The simulator also makes up random
⟨⟨z⟩⟩S and ⟨⟨x⟩⟩S. With these values in hand, the simulation proceeds identically
to the “Successful signing” case (Sec. 5.2), up to the point where the adversary
A has sent the description of the algorithm A to Frej_check (received by the sim-
ulator). The declassification of wH does not help A to figure out whether it is
in a real or in a simulated execution [28]. The simulator now applies A to such
⟨|z|⟩P and ⟨|x|⟩P that (1) wouldn’t pass the rejection check together with ⟨|z|⟩S and
⟨|x|⟩S, and (2) spell the message “You’re in a simulation”.

At this point, the algorithm A “knows” that it is in an execution with FML-DSA
and Sim, not with real system consisting of MP, (corrupted) MS, and all the
smaller ideal components. But A does not have the ability to communicate this
finding back toA. It may return the boolean b = 0, in which case the unsuccessful
signing would “successfully finish”. The same “successful finish” would also take
place for b = 0 in an execution with the real system. Or, A may return b = 1,
leading to the Phone determining that the Server has cheated in both systems.
A way for A to distinguish between the two systems is to get b = 1 from A and
then try to change JzKS so that the signature would be valid. In this case the real
system would return the signature to the environment, while the ideal system
would return ⊥. But if the value of b may be wrong, then A does not know
yet whether it is in the “successful signing” or “unsuccessful signing” scenario.
Hence A would be able to change the signature also when FML-DSA has created
an actual signature, the impossibility of which we have discussed above.

This discussion has already explained how the simulation for “unsuccessful
signing” concludes: A creates a bit b, this gets secret-shared as ⟨|b|⟩ and declassi-
fied. If b = 0, then the simulator tells FML-DSA to proceed with outputting ⊥. If
b = 1 then the simulator waits for the message (ss, sid , JzKS), ignores its content
and tells FML-DSA to stop.

6 Evaluation

We have implemented Trilithium in Rust, and measured its performance.
All measurements were performed on Lenovo laptop with AMD Ryzen 5 PRO

48 Dufka et al.

Category P→ S S → P CRP → S
ML-DSA-44 460.26 KiB 460.26 KiB 1.42 MiB
ML-DSA-65 880.11 KiB 880.11 KiB 2.66 MiB
ML-DSA-87 1852.12 KiB 1852.11 KiB 4.44 MiB

Table 1. The volume of transmitted data between the parties during ML-DSA key pair
generation. The correlated randomness is transmitted to the server in a single packet
stream before the protocol is run.

Category P→ S or S → P (single direction) CR
Commitment RejCheck Total

ML-DSA-44 56.85 KiB 36.50 KiB 93.36 KiB 55.05 MiB
ML-DSA-65 73.09 KiB 49.35 KiB 122.43 KiB 71.23 MiB
ML-DSA-87 97.45 KiB 66.81 KiB 164.25 KiB 95.95 MiB

Table 2. Volume of transmitted data between client and server during a signing at-
tempt. The presented values are the average of P→ S and S → P communication.

5650U. Traffic control (tc) was used to add latency between the phone and the
server. Our set-up of the three parties during the performance measurements
imitates the intended deployment of our protocol: The Server and CRP will be
located close-by (but under independent control), with a high-bandwidth and
low-latency connection between them. The Phone is located elsewhere, and the
latency of the connection between the Phone and the Server will be significant.
As usual, the parameters of the connection between the Phone and CRP are not
significant: the CR share for the Phone is generated from a single random seed.
The CRP knows that seed and generates Server’s CR share so, that it matches
Phone’s share.

While the communication between CRP and Phone is negligible (and the
same seed can be used over many signings), the size of randomness sent by CRP
to the Server is very significant. That randomness is dominated by the MAC
shares, and depends on the number of MACs we have given to each value. We
have chosen the numbers of MACs so, that the probability of guessing the MAC
keys for a single modulus is at most 2−128 per try. This means 6 MACs for values
shared over q, and more for smaller moduli.

The number of communicated bytes in key generation and signing is reported
in Tables 1 and 2. These numbers were collected in the networking layer of our
implementation. We see that they are very much in the realm of practicality. Ta-
ble 3 gives the bandwidth requirements for sustained computation of signatures.

Our key generation protocol has 3 rounds, while the signing protocol has 14
rounds. We have benchmarked their execution, and report the running times in
Tables 4–7. We have varied only the latency of the network, not the bandwidth,
because the number of communicated bytes is small. Each reported number is
the average of 100 runs. Again, the timings are practical.

As we saw, for higher latencies, we have considered running several signing
sessions in parallel, in order to reduce the effect of rejections on latency. Based

Title Suppressed Due to Excessive Length 49

Category P→ S S → P CRP → S
ML-DSA-44 404 KiB/s 387 KiB/s 234 MiB/s
ML-DSA-65 638 KiB/s 607 KiB/s 362 MiB/s
ML-DSA-87 647 KiB/s 616 KiB/s 370 MiB/s

Table 3. The bandwidth required to produce one ML-DSA signature per second. The
value is computed as the bandwidth required for a single signing attempt multiplied
by the expected number of repetitions.

Category No latency + CR 30 ms + CR 100 ms + CR
ML-DSA-44 90 + 10 408 + 40 1342 + 110
ML-DSA-65 114 + 36 650 + 66 1658 + 135
ML-DSA-87 99 + 18 549 + 49 1677 + 119

Table 4. Mean time (in milliseconds) for key generation. Mean time for creating CR
is given separately.

Category CR Commitment RejCheck Total w/o CR
ML-DSA-44 288 141 104 245
ML-DSA-65 430 155 155 310
ML-DSA-87 587 181 183 364

Table 5. Mean time in milliseconds required for a signing iteration with no latency.

Category CR Commitment RejCheck Total w/o CR
ML-DSA-44 479 523 418 941
ML-DSA-65 976 544 431 975
ML-DSA-87 974 531 475 1006

Table 6. Mean time in milliseconds required for 3 parallel signing iterations with 30
ms latency.

Category CR Commitment RejCheck Total w/o CR
ML-DSA-44 551 1436 1010 2446
ML-DSA-65 1042 1500 1069 2569
ML-DSA-87 1370 1562 1098 2660

Table 7. Mean time in milliseconds required for 3 parallel signing iterations with 100
ms latency.

50 Dufka et al.

Category 1 2 3 4 6 8
ML-DSA-44 2271 1984 1585 1631 1677 2109
ML-DSA-65 3965 2742 2837 3035 3806 4099
ML-DSA-87 3752 3249 3497 3716 4251 5077

Table 8. Mean time in milliseconds of signature creation in dependence on the number
of parallel iterations with no latency.

Category 1 2 3 4 6 8
ML-DSA-44 4078 2821 2516 2580 2692 2910
ML-DSA-65 6662 5143 3886 4065 5090 4797
ML-DSA-87 6605 4262 4975 4763 4671 6188

Table 9. Mean time in milliseconds of signature creation in dependence on the number
of parallel iterations with 30 ms latency.

Category 1 2 3 4 6 8
ML-DSA-44 9763 6704 5753 4830 4950 5080
ML-DSA-65 15667 9422 7558 6582 6837 6956
ML-DSA-87 11741 8211 7248 8065 7409 7656

Table 10. Mean time in milliseconds of signature creation in dependence on the number
of parallel iterations with 100 ms latency.

on experiments, the best trade-off was achieved when executing 3–4 sessions in
parallel, during which more than 50% of signatures are produced in the first run.
The averages from these experiments are reported in Tables 8–10.

For ML-DSA-44, executions with 3 parallel sessions and latency of 30 ms
managed to create a signature within 1.5 seconds in more than 50% of cases.
A major part of the time is spent on the computation and transmission of CR
from the CRP to the server. The correlated randomness can be precomputed,
reducing the signing time to around 0.75 seconds.

7 Concluding remarks

In this paper, we presented Trilithium, a new two-party protocol (with CRP as-
sistance) which allows Phone and Server collaboratively and efficiently produce
ML-DSA signatures. It should not be too hard to generalize it to a larger num-
ber of parties and to different access structures, as long as these are supported
by the underlying MPC protocol set. Indeed, the key generation and the high
bits computation readily generalize; they can be re-stated to run on top of an
Arithmetic Black Box (ABB) [25], as long as this ABB supports computations
modulo q and modulo 2, and conversions between the two moduli. Our rejection
checks use a comparison protocol specifically for two parties; this protocol would
have to be replaced in other settings.

In a certification-heavy ecosystem, the certifiability of implementations and
deployments of protocols has to be considered. In case of Trilithium, one also has

Title Suppressed Due to Excessive Length 51

to consider the protection of the CRP, and the size of data sent from the CRP
to the Server. E.g. Smart-ID recorded a billion transactions in Baltic states in
2023 15; if all these had used Trilithium for ML-DSA-44 signatures, the average
CRP-to-Server communication rate would have been ≈ 7.5 GB/s. While the
CRP-Server-pairs could be replicated, the necessary bandwidth is still significant.
A Hardware Security Module (HSM) in the form factor of a PCI Express (that
easily supports such communication rates) expansion card may be a suitable
platform for the CRP. The hosting of the Server party in a similar platform may
satisfy both the performance and certification requirements, once these have
settled for quantum-safe cryptographic service providers.

8 Acknowledgments

This work was funded by the Estonian Research Council under the grant number
PRG1780.

References

1. Alkadri, N.A., Döttling, N., Pu, S.: Practical Lattice-Based Distributed Signatures
for a Small Number of Signers. In: Pöpper, C., Batina, L. (eds.) Applied Cryp-
tography and Network Security. pp. 376–402. Springer Nature Switzerland, Cham
(2024)

2. Attrapadung, N., Morita, H., Ohara, K., Schuldt, J.C.N., Tozawa, K.: Memory and
Round-Efficient MPC Primitives in the Pre-Processing Model from Unit Vector-
ization. In: Proceedings of the 2022 ACM on Asia Conference on Computer and
Communications Security. p. 858–872. ASIA CCS ’22, Association for Computing
Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3488932.3517407,
https://doi.org/10.1145/3488932.3517407 (2025-01-02)

3. Battagliola, M., Borin, G., Meneghetti, A., Persichetti, E.: Cutting the grass:
Threshold group action signature schemes. In: Oswald, E. (ed.) Topics in Cryptol-
ogy – CT-RSA 2024. pp. 460–489. Springer Nature Switzerland, Cham (2024)

4. Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: Paterson, K.G. (ed.) Advances in Cryptology –
EUROCRYPT 2011. pp. 169–188. Springer Berlin Heidelberg, Berlin, Heidelberg
(2011)

5. Bernstein, D.J., Hülsing, A., Kölbl, S., Niederhagen, R., Rijneveld, J.,
Schwabe, P.: The SPHINCS+ Signature Framework. In: Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications
Security. p. 2129–2146. CCS ’19, Association for Computing Machin-
ery, New York, NY, USA (2019). https://doi.org/10.1145/3319535.3363229,
https://doi.org/10.1145/3319535.3363229

6. Bogdanov, D., Laud, P., Laur, S., Pullonen, P.: From input private to universally
composable secure multi-party computation primitives. In: IEEE 27th Computer
Security Foundations Symposium, CSF 2014, Vienna, Austria, 19-22 July, 2014. pp.
184–198. IEEE Computer Society (2014). https://doi.org/10.1109/CSF.2014.21,
https://doi.org/10.1109/CSF.2014.21

15 https://www.skidsolutions.eu/news/smart-id-expands-to-belgium/

52 Dufka et al.

7. Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance se-
cure multi-party computation for data mining applications. Int. J. Inf.
Sec. 11(6), 403–418 (2012). https://doi.org/10.1007/S10207-012-0177-2,
https://doi.org/10.1007/s10207-012-0177-2

8. Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck,
J.M., Schwabe, P., Seiler, G., Stehlé, D.: CRYSTALS - Kyber: A CCA-
Secure Module-Lattice-Based KEM. In: 2018 IEEE European Symposium
on Security and Privacy (EuroS&P). pp. 353–367. IEEE, IEEE (2018).
https://doi.org/10.1109/EuroSP.2018.00032

9. Boschini, C., Takahashi, A., Tibouchi, M.: MuSig-L: Lattice-Based Multi-signature
with Single-Round Online Phase. In: Dodis, Y., Shrimpton, T. (eds.) Advances in
Cryptology – CRYPTO 2022. pp. 276–305. Springer Nature Switzerland, Cham
(2022)

10. Buldas, A., Kalu, A., Laud, P., Oruaas, M.: Server-supported RSA signatures for
mobile devices. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) Computer Se-
curity – ESORICS 2017. pp. 315–333. Springer International Publishing, Cham
(2017)

11. Camenisch, J., Lehmann, A., Neven, G., Samelin, K.: Virtual smart cards: How
to sign with a password and a server. In: Zikas, V., De Prisco, R. (eds.) Security
and Cryptography for Networks. pp. 353–371. Springer International Publishing,
Cham (2016)

12. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science,
FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA. pp. 136–145. IEEE
Computer Society (2001). https://doi.org/10.1109/SFCS.2001.959888

13. Canetti, R., Gennaro, R., Goldfeder, S., Makriyannis, N., Peled, U.: Uc non-
interactive, proactive, threshold ecdsa with identifiable aborts. In: Proceed-
ings of the 2020 ACM SIGSAC Conference on Computer and Communica-
tions Security. p. 1769–1787. CCS ’20, Association for Computing Machin-
ery, New York, NY, USA (2020). https://doi.org/10.1145/3372297.3423367,
https://doi.org/10.1145/3372297.3423367

14. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally compos-
able two-party and multi-party secure computation. In: Reif, J.H. (ed.)
Proceedings on 34th Annual ACM Symposium on Theory of Computing,
May 19-21, 2002, Montréal, Québec, Canada. pp. 494–503. ACM (2002).
https://doi.org/10.1145/509907.509980, https://doi.org/10.1145/509907.509980

15. Castagnos, G., Catalano, D., Laguillaumie, F., Savasta, F., Tucker, I.: Two-party
ecdsa from hash proof systems and efficient instantiations. In: Boldyreva, A., Mic-
ciancio, D. (eds.) Advances in Cryptology – CRYPTO 2019. pp. 191–221. Springer
International Publishing, Cham (2019)

16. Castagnos, G., Catalano, D., Laguillaumie, F., Savasta, F., Tucker, I.: Bandwidth-
efficient threshold ec-dsa. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V.
(eds.) Public-Key Cryptography – PKC 2020. pp. 266–296. Springer International
Publishing, Cham (2020)

17. Celi, S., Escudero, D., Niot, G.: Share the mayo: Thresholdizing mayo. In: Nieder-
hagen, R., Saarinen, M.J.O. (eds.) Post-Quantum Cryptography. pp. 165–198.
Springer Nature Switzerland, Cham (2025)

18. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure pro-
tocols (extended abstract). In: Simon, J. (ed.) Proceedings of the 20th An-
nual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago,

Title Suppressed Due to Excessive Length 53

Illinois, USA. pp. 11–19. ACM (1988). https://doi.org/10.1145/62212.62214,
https://doi.org/10.1145/62212.62214

19. Chen, M., Doerner, J., Kondi, Y., Lee, E., Rosefield, S., Shelat, A., Cohen, R.: Mul-
tiparty generation of an rsa modulus. Journal of Cryptology 35(2), 12 (Mar 2022).
https://doi.org/10.1007/s00145-021-09395-y, https://doi.org/10.1007/s00145-021-
09395-y

20. Cozzo, D., Smart, N.P.: Sharing the LUOV: Threshold Post-quantum Signa-
tures. In: Albrecht, M. (ed.) Cryptography and Coding – 17th IMA Interna-
tional Conference, IMACC 2019, Oxford, UK, December 16-18, 2019, Proceed-
ings. Lecture Notes in Computer Science, vol. 11929, pp. 128–153. Springer (2019).
https://doi.org/10.1007/978-3-030-35199-1_7

21. Cramer, R., Damgård, I., Escudero, D., Scholl, P., Xing, C.: Spd𭟋
2k: Ef-

ficient MPC mod 2k for dishonest majority. In: Shacham, H., Boldyreva,
A. (eds.) Advances in Cryptology - CRYPTO 2018 - 38th Annual Inter-
national Cryptology Conference, Santa Barbara, CA, USA, August 19-23,
2018, Proceedings, Part II. Lecture Notes in Computer Science, vol. 10992,
pp. 769–798. Springer (2018). https://doi.org/10.1007/978-3-319-96881-0_26,
https://doi.org/10.1007/978-3-319-96881-0_26

22. D’Alconzo, G., Flamini, A., Meneghetti, A., Signorini, E.: A frame-
work for group action-based multi-signatures and applications to LESS,
MEDS, and ALTEQ. Cryptology ePrint Archive, Paper 2024/1691 (2024),
https://eprint.iacr.org/2024/1691

23. Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally se-
cure constant-rounds multi-party computation for equality, comparison, bits
and exponentiation. In: Halevi, S., Rabin, T. (eds.) Theory of Cryptogra-
phy, Third Theory of Cryptography Conference, TCC 2006, New York, NY,
USA, March 4-7, 2006, Proceedings. Lecture Notes in Computer Science,
vol. 3876, pp. 285–304. Springer (2006). https://doi.org/10.1007/11681878_15,
https://doi.org/10.1007/11681878_15

24. Damgård, I., Mikkelsen, G.L., Skeltved, T.: On the security of distributed multi-
prime rsa. In: Lee, J., Kim, J. (eds.) Information Security and Cryptology - ICISC
2014. pp. 18–33. Springer International Publishing, Cham (2015)

25. Damgård, I., Nielsen, J.B.: Universally composable efficient multiparty compu-
tation from threshold homomorphic encryption. In: Boneh, D. (ed.) Advances in
Cryptology - CRYPTO 2003. pp. 247–264. Springer Berlin Heidelberg, Berlin, Hei-
delberg (2003)

26. Damgård, I., Orlandi, C., Takahashi, A., Tibouchi, M.: Two-round n-out-of-n and
multi-signatures and trapdoor commitment from lattices. Journal of Cryptology
35(2), 14 (Apr 2022). https://doi.org/10.1007/s00145-022-09425-3

27. Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) Ad-
vances in Cryptology – CRYPTO 2012. pp. 643–662. Springer Berlin Heidelberg,
Berlin, Heidelberg (2012)

28. Devevey, J., Fallahpour, P., Passelègue, A., Stehlé, D.: A detailed analysis
of fiat-shamir with aborts. In: Handschuh, H., Lysyanskaya, A. (eds.) Ad-
vances in Cryptology - CRYPTO 2023 - 43rd Annual International Cryp-
tology Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20-24,
2023, Proceedings, Part V. Lecture Notes in Computer Science, vol. 14085,
pp. 327–357. Springer (2023). https://doi.org/10.1007/978-3-031-38554-4_11,
https://doi.org/10.1007/978-3-031-38554-4_11

54 Dufka et al.

29. Doerner, J., Kondi, Y., Lee, E., Shelat, A.: Threshold ecdsa from ecdsa assump-
tions: The multiparty case. In: 2019 IEEE Symposium on Security and Privacy
(SP). pp. 1051–1066 (2019). https://doi.org/10.1109/SP.2019.00024

30. Doerner, J., Kondi, Y., Lee, E., Shelat, A.: Secure two-party threshold ecdsa from
ecdsa assumptions. In: 2018 IEEE Symposium on Security and Privacy (SP). pp.
980–997. IEEE (2018)

31. Doerner, J., Kondi, Y., Lee, E., Shelat, A.: Threshold ecdsa in three rounds.
In: 2024 IEEE Symposium on Security and Privacy (SP). pp. 3053–3071 (2024).
https://doi.org/10.1109/SP54263.2024.00178

32. Doran, R.W.: Variants of an improved carry look-ahead adder. IEEE
Trans. Computers 37(9), 1110–1113 (1988). https://doi.org/10.1109/12.2261,
https://doi.org/10.1109/12.2261

33. Drake, J., Khovratovich, D., Kudinov, M., Wagner, B.: Hash-based multi-
signatures for post-quantum ethereum. IACR Communications in Cryptology 2(1)
(2025). https://doi.org/10.62056/aey7qjp10

34. Drijvers, M., Edalatnejad, K., Ford, B., Kiltz, E., Loss, J., Neven, G.,
Stepanovs, I.: On the security of two-round multi-signatures. In: 2019
IEEE Symposium on Security and Privacy (SP). pp. 1084–1101 (2019).
https://doi.org/10.1109/SP.2019.00050

35. Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G.,
Stehlé, D.: CRYSTALS-Dilithium: A Lattice-Based Digital Signature Scheme.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(1), 238–268 (2018).
https://doi.org/10.13154/tches.v2018.i1.238-268

36. Escudero, D., Ghosh, S., Keller, M., Rachuri, R., Scholl, P.: Improved primi-
tives for MPC over mixed arithmetic-binary circuits. In: Micciancio, D., Ris-
tenpart, T. (eds.) Advances in Cryptology - CRYPTO 2020 - 40th Annual In-
ternational Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA,
August 17-21, 2020, Proceedings, Part II. Lecture Notes in Computer Science,
vol. 12171, pp. 823–852. Springer (2020). https://doi.org/10.1007/978-3-030-56880-
1_29, https://doi.org/10.1007/978-3-030-56880-1_29

37. Feng, Q., Yang, K., Zhang, K., Wang, X., Yu, Y., Xie, X.: Stateless determin-
istic multi-party EdDSA signatures with low communication. Cryptology ePrint
Archive, Paper 2024/358 (2024), https://eprint.iacr.org/2024/358

38. Fleischhacker, N., Herold, G., Simkin, M., Zhang, Z.: Chipmunk: Better Syn-
chronized Multi-Signatures from Lattices. In: Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security. p. 386–400.
CCS ’23, Association for Computing Machinery, New York, NY, USA (2023).
https://doi.org/10.1145/3576915.3623219

39. Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Prest, T.,
Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: Falcon: Fast-Fourier lattice-based
compact signatures over NTRU (2018)

40. Garillot, F., Kondi, Y., Mohassel, P., Nikolaenko, V.: Threshold schnorr with state-
less deterministic signing from standard assumptions. In: Malkin, T., Peikert, C.
(eds.) Advances in Cryptology – CRYPTO 2021. pp. 127–156. Springer Interna-
tional Publishing, Cham (2021)

41. Gennaro, R., Goldfeder, S., Narayanan, A.: Threshold-optimal dsa/ecdsa signa-
tures and an application to bitcoin wallet security. In: Manulis, M., Sadeghi, A.R.,
Schneider, S. (eds.) Applied Cryptography and Network Security. pp. 156–174.
Springer International Publishing, Cham (2016)

Title Suppressed Due to Excessive Length 55

42. Gur, K.D., Katz, J., Silde, T.: Two-Round Threshold Lattice-Based Signatures
from Threshold Homomorphic Encryption. In: Saarinen, M.J., Smith-Tone, D.
(eds.) Post-Quantum Cryptography. Springer Nature Switzerland, Cham (2024)

43. Hazay, C., Mikkelsen, G.L., Rabin, T., Toft, T.: Efficient rsa key generation and
threshold paillier in the two-party setting. In: Dunkelman, O. (ed.) Topics in Cryp-
tology – CT-RSA 2012. pp. 313–331. Springer Berlin Heidelberg, Berlin, Heidelberg
(2012)

44. Katsumata, S., Reichle, M., Takemure, K.: Adaptively secure 5 round threshold
signatures from mlwe/msis and dl with rewinding. In: Reyzin, L., Stebila, D. (eds.)
Advances in Cryptology – CRYPTO 2024. pp. 459–491. Springer Nature Switzer-
land, Cham (2024)

45. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure
computation with oblivious transfer. In: Weippl, E.R., Katzenbeisser, S., Kruegel,
C., Myers, A.C., Halevi, S. (eds.) Proceedings of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Security, Vienna, Austria, October
24-28, 2016. pp. 830–842. ACM (2016). https://doi.org/10.1145/2976749.2978357,
https://doi.org/10.1145/2976749.2978357

46. Khaburzaniya, I., Chalkias, K., Lewi, K., Malvai, H.: Aggre-
gating and thresholdizing hash-based signatures using starks. p.
393–407. ASIA CCS ’22, Association for Computing Machinery, New
York, NY, USA (2022). https://doi.org/10.1145/3488932.3524128,
https://doi.org/10.1145/3488932.3524128

47. Komlo, C., Goldberg, I.: FROST: Flexible Round-Optimized Schnorr Threshold
Signatures, pp. 34–65 (07 2021). https://doi.org/10.1007/978-3-030-81652-0_2

48. Komlo, C., Goldberg, I.: Arctic: Lightweight and stateless threshold
schnorr signatures. Cryptology ePrint Archive, Paper 2024/466 (2024),
https://eprint.iacr.org/2024/466

49. Koziel, B., Gordon, S.D., Gentry, C.: Fast two-party threshold ecdsa with proactive
security. In: Proceedings of the 2024 on ACM SIGSAC Conference on Computer
and Communications Security. p. 1567–1580. CCS ’24, Association for Computing
Machinery, New York, NY, USA (2024). https://doi.org/10.1145/3658644.3670387,
https://doi.org/10.1145/3658644.3670387

50. Kravtšenko, S.: Efficient Two-Party ML-DSA Protocol in Active Security Model.
Master’s thesis, University of Tartu (2025)

51. Krenn, S., Lorünser, T.: An Introduction to Secret Sharing. SpringerBriefs in In-
formation Security and Cryptography, Springer Cham (2023)

52. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for mod-
ule lattices. Designs, Codes and Cryptography 75(3), 565–599 (Feb 2014).
https://doi.org/10.1007/s10623-014-9938-4, http://dx.doi.org/10.1007/s10623-
014-9938-4

53. Lindell, Y.: Fast secure two-party ecdsa signing. Journal of Cryptology 34, 1–38
(2021)

54. Lindell, Y.: Simple three-round multiparty schnorr signing with full
simulatability. IACR Communications in Cryptology 1(1) (2024).
https://doi.org/10.62056/a36c0l5vt

55. Lindell, Y., Nof, A.: Fast secure multiparty ecdsa with practical dis-
tributed key generation and applications to cryptocurrency custody.
In: In the 2018 ACM SIGSAC Conference. pp. 1837–1854 (10 2018).
https://doi.org/10.1145/3243734.3243788

56 Dufka et al.

56. Lyubashevsky, V.: Fiat-shamir with aborts: Applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) Advances in Cryptology – ASIACRYPT
2009. pp. 598–616. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

57. Makri, E., Rotaru, D., Vercauteren, F., Wagh, S.: Rabbit: Efficient comparison for
secure multi-party computation. In: Borisov, N., Díaz, C. (eds.) Financial Cryptog-
raphy and Data Security - 25th International Conference, FC 2021, Virtual Event,
March 1-5, 2021, Revised Selected Papers, Part I. Lecture Notes in Computer
Science, vol. 12674, pp. 249–270. Springer (2021). https://doi.org/10.1007/978-3-
662-64322-8_12, https://doi.org/10.1007/978-3-662-64322-8_12

58. National Institute of Standards and Technology: SHA-3 standard:: permutation-
based hash and extendable-output functions. National Institute of Stan-
dards and Technology (U.S.), Gaithersburg, MD 20899-8900 (2015).
https://doi.org/10.6028/nist.fips.202, http://dx.doi.org/10.6028/NIST.FIPS.202

59. National Institute of Standards and Technology: Module-Lattice-Based Digi-
tal Signature Standard. National Institute of Standards and Technology (U.S.),
Gaithersburg, MD 20899-8900 (2024). https://doi.org/10.6028/nist.fips.204,
http://dx.doi.org/10.6028/NIST.FIPS.204

60. Nick, J., Ruffing, T., Seurin, Y.: Musig2: Simple two-round schnorr multi-
signatures. In: Malkin, T., Peikert, C. (eds.) Advances in Cryptology – CRYPTO
2021. pp. 189–221. Springer International Publishing, Cham (2021)

61. Nick, J., Ruffing, T., Seurin, Y., Wuille, P.: Musig-dn: Schnorr multi-
signatures with verifiably deterministic nonces. In: Proceedings of the
2020 ACM SIGSAC Conference on Computer and Communications Se-
curity. p. 1717–1731. CCS ’20, Association for Computing Machinery,
New York, NY, USA (2020). https://doi.org/10.1145/3372297.3417236,
https://doi.org/10.1145/3372297.3417236

62. Nicolosi, A., Krohn, M., Dodis, Y., Eres, D.: Proactive two-party signatures for
user authentication. In: NDSS Symposium 2003 (12 2002)

63. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical
active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) Ad-
vances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa
Barbara, CA, USA, August 19-23, 2012. Proceedings. Lecture Notes in Computer
Science, vol. 7417, pp. 681–700. Springer (2012). https://doi.org/10.1007/978-3-
642-32009-5_40, https://doi.org/10.1007/978-3-642-32009-5_40

64. Peralta, R., Brandão, L.T.: NIST First Call for Multi-Party Threshold
Schemes. National Institute of Standards and Technology (U.S.), Gaithers-
burg, MD 20899-8900 (Jan 2023). https://doi.org/10.6028/nist.ir.8214c.ipd,
http://dx.doi.org/10.6028/NIST.IR.8214C.ipd

65. Pettai, M., Laud, P.: Automatic proofs of privacy of secure multi-party com-
putation protocols against active adversaries. In: Fournet, C., Hicks, M.W., Vi-
ganò, L. (eds.) IEEE 28th Computer Security Foundations Symposium, CSF
2015, Verona, Italy, 13-17 July, 2015. pp. 75–89. IEEE Computer Society (2015).
https://doi.org/10.1109/CSF.2015.13, https://doi.org/10.1109/CSF.2015.13

66. Pfitzmann, B., Waidner, M.: A model for asynchronous reactive systems and its
application to secure message transmission. In: 2001 IEEE Symposium on Secu-
rity and Privacy, Oakland, California, USA May 14-16, 2001. pp. 184–200. IEEE
Computer Society (2001). https://doi.org/10.1109/SECPRI.2001.924298

67. Reisert, P., Rivinius, M., Krips, T., Hasler, S., Küsters, R.: Actively secure polyno-
mial evaluation from shared polynomial encodings. In: Chung, K., Sasaki, Y. (eds.)
Advances in Cryptology - ASIACRYPT 2024 - 30th International Conference on the

Title Suppressed Due to Excessive Length 57

Theory and Application of Cryptology and Information Security, Kolkata, India,
December 9-13, 2024, Proceedings, Part VI. Lecture Notes in Computer Science,
vol. 15489, pp. 3–35. Springer (2024). https://doi.org/10.1007/978-981-96-0938-
3_1, https://doi.org/10.1007/978-981-96-0938-3_1

68. Snetkov, N., Vakarjuk, J., Laud, P.: TOPCOAT: towards practical two-
party Crystals-Dilithium. Discover Computing 27(1), 18 (Jul 2024).
https://doi.org/10.1007/s10791-024-09449-2

69. Toft, T.: Primitives and Applications for Multi-party Computation. Ph.D. thesis,
University of Aarhus (2007)

70. Veugen, T.: Encrypted integer division and secure comparison. Int. J. Appl.
Cryptogr. 3(2), 166–180 (2014). https://doi.org/10.1504/IJACT.2014.062738,
https://doi.org/10.1504/IJACT.2014.062738

71. Xue, H., Au, M.H., Xie, X., Yuen, T.H., Cui, H.: Efficient online-friendly
two-party ecdsa signature. In: Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security. p. 558–573. CCS
’21, Association for Computing Machinery, New York, NY, USA (2021).
https://doi.org/10.1145/3460120.3484803

72. Yao, A.C.: Protocols for secure computations (extended abstract). In: 23rd
Annual Symposium on Foundations of Computer Science, Chicago, Illinois,
USA, 3-5 November 1982. pp. 160–164. IEEE Computer Society (1982).
https://doi.org/10.1109/SFCS.1982.38, https://doi.org/10.1109/SFCS.1982.38

73. Yuan, B., Yang, S., Zhang, Y., Ding, N., Gu, D., Sun, S.: MD-ML: super fast
privacy-preserving machine learning for malicious security with a dishonest major-
ity. In: Balzarotti, D., Xu, W. (eds.) 33rd USENIX Security Symposium, USENIX
Security 2024, Philadelphia, PA, USA, August 14-16, 2024. USENIX Association
(2024), https://www.usenix.org/conference/usenixsecurity24/presentation/yuan

74. Zhou, L., Wang, Z., Cui, H., Song, Q., Yu, Y.: Bicoptor: Two-round se-
cure three-party non-linear computation without preprocessing for privacy-
preserving machine learning. In: 44th IEEE Symposium on Security
and Privacy, SP 2023, San Francisco, CA, USA, May 21-25, 2023. pp.
534–551. IEEE (2023). https://doi.org/10.1109/SP46215.2023.10179449,
https://doi.org/10.1109/SP46215.2023.10179449

