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Abstract. We show that Montgomery ladders compute pairings as a by-product,
and explain how a small adjustment to the ladder results in simple and efficient
algorithms for the Weil and Tate pairing on elliptic curves using cubical arithmetic.
We demonstrate the efficiency of the resulting cubical pairings in several applications
from isogeny-based cryptography. Cubical pairings are simpler and more performant
than pairings computed using Miller’s algorithm: we get a speed-up of over 40% for
use-cases in SQIsign, and a speed-up of about 7% for use-cases in CSIDH. While
these results arise from a deep connection to biextensions and cubical arithmetic, in
this article we keep things as concrete (and digestible) as possible. We provide a
concise and complete introduction to cubical arithmetic as an appendix.
Keywords: pairings · isogenies · cubical arithmetic · Montgomery ladder

1 Introduction
Elliptic curves live in projective space almost by definition. Elliptic-curve cryptographers
use projective coordinates not as a point of mathematical principle, but rather for their
algorithmic advantages. The most obvious of these advantages is that projective coordinates
can save us many expensive division operations: denominators in algebraic expressions
can be multiplied into the projective Z-coordinate instead of divided out of the X and
Y coordinates. Thus, arbitrarily many division-free projective group operations can
be composed before the final normalization, where inverting the last Z-coordinate and
multiplying through X and Y yields the desired result.

To make this more concrete: suppose we want to compute an x-only scalar multiplication
operation on an elliptic curve E/Fq. We are given the x-coordinate xP of a point P on
E and an integer m, and we want to compute the x-coordinate xR of R = [m]P . The
now-standard way to do this is the Montgomery ladder [Mon87; CS18]. The input is now
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a pair (XP , ZP ) in F2
q such that xP = XP /ZP , together with the scalar m; the output is

a pair (XR, ZR) in F2
q such that xR = XR/ZR. Only the ratio (XR : ZR) (the projective

point) matters for scalar multiplication—but the ladder does not output a ratio, it outputs
a pair of field values. The distinction between the pair (XR, ZR) and the projective point
(XR : ZR) that it represents will be critical in this paper.

For most implementors, the projective factor ZR is just an algebraic blob that must
be finally divided out of XR in order to recover the desired xR = XR/ZR for storage or
transmission. Our aim is to convince them that the projective factors are not mere junk
to be normalized away at the end of a computation: they have algebraically meaningful
values, and those values turn out to be very closely related to the Tate pairing. Indeed, we
will show that many useful pairings can be computed using projective factors from x-only
scalar multiplications.

Our main tool is cubical arithmetic [Rob24], which uses simple x-only operations (very
similar to Montgomery arithmetic) to compute the Weil and Tate pairings on Montgomery
curves. The resulting algorithms are incredibly simple, yet still very efficient when compared
to the traditional Miller-loop approach.

1.1 Contributions
We showcase the simplicity of cubical ladders as a tool for computing pairings by analyzing
them in the context of three applications in isogeny-based cryptography.

• SQIsign [DKL+20; BDD+24; AAA+25] is based on supersingular curves E/Fp2 ,
where p is of the form p = 2f · g − 1. It uses pairings of degree 2f to compute
change-of-basis matrices for the 2f -torsion. This example showcases the simplicity of
degree-2f pairings, which mostly rely on doublings.

• SIKE [JAC+22] was based on supersingular curves E/Fp2 with p = 2e2 · 3e3 − 1,
and required pairings of degree 3e3 . (Obviously, SIKE is broken [CD23; MMP+23;
Rob23], but it remains a useful test of degree-3k pairing performance.)

• CSIDH [CLM+18] uses supersingular curves E/Fp with p = 2f ·
∏

ℓi − 1, where
the ℓi are small odd primes; variants of CSIDH use pairings of degree p + 1 or p+1

2f .
For these degrees, we show that cubical pairings are much simpler, and even more
efficient, than pairings based on Miller loops.

To demonstrate the simplicity of cubical pairings for implementors, we provide proof-
of-concept software packages in Sage and in Rust, targeting the isogeny-based applications
mentioned above. These implementations are available at

https://github.com/GiacomoPope/cubical-pairings.

1.2 A guide to the paper
Section 2 recalls the basics of the Weil and Tate pairings, and Miller’s algorithm [Mil04].
Section 3 presents the key motivating example: recovering the Tate pairing from projective
factors after the Montgomery ladder. We present the elementary operations of cubical
arithmetic—which is very close to Montgomery arithmetic—in Section 4, before using
this to compute pairings in Section 5. We then consider implementation aspects in a
variety of pairing use-cases from isogeny-based cryptography in Section 6. Our software
implementations are described and benchmarked in Section 7.

Cubical arithmetic is not (yet) widely known in the cryptographic community, and
our treatment in Section 4 gives only the bare minimum required to implement pairings.
Appendix A provides a convenient overview of the deeper theory, and reproduces proofs of
useful results. For readers who want even more detail, we recommend [Rob24].

https://github.com/GiacomoPope/cubical-pairings
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Notation We work over Fq, where q is a power of a prime p > 3. We write µn for the
group of n-th roots of unity in Fq. The symmetric group on n elements is denoted Sn.

2 Preliminaries: pairings on elliptic curves
A pairing is a bilinear map A×B → C between abelian groups A, B, and C. On elliptic
curves, commonly used pairings are the Weil pairing [Wei40], and the Tate pairing [Tat62;
Lic69; FR94] (sometimes called the Tate–Lichtenbaum pairing), which use subgroups or
quotient groups of E(Fq) for A and B, and subgroups or quotient groups of F∗

q for C.
These pairings are non-degenerate and Galois-invariant.

Pairings have countless constructive and destructive applications in discrete-logarithm-
based cryptography, from the classic Menezes–Okamoto–Vanstone reduction [MVO91],
Joux’s one-round tripartite Diffie–Hellman [Jou00], Boneh and Franklin’s IBE [BF01],
and Boneh–Lynn–Shacham short signatures [BLS04], through to more recent applica-
tions in zero-knowledge proof systems [AHG23]. These applications generally involve
cryptographic-sized DLP groups, and specialized fast pairing algorithms that require
specially-parameterized curves and finite fields.

In this article, we are more concerned with generic pairings—that is, the Weil and
Tate pairings on arbitrary curve groups where a high-speed cryptographic pairing, such
as the Ate pairing [HSV06], is not available. This kind of pairing arises in isogeny-based
cryptography [CJL+17; NR19; Rei23; CHM+23; MS24; Rob24], and also as a basic tool in
algorithmic number theory.

2.1 The Weil Pairing
Fix an integer n > 0 coprime to the characteristic p of Fq. The Weil pairing of degree n
on an elliptic curve E/Fq is a non-degenerate, Galois-invariant pairing

eW,n : E[n]× E[n]→ µn .

The Weil pairing is also alternating: eW,n(P, Q) = eW,n(Q, P )−1 for all P, Q ∈ E[n].
The Weil pairing can be used to determine linear independence of elliptic-curve points

in order to compute the group structure (given the group order), and also to express
points in terms of a given torsion basis. More concretely: fix a basis ⟨P, Q⟩ of E[n] and let
ζ := eW,n(P, Q). Given R ∈ E[n], we want to find a, b ∈ Z/nZ such that R = [a]P + [b]Q.
Using

eW,n(P, R) = eW,n(P, [a]P + [b]Q) = eW,n(P, P )a · eW,n(P, Q)b = ζb ,

and

eW,n(Q, R) = eW,n(Q, [a]P + [b]Q) = eW,n(Q, P )a · eW,n(Q, Q)b = ζ−a .

we can recover b = logζ(eW,n(P, R)) and a = − logζ(eW,n(Q, R)) by computing discrete
logarithms in µn instead of in E[n]. This is always easier, if only because arithmetic in Fq

is always more efficient than in E/Fq, but also because in large instances, asymptotically
faster discrete logarithm algorithms are available for finite fields.

2.2 The Tate Pairing
Suppose now µn ⊂ F∗

q . The Tate pairing of degree n is a non-degenerate, Galois-invariant
pairing

eT,n : E(Fq)[n]× E(Fq)/nE(Fq) −→ F∗
q/(F∗

q)n, .
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We emphasize that eT,n(P, Q) is only defined up to n-th powers in Fq. The degree-n Tate
pairing is deeply linked to divisibility by [n], which explains its cryptographic applications in
finding torsion bases. Other cryptographic applications often require unique representatives;
we get these by exponentiation by (q − 1)/n, which gives the reduced Tate pairing

et,n : E(Fq)[n]× E(Fq)/nE(Fq) −→ µn , (P, Q) 7−→ eT,n(P, Q)
q−1

n .

2.3 Computing pairings with Miller loops
The standard method for computing eW,n(P, Q) or eT,n(P, Q) is to evaluate Miller functions
using the Miller loop. Given P ∈ E and n ∈ Z, the Miller function fn,P is any element of
the function field Fq(E) with divisor

div(fn,P ) = n(P )− ([n]P )− (n− 1)(0E).

If P ∈ E[n], then div(fn,P ) = n(P )− n(0E). Now, we can compute the Tate pairing as

eT,n(P, Q) = fn,P (DQ),

where DQ is any divisor linearly equivalent to (Q) − (0E) with support disjoint from
{P, 0E}. Similarly, the Weil pairing is computed as

eW,n(P, Q) = fn,P (DQ)/fn,Q(DP ).

When computing the reduced Tate pairing with embedding degree k > 1, we may evaluate
fn,P at Q instead of DQ: the difference disappears in the final exponentiation by (qk−1)/n.

We can compute evaluations of Miller functions fn,P (Q) using Miller’s algorithm [Mil04],
which relies fundamentally on the relation

f(n+m),P = fn,P · fm,P · l[n]P,[m]P , (1)

where l[n]P,[m]P is derived from the (geometric) lines that appear in the addition of [n]P
and [m]P in the chord-and-tangent construction. Given P ∈ E[n] and Q ∈ E(Fq), Miller’s
loop computes fn,P (Q) directly using a double-and-add approach: doubling is computed
using Equation (1) with n = m, which gives

f2n,P (Q) = fn,P (Q)2 · l[n]P,[n]P (Q) ,

while addition takes m = 1, f1,P = 1, which gives

fn+1,P (Q) = fn,P (Q) · l[n]P,P (Q) .

Optimizing Miller’s loop to compute pairings as efficiently as possible is an active and
specialized area of research.
Remark 1. Most elliptic scalar multiplication or isogeny computations can work on the
Kummer line—using only x-coordinates—but most Miller-loop computations require
general functions f : E → P1 on the curve E. In contrast, cubical pairings (detailed below)
operate entirely on the Kummer line. This explains the close resemblance to Montgomery
arithmetic, and the efficiency compared to generic pairings using the Miller loop.

3 Tate pairings as a by-product of the ladder
We will now show how projective factors of Montgomery ladder outputs can be used
to compute pairings. We will see that there is a certain correction factor involved, and
removing this will motivate our use of cubical arithmetic in the following sections.
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Let P be an n-torsion point on E/Fq with projective x-coordinate (xP : 1). If we
compute [n]P using the Montgomery ladder, then the result is a pair (X[n]P , Z[n]P ) such
that (X[n]P : Z[n]P ) = (1 : 0); in particular, Z[n]P = 0, and the projective factor is
λP = X[n]P . Now let Q be any other point on E, with projective x-coordinate (xQ : 1). If
we compute [n]P + Q using the three-point ladder (a common variant of the Montgomery
ladder [DJP14, Alg. 1] that computes [n]P + Q given the coordinates of P , Q and their
difference P −Q; see also Algorithm 3 below) then we obtain a pair (X[n]P +Q, Z[n]P +Q)
such that (X[n]P +Q : Z[n]P +Q) = (xQ : 1); the projective factor is λQ = Z[n]P +Q. These
factors λP and λQ carry pairing information: the square of the Tate pairing eT,n(P, Q)2 is
almost given by λQ/λP .

To get the correct values for the Tate pairing, λP and λQ need small adjustments. Let
l(k) denote the bit length of an integer k, and set nQ = 2l(n) − n − 1, nP −Q = n, and
nP = nP +Q · nQ. Then if we define

cP := (4xP )−n·(2l(n)−n) and cQ := (4xP )−nP · (4xQ)−nQ · (4xP +Q)−nP +Q ,

then
eT,n(P, Q)2 = cQ

cP
· λQ

λP
.

Up to a small correction, the Montgomery ladder already computes pairings!
On closer inspection, the exponents in cP and cQ correspond to the number of differential

additions xADD where XP , XQ, or XP +Q is used as the difference point, where xADD :
xP , xQ, xP −Q 7→ xP +Q is computed in projective coordinates as

XP +Q = ZP −Q ((XP − ZP )(XQ + ZQ) + (XP + ZP )(XQ − ZQ))2
,

ZP +Q = XP −Q ((XP − ZP )(XQ + ZQ)− (XP + ZP )(XQ − ZQ))2
.

Hence, if we tweak this xADD operation by small factors to ensure that the resulting cP

and cQ are trivial, then the projective factors λP and λQ really will compute (the square
of) the Tate pairing. It suffices to multiply the formulæ for XP +Q and ZP +Q through by
1/(4XP −QZP −Q) (remember that (XP −Q, ZP −Q) is constant throughout the Montgomery
ladder). Doing this yields a function cADD : (xP , xQ, xP −Q) 7→ xP +Q, given by

XP +Q = (4XP −Q)−1 ·
(
(XP − ZP )(XQ + ZQ) + (XP + ZP )(XQ − ZQ)

)2
,

ZP +Q = (4ZP −Q)−1 ·
(
(XP − ZP )(XQ + ZQ)− (XP + ZP )(XQ − ZQ)

)2
.

This modified arithmetic has a deeper mathematical explanation, as it is an example of
cubical arithmetic [Rob24] for the case of Montgomery curves. Cubical arithmetic uses the
simple operations xDBL and the modified differential addition cADD to compute the Weil
and Tate pairings on Montgomery curves in a way that is, compared to the traditional
Miller loop, incredibly simple and yet very efficient: we simply compute [n]P using cubical
arithmetic to obtain λP , and [n]P + Q to obtain λQ, and then eT,n(P, Q)2 = λQ/λP . We
give a very quick overview of these cubical arithmetic operations in Section 4, before giving
formulæ and algorithms for pairings in Section 5.

4 Cubical Arithmetic
As we saw above, slightly modifying the usual x-only differential addition on Montgomery
curves allows us to easily compute the Weil and Tate pairings. The resulting arithmetic is
called cubical arithmetic. In this section we present algorithms to compute Montgomery
ladders and pairings with cubical arithmetic, We refer the interested reader to Appendix A
for a brief exploration of the underlying theory, linking cubical arithmetic to pairing
computations, and [Rob24, Sec. 5] for a more detailed discussion.
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Remark 2. We stress that the correctness of cubical arithmetic crucially depends on the
specific affine representation (XP , ZP ) of the projective coordinate (XP : ZP ), contrary to
ordinary x-only arithmetic.

4.1 Concrete algorithms for cubical arithmetic

Montgomery arithmetic is built on two fundamental functions: xDBL and xADD. The
cubical analogues of xDBL and xADD are called cDBL and cADD, respectively. Helpfully,
the doubling cDBL is identical to xDBL. The cubical differential addition cADD is slightly
different to xADD, though the outputs are projectively equivalent. In fact, cADD requires
the inverse coordinates of the difference point as input, and divides both coordinates by a
factor of 4 at the end. (Despite the presence of these potentially expensive inversions, we
will see in Section 5 that their impact on performance is minimal.)

When expressing costs, we consider all points and constants to be defined over a finite
field Fq. We denote multiplications by M, squarings by S, additions and subtractions by
A, division by 4 by D4, and multiplications by a curve constant by Mc. In isogeny-based
applications, we consider Mc = M.

Algorithm 1 Cubical doubling cDBL. Naturally constant-time.
Input: A cubical point P = (XP , ZP ) on a Montgomery curve EA represented by A24 =

(A + 2)/4.
Output: The cubical point [2]P = (X[2]P , Z[2]P ).
Cost: 2M + 1Mc + 2S + 4A

1: t0 ← (XP + ZP )2 ▷ 1S + 1A
2: t1 ← (XP − ZP )2 ▷ 1S + 1A
3: X[2]P ← t0 · t1 ▷ 1M
4: t2 ← t0 − t1 ▷ 1A
5: t0 ← A24 · t2 ▷ 1Mc
6: Z[2]P ← t2 · (t0 + t1) ▷ 1M + 1A
7: return [2]P = (X[2]P , Z[2]P )

Algorithm 2 Cubical differential addition cADD. Naturally constant-time.
Input: Cubical points P = (XP , ZP ), Q = (XQ, ZQ), and the inverse coordinates inv(P −

Q) = (X−1
P −Q, Z−1

P −Q).
Output: The cubical point P + Q = (XP +Q, ZP +Q).
Cost: 4M + 2S + 6A + 2D4

1: t0 ← (XP − ZP ) · (XQ + ZQ) ▷ 1M + 2A
2: t1 ← (XP + ZP ) · (XQ − ZQ) ▷ 1M + 2A
3: XP +Q ← X−1

P −Q · (t0 + t1)2 ▷ 1M + 1S + 1A
4: ZP +Q ← Z−1

P −Q · (t0 − t1)2 ▷ 1M + 1S + 1A
5: (XP +Q, ZP +Q)← (XP +Q/4, ZP +Q/4) ▷ 2D4
6: return P + Q = (XP +Q, ZP +Q)

Remark 3. Combining cDBL and cADD in a single cDBLADD routine, re-using shared
values, decreases the total cost by 2A.

The cubical Montgomery ladder is the usual ladder, with cDBL and cADD in place
of xDBL and xADD, respectively. Algorithm 3 is the cubical three-point ladder, which we
need for pairing computations.
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Algorithm 3 Cubical three-point cLADDER. Naturally constant-time.
Input: A b-bit integer n =

∑b−1
i=0 ni2i and cubical points P, Q, P −Q on a Montgomery

curve EA, represented as
(
R = (XR, ZR), inv(R) = (X−1

R , Z−1
R )
)
.

Output: Cubical points [n]P = (X[n]P , Z[n]P ), [n]P + Q = (X[n]P +Q, Z[n]P +Q)
Cost: b · cDBL + 2b · cADD

1: (S0, S1, T )← (0, P, Q) ▷ Initialize the ladder
2: for i = b− 1 down to 0 do ▷ set nb = 0
3: R← cADD(S0, S1; inv(P ))
4: SWAP(S0, S1; ni ⊕ ni+1)
5: SWAP(inv(Q), inv(P −Q); ni ⊕ ni+1)
6: T ← cADD(T, S0; inv(Q))
7: S0 ← cDBL(S0; EA)
8: S1 ← R
9: end for

10: return S0, T ▷ S0 = [n]P and T0 = [n]P + Q

5 Cubical Pairings
We now describe how to use cubical ladders to compute the (non-reduced) Tate and Weil
pairings of degree ℓ ≥ 2. There are slight differences for odd and even ℓ, which we describe
in Sections 5.1 and 5.2 respectively. The key formulæ are derived and proven in [Rob24,
Theorem 4.19], and we restate them here without proof (though the essentials of the proof
are reproduced for completeness and easy reference in Theorem 3 in Appendix A.6 and
Theorem 5 in Appendix A.10). We give complete algorithms for the Weil and Tate pairings
in Section 5.3, then discuss optimizations and generalizations in Sections 5.4 and 5.5.

5.1 Odd-degree pairings
Cubical arithmetic gives us a straightforward way to compute the square of the Tate
and Weil pairings. When ℓ is odd, the square of a pairing contains as much arithmetical
information as the pairing itself, as we can recover one from the other via an exponentiation.

Let P ∈ E(Fq)[ℓ] and Q ∈ E(Fq), then the square of the ℓ-Tate pairing is

eT,ℓ(P, Q)2 =
Z[ℓ]P +Q

ZQ ·X[ℓ]P
,

up to ℓ-th powers in Fq, where [ℓ]P and [ℓ]P + Q are computed from P, Q, P −Q using
cubical ladders. Similarly, given P, Q ∈ E[ℓ], the square of the Weil pairing can be
computed as the ratio of two squared Tate pairings:

eW,ℓ(P, Q)2 =
Z[ℓ]P +Q

ZQ ·X[ℓ]P
·

ZP ·X[ℓ]Q

ZP +[ℓ]Q
.

5.2 Even-degree pairings
When ℓ = 2n is even, the square of the pairing has one bit less of information than the
pairing. However, we can recover the full pairing value by replacing the ladders for ℓ with
ladders for n, and using the affine translation by 2-torsion points given in Algorithm 4.

Given P ∈ E(Fq)[ℓ] and Q ∈ E(Fq), set P0 = [n]P . We first compute [n]P , [n]P + Q
from P, Q, P −Q using cLADDER, then we apply an affine translation by P0 to the output.
The resulting expression for the Tate pairing is

eT,ℓ(P, Q) =
Z[n]P +Q+P0

ZQ ·X[n]P +P0

·
(

ZP · ZQ

ZP +Q

)n

. (2)
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If we compute the Weil pairing as the ratio of two Tate pairings, then the n-th powers
from Equation (2) cancel out. We can also avoid this exponentiation in the Tate pairing if
we normalize the points P, Q, P −Q to have Z-coordinate 1. Indeed, ZP = ZQ = 1, and
the value ZP +Q output by cADD(P, Q, P −Q) is a square.

Algorithm 4 Affine translation translate. Can be made constant-time with swaps.
Input: A cubical point P = (XP , ZP ) on a Montgomery curve EA and a cubical point

T = (r, s) in EA[2].
Output: The affine translation Q = P + T .
Cost: 4M + 2A

1: XQ ← r ·XP − s · ZP ▷ 2M + 1a
2: ZQ ← s ·XP − r · ZP ▷ 2M + 1a
3: if s = 0 then
4: (XQ, ZQ)← (XP , ZP ) ▷ Use constant-time swap
5: else if r = 0 then
6: (XQ, ZQ)← (ZP , XP ) ▷ Use constant-time swap
7: end if
8: return Q = (XQ, ZQ)

5.3 Concrete cubical pairing algorithms

Algorithms 5 and 6 give concrete algorithms to compute the Tate and Weil pairings,
respectively, for any degree ℓ, assuming normalized input points P , Q and P −Q.

Algorithm 5 Tate pairing
Input: An integer ℓ, a Montgomery curve EA, and normalized points P, Q, P −Q repre-

sented as
(
R = (xR, 1), inv(R) = (x−1

R , 1)
)
, with P ∈ EA(Fq)[ℓ], Q ∈ EA(Fq).

Output: The non-reduced Tate pairing eT,ℓ(P, Q) for even ℓ, or eT,ℓ(P, Q)2 for odd ℓ
1: if ℓ is even then n← ℓ/2 else n← ℓ
2: [n]P, [n]P + Q← cLADDER(n, EA; P, Q, P −Q)
3: if ℓ is even then
4: [ℓ]P + Q← translate([n]P + Q, [n]P )
5: [ℓ]P ← translate([n]P, [n]P )
6: end if
7: λQ ← Z[ℓ]P +Q

8: λP ← X[ℓ]P
9: return λQ/λP

Algorithm 6 Weil pairing
Input: An integer ℓ, a Montgomery curve EA, and points P, Q, P −Q represented as in

Tate, with P, Q ∈ E[ℓ].
Output: The Weil pairing eW,ℓ(P, Q) for even ℓ, or eW,ℓ(P, Q)2 for odd ℓ

1: t1 ← Tate(ℓ, EA; P, Q, P −Q)
2: t2 ← Tate(ℓ, EA; Q, P, P −Q)
3: return t1/t2
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5.4 Optimizations for pairing computations
Our pairing algorithms admit several general optimizations, which we discuss in this
section. (Application-specific optimizations are described in Section 6.)

5.4.1 Minimizing inversions

cADD requires the inverse inv(P − Q) of the difference point P − Q. Consequently,
cLADDER requires inverses whenever cADD is used, which is twice per bit. But we can
save almost all of these inversions:

1. Normalized inputs. Normalizing difference points as R = (xR, 1) saves a multiplication
by Z−1

R in Line 4 of cADD.

2. Precomputing difference points. cLADDER only uses cADD with difference points
R ∈ {P, Q, P −Q}. We therefore only need to invert xP , xQ and xP −Q once, before
the ladder, to use inv(R) = (x−1

R , 1) as input to cADD.

3. Combined inversion in pre-computation. We can precompute the inverses of xP , xQ,
and xP −Q at the cost of one initial batch inversion.

We can also combine Steps (1) and (3), batch-inverting XR and ZR to get xR and x−1
R

with a single inversion. Together, this reduces the number of inversions in the complete
ladder to just one.

5.4.2 Subfield eliminations

When computing the reduced Tate pairing, the final exponentiation of ζ = eT,ℓ(P, Q)
by (q − 1)/ℓ clears all factors in Fpa for pa − 1 | q−1

ℓ . This adds significant flexibility:
we may introduce or remove computations that only affect ζ up to F∗

pa-factors. In most
applications in isogeny-based cryptography, we have q = p2 and p− 1 | (q − 1)/ℓ, so we
can introduce or remove factors in F∗

p:

1. Avoiding division by 4. We can remove Line 5 of Algorithm 2 when computing the
reduced Tate and Weil pairings. This does not change the output of cADD as a
projective point, but it scales the output of cLADDER by some power of 4. In the
reduced Tate pairing, this power of 4 is cleared by the final exponentiation; in the
Weil pairing, it cancels out in the quotient of the two non-reduced Tate pairings.

2. Ignoring subfield-rational points. If xP ∈ Fpa , then [ℓ]P = (X[ℓ]P , 0) is also Fpa-
rational.1 Thus, we can skip the final division by X[ℓ]P in Line 9 of the Tate
pairing.

3. Relaxed offset. Similarly, if xQ ∈ Fpa , then Z[n]Q ∈ Fpa . Whenever ℓ and n are
coprime, we may use Z[ℓ]P +[n]Q instead of Z[ℓ]P +Q, and ignore ZQ, in Line 9 of the
Tate pairing; this effectively computes eT,ℓ(P, [n]Q) = eT,ℓ(P, Q)n. We can recover
the correct value of eT,ℓ(P, Q), if necessary, by adjusting the final exponentiation.2

5.4.3 Multiple pairings with the same point.

Some applications require the computation of eℓ(P, Qi) for i = 1, . . . , m. The computation
of m parallel ladders with different offsets Qi can be batched together, bringing the
collective cost of these ladders down to 1 · cDBL + m · cADD per bit.

1Note however that xP +Q need not be Fpa -rational, even when xP and xQ both are.
2Some applications only need the order of eT,ℓ(P, Q), which is unaffected by coprime exponents.
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5.5 Beyond the ladder
The cubical ladder is easy to implement, but uses fixed base points for differential additions,
as varying the base point requires an expensive inversion every time. Two observations
allow for more flexibility.

1. Inversion by conjugation. If xR ∈ Fp2 \ Fp, then x−1
R = xR/N(xR), where xR

denotes the conjugate and N(xR) ∈ Fp the norm of xR. Multiplying XP −Q resp.
ZP −Q by XP −Q ·N(ZP −Q) resp. ZP −Q ·N(XP −Q) in cADD, does not change the
projective point, and the extra projective factor in cLADDER output is cleared by
final exponentiation. This allows us to compute [ℓ]P + Q using cADD with varying
base points at an extra cost of 2M and two norm computations per cADD. In theory,
this should reduce the cost of differential addition chains with variable differences.
However, we were unable to find an approach that outperforms the standard cubical
ladder, due to the increased cost per cADD.

2. Double-and-Add. As described in [Rob24], we may also use a double-and-add
approach to compute [ℓ]P + Q and [ℓ]P . The standard cubical ladder keeps track of
the cubical points [u]P +Q, [u]P, [u+1]P ; double-and-add forgets about [u+1]P . For
a doubling step, we can compute [2u]P + Q, [2u]P without [u + 1]P ; this only costs
one cDBL and one cADD. For a double-and-add step, we can reconstruct [u + 1]P
on the fly, up to an unknown scalar, using a (generally costly) compatible addition
[u + 1]P = ([u]P ) + (P ) = ([u]P + Q) + (P − Q) (see [LR16]). We then compute
[2u + 1]P + Q and [2u + 1]P via two cADD s, both with [u + 1]P ; the unknown scalar
disappears in the pairing formula.3

This approach allows improvements such as non-adjacent forms (NAFs) and window-
ing methods, but it also increases implementation complexity, and makes constant-
time implementation difficult. These optimized approaches may outperform the
standard cubical ladder, e.g., when the Hamming weight of ℓ is high or low, but this
is beyond the scope of this work as it requires an in-depth performance analysis of a
specific situation. Such an analysis is often worthwhile whenever pairing performance
is critical to an application. In isogeny-based cryptography, however, pairing compu-
tations are usually only a small part of a larger computational effort. We will see in
Section 6 that the simple cubical ladder is already fast enough for our purposes.

5.6 Generalizations
Beyond the Weil and Tate pairing, we can also compute other pairings, such as the (optimal)
Ate pairing, using cubical arithmetic [Rob24]. We emphasize that cubical arithmetic is
not restricted to curves in Montgomery models: a cubical ladder can be defined for the
Kummer line of any curve, once proper differential addition and doubling formulæ have
been derived. Even more generally, pairings can be computed using cubical arithmetic on
(Kummer varieties of) abelian varieties [LR16; Rob24]. This is applied in e.g. [CR24] to
analyze the practical efficiency of cubical arithmetic for 2-Tate pairings. A practical Sage
implementation of pairings on abelian surfaces can be found at [Sfe24].

6 Applications in Isogeny-based Cryptography
To showcase the simplicity, efficiency, and flexibility of cubical pairings, we consider three
applications of pairings in isogeny-based cryptography. The field primes, elliptic curves,

3On a more technical note, what happens here is that we compute pairings through monodromy
information, for which biextensions are the correct geometrical object. The cubical arithmetic presented
here is a refinement of arithmetic on these biextensions: we can somewhat relax the cubical arithmetic to
compute pairings, as long as we still get the correct biextension arithmetic.
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point orders, and pairing degrees involved in isogeny-based cryptography are generally not
compatible with specialized fast pairings, so our general cubical pairings can make real
improvements. The three applications here rely on the same observation: arithmetic in F∗

q

is much faster than arithmetic on E(Fq), so it is often worthwhile to compute a relatively
costly pairing to move a calculation into F∗

q (and even more so when the pairing maps into
µp+1, which boasts even faster arithmetic [Sta03]).

6.1 SQIsign: Change of Basis
Recent variants [BDD+24; AAA+25] of SQIsign [DKL+20] work with field primes in the
form p = 2f · g − 1, where g is a small cofactor, and use pairings to compute the change
of basis matrix M that maps a deterministic basis P, Q of E[2e] with e ≤ f into another
basis R, S by (

x1 x2
x3 x4

)
·
(

P
Q

)
=
(

R
S

)
,

The coefficients x1, x2, x3, x4 ∈ Z/2eZ can be computed with a few discrete logarithms.

Use case. We differentiate three cases:

1. When e < f and both (P, Q) and (R, S) are a basis for E[2e], we compute five
degree-2e Weil pairings:

ζ0 = eW,2e(P, Q), ζ1 =eW,2e(Q, R)−1, ζ2 = eW,2e(P, R),
ζ3 = eW,2e(Q, S)−1, and ζ4 = eW,2e(P, S) ,

then solve the four discrete logarithms xi = log2e(ζ0, ζi) in Z/2eZ.

2. When e = f , we can replace the Weil pairings in Case 1 by with degree-2f Tate
pairings.

3. When e < f and ⟨P, Q⟩ = E[2f ] while ⟨R, S⟩ = E[2e] (or vice versa), we can replace
the Weil pairings in Case 1 with Tate pairings as long as we compute the Tate pairing
with respect to the basis (R, S) in the first position, and the discrete logarithms with
respect to eT,2f (P, Q).

In practice, almost all changes of basis have either (P, Q) or (R, S) derived deterministically
as a basis for E[2f ], which resolves to Case 2 or Case 3. This is preferred over Case 1, as
Tate pairings are faster to compute than Weil pairings.
Remark 4. In some cases, we are given a basis (R, S) of E[2e] and (P, Q) of E[2f ], and
want to know the coefficients xi ∈ Z2e such that P ′ = x1R + x2S, Q′ = x3R + x4S, where
P ′ = [2f−e]P and Q′ = [2f−e]Q. This resolves to Case 3, by inverting the matrix M
obtained from expressing (R, S) in terms of (P, Q).

Computation. Two optimizations are possible in this use case. First, we are computing
multiple pairings with the same point twice allowing us to reuse several values. Second,
pairings of degree 2e only require, per bit k, one cDBL to compute [2k]P , given [2k−1]P
and A, and one cADD to compute Q + [2k]P , given Q + [2k−1]P and 2[k−1]P , with fixed
base point Q. This makes such pairings highly efficient.

Performance. We compare the performance of cubical pairings versus those using the
Miller loop as optimized in [CLZ24] to compute a change-of-basis matrix M for the three
primes used in SQIsign: p1 = 2248 ·5−1, p3 = 2376 ·65−1, and p5 = 2500 ·27−1 [BDD+24;
AAA+25]. Table 1 compares the cubical and Miller approaches for computing pairings of
degree 2e with e = ⌊f/2⌋ in Case 3, .
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Table 1: Operation counts (in Fp2-operations) for change of basis using degree-2⌊f/2⌋

pairings. Cost model: M = 1, S = 0.8, A = 0.15; inversion = 47M, square root = 222M.

Cubical Ladder (this work) Miller Loop [CLZ24] Gain
M S A Total M S A Total

p1 4 319 3 115 6 458 7780 8 242 4 968 10 046 13723 43.3%
p3 6 259 4 735 9 786 11515 12 230 7 548 15 230 20553 44.0%
p5 8 109 6 275 13 010 15080 16 064 10 018 20 252 27116 44.4%

6.2 SIKE: Public Key Compression
SIKE [JAC+22] used primes of the shape p = 2a · 3b − 1, and pairings of degree 2a and
3b to compress public keys. These public keys can now be broken in polynomial time, of
course, but their compression is still a useful test-case for pairings of degree 3b.

Use case. In general, a basis (R, S) for E[ℓk] can be encoded as three affine x-coordinates
(xR, xS , xR−S) with xi ∈ Fq in 3 log q bits. In SIKE [JAC+22], public keys consist of such
a basis for ℓ = 2 or ℓ = 3. To save space, we can compress such a representation
(xR, xS , xR−S): we compute a deterministic basis (P, Q) for E[ℓk], and express R and S
in terms of P and Q, as done in Section 6.1 for ℓ = 2. We can then represent the basis
(R, S) by the values xi ∈ Z/ℓkZ such that R = [x1]P + [x2]Q and S = [x3]P + [x4]Q.
This requires Weil or Tate pairings of degree ℓk. We already analyzed the performance of
degree-2k pairings in Section 6.1, so we focus on degree-3b pairings in this section.

Computation. We can derive cubical tripling formulæ (closely matching Montgomery
tripling formulæ [JAC+22]) like those used in Miller loop computations, but the practical
improvement in deriving Q + [3]P given Q and P seems marginal: cubical tripling costs
about the same as a combined cDBL and cADD. In practice, we find that the standard
cubical ladder cLADDER performs on par or better than variants using tripling formulæ.

Performance. We compare the performance of cubical pairings using cLADDER to
pairings computed using the Miller loop with specialized tripling formulæ [CLZ24]. Table 2
compares the cost of 3b-pairing computations for five SIKE parameter sets.

Table 2: Operation counts for degree-3b pairings for the five SIKE parameter sets. Cost
model: M = 1, S = 0.8, A = 0.15, inversion = 47M, square root = 222M.

Cubical Ladder (this work) Miller Loop [CLZ24] Gain
M S A Total M S A Total

p434 8 917 5 892 13 132 15600 18 277 6 276 23 621 26841 41.9%
p503 10 242 6 832 15 232 17992 21 131 7 282 27 427 31071 42.1%
p610 12 233 8 251 18 352 21587 25 432 8 811 33 136 37451 42.3%
p751 15 010 10 214 22 792 26600 31 501 10 932 41 267 46437 42.7%
p964 18 847 12 962 28 732 33526 39 635 13 858 51 993 58520 42.7%

6.3 CSIDH: Public Key Verification
CSIDH [CLM+18] works with field primes of the form p = 2f ·

∏
ℓi − 1, where the ℓi

are small odd primes. [Rei23] and [CLZ24] use Miller-loop-based pairings of degree p + 1
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or (p + 1)/2f to speed up several subroutines in CSIDH [CLM+18] and its deterministic
variants dCSIDH/dCTIDH [CCC+24; CHMR25], mostly related to public-key verification.
We will see that cubical pairings bring further speedups.

Use case.

1. For CSIDH, we must verify the supersingularity of the public-key curve EA. We
sample two random points P and Q, multiply both by an appropriate cofactor, and
compute ζ = eT,r(P, Q) using a cubical pairing. If the order of ζ is larger than 4√p,
then EA is supersingular.

2. For dCSIDH/dCTIDH, the public keys have the form (EA, u), where u is some seed
to be expanded into two points P ∈ EA(Fp), Q ∈ Et

A(Fp) (here Et
A is the quadratic

twist). We must verify that both P and Q have order divisible by L =
∏

ℓi (this
also implicitly verifies the supersingularity of EA). Multiply both points by p+1

L , and
compute ζ = eT,L(P, Q). The order of ζ is exactly L precisely when L divides the
order of both P and Q.

We can use Tate pairings for both of the cases above, as described in Algorithms 4 and
5 from [Rei23]. We focus only on the performance of the pairings, as both the cofactor
multiplication and the verification of the order of ζ are independent of the choice of pairing
algorithm.

Computation. In contrast to Sections 6.1 and 6.2, these pairings have almost-primorial
degree L =

∏
ℓi. As a result, we have to use the standard cubical ladder cLADDER instead

of only doublings and triplings. However, since xP , xQ ∈ Fp, many operations take place
in Fp instead of Fp2 . We therefore adjust the standard cubical ladder to work over Fp

whenever a cDBL or cADD depends only on (a multiple of) P or Q.

Performance. We compare the performance of cubical pairings and Miller-loop pairings
as optimized in [CLZ24]. Table 3 gives results for Case 1, using the CSIDH-512 prime
p = 4 ·

∏74
i=1 ℓi − 1, where ℓ1, . . . , ℓ73 are the first 73 odd primes and ℓ74 = 587. Table 4

gives results for Case 2, using the 2048-bit prime p194 from [CHMR25], and computing
pairings of degree r =

∏194
i=1 ℓi, where ℓ1, . . . , ℓ194 are the first 194 odd primes.

Table 3: Operation counts for pairing-based supersingularity verification in CSIDH-512
(Case 1), averaged over 1000 runs. Cost model: M = 1, S = 0.67, A = 0.08, with
Fp2 -multiplication = 3M, Fp2-squaring = 2M, inversion = 64M, square root = 459M.

Method M S A Total
Alg. 5, cubical (this work) 8 267 3 687 11 076 11623
Alg. 5, Miller [CLZ24] 8 050 4 592 11 041 12011
Doliskani’s [BGS22] 13 803 0 10 228 14621
Doliskani’s [Rob24] 13 352 2 10 220 14171

Remark 5. Algorithm 5 of [Rei23] has a small chance to require a repetition, depending on
the choice of N , when not enough torsion is collected. More precisely, if ζ < 4√p, it is
most likely that E is supersingular, but the random points P and Q were simply missing
some torsion, usually only one or two ℓi. We can verify the supersingularity by taking
a random new point R and see if this has the missing torsion ℓi. The additional cost is
roughly a scalar multiplication of length log p bits. Doliskani’s algorithm [Dol18] performs
most operations over Fp2 . Note that the probabilistic supersingularity test that checks
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Table 4: Operation counts for pairing-based dCTIDH-2048 public-key verification (Case 2).
Cost model: M = S = 1, A = 0, with Fp2-multiplication = 3M, Fp2-squaring = 2M,
inversion = 57M, square root = 2150M.

Cubical Ladder (this work) Miller Loop [CLZ24] Gain
M S A Total M S A Total

44 924 21 533 63 373 66457 44 542 27 209 63 298 71751 7.34%

whether [p + 1]P = 0E for a random P ∈ E(Fp) takes only 4853 Fp-operations, with a
failure probability of only O(p−1/2).

7 Software implementations
In addition to the SageMath implementation for the precise operation counts used in
the tables above, we have also implemented versatile proof-of-concept software packages
in both SageMath and in Rust. Both implementations are available from the following
GitHub repository:

https://github.com/GiacomoPope/cubical-pairings.

SageMath. The SageMath implementation has been designed for the general case of
E/Fq and is aligned to the algorithms we present in this paper. We have included detailed
comments throughout the code and edge cases are carefully handled.

Rust. The Rust implementation is inspired by the application of cubical pairings in
isogeny-based cryptography. It has been written to be efficient and constant-time, including
several of the optimisations presented in Section 5.4. In this code, the base field is assumed
to be Fp2 (as it is in many isogeny-based applications).

Platform and measurement setup. All running times were captured on an Intel
Core i7-9750H CPU with a clock speed of 2.6Ghz, with turbo-boost disabled for stable
measurement. The benchmarking itself was handled by the criterion.rs crate, which
computes an average time by repeating the computation within a time-window determined
by evaluation time (with a minimum window of ten seconds). The Rust code was compiled
with rustc 1.87.0-nightly. All finite field arithmetic was generated without assembly
optimisations, but the use of the compiler flag -C target-cpu=native allows for CPU-
specific intrinsics. In particular, for our benchmarking machine, this allows the use of the
mulx op-code for efficient 64-bit word multiplication with carries.

Performance results. To pair with the operation counts given in Section 6, we include
concrete benchmarks for

• degree-2n pairings for the SQIsign parameter sets in Table 5,

• change-of-basis computations as described in Section 6.1 in Table 6, and

• degree-2n and degree-3n pairings for the SIKE parameter sets in Table 7.

As expected, the cost of a Tate pairing is approximately half that of a Weil pairing in each
case. For the degree-2ea pairings, we use an optimised ladder skipping one call to cADD
per bit of the degree, and this is seen in the faster timings compared to the degree 3eb of
similar bit length for the SIKE primes.

https://github.com/GiacomoPope/cubical-pairings
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For the change-of-basis algorithm, we need to compute five Tate pairings, one of order
2f and four of order 2e, as well as some pre-computations and then the final four discrete
logs of order 2e. The total cost of the pairings can be reduced by computing [2e]R, [2e]R+P
and [2e]R−Q in a single loop, saving 2 · (e− 1) cDBL calls. This is seen in the weighting
between the costs in Tables 5 and 6.
Table 5: Running times for degree-2n pairings with the SQIsign parameter sets targeting
NIST security levels I, III and V. Times were recorded on an Intel Core i7-9750H CPU
with a clock speed of 2.6Ghz and turbo-boost disabled.

Characteristic Degree Weil Pairing Tate Pairing
p1 5 · 2248 − 1 2248 0.31 ms 0.16 ms
p3 65 · 2376 − 1 2376 1.01 ms 0.51 ms
p5 27 · 2500 − 1 2500 2.40 ms 1.21 ms

Table 6: Running times for SQIsign change-of-basis for points ⟨P, Q⟩ = E[2f ] and
⟨R, S⟩ = E[2e] with e = f/2 (the typical values used in the process). Times were recorded
on an Intel Core i7-9750H CPU with a clock speed of 2.6Ghz and turbo-boost disabled.

Characteristic E[2f ] E[2e] Change of Basis
p1 5 · 2248 − 1 2248 2124 0.76 ms
p3 65 · 2376 − 1 2376 2188 2.45 ms
p5 27 · 2500 − 1 2500 2250 6.13 ms

Table 7: Running times for degree-2n and degree-3n pairings with the SIKE parameter
sets targeting NIST security levels I, III and V. Times were recorded on an Intel Core
i7-9750H CPU with a clock speed of 2.6Ghz and turbo-boost disabled.

Characteristic Degree Weil Pairing Tate Pairing
p434 2216 · 3137 − 1 2216 1.01 ms 0.61 ms

3137 1.55 ms 0.87 ms
p610 2305 · 3192 − 1 2305 2.84 ms 1.67 ms

3192 4.40 ms 2.47 ms
p751 2372 · 3239 − 1 2372 5.11 ms 3.05 ms

3239 7.84 ms 4.40 ms

References
[AAA+25] Marius A. Aardal et al. SQIsign 2.0: Algorithm specifications and supporting

documentation. Technical report, 2025.
[AHG23] Diego F. Aranha, Youssef El Housni, and Aurore Guillevic. A survey of elliptic

curves for proof systems. Des. Codes Cryptogr., 91(11):3333–3378, 2023. doi:
10.1007/S10623-022-01135-Y. url: https://doi.org/10.1007/s10623-
022-01135-y.

[BDD+24] Andrea Basso, Pierrick Dartois, Luca De Feo, Antonin Leroux, Luciano Maino,
Giacomo Pope, Damien Robert, and Benjamin Wesolowski. SQIsign2D-west -
the fast, the small, and the safer. In pages 339–370, 2024. doi: 10.1007/978
-981-96-0891-1_11.

https://doi.org/10.1007/S10623-022-01135-Y
https://doi.org/10.1007/s10623-022-01135-y
https://doi.org/10.1007/s10623-022-01135-y
https://doi.org/10.1007/978-981-96-0891-1_11
https://doi.org/10.1007/978-981-96-0891-1_11


16 Simpler and Faster Pairings from the Montgomery Ladder

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the
Weil pairing. In pages 213–229, 2001. doi: 10.1007/3-540-44647-8_13.

[BGS22] Gustavo Banegas, Valerie Gilchrist, and Benjamin Smith. Efficient supersin-
gularity testing over Fp and CSIDH key validation. Mathematical Cryptology,
2(1):21–35, 2022.

[BLS04] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil
pairing. 17(4):297–319, September 2004. doi: 10.1007/s00145-004-0314-9.

[Bre83] Lawrence Breen. Fonctions thêta et théoreme du cube, volume 980. Springer,
1983.

[CCC+24] Fabio Campos, Jorge Chávez-Saab, Jesús-Javier Chi-Domínguez, Michael
Meyer, Krijn Reijnders, Francisco Rodríguez-Henríquez, Peter Schwabe, and
Thom Wiggers. Optimizations and practicality of high-security CSIDH. 1(1):5,
2024. doi: 10.62056/anjbksdja.

[CD23] Wouter Castryck and Thomas Decru. An efficient key recovery attack on
SIDH. In pages 423–447, 2023. doi: 10.1007/978-3-031-30589-4_15.

[CHM+23] Wouter Castryck, Marc Houben, Simon-Philipp Merz, Marzio Mula, Sam
van Buuren, and Frederik Vercauteren. Weak instances of class group action
based cryptography via self-pairings. In pages 762–792, 2023. doi: 10.1007
/978-3-031-38548-3_25.

[CHMR25] Fabio Campos, Andreas Hellenbrand, Michael Meyer, and Krijn Reĳnders.
dCTIDH: fast and deterministic CTIDH. Cryptology ePrint Archive, Paper
2025/107, 2025. url: https://eprint.iacr.org/2025/107.

[CJL+17] Craig Costello, David Jao, Patrick Longa, Michael Naehrig, Joost Renes, and
David Urbanik. Efficient compression of SIDH public keys. In pages 679–706,
2017. doi: 10.1007/978-3-319-56620-7_24.

[CLM+18] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost
Renes. CSIDH: an efficient post-quantum commutative group action. In
pages 395–427, 2018. doi: 10.1007/978-3-030-03332-3_15.

[CLZ24] Shiping Cai, Kaizhan Lin, and Chang-An Zhao. Pairing optimizations for
isogeny-based cryptosystems. Cryptology ePrint Archive, Report 2024/575,
2024. url: https://eprint.iacr.org/2024/575.

[CR24] Maria Corte-Real Santos and Krijn Reijnders. Return of the Kummer: a
toolbox for genus-2 cryptography. Cryptology ePrint Archive, Paper 2024/948,
2024. url: https://eprint.iacr.org/2024/948.

[CS18] Craig Costello and Benjamin Smith. Montgomery curves and their arithmetic
- the case of large characteristic fields. 8(3):227–240, September 2018. doi:
10.1007/s13389-017-0157-6.

[DJP14] Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-resistant cryp-
tosystems from supersingular elliptic curve isogenies. Journal of Mathematical
Cryptology, 8(3):209–247, 2014.

[DKL+20] Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and Benjamin
Wesolowski. SQISign: compact post-quantum signatures from quaternions
and isogenies. In pages 64–93, 2020. doi: 10.1007/978-3-030-64837-4_3.

[Dol18] Javad Doliskani. On division polynomial PIT and supersingularity. Applicable
Algebra in Engineering, Communication and Computing, 29(5):393–407, 2018.

[FR94] Gerhard Frey and Hans-Georg Rück. A remark concerning m-divisibility and
the discrete logarithm in the divisor class group of curves. Mathematics of
computation, 62(206):865–874, 1994.

https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.62056/anjbksdja
https://doi.org/10.1007/978-3-031-30589-4_15
https://doi.org/10.1007/978-3-031-38548-3_25
https://doi.org/10.1007/978-3-031-38548-3_25
https://eprint.iacr.org/2025/107
https://doi.org/10.1007/978-3-319-56620-7_24
https://doi.org/10.1007/978-3-030-03332-3_15
https://eprint.iacr.org/2024/575
https://eprint.iacr.org/2024/948
https://doi.org/10.1007/s13389-017-0157-6
https://doi.org/10.1007/978-3-030-64837-4_3


G. Pope, K. Reijnders, D. Robert, A. Sferlazza, B. Smith 17

[Gro72] Alexandre Grothendieck. Groupes de Monodromie en Géométrie Algébrique:
SGA 7. Springer-Verlag, 1972.

[HSV06] Florian Hess, Nigel P. Smart, and Frederik Vercauteren. The eta pairing
revisited. IEEE Trans. Inf. Theory, 52(10):4595–4602, 2006. doi: 10.1109
/TIT.2006.881709. url: https://doi.org/10.1109/TIT.2006.881709.

[JAC+22] David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca
De Feo, Basil Hess, Amir Jalali, Brian Koziel, Brian LaMacchia, Patrick
Longa, Michael Naehrig, Joost Renes, Vladimir Soukharev, David Urbanik,
Geovandro Pereira, Koray Karabina, and Aaron Hutchinson. SIKE. Technical
report, National Institute of Standards and Technology, 2022. available at
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-
4-submissions.

[Jou00] Antoine Joux. A one round protocol for tripartite diffie-hellman. In Wieb
Bosma, editor, Algorithmic Number Theory, 4th International Symposium,
ANTS-IV, Leiden, The Netherlands, July 2-7, 2000, Proceedings, volume 1838
of Lecture Notes in Computer Science, pages 385–394. Springer, 2000. doi: 1
0.1007/10722028\_23. url: https://doi.org/10.1007/10722028%5C_23.

[Lic69] Stephen Lichtenbaum. Duality theorems for curves over p-adic fields. Inven-
tiones mathematicae, 7(2):120–136, 1969.

[LR16] David Lubicz and Damien Robert. Arithmetic on abelian and Kummer
varieties. Finite Fields and Their Applications, 39:130–158, May 2016. doi:
10.1016/j.ffa.2016.01.009. eprint: 2014/493, HAL: hal-01057467.

[Mil04] Victor S Miller. The Weil pairing, and its efficient calculation. Journal of
cryptology, 17(4):235–261, 2004.

[MMP+23] Luciano Maino, Chloe Martindale, Lorenz Panny, Giacomo Pope, and Ben-
jamin Wesolowski. A direct key recovery attack on SIDH. In pages 448–471,
2023. doi: 10.1007/978-3-031-30589-4_16.

[Mon87] Peter L Montgomery. Speeding the Pollard and elliptic curve methods of
factorization. Mathematics of computation, 48(177):243–264, 1987.

[Mor85] L. Moret-Bailly. Pinceaux de variétés abéliennes. Société mathématique de
France, 1985.

[MS24] Joseph Macula and Katherine E. Stange. Extending class group action attacks
via sesquilinear pairings. Cryptology ePrint Archive, Paper 2024/880, 2024.
url: https://eprint.iacr.org/2024/880.

[MVO91] Alfred Menezes, Scott A. Vanstone, and Tatsuaki Okamoto. Reducing elliptic
curve logarithms to logarithms in a finite field. In pages 80–89, 1991. doi:
10.1145/103418.103434.

[NR19] Michael Naehrig and Joost Renes. Dual isogenies and their application to
public-key compression for isogeny-based cryptography. In pages 243–272,
2019. doi: 10.1007/978-3-030-34621-8_9.

[Rei23] Krijn Reijnders. Effective pairings in isogeny-based cryptography. In pages 109–
128, 2023. doi: 10.1007/978-3-031-44469-2_6.

[Rob23] Damien Robert. Breaking SIDH in polynomial time. In pages 472–503, 2023.
doi: 10.1007/978-3-031-30589-4_17.

[Rob24] Damien Robert. Fast pairings via biextensions and cubical arithmetic. April
2024. eprint: 2024/517, HAL: hal-04848028.

[Sfe24] Alessandro Sferlazza. Hyperelliptic biextension pairings. 2024. url: https:
//github.com/sferl/theta-pairings-dim2. SageMath 10.3 library.

https://doi.org/10.1109/TIT.2006.881709
https://doi.org/10.1109/TIT.2006.881709
https://doi.org/10.1109/TIT.2006.881709
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://doi.org/10.1007/10722028\_23
https://doi.org/10.1007/10722028\_23
https://doi.org/10.1007/10722028%5C_23
https://doi.org/10.1016/j.ffa.2016.01.009
http://eprint.iacr.org/2014/493
http://hal.archives-ouvertes.fr/hal-01057467
https://doi.org/10.1007/978-3-031-30589-4_16
https://eprint.iacr.org/2024/880
https://doi.org/10.1145/103418.103434
https://doi.org/10.1007/978-3-030-34621-8_9
https://doi.org/10.1007/978-3-031-44469-2_6
https://doi.org/10.1007/978-3-031-30589-4_17
http://eprint.iacr.org/2024/517
http://hal.archives-ouvertes.fr/hal-04848028
https://github.com/sferl/theta-pairings-dim2
https://github.com/sferl/theta-pairings-dim2


18 Simpler and Faster Pairings from the Montgomery Ladder

[Sta03] Martijn Stam. Speeding up subgroup cryptosystems. PhD thesis, Technische
Universiteit Eindhoven, 2003.

[Sta07] Katherine E Stange. The Tate pairing via elliptic nets. In Pairing-Based
Cryptography–Pairing 2007: First International Conference, Tokyo, Japan,
July 2-4, 2007. Proceedings 1, pages 329–348. Springer, 2007.

[Sta08] Katherine Stange. Elliptic nets and elliptic curves. PhD thesis, Brown Uni-
versity, 2008. url: https://repository.library.brown.edu/studio/ite
m/bdr:309/PDF/.

[Tat62] John Tate. Duality theorems in Galois cohomology over number fields. In
Proc. Internat. Congr. Mathematicians (Stockholm, 1962), pages 288–295,
1962.

[Wei40] André Weil. Sur les fonctions algébriquesa corps de constantes fini. CR Acad.
Sci. Paris, 210(1940):592–594, 1940.

A Cubical arithmetic in a nutshell
The mathematical results used in the main body of this paper are proven, in much more
detail, in [Rob24]. This appendix—which contains no new results—provides a short
introduction to the theory, and convenient reference for some of the main results and
proofs.

We start with level-1 cubical points in Appendix A.1, discussing their arithmetic
properties in Appendices A.2 and A.3. We then describe how cubical arithmetic allows
us to compute functions with prescribed divisors in Appendix A.5, which allows us to
compute pairings with cubical arithmetic in Appendix A.6. Finally, we move to level-2
cubical points in Appendix A.7, from which we (re)derive the results used in the main
text.

So far, we have treated cubical arithmetic as a way to keep track of the extra “hidden”
information in affine representatives of projective coordinates. To formalize this, we need
to distinguish between the “standard” elliptic curve points, where we only care about their
projective coordinates up to some factor λ ∈ F∗

q , and enhanced “cubical points”, where we
care about the exact values of these coordinates.

This projective factor λ that we track for each point P ∈ E is be determined by
some (projective) coordinate Z. By carefully analyzing this coordinate, we may compute
pairings (and even more) using cubical arithmetic. The choice of Z determines the type of
cubical arithmetic we use. In this paper, we use Zn, a nontrivial section of the line bundle
associated to the divisor n(0E) for some positive integer n. Cubical points determined
by Zn are called cubical points of level-n. In practice, we take Zn = Zn

1 , so if we have
two level-1 cubical points that differ by a projective factor λ, then their associated level-n
cubical points differ by the projective factor λn.

A.1 Cubical points of level 1
Let E/Fq : y2 = x3 + a2x2 + a4x + a6 be an elliptic curve, and let Z1 be the projective
coordinate associated to a non-trivial section of the divisor (0E), meaning that Z1 has a
zero of order 1 at 0E . We say that Z1 is a coordinate of level-1.4

Definition 1. Let P = (xP , yP ) be a nonzero point on an elliptic curve E/Fq. A level-1
cubical point P̃ above P is the choice of a value Z1(P̃ ) ∈ F∗

q , so P̃ corresponds to the pair
(P, Z1(P̃ )).

4We warn the reader that Z1 is not a function on E. Instead, to get a function on E, we can use the
affine coordinate 1 = Z1/Z1 (which is not interesting).

https://repository.library.brown.edu/studio/item/bdr:309/PDF/
https://repository.library.brown.edu/studio/item/bdr:309/PDF/
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Remark 6. We must modify Definition 1 when P = 0E , because Z1(0E) = 0 by construction
(as Z1 has a zero of order 1 at 0E). To define cubical points above 0E , we divide by a fixed
uniformizer at 0E , say x/y, to get a scalar factor in F∗

q . More precisely: a cubical point is
a pair (0E , (Z1/(x/y))(0̃E)), where (Z1/(x/y))(0E) lies in F∗

q . Throughout this paper, we
normalize 0̃E to satisfy (Z1/(x/y))(0̃E) = 1.5

A.2 Cubical arithmetic
The group law R = P + Q on the elliptic curve E lifts to an arithmetic law on cubical
points P̃ , Q̃ and R̃ called cubical arithmetic. This arithmetic law is not a group law, but
we will see that it shares (and generalizes) features of x-only Kummer arithmetic.

First, we define the cubical inversion by Z1(−P̃ ) = −Z1(P̃ ).
For points P1, P2 ∈ E, let gP1,P2 denote any function with divisor (−P1 −P2) + (0E)−

(−P1)− (−P2). Given P3 ∈ E, we define

cub1(P1, P2, P3) := gP1,P2((P3)− (0E)) = gP1,P2(P3)
gP1,P2(0E) . (3)

This quantity is independent of the choice of gP1,P2 ; it can be computed explicitly as

cub1(P1, P2, P3) = lP1,P2(P3)
(x(P3)− x(P1))(x(P3)− x(P2)) = x(P1 + P2)− x(P3)

lP1,P2(−P3) .

We can now define the cubical arithmetic law.

Definition 2. Given points P1, P2, P3, we may form a cube 0E , P1, P2, P3, P2 + P3,
P1 + P3, P1 + P2, P1 + P2 + P3, as in Figure 1. We say the associated level-1 cubical points
0̃E , P̃1, P̃2, P̃3, P̃2 + P3, P̃1 + P3, P̃1 + P2, ˜P1 + P2 + P3 form a cubical cube if

cub1(P1, P2, P3) = Z1( ˜P1 + P2 + P3) · Z1(P̃1) · Z1(P̃2) · Z1(P̃3)
Z1(0̃E) · Z1(P̃2 + P3) · Z1(P̃1 + P3) · Z1(P̃1 + P2)

. (4)

0E
P1

P2

P3

P1 + P2

P1 + P3

P2 + P3 P1 + P2 + P3

Figure 1: A cube of points P1, P2, P3.

Remark 7. Technically, Eq. (4) is not well-defined because Z1(0̃E) = 0 and we evaluate
gP1,P2 at a zero 0E ; but it makes sense if we multiply both sides by a uniformizer, like x/y.
As mentioned above, we always choose 0̃E such that (Z1/(x/y))(0̃E) = 1.

5Note that Z1 is a cubical function of level-1 with a zero or order 1 at 0E , and x/y is a standard
function with a zero of order 1 at 0E , so their quotient is a cubical function with no poles or zeroes at 0E .
If we think in terms of rigidifications of line bundles, then the choice of 0̃E , i.e. of rigidification, allows us
to interpret Z as a standard function ϕZ on E locally on 0E , i.e. as an element of OE,0E

, and ϕZ/(x/y)
is a well-defined element of O∗

E,0E
; and the normalization condition is that its value at 0E should be 1.
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The crucial property—whence the name cubical arithmetic—is that Eq. (4) allows us to
derive Z1( ˜P1 + P2 + P3) from the seven other vertices of the cube. Similarly, given seven
vertices of some cube, we can compute the eighth cubical vertex: that is, the vertex R
with the correct value of Z1(R̃) ∈ F∗

q .
The most important cube we use in this article is given by (P1, P2, P3) = (P, Q,−Q),

which results in a cube with vertices 0E , P , Q, −Q, 0E , P − Q, P + Q, and P . Using
Eq. (4), we can derive Z1(P̃ + Q) · Z1(P̃ −Q).

Lemma 1. Given Z1(P̃ ), Z1(Q̃), and (x(Q) − x(P )), the cube above defines cubical
differential addition:

Z1(P̃ + Q) · Z1(P̃ −Q) = Z1(P̃ )2 · Z1(Q̃)2 · (x(Q)− x(P )). (5)

Specializing further to the case P = Q, we obtain cubical doubling:

Z1(2P̃ ) = Z1(P̃ )4 · 2y(P ). (6)

Proof. For the cubical differential addition, by Definition 2, we have

Z1(P̃ + Q)Z1(P̃ −Q)Z1(0̃E)Z1(0̃E)
Z1(P̃ )Z1(P̃ )Z1(Q̃)Z1(−Q̃)

= gQ,−Q(0E)
gQ,−Q(P ) .

The result follows from the fact that Z1(−Q̃) = −Z1(Q̃), and that if we take gQ,−Q =
1/(x − x(Q)), then it is normalized at infinity—that is, (gQ,−Q/(x/y)2)(0E) = 1. Our
normalization condition on 0̃E gives (Z2

1 /gQ,−Q)(0̃E) = 1.
For cubical doubling we have an extra 0E in the numerator, so we need to compute the

inverse of Z(0̃E) · gP,−P (P ). As above, we take gP,−P = 1/(x−x(P )), which is normalized
at 0E . To compute the evaluation, we let g′ = t∗

P gP,−P , i.e., g′(R) = gP,−P (R + P ), so
that Z(0̃E) · gP,−P (P ) = (g′ · x/y)(0E). The formulæ for the addition law give

1
g′ · x/y

=
(

(y − y(P ))2

(x− x(P ))2 − x− 2x(P )
)

/(x/y),

so ((g′ · x/y)(0E))−1 = −2y(P ). The result follows because Z1(−P̃ ) = −Z1(P̃ ).

A.3 Properties of cubical arithmetic
Theorem 1 summarizes the most useful properties of cubical arithmetic for this work.

Theorem 1. Let P1, P2, P3, P4 ∈ E.

1. Neutrality: cub1(0E , 0E , 0E) = 1.

2. Commutativity: cub1(σ(P1, P2, P3)) = cub1(P1, P2, P3) for all σ ∈ S3.

3. Associativity:

cub1(P1 + P2, P3, P4) · cub1(P1, P2, P4) = cub1(P1, P2 + P3, P4) · cub1(P2, P3, P4).

4. Anti-symmetry: cub1(P1, P2,−P1 − P2) = −1.

Proof. Let gP1,P2 be a function with divisor (−P1 − P2) + (0E)− (−P1)− (−P2), which
this time we assume is normalized at 0E by the condition gP1,P2/(x/y)(0E) = 1. Eq. (3)
and Definition 2 give cub1(P1, P2, P3) = gP1,P2(P3), and neutrality follows for P1 = P2 =
P3 = 0E . Similarly, we can rewrite the three other conditions as
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• Commutativity: gP1,P2(P3) = gP2,P3(P1) = gP3,P1(P2)

• Associativity: gP1+P2,P3 · gP1,P2 = gP1,P2+P3 · gP2,P3

• Anti-symmetry: gP1,P2(−P1 − P2) = −1.6

Associativity follows quickly from the fact that the LHS and RHS have the same divisor
and are both normalized. Commutativity and anti-symmetry are more delicate: both follow
from much more general results involving symmetric biextensions [Gro72] and Σ-cubical
torsor structures on abelian varieties [Bre83], though in our case they could also be proven
using symbolic algebra software. [Rob24] gives a full exposition.

Corollary 1 (Cubical Z-linear combinations). Let P1, . . . , Pm ∈ E, and choose cubical
points P̃i, P̃i + Pj for all 1 ≤ i, j ≤ m. Then, for n1, . . . , nm ∈ Z, we are free to compute
a cubical point above the elliptic point

∑
niPi using any choice of cubes and inversions:

we always obtain the same cubical point
∑̃

niPi.

Since the cubical point
∑̃

niPi of Corollary 1 is independent of the ni, we denote it by∑
niP̃i.

Proof of the corollary. When ni ≥ 0 and we don’t use inversions, this follows from com-
mutativity and associativity (Theorem 1). For the general case, when ni ∈ Z, we also need
inversions to compute

∑
niP̃i. Then, the anti-symmetry condition of Theorem 1 shows

that the result is independent of the choice of point to invert. Indeed, for the cube with
P3 = −P1 − P2, Eq. (4) and anti-symmetry yield

Z1(P̃1)Z1(P̃2)Z1( ˜−P1 − P2)
Z1(−̃P1)Z1(−̃P2)Z1(P̃1 + P2)

= cub1(P1, P2,−P1 − P2) = −1 ;

and the inversion formula Z1(−P̃ ) = −Z1(P̃ ) gives the same result.

We warn the reader that
∑

niP̃i depends not only on the choices of P̃i, but also the
P̃i + Pj . Different choices scale the resulting cubical point by a projective factor λ ∈ F∗

q

given by [Sta08, Theorem 10.1.1], rephrased in cubical terms in [Rob24, Lemma 4.7].
Lemma 2 gives λ in the notation of this appendix.

Lemma 2. Let P̃i

′
, P̃i + Pj

′
be other choices of cubical points above Pi, Pi + Pj. If λi,

λi,j ∈ F∗
q are such that Z1(P̃i

′
) = λi · Z1(P̃i) and Z1(P̃i + Pj

′
) = λiλjλi,j · Z1(P̃i + Pj),

then

Z1

(∑
niP̃i

′)
= λ · Z1

(∑
niP̃i

)
where λ :=

m∏
i=1

λ
n2

i
i

∏
1≤i<j≤m

λ
ninj

i,j ·

A.4 Translated cubes
For completeness, we also mention that we can extend the cubical law from cubes to
translated cubes: P0, P0 + P1, P0 + P2, P0 + P3, P0 + P2 + P3, P0 + P1 + P3, P0 + P1 + P2,
P0 + P1 + P2 + P3 as in Figure 2, by the formula:

cub1(P1, P2, P0 + P3)
cub1(P1, P2, P0) =

Z1( ˜P0 + P1 + P2 + P3) · Z1(P̃0 + P1) · Z1(P̃0 + P2) · Z1(P̃0 + P3)
Z1(P̃0) · Z1( ˜P0 + P2 + P3) · Z1( ˜P0 + P1 + P3) · Z1( ˜P0 + P1 + P2)

.

6Or, more rigorously, that if g′ = t∗
−P1−P2

(gP1,P2 ), then (g′/gP1,P2 )(0E) = −1.
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Indeed, the formula for the translated cube can be found by looking at the two cubes gener-
ated by P1, P2, P3 and P1, P2, P0 + P3 respectively. We also have that cub1(P1,P2,P0+P3)

cub1(P1,P2,P0) =
gP1,P2((P0 + P3)− (P0)).

We remark that the translated cube can be given a more symmetric form in its inputs
by setting U1 = P0 + P1, U2 = P0 + P2, U3 = P0 + P3, U4 = P0 + P1 + P2 + P3, W =
2P0 +P1 +P2 +P3 (so that U1 +U2 +U3 +U4 = 2W ), and V1 = W−U2 = P0 +P2 +P3, V2 =
W −U3 = P0 +P1 +P3, V3 = W −U4 = P0 +P1 +P2, V4 = W −U1 = P0. Conversely, from
U1, U2, U3, U4, V1, V2, V3, V4 we recover P0 = V4, P1 = U1−V4, P2 = U2−V4, P3 = U3−V4.

The cube arithmetic then takes the form

cub1(U1 − V4, U2 − V4, U3)
cub1(U1 − V4, U2 − V4, V4) = Z1(Ũ1) · Z1(Ũ2) · Z1(Ũ3) · Z1(Ũ4)

Z1(Ṽ1) · Z1(Ṽ2) · Z1(Ṽ3) · Z1(Ṽ4)
.

P0
P0 + P1

P0 + P2

P0 + P3

P0 + P1 + P2

P0 + P1 + P3

P0 + P2 + P3 P0 + P1 + P2 + P3

Figure 2: A cube of points P1, P2, P3 translated by P0

A.5 Elliptic functions
Cubical arithmetic gives us an alternative to Miller’s algorithm for constructing functions
on elliptic curves with prescribed divisors.

Lemma 3. Let P1, . . . , Pm ∈ E, with associated level-1 cubical points P̃i and P̃i + Pj.
Suppose we have m linear combinations

∑m
i=1 uj,iPi for uj,i ∈ Z. If there exist vj ∈ Z and

uj,0 ∈ Z such that
∑r

j=1 vjuj,0uj,i = 0 for 0 ≤ i ≤ m, then for any R ∈ E, the value

r∏
j=1

Z1(uj,0R̃ +
m∑

i=1
uj,iP̃i)vj

is independent of the choice of R̃ and R̃ + Pi.

Proof. For ease of notation, we consider R as P0 with respect to Lemma 2, and let P̃0
′

and
P̃0 + Pi

′
be other choices of cubical points above P0 and P0 + Pi, with P̃0

′
= λ0P̃0 and

P̃0 + Pi

′
= λ0λ0,i · P̃0 + Pi for some scalars λ in F∗

q . We want to show that the condition∑r
j=1 vjuj,0uj,i = 0 for all i implies that the differences in λ0 and λ0,i vanish for the overall

product. By Lemma 2, we have

Z1(uj,0P̃0
′
+
∑m

i=1 uj,iP̃i

′
)

Z1(uj,0P̃0 +
∑m

i=1 uj,iP̃i)
= λ

u2
j,0

0

m∏
i=1

λ
uj,0uj,i

0,i ,
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and therefore

r∏
j=1

(
Z1(uj,0P̃0

′
+
∑m

i=1 uj,iP̃i

′
)

Z1(uj,0P̃0 +
∑m

i=1 uj,iP̃i)

)vj

=
r∏

j=1

(
λ

u2
j,0

0

m∏
i=1

λ
uj,0uj,i

0,i

)vj

=
(

λ

∑r

j=1
vju2

j,0

0

m∏
i=1

λ

∑r

j=1
vjuj,0uj,i

0,i

)
= 1 ,

where the last equality uses the condition that each
∑r

j=1 vjuj,0uj,i = 0. Hence, the
product

∏r
j=1 Z1(uj,0P̃0 +

∑m
i=1 uj,iP̃i) is independent of the choice of P̃0 and P̃0 + Pi.

We can now construct a function f : E → P1 with a prescribed divisor by mapping
R ∈ E to the projective value defined in Lemma 3, which gives a well-defined map.

Theorem 2. With the situation as in Lemma 3, that is, we have r elements u1 =
(u1,0, . . . , u1,m), . . . , ur = (ur,0, . . . , ur,m) in Zm+1, and v1, . . . , vr ∈ Z such that for all
i ∈ {0, . . . , m}, we have

∑r
j=1 vjuj,0uj,i = 0. Then the function

f : E → P1, R 7→
r∏

j=1
Z1(uj,0R̃ +

m∑
i=1

uj,iP̃i)vj ,

is a well-defined function on E with divisor

div(f) =
r∑

j=1
vj [uj,0]∗(−

m∑
i=1

uj,iPi).

Proof. For a complete proof, see [Rob24, § 4.6]. We sketch the main idea here. Lemmas 2
and 3 imply that f(R) does not depend on the choice of R̃ and R̃ + Pi, so f is well-defined
on E. Evaluating f at the linear combinations of Pi gives the divisor in the statement.

We give two useful examples of Theorem 2, which we will revisit in Appendix A.6.

Example 1. The function

fP1,P2 : R 7−→ Z1( ˜R + P1 + P2)Z1(R̃)
Z1(R̃ + P1)Z1(R̃ + P2)

depends only on the choice of P̃1, P̃2, P̃1 + P2. Its divisor is

div fP1,P2 = (−P1 − P2) + (0E)− (−P1)− (−P2) .

Example 2. The function

fℓ,P : R 7−→ Z1(ℓP̃ + R̃)Z1(R̃)ℓ−1

Z1(P̃ + R)ℓ

depends only on the choice of P̃ . Its divisor is

div fℓ,P = (−ℓP ) + (ℓ− 1)(0E)− ℓ(−P ) .
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A.6 Pairings from cubical arithmetic
Using Examples 1 and 2, we can reformulate all pairing formulæ in the literature, which
are usually expressed in terms of Miller functions, in terms of cubical arithmetic. This is
similar to how Stange used elliptic nets to compute pairings in [Sta08, §17; Sta07]—indeed,
elliptic nets give an alternative way to compute level-1 cubical arithmetic, and Theorem 2
can be seen as a generalization of [Sta08, § 10.3].

Theorem 3.

• Let P, Q ∈ E[ℓ], and P̃ , Q̃, P̃ + Q be arbitrary cubical points above P, Q, P +Q. Then

eW,ℓ(P, Q) = Z1(ℓP̃ + Q̃)Z1(ℓQ̃)Z1(P̃ )
Z1(ℓP̃ )Z1(ℓQ̃ + P̃ )Z1(Q̃)

• Let P ∈ E[ℓ](Fq) and Q ∈ E(Fq), and P̃ , Q̃, P̃ + Q be arbitrary rational cubical
points above P, Q, P + Q. The non-reduced Tate pairing is

eT,ℓ(P, Q) = Z1(ℓP̃ + Q̃)Z1(0̃E)
Z1(Q̃)Z1(ℓP̃ )

Proof. The usual formulæ for the Weil and Tate pairings are eW,ℓ(P, Q) = fℓ,P ((Q)−(0E))
fℓ,Q((P )−(0E))

and eT,ℓ(P, Q) = fℓ,P ((Q) − (0E)) ·
(

x
y

)ℓ(0E), where the rational uniformizer (x/y) is
needed to make the expression well-defined. Example 2 gives expressions for fℓ,P and fℓ,Q.
(The functions used here and in Section 2.3 have linearly equivalent divisors, thus give the
same pairing values.) For instance, we obtain

eT,ℓ(P, Q) = Z1(ℓP̃ + Q̃)Z1(0̃E)
Z1(Q̃)Z1(ℓP̃ )

(
Z1(P̃ )Z1(Q̃)

Z1(P̃ + Q)(Z1/(x/y))(0̃E)

)ℓ

—which gives the formula above, since we assumed the cubical points were defined over Fq,

hence
(

Z1(P̃ )Z1(Q̃)
Z1(P̃ +Q)(Z1/(x/y))(̃0E)

)ℓ

∈ (F⋆
q)ℓ.

Remark 8. Since [ℓ]P = 0E for P ∈ E[ℓ], we must remember that Z1(ℓP ) = Z1(0E) = 0,
and the formulæ above should be understood with respect to some uniformizer. For
example, in the Weil pairing, Z1(ℓQ̃)

Z1(ℓP̃ )
should be understood as Z1/(x/y)(ℓQ̃)

Z1/(x/y)(ℓP̃ )
, and in the Tate

pairing Z1 (̃0E)
Z1(ℓP̃ )

should be understood as Z1/(x/y)(̃0E)
Z1/(x/y)(ℓP̃ )

.

Similarly, we can obtain translated cubical formulæ from Theorem 3. For the Weil
pairing, we use eW,ℓ(P, Q) = fℓ,P ((Q+R)−(R))

fℓ,Q((P +R)−(R)) for any R ∈ E. For the Tate pairing, we use
eT,ℓ(P, Q) = fℓ,P ((Q + R)− (R)) for rational points R ∈ E(Fq).

A.7 Cubical arithmetic in level 2
Recall that a level-1 cubical point P̃ is the datum of an elliptic curve point P and a
“cubical” coordinate Z1(P̃ ) ∈ F∗

q . We cannot recover P from the coordinate Z1(P̃ ) alone.
In the main body of this paper we use level-2 cubical coordinates, which—unlike level-1

coordinates—do allow us to recover the underlying point P up to sign. This lets us compute
cubical arithmetic by slightly adapting algorithms for x-only arithmetic on Kummer lines,
replacing projective coordinates with cubical coordinates.

Let X2, Z2 be the basis of projective coordinates associated to the divisor 2(0E) such
that Z2 = Z2

1 and x = X2/Z2. These level-2 coordinates are our main tool in the sequel,
so for ease of notation we write X = X2, Z = Z2.
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Example 3. Let P = (xP , yP ) ∈ E. A level-2 cubical point P̃ above P is a choice of
a value Z(P̃ ) ∈ F∗

q , where Z := Z2 = Z2
1 . Since x = X/Z, choosing P̃ above P , i.e.,

choosing Z(P̃ ) ∈ F∗
q , also determines X(P̃ ); so a choice of P̃ is the same as a choice of

affine coordinates (X(P̃ ), Z(P̃ )) above the projective coordinates (XP : ZP ) of P .

Given a level-2 cubical point P̃ = (P, (X(P̃ ), Z(P̃ ))) above P , the data (X(P̃ ), Z(P̃ ))
alone suffices to recover x(P ) = X(P̃ )/Z(P̃ ), and hence P up to sign. This means that
(X(P̃ ), Z(P̃ )) are the coordinates of a “Kummer line cubical point” rather than an elliptic
curve cubical point, which is still enough for our applications.

A nice feature is that cub2(P1, P2, P3) only depends on x(P1), x(P2), x(P3), x(P2 +P3),
x(P1 + P3), x(P1 + P2), and x(P1 + P2 + P3) by [Rob24, § 4.9.4] so that level-2 cubical
arithmetic can be done entirely on the Kummer line. We remark that we can also recover
x(P1 + P2) and x(P1 + P2 + P3) from x(P1), x(P2), x(P3), x(P2 + P3), x(P1 + P3) [LR16].

Another advantage of level-2 cubical coordinates is that since 2(0E) is base-point-
free on E, we do not need a special case to define our cubical neutral point, as it is
determined by its X-coordinate: 0̃E = (1, 0). Indeed, since Z1/(x/y)(0̃E) = 1, we get
X(0̃E) = Xx2

Zy2 (0̃E) Zy2

x2 (0̃E) = x3

y2 (0E) = 1.
In the main text we work with level-2 cubical arithmetic, by interpreting (as in Exam-

ple 3) ordinary projective coordinates (XP : ZP ) as level-2 cubical points (X(P̃ ), Z(P̃ ))
while tracking projective factors. Indeed, if we repeat the derivations of cubical differential
addition and doubling in Equation (5) and Equation (6) but for level-2 cubical points,
then we recover the formulæ for cADD and cDBL described in Sections 3 and 4.
Remark 9 (The case of twists). Let E : y2 = x3 + a2x2 + a4x + a6 be an elliptic curve
and E′ : By′2 = x′3 + a2x′2 + a4x′ + a6 be a quadratic twist over a base field k. The
two curves are isomorphic over the quadratic extension k(α), where α2 = B, via the map
E → E′, (x, y) 7→ (x′, y′) = (x, y/α).

Cubical arithmetic can be performed on the twist E′: the same proof as in Lemma 1,
now taking into account that (y′2/x′3)(0E′) = 1/B, shows that the level 1 cubical function
Z ′

1 attached to E′ satisfies

Z ′
1(P̃ + Q) · Z ′

1(P̃ −Q) = 1
B

Z ′
1(P̃ )2 · Z ′

1(Q̃)2 · (x′(Q)− x′(P )),

Z ′
1(2P̃ ) = 1

B
Z ′

1(P̃ )4 · 2y′(P ).

Alternatively, since (Z1/(x′/y′))(0̃E) = 1/α, the normalization condition at 0E′ for the
twist E′ is satisfied by the cubical coordinate Z ′

1 = αZ1. Substituting this Z ′
1, x′, y′ in

Eqs. (5) and (6) also gives the above formula. We remark how, unlike standard x-only
arithmetic, cubical arithmetic does depend on the choice of twist we work on.

The results of Appendix A.10 to compute the Tate pairing via level-2 cubical arithmetic
generalize to the case of twists. On E′, we must use coordinates Z ′

2 = Z ′
1

2 and X ′
2 = x′Z ′

2,
which yield 0̃E′ = (B, 0) and satisfy the following:

Z ′
2(P̃ + Q) · Z ′

2(P̃ −Q) = 1
B2 Z ′

2(P̃ )2 · Z ′
2(Q̃)2 · (x′(Q)− x′(P ))2, (7)

Z ′
2(2P̃ ) = 1

B2 Z ′
2(P̃ )4 · 4(x′(P )3 + a2x′(P )2 + a4x′(P ) + a6). (8)

Implementors might be tempted to use scaled coordinates (X ′′
2 , Z ′′

2 ) = (X ′
2/B, Z ′

2/B)
which get rid of B in Eq. (7) and satisfy (X ′′

2 , Z ′′
2 )(0̃E′) = (1, 0). However, the correct

computation of the Tate pairing on E′ (rather than its square) relies on the fact that Z ′
2 is

the square of a k-rational level-1 cubical coordinate, hence why Z ′′ = (Z ′
1/α)2 should not

be used in this context.
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A.8 Higher levels
More generally, we can define coordinates of level-n. Fix Zn = Zn

1 , which is a projective
coordinate associated to a non-trivial section of the divisor n(0E).

Definition 3. A cubical point P̃ of level-n above an elliptic curve point P ∈ E, with
P = (xP , yP ) ̸= 0E , is the choice of a value Zn(P̃ ) ∈ F∗

q , where Zn := Zn
1 .

Like in level-1, cubical points above 0E correspond to values of Zn/(x/y)n(0̃E), not
Zn. And as in level-1, we always take 0̃E such that Zn/(x/y)n(0̃E) = 1.

Example 4. Let P = (xP , yP ) ∈ E. Let X3, Y3, Z3 be the basis of projective coordinates
associated to the divisor 3(0E) such that Z3 = Z3

1 , x = X3/Z3 = X2Z1, and y = Y3/Z3.
Then a choice of level-3 cubical point P̃ above P , i.e., a choice of Z3(P̃ ) ∈ F∗

q , is the same
as a choice of affine coordinates (X3(P̃ ), Y3(P̃ ), Z3(P̃ )) above the projective coordinates
(X3,P : Y3,P : Z3,P ) of P .

Similar to Definition 2, with cubn(P1, P2, P3) = cub1(P1, P2, P3)n, we get the level-n
cubical arithmetic law:

Zn( ˜P1 + P2 + P3)Zn(P̃1)Zn(P̃2)Zn(P̃3)
Zn(0̃E)Zn(P̃2 + P3)Zn(P̃1 + P3)Zn(P̃1 + P2)

= cubn(P1, P2, P3) (9)

The anti-symmetry of level 1 becomes symmetry for even levels, and anti-symmetry for
odd levels:

cubn(P1, P2,−P1 − P2) = cub1(P1, P2,−P1 − P2)n = (−1)n ,

and indeed, Zn(−P̃ ) = Zn
1 (−P̃ ) = (−Z1(P̃ ))n = (−1)nZ(P̃ ).

A.9 Cubical translation
An extra tool in level-n cubical arithmetic is the cubical translation by T̃ for T ∈ E[n]
[Mor85, § I.4; Rob24, § 4.2.6], which acts as a matrix on the level-n cubical coordinates. For
instance, if E : y2 = x3 +Ax2 +x is a Montgomery curve, we always have T = (0 : 1) ∈ E[2].
The level-2 cubical translation by T̃ = (0, 1) is then given by (X, Z) 7→ (Z, X).

Definition 4. Let T̃ be a level-n cubical point above a point T of n-torsion. Given a
level-n cubical point P̃ , we define P̃ + T by the formula

Zn(P̃ + T )Zn(0̃E)
Zn(P̃ )Zn(T̃ )

= cubn,T (0E)
cubn,T (P )

where we recall that cubn,T is any function with divisor n(0E)− n(−T ).

Example 5. In level-2, we can take cub2,T = 1/(x−x(T )) and, since it is normalized, the
formula becomes Z(P̃ + T ) = Z(P̃ )Z(T̃ )(x(P )− x(T )). For a Montgomery curve, with
T̃ = (0, 1), we obtain Z(P̃ + T ) = Z(P̃ ) X

Z (P ) = X(P̃ ), and so X(P̃ + T ) = Z(P̃ + T )x(P +
T ) = X(P̃ )/x(P ) = Z(P̃ ). We recover the translation formula above.

Note that working in level-n, applying Theorem 2 with Zn = Zn
1 instead of Z1, we can

only construct n-th power of rational functions on E. If f : E → P1 is a rational function
with divisor

∑
nmi(Pi), it is an n-th power (possibly over an extension) if and only if

T :=
∑

miPi is the neutral point 0E . In general, since
∑

nmiPi = 0E , T is only a point
of n-torsion. For instance, when n = 2, the function x− x(T ) of divisor 2(T )− 2(0E) is
not a square. Thankfully, we can use the cubical translation to tackle this case.
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Theorem 4. Suppose we are given P1, . . . , Pm ∈ E, and also level-n cubical points P̃i,
P̃i + Pj. Suppose also that we are given level-n cubical points T̃i where Ti ∈ E[n].

Let u1 = (u1,0, . . . , u1,m), . . . , ur = (ur,0, . . . , ur,m) be r elements in Zm+1, and let
v1, . . . , vr ∈ Z, such that for all i ∈ {0, . . . , m}, we get

∑r
j=1 vjujuj,i = 0.

Let R ∈ E, and fix arbitrary choices of cubical points R̃, R̃ + Pi. Then the function

f : E −→ P1, R 7−→
r∏

j=1
Zn(uj,0R̃ +

m∑
i=1

uj,iP̃i + T̃i)vj ,

is a well-defined function on E with divisor

div(f) =
r∑

j=1
nvj [uj,0]∗(−

m∑
i=1

uj,iPi − Ti).

Here, Zn = Zn
1 , and the cubical point uj,0R̃+

∑m
i=1 uj,iP̃i + T̃i is computed by combining

the level-n cubical exponentiation with the cubical translation by T̃i.

Example 6. Let P ∈ E[ℓ], where ℓ = 2m is even. Working in level n = 2, the function

fℓ,P : R 7−→ Z2(mP̃ + R̃ + P̃0)Z2(R̃)m−1

Z2(P̃ + R)m

depends only on the choice of P̃ and P̃0, where P0 = mP ∈ E[2], and its divisor is

div fℓ,P = 2(−mP − P0) + 2(m− 1)(0E)− 2m(−P ) = ℓ(0E)− ℓ(−P ).

A.10 Pairings in level 2
We obtain level-2 cubical pairings by replacing Z1 with Z2 in Theorem 3. Since Z2 = Z2

1 ,
we obtain the square of the Weil and Tate pairings, yielding the results of Section 5.1.
This square loses one bit of information when ℓ is even, but in that case one can use the
cubical translation by appropriate points of 2-torsion to recover the true Weil and Tate
pairings, see [Rob24, Theorem 2.9].

There is no need to use uniformizers as in Remark 8 for level 2: instead we can use
the X coordinate, since for any R̃ above 0E we have X(R̃) ̸= 0. Indeed, in the Weil
pairing we can replace Z(ℓQ̃)/Z(ℓP̃ ) with X(ℓQ̃)/X(ℓP̃ ), and in the Tate pairing we can
replace Z(0̃E)/Z(ℓP̃ ) with X(0̃E)/X(ℓP̃ ). Moreover, recall that with our normalization
0̃E satisfies X(0̃E) = 1.

We now get the level-2 cubical pairing formulæ from Theorem 4, or Example 6:

Theorem 5. Let ℓ = 2m be even.

• If P, Q ∈ E[ℓ], then their ℓ-Weil pairing is

eW,ℓ(P, Q) = Z(mP̃ + Q̃ + P̃0)Z(mQ̃ + Q̃0)Z(P̃ )
Z(mP̃ + P̃0)Z(mQ̃ + P̃ + Q̃0)Z(Q̃)

= Z(mP̃ + Q̃ + P̃0)X(mQ̃ + Q̃0)Z(P̃ )
X(mP̃ + P̃0)Z(mQ̃ + P̃ + Q̃0)Z(Q̃)

,

where P̃ , Q̃, P̃ + Q, P̃0, and Q̃0 are arbitrary cubical points over P , Q, P + Q,
P0 := [m]P , and Q0 := [m]Q, respectively.

• If P ∈ E[ℓ](Fq) and Q ∈ E(Fq), then their (non-reduced) Tate pairing is

eT,ℓ(P, Q) = Z(mP̃ + Q̃ + P̃0)Z(0̃E)
Z(Q̃)Z(mP̃ + P̃0)

= Z(mP̃ + Q̃ + P̃0)X(0̃E)
Z(Q̃)X(mP̃ + P̃0)

,
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where P̃ , Q̃, and P̃ + Q are arbitrary rational cubical points above P , Q, and P + Q,
respectively, such that Z(P̃ + Q)/Z(P̃ )Z(Q̃) is a square in Fq, and P̃0 is an arbitrary
cubical point over P0 := [m]P .

Proof. We prove the formula for the Tate pairing. By Example 6, we have:

fℓ,P ((Q)− (0E)) = Z(mP̃ + Q̃ + P̃0)Z(Q̃)m−1Z(P̃ )m

Z(P̃ + Q)mZ(mP̃ + P̃0)Z(0̃E)m−1

As before, to get the non-reduced Tate pairing and make the above equation well-defined,
we multiply both sides by (x/y)ℓ(0E):

eT,ℓ(P, Q) = Z(mP̃ + Q̃ + P̃0)X(0̃E)
Z(Q̃)X(mP̃ + P̃0)

Z(Q̃)mZ(P̃ )m

Z(P̃ + Q)m(Z/(x/y)2)(0̃E)m
,

with X(0̃E) = (Z/(x/y)2)(0̃E) = 1, and since by assumption Z(P̃ + Q)/Z(P̃ )Z(Q̃) is a
square in Fq, Z(Q̃)mZ(P̃ )m/Z(P̃ + Q)m is an ℓ-th power in Fq.
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