
Biextensions in Pairing-based Cryptography
Jianming Lin1, Damien Robert3, Chang-An Zhao1,2*, Yuhao

Zheng1

1School of Mathematics, Sun Yat-sen University, Guangzhou, 510275,
Guangdong, China.

2Guangdong Provincial Key Laboratory of Information Security
Technology, Guangzhou, 510006, Guangdong, China.

3Inria Bordeaux, Institut de Mathématiques de Bordeaux, France.

*Corresponding author(s). E-mail(s): zhaochan3@mail.sysu.edu.cn;
Contributing authors: linjm28@mail2.sysu.edu.cn;

damien.robert@inria.fr; zhengyh57@mail2.sysu.edu.cn;

Abstract
Bilinear pairings constitute a cornerstone of public-key cryptography, where

advancements in Tate pairings and their efficient variants have emerged as a
critical research domain within cryptographic science. Currently, the computa-
tion of pairings can be effectively implemented through three distinct algorithmic
approaches: Miller’s algorithm, the elliptic net algorithm (as developed by
Stange), and cubical-based algorithms (as proposed by Damien Robert). Biexten-
sions are the geometric object underlying the arithmetic of pairings, and all three
approaches can be seen as a different way to represent biextension elements. In
this paper, we revisit the biextension geometric point of view for pairing compu-
tation and investigate in more detail the cubical representation for pairing-based
cryptography. Utilizing the twisting isomorphism, we derive explicit formulas
and algorithmic frameworks for the ate pairing and optimal ate pairing compu-
tations. Additionally, we present detailed formulas and introduce an optimized
shared cubical ladder algorithm for super-optimal ate pairings. Through concrete
computational analyses, we compare the performance of our cubical-based meth-
ods with the Miller’s algorithm on various well-known families of pairing-friendly
elliptic curves. Our results demonstrate that the cubical-based algorithm outper-
forms the Miller’s algorithm by bits in certain specific situations, establishing its
potential as an alternative for pairing computation.

Keywords: Pairing computation Miller’s algorithm biextension cubical
arithmetic super-optimal ate pairing

1

1 Introduction
In recent years, bilinear pairings have emerged as a crucial part of public-key
cryptography, primarily owing to their applications in numerous protocols, such
as identity-based encryption [5], short signatures [6], and zero-knowledge proofs
[13, 12, 1]. A pairing is a non-degenerate bilinear map on an elliptic curve E of the
following form

e : G1 ×G2 → GT

where G1, G2 are two additive subgroups of E with prime order r, and GT is a
multiplicative subgroup of F∗

pk also with order r, where k is the embedding degree of
E.

In pairing-based cryptographic systems, the Weil and Tate pairings are commonly
employed. In most cryptographic applications, The Tate pairing and its variants
typically exhibit superior efficiency in practical implementations. Consequently, a
substantial amount of research have focused on optimizing the Tate pairing and its
variants. One of the research objectives is to shorten the length of the Miller loop.
Duursma and Lee [11], along with Barreto et al. [3] have successfully shortened the
length of the Miller iteration required for the Tate pairing on supersingular abelian
varieties leveraging the ηT method. In 2006, Hess et al. [20] extended this idea to all
ordinary curves through the application of the Frobenius endomorphism and proposed
the ate pairing. Subsequently, several variants of the ate pairing [22, 25, 37] have
been successively proposed, aiming to further minimize the length of the Miller iter-
ation. Vercauteren introduced the notion of the optimal (ate) pairing, which can
be computed using log2 r/φ(k) basic Miller iterations, with φ representing the Euler
totient function. When the underlying curve supports fast non-trivial automorphisms
beyond Frobenius maps, the iteration length can be shortened to log2 r/2φ(k) and the
corresponding pairing is named super-optimal (ate) pairing. Recent advances in
pairing computation have witnessed significant theoretical breakthroughs, with several
works [29, 14, 10, 9, 23] establishing novel frameworks for super-optimal ate pairing
implementations.

A significant direction of the research on accelerating the pairing computation is
focused on enhancing the performance of the Miller iteration. All the efficient algo-
rithms designed for computing the Tate pairing and its variants are based on Miller’s
algorithm [26]. Since then, a huge number of works [3, 4, 9, 10, 11, 16, 20, 22, 25, 31, 37]
have enhanced the efficiency of this algorithm. Up to now, the Miller’s algorithm still
stands as the most effective approach for computing pairings.

Elliptic net algorithm (ENA) first proposed by Stange [33] is another method
for computing pairings in polynomial time. In 2015, Chen et al. [8] optimized it by
reducing the dimension of the blocks required in the algorithm, with an extra inversion
at the DoubleAdd step. This improved variant is named IENA. Subsequently, Cai et al.
[7] further strengthened the implementation of IENA, narrowing the performance gap
between (I)ENA and Miller’s algorithm. Nevertheless, the elliptic net algorithm is
significantly less efficient compared to the Miller’s algorithm.

Robert [30] presented a novel approach by leveraging cubical arithmetic to work in
biextension for pairing computation, deriving highly efficient formulas on specific mod-
els of elliptic curves and Kummer lines. For generic pairings on Montgomery curves,

2

the cubical ladder algorithm obtained costs of only 15 field multiplications [30] per
bit, which is faster than any pairing formula reported in the existing literature. This
improvement benefits the implementation of numerous isogeny-based cryptographic
schemes that necessitate generic pairing computations on the Montgomery model.
However, there has been a lack of relevant research that deeply investigate the uti-
lization of cubical arithmetic for pairing computations in elliptic curve cryptography
(ECC) and make concrete cost analysis.

Biextensions, as introduced by Mumford in [28] and developped by Grothendieck
in [18], are geometric objects that encode the arithmetic properties of pairings. All
three approaches above to pairing computation can be seen as different ways to repre-
sent biextension elements. The use of biextensions as an algorithmic tool for pairings
was, to the best of our knowledge, first investigated by Stange in her PhD thesis [32],
where she explains in detail how elliptic nets formulas are a way to work with biexten-
sions. These algorithmic aspects were further developed by Robert in [30], where the
biextension interpretation of Miller’s algorithm was given, and a new representation
of biextension elements was given, called cubical arithmetic.

1.1 Contributions
In this paper, we reinvestigate the technique of biextension, applying it to pairing-
based cryptography to derive more specific and efficient formulas for implementation.
Besides, we make a detailed computational cost analysis and compare the performance
of our proposed algorithms to that of Miller’s algorithm. The key contributions of this
paper are summarized as follows:

1. Biextension is the geometric object underlying pairings, in particular the biexten-
sion arithmetic is naturally bilinear. Many tools developed for scalar multiplication
on elliptic curve have a natural generalization on biextension. In this paper we sys-
tematically develop this point of view, notably on the use of biextension twists and
automorphisms to speed up the biextension arithmetic. We show how this geomet-
ric point of view allows to recover many pairing formulas in the literature (in the
Miller representation), while providing greater conceptual clarity.

2. We then specialize the above geometric tools to the cubical representation. First,
by employing twisting isomorphisms, we have derived more precise formulas
and algorithms for the ate pairing and the optimal ate pairing computation
through cubical arithmetic compared to those presented in [30]. Secondly, using
efficiently-computable endomorphisms, we propose new efficient formulas for the
super-optimal ate pairing. In addition, we present an optimized shared cubical
ladder algorithm for the implementation.

3. We conduct a meticulous efficiency analysis for the algorithms in this paper. In
particular, we investigate in details two different ways to perform biextension expo-
nentiations in the cubical representation: via the cubical ladder, and via a double
and add approach.

Subsequently, we compared the efficiency of both methods with that of the
Miller’s algorithm on several well-known families of pairing-friendly curves. The
results illustrate that the cubical arithmetic demonstrates better performance than

3

the Miller’s algorithm in terms of a basic iteration by bits under certain specific
circumstances (where the embedding degree k is an odd prime and the CM dis-
criminant is 1), making it a possible competitive alternative of Miller’s algorithm
in pairing-based cryptography.

1.2 Organizations of this paper
The mathematical preliminaries and definitions are presented in Section 2. The Tate
pairing and its variants used in pairing-based cryptography are recalled. Our theory
and concrete formulas of pairings using biextension are stated in Section 3. Section
4 illustrates the concrete computational cost analysis and comparison. Finally, our
conclusion are drawn in Section 5.

2 Preliminaries
In this section, we introduce the mathematical preliminaries and fundamental

descriptions required in this paper. Let E denote an ordinary elliptic curve over a
finite field Fp, where p > 5 is a prime. Assume that E is a short Weierstrass curve.
Then the rational points (x, y) with x, y ∈ Fp on E satisfy the following equation

E/Fp : y2 = x3 + ax+ b.

Define the point at infinity OE to be the neutral element of E(Fp). The j-invariant
of E is given by j(E) = 1728 · 4a3

4a3+27b2 . Denote by #E(Fp) the cardinality of E(Fp).
According to [36, Theorem 4.12], it holds that #E(Fp) = p + 1 − t, where t is the
trace of the p-power Frobenius endomorphism π : (x, y) 7→ (xp, yp). Assume that E is
a short Weierstrass curve in the remaining part of this paper.

Let r be a large prime divisor of #E(Fp). The embedding degree k with respect
to r is defined as the smallest positive integer such that r | pk − 1. The three pairing
subgroups G1, G2, and GT with order r are defined as follows

G1 = E[r] ∩ {P ∈ E | π(P) = P} = E(Fp)[r],

G2 = E[r] ∩ {P ∈ E | π(P) = [p]P},
GT = µr ⊆ Fpk ,

where E[r] = {P ∈ E | [r]P = OE} and µr are the r-torsion subgroup of E and
the group of the r-th roots of unity, respectively. In the following, we introduce the
definitions of the twist, endomorphism, bilinear pairing, together with biextension.

2.1 Twists and Endomorphisms of Elliptic Curves
Twisting isomorphisms and endomorphisms are two fundamental maps of ellip-
tic curves that play a significant role in pairing-based cryptography by enhancing
the implementation efficiency. In this subsection, we introduce the definitions and
properties of these two morphisms.

4

Denote by Aut(E) the automorphism group of an elliptic curve E. Let d =
#Aut(E) represent the order of Aut(E). If d divides the embedding degree k, then E
admits a degree-d twist E′ defined over Fpe , where e = k/d [20]. The map

ϕ : E′ → E, (x, y) 7→ (ξ2x, ξ3y)

with ξ ∈ Fpk \ Fpe is called the twisting isomorphism from E′ to E, which implies
that the two curves E and E′ are isomorphic over Fpk . According to [20, Proposition
1], all twists corresponding to ζ ∈ F∗

pe/(F∗
pe)d are given by

d = 2 : y2 = x3 + a/ζ2x+ b/ζ3, ϕ : E′ → E : (x, y) 7→ (ζx, ζ3/2y),
d = 4 : y2 = x3 + a/ζx, ϕ : E′ → E : (x, y) 7→ (ζ1/2x, ζ3/4y),
d = 3, 6 : y2 = x3 + b/ζ, ϕ : E′ → E : (x, y) 7→ (ζ1/3x, ζ1/2y).

By employing the twisting isomorphism, the pairing subgroup G2 ⊆ E(Fpk) can be
succinctly represented by the r-torsion subgroup of E′

G2 = E′[r] ∩ {P ∈ E | π(P) = [p]P} ∼= E′(Fpk/d)[r].

We now consider the endomorphisms of E. DefineD to be a positive square-free integer
satisfying 4p − t2 = Dy2, where y ∈ Z. From [36, Theorem 10.6], the endomorphism
ring of E over a finite field is isomorphic to an order in an imaginary quadratic field
Q(
√
−D). The maximal subring of Q(

√
−D) is

OK =

{
Z
[
1+

√
−D

2

]
if D ≡ 3 (mod 4),

Z
[√
−D

]
if D ≡ 1, 2 (mod 4).

An order in Q(
√
−D) is a ring R such that Z ⊊ R ⊆ OK [36]. It can be expressed as

R = Z+ Zfδ

where f > 0 and δ = (1 +
√
−D)/2 or

√
−D. Let σ be an endomorphism of E

over Fp. Then σ can be conveniently represented as σ = a + b
√
−D, where a, b ∈ Q

and 2a, 2b ∈ Z. If σ is a degree-n endomorphism, then the reduced norm of σ is
Nrd(σ) = σσ̄ = a2+b2D = n. Besides, it satisfies the following characteristic equation

σ2 − 2aσ + n = 0. (1)

These endomorphisms allow for fast scalar multiplications via the GLV method [17].
Consequently, they are referred to as efficiently-computable endomorphisms, or simply
GLV-endomorphisms. A curve equipped with such an endomorphism is denoted as a
GLV-curve. If n = 1, then σ is naturally an automorphism.

5

In the following, we introduce two well-known GLV-curves over Fp with D = 1
and 3:

E1 : y2 = x3 + b, where p ≡ 1 (mod 3),

E2 : y2 = x3 + ax, where p ≡ 1 (mod 4).

There exists an automorphism σ : (x, y) 7→ (wx, y) on E1, associated to 1+
√
−3

2 in
the endomorphism ring Endp(E1), where w is a primitive cube root of unity in F∗

p.
According to Eq. (1), it satisfies σ2 + σ + 1 = 0.

For E2, the corresponding automorphism is σ : (x, y) 7→ (−x, iy), associated
with ±

√
−1 in Endp(E2), where i is a primitive fourth root of unity in F∗

p. This
automorphism satisfies the characteristic equation σ2 + 1 = 0.

2.2 Bilinear Pairings
In this subsection, we introduce some typical bilinear pairings used in ECC, including
Tate pairings and their variants. With the notation as above, let E be an ordinary
curve over Fp. We first describe the definition of the Miller function.

For any point P ∈ E and integer n ∈ Z, let fn,P denote the normalized rational
function associated with the divisor

div(fn,P) = n(P)− ([n]P)− (n− 1)(OE).

In particular, for an r-torsion point P ∈ E[r], the corresponding divisor is

div(fr,P) = r(P)− r(OE).

For all integers i, j, there exists a relationship between fi,P , fj,P , and fi+j,P

div(fi+j,P) = div
(
fi,P · fj,P ·

ℓ[i]P,[j]P

v[i+j]P

)
, (2)

where ℓ[i]P,[j]P represents the line passing through the points [i]P and [j]P , and v[i+j]P

represents the vertical line passing through [i + j]P and [−i − j]P . A well-known
efficient method for evaluating fn,P (Q) is the Miller’s algorithm [26].

2.2.1 Tate pairing and its variants

Now we present the definitions of the Tate pairing and its variants. Let P ∈ E(Fpk)[r]
and Q ∈ E(Fpk). The reduced Tate pairing is a non-degenerate bilinear map defined
as follows

er : E(Fpk)[r]× E(Fpk)/rE(Fpk)→ µr, (P,Q) 7→ fr,P (Q)
pk−1

r .

By leveraging the efficiently-computable endomorphisms of E, one can reduce the
length of the Miller loop. The ate pairing, as defined in [20], is an optimized variant of

6

the Tate pairing on G2×G1 and achieves a short Miller loop by employing the p-power
Frobenius endomorphism π. Let P and Q be two points in G1 and G2, respectively.
Denote by λ and m the two integers such that λ ≡ p mod r and m = λk−1

r . The
reduced ate pairing is presented as

aλ : G2 ×G1 → µr, (Q,P) 7→ fλ,Q(P)
pk−1

r ,

which constitutes a non-degenerate bilinear map if r ∤ m. Several research [25, 37]
have sought to further shorten the length of the Miller loop through multiplying or
dividing the ate pairings.

Vercauteren [35] proposed an algorithm to construct optimal ate pairings, which
can be computed in log2(r)/φ(k) basic Miller iterations, where φ(k) denotes the Euler
function. Let λ = mr such that r ∤ m. By Minkowski’s theorem [27], there exists a
short vector V = (c0, · · · , cφ(k)−1), with |ci| ≤ r1/φ(k), satisfying λ =

∑φ(k)−1
i=0 cip

i.
For points P ∈ G1 and Q ∈ G2, the optimal ate pairing [35] on E is defined as follows

opt : G2 ×G1 → µr,

(Q,P) 7→

(
l∏

i=0

fp
i

ci,Q
(P) ·

l−1∏
i=0

ℓ[si+1]Q,[cipi]Q(P)

v[si]Q(P)

)(pk−1)/r

, (3)

where si =
∑l

j=i cjp
j . This bilinear map is non-degenerate if

mkpk−1 ̸≡ pk − 1

r
·

l∑
i=0

icip
i−1 (mod r).

For specific families of pairing-friendly curves, the number of basic Miller iterations can
be further reduced to log2(r)/2φ(k). This type of pairing is named super-optimal
ate pairings [34, 21, 29]. Such pairings [34, 21, 29, 14, 10, 9, 23] are constructed by
compositing the power of Frobenius endomorphism and the GLV-endomorphism.

2.3 Biextensions
Biextensions were first introduced by Mumford in [28]. As mentioned in [30], biexten-
sions provide a framework for studying pairings on abelian varieties. In this subsection,
we focus primarily on biextensions associated with ordinary elliptic curves, and present
the corresponding definitions, properties and the arithmetic.

Let D = (OE) denote the polar divisor on an elliptic curve E, where OE is the
point at infinity. The biextension associated with this divisor, denoted by XD, can be
defined as follows.
Definition 1 ([30]). Let DP denote the divisor (−P)− (OE). A biextension element
is a tuple (P,Q, gP,Q) ∈ XD where P,Q ∈ E, and gP,Q is a rational function with the
divisor DP+Q +DOE

−DP −DQ. Specifically,

div(gP,Q) = (−P −Q) + (OE)− (−P)− (−Q).

7

The function gP,Q is analogous to the line function (normalized at infinity) ℓP,Q

that passes through points P and Q, as used in Miller iterations. For simplicity,
we often omit P and Q and refer to an element of XD simply as gP,Q ∈ XD. The
biextension XD is equipped with two group laws, denoted by ⋆1 and ⋆2, which allow for
the group addition law of elements. These operations are defined explicitly as follows

gP1,Q ⋆1 gP2,Q = gP1+P2,Q = gP1,Q(·)gP2,Q(·+ P1), (4)

gP,Q1 ⋆2 gP,Q2 = gP,Q1+Q2 = gP,Q1(·)gP,Q2(·)
gQ1,Q2(·+ P)

gQ1,Q2(·)
. (5)

These definitions ensure that the group laws respect the structure of the biextension
and allow for a rich arithmetic framework. Since XD is a symmetric biextension, we
also have

gP1,Q ⋆1 gP2,Q = gP1+P2,Q = gP1,Q(·)gP2,Q(·)
gP1,P2(·+Q)

gP1,P2(·)
. (6)

In accordance with the aforementioned additive group laws, we can formally define
the inversion operation.
Definition 2 ([30]). The inverse element g⋆1,−1

P,Q is formulated as

g⋆1,−1
P,Q = g−P,Q =

1

gP,Q
· g−P,P

g−P,P (·+Q)
. (7)

We note that the RHS does not depend on the choice of representative for g−P,P .
As per Definition 1 and Eq. (6), we deduce the following lemma, which elucidates the
connection between gP,Q and the Miller function fr,P . For further elaboration, refer
to [30, Porism 3.10].
Lemma 1 ([30]). Let gP,Q ∈ XD. Then, the Miller function fr,−P operating on the
cycle (·)− (·+Q) is given by g[r]P,Q(·)

gr
P,Q(·) .

Proof. If r = 0, 1, the function fr,−P is constant, so its value on the cycle (R)−(R+Q)
is 1, which is also the value of the RHS. Now if we assume that the lemma is true for
r1, r2, then by Eq. (2), we have

fr1+r2,−P =
fr1,−P · fr2,−P

g[r1]P,[r2]P

assuming all functions are normalized. Combining this equation with Eq. (6) deduces
that the lemma is true for r1 + r2.

From the point of view of Lemma 1, as explained by Grothendieck in [18], the biex-
tension XD is the intrinsic geometric object which encodes pairings (as monodromy
in the biextension). The Miller functions fr,P are a way to compute the biextension
arithmetic. But, like there are several ways to choose coordinates for an elliptic point

8

to do the arithmetic, we can also look at different representations of biextension ele-
ments for the biextension arithmetic. This is what we will do in Section 2.4 where
we will use the cubical representation of biextension elements instead of the “Miller
representation”.

We remark that since OE is a pole of gP,Q, the value gP,Q(OE) is not well defined.
Instead, we will always interpret it as an extended value with respect to the uniformizer
x/y, i.e. as the value of the function gP,Q

x/y (OE). We say that the biextension element
gP,Q is normalized if gP,Q(OE) = 1. For instance, if Q ̸= −P , we have that gP,Q =
v−P−Q/l−P,−Q is the normalized biextension function above (P,Q). It follows that:

gP1,Q ⋆1 gP2,Q = gP1+P2,Q = gP1,Q(·)gP2,Q(·)
v−P1−P2

l−P1,−P2

(Q).

We also remark that if Q = −P , then gP,−P = 1/vP is the normalized biextension
function. We can also rewrite Lemma 1 as:

g[r]P,Q(OE) = 1/fr,−P (Q),

for gP,Q and fr,−P normalized.
We now look more closely at the biextension arithmetic, the Galois action on

biextension elements, and biextension isomorphisms and twists. First, a biextension
element gP,Q corresponds to the divisor (−P −Q)+ (OE)− (−P)− (−Q), so one can
pick gP,Q =

vP+Q

l−P,−Q
; this is the unique biextension element normalized at OE with

respect to the uniformizer x/y. In the special case where Q = −P , we instead take
gP,−P = 1/vP .

Therefore, Eq. (7) can be rewritten as

g−P,Q(·) := gP,Q(·)⋆1,−1 =
1

gP,Q(·)
· g−P,P (·)
g−P,P (·+Q)

=
1

gP,Q(·)
·

1
vP (·)

1
vP (Q+·)

=
1

gP,Q(·)
· vP (·+Q)

vP (·)
.

Similarly, we can obtain

gP,−Q(·) =
1

gP,Q
(·) · vQ(·+ P)

vQ(·)
.

It follows that

g−P,−Q(·) = gP,Q(·)
vP ((·+Q)− (·))
vQ(·+ P)− (·))

.

9

Plugging this formula into Lemma 1, we get

fr,P ((·+Q)− (·)) =
g[r]P,Q(·)
grP,Q(·)

· v
r
P

v[r]P
((·+Q)− (·)). (8)

In case of a final exponentiation, when P,Q,R all live in Fpk , this can be further
simplified to

fr,P ((R+Q)− (R))(p
k−1)/r =

(
g[r]P,Q(R)

v[r]P ((R+Q)− (R))

)(pk−1)/r

.

As explained in Section 2.1 we will use twisting isomorphisms defined over some
extension of Fp to speed up pairing computations. Biextension behave well with
respect to isomorphisms.
Proposition 1. Let ϕ : E1 → E2 be an isomorphism between two elliptic curves.
Then

ϕ̃ : gP,Q 7→ gϕ−1(P),ϕ−1(Q) = ϕ−1 · gP,Q = ϕ∗gP,Q = gP,Q ◦ ϕ
is an isomorphism from the biextension on E2 associated to (OE2) to the biextension
on E1 associated to (OE1).

Proof. This follows from the functoriality of biextensions. It can also be directly seen
as follows: let P ′ = ϕ−1(P), Q′ = ϕ−1(Q), then ϕ∗gP,Q has for divisor (−P ′ − Q′) +
(OE1) − (P ′) − (Q′) so is a biextension element above (P ′, Q′). Furthermore it is
immediate from their definition that ϕ∗ is compatible with the biextension laws ⋆1
and ⋆2.

By using Proposition 1, one can use the isomorphism ϕ to do a biextension expo-
nentiation in E1 rather than E2: go from gP,Q to gP ′,Q′ using ϕ∗, do the biextension
exponentiation in E1, and go back to E2 using ϕ−1,∗.

We remark that if ϕ is not defined over the base field but over an extension, so
that E1 is a twist of E2, then Proposition 1 realizes the biextension associated to
E1 as a twist of the biextension associated to E2. This clarifies the usage of twisting
isomorphisms in pairing based cryptography. Similarly to the case of elliptic curve
arithmetic, where can be convenient to move to a twist; in the case of biextension
arithmetic it can be convenient to move to a biextension twist. In both case the field
of definition of the points (resp. biextension elements) may change. We will also use
the Galois action:
Definition 3. Let σ be an element of the Galois group of the base field k. Given a
biextension element gP,Q we define a biextension element

σ · gP,Q = gσ(P),σ(Q) = σ ◦ gP,Q ◦ σ−1.

We will see in Section 3 how the Tate pairings only use the biextension arithmetic,
while the ate/optimal ate pairings leverage the Galois action by the Frobenius element
πp to speed up the biextension arithmetic, and the super-optimal ate pairings also
employ the action of automorphisms.

10

Indeed, by the arithmetic compatibility of biextensions, the biextension arithmetic
is bilinear like:

(gP1,Q1 ⋆1 gP2,Q1) ⋆2 (gP1,Q2 ⋆1 gP2,Q2) = (gP1,Q1 ⋆2 gP1,Q2) ⋆1 (gP2,Q1 ⋆2 gP2,Q2) .

In particular, biextension exponentiation is “bilinear” on the left and on the right with
respect to ⋆1, ⋆2:

(gP1,Q ⋆1 gP2,Q)
⋆1,n = g⋆1,n

P1,Q
⋆1 g

⋆1,n
P2,Q

,

(gP,Q1 ⋆2 gP,Q2)
⋆1,n = g⋆1,n

P,Q1
⋆2 g

⋆1,n
P,Q2

.

Besides, the Galois action σ and the automorphism ϕ∗ also commute with ⋆1, ⋆2:

σ(gP1,Q ⋆1 gP2,Q) = (σgP1,Q) ⋆1 (σgP2,Q),

σ(gP,Q1 ⋆2 gP,Q2) = (σgP,Q1) ⋆2 (σgP,Q2),

ϕ∗(gP1,Q ⋆1 gP2,Q) = (ϕ∗gP1,Q) ⋆1 (ϕ
∗gP2,Q),

ϕ∗(gP,Q1 ⋆2 gP,Q2) = (ϕ∗gP,Q1) ⋆2 (ϕ
∗gP,Q2).

So starting with a biextension function gP,Q and combining the three opera-
tions, we naturally obtain construction of biextension functions (above some points
(P2, Q2)), construction which is bilinear in P,Q (for the ⋆1 and ⋆2 operations respec-
tively). Now if P2 = OE2 or Q2 = OE2 , the associated biextension function is constant,
and the ⋆ operation reduces to standard multiplication in the base field. If the result-
ing constant function does not depend on the initial choice of gP,Q (i.e. depends only
on P,Q), we have thus constructed a pairing. In fact, we only need that the result
does not depend on the choice of Fpk -rational choice gP,Q. The reason is that even
though in practice we use normalized representatives, if gP1,Q, gP2,Q are normalized,
then gP1,Q ⋆1 gP2,Q will not be normalized in general, although it will be Fpk -rational
if P,Q ∈ E(Fpk). Then by invariance we can replace gP1,Q ⋆1 gP2,Q by the normalized
biextension function gP1+P2,Q and get the same result. In other words, biextension con-
structions are naturally bilinear, and the invariance under the choice of Fpk -rational
representative ensure that the result is bilinear in P,Q. Reinterpreted through the
lens of biextensions, we will see that all pairings construction in the litterature are of
this form.

2.4 Cubical arithmetic for biextensions
In this section, we explore how to perform the biextension arithmetic, in particular
biextension exponentiation, using the cubical arithmetic.

In particular, for the biextension function gP,Q, we will look at the cubical repre-
sentation as outlined in [30, Section 4.5]. An element gP,Q ∈ XD can be represented
as

(P,Q, gP,Q) = [P̃ , Q̃; ÕE , P̃ +Q],

where the first and last two components denote the poles and zeros of gP,Q,
respectively.

11

Here, P̃ is a cubical point (of level 1) [30, Remark 4.32] represented by the cubical
coordinate Z1(P̃). The biextension function gP,Q(·) is then represented as a quotient
of cubical functions

gP,Q(R) =
Z1(˜R+ P +Q)Z1(R̃)

Z1(R̃+ P)Z1(R̃+Q)
, (9)

where Z1 is a choice of the sections of the divisor D = (OE).
Here, the point Z1(˜R+ P +Q) is evaluated via the cubical arithmetic, using the

cube OE , P,Q,R,Q+R,P +R,P +Q,P +Q+R:

Z1(˜P +Q+R)Z1(P̃)Z1(Q̃)Z1(R̃)

Z1(ÕE)Z1(Q̃+R)Z1(P̃ +R)Z1(P̃ +Q)
= gP,Q(R)/gP,Q(OE). (10)

We remark that the RHS does not depend on the choice of biextension function
gP,Q above (P,Q). Since Z1(OE) = 0, the value Z1(ÕE) should be understood as an
extended value (Z1/(x/y))(ÕE) with respect to the uniformizer x/y. We will always
use the cubical point ÕE normalized to have (Z1/(x/y))(ÕE) = 1.

We can also use this cubical arithmetic to compute the biextension arithmetic:
Proposition 2. Let gP1,Q be represented by [P̃1, Q̃; ÕE , P̃1 +Q], and gP2,Q be rep-
resented by [P̃2, Q̃; ÕE , P̃2 +Q]. Then gP1+P2,Q = gP1,Q ⋆1 gP2,Q is represented by
[P̃1 + P2, Q̃; ÕE , ˜P1 + P2 +Q], where P̃1 + P2 is an arbitrary cubical point above
P1 + P2 and ˜P1 + P2 +Q is computed using the cubical law from Eq. (10).

Proof. Let g′P1+P2,Q
be the biextension function associated to

[P̃1 + P2, Q̃; ÕE , ˜P1 + P2 +Q]

by Eq. (9). It has the same divisor as gP1+P2,Q, so it suffices to check the two functions
agree on OE . Comparing Eq. (6) and Eq. (10), this is immediate.

Corollary 1. If gP,Q is represented by [P̃ , Q̃; ÕE , P̃ +Q], then g[r]P,Q = g⋆1,r
P,Q is

represented by [r̃P , Q̃; ÕE , ˜rP +Q], and in particular:

g[r]P,Q(R) =
Z1(R̃+ [r]P̃ + Q̃)Z1(R̃)

Z1(R̃+ [r]P̃)Z1(R̃+ Q̃)
.

Combining with Lemma 1, this gives:
Corollary 2.

fr,−P (R)

fr,−P (R+Q)
=
g[r]P,Q(R)

gP,Q(R)r

=
Z1(R̃+ [r]P̃ + Q̃)Z1(R̃)

Z1(R̃+ [r]P̃)Z1(R̃+ Q̃)
·

(
Z1(R̃+ P̃)Z1(R̃+ Q̃)

Z1(R̃+ P̃ + Q̃)Z1(R̃)

)r

.

12

We will call a cubical point P̃ normalized when Z1(P̃) = 1. If P̃ , Q̃, ÕE , P̃ +Q
are all normalized, then so is the associated biextension function gP,Q. In particular,
using these normalized points, if fr,−P is also normalized, we have

1

fr,−P (Q)
= g[r]P,Q(OE) =

Z1([r]P̃ + Q̃)

Z1([r]P̃)
.

Remark 1 (Level 2 cubical arithmetic). For our algorithms, it will be convenient to
switch to cubical points of level 2 [30, Remark 4.32]. We let Z = Z2

1 , this is a section
of 2D = 2(OE), and X another section such that x = X/Z. A level 2 cubical point
P̃ is then determined by P̃ = (X(P̃), Z(P̃))). Working with level 2 cubical points
means that we encode level 2 biextension functions, that is elements of the biextension
X2D associated to 2D. The biextension arithmetic will thus compute the square of the
usual pairings. When there is an ambiguity, we will use the notation gD,P,Q to specify
the divisor we are working with on the biextension. For instance, given a biextension
element gD,P,Q for XD, then we have a biextension element g2D,P,Q = g2D,P,Q for X2D.

If R = OE, a direct evaluation of g2D,P,Q at R is inadvisable since the point at
infinity constitutes a zero of gP,Q. According to [30, Remark 2.8], an extended value
is required for this special case. Since we are in level 2, the extended value is given
by (Z/(x/y)2)(ÕE) = (X/(x3/y2))(ÕE) = X(ÕE), using that x = X/Z and that
y2 = x3+ ax+ b. Recall that we define our neutral cubical point ÕE to be normalized.
By the above computation we thus have XOE

= 1, and:

g2D,P,Q(OE) =
ZP+Q ·XOE

ZP · ZQ
. (11)

On this basis, if P is an r-torsion point, the evaluation of Z at [r]P also yields
X[r]P . Thus, it follows that

g2D,[r]P,Q(OE) =
Z[r]P+Q ·XOE

X[r]P · ZQ
.

Given that X[r]P+Q

XQ
=

Z[r]P+Q

ZQ
, the function g2D,[r]P,Q can be expressed alternatively

as

g2D,[r]P,Q =
X[r]P+Q ·XOE

X[r]P ·XQ
.

The coordinate values Z[r]P+Q and Z[r]P can be efficiently computed using the
cubical ladder algorithm described in [30, Algorithm 4.2]. We now detail this. Suppose
that we have a cubical representation of the biextension elements

gP1,Q = [P̃1, Q̃, ÕE , P̃1 +Q], gP2,Q = [P̃2, Q̃, ÕE , P̃2 +Q],

gP1−P2,Q = [P̃1 − P2, Q̃, ÕE , ˜P1 − P2 +Q],

13

then we can compute gP1+P2,Q = [P̃1 + P2, Q̃, ÕE , ˜P1 + P2 +Q], via

P̃1 + P2 = cDIFF(P̃1, P̃2, P̃1 − P2),

˜P1 + P2 +Q = cDIFF(P̃1 +Q, P̃2, ˜P1 − P2 +Q),

where cDIFF denotes a cubical differential addition. In particular, we refer to Appendix
A for explicit algorithms for cubical points of level 2 on curves with j-invariants 0 and
1728.

We remark that we only really need P̃2 from the cubical representation of gP2,Q to
perform the necessary operations. Furthermore, since the same cubical point P̃2 is used
to compute P̃1 + P2 and ˜P1 + P2 +Q, we only require P2: the resulting biextension
element gP1+P2,Q does not depend on the choice of P̃2 above P2.

This means that there are two strategies to compute a biextension exponentiation
gP,Q 7→ g[r]P,Q. Either we use a cubical ladder, computing [n]P̃ , [n+1]P̃ , [n]P̃+Q̃ with
one cubical doubling and two cubical differential additions at each step, or a double-
and-add ladder, keeping only [n]P̃ , [n]P̃ + Q̃ at each step. When the current bit is 0,
we execute a biextension doubling by computing [2n]P̃ , [2n]P̃ + Q̃, which costs one
cubical doubling and one cubical differential addition. When the current bit is 1, we
first recover [n + 1]P = cADD([n]P, P, [n]P + Q,P − Q) using a compatible addition,
and then we compute [2n+1]P̃ , [2n+1]P̃ + Q̃ via two cubical differential additions. It
is straightforward to extend the double-and-add method to incorporate windows and
NAF. The compatible addition was introduced in [24], and we refer to Appendix A
for explicit algorithms on curves with j-invariants 0 and 1728. We note also that once
we have recovered [n+ 1]P via the compatible addition, we can switch to the ladder
approach, and conversely we can forget about [n + 1]P̃ in the ladder approach and
switch to the double-and-add approach. This allows to switch dynamically between
the two approaches, depending on whether the upcoming bits are successive 0s or not.
Remark 2. In the double-and-add approach, it will often happen that we will need to
use a compatible addition P1+P2 = cADD(P1, P2, P1+Q,P2−Q) where P1, P2 lie in a
smaller field k and Q lies in a bigger field k′, hence P1+Q,P2+Q lie in k′. Then the
compatible addition formulas will give XP1+P2 , ZP1+P2 in the big field k′. One could
go back to the small field k by computing x(P1 + P2) = XP1+P2/ZP1+P2 ∈ k, but this
would require an expensive inversion.

Instead, our strategy is to take any k-linear form ψ : k′ → k, and apply it to
(XP1+P2 = x(P1 + P2)ZP1+P2 , ZP1+P2) to obtain (x(P1 + P2)ψ(ZP1+P2), ψ(ZP1+P2)).
This gives a projective representation in k of the coordinates of P1 + P2 as long as
ψ(ZP1+P2) ̸= 0.

Similar to biextensions, the cubical arithmetic behaves well with respect to
isomorphisms.

Proposition 3. Let ϕ : E1 → E2 be an isomorphism between two elliptic curves. Let
ϕ̃ be the unique lift of ϕ to cubical points that sends ÕE1 to ÕE2 . Then ϕ̃ is compatible
with the cubical arithmetic.

14

Proof. This follows from the unicity of the cubical torsor structure associated to a
divisor on an elliptic curve. This can also be checked directly: let Z2 = Z1 ◦ ϕ̃, where
ϕ̃ is for now an arbitrary lift of ϕ. Then given a cube OE2 , P,Q,R,Q+R,P +R,P +
Q,P +Q+R on E2, we have:

Z2(˜P +Q+R)Z2(P̃)Z2(Q̃)Z2(R̃)

Z2(ÕE2)Z2(Q̃+R)Z2(P̃ +R)Z2(P̃ +Q)
= gP,Q(R)/gP,Q(OE2).

If we let P̃ ′ = ϕ̃−1(P̃), . . . and gP ′,Q′ = ϕ∗gP,Q we find that we also have a cube on E1:

Z1(˜P ′ +Q′ +R′)Z1(P̃ ′)Z1(Q̃′)Z1(R̃′)

Z1(ϕ̃−1(ÕE2))Z1(Q̃′ +R′)Z1(P̃ ′ +R′)Z1(P̃ ′ +Q′)
= gP ′,Q′(R′)/gP ′,Q′(OE1).

Therefore, the two cubical laws are compatible as long as ϕ̃−1(ÕE2) = ÕE1 .

We also have a natural Galois action on cubical points, which is compatible with
the cubical arithmetic. The cubical isomorphism from Proposition 3 and the cubical
Galois action induce via Eq. (9) the corresponding biextension isomorphism and Galois
action:
Corollary 3. Let gP,Q be represented by [P̃ , Q̃; ÕE , P̃ +Q]. Then ϕ∗gP,Q is rep-
resented by [ϕ̃−1(P̃), ϕ̃−1(Q̃); ϕ̃−1(ÕE), ϕ̃

−1(P̃ +Q)]. And σ · gP,Q is represented by
[σ(P̃), σ(Q̃);σ(ÕE), σ(P̃ +Q)].
Example 1 (Level 2 cubical isomorphisms). In Section 2.1 the twisting isomorphisms
ϕ : E′ → E are of the form x 7→ ξ2x. Since we fix our level 2 neutral cubical point to
be ÕE = (1, 0), we have that ϕ̃(X,Z) = (X,Z/ξ2) is a cubical isomorphism.
Example 2 (Level 2 cubical automorphisms). On E2 : y2 = x3 + ax with j(E2) =
1728, we have an automorphism σ : (x, y) 7→ (−x, iy) where i2 = −1. This gives a
level 2 cubical automorphism σ̃ : (X,Z) 7→ (X,−Z).

On E1 : y2 = x3+b with j(E1) = 0, we have an automorphism σ : (x, y) 7→ (wx, y)
where w3 = 1. This gives a level 2 cubical automorphism σ̃ : (X,Z) 7→ (X,Z/w).
Remark 3. In the remaining part of this paper, for ease of notations we will often
drop the tilde and use the notations XP , ZP (resp. (X1(P), Z1(P)) in level 2 (resp.
level 1).

3 Main Results
In this section, we present a comprehensive framework to derive precise formulas
for the ate pairing, optimal ate pairing, together with super-optimal ate pairing by
leveraging the technique of biextension arithmetic. For each type of pairings, we first
delineate the corresponding explicit formulas in level 1, and then operate on the Kum-
mer line K = E/⟨±1⟩ of an elliptic curve E in level 2 corresponding to the biextension
X2(OE) with sections (X,Z). Additionally, we provide illustrative examples.

15

3.1 Biextension for the Tate pairing
As a warm up, we first look at the Tate pairing and consider how to exploit twisting
isomorphisms. Let P ∈ E(Fpk)[r] and Q ∈ E(Fpk). Then according to Section 2.2 the
reduced Tate pairing is given by

er(P,Q) = fr,P (Q)(p
k−1)/r = fr,P ((Q+R)− (R))(p

k−1)/r

for any rational point R ∈ E(Fpk). This definition can be mathematically reformulated
using the framework of biextensions as follows.
Lemma 2. For any Fpk -rational biextension function gP,Q above (P,Q), we have

er(P,Q) = g
(pk−1)/r
[r]P,Q .

Using the cubical arithmetic to compute the biextension exponentiation, we obtain

er(P,Q) =

(
Z1([r]P +Q)

Z1(Q)Z1([r]P)

)(qk−1)/r

, (12)

as long as we start with Fpk -rational (level 1) cubical points P,Q, P+Q, e.g. normalized
to Z1(P) = Z1(Q) = Z1(P +Q) = 1.

Proof. By Lemma 1, we have for any R ∈ E(Fpk),

er(P,Q) = er(−P,Q)−1 =

(
g[r]P,Q

grP,Q

(R)

)(pk−1)/r

.

Now, if gP,Q is chosen to be Fpk -rational (e.g., the one normalized at OE), grP,Q(R)
is killed by the final exponentiation. Since [r]P = OE , g[r]P,Q is a constant function.
We then use Corollary 2 to obtain the cubical formulas.

Now let ϕ : E′ → E be a twisting isomorphism, which is rational over Fpk . Let
P ′ = ϕ−1(P), Q′ = ϕ−1(Q). The following lemma describes how to accomplish the
reduced Tate pairing on the twist E′.
Lemma 3. For any Fpk -rational biextension function gP ′,Q′ above (P ′, Q′), we have:

er(P,Q) = g
(pk−1)/r
[r]P ′,Q′ ,

In terms of cubical arithmetic, this can be restated as:

er(P,Q) =

(
Z1([r]P

′ +Q′)

Z1(Q′)Z1([r]P ′)

)(qk−1)/r

,

for any Fpk -rational cubical points P ′, Q′, P ′ +Q′.

16

Proof. By Proposition 1, we have g[r]P ′,Q′ = ϕ∗g[r]P,Q, thus we can work on E′ to
compute the biextension exponentiation. Indeed, since ϕ is Fpk -rational, gP ′,Q′ is
Fpk -rational if and only if gP,Q is Fpk -rational.

Then to express the Tate pairing in term of the cubical points, we either apply
Corollary 1 to g[r]P ′,Q′ , or we start with Eq. (12) and we use that ϕ̃ is a Fpk -rational
cubical isomorphism by Proposition 3.

There is a more intrinsic reformulation of Lemma 2 that does not depend on any
Fpk -rational choice. Let q = pk, and denote by πq · g = πq ◦ g ◦ π−1

q the action on a
function g by Galois conjugation, as described in Definition 3. By [q− 1]P = OE and
πq(P) = P, πq(Q) = Q we observe that

div(πq · gP,Q) = (πq(−P −Q)) + (OE)− (πq(−P)))− (πq(−Q))

= (−[q]P −Q) + (OE)− (−[q]P)− (−Q)

= div(g[q]P,Q),

hence g[q]P,Q and πq · gP,Q differ by a constant c. Furthermore, this constant does not
depend on the choice of representative for gP,Q, even non Fpk -rational. Hence, we can
assume that gP,Q is Fpk -rational to determine c. Under this circumstance, we obtain

πq · gP,Q = gP,Q.

One can also prove that g[q−1]P,Q(·+ P) is a constant. On this basis, by Eq. (4) and
the computation in the proof of Lemma 2 we derive that

g[q]P,Q(R) = c · gP,Q(R)

= g[q−1]P,Q(R) ⋆1 gP,Q(R)

= g[q−1]P,Q(R+ P) · gP,Q(R)

= g[q−1]P,Q(R) · gP,Q(R)

= g
⋆1,

q−1
r

[r]P,Q (R) · gP,Q(R)

= er(P,Q) · gP,Q.

Consequently, we have c = er(P,Q) =
g[q]P,Q

πq·gP,Q
. In summary, for any biextension

function gP,Q, even non Fpk -rational, we have

er(P,Q) =
g[q]P,Q

πq · gP,Q
. (13)

Remark 4. One should be careful that for a general twisting isomorphism ϕ : E′ → E
defined over an extension of Fpk , even if we start with a Fpk -rational biextension
function gP,Q, then gP ′,Q′ may not be rational. If we compute the constant function
g[r]P ′,Q′ on E′, starting with gP ′,Q′ normalized at OE′ for ease of computation, then
gP ′,Q′ = ϕ∗gP,Q for some gP,Q that will not be normalized, nor even Fpk -rational.
Hence in general, g[r]P ′,Q′(R′)(p

k−1)/r will not give the Tate pairing er(P,Q).

17

Instead, we need to use Eq. (13) to adjust the result to get the correct Tate pairing.
More concretely, if ϕ : E′ → E is of the form ϕ(x, y) = (ξ2x, ξ3y), and we start
with gP,Q normalized with respect to x/y, then ϕ∗gP,Q is normalized with respect to
ϕ∗(x/y) = 1

ξx
′/y′. So if we start with gP ′,Q′ normalized with respect to x′/y′, and we

compute the constant function c′ = g[r]P ′,Q′ , then we need to adjust c′ by ξr to recover
the constant function c = g[r]P,Q = c′/ξr. Lemma 3 is the case where ϕ is Fpk -rational,
so ξ ∈ Fpk and ξr is killed by the final exponentiation.

A similar reasoning holds using the cubical arithmetic and the cubical isomorphism
ϕ̃ when ϕ is defined over an extension of Fpk . But by the same computation as for
biextensions above, if Z1(P) = 1, then Z1(ϕ̃

−1(P)) = ξ ̸= 1. So conversely, if we want
to use cubical arithmetic on E′, and we start with normalized points P ′, Q′, P +Q′ to
speed up the cubical arithmetic, it means that going back to E we were doing cubical
arithmetic with non normalized points, potentially even non rational cubical points. So
we need to adjust by a suitable power of the conversion factor ξ in the end. It is only
when ϕ is defined over Fpk that this power of ξ lies in a strict subfield, so it will be
killed by the final exponentiation anyway. In this paper we will only consider twisting
isomorphisms that are rational over Fpk .

We can generalize Eq. (13) by relating the twisting correcting factor with the
automorphism σ inducing the twist E′, i.e. such that ϕ ◦ π′

q ◦ ϕ−1 = σ ◦ πq where
ϕ : E′ → E is the twisting isomorphism. Indeed, we have ϕ−1 · g[q]P,Q = g[q]P ′,Q′ .
However, (ϕ−1◦πq) ·gP,Q differs from (π′

q ◦ϕ−1) ·gP,Q in general. Therefore, unraveling
the formulas we obtain

(π′
q ◦ ϕ−1) · gP,Q = (σ′−1 ◦ ϕ ◦ πq) · gP,Q = (ϕ−1 ◦ πq ◦ σ) · gP,Q, (14)

where σ′ = ϕ−1 ◦ σ−1 ◦ ϕ, i.e., ϕ−1 ◦ πq ◦ ϕ = σ′ ◦ π′
q. In particular,

(ϕ−1 ◦ πq) · gP,Q = (σ′ ◦ π′
q ◦ ϕ−1) · gP,Q.

It follows that

er(P,Q)=

(
g[q]P,Q ◦ ϕ

(πq · gP,Q) ◦ ϕ

) pk−1
r

=

(
ϕ−1(g[q]P,Q)

(ϕ−1 ◦ πq) · gP,Q

) pk−1
r

=

(
g[q]P ′,Q′

(σ′ ◦ π′
q) · gP ′,Q′

) pk−1
r

for any twist isomorphism ϕ : E′ → E, even non Fpk -rational, and any biextension
function gP ′,Q′ .

3.2 Biextension for Ate Pairing
As discussed in Section 2.1, the ate pairing is a variant of the Tate pairing that employs
the p-power Frobenius endomorphism π to reduce the length of the Miller loop. Using
the same notation, the reduced ate pairing on E is defined as

aλ(P,Q) = (fλ,Q(P))
pk−1

r

18

where P ∈ G1 and Q ∈ G2. Given that λ ≡ p mod r, for instance λ = t − 1, with t
the trace of the Frobenius endomorphism.

Working in level 1 biextension and cubical arithmetic, taking the normalized biex-
tension function gP,Q, and setting Z1(P) = Z1(Q) = Z1(P +Q) = 1, it follows from
Lemma 1 that the the reduced ate pairing can (up to a sign) be expressed as

aλ(P,Q) =

(
g[λ]Q,P

gpQ,P

(OE)

) pk−1
r

=

(
Z1([λ]Q+ P)

Z1([λ]Q)

) pk−1
r

.

We remark that if we take λ = p instead of λ = t − 1, we have a more intrinsic
characterization of the reduced ate pairing, similar to Eq. (13): eλ(P,Q) =

g[λ]Q,P

πp·gQ,P
.

Indeed, the functions in the numerator and denominator have the same divisor, thus
their quotient is constant. It is readily seen that this quotient does not depend on the
choice of gQ,P even non Fpk -rational, hence we do not need the final exponentiation.

In practical applications, most of the curves utilized in pairing-based cryptogra-
phy admit twists. Therefore, it is essential to employ the twisting isomorphism ϕ to
enhance the efficiency of ate pairing. According to [20], for elliptic curves admitting
twists, the pairing subgroup G2 can be represented as

G2
∼= E′(Fpk/d)[r].

We now elucidate how to exploit the technique of twists to compute the ate pairing
on the Kummer line K = E/⟨±1⟩ via biextension. Let P ∈ G1 and Q′ ∈ E′(Fpk/d)[r]
such that Q = ϕ(Q′) ∈ G2, where ϕ : E′ → E is the degree-d twisting isomorphism.
Let P ′ = ϕ−1(P).
Lemma 4. With the notations as above, if we let σ′ be the automorphism on E′

induced by ϕ, i.e. ϕ−1 ◦ πp ◦ ϕ = σ′ ◦ π′
p, then the ate pairing is given by

aλ(P,Q) =

(
g[λ]Q,P

πp · gQ,P
(OE)

)(qk−1)/r

=

(
g[λ]Q′,P ′

(σ′ ◦ π′
p) · gQ′,P ′

(OE′)

)(qk−1)/r

for any biextension gQ,P (resp. gQ′,P ′) that is rational over Fpk (in particular we can
take the normalized biextension functions).

Proof. Since (g[λ]Q,P /πp · gQ,P) is a constant function, we can evaluate it on OE to
determine its value, which gives the first equality. The second equality follows by
applying the action of ϕ on the quotient, and by Eq. (14) we have

ϕ−1 ◦ πp = σ′ ◦ π′
p ◦ ϕ−1.

19

(An alternative proof is that we have just seen that the result is invariant under the
choice of a Fpk -rational representative of gQ,P , and although ϕ∗ is not rational over
Fp, it is a rational biextension isomorphism over Fpk .)

We now switch to level 2 cubical arithmetic because the associated formulas are
more convenient, hence compute the square of the ate pairing.
Theorem 1. With the aforementioned notations, then the reduced ate pairing on
K = E/⟨±1⟩ corresponding to the biextension X2(OE) with sections (X,Z) can be
computed as

ab,λ(P,Q) = aλ(P,Q)2 = Z
pk−1

r

[λ]Q′+P ′ .

where P ′ = ϕ−1(P) and the twisted cubical points are normalized via ZP ′ = ZQ′ =
ZP ′+Q′ = 1.

Proof. The level 2 ate pairing is given by

ab(P,Q) =

(
Z[λ]Q+P

Z[λ]Q

) pk−1
r

.

where ZP = ZQ = ZP+Q = 1. We now use the cubical isomorphism of Example 1.
(An alternative proof would be to start with the second equality of Lemma 4).

Then Zϕ−1(P) = ZP /ξ
2, so ϕ−1(P) is not normalized, and similarly for

ϕ−1(Q), ϕ−1(P+Q). From Remark 4, if we start with normalized points for P ′, Q′, P ′+
Q′, the resulting coordinate Z[λ]Q′+P ′ is off compared to Z[λ]Q+P by some power of ξ2,
which is killed by the final exponentiation. Consequently, the numerator is given by

Z
(qk−1)/r
[λ]Q+P = ϕ∗(Z[λ]Q′+P ′)(q

k−1)/r = Z
(qk−1)/r
[λ]Q′+P ′ ,

since ϕ∗Z = ξ2Z.
The same argument for the denominator shows that Z(qk−1)/r

[λ]Q = Z
(qk−1)/r
[λ]Q′ . Since

Q′ lies in the subfield Fpk/d , this denominator vanishes in the final exponentiation.

By utilizing the twisting isomorphism, part of the computations can be performed
in the subfield Fpk/d . Taking λ = t − 1, the coordinate Z[t−1]Q′+P ′ can be obtained
via the cubical ladder algorithm. The detailed computational procedures for the ate
pairing through biextension are presented in Section 4.1. For some specific families of
pairing-friendly curves, such as BN12 and BLS12, the number of basic Miller iterations
of ate pairings is exactly log2(r)/φ(k). In other words, for these curves the ate pairing
itself is optimal. We provide the following example for illustration.
Example 3 (BLS12 Family). The BLS12 family, with embedding degree k = 12 and
CM-discriminant D = 3, is popular in pairing-based cryptography. Notable pairing-
friendly curves such as BLS12-377, BLS12-381, and BLS12-446 have been employed
in numerous cryptographic schemes. The parameters r, t, and p are parametrized as

20

follows

r(z) = z4 − z2 + 1,

t(z) = z + 1,

p(z) =
(z2 − 2z + 1)(z4 − z2 + 1)

3
+ z.

It is worth noting that t(z)− 1 = z, which is close to r(z)1/4 = r(z)1/φ(k). Therefore,
the ate pairings on these curves are indeed optimal ate pairings. Additionally, there
exists a sextic twist E′ for a BLS12 curve E. As mentioned in Section 2.3, the twisting
isomorphism is ϕ : E′ → E, (x, y) 7→ (ζ

1
3x, ζ

1
2 y) with ζ ∈ F∗

p2 mod (F∗
p2)6. By

Theorem 1, the ate pairing on E/⟨±1⟩ via biextension can be computed as

ab(P,Q) = Z
p12−1

r

[z]Q′+P ′ .

3.3 Biextension for optimal ate pairing
In this subsection, we derive the formulas for optimal ate pairings through biextension
by utilizing the technique of twists. From Section 2.2, we consider the multiple λ =

mr =
∑l

i=0 cip
i, where the short vector (c0, c1, . . . , cl) satisfies |ci| ≈ r

1
φ(k) . Using the

formula for the optimal ate pairing in Eq. (3) on G2×G1, Lemma 1 and Eq. (4) show
that the biextension interpretation of the optimal ate pairing can be expressed as

opt(P,Q) =
(
g[c0]Q,P ⋆1 πp · g[c1]Q,P ⋆1 · · · ⋆1 πl

p · g[cl]Q,P

) pk−1
r (OE)

=

 l∏
⋆1,i=0

πi
p · g[ci]Q,P

 (OE)
pk−1

r ,

for any biextension function gP,Q rational over Fpk . See also [30, Section 3.4] for the
associated monodromy interpretation: in the non-reduced Tate pairing, we compute
the constant function g[r]Q,P =

∏l
⋆1,i=0 g

⋆1,p
i

[ci]Q,P . In the optimal ate pairing, we replace

g⋆1,p
i

[ci]Q,P by πi · g[ci]Q,P , which differs from the above function by some ate pairing by
Section 3.2.

Using the cubical representation of biextension functions, we obtain that for
normalized level 1 cubical points,

opt(P,Q) =

(
Z1(
∑l

i=0 π
i([ci]Q) + P)

Z1(
∑l

i=0 π
i([ci]Q))

) pk−1
r

.

Similar to the ate pairing, the technique of twists can also be employed to enhance
computational efficiency.

21

Lemma 5. With the same notations as Lemma 4, we have

opt(P,Q) =

 l∏
⋆1,i=0

πi
p · g[ci]Q,P


pk−1

r

=

 l∏
⋆1,i=0

(
σ′i ◦ π′

p
i
)
· g[ci]Q′,P ′


pk−1

r

for any Fpk -rational biextension function gP,Q and gP ′,Q′ respectively.

Proof. We use the same proof as Lemma 4. Since
∏l

⋆1,i=0 π
i
p · g[ci]Q,P is a constant

function, we can evaluate it on OE to recover its value, which gives the first equality.
Also it is easy to see that the value does not depend on the choice of Fpk -rational
representative of gP,Q because of the final exponentiation. The second equality follows
by applying ϕ to this constant function g.

We now present the following theorem to illustrate the formulas for optimal ate
pairings on Kummer lines through level 2 cubical arithmetic by exploiting twists.
Theorem 2. Using the above notations, let P ∈ G1 and Q′ ∈ E′(Fpk/d)[r] such that
Q = ϕ(Q′) ∈ G2. The optimal ate pairing on K = E/⟨±1⟩ corresponding to the
biextension X2(OE) can be computed as

optb(P,Q) = opt(P,Q)2 =
(
Z∑l

i=0(σ
′i◦π′

p
i)([ci]Q′)+P ′

) pk−1
r

.

Proof. We have optb(P,Q) =

(
Z∑l

i=0
πpi([ci]Q)+P

Z∑l
i=0

πi
p([ci]Q)

) pk−1
r

. We now apply the cubical

isomorphism ϕ−1, using Proposition 3 and Corollary 3, to obtain:

optb(P,Q) =

(
Z∑l

i=0(σ
′i◦π′

p
i)([ci]Q′)+P ′

Z∑l
i=0(σ

′i◦π′
p
i)([ci]Q′)

) pk−1
r

.

Indeed, by the same argument as in the proof of Theorem 1, the correcting factor ξ2
and the denominator vanish in the final exponentiation. (An alternative proof is to
employ Lemma 5).

To simplify the notation, when working on E′ we will denote by π (or πp) the
“corrected” Frobenius σ′ ◦ π′

p where π′
p is the standard Frobenius on E′. The notation

is chosen such that (π ◦ϕ) · g = (ϕ ◦π) · g. According to the above proof and Corollary
3, we require the computation of the following coordinates

Zπi([ci]Q′+P ′) and Zπi([ci]Q′), i = 0, . . . , l,

22

which can be achieved through the following steps

1. Compute Z[ci]Q′ and Z[ci]Q′+P ′ for i = 0, . . . , l using the cubical or double-and-add
ladder algorithm.

2. Apply the morphisms πi separately to the points [ci]Q
′ and [ci]Q

′ + P to obtain
Zπi([ci]Q′) and Zπi([ci]Q′+P ′).

3. Compute Z∑l
i=0 πi([ci]Q′) and Z∑l

i=0 πi([ci]Q′)+P ′ from the points Zπi([ci]Q′) and
Zπi([ci]Q′+P ′) using the three-way addition algorithm [30] combined with Remark
2.

The most computationally expensive step is the calculation of Z[ci]Q′ and
Z[ci]Q′+P ′ . By employing the technique of twists, part of the computation can be per-
formed over the subfield Fpk/d , compared to the original approach in [30]. Detailed
algorithms and cost analysis are provided in Section 4.2. In the following, we present
the AFG16 family as a concrete example.
Example 4 (AFG16 Family). The AFG16 family, with embedding degree k = 16
and CM-discriminant D = 1, is known for efficient pairing computation and hashing,
making it competitive in pairing-based cryptography. The parametrized polynomials
r(z), t(z), and p(z) are given by:

r(z) = Φ16(z) = z8 + 1,

t(z) = r(z) + z5 + 1 = z8 + z5 + 2,

p(z) =
z16 + 2z13 + z10 + 5z8 + 6z5 + z2 + 4

4
.

There exists a quartic twist E′ for an AFG16 curve E. From Section 2.3, the twist-
ing isomorphism is defined as ϕ : E′ → E, (x, y) 7→ (D

1
2x,D

3
4 y) with D ∈ F∗

p4

mod (F∗
p4)4. Additionally, it holds that z + p5 ≡ 0 mod r on AFG16. By Theorem 2,

the optimal ate pairing on AFG16 can be computed through biextension as:

optb(P,Q) =
(
g[z]Q′,P ′ ⋆1 gπ5(Q′),P ′

) p16−1
r

=
(
Z[z]Q′+π5(Q′)+P ′

) p16−1
r .

By Eq. (6), we have

g[z]Q′,P ′ ⋆1 gπ5(Q′),P ′ = g[z]Q′,P ′(·) · gp
5

Q′,P ′(·) · v2[p5]Q′(P ′).

Since the function gQ′,P ′ is normalized, and v2[p5]Q′(P ′) can be killed by the final
exponentiation, it suffices to compute

optb(P,Q) = g
p16−1

r

[z]Q′,P ′ = Z
p16−1

r

[z]Q′+P ′ .

23

3.4 Biextension for super-optimal ate pairing
The super-optimal pairings are meticulously constructed on specific families of
pairing-friendly curves by using GLV-automorphisms. To enhance the efficiency, auto-
morphisms are frequently employed to derive the formulas of super-optimal pairings
on curves with j-invariants j = 0 or 1728. In this subsection, we primarily focus on
deriving the formulas for super-optimal pairings on such GLV-curves endowed with
efficiently-computable automorphisms, including curves that admit twists and those
that with the lack of twists, through the framework of biextensions.

In Section 3.3 for the optimal pairing, if r =
∑

i cip
i, we were using the fact

that πp(Q) = [p]Q and πp(P) = P , to replace in the Tate pairing biextension expo-
nentiation g⋆1,r

Q,P =
∏

⋆1,i
g[cipi]Q,P the biextension function g[cipi]Q,P = g⋆1,p

i

[ci]Q,P by
πi
p · g[ci]Q,P . Indeed, both functions have the same divisor, hence differ by a constant

(given by some ate pairings). On several specific pairing-friendly curves E admit-
ting extra automorphisms σ, we can combine these automorphisms with the power of
Frobenius endomorphism to determine τ = πj ◦ σ such that τ(Q) = [z]Q, where z is
the parametrized seed of the families of pairing-friendly curves. Then we can use the
same strategy as for the optimal ate pairing, writing r =

∑
ciz

i and replacing g⋆1,z
i

[ci]Q,P

by τ i · g[ci]Q,τ−i(P), which has the same divisor, hence differ by a constant. Here we
just need to be careful that τ does not fix P , and we need to normalize the gQ,τ−i(P)

appropriately.
Our objective is to derive the super-optimal pairings on the following two types of

GLV-curves, E1 and E2, as described in Section 2.1:

E1 : y2 = x3 + b, j(E1) = 0,

E2 : y2 = x3 + ax, j(E2) = 1728.

We will denote by σ the extra automorphisms on these curves (See Section 2.1 for
more details).

According to [10, 9], in practice E1 (resp. E2) precisely corresponds to a pairing-
friendly curve in the completed family Cyclo (6.6) (resp. Cyclos (6.2), (6.3), (6.4), or
(6.5)) [15] parametrized by the polynomials p(z), t(z), r(z). Additionally, as noted in
[9], for any Q ∈ G2 ⊆ Ei(Fpk), there exists a positive integer j (1 ≤ j < k) such that

τ(Q) = πj ◦ σ(Q) = [z]Q.

If the embedding degree k satisfies ord(σ) ∤ k, it enables us to reduce the number
of Miller iterations to approximately log2(r)/2φ(k) [21, 9] and construct the super-
optimal ate pairings on the corresponding curves Ei (i = 1, 2).

For simplicity, we first look at the case where j(E1) = 0. Let ζk denote the k-
th primitive roots of unity. By the characteristic equations of σ, we observe that it
corresponds to −1±

√
−3

2 in End(E1). Besides, π acts like [p] = ζk a k-th root of unity
on G2. Consequently, we obtain on this subgroup, it holds that

24

τ2 + τpj + p2j = τ2 + τ · ζj + ζ2j

= ζ2j ·

((
−1±

√
−3

2

)2

+
−1±

√
−3

2
+ 1

)
= 0.

By τ(Q) = [z]Q, we have

z2 + zpj + p2j ≡ 0 mod r. (15)

By Eq. (3), we can derive a super-optimal ate pairing

sopt(P,Q) =
(
fz2,Q(P) · fp

j

z,Q(P) · ℓ[p2j]Q,[zpj]Q(P)
) pk−1

r

(16)

=
(
fz+pj

z,Q (P) · fp
j

z,Q(σ
−1(P)) · ℓ[p2j]Q,[zpj]Q(P)

) pk−1
r

. (17)

To leverage the biextension arithmetic, we need the following lemma.
Lemma 6. For any Fpk -rational biextension function gQ,P , we have:

sopt(P,Q) =
(
τ · g[z]Q,σ−1(P) ⋆1 π

j · g[z]Q,P ⋆1 π
2j · gQ,P

) pk−1
r ,

where gQ,σ−1(P) = τ−1 · g[z]Q,P .

Proof. Utilizing the formulas [z2+zpj+p2j]Q = OE for the optimal pairing , we have

sopt(P,Q) =
(
g[z2]Q,P ⋆1 π

j · g[z]Q,P ⋆1 π
2j · gQ,P

) pk−1
r

for any Fpk -rational function gQ,P .
Now, if we take gQ,σ−1(P) normalized so that τ · gQ,σ−1(P) = g[z]Q,P , then by the

compatibility of the action with the biextension arithmetic, we have:

τ · g⋆1,z
Q,σ−1(P) = (τ · gQ,σ−1(P))

⋆1,z = g⋆1,z
[z]Q,P = g[z2]Q,P .

Plugging this in the equation above, we obtain:

sopt(P,Q) =
(
τ · g[z]Q,σ−1(P) ⋆1 π

j · g[z]Q,P ⋆1 π
2j · gQ,P

) pk−1
r .

To compute the super-optimal pairing by the formulas in Lemma 6, we start with
two normalized functions gQ,P and gQ,σ−1(P), hence τ−1 · g[z]Q,P and gQ,σ−1(P) differ
by a constant λ. The explicit formula is illustrated in Lemma 7.

25

Lemma 7. With the normalized biextension functions gQ,σ−1(P) and gQ,P , we have:

sopt(P,Q) =

(
gp

j

[z]Q,σ−1(P)(OE)g
pj+z
[z]Q,P (OE)

g[z2]Q,πj([z]Q)((P)− (OE))

vπ2j(Q)(P)

)(pk−1)/r

(18)

=

gpj

[z]Q,σ−1(P)(OE)g
pj+z
[z]Q,P (OE)

ℓ−π2j(Q),−πj([z]Q)(P)

(pk−1)/r

(19)

Proof. Write τ−1 ·g[z]Q,P = λgQ,σ−1(P) for some unknown constant λ. If we start with
these normalized functions, then we have

sopt(P,Q) =
(
λzp

j

τ · g[z]Q,σ−1(P) ⋆1 π
j · g[z]Q,P ⋆1 π

2j · gQ,P

)(pk−1)/r

.

The equation λp
j

τ · gQ,σ−1(P) = g[z]Q,P allows us to recover λ. If we evaluate this
equation on OE (using an extended value), since gQ,σ−1(P) is normalized we deduce
that

λp
j

= g[z]Q,P (OE)/gQ,σ−1(P)(OE)
pj

= g[z]Q,P (OE).

Substituting λp
j

in the equation above and exploiting the biextension law, we obtain:

sopt(P,Q)=

(
gp

j

[z]Q,σ−1(P)(OE)·gz+pj

[z]Q,P (OE)·
(g[z2]Q,[pjz]Q ·g[z2+pjz]Q,[p2j]Q)(P)

(g[z2]Q,[pjz]Q ·g[z2+pjz]Q,[p2j]Q)(OE)

)(pk−1)/r

.

Finally, since [p2j + pjz + z2]Q = OE and g[pj+z2]Q,[p2j]Q((P) − (OE)) =
1/v[p2j]Q(P), we have

(g[z2]Q,[pjz]Q · g[pjz+z2]Q,[p2j]Q)((P)− (OE))) =
v[z2+pjz]Q(P)

ℓ[−pjz]Q,[−z2]Q(P)
· 1

v[p2j]Q(P)

=
1

ℓ[−p2j]Q,[−pjz]Q(P)
.

Plugging it into the equation above, we complete the proof.

We remark that by Lemma 1, we can rewrite Eq. (19) as

sopt(P,Q) = 1/
(
fz+pj

z,−Q(P) · f
pj

z,−Q(σ
−1(P)) · ℓ[−p2j]Q,[−zpj]Q(P)

) pk−1
r

,

which gives us back Eq. (17) using the fact that sopt(P,Q) = 1/sopt(P,−Q).

26

In practice, we can use the cubical arithmetic to compute the super-optimal ate
pairing:

sopt(P,Q) =

(
Z1([z

2]Q+ πj([z]Q) + π2j(Q) + P)

Z1([z2]Q+ πj([z]Q) + π2j(Q))

) pk−1
r

(20)

=

(
Z1(τ([z]Q) + πj([z]Q) + π2j(Q) + P)

Z1(τ([z]Q) + πj([z]Q) + π2j(Q))

) pk−1
r

(21)

More precisely, in the formula above we start with arbitrary Fpk -rational cubical
points for P,Q, P +Q. Then we compute [z]Q, [z]Q+P using the cubical arithmetic,
apply τ−1 to [z]Q, [z]Q+P and P to get Q0 = λ0Q, Q0+σ

−1P and σ−1P respectively,
which we use to compute [z]Q0, [z]Q0 + σ−1P . We then apply τ to these two points
to get [z2]Q, [z2]Q+ P . We also apply πj to [z]Q, [z]Q+ P to get [pjz]Q, [pjz]Q+ P ,
and π2j to Q,Q + P to get [p2j]Q, [p2j]Q + P . We now use arbitrary choices to get
[z]Q+[pjz]Q+[p2j]Q and threeway additions from these choices to get [z]Q+[pjz]Q+
[p2j]Q+ P . The second point is equal to P up to some projective factor which is the
numerator of Eq. (21) and the first point is equal to OE up a some projective factor
which is the denominator of Eq. (21).

Similar to the proof in Lemma 7, we can start with normalized cubical points to
simplify the formulas, by plugging the cubical formulas in Eq. (19).
Lemma 8. Assume that we start with normalized cubical points P,Q,Q +
P, σ−1(P), Q + σ−1(P) and compute [z]Q, [z]Q + P, [z]Q + σ−1(P). In addi-
tion, we compute τ([z]Q) + πj([z]Q) + P via a three way addition between
τ([z]Q), πj([z]Q), P, πj([z]Q+ P), τ([z]Q+ σ−1P),−π2jQ. Then it yields that

sopt(P,Q) =

(
Z1([z]Q+ P)

z · Z1(τ([z]Q) + πj([z]Q) + P)

Z1([z]Q)
z · vπ2j(Q)(P)

)(pk−1)/r

. (22)

Proof. By Lemma 7, we have

sopt(P,Q) =

(
gp

j

[z]Q,σ−1(P)(OE) · gp
j+z

[z]Q,P (OE) ·
g[z2]Q,πj([z]Q)((P)− (OE)))

vπ2j(Q)(P)

)(pk−1)/r

.

Since the cubical point τ([z]Q)+πj([z]Q)+P is computed by the three-way addition.
By the cubical arithmetic and Eq. (10), we obtain

g[z2]Q,[pjz]Q(P)

g[z2]Q,[pjz]Q(OE)
=

Z1(τ([z]Q) + πj([z]Q) + P)Z1(P)Z1(τ([z]Q))Z1(π
j([z]Q))

Z1(τ([z]Q) + P)Z1(πj([z]Q) + P)Z1(τ([z]Q) + πj([z]Q))Z1(OE)
.

Note that we can always take Z1(P) = Z1(OE) = 1 (by the extend value). Moreover,
it follows from Example 2 that

Z1(τ([z]Q)) = Z1([z]Q
pj

)/w, Z1(π
j([2]Q)) = Z1([z]Q)p

j

,

27

Z1(τ([z]Q) + πj([2]Q)) = Z1(−π2j(Q)) = −Z1(Q)p
2j

= −1.

Substituting these relationships into the equation above, we have

g[z2]Q,[pjz]Q(P)

g[z2]Q,[pjz]Q(OE)
=−Z1(τ([z]Q) + πj([z]Q) + P)Z1([z]Q)2p

j

wZ1(τ([z]Q) + P)Z1(πj([z]Q) + P)
.

Plugging this equation in Eq. (19), and by the fact that −w vanishes in the final
exponentiation, we complete the proof of this lemma.

The formulas for the super-optimal ate pairings on E2 with j(E2) = 1728 via biex-
tension can be derived similarly. We just state the results in the following proposition
for simplicity.
Proposition 4. On E2 with j(E2) = 1728, we have z2 + p2j ≡ 0 mod r. It follows
that the super-optimal pairing is given by

sopt(P,Q) =
(
g[z2]Q,P ⋆1 π

2j · gQ,P

) pk−1
r

=
(
τ · g[z]Q,σ−1(P) ⋆1 π

2j · gQ,P

) pk−1
r .

for any Fpk -rational function gQ,P , where gQ,σ−1(P) = τ−1 · g[z]Q,P . Starting with
normalized biextension functions gQ,P and gQ,σ−1(P), we have

sopt(P,Q) =
(
gp

j

[z]Q,σ−1(P)(OE)g[z]Q,P (OE)
z/vπ2j(Q)(P)

) pk−1
r

.

Using the cubical arithmetic, we get

sopt(P,Q) =

(
Z1(τ([z]Q) + π2j(Q) + P)

Z1(τ([z]Q) + π2j(Q))

) pk−1
r

.

Starting with normalized cubical points for P,Q,Q+P, σ−1(P), Q+ σ−1(P), this can
be simplified to

sopt(P,Q) =

((
Z1([z]Q+ σ−1P)

Z1([z]Q)

)pj

·
(
Z1([z]Q+ P)

Z1([z]Q)

)z

· 1

vπ2j(Q)(P)

)(pk−1)/r

=

(
Z1([z]Q+ σ−1P)

pj

Z1([z]Q+ P)
z

Z1([z]Q)
z+pj

vQ(P)p
2j

)(pk−1)/r

. (23)

3.4.1 The super-optimal pairing on the curves with the lack of
twists

We first look at examples of pairing-friendly curves E1, E2 with the lack of twists.
Then the subgroup G2 can only be represented as G2 = E(Fpk)[r] ∩ ker(π − [p]).

28

Consequently, the techniques of twist and denominator elimination can not be utilized.
In other words, all the vertical line functions can not vanish in the final exponentiation,
and more operations need to be performed in the whole extension field Fpk .

Based on the above analysis, the embedding degree k must satisfies
gcd(k,#Aut(E)) = 1. Recall that the curve E1 (resp. E2) corresponds to a pairing-
friendly curve in Cyclo (6.6) (resp. Cyclo (6.2)) [15]. Recall that for Q ∈ G2 ⊆ Ei(Fpk)
there is a positive integer j (1 ≤ j < k) such that πj ◦ σ(Q) = [z]Q. If ord(σ) ∤ k, it is
equipped with the super-optimal ate pairing. The corresponding formula in level 2 is
presented in Theorem 3.
Theorem 3. Using the notation as above, let (p(z), r(z), t(z)) represent a family of
GLV-curves with the lack of twist equipped with embedding degree k and efficiently-
computable automorphism σ such that ord(σ) ∤ k. Let Ei (i = 1, 2) be a curve in
this family, Q ∈ Ei(Fpk)[r] ∩ ker(π − [p]), P ∈ Ei(Fp)[r]. Then the super-optimal ate
pairing on Ki = Ei/ ⟨±1⟩ (i = 1, 2) corresponding to biextension X2(OE) with sections
(X,Z) can be executed as follows.

1. If we are on K1 = E1/ ⟨±1⟩ with j(E1) = 0, then the formula for the super-optimal
ate pairing is

soptb(P,Q) =

(
Zz
[z]Q+P · Zτ([z]Q)+πj([z]Q)+P

Zz
[z]Q · vQ(P)2p

2j

)(pk−1)/r

.

2. If we are on K2 = E2/ ⟨±1⟩ with j(E2) = 1728, then the formula for the super-
optimal ate pairing is

soptb(P,Q) =

Zz
[z]Q+P · Z

pj

[z]Q+σ−1(P)

Zz+pj

[z]Q · vQ(P)2p
2j


pk−1

r

.

Proof. For K1, this follows from Eq. (22), replacing the level 1 cubical arithmetic by
level 2 cubical arithmetic. The proof is similar for K2 from Eq. (23).

According to the above analysis, we mainly need to compute the coordinates
Z[z]Q, Z[z]Q+P and Z[z]Q+σ−1(P). This can also done by the cubical or double-and-add
ladder. Now we present the following family BW13 for description.
Example 5 (BW13 family). From [10], the BW13 family allows computing super-
optimal ate pairing. Besides, it is relevant for the ETNFS attack. Consequently, this
family is also an alternative consideration in pairing-based cryptography. If the CM
discriminant D = 1, the parametrized polynomials r(z), t(z) and p(z) of BW13 are
(see Cyclo (6.2) in [15] for more details)

r(z) = Φ52(z),

t(z) = −z2 + 1,

p(x) =
1

4
(z30 + 2z28 + z26 + z4 − 2z2 + 1).

29

Additionally, it is satisfied that z2+p ≡ 0 mod r and π7◦σ(Q) = [z]Q for Q ∈ G2. By
Theorem 3 the super-optimal ate pairing on the above family can be obtained through
the cubical arithmetic as

soptb(P,Q) =

Zz
[z]Q+P · Z

p7

[z]Q+σ−1(P)

Zz+p7

[z]Q · vQ(P)2p
7


p13−1

r

.

As for D = 3, the following three polynomials parameterize a family of pairing-friendly
curves with embedding degree k = 13 (see Cyclo (6.6) [15] for more details)

r(z) = Φ78(z),

t(z) = −z14 + z + 1,

p(x) =
1

3
(z + 1)2(z26 − z13 + 1)− z27.

It can be deduced that for Q ∈ G2, we have z2+zp+p2 ≡ 0 mod r and π◦σ(Q) = [z]Q.
By Theorem 3, the formula of the super-optimal on this family is

soptb(P,Q) =

(
Zz
[z]Q+P · Zτ([z]Q)+π([z]Q)+P

Zz
[z]Q · vQ(P)2p

2

) p13−1
r

.

3.4.2 The super-optimal ate pairing on curves admitting twists

When the embedding degree is even, we first remark that we can simplify the formulas
in the previous section. We only treat the case of E1, the proofs are the same for E2.
Lemma 9. When the embedding degree is even, starting with normalized biextension
functions gQ,σ−1(P), gQ,P , we have

sopt(P,Q) =
(
gp

j

[z]Q,σ−1(P)(OE) · gp
j+z

[z]Q,P (OE) · g[p2j]Q,[pjz]Q(P)
)(pk−1)/r

. (24)

Plugging the cubical formulas in Eq. (24), we obtain

sopt(P,Q) =

(
Z1([z]Q+ P)

z

Z1([z]Q)
z · Z1(τ([z]Q) + πj([z]Q) + P)

)(pk−1)/r

.

Proof. This is the formulas from Lemmas 7 and 8, using that when the embedding
degree is even, vπ2j(Q)(P) will be killed by the final exponentiation.

If ϕ : E′ → E is the degree-d twisting isomorphism, we denote σ′ = ϕ−1◦σ◦ϕ, and
τ ′ = ϕ−1 ◦τ ◦ϕ = π′j ◦σ′. Beware of the notation, here π′ = ϕ−1 ◦π ◦ϕ is the pullback
of the Frobenius on E′, it differs from the Frobenius π′ on E′ by the isomorphism σ′

inducing the twist: π = ϕ−1◦σ′◦π′◦ϕ (see the definitions in Section 3.1). As usual, we

30

let P ′ = ϕ−1(P), Q′ = ϕ−1(Q). With these notations, using that ϕ is an isomorphism
over Fpk , we immediately have:
Lemma 10. For any Fpk -rational biextension function gQ′,P ′ , we have:

sopt(P,Q) =
(
τ ′ · g[z]Q′,σ′−1(P ′) ⋆1 π

j · g[z]Q′,P ′ ⋆1 π
2j · gQ′,P ′

) pk−1
r ,

where gQ′,σ′−1(P) = τ ′
−1 · g[z]Q′,P ′ . Starting with normalized biextension functions

gQ′,σ′−1(P ′), gQ′,P ′ , and g[p2j]Q′,[pjz]Q′ , we have:

sopt(P,Q) =
(
gp

j

[z]Q′,σ′−1(P ′)
(OE)g

pj+z
[z]Q′,P ′(OE)g[p2j]Q′,[pjz]Q′(P)

)(pk−1)/r

.

Moving to level 2 cubical arithmetic, we obtain the following theorem.
Theorem 4. Using the notation above, let (p(z), r(z), t(z)) represent a family of
GLV-curves with embedding degree k and an efficiently-computable automorphism σ
such that ord(σ) ∤ k. Let Ei (i = 1, 2) be a curve in this family with a degree-d twist
E′

i such that there exists a positive integer j (1 ≤ j < k) satisfying τ(Q) = [z]Q
for any Q ∈ G2. Assume that P ∈ Ei(Fp)[r]. Let P ′ and Q′ denote ϕ−1(P) and
ϕ−1(Q), respectively. Then, the super-optimal pairing on Ki = Ei/ ⟨±1⟩ (i = 1, 2)
corresponding to the biextension X2(OE) with sections (X,Z) can be executed as follows

1. If we are on K1 = E1/ ⟨±1⟩ with j(E1) = 0, then the formula for the super-optimal
pairing is

soptb(P,Q) =
(
Zz
[z]Q′+P ′ · Zτ ′([z]Q′)+πj([z]Q′)+P ′

)(pk−1)/r

.

2. If we are on K2 = E2/ ⟨±1⟩ with j(E2) = 1728, then the formula for the super-
optimal pairing is

soptb(P,Q) = sopt(P,Q)2 =
(
Zz
[z]Q′+P ′ · Zpj

[z]Q′+σ′−1(P ′)

) pk−1
r

.

Proof. For K1, we could invoke Lemma 10 directly, and redo the same computations
that we did for Lemma 8. The difference is that the denominator Z•

[z]Q′ vanishes in
the final exponentiation. The proof is similar for K2.

Example 6 (BW14 family). As mentioned in [9], the BW family with embedding
degree k = 14 allows computing the pairing in log2(r)/2φ(k) basic Miller iterations,
which makes it a strong candidate in pairing-based cryptography. If CM-discriminant
D = 1, the corresponding parametrized polynomials r(z), t(z) and p(z) are stated as

r(z) = Φ28(z), t(z) = z2 + 1,

p(x) =
1

4
(z18 − 2z16 + z14 + z4 + 2z2 + 1).

31

There exists a quadratic twist E′
2 for a BW14 curve E2. From Section 2.3, the twist-

ing isomorphism is defined as ϕ : E′
2 → E2, (x, y) 7→ (Dx,D

3
2 y) with D ∈ F∗

p7

mod (F∗
p7)2. Additionally, it is satisfied that z2 − p ≡ 0 mod r and π4 ◦ σ(Q) = [z]Q

for Q ∈ G2 on BW14 family. By Theorem 4 the super-optimal ate pairing on BW14
can be obtained through biextension as

soptb(P,Q) = sopt(P,Q)2 =
(
Zz
[z]Q′+P ′ · Zp4

[z]Q′+σ−1(P ′)

) p14−1
r

.

For the curves E1 with D = 3, the family of pairing-friendly curves with embedding
degree k = 14 (see Cyclo (6.6) [15] for more details) is presented as follows

r(z) = Φ42(z), t(z) = −z8 + z + 1,

p(x) =
1

3
(z − 1)2(z14 − z7 + 1) + z15.

We deduce that for Q ∈ G2, we have z2 + zp + p2 ≡ 0 mod r and π ◦ σ(Q) = [z]Q.
From Theorem 4, the formula for the super-optimal pairing on this family is

soptb(P,Q) =
(
Zz
[z]Q′+P ′ · Zτ ′([z]Q′)+π([z]Q′)+P ′

)(p14−1)/r

.

4 Computational procedure and cost analysis
In this subsection, we provide the details for the implementation of pairing computa-
tions through biextension on different families including BLS12, AFG16, BW14 and
BW13. A concrete cost analysis is also presented. Moreover, we compare the corre-
sponding computational costs by employing our algorithms to the approaches in [30]
and the popular Miller’s algorithm. According to the analysis in Section 3, we present
the formulas of the pairing computation by utilizing biextension, for some well-known
families of pairing-friendly curves in Table 1.

32

Table 1 The pairing formulas by exploiting biextension with respect to divisor 2(OE).
The scalar z, the maps ϕ and σ are the parametrized seed, the twisting isomorphism
together with the efficiently-computable automorphism of the family of pairing-friendly
curves, respectively. Denote by P ′ and Q′ the image points ϕ−1(P) and ϕ−1(Q), respec-
tively.

k Curve Pairing formula via biextension

12 BLS12, D = 3 Z
p12−1

r

[z]Q′+P ′

16 AFG16, D = 1 Z
p16−1

r

[z]Q′+P ′

14 BW14, D = 1
(
Zz
[z]Q′+P ′ · Zp4

[z]Q′+σ−1(P ′)

) p14−1
r

14 BW14, D = 3
(
Zz
[z]Q′+P ′ · Zτ ′([z]Q′)+π([z]Q′)+P ′

)(p14−1)/r

13 BW13, D = 1

(
Zz

[z]Q+P ·Zp7

[z]Q+σ−1(P)

Zz+p7

[z]Q
·vQ(P)2p7

) p13−1
r

13 BW13, D = 3

(
Zz

[z]Q+P ·Zτ([z]Q)+π([z]Q)+P

Zz
[z]Q

·vQ(P)2p2

) p13−1
r

In the following, we provide the detailed computational procedure and cost analysis
for the formulas above. We first present the corresponding notations.

Notations. Let m, s, and i denote the costs of multiplication, squaring and
inversion in Fp, respectively. Let mk, sk, ik and fk represent the costs of addition,
multiplication, squaring, inversion and Frobenius endomorphism in Fpk , respectively.
Denote by m0 the cost of multiplication by a constant. We omit the calculations of
the additions and subtractions over finite fields for simplicity.

4.1 Computational procedure and cost analysis for ate pairing
on BLS12 family

In this subsection, we focus on the computation process and cost calculation for the ate
pairing via biextension on BLS12 family. The extension field Fp12 can be constructed
as follows

Fp ⇒ Fp2 = Fp[u]/(u
2 − α)⇒ Fp6 = Fp2 [v]/(v3 − u)⇒ Fp12 = Fp6 [w]/(w2 − v),

where α ∈ Fp. From Table 1 we can see that it needs to compute

ab,λ(P,Q) = Z
p12−1

r

[z]Q′+P ′ ,

33

where ϕ is a degree-6 twist isomorphism

ϕ : E′ → E, (x, y) 7→ (xv, yvw).

The equations of E and E′ are y2 = x3 + b and y2 = x3 + b/u, respectively. As
mentioned in Section 2.4, we can employ the cubical ladder or double-and-add ladder
to derive Z[z]Q′+P ′ .

Denote by cDBL(P), cDIFF(P,Q, iXP−Q) and cADD(P1, P2, P1 + Q,P2 − Q) the
x-only cubical point doubling, differential addition and compatible addition (See Algo-
rithms 7, 8 and 11 for more details) on the Kummer line K = E/ ⟨±1⟩ with j(E) = 0,
respectively. The detailed computational procedure for the cubical ladder is presented
in Algorithm 1.

Algorithm 1 The cubical ladder to compute Z[z]Q′+P ′

Input: The points Q′ = (XQ′ : ZQ′), P ′ = (XP ′ : ZP ′), Q′ + P ′ = (XQ′+P ′ :
ZQ′+P ′) ∈ E′. The inverses of the X-coordinates of Q′, P ′ and Q′ − P ′:
iXQ′ , iXP ′ , iXQ′−P ′ . The scalar z =

∑N
i=0 ni2

i (n > 2).
Output: The point [z]Q′ + P ′ = (X[z]Q′+P ′ : Z[z]Q′+P ′)

1: R← Q′, S ← cDBL(Q′), T ← cDIFF(P ′ +Q′, Q′, iXP ′)
2: for i = N − 1 to 0 do ▷ R = [n]Q′, S = [n+ 1]Q′, T = [n]Q′ + P ′

3: U ← cDIFF(S,R, iXQ′)
4: if ni = 0 then
5: T ← cDIFF(T,R, iXP ′)
6: R← cDBL(R)
7: S ← U
8: else
9: T ← cDIFF(S, T, iXQ′−P ′)

10: S ← cDBL(S)
11: R← U
12: end if
13: end for
14: return T

According to Algorithm 1, it requires to execute a cubical point doubling and
two differential additions per step. More precisely, the point doubling (Lines 6 and
10 in Algorithm 1) and one of the differential additions (Line 3 in Algorithm 1) are
performed in E′(Fp2), while the other differential addition (Lines 5 and 9 in Algorithm
1) is accomplished over Fp12 .

Note that in the phase of the cDBL over Fp2 , the coefficient of E′ is b′ = b/u. If b
is small, multiplying an element by b′ can be regarded as a shifting operation, whose
cost is negligible. According to Algorithms 7 and 8, the corresponding costs for the
cubical point doubling and differential addition over Fp2 are respectively

CostcDBL = 4m2 + 2s2 and CostcDIFFF
p2

= 6m2 + 2s2.

34

Additionally, if the bit is 0, the multiplication by 1/XP ′ in cDIFF can also be regarded
as a shifting operation over Fp12 . Besides, the cost of the operation for multiplying
two elements in Fp2 and Fp12 can be estimated as 6m2. From Algorithm 8, the costs
for Lines 5 and 9 in Algorithm 1 are respectively

CostcDIFFbit0 = m12 + 2s12 + 4 · 6m2 and CostcDIFFbit1 = 2m12 + 2s12 + 4 · 6m2.

On this basis, the computational cost for an iteration of the cubical ladder is

Costcubic0 = CostcDBL + CostcDIFFF
p2

+ CostcDIFFbit0 = m12 + 2s12 + 34m2 + 4s2,

Costcubic1 = CostcDBL + CostcDIFFF
p2

+ CostcDIFFbit1 = 2m12 + 2s12 + 34m2 + 4s2.

The concrete computational process of the double-and-add ladder is illustrated in
Algorithm 2.

Algorithm 2 The double-and-add ladder to compute Z[z]Q′+P ′

Input: The points Q′ = (XQ′ : ZQ′), P ′ = (XP ′ : ZP ′), Q′ + P ′ = (XQ′+P ′ :
ZQ′+P ′) ∈ E′. The inverses of the X-coordinates of Q′, P ′ and Q′ − P ′:
iXQ′ , iXP ′ , iXQ′−P ′ . The scalar z =

∑N
i=0 ni2

i.
Output: The point [z]Q′ + P ′ = (X[z]Q′+P ′ : Z[z]Q′+P ′)

1: R← Q′, S ← Q′ + P ′

2: for i = N − 1 to 0 do ▷ R = [n]Q′, S = [n]Q′ + P ′

3: if ni = 0 then
4: R← cDBL(R)
5: S ← cDIFF(S,R, iXP ′)
6: else
7: T ← cADD(R,Q′, S,Q′ − P ′) ▷ T = [n+ 1]Q′

8: R← cDIFF(T,R, iXQ′)
9: S ← cDIFF(T, S, iXQ′−P ′)

10: end if
11: end for
12: return S

Now we analyze the cost for each basic iteration step in Algorithm 2. Based on
the above analysis, the cost for a doubling step is

Costdbl = CostcDBL + CostcDIFFbit0 = m12 + 2s12 + 28m2 + 2s2.

As for a double-and-add step, it requires one compatible addition, together with two
differential additions to perform. One of the differential additions (Line 8 in Algorithm
2) is executed over Fp2 , while the other (Line 9 in Algorithm 2) is over Fp12 . It is worth
noting that part of the operations during the compatible addition are carried out over

35

Fp12 . From Algorithm 11 we can calculate the cost for the compatible addition as
follows

CostcADD = 4m12 + 3s12 + 28m2 + 3s2.

Therefore, the computational cost for a double-and-add iteration step is

Costdbladd = CostcDIFFF
p2

+ CostcDIFFbit1 + CostcADD = 6m12 + 5s12 + 58m2 + 5s2.

4.2 Computational procedure and cost analysis for optimal
ate pairing on AFG16 family

In this subsection, we explore to derive the concrete computational procedure and
cost analysis for the optimal ate pairing on family AFG16 with D = 1. The field Fp16

can be constructed as

Fp ⇒ Fp4 = Fp[u]/(u
4 − α)⇒ Fp8 = Fp4 [v]/(v2 − u)⇒ Fp16 = Fp8 [w]/(w2 − v),

where α ∈ Fp. The degree-4 twist isomorphism ϕ on this family is defined as follows

ϕ : E′ → E, (x, y) 7→ (xv, yvw),

where the curve E and its twist E′ are given by y2 = x3 + ax and y2 = x3 + a/u · x,
respectively. Recalled from Table 1 and Example 4, the optimal pairing on AFG16
family via biextension can be derived as

optb(P,Q) = Z
p16−1

r

[z]Q′+P ′ .

Hence, it requires to compute Z[z]Q′+P ′ , which can also be done by exploiting Algo-
rithm 1 or 2. For cDBL and cADD performed over Fp4 , the coefficient of E′ is a′ = a/u.
Thus the cost of multiplying an element by a′ can be omitted if a is small. From Algo-
rithms 11 and 12, the costs for cDBL and cADD on Kummer line K = E′/ ⟨±1⟩ with
j(E′) = 1728 over Fp4 are respectively

CostcDBL = 2m4 + 3s4 and CostcDIFFF
p4

= 4m4 + 2s4.

Moreover, the cost for multiplying two elements in Fp4 and Fp16 can be estimated as
4m4. Consequently, from Algorithm 12 the costs for the cubical differential additions
(Lines 5 and 9 in Algorithm 1) are

CostcDIFFbit0 = 2s16 + 3 · 4m4, CostcDIFFbit1 = m16 + 2s16 + 3 · 4m4.

Based on the above analysis, the computational cost for an iteration in Algorithm 1 is

Costcubic0 = CostcDBL + CostcDIFFF
p4

+ CostcDIFFbit0 = 2s16 + 18m4 + 5s4.

Costcubic1 = CostcDBL + CostcDIFFF
p4

+ CostcDIFFbit1 = m16 + 2s16 + 18m4 + 5s4.

36

We now present the cost calculation for the double-and-add ladder (Algorithm 2).
From the previous analysis, the cost for a doubling step is

Costdbl = CostcDBL + CostcDIFFbit0 = 2s16 + 14m4 + 3s4.

As for a double-and-add step, we need to execute two cubical differential additions
(over Fp4 and Fp16) along with a compatible addition. According to Algorithms 10
and 12, the corresponding computational costs are

CostcDIFFF
p4

= 4m4 + 2s4, CostcDIFFbit1 = m16 + 2s16 + 3 · 4m4,

CostcADD = 4m16 + s16 + 19m4 + s4.

On this basis, the computational cost for a double-and-add step in Algorithm 2 is

Costdbladd = CostcDIFFF
p4

+ CostcDIFFbit1 + CostcADD = 5m16 + 3s16 + 35m4 + 3s4.

4.3 Implementation detail and cost analysis for super-optimal
ate pairing on BW family

We now investigate the concrete computational processes for the super-optimal ate
pairings on families BW14 and BW13 via biextension. Besides, we also present the
computational cost analysis for each iteration of the biextension ladders. For sim-
plicity, we only provide the technical details for the pairing-friendly curves with
CM-discriminant D = 1.

4.3.1 Super-optimal ate pairings on BW14 family

In this subsection, we first explore to derive the algorithm for the super-optimal ate
pairing on family BW14 with D = 1 utilizing biextension. The field Fp14 can be
constructed as

Fp ⇒ Fp7 = Fp[u]/(u
7 − α)⇒ Fp14 = Fp7 [v]/(v2 − u),

where α ∈ Fp. According to Table 1, the super-optimal ate pairing on BW14 family
with D = 1 through biextension can be derived as

soptb(P,Q) =
(
Zz
[z]Q′+P ′ · Zp4

[z]Q′+σ−1(P ′)

) p14−1
r

,

where ϕ is a degree-2 twist isomorphism

ϕ : E′ → E, (x, y) 7→ (xu, yuv).

The curve E and its twist E′ are defined as y2 = x3 + ax and y2 = x3 + a/u · x,
respectively. Moreover, as mentioned in Section 2.1, E is equipped with an efficiently-
computable automorphism σ : (x, y) 7→ (−x, βy), where β ∈ Fp satisfies β2 =

37

−1. From the above formula, we need to compute two coordinates Z[z]Q′+P ′ and
Z[z]Q′+σ−1(P ′). An intuitive approach is to separately calculate them by Algorithm
1 (or Algorithm 2). Nevertheless, it is worth noting that part of the computation
can be shared. In the following, we describe how to share the information during the
computations of Z[z]Q′+P ′ and Z[z]Q′+σ−1(P ′).

In each iteration step of the cubical (resp. double-and-add) ladder in Algorithm
1 (resp. Algorithm 2), the (X : Z)-coordinates of [k]Q′ are both needed in the
phase of computing Z[z]Q′+P ′ and Z[z]Q′+σ−1(P ′). Consequently, we can accomplish
the computation of these two coordinates in the same ladder. The shared cubical and
double-and-add ladders are presented in Algorithms 3 and 4, respectively.

Algorithm 3 The shared cubical ladder
Input: The points Q′ = (XQ′ : ZQ′), P ′ = (XP ′ : ZP ′), Q′ + P ′ = (XQ′+P ′ :

ZQ′+P ′) and Q′ + σ−1(P ′) = (XQ′+σ−1(P ′) : ZQ′+σ−1(P ′)) ∈ E′. The inverses of
the X-coordinates of Q′, P ′, Q′−P ′ and Q′−σ−1(P ′): iXQ′ , iXP ′ , iXQ′−P ′ and
iXQ′−σ−1(P ′). The scalar z =

∑N
i=0 ni2

i.
Output: The points [z]Q′ + P ′ = (X[z]Q′+P ′ : Z[z]Q′+P ′) and [z]Q′ + σ−1(P ′) =

(X[z]Q′+σ−1(P ′) : Z[z]Q′+σ−1(P ′)).
1: R← Q′, S ← cDBL(Q′), T1 ← cDIFF(P ′ +Q′, Q′, iXP ′)
2: T2 ← cDIFF(σ−1(P ′) +Q′, Q′,−iXP ′)
3: for i = N−1 to 0 do ▷ R = [k]Q′, S = [k+1]Q′, T1 = [k]Q′+P ′, T2 = [k]Q′+σ−1(P ′)

4: U ← cDIFF(S,R, iXQ′)
5: if ni = 0 then
6: T1 ← cDIFF(T1, R, iXP ′)
7: T2 ← cDIFF(T2, R,−iXP ′)
8: R← cDBL(R)
9: S ← U

10: else
11: T1 ← cDIFF(S, T1, iXQ′−P ′)
12: T2 ← cDIFF(S, T2, iXQ′−σ−1(P ′))
13: S ← cDBL(S)
14: R← U
15: end if
16: end for
17: return T1, T2

We now make a cost analysis for each iteration step in these two ladders. During an
iteration, the operation of multiplying an element by 1/XP ′ over Fp14 can be regarded
as a shifting in cDIFF if the bit is 0 (Lines 6 and 7 in Algorithm 3, or Lines 5 and 6
in Algorithm 4). And the cost for multiplying two elements in Fp7 and Fp14 can be
estimated as 2m7. Consequently, according to Algorithm 10, the computational costs
for the cubical differential additions (Lines 6, 7, 11, 12 in Algorithm 3, or Lines 5, 6,

38

Algorithm 4 The shared double-and-add ladder
Input: The points Q′ = (XQ′ : ZQ′), P ′ = (XP ′ : ZP ′), Q′ + P ′ = (XQ′+P ′ :

ZQ′+P ′) and Q′ + σ−1(P ′) = (XQ′+σ−1(P ′) : ZQ′+σ−1(P ′)) ∈ E′. The inverses of
the X-coordinates of Q′, P ′, Q′−P ′ and Q′−σ−1(P ′): iXQ′ , iXP ′ , iXQ′−P ′ and
iXQ′−σ−1(P ′). The scalar z =

∑N
i=0 ni2

i.
Output: The points [z]Q′ + P ′ = (X[z]Q′+P ′ : Z[z]Q′+P ′) and [z]Q′ + σ−1(P ′) =

(X[z]Q′+σ−1(P ′) : Z[z]Q′+σ−1(P ′)).
1: R← Q′, S1 ← Q′ + P ′, S2 ← Q′ + σ−1(P ′)
2: for i = N − 1 to 0 do ▷ R = [n]Q′, S1 = [n]Q′ + P ′, S2 = [n]Q′ + σ−1(P ′)
3: if ni = 0 then
4: R← cDBL(R)
5: S1 ← cDIFF(S1, R,−iXP ′)
6: S2 ← cDIFF(S2, R,−iXσ−1(P ′))
7: else
8: T ← cADD(R,Q′, S1, Q

′ − P ′)
9: R← cDIFF(T,R, iXQ′)

10: S1 ← cDIFF(T, S1, iXQ′−P ′)
11: S2 ← cDIFF(T, S2, iXQ′−σ−1(P ′))
12: end if
13: end for
14: return S1, S2

10, 11 in Algorithm 3) are

CostcDIFFbit0 = 2s14 + 3 · 2m7, CostcDIFFbit1 = m14 + 2s14 + 3 · 2m7.

Besides, from Algorithms 9 and 10 the costs for the cubical point doubling and
differential addition in Fp7 are

CostcDBL = 2m7 + 3s7, CostcDIFFF
p7

= 4m7 + 2s7.

Therefore, the computational cost for an iteration of the shared cubical ladder
(Algorithm 3) is

Costcubic0 = CostcDBL + CostcDIFFF
p7

+ 2CostcDIFFbit0 = 4s14 + 18m7 + 5s7,

Costcubic1 = CostcDBL + CostcDIFFF
p7

+ 2CostcDIFFbit1 = 2m14 + 4s14 + 18m7 + 5s7.

From the previous analysis, the cost for a doubling step in the shared double-and-
add ladder (Algorithm 4) is

Costdbl = CostcDBL + 2CostcDIFFbit0 = 4s14 + 14m7 + 3s7.

As for the double-and-add step, we need to execute three differential additions and
a compatible addition. By Algorithm 12, the computational cost for the compatible

39

addition is

CostcADD = 4m14 + s14 + 11m7 + s7.

On this basis, the computational cost for a double-and-add step is

Costdbladd = CostcDIFFF
p7

+ 2CostcDIFFbit1 + CostcADD = 6m14 + 5s14 + 27m4 + 3s7.

4.3.2 The super-optimal ate pairing on BW13 family

In this subsection, we provide the detailed algorithm for the computation of super-
optimal pairing on family BW13 with CM-discriminant D = 1 [19, Table 5] via
biextension. The extension field Fp13 can be constructed as

Fp ⇒ Fp13 = Fp[u]/(u
13 − α),

where α ∈ Fp. Different from the pairing-friendly curves discussed before, there exists
no twist on BW13 since the embedding degree is a prime. From Table 1 we know that
the super-optimal ate pairing on BW13 family with CM-discriminant D = 1 through
biextension can be obtained as

soptb(P,Q) =

Zz
[z]Q+P · Z

p7

[z]Q+σ−1(P)

Zz+p7

[z]Q · vQ(P)2p
7


p13−1

r

,

where σ is an efficiently-computable automorphism

σ : E → E, (x, y) 7→ (−x, βy) with β2 + 1 = 0.

The cubical and double-and-add ladders can be employed to compute Z[−z]Q+P

and Z[−z]Q+σ−1(P). The corresponding computational processes are presented in
Algorithms 5 and 6.

We now calculate the computational cost for a basic iteration in the cubical and
double-and-add ladder. It follows from Algorithms 9 and 10 that the costs of cDBL
and cDIFF on K = E/ ⟨±1⟩ over Fp13 are

CostcDBL = 2m13 + 3s13, CostcDIFF = 4m13 + 2s13.

More precisely, some of the cubical differential additions (Lines 6 and 7 in Algorithm
5) involve the operation of multiplying two elements in Fp and Fp13 , whose cost can
be taken as 13m. Consequently, according to Algorithm 10 the cost for this type of
cubical differential addition is CostcDIFFbit0 = 3m13 +2s13 +13m. On this basis, from
Algorithm 5 we know that the computational cost for a basic iteration of the shared
cubical ladder is

Costcubic0 = CostcDBL + CostcDIFFbit0 + 2CostcDIFF = 12m13 + 9s13 + 26m,

40

Algorithm 5 The shared cubical ladder
Input: The points Q = (XQ : ZQ), P = (XP : ZP), Q + P = (XQ+P : ZQ+P) and

Q+ σ−1(P) = (XQ+σ−1(P) : ZQ+σ−1(P)) ∈ E. The inverses of the X-coordinates
of Q,P , Q− P and Q− σ−1(P): iXQ, iXP , iXQ−P and iXQ−σ−1(P). The scalar
z =

∑N
i=0 ni2

i.
Output: The points [z]Q + P = (X[z]Q+P : Z[z]Q+P) and [z]Q + σ−1(P) =

(X[z]Q+σ−1(P) : Z[z]Q+σ−1(P)).
1: R← Q, S ← cDBL(Q), T1 ← cDIFF(P +Q,Q, iXP)
2: T2 ← cDIFF(σ−1(P) +Q,Q,−iXP)
3: for i = N − 1 to 0 do ▷ R = [k]Q,S = [k + 1]Q,T1 = [k]Q+ P, T2 = [k]Q+ σ−1(P)

4: U ← cDIFF(S,R, iXQ)
5: if ni = 0 then
6: T1 ← cDIFF(T1, R, iXP)
7: T2 ← cDIFF(T2, R,−iXP)
8: R← cDBL(R)
9: S ← U

10: else
11: T1 ← cDIFF(S, T1, iXQ−P)
12: T2 ← cDIFF(S, T2, iXQ−σ−1(P))
13: S ← cDBL(S)
14: R← U
15: end if
16: end for
17: return T1, T2

Costcubic1 = CostcDBL + 3CostcDIFF = 14m13 + 9s13.

As for the double-and-add step in Algorithm 6, we need to execute one compati-
ble addition, together with three cubical differential additions over Fp13 . Since the
coefficient a is small, from Algorithm 12 the computational cost of cADD is about

CostcADD = 11m13 + 2s13.

On this basis, the computational cost for a basic iteration in the double-and-add
ladder (Algorithm 6) is

Costdbl = CostcDBL + 2CostcDIFFbit0 = 8m13 + 7s13 + 26m,

Costdbladd = CostcADD + 3CostcDIFF = 23m13 + 8s13.

4.4 Cost comparison
Building upon the analyses presented in Sections 4.1, 4.2 and 4.3, we make a con-
crete cost comparison for each basic iteration step within the pairing computation
between Miller’s algorithm and biextension. The cost calculations encompass the
Miller iterations on families BLS12, AFG16, BW14 and BW13. Table 2 illustrates the

41

Algorithm 6 The shared double-and-add ladder
Input: The points Q = (XQ : ZQ), P = (XP : ZP), Q + P = (XQ+P : ZQ+P) and

Q+ σ−1(P) = (XQ+σ−1(P) : ZQ+σ−1(P)) ∈ E. The inverses of the X-coordinates
of Q,P , Q− P and Q− σ−1(P): iXQ, iXP , iXQ−P and iXQ−σ−1(P). The scalar
z =

∑N
i=0 ni2

i.
Output: The points [z]Q + P = (X[z]Q+P : Z[z]Q+P) and [z]Q + σ−1(P) =

(X[z]Q+σ−1(P) : Z[z]Q+σ−1(P)).
1: R← Q, S1 ← Q+ P, S2 ← Q+ σ−1(P)
2: for i = N − 1 to 0 do ▷ R = [n]Q,S1 = [n]Q+ P, S2 = [n]Q+ σ−1(P)
3: if ni = 0 then
4: R← cDBL(R)
5: S1 ← cDIFF(S1, R,−iXP)
6: S2 ← cDIFF(S2, R,−iXσ−1(P))
7: else
8: T ← cADD(R,Q, S1, Q− P)
9: R← cDIFF(T,R, iXQ)

10: S1 ← cDIFF(T, S1, iXQ−P)
11: S2 ← cDIFF(T, S2, iXQ−σ−1(P))
12: end if
13: end for
14: return S1, S2

computational costs of each step of the Miller loop using biextension on these fami-
lies, which are carefully measured and presented, taking into account the properties
of each family in the previous subsections.

Table 2 The comparison of the costs of a basic iteration in evaluating the biextension function
between utilizing cubical and double-and-add (noted as "dadd") ladders on families BLS12 (D = 3),
AFG16 (D = 1), BW14 (D = 1) and BW13 (D = 1).

Family Approach bit = 0 bit = 1

BLS12 cubical m12 + 2s12 + 34m2 + 4s2 2m12 + 2s12 + 34m2 + 4s2
dadd m12 + 2s12 + 28m2 + 2s2 6m12 + 5s12 + 58m2 + 5s2

AFG16 [19] cubical 2s16 + 18m4 + 5s4 m16 + 2s16 + 18m4 + 5s4
dadd 2s16 + 14m4 + 3s4 5m16 + 3s16 + 35m4 + 3s4

BW14 [9] cubical 4s14 + 18m7 + 5s7 2m14 + 4s14 + 18m7 + 5s7
dadd 4s14 + 14m7 + 3s7 6m14 + 5s14 + 27m7 + 3s7

BW13 [19] cubical 12m13 + 9s13 + 26m 14m13 + 9s13
dadd 8m13 + 7s13 + 26m 23m13 + 8s13

From Table 1, we can see that the double-and-add ladder is preferred in the situation
where there are many consecutive zeros appearing during the iteration. As mentioned
in Section 2.4, we can combine the cubical and double-and-add ladder together to

42

achieve the minimum cost for the biextension exponentiation in practice. The corre-
sponding relationships between the cost of multiplications and squarings over each
extension field Fpk (k > 1) and those over the base field Fp are illustrated in Table 3.

Table 3 Computational costs of multiplication and squaring in the finite
field Fpk ([2, Table 9] and [9, Table 7]).

k mk sk

1 m s
2 3m 2m
4 9m 2m2 = 6m
6 18m 2m2 + 3s2 = 12m
7 24m 24s
8 27m 2m4 = 18m
12 54m 2m6 = 36m
13 66m 66s
14 3m7 = 72m 2m7 = 48m
16 81m 2m8 = 54m

By taking s = m in Table 3, we are able to estimate the computational cost required
for each iteration within the biextension computation. The corresponding cost com-
parison measured by Fp-multiplications between employing Miller’s algorithm and
biextension on families BLS12, AFG16, BW14 and BW13 is presented in Table 4. As
for the computational cost of exploiting the Miller’s algorithm, we refer to [2, Table
7] and [19, Table 7] for estimation.

Table 4 The comparison of the corresponding costs of a basic iteration in Miller loop measured
by Fp-multiplications between employing Miller’s algorithm and biextension (including cubical and
double-and-add ladder) on families BLS12, AFG16, BW14 and BW13. Among them, the scenarios
in which the biextension computation is proved to be more efficient are marked in red.

Family Approach bit = 0 bit = 1

BLS12, D = 3
biextension (cubical) 236m 290m
biextension (dadd) 214m 688m

Miller 99m 170m

AFG16, D = 1 [19]
biextension (cubical) 300m 381m
biextension (dadd) 252m 900m

Miller 200m 382m

BW14, D = 1 [9]
biextension (cubical) 744m 888m
biextension (dadd) 600m 1392m

Miller 480m 954m

BW13, D = 1 [19]
biextension (cubical) 1412m 1518m
biextension (dadd) 1016m 2046m

Miller 1636m 3220m

It follows from Table 4 that for the majority of situations, computing pairings by
utilizing biextension is less efficient than the Miller’s algorithm. Nevertheless, for some
specific cases, particularly where the embedding degree is an odd prime and the CM

43

discriminant is D = 1, the computation of pairings by leveraging biextension will be
more efficient. Consequently, the utilization of biextension for pairing computation
holds practical application potential in certain cryptographic scenarios.

5 Conclusion
In this work, we gave a detailed framework for applying biextension to pairing-based
cryptography. In particular, we have shown that biextensions are particularly well
suited to study and construct pairings on elliptic curves. The theory of biextension is
also expected to find other applications in public key cryptography.

Then we have looked at formulas for the biextension arithmetic, which allows to
compute the Tate pairing and its variants in practice. These formulas depend on the
way biextension elements are represented. In the pairing based literature, it is the
Miller representation that is (implicitly) used. Instead, in this paper we have looked
at the cubical representation.

Overall, the efficiency of computing pairings via the cubical representation of
biextension is somewhat comparable, but in general slower, to that of the Miller’s
algorithm. In some specific cases, utilizing the cubical representation is even more effi-
cient. Moreover, compared to the Miller’s algorithm, cubical arithmetic is also more
suitable for parallel computing. We expect that upon further optimization of the cubi-
cal algorithm, it will emerge as a competitive alternative to the Miller algorithm.
Indeed, Miller’s algorithm had years of optimizations, and the pairing families used
in the literature are optimized for this algorithm. But the profile performance of the
cubical representation is very different, notably it behaves pretty well for odd-prime
embedding degree. We hope that new pairing friendly curves optimized for the cubical
arithmetic will emerge as worthy contender. Another useful feature of the cubical rep-
resentation is that it only needs the x-coordinate of the points P,Q, P +Q to compute
e(P,Q), which may prove useful in some cryptographic protocols.

Acknowledgments
This work is supported by the National Natural Science Foundation of China (No.
12441107), Guangdong Major Project of Basic and Applied Basic Research (No.
2019B030302008), and Guangdong Provincial Key Laboratory of Information Security
Technology (No. 2023B1212060026), and PEPR PQ-TLS (the France 2030 program
under grant agreement ANR-22-PETQ-0008 PQ-TLS).

References
[1] Diego F Aranha, Youssef El Housni, and Aurore Guillevic. A survey of elliptic

curves for proof systems. Designs, Codes and Cryptography, 91(11):3333–3378,
2023.

[2] Diego F. Aranha, Georgios Fotiadis, and Aurore Guillevic. A short-list of pairing-
friendly curves resistant to the Special TNFS algorithm at the 192-bit security
level. IACR Communications in Cryptology, 1(3):44, October 2024.

44

[3] Paulo SLM Barreto, Steven D Galbraith, Colm Ó’ hÉigeartaigh, and Michael
Scott. Efficient pairing computation on supersingular abelian varieties. Designs,
Codes and Cryptography, 42:239–271, 2007.

[4] Paulo SLM Barreto, Hae Y Kim, Ben Lynn, and Michael Scott. Efficient algo-
rithms for pairing-based cryptosystems. In Advances in Cryptology—CRYPTO
2002: 22nd Annual International Cryptology Conference Santa Barbara, Cal-
ifornia, USA, August 18–22, 2002 Proceedings 22, pages 354–369. Springer,
2002.

[5] Dan Boneh and Matt Franklin. Identity-Based Encryption from the Weil Pairing.
In Joe Kilian, editor, Advances in Cryptology — CRYPTO 2001, pages 213–229,
Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[6] Dan Boneh, Ben Lynn, and Hovav Shacham. Short Signatures from the Weil
Pairing. In Colin Boyd, editor, Advances in Cryptology — ASIACRYPT 2001,
pages 514–532, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[7] Shiping Cai, Zhi Hu, Zheng-An Yao, and Chang-An Zhao. The elliptic net
algorithm revisited. Journal of Cryptographic Engineering, 14(1):43–55, 2024.

[8] Binglong Chen and Chang-An Zhao. An improvement of the elliptic net
algorithm. IEEE Transactions on Computers, 65(9):2903–2909, 2015.

[9] Yu Dai, Debiao He, Cong Peng, Zhijian Yang, and Chang-an Zhao. Revisiting
Pairing-Friendly Curves with Embedding Degrees 10 and 14. In Kai-Min Chung
and Yu Sasaki, editors, Advances in Cryptology – ASIACRYPT 2024, pages 454–
485, Singapore, 2025. Springer Nature Singapore.

[10] Yu Dai, Fangguo Zhang, and Chang-an Zhao. Don’t Forget Pairing-Friendly
Curves with Odd Prime Embedding Degrees. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, 2023(4):393–419, Aug. 2023.

[11] Iwan Duursma and Hyang-Sook Lee. Tate Pairing Implementation for Hyperel-
liptic Curves y2 = xp − x+ d. In Chi-Sung Laih, editor, Advances in Cryptology
- ASIACRYPT 2003, pages 111–123, Berlin, Heidelberg, 2003. Springer Berlin
Heidelberg.

[12] Youssef El Housni and Aurore Guillevic. Optimized and Secure Pairing-Friendly
Elliptic Curves Suitable for One Layer Proof Composition. In Stephan Krenn,
Haya Shulman, and Serge Vaudenay, editors, Cryptology and Network Security,
pages 259–279, Cham, 2020. Springer International Publishing.

[13] Youssef El Housni and Aurore Guillevic. Families of SNARK-Friendly 2-Chains
of Elliptic Curves. In Orr Dunkelman and Stefan Dziembowski, editors, Advances
in Cryptology – EUROCRYPT 2022, pages 367–396, Cham, 2022. Springer
International Publishing.

[14] Emmanuel Fouotsa, Laurian Azebaze Guimagang, and Raoul Ayissi. x-
superoptimal pairings on elliptic curves with odd prime embedding degrees: BW
13-P 310 and BW 19-P 286. Applicable Algebra in Engineering, Communication
and Computing, pages 1–19, 2023.

[15] David Freeman, Michael Scott, and Edlyn Teske. A taxonomy of pairing-friendly
elliptic curves. Journal of cryptology, 23:224–280, 2010.

[16] Steven D Galbraith, Keith Harrison, and David Soldera. Implementing the Tate
pairing. In International Algorithmic Number Theory Symposium, pages 324–337.

45

Springer, 2002.
[17] Robert P. Gallant, Robert J. Lambert, and Scott A. Vanstone. Faster Point

Multiplication on Elliptic Curves with Efficient Endomorphisms. In Joe Kil-
ian, editor, Advances in Cryptology — CRYPTO 2001, pages 190–200, Berlin,
Heidelberg, 2001. Springer Berlin Heidelberg.

[18] Alexandre Grothendieck. Groupes de Monodromie en Géométrie Algébrique
(SGA 7), volume 288 of Lecture Notes in Mathematics. Springer-Verlag, 1972.

[19] Aurore Guillevic. A Short-List of Pairing-Friendly Curves Resistant to Special
TNFS at the 128-Bit Security Level. In Aggelos Kiayias, Markulf Kohlweiss, Pet-
ros Wallden, and Vassilis Zikas, editors, Public-Key Cryptography – PKC 2020,
pages 535–564, Cham, 2020. Springer International Publishing.

[20] F. Hess, N.P. Smart, and F. Vercauteren. The Eta Pairing Revisited. IEEE
Transactions on Information Theory, 52(10):4595–4602, 2006.

[21] Florian Hess. Pairing Lattices. In Steven D. Galbraith and Kenneth G. Pater-
son, editors, Pairing-Based Cryptography – Pairing 2008, pages 18–38, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg.

[22] Eunjeong Lee, Hyang-Sook Lee, and Cheol-Min Park. Efficient and Generalized
Pairing Computation on Abelian Varieties. IEEE Transactions on Information
Theory, 55(4):1793–1803, 2009.

[23] Jianming Lin, Chang-An Zhao, and Yuhao Zheng. Efficient Implementation of
Super-optimal Pairings on Curves with Small Prime Fields at the 192-bit Security
Level. Cryptology ePrint Archive, Paper 2024/1195, 2024.

[24] David Lubicz and Damien Robert. Arithmetic on Abelian and Kummer Varieties.
Finite Fields and Their Applications, 39:130–158, 5 2016.

[25] Seiichi Matsuda, Naoki Kanayama, Florian Hess, and Eiji Okamoto. Optimised
Versions of the Ate and Twisted Ate Pairings. In Steven D. Galbraith, edi-
tor, Cryptography and Coding, pages 302–312, Berlin, Heidelberg, 2007. Springer
Berlin Heidelberg.

[26] Victor S Miller. The Weil pairing, and its efficient calculation. Journal of
cryptology, 17:235–261, 2004.

[27] Hermann Minkowski. Geometrie der zahlen. BG Teubner, 1910.
[28] David Mumford. Bi-extensions of formal groups. Algebraic geometry, (307-322),

1969.
[29] Yan Feng Qi, Chun Ming Tang, Baoan Guo, and Mao Zhi Xu. Super-optimal

pairings. Applied Mechanics and Materials, 281:127–133, 2013.
[30] Damien Robert. Fast pairings via biextensions and cubical arithmetic. Cryptol-

ogy ePrint Archive, Paper 2024/517, 2024.
[31] Michael Scott. Faster Pairings Using an Elliptic Curve with an Efficient Endo-

morphism. In Subhamoy Maitra, C. E. Veni Madhavan, and Ramarathnam
Venkatesan, editors, Progress in Cryptology - INDOCRYPT 2005, pages 258–269,
Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[32] Katherine Stange. Elliptic nets and elliptic curves. PhD thesis, Brown University,
2008.

[33] Katherine E Stange. The Tate pairing via elliptic nets. In Pairing-Based
Cryptography–Pairing 2007: First International Conference, Tokyo, Japan, July

46

2-4, 2007. Proceedings 1, pages 329–348. Springer, 2007.
[34] F. Vercauteren. Optimal Pairings. Cryptology ePrint Archive, Paper 2008/096,

2008.
[35] Frederik Vercauteren. Optimal Pairings. IEEE Transactions on Information

Theory, 56(1):455–461, Jan 2010.
[36] Lawrence C Washington. Elliptic curves: number theory and cryptography.

Chapman and Hall/CRC, 2008.
[37] Chang-An Zhao, Fangguo Zhang, and Jiwu Huang. A note on the Ate pairing.

International Journal of Information Security, 7(6):379–382, 2008.

Appendix A The related algorithms
In this appendix, we present some associated algorithms required in the pairing com-
putation through biextension, including x-only cubical point doubling, differential
addition and compatible addition algorithms on Kummer line K = E/ ⟨±1⟩ over Fpk ,
with j(E) = 0 or j(E) = 1728.

Algorithm 7 x-only cubical point doubling on the curve E : y2 = x3 + b

Input: A point P = (XP : ZP) in E(Fpk).
Output: The coordinates (X[2]P : Z[2]P) of the double of P .

1: t1 ← X2
P

2: t2 ← t1 ·XP

3: t3 ← Z2
P

4: t4 ← t3 · ZP

5: t5 ← t2 − 2 · 4b · t4
6: t6 ← 4 · t2 + 4b · t4
7: X[2]P ← XP · t5
8: Z[2]P ← ZP · t6
9: return X[2]P , Z[2]P ▷ Total cost: 4mk + 2sk + 1m0

47

Algorithm 8 x-only cubical differential addition on the curve E : y2 = x3 + b

Input: The points P = (XP : ZP), Q = (XQ : ZQ) and P −Q = (XP−Q : ZP−Q) ∈
E(Fpk)/ ⟨±1⟩ with ZP−Q = 1. The inverse of the X-coordinate of the differential
of P and Q: iXP−Q.

Output: The coordinate (XP+Q : ZP+Q)
1: t1 ← XP + ZP

2: t2 ← XP − ZP

3: t3 ← XQ + ZQ

4: t4 ← XP ·XQ

5: t5 ← ZP · ZQ

6: t6 ← t1 · t3 − t4 − t5
7: t7 ← t2 · t3 − t4 + t5
8: XP+Q ← (−4b · t5 · t6 + t24)
9: ZP+Q ← t27 ·XP−Q

10: return XP+Q, ZP+Q ▷ Total cost: 6mk + 2sk + 1m0

Algorithm 9 x-only cubical point doubling on the curve E : y2 = x3 + ax

Input: A point P = (XP : ZP) in E(Fpk).
Output: The coordinates (X[2]P : Z[2]P) of the double of P .

1: t1 ← X2
P

2: t2 ← Z2
P

3: t3 ← a · t2
4: X[2]P ← (t1 − t3)2
5: t4 ← 4XP · ZP

6: Z[2]P ← t4 · (t1 + t3)
7: return X[2]P , Z[2]P ▷ Total cost: 2mk + 3sk + 1m0

Algorithm 10 x-only cubical differential addition on the curve E : y2 = x3 + ax

Input: Two points P = (XP : ZP), Q = (XQ : ZQ) ∈ E(Fpk) with ZP−Q = 1. The
inverse of the X-coordinate of the differential of P and Q: iXP−Q.

Output: The coordinate (XP+Q : ZP+Q)
1: t1 ← XP · ZQ

2: t2 ← XQ · ZP

3: t3 ← (XP + ZP) · (XQ − a · ZQ)− t2 + a · t1
4: t4 ← t23
5: t5 ← (t1 − t2)2
6: XP+Q ← t4 · iXP−Q

7: ZP+Q ← t5
8: return XP+Q, ZP+Q ▷ Total cost: 4mk + 2sk + 2m0

48

Algorithm 11 Compatible addition on the curve E : y2 = x3 + b

Input: Four points P1 = (XP1 : ZP1), P2 = (XP2 : ZP2), P1 + Q = (XP1+Q :
ZP1+Q), P2 −Q = (XP2−Q : ZP2−Q) ∈ E(Fpk) with ZP2 = ZP2−Q = 1.

Output: The coordinate (XP1+P2 : ZP1+P2)
1: t1 ← (XP1 −XP2 · ZP1)

2

2: t2 ← XP2 · ZP1 +XP1

3: t3 ← XP1 ·XP2

4: t4 ← −4b · ZP1 · t2 + t23
5: t5 ← 2(2b · Z2

P1
+ t2 · t3)

6: t6 ← (XP1+Q −XP2−Q · ZP1+Q)
2

7: t7 ← XP2−Q · ZP1+Q +XP1+Q

8: t8 ← XP1+Q ·XP2−Q

9: t9 ← −4b · ZP1+Q · t7 + t28
10: t10 ← 2(2b · Z2

P1+Q + t7 · t8)
11: XP1+P2 ← t4 · t10 − t5 · t9
12: ZP1+P2 ← t4 · t6 − t1 · t9
13: return XP1+P2 , ZP1+P2 ▷ Total cost: 12mk + 6sk + 4m0

Algorithm 12 Compatible addition on the curve E : y2 = x3 + ax

Input: Four points P1 = (XP1 : ZP1), P2 = (XP2 : ZP2), P1 + Q = (XP1+Q :
ZP1+Q), P2 −Q = (XP2−Q : ZP2−Q) ∈ E(Fpk) with ZP2 = ZP2−Q = 1.

Output: The coordinate (XP1+P2 : ZP1+P2)
1: t1 ← XP2 · ZP1

2: t2 ← XP2 ·XP1

3: t3 ← XP2−Q · ZP1+Q

4: t4 ← XP2−Q ·XP1+Q

5: t5 ← (t2 − a · ZP1)
2

6: t6 ← (t4 − a · ZP1+Q)
2

7: t7 ← 2(t3 +XP1+Q) · (t4 + a · ZP1+Q) · t5
8: t8 ← 2(t1 +XP1) · (t2 + a · ZP1) · t6
9: XP1+P2 ← t7 − t8

10: t9 ← (t3 −XP1+Q) · (t2 − a · ZP1)
11: t10 ← (t1 −XP1) · (t4 − a · ZP1+Q)
12: ZP1+P2 ← (t9 + t10) · (t9 − t10)
13: return XP1+P2 , ZP1+P2 ▷ Total cost: 11mk + 2sk + 4m0

49

	Introduction
	Contributions
	Organizations of this paper

	Preliminaries
	Twists and Endomorphisms of Elliptic Curves
	Bilinear Pairings
	Tate pairing and its variants

	Biextensions
	Cubical arithmetic for biextensions

	Main Results
	Biextension for the Tate pairing
	Biextension for Ate Pairing
	Biextension for optimal ate pairing
	Biextension for super-optimal ate pairing
	The super-optimal pairing on the curves with the lack of twists
	The super-optimal ate pairing on curves admitting twists

	Computational procedure and cost analysis
	Computational procedure and cost analysis for ate pairing on BLS12 family
	Computational procedure and cost analysis for optimal ate pairing on AFG16 family
	Implementation detail and cost analysis for super-optimal ate pairing on BW family
	Super-optimal ate pairings on BW14 family
	The super-optimal ate pairing on BW13 family

	Cost comparison

	Conclusion
	The related algorithms

