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Abstract. The paper analyzes the security of two recently proposed code-
based cryptosystems that employ encryption of the form 𝑦 = 𝑚𝐺pub+𝑒𝐸𝑝𝑢𝑏:
the Krouk-Kabatiansky-Tavernier (KKT) cryptosystem and the Lau-Ivanov-
Ariffin-Chin-Yap (LIACY) cryptosystem. We demonstrate that the KKT
cryptosystem can be reduced to a variant of the McEliece scheme, where a
small set of columns in the public generator matrix is replaced with random
ones. This reduction implies that the KKT cryptosystem is vulnerable to
existing attacks on Wieschebrink’s encryption scheme, particularly when
Generalized Reed-Solomon (GRS) codes are used. In addition, we present
a full key-recovery attack on the LIACY cryptosystem by exploiting its
linear-algebraic structure and leveraging distinguishers of subcodes of GRS
codes. Our findings reveal critical vulnerabilities in both systems, effectively
compromising their security despite their novel designs.

Keywords: Code-based cryptography · Key-recovery attack · Reed-Solomon
codes · Schur-Hadamard product

1 Introduction

In 1978, in his seminal paper [25], R. McEliece proposed the first code-based
public-key encryption scheme, whose security relies on the inherent difficulty of
decoding a general linear code. The secret key is an efficient decoding algorithm
for a 𝑡-error-correcting [𝑛, 𝑘]-code 𝐶 from a chosen code family (originally, Goppa
codes). The public key is a generator matrix Gpub for 𝐶, typically disguised to
hide the structure that enables efficient decoding (in the original scheme, this
disguise is achieved by multiplying a canonical generator matrix G of 𝐶 by a
random invertible 𝑘 × 𝑘 matrix S, resulting in Gpub = SG). Given a message
m ∈ 𝔽𝑘

𝑞 , the encryption is performed by y = mGpub + e, where e ∈ 𝔽𝑛
𝑞 is a

random error vector of weight 𝑡. A legitimate receiver, possessing the necessary
information to apply the efficient decoder, can easily recover the original message
m from the ciphertext y. In contrast, an adversary faces the computationally
hard problem of decoding a general linear code to recover m. It is worth noting
that since its introduction, no efficient attacks, either classical or quantum, have
been found against the Goppa-based McEliece cryptosystem. This resistance to
both classical and quantum attacks has made the system a promising candidate
for post-quantum cryptography.
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Despite its advantages, the Goppa-based McEliece cryptosystem suffers from
a significant drawback of large public-key sizes. To address this issue, researchers
have attempted to replace Goppa codes with more efficient ones, such as Gener-
alized Reed-Solomon (GRS) codes [29] and Reed-Muller codes [30]. However, due
to the strong algebraic structure of these codes, it was possible to mount efficient
key-recovery attacks [31, 27, 10]. To revive the use of broken codes and further
improve the efficiency of code-based cryptosystems, new code-based encryption
protocols have been proposed with improved hiding of codes. Examples include
using low-codimensional subcodes [6], inserting random columns into Gpub of the
McEliece cryptosystem [36], replacing permutation matrices with other classes
of matrices [4, 5, 9], employing subfield images and subspace subcodes of codes
defined over field extensions [7], using burst errors and masking that preserves
the burst structure [18, 38], and others [33, 8] (see also the survey [34]). However,
many of these attempts were unsuccessful due to subsequently discovered attacks
(see, e.g., [35, 11, 14, 13, 12, 15, 19, 32]).

Note that more successful code-based encryption schemes that offer compact
keys include schemes based on quasi-cyclic MDPC codes [28] (e.g., BIKE [3]) and
schemes inspired by Alekhnovich’s approach [2] (e.g., HQC [1, 26]), which avoid
reliance on specific code hiding. However, both come with nonzero decryption
failure rates, which require careful estimation to avoid reaction attacks and
achieving IND-CCA2 security.

In 2020, Ivanov, Kabatiansky, Krouk, and Rumenko [17] introduced a frame-
work for building code-based encryption schemes, which leverages two matrices
Gpub and Epub as the public key. The encryption is given by y = mGpub + eEpub,
with Epub allowing the introduction of a decodable error of large weight (we
refer to cryptosystems employing Gpub and Epub as the public key as IKKR-type
cryptosystems). In [17], Ivanov et al. also proposed the IKKR cryptosystem
within this framework and conjectured that its public key sizes would be signifi-
cantly smaller than those of the McEliece-type cryptosystem, as message-recovery
attacks based on information-set decoding would be intractable. However, due
to the suggested construction of Gpub and Epub, the IKKR cryptosystem was
quickly shown to possess a very deterministic linear structure, which allowed
building efficient attacks against it in [23, 22].

Recently, two new code-based cryptosystems, which employ encryption of the
form y = mGpub + eEpub while resisting the attacks of [23, 22], were proposed.
Specifically, in [20] and at CBCrypto2023, Kabatiansky, Krouk, and Tavernier
proposed a ”fix” to the IKKR cryptosystem, which uses joint correction of errors
and erasures (we will refer to this cryptosystem as the KKT cryptosystem). In [37],
Yackushenoks and Ivanov studied the message security of KKT and demonstrated
that e can be recovered by solving a specially crafted syndrome decoding problem
s = eĤT via information-set decoding and the solution is unique. This implies
that KKT is no better than traditional approaches for message security and,
hence, could only be considered as a potential countermeasure against key-
recovery attacks on broken codes. Lau et al. [21] proposed another cryptosystem,
referred to as the LIACY cryptosystem, which involves a more advanced and
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fundamentally different construction of Gpub and Epub compared to [17, 20]. The
authors of [21] claimed that the proposed cryptosystem based on GRS codes
resists known key-recovery attacks while having public key sizes of 88.1 and
399.69 kilobytes for the 128-bit and 256-bit security levels, respectively (providing
92% size reduction compared to the Goppa-based McEliece cryptosystem).

In this paper, we study the structural security of the KKT and LIACY
cryptosystems. Specifically, we show that the KKT cryptosystem can be viewed
as a variant of the McEliece scheme with the following modification: a few columns
of the generator matrix of the secret code are replaced with random ones. Given
that this modification can be considered as Wieschebrink’s encryption scheme
[36] that uses punctured codes, the KKT cryptosystem is shown to be vulnerable
to attacks of [11] if GRS codes are used as the secret codes. For the LIACY
encryption scheme, we mount a full step-by-step key-recovery attack by exploiting
its linear-algebraic structure and by leveraging distinguishers of subcodes of GRS
codes. A proof-of-concept implementation of our attack recovers the secret keys
of the LIACY cryptosystem with parameters proposed in [21] for the 128-bit
security level in just a few hours on a standard laptop.

The paper is organized as follows. Section 2 provides the necessary pre-
liminaries and notation. Section 3 contains the security analysis of the KKT
cryptosystem [20]. Section 4 describes the full key-recovery attack against the
LIACY cryptosystem [21]. Finally, conclusions are given in Section 5.

2 Preliminaries

2.1 Notation

We denote the finite field of size 𝑞 as 𝔽𝑞. The ring of polynomials over 𝔽𝑞 is denoted
by 𝔽𝑞[𝑥], with 𝔽𝑞[𝑥]𝑛 representing the set of polynomials of degree exactly 𝑛 and
𝔽𝑞[𝑥]<𝑛 representing the set of polynomials of degree less than 𝑛. The notation
J𝑎, 𝑏K, where 𝑎, 𝑏 ∈ ℤ, stands for the set {𝑖 ∈ ℤ ∣ 𝑎 ≤ 𝑖 ≤ 𝑏}.

Given a vector c ∈ 𝔽𝑛
𝑞 , we denote its support by supp(c) = {𝑖 ∈ J1, 𝑛K ∣ 𝑐𝑖 ≠ 0}

and its Hamming weight by wt (c) = | supp(c)|. The Hamming distance between
vectors x,y ∈ 𝔽𝑛

𝑞 is denoted by 𝑑(x,y) = wt (x − y).
The set of (𝑚×𝑛) matrices over 𝔽𝑞 is denoted by 𝔽𝑚×𝑛

𝑞 . The (𝑛×𝑛) identity
matrix is denoted by I𝑛. Given 𝐼 ⊂ J1,𝑚K and 𝐽 ⊂ J1, 𝑛K, the submatrix of
X ∈ 𝔽𝑚×𝑛

𝑞 composed of the elements with indices (𝑖, 𝑗) ∈ 𝐼 × 𝐽 is denoted
by X𝐼,𝐽 = (𝑥𝑖,𝑗)𝑖∈𝐼,𝑗∈𝐽. For convenience, we use the notation X∶,𝐽 to represent
XJ1,𝑚K,𝐽, and X𝐼,∶ to represent X𝐼,J1,𝑛K, respectively.

A linear [𝑛, 𝑘, 𝑑]𝑞-code is a linear subspace 𝐶 ⊂ 𝔽𝑛
𝑞 such that dim(𝐶) = 𝑘

and 𝑑 = minc∈𝐶∖{0} wt (c). A generator matrix G𝐶 of 𝐶 is a (𝑘 × 𝑛)-matrix
whose rows form a basis for 𝐶; thus, every codeword c ∈ 𝐶 can be expressed
as c = mG𝐶 for some m ∈ 𝔽𝑘

𝑞 . The dual code of 𝐶, denoted 𝐶⟂, consists of all
vectors in 𝔽𝑛

𝑞 that are orthogonal to every codeword in 𝐶, i.e.,

𝐶⟂ = {w ∈ 𝔽𝑛
𝑞 ∣ ∀c ∈ 𝐶 wcT = 0}.
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A parity-check matrix H𝐶 of 𝐶 is an ((𝑛 − 𝑘) × 𝑛)-matrix whose rows form a
basis of 𝐶⟂, meaning that a vector c ∈ 𝔽𝑛

𝑞 belongs to 𝐶 if and only if H𝐶cT = 0.
The set of (𝑛 × 𝑛) permutation matrices is denoted by PMat𝑛.

2.2 Punctured and Shortened Codes

Given an [𝑛, 𝑘, 𝑑]𝑞-code 𝐶, the punctured code of 𝐶 on positions 𝐼 ⊂ J1, 𝑛K is
obtained by deleting positions indexed by 𝐼 in the codewords of 𝐶:

Pct𝐼(𝐶) = {(c𝑖)𝑖∉𝐼 ∣ (c1, c2,… , c𝑛) ∈ 𝐶} .

The shortened code of 𝐶 on 𝐼 is

Sh𝐼(𝐶) = Pct𝐼 ({c ∈ 𝐶 ∣ supp(c) ∩ 𝐼 = ⌀}) . (1)

Note that Pct𝐼(𝐶)⟂ = Sh𝐼(𝐶⟂) and Sh𝐼(𝐶)⟂ = Pct𝐼(𝐶⟂). Also, if |𝐼| < 𝑑, then
dim (Pct𝐼(𝐶)) = 𝑘 (see [16, Theorem 1.5.7]).

2.3 Generalized Reed-Solomon Codes.

Let x = (x1,… ,x𝑛) be a tuple of 𝑛 distinct elements of 𝔽𝑞, and let y = (y1,… ,y𝑛)
be a tuple of 𝑛 non-zero elements of 𝔽𝑞. The Generalized Reed-Solomon code with
the support x, the multiplier y, and of dimension 𝑘 is

GRS𝑘(x,y) = {(y1𝑓(x1),y2𝑓(x2),… ,y𝑛𝑓(x𝑛)) ∣ 𝑓(𝑥) ∈ 𝔽𝑞[𝑥]<𝑘} ,

with RS𝑘(x) = GRS𝑘(x,1 = (1, 1,… , 1)) being known as the Reed-Solomon code
of dimension 𝑘. It is well-known that GRS𝑘(x,y) is an [𝑛, 𝑘, 𝑑 = 𝑛 − 𝑘 + 1]-code
defined by the following generator matrix:

⎡
⎢
⎢
⎢
⎣

x0
1 x0

2 … x0
𝑛−1 x0

𝑛
x1
1 x1

2 … x1
𝑛−1 x1

𝑛
x2
1 x2

2 … x2
𝑛−1 x2

𝑛
⋮ ⋮ ⋱ ⋮ ⋮

x𝑘−1
1 x𝑘−1

2 … x𝑘−1
𝑛−1 x𝑘−1

𝑛

⎤
⎥
⎥
⎥
⎦

⋅ diag(y).

The dual code GRS𝑘(x,y)⟂ is also a GRS code with the same support x. Addi-
tionally, shortened and punctured codes of GRS𝑘(x,y) on 𝐼 ⊂ J1, 𝑛K are also GRS
codes with the support (x𝑖)𝑖∉𝐼. Their dimensions are 𝑘 − |𝐼| and 𝑘, respectively.

The use of GRS codes in the McEliece cryptosystem for reducing public key
size was proposed in [29]; however, Sidelnikov and Shestakov [31] described an
algorithm that efficiently recovers the secret structure of the underlying codes.
Below, we briefly describe a modified Sidelnikov-Shestakov attack that, given a
generator matrix G of a GRS code 𝐶 = GRS𝑘(x,y), recovers its support and
multiplier. Let M = [I𝑘 ∣ R] = (𝛽𝑖,𝑗) be a systematic generator matrix of 𝐶. Since
each row of M has 𝑘 − 1 zero positions and can be represented as follows

M𝑖,∶ = (𝑓𝑖(x1),… , 𝑓𝑖(x𝑛)) ⋅ diag(y), 𝑓𝑖(𝑥) ∈ 𝔽𝑞[𝑥]<𝑘,
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it follows that 𝑓𝑖(𝑥) = 𝛼𝑖 ∏
𝑘
𝑠=1
𝑠≠𝑖

(𝑥 − x𝑠) for some non-zero 𝛼𝑖 ∈ 𝔽𝑞, and hence

𝛽𝑖,𝑗 = y𝑗𝑓(x𝑗) = 𝛼𝑖y𝑗

𝑘
∏
𝑠=1
𝑠≠𝑖

(x𝑗 − x𝑠). (2)

Thus, for all 𝑖, 𝑖′ ∈ J1, 𝑘K and 𝑗, 𝑗′ ∈ J𝑘 + 1, 𝑛K, the following relations hold:

𝛽𝑖,𝑗𝛽𝑖′,𝑗′

𝛽𝑖′,𝑗𝛽𝑖,𝑗′
=

(x𝑗 − x𝑖′)(x𝑗′ − x𝑖)
(x𝑗 − x𝑖)(x𝑗′ − x𝑖′)

, (3)

(see also [7, Corollary 5]), and

𝛽1,𝑗 =
𝛽1,𝑗

𝛽1,1
=

y𝑗 ⋅ ∏
𝑘
𝑠=2(x𝑗 − x𝑠)

y1 ⋅ ∏
𝑘
𝑠=2(x1 − x𝑠)

. (4)

Assuming x1,x2,x𝑘+1 are known, x𝑗, where 𝑗 ∈ J𝑘 + 2, 𝑛K, can be recovered
from (3) by letting 𝑖 = 1, 𝑖′ = 2, and 𝑗′ = 𝑘 + 1. Next, x𝑖, where 𝑖 ∈ J3, 𝑘K, are
recovered from (3) by letting 𝑖′ = 1, 𝑗 = 𝑘 + 1, and 𝑗′ = 𝑘+ 2. If x1,x2,x𝑘+1 are
not known, an adversary might try guessing them and apply the above-described
procedure to obtain a candidate support. If the resulting vector x′ consists of
distinct elements, then x′ is a successfully recovered (alternative) support of 𝐶.

Once the support is recovered, the values y′
𝑘+1,… ,y′

𝑛 can be easily found
from equations (4), assuming y′

1 is known. Next, 𝛼𝑖 for 𝑖 ∈ J1, 𝑘K are recovered
from (2) by letting 𝑗 = 𝑘 + 1; and finally, y′

2,… ,y′
𝑘 are restored from (2) by

letting 𝑖 = 1. After this, we obtain x′ and y′ such that 𝐶 = GRS𝑘(x′,y′).

Remark 1. Note that, without loss of generality, one can assume that x′
1 = 0,

x′
2 = 1, and y′

1 = 1 since

GRS𝑘(x,y) = GRS𝑘 ((𝜆x1 + 𝜇,… , 𝜆x𝑛 + 𝜇), 𝜈y)

for any 𝜆, 𝜈 ∈ 𝔽∗
𝑞 , 𝜇 ∈ 𝔽𝑞 (see [24, §9 of Ch. 10]).

2.4 Schur-Hadamard Product and Square Code Construction

Given two vectors a,b ∈ 𝔽𝑛
𝑞 , their Schur-Hadamard product is defined as the

componentwise product of a and b:

a ⋆ b = (a1b1,… ,a𝑛b𝑛) .

For a linear code 𝐶 ⊂ 𝔽𝑛
𝑞 , the square code of 𝐶 is defined as

𝐶2 = Span ({a ⋆ b ∣ a,b ∈ 𝐶}) .

It is straightforward to see that 𝐶2 is spanned by the Schur-Hadamard products
of the basis vectors of 𝐶.
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For GRS codes, it is known that if 𝑘 ≤ (𝑛 + 1)/2, then GRS𝑘(x,y)2 =
GRS2𝑘−1(x,y ⋆ y) (see Proposition 6 of [11]). Thus, the dimension of a GRS
square code is significantly lower than that of a random code, which is of order
(𝑘+1

2 ).
Wieschebrink [35] used the square code construction to attack a McEliece-type

cryptosystem based on low-codimensional subcodes of GRS codes, which was
proposed by Berger et al. [6]. Specifically, in [35], it was observed that given a
(non-shortened) subcode 𝐶 ⊂ GRS𝑘(x,y), where 𝑘 ≤ (𝑛+1)/2, its square equals
GRS2𝑘−1(x,y ⋆ y) with high probability. Thus, it is possible to recover x using
the Sidelnikov-Shestakov attack on 𝐶2. Subsequently, y′ can be recovered by
finding a non-zero solution to the linear system

G𝐶 ⋅ diag (y′−1
1 ,… ,y′−1

𝑛 ) ⋅ HT
RS𝑘(x′) = 0

with respect to the unknowns y′−1
1 ,… ,y′−1

𝑛 .
If 𝑘 > (𝑛 + 1)/2, the square of GRS𝑘(x,y) equals 𝔽𝑛

𝑞 (and so does 𝐶2 with
high probability), and hence this attack is not directly applicable. However,
it is possible to shorten 𝐶 at some positions 𝐼 ⊂ J1, 𝑛K (and hence obtain a
subcode of a shortened GRS code) so that dim(Sh𝐼(𝐶)2) < 𝑛 − |𝐼| and apply
the attack to recover a partial support (x′

𝑖)𝑖∉𝐼. Since any three points of the
GRS support completely define the remaining points, the full support can be
obtained by re-applying the same procedure to another set of positions 𝐼′, where
|J1, 𝑛K∖(𝐼∩𝐼 ′)| ≥ 3, to obtain a completion (x′

𝑖)𝑖∉(𝐼∩𝐼′). This process is iteratively
repeated until the full support is recovered.

2.5 Wieschebrink’s encryption scheme

In [36], C. Wieschebrink proposed inserting random columns into the generator
matrix of GRS codes to thwart the Sidelnikov-Shestakov attack. Specifically,
the public key of the resulting scheme is given by Gpub = [SG ∣ R] ⋅ P, where
S ∈ GL𝑘(𝔽𝑞), R ∈ 𝔽𝑘×𝑟

𝑞 are random matrices, and P is a random permutation
matrix. However, this scheme was later broken by an attack proposed by Couvreur
et al. [11].

Let 𝐶′ denote the code spanned by G′ = [GGRS𝑘(x,y) ∣ R]P, where R ∈ 𝔽𝑘×𝑟
𝑞 .

In [11], it was observed that if 2𝑘 − 1 + 𝑟 < 𝑛, then dim(𝐶′2) = 2𝑘 − 1 + 𝑟 with
high probability. Consequently, when 2𝑘 − 1 + 𝑟 < 𝑛, the random columns in G′

can be distinguished with high probability using the following observation:

dim((Pct{𝑖}(𝐶′))
2
) =

⎧
{
⎨
{
⎩

dim(𝐶′2)⏟⏟⏟⏟⏟
2𝑘−1+𝑟

, if G′
∶,𝑖 is a GRS column,

dim(𝐶′2) − 1⏟⏟⏟⏟⏟
2𝑘−2+𝑟

, if G′
∶,𝑖 is a random column.

In the case when 2𝑘 − 1 + 𝑟 ≥ 𝑛, the same distinguisher can be applied
to shortened codes of 𝐶′. These shortened codes, which are low-codimensional
subcodes of GRS codes of lower dimension and length with inserted random
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columns, have to be chosen so that the dimension of their squares is less than 𝑛,
allowing for the identification of random positions.

Remark 2. In our experiments, the above-described approach successfully identi-
fies random columns in the case when low-codimensional subcodes of GRS codes
are used instead of GRS codes. We leverage this distinguisher in one of the steps
of our attack against the LIACY cryptosystem.

3 Security analysis of KKT

This section provides a security analysis of the Krouk-Kabatiansky-Tavernier
encryption scheme, which was proposed in [20] as follows:

– Key generation. Let 𝐶 be a [𝑛, 𝑘, 𝑑]𝑞-code with a generator matrix G and a
known efficient error-and-erasure-correcting decoder, and let
• M and W be random non-singular (𝑛 × 𝑛) matrices;
• D be a diagonal matrix with 𝑟 non-zero elements on the main diagonal;
• P and P′ be random (𝑛 × 𝑛) permutation matrices, chosen such that

WDP + P′ is non-singular;
• U be a (specially chosen) (𝑛 × 𝑘)-matrix, having rank(U) < 𝑘.

The public key consists of Gpub = GM and Epub = (WDUG + WDP + P′)M.
– Encryption. Given a message m ∈ 𝔽𝑘

𝑞 , the ciphertext is

y = mGpub + eEpub,

where e ∈ 𝔽𝑛
𝑞 is a random error of weight 𝑡 = ⌊𝑑−𝑟−1

2 ⌋.
– Decryption. Compute

y′ = yM−1 = (m + eWDU)⏟⏟⏟⏟⏟⏟⏟
m′

G + eWDP⏟
eeras

+eP′.

Since WDP is a matrix having only 𝑟 non-zero columns, a legitimate user
knows all the possible 𝑟 indices of non-zero positions of eeras. Therefore,
by erasing these positions in y′, the user can recover m′ by applying the
error-and-erasure decoder for 𝐶 to y′. Finally, e and m are recovered using

e = (y′ − m′G) (WDP + P′)−1 , m = m′ − eWDU.

In the following, we consider the security of a slightly generalized version of
the KKT cryptosystem with Epub given by

Epub = (XG + R + P)M,

where X ∈ 𝔽𝑛×𝑘
𝑞 is a (𝑛 × 𝑘)-matrix, R ∈ 𝔽𝑛×𝑛

𝑞 is a random matrix with 𝑟
non-zero columns, P is a random permutation matrix, and R+P is non-singular.

Let Hpub be a parity-check matrix for Gpub = GM. It is easy to see that
HT

pub = M−1HT
𝐶AT for some A ∈ GL𝑛−𝑘(𝔽𝑞), since

GpubM−1HT
𝐶 = GHT

𝐶 = 0, rank(M−1HT
𝐶) = 𝑛 − 𝑘.
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We have

yHT
pub⏟

𝑠

= mGpubHT
pub + eEpubHT

pub = e (R + P)HT
𝐶AT⏟⏟⏟⏟⏟⏟⏟

H̃T=EpubHT
pub

.

Therefore, to attack the KKT cryptosystem, an adversary might try recovering e
from the syndrome equation s = eH̃T for the code 𝐶 defined by the parity-check
matrix H̃. Let G̃ be a generator matrix for 𝐶. One can easily note that

G̃ = S′ ⋅ G ⋅ (R + P)−1

for some S′ ∈ GL𝑘(𝔽𝑞). The following proposition clarifies the relation between
𝐶 and 𝐶.

Proposition 1. Let R ∈ 𝔽𝑛×𝑛
𝑞 be a matrix with 𝑟 non-zero columns, P ∈ 𝔽𝑛×𝑛

𝑞
be a permutation matrix, and R + P be non-singular. Then

(R + P)−1 = T + P−1,

where the matrix T ∈ 𝔽𝑛×𝑛
𝑞 has only 𝑟 non-zero columns.

Proof. Indeed, from

I𝑛 = (R + P) (T + P−1) = RT + RP−1 + PT + I𝑛

we obtain
T = −(R + P)−1 ⋅ R ⋅ P−1.

So, the claim readily follows from the fact that RP−1 has only 𝑟 non-zero columns.

Proposition 1 yields that G̃ is a sum of a permuted generator matrix S′GP−1

of 𝐶 and a matrix S′GT with only 𝑟 non-zero columns (which can be considered
as randomly sampled):

G̃ = S′GP−1 + S′GT.

Let 𝐼 be the set of indices 𝑖 ∈ J1, 𝑛K for which the 𝑖-th column of T is the zero,
and let 𝐶 be the code with generator matrix G̃∶,𝐼 = (S′GP−1)

∶,𝐼
. Clearly, 𝐶 is a

permuted punctured code of 𝐶 on some 𝑟 positions, and hence

1) 𝐶 and, consequently, 𝐶 have a minimum distance of at least 𝑑 − 𝑟;
2) the error vector e can be uniquely restored from s = yHT

pub = eH̃T using a
decoder for 𝐶 as follows:

– find any z ∈ 𝔽𝑛
𝑞 such that zH̃T = s (any solution is of the form z = UG̃+e

for some U ∈ 𝔽𝑘
𝑞 ),

– apply the decoder of 𝐶 to (z𝑖)𝑖∈𝐼 and recover U,
– compute e = z − UG̃;

3) the matrix G̃ can be viewed as a public key of Wieschebrink’s encryption
scheme that employs a punctured code of 𝐶 on some 𝑟 positions.
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Therefore, the KKT encryption scheme is not optimal in terms of key sizes
since it is possible to use G̃ as the public key and classical encryption mG̃ + e
instead of the original ones. Additionally, the KKT hiding procedure provides no
security benefits compared to Wieschebrink’s encryption scheme that employs
punctured codes, since structural attacks on the latter scheme can be transferred
to the KKT scheme. In particular, we were able to easily apply the attack
from [11], which breaks the GRS-based Wieschebrink encryption scheme, to
break the KKT scheme based on GRS codes1 (note that 𝐶 in this case is also
a GRS code). The resulting complexity of this attack can be estimated as
𝑂(𝑘𝑛2) + 𝑛𝑂(𝑛2𝑘2) = 𝑂(𝑛3𝑘2).

Additionally, with RLCE encryption scheme [33] being an improvement upon
Wieschebrink’s encryption scheme, the RLCE scheme employing punctured codes
would offer a better security margin for other classes of codes (with all things
being equal) compared to the KKT scheme, making it a more robust choice.

4 Security analysis of LIACY

4.1 Description of the scheme

To simplify the security analysis, we present a streamlined description of the
LIACY encryption scheme [21]. This description is, however, equivalent to the
original presentation of LIACY in [21] (see Remark 3).

Definition 1. Let 𝑛, 𝑟 ∈ ℕ, with 𝑟 ≤ 𝑛. A matrix Q ∈ 𝔽𝑟×𝑛
𝑞 is called an

(𝑛, 𝑟)-partial permutation matrix if and only if Q = [I𝑟 ∣ 0𝑟×(𝑛−𝑟)]P for some
P ∈ PMat𝑛. Note that wt (eQ) = wt (e) for any e ∈ 𝔽𝑛

𝑞 .

Definition 2. Let 𝑚,𝑛 ∈ ℕ, with 𝑚 < 𝑛 ≤ 2𝑚. A matrix R ∈ 𝔽𝑛×𝑚
𝑞 is called a

homogeneous matrix if and only if

R = S1

⎡
⎢
⎢
⎣

P

I𝑛−𝑚 ∣ 0(𝑛−𝑚)×(2𝑚−𝑛)

⎤
⎥
⎥
⎦

S2

for some P,S2 ∈ PMat𝑚 and S1 ∈ PMat𝑛. Since each row of R has weight 1, it
follows that wt (eR) ≤ wt (e) for any e ∈ 𝔽𝑛

𝑞 .

Assume 𝑘,𝑚, 𝑛, 𝑟 ∈ ℕ are such that 𝑛 − 𝑘 < 𝑟, and 𝑘 < 𝑚 < 𝑟 < 𝑛 ≤ 2𝑚.
The streamlined LIACY encryption scheme is defined as follows:

– Key Generation:
• Let 𝐶 be a secret 𝑡-error-correcting [𝑚, 𝑘]-code with a known efficient
decoding algorithm (in particular, in [21], it was proposed to choose 𝐶
from the family of GRS codes). Let G be a generator matrix of 𝐶.

1 Our implementation of the attack against GRS-based KKT scheme is available at
https://github.com/kirill-vedenev/Breaking-KKT-and-LIACY

https://github.com/kirill-vedenev/Breaking-KKT-and-LIACY
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• Randomly generate Gpub ∈ 𝔽𝑘×𝑛
𝑞 of rank 𝑘 and pick any full-rank matrix

F ∈ 𝔽𝑛×𝑚
𝑞 that satisfies the following equation:

GpubF = G.

• Randomly generate a homogeneous matrix R ∈ 𝔽𝑛×𝑚
𝑞 and a (𝑛, 𝑟)-partial

permutation matrix Q ∈ 𝔽𝑟×𝑛
𝑞 , then compute 𝚷 = QR.

• Let Epub ∈ 𝔽𝑟×𝑛
𝑞 be a random solution to the matrix equation

EpubF = 𝚷.

• The public key is (Gpub,Epub), all the other matrices are kept private.
– Encryption. The ciphertext is given by y = mGpub + eEpub, where m ∈ 𝔽𝑘

𝑞 is
the plaintext and e ∈ 𝔽𝑟

𝑞 is a random error vector of weight 𝑡.
– Decryption. Using the decoder of 𝐶, recover m from

yF = mG + e𝚷,

which is a noisy codeword of 𝐶 with wt (e𝚷) ≤ wt (e) = 𝑡.

Remark 3. The original presentation of LIACY’s key generation [21] is more
complex. It involves the following steps: randomly generate

– four matrices: G1 ∈ 𝔽𝑘×𝑛
𝑞 , U ∈ 𝔽(𝑛−𝑚)×𝑛

𝑞 , and M1,M2 ∈ GL𝑛(𝔽𝑞);
– a homogeneous matrix R ∈ 𝔽𝑛×𝑚

𝑞 and an (𝑛, 𝑟)-partial permutation matrix
Q ∈ 𝔽𝑟×𝑛

𝑞 ;

compute the following in order:

– a matrix H2 such that G1M1M−1
2 HT

2 = G and rank(H2) = 𝑚;
– a parity-check matrix G2 for H2;
– a matrix P such that PHT

2 = R.

The public key is then defined as (Gpub = G1M1, Epub = Q [P + UG2]M2) .
The streamlined presentation is equivalent to the original. Specifically, given

the original presentation, we can obtain an instance of the streamlined one
by setting F = M−1

2 HT
2 ; it then follows that the relations GpubF = G and

EpubF = 𝚷 = QR hold.

Remark 4. To achieve competitive key sizes, the parameters 𝑚, 𝑟, 𝑛 ∈ ℕ (with
the requirement that 𝑚 < 𝑟 < 𝑛) were chosen in [21] to be close to each other,
with 𝑛−𝑚 falling within the range J11, 23K. Furthermore, the use of a specialized
technique (see Section 6.1 of [21]) for optimizing public key sizes necessitates a
relatively low value for 𝑘 (< 𝑚/2).

Remark 5. The matrix 𝚷 = QR simply consists of 𝑟 randomly selected rows of
R. This implies the following properties:

(i) Each row of 𝚷 is of weight 1;
(ii) Each column of 𝚷 is unique;
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(iii) Each column of 𝚷 is of weight ≤ 2;
(iv) The average numbers of weight-0, weight-1, and weight-2 columns are

given by

𝜋0 = (𝑛
𝑟
)

−1

(𝑛− 2
𝑟

)(𝑛 −𝑚) +(𝑛
𝑟
)

−1

(𝑛− 1
𝑟

)(2𝑚 − 𝑛),

𝜋1 = (𝑛
𝑟
)

−1

(𝑛− 1
𝑟 − 1

)(2
1
)(𝑛 −𝑚) +(𝑛

𝑟
)

−1

(𝑛− 1
𝑟 − 1

)(2𝑚− 𝑛)

𝜋2 = (𝑛
𝑟
)

−1

(𝑛− 2
𝑟 − 2

)(𝑛 −𝑚),

respectively.

For the proposed parameter sets in [21] (see also Remark 4), the matrix 𝚷 ∈ 𝔽𝑟×𝑚
𝑞

consists primarily of weight-1 columns. For example, for GRSdet-I parameter set
(𝑚 = 486, 𝑟 = 496, 𝑛 = 507) , the average number of weight-1 columns is 456
(out of a total of 486 columns). Similarly, for GRSdet-IV parameter set (𝑚 = 966,
𝑟 = 976, 𝑛 = 989), this number is 931 (out of a total of 966 columns).

To simplify notation, we will analyze the security of LIACY using the stream-
lined presentation. The ultimate goal for an attacker is to be able to decrypt
any given ciphertext y = mGpub + eEpub. Ideally, this would be achieved by
recovering the original secret ”decryption” matrix F or an equivalent one F̃ which
satisfies:

1. G̃ = GpubF̃ is a generator matrix of the secret 𝑡-error correcting [𝑚, 𝑘]-code
𝐶 (or an equivalent efficiently decodable code);

2. �̃� = EpubF̃ is a matrix such that wt (e�̃�) ≤ wt (e) for any e ∈ 𝔽𝑟
𝑞 .

Our main proposed attack instead focuses on recovering enough structure to
enable decryption via a different route. The attack proceeds in two main stages:

Step 1. Recover the non-zero columns of the secret matrix 𝚷.
This step leverages a key linear-algebraic property intrinsic to the LIACY
scheme: for a true column wT of 𝚷, any solution x to the linear system
EpubxT = wT exhibits some hidden structure related to the secret code
𝐶 when projected by a specific matrix U (derived from Gpub and the
null space of Epub). Specifically, as shown below (see (9)), UxT must be
a column of a generator matrix of a certain subcode of 𝐶. In contrast,
solutions x corresponding to arbitrary vectors w (not columns of 𝚷) will
likely not possess this property. This distinction allows us to employ the
GRS subcode distinguishers (described in Section 2.5) to effectively filter
and identify the actual non-zero columns of 𝚷. This recovery process,
detailed later in this section, involves two sub-stages:
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(a) Recover the set of weight-1 columns of 𝚷.
(b) Iteratively recover the set of weight-2 columns of 𝚷.

The output of this step is the matrix �̃�, which contains the recovered
non-zero columns of 𝚷 (in a permuted order).

Step 2. Recover related code structure and apply modified decryption.
With �̃� known, an adversary can find a matrix Z such that EpubZ = �̃�.
This Z effectively satisfies Condition 2 for a candidate ”decryption”
matrix F̃. However, Condition 1 is likely violated, i.e., GpubZ is not a
generator matrix of an efficiently decodable 𝑡-error correcting code with
known structure. In order to overcome this, we show that there exists an
alternative decryption procedure (described in detail below) that employs
the decoder of code 𝐶 defined by the generator matrix UZ. Furthermore,
we show that 𝐶 is a 𝑡-error correcting subcode of some GRS-code, and
hence its structure can be efficiently recovered, allowing efficient decoding
for an adversary.

The detailed description of each step is provided below. Additionally, for the
sake of completeness, Appendix A provides an alternative approach to Step 2,
which aims to recover the decryption matrix F̃ but has a higher complexity.

4.2 Step 1: Recovering the Non-Zero Columns of Π

A useful linear-algebraic property. We begin by establishing a crucial linear-
algebraic property that underpins the attack. Let K denote a right null space
matrix for Epub (i.e., the columns of K form a basis of the right null space of
Epub). Suppose wT = 𝚷∶,𝑗 is the 𝑗-th column of 𝚷. It is straightforward to see
that any solution x ∈ 𝔽𝑛

𝑞 to the following linear system:

Epub ⋅ xT = wT (5)

is of the form
xT = F∶,𝑗 + KT, (6)

for some ∈ 𝔽rank(K)
𝑞 . Consequently,

GpubxT = GpubF∶,𝑗 + GpubKT = G∶,𝑗 + GpubKT. (7)

Now, let 𝜁 = rank(GpubK), and let A ∈ GL𝑘(𝔽𝑞) be a non-singular a matrix
that transforms GpubK to the form where all rows except the first 𝜁 rows are
zero, i.e.,

AGpubK = [ 𝒱
0(𝑘−𝜁)×rank(K)

] , 𝒱 ∈ 𝔽𝜁×rank(K)
𝑞 , rank(𝒱) = 𝜁. (8)

For instance, A can be found as a non-singular matrix that transforms GpubK to
its reduced row echelon form.
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Let U = AJ𝜁+1,𝑘K,∶Gpub. Combining (7) and (8) yields

UxT = AJ𝜁+1,𝑘K,∶GpubxT = AJ𝜁+1,𝑘K,∶G∶,𝑗. (9)

This implies that Ux is a column of AJ𝜁+1,𝑘K,∶G, which is a generator matrix
of some subcode of 𝐶 of dimension 𝑘 − 𝜁. In contrast, if w is not a column of
𝚷, then for a solution x of (5), the resulting UxT will not possess this property
with high probability. This difference forms the basis of our distinguisher.

Recovering the set of weight-1 columns of Π. For the indices of the weight-0,
weight-1, and weight-2 columns of 𝚷, we use the notation

𝐼0 = {𝑖 ∈ J1,𝑚K ∣ wt (𝚷∶,𝑖) = 0} ,
𝐼1 = {𝑖 ∈ J1,𝑚K ∣ wt (𝚷∶,𝑖) = 1} ,
𝐼2 = {𝑖 ∈ J1,𝑚K ∣ wt (𝚷∶,𝑖) = 2} ,

respectively. As noted in Remark 5, 𝚷 consists mostly of weight-1 columns, and
|𝐼1| is close to 𝑚. We exploit this fact, along with the property described in (9),
to recover the set of weight-1 columns.

Let 𝒲 denote the set of all possible weight-1 vectors w ∈ 𝔽𝑟
𝑞 for which the

linear system (5) is solvable:

𝒲 = {w ∈ 𝔽𝑟
𝑞 ∣ wt (w) = 1 and ∃x ∈ 𝔽𝑛

𝑞 EpubxT = wT} = {w1,… ,w|𝒲|},

(in most practical cases, 𝒲 = {w ∈ 𝔽𝑟
𝑞 ∣ wt (w) = 1}). Let

W = ⎡
⎢
⎣

| … |
wT

1 … wT
|𝒲|

| … |

⎤
⎥
⎦

be the matrix whose columns are from 𝒲. Let X𝑛×|𝒲| ∈ 𝔽𝑞 be a solution to the
linear system

EpubX = W.

The observation (9) readily yields that all columns of AJ𝜁+1,𝑘KG∶,𝐼1 , are also
columns of UX, i.e.,

UX∶,𝐽 = AJ𝜁+1,𝑘K,∶G∶,𝐼1𝜎

for some 𝐽 ⊂ J1, |𝒲|K and 𝜎 ∈ PMat|𝐼1|. Meanwhile, the remaining columns
of UX can be considered as randomly sampled, as they do not correspond to
weight-1 columns of 𝚷. Consequently, the matrix UX can be viewed as being
formed by inserting 𝑚 − |𝐼1| random columns into the matrix AJ𝜁+1,𝑘KG∶,𝐼1𝜎,
which itself is a generator matrix of a 𝜁-codimensional subcode of Pct𝐼0∪𝐼2(𝐶)
(recall that Pct𝐼0∪𝐼2(𝐶) is also a GRS code). In other words, UX is a public key
of Wieschebrink’s encryption scheme that leverages a subcode of a GRS code.

Given that 𝑚 − |𝐼1| and 𝜁 are small, it is possible to identify the set 𝐽 of
the GRS columns in UX with high probability by using the distinguisher-based
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approach described in Section 2.5. Once 𝐽 is found, we obtain that W∶,𝐽 = 𝚷∶,𝐼1𝜎
with high probability, since

EpubX∶,𝐽 = W∶,𝐽.

This implies that there is a procedure that recovers the set of weight-1 columns
of 𝚷.

Recovering the set of weight-2 columns of Π The next step is to augment
the recovered matrix W∶,𝐽, which comprises the weight-1 columns of 𝚷, by
incorporating the weight-2 columns of 𝚷 into it. This is done iteratively:

1. Initialize �̃� to be W∶,𝐽.
2. Try to find a weight-2 vector b ∈ 𝔽𝑚

𝑞 such that
– all rows of [�̃� ∣ bT] are of weight 1, i.e., the support of b is disjoint with

the supports of all columns of �̃�;
– UY, where Y is a solution to the linear system

EpubY = [�̃� ∣ bT] ,

is a generator matrix of some subcode of a GRS code (this also can be
checked using the distinguisher-based approach described in Section 2.5).

3. If such b is found, augment �̃� with the column bT and repeat from step 2.
Otherwise, stop.

This procedure results in a matrix �̃� that, with high probability, contains all
non-zero columns of 𝚷, i.e.,

�̃� = 𝚷∶,𝐼1∪𝐼2 ⋅ 𝜎
′ (10)

for some 𝜎′ ∈ PMat|𝐼1|+|𝐼2|.

4.3 Step 2: Recovering the Code Structure and Applying Modified
Decryption

Let Z be a solution to the matrix equation EpubZ = �̃�, where �̃� is the matrix
obtained in the previous step. Let 𝐶 be the code spanned by UZ. We will now
show that 𝐶 is permutationally equivalent to a subcode of Sh𝐼0(𝐶).

Proposition 2. Let T be a solution to the matrix equation EpubT = 𝚷∶,𝐼1∪𝐼2 .
Then UT is a generator matrix of some subcode of Sh𝐼0(𝐶).

Proof. Without loss of generality, assume that 𝑖0 < 𝑖1 < 𝑖2 for all 𝑖0 ∈ 𝐼0, 𝑖1 ∈ 𝐼1,
and 𝑖2 ∈ 𝐼2. Then we have

Epub [0𝑛×|𝐼0| | T] = 𝚷,

and hence
[0𝑛×|𝐼0| | T] = F + K𝚽
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for some 𝚽 ∈ 𝔽rank(K)×𝑚
𝑞 (see (7)). It follows that

U [0𝑛×|𝐼0| | T] = AJ𝜁+1,𝑘KG

(see (9)). At the same time

U [0𝑛×|𝐼0| | T] = [0(𝑘−𝜁)×|𝐼0| ∣ UT] ,

implying that UT indeed generates a subcode of a shortened code of 𝐶.

Since 𝐶 is permutationally equivalent to a subcode of the GRS code Sh𝐼0(𝐶),
it can correct at least 𝑡 errors, and its structure can be recovered using the
technique described in Section 2.4. We will now show that the recovered structure
of 𝐶 is sufficient for the attacker to recover the plaintexts. Specifically, we will
describe a modified decryption procedure that achieves this.

Remark 6. It is important to note that GpubZ generally does not span a GRS
code, nor a subcode of a GRS code. This is due to the ”noise” introduced by
the linear combinations of the columns of K (see (5) and (6)). Consequently, the
attacker should use a modified decryption procedure, which relies on decoding 𝐶.

Let y = mGpub + eEpub be a ciphertext, and let m̃ = mA−1. Using (8), we
obtain

yK = mGpubK = m̃AGpubK = m̃ [ 𝒱
0(𝑘−𝜁)×rank(K)

] = m̃J1,𝜁K𝒱,

from which m̃J1,𝜁K can be easily found, since the matrix 𝒱 has full row rank. Now
consider yZ:

yZ = m̃AGpubZ + e�̃� = m̃J1,𝜁KAJ1,𝜁K,∶GpubZ + m̃J𝜁+1,𝑘K AJ𝜁+1,𝑘K,∶GpubZ⏟⏟⏟⏟⏟⏟⏟
=UZ

+e�̃�.

Since m̃J1,𝜁K is known, it follows that we can compute

yZ − m̃J1,𝜁KAJ1,𝜁K,∶GpubZ = m̃J𝜁+1,𝑘KUZ + e�̃�.

This results in a noisy codeword of 𝐶, with the noise term e�̃� having weight
wt (e�̃�) ≤ 𝑡. Therefore, by applying the decoder of 𝐶 (which is known to the
attacker, as 𝐶 is a subcode of a GRS code), the attacker can recover m̃J𝜁+1,𝑘K.
Finally, the original message is recovered as m = m̃A.

The computational complexity of the attack can be estimated as (𝑚 +
(𝑚2 ))𝑂(𝑛3) + (𝑚 + (𝑚2 ))𝑂(𝑚𝑘2) = 𝑂(𝑚2𝑛3 + 𝑚3𝑘2). The 𝑂(𝑛3) term arises
from solving matrix equations, and the 𝑂(𝑚𝑘2) term arises from computing
dimension of square codes.

The proposed attack was implemented in SageMath2, and our experiments
confirm its effectiveness. In particular, breaking the cryptosystem with a security
level of 128 bits takes several hours on a personal computer.
2 Our implementation of the attack against the LIACY encryption scheme is available at
https://github.com/kirill-vedenev/Breaking-KKT-and-LIACY

https://github.com/kirill-vedenev/Breaking-KKT-and-LIACY
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5 Conclusion

In this paper, we have conducted a comprehensive security analysis of two
recently proposed code-based cryptosystems: the Krouk-Kabatiansky-Tavernier
and Lau-Ivanov-Ariffin-Chin-Yap cryptosystems. Our findings reveal that both
cryptosystems are vulnerable to attacks that exploit their structural weaknesses.

For the KKT cryptosystem, we have shown that its structure can be reduced to
a variant of the McEliece scheme, where a subset of columns in the public generator
matrix is replaced with random ones. This reduction effectively transforms the
KKT cryptosystem into a variant of Wieschebrink’s encryption scheme, which
is known to be vulnerable to structural attacks, particularly when GRS codes
are used. Consequently, the KKT cryptosystem inherits the vulnerabilities of
Wieschebrink’s scheme, making it susceptible to existing key-recovery attacks.

For the LIACY cryptosystem, we have developed a full key-recovery attack by
exploiting its linear-algebraic structure and leveraging distinguishers of subcodes
of GRS codes. Our attack successfully recovers the secret keys by systematically
identifying the hidden components of the public key and reconstructing the
underlying GRS codes. We provided a detailed step-by-step description of the
attack, and proof-of-concept implementation of it.

While both the KKT and LIACY cryptosystems introduce novel and inter-
esting approaches aimed at improving the security of code-based encryption
schemes, our analysis reveals that their use of highly structured codes, such as
GRS codes, leaves them vulnerable to key-recovery attacks. These findings under-
score the importance of rigorous cryptanalysis in the design of new code-based
cryptosystems, particularly those that rely on algebraic codes.
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Kosolapov for their helpful comments and discussions.

Disclosure of Interests. The author has no competing interests to declare that are
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A Alternative Step 2: Recovering the Decryption Matrix

For the sake of completeness, this appendix outlines an alternative attack strategy
for the LIACY encryption scheme aimed at recovering the full «decryption» matrix
F̃ ∈ 𝔽𝑛×𝑚

𝑞 that satisfies both Conditions 1 and 2 presented at the beginning
of Section 4. Such a matrix F̃ would allow the use of the original decryption
procedure defined in the LIACY scheme, bypassing the need for the modified
decryption approach detailed in Step 2 of our primary attack. However, achieving
this full key recovery generally involves computationally more expensive steps
compared to the modified decryption approach.

After the completion of Step 1, an adversary can find a matrix Z ∈ 𝔽𝑛×(𝑚−|𝐼0|)
𝑞

such that EpubZ = �̃�. Recall that

UZ = AJ𝜁(𝑛+1),𝑘K,∶ ⋅ G∶,𝐼1∪𝐼2 ⋅ 𝜎

(see (9)) for some 𝜎 ∈ PMat|𝐼1|+|𝐼2|. Thus, by applying the attack against subcodes
of GRS codes described in Section 2.4 to UZ, we can easily recover a GRS support
𝜶 of the GRS code spanned by G∶,𝐼1∪𝐼2 ⋅ 𝜎.

Since
Epub [Z ∣ 0𝑛×|𝐼0|]⏟⏟⏟⏟⏟

Z′

= [𝚷∶,𝐼1∪𝐼2𝜎 ∣ 𝚷∶,𝐼0𝜎
′] ,

for some 𝜎′ ∈ PMat|𝐼0|, from (6) it follows that

GpubZ′ = [G∶,𝐼1∪𝐼2𝜎 ∣ G∶,𝐼0𝜎
′]⏟⏟⏟⏟⏟⏟⏟⏟⏟

G′

+GpubK𝚽 (11)

for some (unknown) matrix 𝚽 ∈ 𝔽rank(K)×𝑚
𝑞 . Our goal now is to complete this

support to the GRS support 𝜸 of the code spanned by G′, i.e.,

𝜸 = (𝜶 || 𝛾𝑖1 ,… , 𝛾𝑖|Γ|
) . (12)

Proposition 3. Let 𝜸 be a GRS support of a code spanned by G′. Then the
following (overdetermined) linear system

Gpub ⋅ [Z′ ∣ K] ⋅ ⎡⎢
⎣

𝒟
ℳ

⎤
⎥
⎦
⋅ HT

RS𝑘(𝜸)
= 0𝑘×(𝑛−𝑘), (13)

with respect to unknown diagonal matrix 𝒟 ∈ 𝔽𝑚×𝑚
𝑞 and unknown matrix

ℳ ∈ 𝔽rank(K)×𝑚
𝑞 , has a non-trivial solution.

Proof. One can easily note that G′ can be expressed as follows:

G′ = Gpub ⋅ [Z′ ∣ K] ⋅ ⎡⎢
⎣

I𝑚
−𝚽

⎤
⎥
⎦

(14)
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(see (11)). Let 𝜷 be a GRS multiplier of the code spanned by G′. Combining
(14) and

G′ ⋅ diag(𝜷)−1 ⋅ HT
RS𝑘(𝜸)

= 0𝑘×(𝑛−𝑘)

yields that (𝒟 = diag(𝜷),ℳ = −𝚽 diag(𝜷)) is a non-trivial solution to (13).

Proposition 4. Given any solution to (13) such that

rank⎛⎜⎜
⎝

Gpub ⋅ [Z′ ∣ K] ⋅ ⎡⎢
⎣

𝒟
ℳ

⎤
⎥
⎦

⎞⎟⎟
⎠

= 𝑘, (15)

we can assume that the decipherment matrix F̃ is of the form

F̃ = [Z′ ∣ K] ⋅ ⎡⎢
⎣

𝒟
ℳ

⎤
⎥
⎦
.

Proof. Indeed, (13) and (15) directly imply that GpubF̃ is a generator matrix of
RS𝑘(𝜸), so Condition 1 is satisfied. In addition, for any e ∈ 𝔽𝑟

𝑞 we obviously have

wt (eEpubF̃) = wt (e�̃�) ≤ wt (e) ,

i.e., Condition 2 is also satisfied.

Propositions 3 and 4 imply that an adversary can try guessing the last |𝐼0|
values of 𝜸 (see (12)). The correctness of guessing can be checked by solving
whether the linear system (13) has a non-trivial solution that satisfies (15). If
the solution is found, then an adversary successfully finds the complement and
an alternative ”decryption” matrix F̃ as described in Proposition 4.

Remark 7. In practical implementations, condition (15) can be checked proba-
bilistically by choosing some number of random non-zero solutions to (13) and
attempting to find one for which (15) holds.

Remark 8. Note that some supports 𝜶 might be incompletable to the support
of [G∶,𝐼1∪𝐼2𝜎 ∣ G∶,𝐼0𝜎

′]. However, there always exists at least one 𝜶 that is
completable. So, in the case of failure, an adversary can perform the completion
procedure described above with a different choice of 𝜶 (see Section 2.3).

Remark 9. For the parameter sets proposed in [21], the typical number of brute-
force searches for complements to be checked is very small.
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