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Abstract

As artificial intelligence plays an increasingly important role in decision-making
within critical infrastructure, ensuring the authenticity and integrity of neural net-
works is crucial. This paper addresses the problem of detecting cloned neural net-
works. We present a method for identifying clones that employs a combination of
metrics from both the information and physical domains: output predictions, prob-
ability score vectors, and power traces measured from the device running the neural
network during inference. We compare the effectiveness of each metric individually,
as well as in combination. Our results show that the effectiveness of both the in-
formation and the physical domain metrics is excellent for a clone that is a near
replica of the target neural network. Furthermore, both the physical domain metric
individually and the hybrid approach outperformed the information domain metrics
at detecting clones whose weights were extracted with low accuracy. The presented
method offers a practical solution for verifying neural network authenticity and in-
tegrity. It is particularly useful in scenarios where neural networks are at risk of
model extraction attacks, such as in cloud-based machine learning services.

Keywords—fingerprinting, neural networks, intellectual property, model extraction, power

side channels.

1 Introduction

With the growing deployment of artificial intelligence in various applications [1], protect-
ing the authenticity and integrity of neural networks (NN) becomes increasingly impor-
tant. A significant threat is the cloning of NNs, where an adversary obtains a replica
of a legitimate NN. This process, known as model extraction, comes in multiple flavors.
Depending on the extraction method used by the adversary, the clone can be related to
the original model in different ways. For instance, the clone can be an exact copy of the
original model, a near replica that has similar, but not equal, weights, or it can be trained
using the original model’s predictions, known as retraining [2].

1



Identifying cloned NNs is critical for safeguarding against their unauthorized use and
ensuring that the deployed models’ decisions are reliable. A promising approach to tackle
this problem is the fingerprinting of NNs. By creating a unique fingerprint based on
specific parameters of a NN, we can determine whether a clone has been derived from
another model. It is also important to be able to distinguish between a clone M ′

1 of
a neural network M1 and a legitimate neural network M2, trained independently on a
different dataset from the one used for training M1.

In this paper, an extended version of [3], we propose a novel NN fingerprinting method
that combines output predictions, probability score vectors, and power traces. We show
that integrating both information and physical domains into a composite fingerprint pro-
vides a highly effective way of identifying cloned models.

Our main contributions are summarized as follows:

• We introduce a hybrid method for fingerprinting NNs using a combination of output
predictions, probability score vectors, and power traces.

• We demonstrate that the effectiveness of the hybrid method is excellent, with a
balanced accuracy ranging from 99.92% to 100% for clones extracted with high
accuracy.

• We also show that both the physical domain metric individually, and the hybrid
approach are more effective than the information domain metrics at detecting a
clone extracted with low accuracy.

• For fingerprinting, three different sets of inputs, namely (1) independent inputs
taken from the testing dataset of the original model, (2) inputs taken from the
training dataset of the original model, and (3) randomly generated inputs that do
not have corresponding labels, have been used and compared.

• It is demonstrated that using randomly generated inputs instead of samples from
the testing dataset of the original model further improves effectiveness at detecting
models extracted with low accuracy.

The source code and data of our experiments are available at https://github.com/
canaknesil/hybrid-fingerprinting-ext.

The rest of the paper is organized as follows. Section 2 provides the necessary back-
ground. Section 3 reviews the related work. Section 4 describes the adversary model.
Section 5 details the presented method for fingerprinting NNs. Section 6 describes the
experimental setup. Section 7 presents the experimental results. Section 8 discusses
future directions. Section 9 concludes the paper.

2 Background

This section provides background for neural networks and model extraction attacks on
neural networks.
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2.1 Neural Networks

A neural network is a computational model inspired by the human brain, consisting of
interconnected nodes (neurons) organized in layers. It can be used for tasks such as
classification, regression, and pattern recognition. NNs have become the cornerstone of
modern artificial intelligence, powering applications ranging from image recognition to
natural language processing [1].

2.2 Model Extraction Attacks on Neural Networks

NNs are susceptible to various types of extraction attacks, including:

Direct Access In these attacks, an adversary obtains unauthorized access to the orig-
inal NN and ends up having an exact copy [4].

Numerical Analysis In this category, the adversary tries to extract weights of the
original model through numerical analysis [2, 5]. The resulting clone either has the same
weights as the original model, or weights that are similar to the original model.

Side-Channel Attacks These attacks exploit physical phenomena, such as power con-
sumption or electromagnetic emissions, to gain insights into the internal operation of a
NN [6]. A clone created through side-channel analysis typically has similar weights to the
original model.

Retraining In these attacks, an adversary aims to replicate the functionality of a target
model by querying it and using the responses to train a surrogate model [2]. A surrogate
model typically has very different weights from the original model, even though the ad-
versary uses the same architecture as the original model, due to the random initialization
of the weights at the beginning of training.

2.3 Fingerprinting of Neural Networks

Fingerprinting of NNs involves creating unique identifiers that can be used to verify the
identity of a NN. This technique can help detect cloned models and protect intellectual
property.

The concept of fingerprinting NNs has been explored in various studies, including [7],
which provides an overview of methods to create unique fingerprints for NNs. It is im-
portant to ensure that a fingerprint is difficult to remove, as there are various fingerprint
removal techniques [8].

3 Previous Work

The identification of cloned NNs and the protection of model integrity have been areas
of active research. Two approaches for solving the problem are model fingerprinting and
watermarking. Both approaches are still under development, however, as stated in [9],
fingerprinting is currently the most promising technique for ownership verification. In this
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section, we focus on previous work in the area of NN fingerprinting, as well as fingerprint
removal attacks.

3.1 Neural Network Fingerprinting Methods

The majority of existing NN fingerprinting methods introduce a distance measure to
quantify the similarity between a given pair of NNs. One of the methods, called dataset
inference, measures a given suspect model’s confidence regarding samples drawn from the
original model’s training set [10]. They observe that a clone has a distinguishably better
confidence on the training dataset of the original model than an independently trained
model. As presented in the subsequent work [11], dataset inference is shown to have high
false positive and false negative rates.

Another work proposes a method that extracts from an original model a set of con-
ferrable examples that transfer exclusively to the clone, and are not present in an inde-
pendently trained model [12]. A distance measure, introduced in [13], is based on the
similarity of score vectors for inputs specifically selected to reflect decision boundaries.
In [14], score vectors are compared for inputs for which the predicted classes differ. Mul-
tiple distance measures are proposed in [15] based on not only the model output, that is,
class prediction and score vector, but also on intermediate layer outputs. In [16] a given
set of models is compared according to the gradient of input points with respect to the
model output.

To the best of our knowledge, the only previous work that incorporates power side
channels into NN fingerprinting is [17]. The concept of model fingerprinting assumed
in [17] is rather specific compared to the bulk of the existing work in this area, including
the presented work. They assume that a clone is not identical to the original model,
thus, its fingerprint should be different from the original model’s. In the contrary, we
make the more general assumption that the clone may or may not be identical to the
original model. In both cases, the clone’s fingerprint should relate the clone to the original
model. The focus of [17] is Binary Neural Networks (BNN) running on an FPGA. They
introduce an input selection method to be used during fingerprint evaluation, leveraging
the unpredictable behavior of the model for samples that are distinct from the training
samples. Their method achieves 100% accuracy at differentiating two models that are
trained using the same training dataset. Due to the specific nature of their fingerprinting
method, their results are not directly comparable to ours.

In addition to the works mentioned above, in [18], it has been proposed to extract a
fingerprint from a NN by saving checkpoints during training, called the training chain.

3.2 Fingerprint Removal Attacks

Fingerprint removal aims to reduce the dependence of a clone on the original model’s
training dataset. A fingerprint removal approach is to modify a model through fine-
tuning, or model compression [8].

Retraining with different architectures and adversarial training can also be used for
fingerprint removal. In [12], a removal attack called the ground-truth attack is proposed.
The attack is based on the adversary having a fraction of the ground-truth labels, and
using them during retraining to make the clone less dependent on the original model.
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Another removal approach is to reduce the effectiveness of fingerprint extraction by
altering the response of a cloned NN, for the inputs that may be used to extract a
fingerprint [19].

4 Adversary and Arbiter Models

This section defines our assumptions on the adversary and the arbiter in the context of
NN fingerprinting.

The primary objectives of the adversary are

1. to clone the target NN by replicating its functionality,

2. to evade detection of the cloned NN as a replica of the target NN,

3. to utilize the cloned NN for purposes such as unauthorized use or distribution.

We assume that the adversary has knowledge and resources to implement one of the
model extraction attacks explained in section 2.2. This also requires access to the target
NN, its prediction API, or the physical device running the inference, to implement an
extraction attack. The adversary also has knowledge of the target NN’s architecture and
replicates the same architecture for the clone.

The primary objective of the arbiter is to correctly identify a suspect NN with the
highest possible accuracy.

We assume that the arbiter has access to a given pair of NNs (a target and a sus-
pect) through a prediction API or a similar interface that allows querying the NNs with
input data. We consider various scenarios where the arbiter has capability to collect the
following sets of information from the target and the suspect for a range of inputs:

1. Output predictions

2. Probability score vectors (imply output predictions)

3. Power traces

4. Power traces along with output predictions

5. Power traces along with probability score vectors

In scenarios where power traces are required, the arbiter has physical access to the de-
vice running the inference or can measure power consumption indirectly through remote
side-channel monitoring [20]. When a testing dataset is used for fingerprinting, the arbiter
has access to or is capable of generating an independent testing dataset. When the train-
ing dataset of the original model is used, the arbiter has access to a portion of the training
dataset. When random inputs are used, the arbiter does not need any dataset as the in-
puts can easily be generated. Finally, the arbiter has access to computational resources
for analyzing and comparing collected metrics, namely output predictions, probability
score vectors, and power traces.
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5 Hybrid Fingerprinting Method

This section describes the new method for identifying cloned NNs which combines metrics
from both the information and the physical domains to create a NN fingerprint.

5.1 Overview

The proposed fingerprinting method consists of three primary metrics: output predictions,
probability score vectors, and power traces. Each metric provides distinct information
about the model, and their combination enhances the accuracy of distinguishing between
cloned and legitimate NNs. First, we define similarity measures for each of these metrics.

5.2 Information Domain Metrics

Output Predictions Output predictions refer to the class labels or predictions gener-
ated by the model for a given set of inputs. By analyzing these predictions, we can infer
certain characteristics of the model’s decision boundaries and classification patterns.

Let an original and a suspect model be queried using the same set of inputs. We define
the similarity measure Sp as the ratio of the matching predictions to all queries:

Sp =
1

N
|{i ∈ 1..N |po,i = ps,i}|, (1)

where po,i and ps,i are the predictions made by the original and the suspect model,
respectively, for the input i, and N is the number of queries made.

Probability Score Vectors A probability score vector represents the model’s confi-
dence in each class for a given input. Probability score vectors are essential for under-
standing how the model differentiates between classes, and can reveal subtleties in the
model’s behavior that are not captured by output predictions alone.

We define the similarity measure Ss based on the average distance of the two sets of
score vectors:

Ss = 1− 1

2N

N∑
i=1

D(vo,i, vs,i), (2)

where vo,i and vs,i are the score vectors returned by the original and the suspect model,
respectively, for the input i, N is the number of queries made, and D is the distance
between two score vectors, defined as follows:

D(u, v) =

C∑
c=1

|uc − vc|, (3)

where C is the number of classes and uc is the confidence value for class c in the score
vector u.

We assume that the confidence values of the score vector add up to 1, thus the image
of D is in the range [0, 2]. Consequently, Ss takes values in range [0, 1], 1 representing
the highest similarity.
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5.3 Physical Domain Metric

Power Traces Power traces are measurements of the power consumption of the device
running the NN during inference. Power traces provide information about the model’s
computational workload and can be used to differentiate between models based on their
physical execution characteristics.

We define the similarity measure St as the average intersection between the probability
distributions of the two trace sets with respect to each trace point index:

St =
1

P

P∑
j=1

O(f
T

(j)
o

, f
T

(j)
s

), (4)

where To and Ts are N × P matrices that represent N power traces of the original and
the suspect model, respectively, where each trace has P data points. T (j) denotes the jth

column of matrix T , which represents the jth point of all the traces in T . fR denotes the
probability density function (PDF) of a random variable R. We estimate f

T
(j)
o

and f
T

(j)
s

according to N values that T
(j)
o and T

(j)
s each take. Finally, O denotes the intersection

(or overlap) between two PDFs defined as follows:

O(f, g) =

∫
min(f(x), g(x))dx (5)

The overlap O is a symmetric and bounded measure of similarity of two PDFs. The
overlap O, as well as St, take values in range [0, 1], 1 representing the highest similarity.

5.4 Fingerprint Extraction and Comparison

Single Metric Let f1 be the PDF of the values a similarity function S can take when
comparing a possible clone to the original model that the clone is based on. Let f2 be the
PDF of values that S can take when comparing two independently trained models. f1
and f2 may partially overlap. Fingerprint verification starts by calculating the similarity
x = S(Mo,Ms) of an original model Mo to a suspect model Ms. Depending on the
distribution on which x falls, a decision is made. If f1(x) > f2(x), the suspect is identified
as a clone. If f1(x) < f2(x), the suspect is identified as an independent model.

Joint Metric In the case of the hybrid approach, each of f1 and f2 is a joint PDF
of two similarity measures S1 and S2. During fingerprint verification, two similarities
x = S1(Mo,Ms) and y = S2(Mo,Ms) are calculated. If f1(x, y) > f2(x, y), the suspect is
identified as a clone and vice versa.

5.5 Fingerprint Effectiveness

The effectiveness of a fingerprint is its ability to correctly identify a cloned NN as a
clone, as well as a legitimate, independently trained NN as benign. We leverage two
statistical measures, sensitivity and specificity [21] to quantify the effectiveness of each
metric explained in section 5.2 and 5.3, individually and in combination.
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Sensitivity (SEN) is the probability of a randomly selected clone to be correctly iden-
tified:

SEN =

∫
f1(x)>f2(x)

f1(x)dx (6)

Specificity (SPC) is the probability of a randomly selected independent model to be
correctly identified:

SPC =

∫
f2(x)>f1(x)

f2(x)dx (7)

In the case of the hybrid approach:

SEN =

∫∫
f1(x,y)>f2(x,y)

f1(x, y)dxdy (8)

SPC =

∫∫
f2(x,y)>f1(x,y)

f2(x, y)dxdy (9)

Another statistical measure, balanced accuracy, can be used to combine sensitivity and
specificity into a single measure. It is defined as the arithmetic average of the two.

6 Experimental Setup

This section presents the experimental setup used to evaluate the effectiveness of the
presented fingerprinting method.

Models We test the method on a Multilayer Perceptron (MLP) architecture shown in
Table 1.

Table 1: MLP architecture used in our experiments.

Layer Output size Activation function Nr. of parameters

Flatten 49 – 0

Dense 8 ReLU 400

Dense 10 Softmax 90

The EMNIST digits dataset [22] is used for training and testing. The dataset includes
240,000 training and 40,000 testing examples. Each example contains a 28×28 grayscale
image. We reduced the image resolution to 7×7 to adjust to the underlying device on
which we perform the inference.

The dataset was split into 12 independent, smaller datasets. We trained two models
per dataset, each with a different randomly initialized set of weights, obtaining 24 models
in total. The average testing accuracy of the models is 86.89%.

Next, 72 additional models were created by adding three different levels of Gaussian
noise to the weights of each one of the initial 24 models: 24 models with SNR 1000,
24 models with SNR 100, and 24 models with SNR 10. The noisy models represent
models that are extracted via numerical analysis and side-channel attacks, explained in
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Figure 1: The target (lower left) and capture (upper right) boards used in our experiments.

section 2.2. The average testing accuracy of the noisy models are 86.9%, 86.86%, and
85.10%, respective to the above noise levels. Notice that adding a noise up to SNR 10
reduced the testing accuracy only by 1.79%. Adding a noise with SNR 1000 even slightly
improved the testing accuracy.

Finally, we retrained 12 of the initial 24 models using the datasets used to train
the remaining 12 models. We performed each retraining twice with different randomly
initialized sets of weights, obtaining 24 clones in total. The average testing accuracy of
the retrained models is 85.97%.

Data Collection We queried each model with the following sets of inputs:

1. Inputs taken from the testing dataset of the original model. The testing inputs are
similar to the training inputs but have been seen by neither the original model nor
any clone.

2. Inputs taken from the training dataset of the original model.

3. Randomly generated inputs, where each pixel is taken from a uniform distribution
over the pixel range.

Every set includes 2,000 inputs.
We captured a power trace of 24,400 points for every input, one point per clock cycle.

Along with the traces, the output predictions and score vectors are saved.
We also captured additional traces from each of the 24 initial models using each of

the input sets listed above to represent model extraction via direct access.
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Testbed TensorFlow 2.16.1 [23] is used for creation of the NNs. CW308T-STM32F4 [24]
is used as the target device on which model inference is executed. ChipWhisperer-Lite [25]
capture board is used to capture power traces (see Fig. 1). The capture board has a clock
synchronized with the target device. TensorFlow Lite for microcontrollers [26] is used
to execute TensorFlow models on the target device. The exact commit IDs for this
framework and its dependencies are listed in the public source code repository.

7 Experimental Results

First, the results of using testing inputs for fingerprinting are presented. Subsequently,
the results of using training inputs and random inputs are presented in comparison to
using test inputs.

7.1 Fingerprinting Using Test Inputs

The original NN’s similarity to different types of clones, calculated using prediction sim-
ilarity Sp, score vector similarity Ss, and power trace similarity St, is listed in Table 2-a.
An important observation is that, for all similarity measures, the average similarity be-
tween the original model and any type of clone is higher than the average similarity
between the original and the independent model. This means that all three metrics
individually can be helpful to identify all clone types that we consider.

The sensitivity and specificity of five fingerprinting methods that leverage three indi-
vidual and two hybrid metrics are presented in Table 3-a.

Effectiveness of the Information Domain Metrics Our results show that each
information domain metric, namely the prediction similarity Sp and score vector similarity
Ss, alone is very successful, with a balanced accuracy of 100%, at identifying a clone that
is either an exact copy of the original NN, or a replica with a small amount of noise in
the weights (SNR≥100). However, when the noise level reaches up to SNR of 10, Sp and
Ss no longer perform as good, with balanced accuracies 67% and 70.01%, respectively.
Finally, models that are extracted via retraining can be identified via Sp and Ss with
balanced accuracies 90.25% and 92.66%, respectively.

Effectiveness of the Physical Domain Metric For a clone that is an exact copy of
the original NN and a clone that has noisy weights with SNR≥100, the physical domain
metric, namely the power trace similarity St, performs almost as good as the information
domain metrics, with a balanced accuracy ranging from 99.97% to 100%. For retrained
clones, St has a balanced accuracy of 70.49% compared to 90.25% and 92.66% for the
information domain metrics. For the highly noisy clones with SNR of 10, St is better than
Sp and Ss, with a balanced accuracy of 91.3% compared to 67% and 70.01%, respectively.

Effectiveness of Hybrid Metrics For a highly noisy clone with SNR of 10, the hybrid
metric (Sp, St) improves the balanced accuracy by 25.95% over Sp, and by 1.65% over
St. The hybrid metric (Ss, St) improves the balanced accuracy by 23.15% over Ss, and
by 1.86% over St. For the other types of clones, the hybrid approach does not give a
significant improvement.
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Table 2: Original NN’s similarity (average ± standard deviation) to different types of
clones and to independently trained models, calculated using Sp, Ss, and St.

(a) Testing inputs used for fingerprinting

Sp Ss St

Mo (copy) 1.0000± 0.0000 1.0000± 0.0000 0.9647± 0.0016

MSNR=1000 0.9994± 0.0005 0.9994± 0.0001 0.9625± 0.0021

MSNR=100 0.9940± 0.0020 0.9934± 0.0012 0.9613± 0.0021

MSNR=10 0.9384± 0.0173 0.9273± 0.0192 0.9565± 0.0050

Mretrained 0.9627± 0.0095 0.9539± 0.0103 0.9491± 0.0039

Mindependent 0.9337± 0.0093 0.9199± 0.0103 0.9443± 0.0031

(b) Training inputs used for fingerprinting

Sp Ss St

Mo (copy) 1.0000± 0.0000 1.0000± 0.0000 0.9651± 0.0016

MSNR=1000 0.9995± 0.0005 0.9994± 0.0001 0.9613± 0.0030

MSNR=100 0.9948± 0.0020 0.9934± 0.0013 0.9597± 0.0029

MSNR=10 0.9359± 0.0194 0.9267± 0.0198 0.9557± 0.0044

Mretrained 0.9633± 0.0082 0.9534± 0.0107 0.9486± 0.0035

Mindependent 0.9390± 0.0086 0.9202± 0.0101 0.9459± 0.0022

(a) Randomly generated inputs used for fingerprinting

Sp Ss St

Mo (copy) 1.0000± 0.0000 1.0000± 0.0000 0.9623± 0.0028

MSNR=1000 0.9985± 0.0012 0.9987± 0.0006 0.9617± 0.0021

MSNR=100 0.9860± 0.0070 0.9875± 0.0051 0.9599± 0.0021

MSNR=10 0.8653± 0.0635 0.8786± 0.0518 0.9529± 0.0055

Mretrained 0.6594± 0.1123 0.6935± 0.0982 0.9039± 0.0194

Mindependent 0.6163± 0.1076 0.6415± 0.1011 0.9168± 0.0141
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Table 3: Sensitivity (SEN) and specificity (SPC) of fingerprinting methods using
individual and hybrid similarity metrics for different types of clones.

(a) Testing inputs used for fingerprinting

Sp Ss St (Sp,St) (Ss,St)

SEN SPC SEN SPC SEN SPC SEN SPC SEN SPC

Mo (copy) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

MSNR=1000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9997 1.0000 1.0000 0.9984 1.0000

MSNR=100 1.0000 1.0000 1.0000 1.0000 0.9997 0.9996 1.0000 1.0000 1.0000 1.0000

MSNR=10 0.5741 0.7659 0.5822 0.8180 0.8501 0.9759 0.8831 0.9746 0.8874 0.9757

Mretrained 0.8789 0.9261 0.9363 0.9169 0.7082 0.7016 0.8925 0.9359 0.9330 0.9194

(b) Training inputs used for fingerprinting

Sp Ss St (Sp,St) (Ss,St)

SEN SPC SEN SPC SEN SPC SEN SPC SEN SPC

Mo (copy) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

MSNR=1000 1.0000 1.0000 1.0000 1.0000 0.9965 0.9971 0.9999 1.0000 0.9982 1.0000

MSNR=100 1.0000 1.0000 1.0000 1.0000 0.9714 0.9903 0.9998 1.0000 0.9998 1.0000

MSNR=10 0.4638 0.7991 0.5651 0.8301 0.8451 0.9570 0.8950 0.9647 0.8888 0.9664

Mretrained 0.8583 0.9162 0.9173 0.9156 0.6107 0.7325 0.8901 0.9299 0.9130 0.9356

(c) Randomly generated inputs used for fingerprinting

Sp Ss St (Sp,St) (Ss,St)

SEN SPC SEN SPC SEN SPC SEN SPC SEN SPC

Mo (copy) 1.0000 1.0000 1.0000 1.0000 0.9992 0.9953 1.0000 1.0000 1.0000 1.0000

MSNR=1000 1.0000 0.9993 1.0000 0.9993 0.9995 0.9956 1.0000 0.9978 0.9966 0.9980

MSNR=100 1.0000 0.9992 1.0000 0.9992 0.9992 0.9935 1.0000 0.9977 1.0000 0.9977

MSNR=10 0.8762 0.9140 0.8989 0.9253 0.9432 0.9492 0.9749 0.9548 0.9792 0.9607

Mretrained 0.4540 0.6569 0.4624 0.6904 0.5039 0.7754 0.5481 0.7798 0.5465 0.7846
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7.2 Fingerprinting Using Training Inputs

Equivalent results for using training inputs are shown in Tables 2-b and 3-b.
Using training inputs, compared to testing inputs, does not provide a significant im-

provement, and, in most cases, especially in the case prediction similarity Sp is used to
detect models MSNR=10 extracted with low accuracy, it reduces the effectiveness.

7.3 Fingerprinting Using Random Inputs

Equivalent results for using random inputs are shown in Tables 2-c and 3-c.
Using random inputs with information domain metrics Sp and Ss, compared to using

testing inputs, significantly improves both the sensitivity and specificity at detecting
clones MSNR=10 extracted with low accuracy, by 30.21% and 14.81% for Sp, and by
31.67% and 10.73% for Ss. Using random inputs with the physical domain metric and
the two hybrid metrics, on the other hand, only improves sensitivity at detectingMSNR=10

by 9.31%, 9.18%, and 9.18%, respectively. Furthermore, using random inputs with the
physical domain metric improves specificity at detecting retrained clones by 7.38% but
worsens sensitivity by 10.68%.

8 Discussion

The experimental results confirm that combining information domain metrics with phys-
ical domain metrics provides a robust and effective solution for detecting cloned NNs.

Three types of inputs have been evaluated for fingerprinting. Using testing inputs that
neither the original model nor the suspect model had seen gave the most consistent results
overall. Using the training inputs of the original model did not improve effectiveness,
accordingly, we do not recommend its usage in the presented fingerprinting method.
Using randomly generated inputs is a viable alternative as it improves effectiveness at
detecting clones extracted with low accuracy but performs worse for the retrained clones.
We recommend its usage when it is improbable that a given suspect model is cloned via
retraining, and when false positive detection is less harmful. Random inputs can also be
used when a testing dataset is not available.

8.1 Possible Improvements

The presented method shows a promising potential in identifying cloned NNs. However,
several directions for improvements remain, including:

Scalability While the presented method shows high effectiveness, its scalability in large-
scale deployments should be further explored. Accordingly, future work should consider
optimizing the data collection and fingerprint extraction processes to handle larger models
more efficiently.

Generalization across architectures Our experiments involved MLPs. Extending
the presented approach to other types of NN architectures, such as transformers or graph
neural networks, could be valuable. Assessing how well the fingerprinting method gener-
alizes across various architectures would help ensure its applicability in diverse contexts.
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Resistance to fingerprint removal Adversaries may employ fingerprinting removal
techniques, such as those presented in [8,12,19], to evade fingerprint detection. Investigat-
ing how different types of attacks could potentially circumvent the presented fingerprinting
approach and developing countermeasures are important.

9 Conclusion

In this paper, we presented a novel method for identifying cloned NNs. The key contribu-
tion is a hybrid fingerprinting technique that combines metrics from both the information
and physical domains. Our experiments show that, while each metric individually pro-
vides useful information, the combination of the metrics improves the accuracy of model
identification, especially in the case of a clone that is extracted with low accuracy.

The method is particularly useful in scenarios where NNs are at risk of model ex-
traction attacks, such as in cloud-based machine learning services. It offers a practical
solution for verifying model ownership and distinguishing between original and cloned
models, contributing to the ongoing efforts in securing NNs against model cloning.

Acknowledgement

This work was supported in part by the Sweden’s Innovation Agency Vinnova (Grant No.
2023-00221) and the Swedish Civil Contingencies Agency (Grant No. 2020-11632).

References

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553,
pp. 436–444, 2015.
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