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Abstract. Multisignature schemes are crucial for secure operations in
digital wallets and escrow services within smart contract platforms, par-
ticularly in the emerging post-quantum era. Existing post-quantum mul-
tisignature constructions either do not address the stringent requirements
of the Quantum Random Oracle Model (QROM) or fail to achieve prac-
tical efficiency due to suboptimal parameter choices.

In this paper, we present a novel Dilithium-based multisignature scheme
designed to be secure in the QROM and optimized for practical use. Our
scheme operates over the polynomial ring Zq[X]/(xn + 1) with q ≡ 1
(mod 2n), enabling full splitting of the ring and allowing for efficient
polynomial arithmetic via the Number Theoretic Transform (NTT). This
structure not only ensures post-quantum security but also bridges the
gap between theoretical constructs and real-world implementation needs.

We further propose a new hardness assumption, termed ν-SelfTargetMSIS,
extending SelfTargetMSIS (Eurocrypt 2018) to accommodate multiple
challenge targets. We prove its security in the QROM and leverage it
to construct a secure and efficient multisignature scheme. Our approach
avoids the limitations of previous techniques, reduces security loss in the
reduction, and results in a more compact and practical scheme suitable
for deployment in post-quantum cryptographic systems.
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1 Introduction

With the development of science and technology, it becomes more and more
realistic that quantum computers will come to our life sooner or later. Since the
traditional cryptographic system will be broken when quantum computers come,
the US National Institute of Standards and Technology (NIST) announced three
selected digital signatures in the post-quantum signature standardization on July
5, 2022: CRYSTALS-Dilithium, FALCON, and SPHINCS+. On August 13, 2024,
NIST published the Federal Information Processing Standard (FIPS) 204 for
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the CRYSTALS-Dilithium algorithm [20], which has been renamed as Module-
Lattice-Based Digital Signature Algorithm (ML-DSA). CRYSTALS-Dilithium
is the one with more studies in academia because of its good structure and the
worst-case to average-case reduction.

Quantum computers have not only the ability to attack traditional cryptosys-
tems, but also the power to query a function with multiple inputs at a single
query. Currently, most signature schemes rely on a hash function to turn mes-
sage(s) into challenge(s), and thus sign them. However, many of them use the
random oracle model (ROM) to simulate the output of a hash function in their
security proofs (e.g., [14]). When we consider the case of a quantum adversary,
it always makes a query in superposition, which makes it hard for the simulator
to find out what preimage the adversary is interested in. More threateningly,
the adversary could make an attack on superposition that comprises different
messages in one move. This uncertainty of such powerful adversaries calls eagerly
for the security reductions over the quantum random oracle model (QROM) [4].

QROM-based Multisignatures. In this paper, we consider the case of mul-
tisignature - an aggregation of signatures to show that multiple users agree on
the same message. It is widely used in cryptocurrency and blockchain technolo-
gies. For the case of a digital wallet for cryptocurrency, a wallet could require
multisignatures (from any two public keys out to three) to authorize spending.
So even if one secret key is stolen, the attacker cannot access the funds. It is also
useful for escrow services in a smart contract. With a 2-out-of-3 multisignature
with a buyer, seller, and a neutral arbitrator, funds are only released when two
of the three agree, avoiding the need to trust a single party.

Currently, there already exist some multisignature solutions based on lattice-
based hard problems [5, 6, 8, 11, 15], but few have the support for the quantum
random oracle model [11, 15]. Such a need brings us to QROM-based multisig-
natures.

Towards practical Multisignatures. Dilithium [10] is a post-quantum secure
signature scheme constructed via the “Fiat-Shamir with aborts” framework [17].
It is computed in a polynomial ring Rq := Zq[X]/(Xn + 1), where q is a prime
modulus. A QROM-based Dilithium was proposed in [14].

For the current QROM-based multisignature relying on Dilithium [11], the
chosen parameters are good for invertibility and make the security proof easy.
More specifically, it sets the prime number by q ≡ 5 (mod 8). The choice of
this parameter started from [19], with the underlying polynomial ring being
Zq[X]/(Xn + 1) and n being a power of two. Moreover, the invertibility comes
from the isomorphism Zq[X]/(Xn +1) ∼= Zq[X]/(Xn/2− r)×Zq[X]/(Xn/2 + r)
where the Zq[X]/(Xn/2 ± r) are fields because both of them are unsplittable.
However, this structure is not good for multiplication implementation. A naive
polynomial multiplication is O(n2). It is hard to take Number-Theoretic Trans-
form (NTT) acceleration similar to the underlying Dilithium, which is only
O(n log n).

Practical Dilithium would always choose a faster ring with q ≡ 1 (mod 2n)
as in [3]. The ring is fully split as Zq[X]/(Xn + 1) ∼= Z×n

q , and NTT could
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make good use of this isomorphism [3]. The hardness of this scheme is based
on the hardness of three computational problems: Module Learning with Errors
(MLWE), Module Short Integer Solution (MSIS), and SelfTargetMSIS. MLWE and
MSIS are widely believed to be secure. In 2024, Jackson et al. [13] presented a
reduction of the hardness of SelfTargetMSIS to MLWE in the QROM model. In
this paper, we extend the assumption of SelfTargetMSIS, and give the security
proof of a multisignature with compact parameters.

1.1 Related works

Researches on QROM. There have already been some researches on QROM in
the past decade. Following up with [22], lots of researchers agree that it is almost
impossible to rewind the quantum machine, compared to the classical random
oracle model, and it is inefficient to prove 2-soundness and similar properties.

After Zhandry [23] remarked that QROM could be easily simulated by 2q-
wise independent functions, there are a lot of trials presenting more reliable
properties of QROM and building schemes based on those properties. For exam-
ple, it is shown in [21] how to adaptively reprogram a hash function. But still,
the simulation, extraction, and rewinding are considered to be hard because of
the superposition of quantum queries [16].

In 2019, Zhandry [24] proposed the compressed oracle model. This model
uses lazy sampling and supposes that the hash outcome H(x) of any input x is a
uniform superposition like

∑
|y⟩ before taking measurements. If anybody wants

to know the result, it must measure this register and further impact the register
of a simulator. It gives the simulator more power to control and guess the inputs
and outputs of hash queries. In [7], the authors provided an efficient simulation
of the compressed oracle.

QROM-Dilithium and NTT. The QROM-Dilithium was raised in [14], in
which the security could rely on either lossy key generation or SelfTargetMSIS.
The lossy key generation relies firmly on q ≡ 5 (mod 8), while the SelfTar-
getMSIS reduction could cater to different needs. However, it only showed that
SelfTargetMSIS is secure in the random oracle model in [14]. In 2024, [13] showed
a hardness proof on SelfTargetMSIS in the QROM model. Using [9], the authors
showed SelfTargetMSIS is at least as hard as MLWE in the given parameter. Fur-
thermore, it demonstrated that using q ≡ 1 (mod 2n) with NTT acceleration
would accelerate the original QROM-Dilithium several times.

Other QROM Multisignature schemes. To the best of the authors’ knowl-
edge, there are two researches on QROM multisignatures. The first one [11]
provides a simple extension of the Dilithium to multisignature. It uses [21] as
the main reprogramming theory. After reprogramming, the authors proved that
the schemes’s unforgeability under chosen message attack (MS-UF-CMA) is al-
most equivalent to the unforgeability under no message attack (MS-UF-NMA).
And to prove the MS-UF-NMA of the signature scheme, the authors used the
MLWE assumption to make the keys lossy. Then the authors presented a gen-
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eral search problem with bounded model such that no quantum adversary could
easily attack the lossy MS-UF-NMA of the scheme.

The second QROM multisignatures [15] provides a two-round solution on
multisignature, which relies on [21] for online-extractability. But it still uses a
ring that does not provide fast NTT acceleration.

1.2 Our Contributions

There are two main contributions in our paper. To illustrate our contribution,
we define some notations first. Apart from the ring Rq with q ≡ 1 (mod 2n)
and n is a power of two, we also define R := Z[X]/(Xn + 1). For any a ∈ Zq, a

′

mod ±q is defined by the unique −(q − 1)/2 ≤ a′ ≤ (q − 1)/2 such that a′ ≡ a
(mod q). For any r = r0 + r1X + · · · + rn−1X

n−1 ∈ Rq, we use the notation
∥r∥i := |ri mod ±q| and ∥r∥∞ := maxi ∥r∥i. For r = (r1, · · · , rm) ∈ Rm

q , we
have ∥r∥∞ := maxi ∥ri∥∞. For τ ∈ N, Bτ denotes the set of all elements in
r ∈ Rq with ∥r∥∞ = 1 and the number of ±1 coefficients is indeed τ . Im is an
identity matrix of size m.

Contribution 1. We propose a variant to the SelfTargetMSIS, named ν-SelfTargetMSIS,
and present a hardness proof for this variant. In the original SelfTargetMSIS, the
adversary is given a matrix A ∈ Rm×k

q with a hash function H : {0, 1}∗ → Bτ ,

it needs to find out a message M and corresponding y ∈ Rm+k such that ∥y∥∞
is small, H(

[
Im A

]
y,M) = ym+k, of which ym+k is the (m + k)-th element of

y.
However, single hash target ym+k is not suitable for multisignature. In our

variant ν-SelfTargetMSIS, the adversary needs to find out a solution for ν different
targets at the same time. Precisely, it is given A ∈ Rm×k

q and hash function H :

{0, 1}∗ → Bτ . The adversary needs to find out a solutionA′ ∈ Rm×(ν−1)
q ,M , and

y ∈ Rm+k+ν−1 such that ∥y∥∞ is small, and ∀i ∈ [ν],H(i,A′,
[
Im A A′]y,M) =

y(m+k−1)+i.
More importantly, we prove ν-SelfTargetMSIS could achieve almost the same

security level as SelfTargetMSIS in the QROM. Thus, it could further use the
technique from choosing parameters in SelfTargetMSIS to the one in ν-SelfTargetMSIS.

Contribution 2. We propose a multisignature scheme based on [11]. Their
scheme relies on the security of q ≡ 5 (mod 8) at Lemma 4.6 of [14], and further
on Lemma 2.2 of [18]. Although the lemma provides invertibility, it is insufficient
for NTT acceleration. We prove that our multisignature scheme is secure at q ≡ 1
(mod 2n), by using ν-SelfTargetMSIS.

Moreover, [11] uses a lemma for getting reprogrammable from [21]. The
lemma in [21] is stateless and simulated by a polynomial. It further implies
the underlying hash function H2 is length-preserving. And it also needs an addi-
tional almost compressed oracle to help [16], which brings more losses. To get rid
of these limitations, we replace the [21] reprogramming with [12]. This change
also reduces MS-UF-NMA to MS-UF-CMA of the multisignature and gets rid of
the almost compressed oracle, which gives a better loss.
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2 Preliminaries

Notations. For η ∈ N, the notation Sη ∈ Rq is the set of all polynomials such

that the coefficients all belong to {−η, . . . , η}. Besides, we use AdvSCHEME
params (A) :=

Pr[x passes the verification|x ← A] to denote the advantage that an adversary
A could break a search version hard problem of the scheme SCHEME on forging.
We use negl(λ) to represent a negligible function in λ.

2.1 Security Model of Multisignature

In multisignature with the maximum signer size τ , every individual participant
could generate their own key pair, participate in interactively signing, and make
verifications. We use the notation similar to [5], without using key aggregation
and online/offline signing.

– pp← Setup(1λ) takes a security parameter 1λ as input, and outputs public
parameters. Throughout, we assume that pp is given as implicit input to all
other algorithms.

– (sk, pk)← KeyGen() generates a secret key sk and a public key pk.
– σ ← Sign(sk,PK := {pk},m) signs interactively on message m with signers

who own the secret keys of PK where |PK| ≤ τ , and outputs a signature σ.
– {0, 1} ← Verify(PK, σ,m) verifies whether the signature σ is sign by the

secret owners of all PK on the message m and |PK| ≤ τ .

Definition 1. A multisignature scheme Scheme is MS-UF-CMA safe if the ad-
vantage any adversary A wins the given experiment with negligible probability.

AdvMS-UF-CMA
Scheme := Pr

[
1← ExpMS-UF-CMA

Scheme (A, λ)
]
≤ negl(λ),

where the experiment ExpMS-UF-CMA
Scheme (A, λ) is defined as

1. pp← Setup(1λ), (sk∗, pk∗)← KeyGen().
2. (PK∗, σ∗,m∗)← AOSign(pp, pk∗).
3. Return Verify(PK∗, σ∗,m∗) = 1 ∧ pk∗ ∈ PK ∧ (PK∗,m∗) /∈ Q.

The oracle OSign(PK,m) aborts if pk∗ /∈ PK. Otherwise, it sets the queried set
Q ← Q∪ (PK,m) and answers all interactive queries by Sign(sk∗,PK,m).

Definition 2. A multisignature scheme’s MS-UF-NMA is the same as MS-UF-
CMA except that no OSign query could be made.

2.2 Quantum random oracle model (QROM)

A state of a qubit |ϕ⟩ could be expressed as a two-dimensional complex vector
|ϕ⟩ = α|0⟩+β|1⟩ where {|0⟩, |1⟩} is an orthogonal basis of C2 and |α|2+ |β|2 = 1.
The qubit is in superposition when 0 < |α| < 1. Moreover, the state of n qubits
could be written as |ϕ⟩ =

∑
x∈{0,1}n αx|x⟩ in C2n and

∑
x |αx|2 = 1. When
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measuring the state in the computational basis, it outputs x with probability
|αx|2.

One of the most important observations is that it is able to replace any hash
function by a fixed polynomial following the Lemma 1.

Lemma 1 (Lemma in [23]). Let H : X → Y. There is no quantum polynomial
time (QPT) adversary AH that could distinguish a real hash |H⟩ and 2Q-wise
independent function f2Q when making at most Q quantum queries to the random
oracle. And the f2Q could be treated as a 2Q degree polynomial in FY .

2.3 Lattice

In the original QROM-Dilithium [14], the security level of the Dilithium protocol

is given by the advantages AdvMLWE
k,l,η (B), AdvSelfTargetMSIS

H,τ,k,ℓ+1,ζ (C), and AdvMSIS
k,l,ζ′(D).

We rephrase the definition of these hardness assumptions in the style of [13].

Definition 3 (Module Learning with Errors (MLWE)). For m, k, η ∈ N,
the advantage that any adversary A breaking the hard assumption is

AdvMLWE
m,k,η (A) := ∥Pr

[
b = 0

∣∣A← Rm×k
q , t← Rm

q , b← A(A, t)
]
−

Pr
[
b = 0

∣∣A← Rm×k
q , (s1, s2)← Sk

η × Sm
η , t← As1 + s2, b← A(A, t)

]
∥.

Definition 4 (Module Short Integer Solutions (MSIS)). For m, k, γ ∈ N,
the advantage that any adversary A breaking the MSIS is defined as

AdvMSIS
m,k,γ(A) := Pr

[
0 < ∥y∥∞ ≤ γ ∧ [Im|A]y = 0

∣∣A← Rm×k
q ;y← A(A)

]
.

Definition 5 (SelfTargetMSIS). For τ,m, k, γ ∈ N and H : {0, 1}∗ → Bτ ⊂
Rq, the advantage that any adversary A breaking the SelfTargetMSIS is defined
as

AdvSelfTargetMSIS
H,τ,m,k,γ (A) :=

Pr

[
∥y∥∞ ≤ γ

∧ H([Im|A]y,M) = c

∣∣∣∣∣A← Rm×k
q ;

(
y :=

[
r
c

]
,M

)
← A|H⟩(A)

]
.

The adversary has quantum access to the H hash function.

Definition 6 (rejected-MLWE (rMLWE) [11]). For k, l, γ, β, η, τ ∈ N and H :
{0, 1}∗ → Bτ , the advantage that any adversary breaking the rMLWE is

AdvrMLWE
k,l,γ,β,η,τ (A) :=

∥∥∥∥∥∥∥Pr
A(A,w, c) = 0

or

y + cs < γ − β

∣∣∣∣∣∣∣
A, s← Rk×l

q × Sl
η

y, c← Sl
γ−1 ×Bτ

w← Ay

,



− Pr

A(A,w, c) = 0

or

y + cs < γ − β

∣∣∣∣∣∣∣
A, s← Rk×l

q × Sl
η

y, c← Sl
γ−1 ×Bτ

w← Rk
q

,


∥∥∥∥∥∥∥ .
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2.4 QROM-Dilithium

Here we give a brief revisit of QROM-Dilithium in [14].

– KeyGen. This algorithm first picks a random ρ← {0, 1}256, and extends it to

A← Rk×l
q := Sam(ρ). It picks (s1, s2)

$←− Sl
η×Sk

η , and sets the public number
t := As1 + s2. By using the key compression tH ← Power2Roundq(t, d),
tL := t − tH2d, the tL is used in singing only and treated as secret key. It
outputs pk := (ρ, tH), sk := (ρ, s1, s2, tL).

– Sign. On input a messagem and sk, this algorithm reconstructsA← Sam(ρ).
Then it computes w := Ay where the random number y is picked by
y ← Sℓ

γ1−1. It sets wH := HighBitsq(w, 2γ) and picks c ← H(pk,wH ,m).
It computes z := y+ cs1. If ∥LowBitsq(w− cs2, 2γ2)∥∞ > γ2 − β or ∥z∥∞ ≥
γ1 − β, then it restarts the algorithm. It finally gets the hint by h :=
MakeHintq(−ctL,w−cs2+ctL, 2γ2). It outputs the signature σ = (z,wH ,h).

– Verify. On input pk, a message m and a signature σ, this algorithm recon-
structs A ← Sam(ρ). It gets the challenge c ← H(pk,wH ,m). And it later
outputs success 1 if ∥z∥∞ < γ1−β and wH = UseHintq(h,Az−2dctH , 2νγ2);
it outputs fail 0 otherwise.

Here the supporting algorithms are defined in Figure 1, which extract “higher-
order” and “lower-order” bits of elements in Zq from [10].

Lemma 2 (Lemma 4.1 in [14]). When setting the parameters as q > 2α,
q ≡ 1 (mod α), r, z ∈ Rq, ∥z∥∞ ≤ α/2, and α is even.

– UseHintq(MakeHintq(z, r, α), r, α) = HighBitsq(r+ z, α).
– ∥r− vHα∥∞ ≤ α+ 1, where vH = UseHintq(h, r, α).
– UseHintq(h, r, α) = UseHintq(h

′, r, α) leads to h = h′.

Lemma 3 (Lemma 4.2 in [14]). HighBitsq(r, α) = HighBitsq(r + s, α) when
∥s∥∞ ≤ β and ∥LowBitsq(r, α)∥∞ ≤ α

2 − β.

2.5 Compressed oracles and reprogramming

The compressed oracle is built to record all the information made by the adver-
sary. Unlike the classical method, the update and response procedures are all
considered in the superposition. More precisely, if the adversary makes

∑
|x⟩ to

a random oracle, the simulator could make it entangled with its own database D
by answering

∑
x,u,D |x, u⟩× |D⟩ with

∑
x,u,D |x, u⊕D(x)⟩× |D⟩. When the ad-

versary tries to obtain the hash of a single value, it needs to measure |x⟩ register
and consequently fix D(x) in the simulator.

The reprogrammability inside quantum random oracles is studied in [2]. Al-
though this paper gets a better bound on the loss, we require an adaptive variant
such that the reprogrammed domain could have been impacted by the adver-
sary. The variant we use in our paper is as follows [12], and it is built on top of
a compressed oracle. Here, the probability difference is the advantage that any
distinguisher knows the oracle has been reprogrammed.
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Input: r ∈ Zq, d ∈ N
1 r = r mod +q

2 rL = r mod ±2d

3 return (r − rL)/2
d

Algorithm 1: Power2Roundq

Input: h ∈ {0, 1}, r ∈ Zq, α ∈ 2N
1 m = (q − 1)/α
2 (rH , rL)← Decomposeq(r, α)

3 if h = 0 then
4 return rH
5 else if rL > 0 then
6 return (rH + 1) mod +m
7 else
8 return (rH − 1) mod +m
9 end

Algorithm 2: UseHintq

Input: z ∈ Zq, r ∈ Zq, α ∈ 2N
1 rH ← HighBitsq(r, α)

2 vH ← HighBitsq(r + z, α)

3 if rH = vH then
4 return 0
5 else
6 return 1
7 end

Algorithm 3: MakeHintq

Input: r ∈ Zq, α ∈ 2N
1 r = r mod +q
2 rL = r mod ±α
3 if r − rL = q − 1 then
4 return (0, rL − 1)
5 else
6 return

((r − rL)/α, rL)
7 end
Algorithm 4: Decomposeq

Input: r ∈ Zq, α ∈ 2N
1 (rH , rL)←

Decomposeq(r, α)

2 return rH
Algorithm 5: HighBitsq

Input: r ∈ Zq, α ∈ 2N
1 (rH , rL)←

Decomposeq(r, α)

2 return rL
Algorithm 6: LowBitsq

Fig. 1. Supporting algorithms

Lemma 4 (Proposition 1 in [12]). Let X1, X2, Y be finite sets, D be any dis-
tinguisher making at most q queries to H, and R be the number of reprogramming
points. The underlying hash function is H : X1 ×X2 → Y .∣∣∣Pr[REPROGD

1 = 1]− Pr[REPROGD
0 = 1]

∣∣∣ ≤ 3R

2

√
q

|X1|
,

in which the REPROGb game for b = 0/1 is defined by

1. O0 ←$ Y X1×X2 .
2. O1 := O0.
3. b′ ← A|Ob⟩,Repro.
4. Return b′.

where the Repro(x2) oracle is reprogramming x2 with a random prefix x1 to a
random number y:

1. (x1, y)←$ X1 × Y .

2. O1 := O(x1||x2)→y
1 .
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3. Return x1.

Although the Lemma 4 obtains a better bound in reprogramming, it is im-
possible to simulate the adversary in two stages. It will be unavoidable to get a
q2 loss when calling for a more general case. Hence, we use the following Lemma
from [9] to complete the reduction from CCB to ν-SelfTargetMSIS.

Lemma 5 (Theorem 2 in [9]). Let X and Y be two finite sets, and adversary
A be an arbitrary oracle quantum algorithm making at most Q queries to the
random oracle H : X → Y . The adversary outputs some x ∈ X and a (possibly
quantum) output z. The two-stage algorithm SA outputs x ∈ X in the first stage,
takes Θ ∈ Y as input to the second stage, and subsequently outputs a (possibly
quantum) z, so that for any x0 ∈ X and any (possibly quantum) predicate V :

Pr[x = x0 ∧ V(x,Θ, z) : (x, z)← ⟨SA, Θ⟩]

≥ 1

(2Q+ 1)2
Pr[x = x0 ∧ V(x,H(x), z) : (x, z)← AH].

Furthermore, S runs in time polynomial in Q, log |X| and log |Y |.

3 SelfTargetMSIS variant on ν hash target

The reduction from a single target SelfTargetMSIS to MLWE was given in [13].
The first step is to define a “plain” version of SelfTargetMSIS, known as Plain-
SelfTargetMSIS, where the input matrix is not given in Hermite Normal Form.
Next, it defines two experiments: the chosen coordinate binding experiment CCB
and the collapsing experiment Collapse. The chain of reduction works as:

SelfTargetMSISH,τ,m,l,γ ← Plain-SelfTargetMSISH,τ,m,m+l,γ

← CCBτ,m,m+l,γ ← Collapsem,m+l,γ ← MLWEm+l,m,η,

of which the first transition requires q ≡ 1 (mod 2n) and the final transition
requires q > 16 and 2γηn(m+ l) < ⌊q/32⌋.

The above result could not be directly used in a multisignature scheme, be-
cause the original SelfTargetMSIS and Plain-SelfTargetMSIS only target one hash
result, but multisignature further requires each party to answer an individual
challenge ci independently. More importantly, the adversary is able to control
what the public keys of the malicious parties are. So, we propose a variant of
the original SelfTargetMSIS to a ν-targets ν-SelfTargetMSIS.

To prove the hardness of ν-SelfTargetMSIS, we have to follow the route of
[13], and consequently propose ν-Plain-SelfTargetMSIS. We can reduce the CCB
experiment to our ν-Plain-SelfTargetMSIS. Hence, we can reuse the transition
from CCB, Collapse to MLWE in [13].
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Definition 7 (ν-SelfTargetMSIS). For ν as a positive integer, m, k, γ ∈ N and
H : {0, 1}∗ → Bτ , the advantage that any adversary breaking the ν-SelfTargetMSIS
is defined as

Advν-SelfTargetMSIS
H,τ,m,k,γ (A) :=

Pr

∥y∥∞ ≤ γ ∧ ∥y′∥∞ ≤ γ

∧ H(i,A′, [Im|A]y +A′y′,M) = ci

∧ ym+k = c1 ∧ y′
i = ci+1

∣∣∣∣∣∣∣
A← Rm×k

q ;

(y,A′,y′,M)← A|H⟩(A)

 ,

in which i ∈ [ν − 1], y ∈ Rm+k
q , A′ ∈ Rm×(τ−1)

q and y′ ∈ Rν−1
q .

Definition 8 (ν-Plain-SelfTargetMSIS). For ν as a positive integer, m, k, γ ∈
N and H : {0, 1}∗ → Bτ , the advantage that any adversary breaking the ν-Plain-
SelfTargetMSIS is defined as

Advν-Plain-SelfTargetMSIS
H,τ,m,k,γ (A) :=

Pr

∥y∥∞ ≤ γ ∧ ∥y′∥∞ ≤ γ

∧ H(i,A′,Ay +A′y′,M) = ci

∧ yk = c1 ∧ y′
i = ci+1

∣∣∣∣∣∣∣
A← Rm×k

q ;

(y,A′,y′,M)← A|H⟩(A)

 ,

in which i ∈ [ν − 1], y ∈ Rk
q , A

′ ∈ Rm×(τ−1)
q , and y′ ∈ Rν−1

q .

3.1 Reducing ν-Plain-SelfTargetMSIS to ν-SelfTargetMSIS

Proposition 1. Suppose q = 1 (mod 2n) and m, k, γ, τ ∈ N, Hi : {0, 1}∗ → Bτ .
If there is an adversary A making Q queries to solve ν-SelfTargetMSISH,τ,m,k,γ ,
there is an adversary B solving ν-Plain-SelfTargetMSISH,τ,m,m+k,γ with Q queries

with loss at least n/qk.

Following up with Lemma 2 and Proposition 1 in [13], the proof is trivial to
get by Rq

∼= Zn
q . And we remark that the randomly sampled part of our scheme

is A, while A′ only eliminates the probability of having no row-echelon form,
other than enlarging it. So the probability bound of distinguishing two cases is
less than n/qk.

3.2 Reducing CCB to ν-Plain-SelfTargetMSIS

We first review the experiment CCB. Let τ,m, l, γ ∈ N. The advantage of a quan-
tum algorithm A = (A1,A2) for winning CCBτ,m,l,γ is defined as the probability
that the experiment CCBτ,m,l,γ in Algorithm 7 outputs 1.

The existing reduction from CCBτ,m,l,γ to Plain-SelfTargetMSISH,τ,m,l,γ in [13]
relies on measure-and-reprogram lemma (Lemma 5) to build up a two-stage
simulator of an adversary. The lemma seems to be unsuitable to adopt in our
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1 A
$←− Rm×l

q .
2 (z,T)← A1(A), where z ∈ Rm

q and T is auxiliary register.

3 ci
$←− Bτ

4 y ← A2(T, c) where y ∈ Rl
q.

5 if Ay = z, ∥y∥∞ ≤ γ, and, yl = c then
6 return 1
7 end
8 return 0

Algorithm 7: Experiment CCBτ,m,l,γ .

reduction because it is unclear whether involving more than one (x,H(x)) in
verification would impact the lemma.

On the other hand, [9] provides a variant supporting multiple inputs x and
reprogramming the corresponding outputs Θ. However, the multiplicative loss
on such reduction is too high, i.e. 1/(2Q+ 1)2n. So finding a way with minimal
loss is preferable. To begin with it, we first dive into the core of Lemma 5.

Revisiting Lemma 5. The supporting technique of this lemma is Lemma 1 in [9].
The adversary A in the model is described as A1, A2, · · · , AQ with the initial
state |ϕ0⟩. Subsequently, the state after Q queries turns out to be |ϕH

Q⟩ :=

AH|ϕ0⟩ := AQOH · · ·A1OH|ϕ0⟩, of which OH : |c⟩|x⟩|y⟩ 7→ |c⟩|x⟩|y ⊕ c · H(x)⟩.
The model gives controlled queries on c ∈ {0, 1}. Moreover, it uses the notation
of reprogramming as

H ∗Θx0 : x 7→

{
Θ if x = x0,

H(x) Otherwise.

where the H is the hash function modeled as a quantum random oracle. The
abbreviation is (AH∗Θx

i→Q )(AH
0→i)|ϕ0⟩ = (AH∗Θx

i→Q )|ϕH
i ⟩, meaning that the adversary

is started with |ϕ0⟩ and the oracle answers the first i queries with H and repro-
grams on x to Θ for the remaining queries. Consequently, the underlying lemma
could be expressed as Lemma 6.

Lemma 6 (Lemma 1 in [9]). Let A be a Q-query quantum algorithm. For any
H : X → Y , any x ∈ X, Θ ∈ Y , and any projection Πx,Θ, it holds

Ei,b

[
∥(|x⟩⟨x| ⊗Πx,Θ)(AH∗Θx

i+b→Q)(AH
i→i+b)X|ϕH

i ⟩∥22
]

≥
[
∥(|x⟩⟨x| ⊗Πx,Θ)|ϕH∗Θx

Q ⟩∥22
]

(2Q+ 1)2
,

where (i, b) ∈ {0, · · · , Q− 1} × {0, 1} ∪ {Q, 0}.

Here, |x⟩⟨x| measures the final output register X to obtain x, and the projec-
tion Πx,Θ is the measurement of some other register Z relying on H(x). Besides,
the measurement of the hash query register is written as X in this formula.
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In other words, the left-hand side is the expectation of measuring the query
register to get x and then deciding to reprogram H(x) with Θ depending on a
random choice b, and finally the output register X is measured and coincides
with x.

On the right-hand side of Lemma 6, the measurement probability that could
be treated as the probability of outputting a valid z passing the verification V,
as long as Θ is random.

Pr[x = x0 ∧ V(x,H(x), z) : (x, z)← AH] = ∥|(x0⟩⟨x0| ⊗Πx0,H(x0))|ϕ
H∗Θx
Q ⟩∥22.

Now, we will adopt the Lemma 6 to show the reduction from CCB to ν-Plain-
SelfTargetMSIS.

Proposition 2. Let ν,m, l, γ, τ ∈ N. Suppose there is an adversary A solving
ν-Plain-SelfTargetMSISH,τ,m,l,γ with at most Q queries with advantage ϵ, there
exists a two-stage quantum algorithm B = (B1,B2) solving and winning the ex-
periment CCBτ,m,l,γ with advantage at least ϵ/(2Q+ 1)2.

Proof. To complete the reduction, we expect a 2-stage simulator SA1 and SA2 ,
such that (A′, z := Ay +A′y′,M, T ) ← SA1 and (y,y′) ← SA2 (T, c1) such that
∥y∥∞ ≤ γ ∧ ∥y′∥∞ ≤ γ ∧ yk = c1 ∧ y′

i = ci+1.

Here, we only need to program H(x1) to Θ := c1 and remain {H(xi)}i>1 the
same, which means neither H nor H ∗ Θx will change the result of {H(xi)}i>1.
All we need to care about is whether (1,A′,Ay+A′y′,M) has been queried or
not. Moreover, when we measure the output register X for x1 := (1,A′,Ay +
A′y′,M), we immediately determine xi := (i,A′,Ay +A′y′,M) for i > 2.

So we can use almost the same strategy as the CCB to Plain-SelfTargetMSIS
reduction, that we pick a random (i, b) ∈ {0, · · · , Q − 1} × {0, 1} ∪ {Q, 0} and
measure the query register after the i-th query, and we then choose to program
the hash on or after the current query, of the measured result. And the expecta-
tion of the outcome probability that the output register X measures the same as

the query register, is indeed Ei,b

[
∥(|x⟩⟨x| ⊗Πx,Θ)(AH∗Θx

i+b→Q)(AH
i→i+b)X|ϕH

i ⟩∥22
]
.

Consequently, there is a pair of simulators (SA1 ,SA2 ), of which SA2 receives a
Θ := c1 as an input, and then outputs a valid solution to ν-Plain-SelfTargetMSIS.
The expectation of the probability is 1

(2Q+1)2 times the probability of outputting

a single transcript, as in Lemma 6.

Moreover, the algorithms B = (B1,B2) could be constructed by (SA1 ,SA2 )
with the following modification.

– B1: calls SA1 to get (A′, z,M, T ) and outputs T ′ := T and z′ := z −A′y′.
Here y′

i = ci+1 = H(i,A′, z,M) are all fixed.

– B2: on receiving c1, calls SA2 (T ′, c) to get (y,y′) which fulfills z = Ay +
A′y′ ∧ ∥y∥∞ ≤ γ ∧ ∥y′∥∞ ≤ γ ∧ yk = c1 ∧ y′

i = ci+1. Thus, it is able to
output y such that Ay = z′.

⊓⊔
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Parameter Explanation Limitation

ν The number of signers

n Ring dimension

q Ring Modulus q ≡ 1 (mod 2n), q > 16

(k, l) Dimensions of A l ≤ k

d Dropped bits from t τ · 2d−1 ≤ γ2
γ1 Max signature coefficient (approx.) β ≪ γ1
γ2 The limit of making hints q > 4νγ2, q ≡ 1 (mod 2νγ2), β ≪ γ2
η Max coefficients of s1, s2
β The bound of ∥cs∥∞, s ∈ Sη β = τη

τ The number of 1 in challenge space
Table 1. Parameters for QROM-Dilithium-Musig

3.3 Security of ν-SelfTargetMSIS

By putting Proposition 1 in our paper, with Proposition 3 in [13] (reduction
from the experiment Collapse to CCB) and Proposition 4 in [13] (reduction from
the experiment CCB to MLWE) together, we get the following theorem on the
security of ν-SelfTargetMSIS.

Theorem 1. Let m, k, τ, γ, η ∈ N. Suppose q > 16, q ≡ 1 (mod 2n), and
2γηn(m + k) < ⌊q/32⌋. If there is an adversary making Q quantum queries to
solve the problem ν-SelfTargetMSISH,τ,m,k,γ with advantage ϵ and H : {0, 1}∗ →
Bτ , there exists a quantum algorithm that solves MLWEm+k,m,η with advantage

ϵ− nq−k

4(2Q+ 1)2

(
ϵ− nq−k

4(2Q+ 1)2
− 1

|Bτ |

)
− 1

4 · 3w
,

for all w ∈ N.

4 QROM-Dilithium-MuSig

In this section, we propose the QROM-Dilithium-MuSig, which is highly efficient
to run NTT because of q ≡ 1 (mod 2n). All the parameter requirements follow
Table 1. Moreover, we consider the challenge space as ChSet = Bτ , and thus the
|ChSet| = 2τ

(
n
τ

)
.

4.1 Construction

Setup. On input a security parameter 1λ, it outputs the public parameters as
shown in Table 1. This part also requires the generation of the public matrixA. A
safe generation requires all participants to efficiently check the trustworthiness
of A. Here we refer to [1] for generating a common reference string without
trusted setup. It also defines two hash functions H1 : {0, 1}∗ → {0, 1}∗ and
H2 : {0, 1}∗ → Bτ .
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Key generation. On input the public parameter, it samples secret keys by the
MLWE parameters (s1, s2) ← Sℓ

η × Sk
η . It then constructs the public key and

compresses it using Power2Roundq method, i.e. t := As1+s2 and sets (tH , tL) :=
Power2Roundq(t, d). It will finally output pk := (tH , tL), sk := (s1, s2). Here, tL
is the part used in signing only because of the key compression technique.

Signing. Assuming that the multi-signature is targeting the message µ, the size
of signers is ν, the member index is ranged from 1 to ν, and the current party
is indexed by v. Each party takes part in the signing procedure with the secret
key of the current party skv and the collection of the public keys PK.

Sign1. The signer generates its own random masks by sampling yv ← Sℓ
γ1−1

first, computes wv = Ayv, and makes a commitment gv = H1(pkv,wv). It sends
out (state1 := (PK,yv,wv),gv).

Sign2. On receiving the previous state state1 and all the commitments denoted
as {gu}u∈[ν],u ̸=v from other parties, it outputs a reveal of the commitment as
wv together with the current state, i.e. (state2 := (PK,yv, {gu}u∈[ν]),wv).

Sign3. It takes the previous state state2 and all the revealing {wu}u∈[ν] as
inputs. And it performs outputs (state3 := (PK,wH), zv) with the following.

1. Abort if gu ̸= H1(pku,wu) for some u ∈ [ν].
2. Compute w =

∑ν
u=1 wu, wH = HighBitsq(w, 2νγ2).

3. Get a challenge cv = H2(v,wH , µ,PK).
4. Compute zv = yv + cvsv,1.
5. Abort when ∥zv∥∞ ≥ γ1 − β.

Sign4. On receiving the previous state state3 and a series of {zu}u∈[ν] from
each individual signer, it sums up all of the zu together by z =

∑ν
u=1 zu. It

restarts the whole signing when ∥LowBitsq(wv − cvsv,2, 2νγ2)∥∞ ≥ ν(γ2− β). It
then computes the hint of the signature by h = MakeHintq(−

∑ν
u=1 cutu,L,Az−

2d
∑ν

u=1 cutu,H , 2νγ2). It outputs the signature σ = (wH , z,h).

Verification. The verification takes the public keys of all the parties PK =
{pku}u∈[u], and signatures in the form σ = (wH , z,h). It reconstructs x =

Az − 2d
∑ν

u=1 cutu,H where cu = H2(u,wH , µ,PK). And it later outputs 1 if
the following two conditions are fulfilled, and it outputs 0 otherwise.

– ∥z∥∞ < ν(γ1 − β),
– wH = UseHintq(h,x, 2νγ2).

4.2 Correctness

In verification, it is easy to see ∥z∥ ≤ ν(γ1 − β). And it remains to check wH =
UseHintq(h,x, 2νγ2).

UseHintq(h,x, 2νγ2) =UseHintq(MakeHintq(−
ν∑

u=1

cutu,L,x, 2νγ2),x, 2νγ2)

=HighBitsq(−
ν∑

u=1

cutu,L + x, 2νγ2),
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where

x = Az− 2d
ν∑

u=1

cutu,H = w +

ν∑
u=1

cu(Asu,1 − 2dtu,H).

And by ∥
∑ν

u=1 cutu,L∥∞ ≤ ντ · 2d−1 ≤ νγ2 and applying Lemma 2,

UseHintq(h,x, 2νγ2) =HighBitsq(w +

ν∑
u=1

cu(Asu,1 − 2dtu,H − cutu,L), 2νγ2)

=HighBitsq(w −
ν∑

u=1

cusu,2, 2νγ2)

=HighBitsq(Az−
ν∑

u=1

cutu, 2νγ2).

By the signing procedure ∥LowBitsq(Az−
∑ν

u=1 cutu, 2νγ2)∥∞ < ν(γ2 − β)
and ∥

∑ν
u=1 cusu,2∥∞ ≤ νβ, we get

UseHintq(h,x, 2νγ2) = HighBitsq(w −
ν∑

u=1

cusu,2, 2νγ2)

= HighBitsq(w, 2νγ2)

= wH .

4.3 Security

In the security reduction, we assume that the forger has the quantum query to
hash functions H1 and H2, while it can only access the signing oracles classically
just like the real-world classical communication channel. The main proof follows
[11]. However, we remark that the original proof is relying on the lossy-key
generation where q ≡ 5 (mod 8), but our scheme relies on q ≡ 1 (mod 2n).

Without loss of generality, we assume the adversary is going to interactively
query with the first party that acted by the simulator, which would involve the
pk1 without knowing sk1. And all other parties are controlled by the adversary.

Lemma 7. If the multisignature scheme QROM-Dilithium-Musig is secure in
MS-UF-NMA model, the QROM-Dilithium-Musig is also secure in MS-UF-CMA

with the advantage loss 3QsE
2

√
QH+QsνE

2τ(nτ)
+ QsEϵrMLWE

k,l,γ,β,η,τ , of which Qs is the

number of queries on signing, QH is the number of queries on hash, E is the
expectation of the repeating time in signing and ϵrMLWE

k,l,γ1,β,η,τ
is the probability

rMLWE that could be distinguished.

Proof. The major technique of achieving unforgeability is on game-hopping. Here
is the definition of the original game.

Setup. On input 1λ, the simulator sets up A, and the key pair for the first party,
i.e. (pk∗, sk∗) := (pk1, sk1) ← KeyGen(A). All public parameters and pk∗ are
given to the adversary A.
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Oracles. Hash functions H1,H2 are simulated by quantum random oracles. The
adversary is able to make Q1 queries to H1 and QH queries to H2.

SigningOracle. Suppose the i-th singing query is denoted by (PK(i), µ(i)). If pk∗

is not contained by PK(i), just answer the query normally. Otherwise, the index
of the target keys pk∗ is set to the first one without loss of generality (i.e., v = 1).
Moreover, we assume that each state of the signing procedure is continuous and
each statei would be unique as if the adversary is working with a normal user.

– Sign1. The simulator invokes the original Sign1 and sends g
(i)
1 to A as Party

1.
– Sign2. The simulator receives {g(i)

u }u∈[2,ν] from A and works as the party 1

to invokes the original Sign2 and sends w
(i)
1 to A.

– Sign3. The simulator receives {w(i)
u }u∈[2,ν] from A, and invokes the original

Sign3 and sends z
(i)
1 to A.

– Sign4. The simulator receives {z(i)u }u∈[2,ν] from A, and works as the party 1

to invoke the original Sign4 and sends (w
(i)
H , z(i),h(i)) to A.

Challenge. The forger generates a valid signature of any message on the tuple
(PK∗, (w∗

H , z∗,h∗), µ∗) such that Verify(PK∗, (w∗
H , z∗,h∗), µ∗) = 1 and pk∗ ∈

PK∗.
The target of the game hopping is to replace the keys of the first party by the

underlying MS-UF-NMA key and make the simulator able to answer any query
even without the secret key.

Game0: The original game.

Game1: It is the same as Game0, except:

– Oracles. The hash function H1 is replaced by a 2(Q1 + QsνE) degree poly-
nomial function H1, of which Q1 is the number of queries that H1 is asked
directly and Qs is the number of queries that signing oracle is invoked.

By Lemma 1, we have:

|Pr[AGame0 = 1]− Pr[AGame1 = 1]| ≤ negl(λ).

Game2: It is the same as Game1, except:

– Sign2. The simulator receives {g(i)
u }u∈[2,ν] from A. To generate w

(i)
1 , the

simulator extracts the original w
(i)
u for u ∈ [2, ν] by the computing the roots

of H1 −w
(i)
u as r

(i)
u . The probability that the number of roots greater than

2 is given by ϵroots. If there is more than one result, it just simply picks a

random one. And it sends w
(i)
1 to A.

– Sign3. The simulator receives {w(i)
u }u∈[2,ν] from A, and checks the extraction

is indeed the original w
(i)
u , by ŵ

(i)
u = wu. It aborts if the extraction is not

correct. Subsequently, it invokes the original Sign3 and sends z
(i)
1 to A.
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We append the public key into the hash input such that it would avoid
multiple roots with high probability. The extraction loss of taking the polynomial
roots is very small by using polynomial simulation and Lemma 1. Hence we have:

|Pr[AGame1 = 1]− Pr[AGame2 = 1]| ≤ negl(λ).

Game3,i for i = 0, ..., QS : Before any hopping under the sub-game, the original
sub-game Game3,0 is indeed the same as the previous game Game2.

Following up with the previous state, Game3,i transits from Game3,i−1. In
this hopping, the simulator will pick a random challenge in the very beginning,
by which the simulator is able to generate w it could be answered. And using
Lemma 4, the hopping would succeed with non-negligible probability.

Here are the changes from Game3,i−1 to Game3,i. The i-th signing call is
simulated by the following.

– Sign1. The simulator picks a random challenge c
(i)
1 for the first party and

z
(i)
1 ← Sγ1−β−1. Subsequently, it sets w

(i)
1 = Az

(i)
1 − c

(i)
1 (t∗ − s∗2) with

probability 1− e−nlβ/γ1 and w
(i)
1 ← Rk

q . And it computes and sends g
(i)
1 as

the original algorithm.

– Sign2. As {w(i)
u }u∈[2,ν] are successfully extracted, the simulator construct

w
(i)
H . Then the simulator will reprogram H2(1,w

(i)
H , µ,PK(i)) as c

(i)
1 .

– Sign3. If w
(i)
1 is sampled uniformly, the simulator restarts the algorithm.

Alternatively, it will proceed the original Sign3.

Summing up all sub-games together, we get QsE points to reprogram and
the total queried number is QH + QsνE. The random challenge space is Bτ of
size 2τ

(
n
τ

)
. With Lemma 4, the differences turn to

∣∣Pr[AGame3,Qs = 1]− Pr[AGame2 = 1]
∣∣ = Qs∑

i=1

∣∣Pr[AGame3,i = 1]− Pr[AGame3,i−1 = 1]
∣∣

≤3QsE

2

√
QH +QsνE

2τ
(
n
τ

) +QsEϵrMLWE
k,l,γ,β,η,τ .

Game4: It is the same as Game3,Qs , except that s
∗
2 will be replaced by an arbitrary

s(i)
$←− Skη in Sign1, such that:

– Sign1. The simulator picks s(i)
$←− Skη , and a random challenge c

(i)
1 for the first

party and z
(i)
1 ← Sγ1−β−1. Subsequently, it sets w

(i)
1 = Az

(i)
1 −c

(i)
1 (t∗−s(i)).

It computes and sends g
(i)
1 as the original algorithm.

In this hopping, we evaluate the difference from the verification. It would be

w
(i)
H = UseHintq(h

(i),x(i), 2νγ2), where

x(i) = A

ν∑
u=1

z(i)u − 2d
ν∑

u=1

c(i)u tu,H ,
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and in verification with Lemma 2 and ∥
∑ν

u=1 c
(i)
u tu,L∥∞ ≤ νγ2,

w
(i),VERIFY
H =UseHintq(MakeHintq(−

ν∑
u=1

c(i)u tu,L,x
(i), 2νγ2),x

(i), 2νγ2)

=HighBitsq(A
ν∑

u=1

z(i)u −
ν∑

u=1

c(i)u tu, 2νγ2).

It could be noticed that ∥c(i)1 s(i)+
∑ν

u=2 c
(i)
u su,2∥∞ ≤ νβ and ∥LowBitsq(A

∑ν
u=1 z

(i)
u −∑ν

u=1 c
(i)
u tu, 2νγ2)∥∞ < ν(γ2 − β), and as a direct result of Lemma 3:

w
(i),VERIFY
H =HighBitsq(Az

(i)
1 − c

(i)
1 t∗ +A

ν∑
u=2

z(i)u −
ν∑

u=2

c(i)u tu, 2νγ2)

=HighBitsq(w
(i)
1 +

ν∑
u=2

(Az(i)u − c(i)u (tu − su,2)), 2νγ2).

Thus, all the other parts are kept the same as the original game.

|Pr[AGame3 = 1]− Pr[AGame4 = 1]| ≤ negl(λ).

Game5: At the final game, we notice that the signing oracle queries could be
perfectly simulated without using any private information of the first party.
Now consider an algorithm B playing the MS-UF-NMA game and receiving
(pp, pk∗). Then B can run Game5 with the MS-UF-CMA adversary A using
(pp, pk∗). If A wins by outputting (PK∗, σ∗,m∗), then B also wins by outputting
(PK∗, σ∗,m∗). Hence we have:

AdvMS-UF-CMA
QROM-Dilithium-Musig(A) ≤ AdvMS-UF-NMA

QROM-Dilithium-Musig(B)

+
3QsE

2

√
QH +QsνE

2τ
(
n
τ

) +QsE · ϵrMLWE
k,l,γ1,β,η,τ + negl(λ).

⊓⊔

Finally, we show that our multisignature scheme is MS-UF-NMA secure.

Lemma 8. Let ζ = max
(
ν(γ1 − β), ν(2γ2 + 2d−1τ) + 1

)
. If there is any adver-

sary who breaks MS-UF-NMA of QROM-Dilithium-Musig, there exists an adver-
sary that breaks MLWEk,ℓ,η or ν-SelfTargetMSISH,τ,k,ℓ+1,ζ .

Proof. From the point of verification, if there is any attack giving out (PK,wH , z,h).
The following equation must be correct for x = Az− 2d

∑ν
u=1 cutu,H .

cu = H2(u,UseHintq(h,x, 2νγ2), µ,PK).
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With the lemma 2, there is one u such that ∥u∥∞ ≤ 2νγ2 + 1 and

cu = H2(u,x+ u, µ,PK)

= H2(u,Az− 2d
ν∑

u=1

cutu,H + u, µ,PK)

= H2(u,Az−
ν∑

u=1

cu(tu − tu,L) + u, µ,PK)

= H2(u,Az−
ν∑

u=1

cutu + (

ν∑
u=1

cutu,L + u), µ,PK).

With ∥tu,L∥∞ ≤ 2d−1, there is another u′ =
∑ν

u=1 cutu,L+u with the bound
∥u′∥∞ ≤ (2γ2 + 2d−1τ)ν + 1, where

cu = H2(u,Az−
ν∑

u=1

cutu + u′, µ,PK),

and it is equivalent to find out

y1 =
[
u′ z c1

]⊺
,y2 =

[
c2 · · · cU

]⊺
,

and there is a

A′
1 =

[
I A t1

]
,A′

2 =
[
t2 · · · tU

]
,

such that

H2(u,A
′
1y1 +A′

2y2, µ,PK) = cu.

If the adversary could distinguish A′
1 from the uniformly generated [A], it would

break MLWEk,ℓ,η. Otherwise, it turns out to be indeed the same form of τ -
SelfTargetMSISH,τ,k,l+1,ζ , except that PK contains more information than A′

in τ -SelfTargetMSIS. This change will not affect the security of such a problem,
because A is fixed before the A could make an attack. Thus,

AdvMS-UF-NMA
QROM-Dilithium-Musig(A) ≤ AdvMLWE

k,ℓ,η (A1) +Advν-SelfTargetMSIS
H,τ,k,ℓ+1,ζ (A2) + negl(λ).

⊓⊔

Comparison. We remark that our proof strategy has a better loss compared to
the existing scheme [11]. Their scheme uses [21] to reprogram and further answers
the signing queries, while our scheme uses Lemma 4. Because the simulation
of [21] requires a 2Q-wise independent function, and the loss is (4+

√
2)
√
Q2−θ/4.

Here θ is the input collision-entropy. And to further control the collision-entropy,
they require an almost-compressed random oracle to simulate the hash input
which works like ci := H1(H2(·)). By adding up with the almost compressed

oracle failure probability, their loss is 2
√
Q1

2θ/2
+

QsE(4+
√
2)
√

(Q2+QsE−1)ν

2θ/4
for the



20

reprogramming part, while our scheme gets 3QsE
2

√
QH+QsνE

2τ(nτ)
instead. Here θ

could be simply treated as the input length of H2.
Although it seems to be controllable that the loss decreases when the θ

increases, the length-preserving property of [21] prevents it from choosing the
θ freely. Moreover, we would expect the challenge space to be Bτ when using
Dilithium, which makes it hard to choose a proper θ in reality. Instead, using
Lemma 4 does not limit the relationship between the input space and the output
space and could guide the parameter choosing in a better way.

5 Conclusion

In this paper, we introduce the ν-SelfTargetMSIS problem and present a reduction
from CCB to it. Consequently, we could further show that ν-SelfTargetMSIS is
at least as hard as the MLWE problem. Besides, we propose a multisignature
scheme based on the one proposed by [11]. Our multisignature scheme can reach
a much tighter loss by using ν-SelfTargetMSIS and [12], and it is proven in q ≡ 1
(mod 2n) such that it benefits from NTT acceleration. Thus, our scheme is more
practical and is expected to be widely used.
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