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Abstract. Fully Homomorphic Encryption (FHE) enables computation on encrypted
data without decryption, demonstrating significant potential for privacy-preserving
applications. However, FHE faces several challenges, one of which is the significant
plaintext-to-ciphertext expansion ratio, resulting in high communication overhead
between client and server. The transciphering technique can effectively address
this problem by first encrypting data with a space-efficient symmetric cipher, then
converting symmetric ciphertext to FHE ciphertext without decryption.
Numerous FHE-friendly symmetric ciphers and transciphering methods have been
developed by researchers, each with unique advantages and limitations. These often
require extensive knowledge of both symmetric cryptography and FHE to fully grasp,
making comparison and selection among these schemes challenging. To address
this, we conduct a comprehensive survey of over 20 FHE-friendly symmetric ciphers
and transciphering methods, evaluating them based on criteria such as security
level, efficiency, and compatibility. We have designed and executed experiments to
benchmark the performance of the feasible combinations of symmetric ciphers and
transciphering methods across various application scenarios. Our findings offer insights
into achieving efficient transciphering tailored to different task contexts. Additionally,
we make our example code available open-source, leveraging state-of-the-art FHE
implementations.
Keywords: Transciphering · Fully homomorphic encryption · Symmetric cipher

1 Introduction
Since Gentry’s blueprint [Gen09], fully homomorphic encryption (FHE) has been viewed
as one of the most promising techniques for privacy-preserving solutions. Initially con-
sidered purely theoretical, FHE has rapidly evolved over recent years. Notable advance-
ments include efficient modern FHE schemes like BGV [BGV14], BFV [Bra12, FV12],
CGGI [CGGI16a, CGGI17], and CKKS [CKKS17]. These schemes have been implemented
in open-source libraries and applied in various privacy-preserving scenarios, from breached
password detection [edg] to secure genome analysis [BGPG20], and even secure classification
with deep neural networks [LLL+].

There is a common perception that FHE involves prohibitively high computational
costs. However, recent advancements in algorithm optimization [CLOT21, BMTPH21,
OPP23] and hardware acceleration [JKA+21, KKK+22, KKC+23] suggest that these costs
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can be significantly reduced. For instance, while directly running ResNet20 inference
under FHE might take thousands of seconds, utilizing efficient approximation algorithms
alongside application-specific integrated circuits (ASICs) can accomplish this task in just
30 milliseconds [PKK+23].

In addition to its high computational cost, FHE faces another significant, albeit
often overlooked, challenge: the large size of its ciphertexts. To facilitate homomorphic
computations on the underlying plaintext, FHE requires additional space in the ciphertext
domain, leading to a substantial ciphertext expansion rate. Indeed, the CGGI scheme
necessitates several kilobytes to encrypt just one bit. On the other hand, schemes like BFV,
BGV, and CKKS incorporate SIMD (Single Instruction Multiple Data) operations [SV14],
allowing multiple messages to be encoded into a single plaintext, which makes them more
space-efficient than CGGI. However, even with SIMD operations, the ciphertext expansion
rate remains notably high in typical applications.

FHE-based applications commonly operate in a client-server model where clients encrypt
and send their data to the cloud servers. The high ciphertext expansion ratio significantly
increases communication overhead, posing a barrier to the widespread adoption of FHE.
Communication resources are not only more costly but also less scalable than computational
resources. To address this issue, a technique known as transciphering1 has been proposed.
The fundamental concept of transciphering can be summarized as follows:2

(1) (One-time setup) The client sets up an FHE system and a symmetric encryption
system and sends the FHE-encrypted symmetric secret key to the server.

(2) After the setup, instead of encrypting its data with FHE, the client could encrypt the
data under symmetric encryption and send the symmetric ciphertext to the server.

(3) To support homomorphic computations, the server needs to homomorphically com-
pute the symmetric decryption circuit, transforming the symmetric ciphertext into
homomorphic ciphertext.

Since symmetric ciphers typically feature lower ciphertext expansion ratio and faster
encryption efficiency, transciphering can kill two birds with one stone: it minimizes both
communication costs and computational overhead on the client side. The primary challenge
of transciphering lies in the high computational complexity on the server side, which is
determined by the size and depth of the symmetric decryption circuit. Conventional
symmetric ciphers like DES and AES are considered unfriendly for transciphering due
to their complex decryption circuits. In response, researchers have focused on designing
FHE-friendly symmetric ciphers (FHE-SCs) with simpler decryption circuit to reduce
transciphering cost.

Currently, a variety of FHE-SCs with innovative designs have been developed. Many of
these operate within the Boolean domain to reduce the per-bit encryption cost. Notable ex-
amples include LowMC [ARS+15], Kreyvium [CCF+16], FLIP [MJSC16], FiLIP [MCJS19],
Rasta [DEG+18], and Dasta [HL20]. Additionally, variants tailored for specific FHE
schemes have been introduced, such as Fasta [CIR22] (a variant of Rasta for HElib), Elisa-
beth [CHMS22, HMS23] (a variant of FiLIP), and the recently proposed FRAST [CCH+24]
for CGGI. Another approach involves designing FHE-SCs with plaintext domains over
prime fields Fp, including Masta [HKC+20], Pasta [DGH+23], HERA [CHK+21], Ru-
bato [HKL+22], and the more recent YupX [LLC+24]. Furthermore, ciphers defined
over Galois extension fields, such as Chaghri [AMT22] and Yu2X [LLC+24], have been
developed.

1Also known as Hybrid Homomorphic Encryption (HHE) in [NLV11, CHMS22].
2Methods that convert one FHE scheme to another [BGGJ20, LHH+21] are occasionally termed

"transciphering", but they aim for enhanced homomorphic properties rather than a reduced expansion
ratio, and thus fall outside our discussion.
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In addition to substituting traditional symmetric ciphers with FHE-SCs, researchers
have also invested significant effort into optimizing the transciphering algorithms themselves,
aiming to homomorphically evaluate symmetric decryption circuits more efficiently. Early
work by [GHS12, CCF+18] explored transciphering with the BGV scheme, while [CHK19]
employed the CLT scheme [CLT14]. More recent studies [CDPP22, BPR24, TCBS23,
WLW+24] have introduced efficient transciphering methods tailored for the CGGI scheme.
Cho et al. [CHK+21] proposed a RtF framework which first converts real numbers to BFV
and then to CKKS, while Aharoni et al. [ADE+23] directly translates AES ciphertexts to
CKKS ciphertexts by exploiting the CKKS scheme.

1.1 Research Questions
Given the extensive variety of FHE-SCs and transciphering methods available, one might
ask: If one wants to implement transciphering in a specific application, which symmetric
cipher and transciphering method should be chosen? Unfortunately, the answer is not
straightforward. It depends on several factors, including resource constraints on the client
side, the plaintext size to be encrypted, and the nature of the subsequent FHE computa-
tional tasks. This Systematization of Knowledge paper will explore these considerations in
detail and aim to achieve the following objectives:

• Providing insights to symmetric cryptographers from the FHE perspective, aiding in
the design of more efficient FHE-SCs.

• Providing insights to FHE cryptographers from the symmetric encryption perspective,
assisting in the selection of appropriate FHE-SCs and the development of more
efficient transciphering methods.

• Providing comprehensive analysis and benchmarks of the current state-of-the-art
transciphering technologies, detailing their capabilities and limitations. These results
could serve as a resource for potential users interested in evaluating the applicability
of these technologies for their specific needs.

We begin by outlining the technical backgrounds of FHE and transciphering. Sub-
sequently, we categorize existing FHE-SCs into four groups based on their algorithmic
properties, individually analyzing their security and compatibility with various transci-
phering methods. We evaluate the performance of each feasible combination of symmetric
cipher and transciphering method, providing recommendations tailored to different ap-
plication scenarios based on our experimental findings. Additionally, we uncover several
intriguing observations that could inform the future design of FHE-SCs and transcipher-
ing methods. Our example code and documentation for all test cases are open-sourced
at https://github.com/AntCPLab/awesome-transciphering.

1.2 Related Work
The Pasta design document [DGH+23] compiles benchmarks for several FHE-SCs. However,
it lacks experiments involving state-of-the-art CKKS-related transciphering methods and
does not discuss AES transciphering, which is a prominent topic in this field. Additionally,
the document considers a relatively simple FHE application consisting of matrix operations.

Transciphering scenarios for secure multi-party computation (MPC), which transform
a symmetric ciphertext into secret-shared plaintexts, have also been explored in [AGR+16,
AABS+20, DGGK21, BPA+23]. These scenarios differ from FHE transciphering in several
ways. Firstly, the threat model requires the client’s secret key to be secret-shared among the
servers in MPC, necessitating trust that the servers will not collude. Secondly, XOR and
addition operations are computationally inexpensive in MPC but not in FHE. Additionally,

https://github.com/AntCPLab/awesome-transciphering
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studies such as [GKR+21, BGK+21] investigate Zero-Knowledge Proofs (ZKP)-friendly
ciphers. Christian Rechberger delivered an excellent talk [Rec] summarizing the history of
FHE/MPC/ZK-friendly symmetric ciphers at STAP 2023.

Concurrent work. Two very recent works also propose a survey on transciphering. In
[ANM25], the authors analyze the security properties of various transciphering schemes
and conduct extensive experiments on Pasta, HERA, and Rubato. Meanwhile [TKLP25]
also provides a study and categorization of existing transciphering methods; although they
do not perform experiments themselves, they incorporate data from existing papers.

1.3 Organization
Section 2 introduces background knowledge pertinent to this paper. Section 3 outlines
our survey methodology. Section 4 compares the features of different symmetric ciphers
under transciphering. Section 5 presents the experimental results. Section 6 discusses our
observations.

2 Preliminaries
In this section, we describe the necessary background knowledge of FHE and transciphering.

2.1 Fully Homomorphic Encryption
The concept of Homomorphic Encryption was introduced by Rivest et al. [RAD+78] in 1978.
However, a true Fully Homomorphic Encryption (FHE) scheme that allows arbitrary com-
putations on encrypted data was not realized until Gentry’s breakthrough in 2009 [Gen09].
Today, numerous open-source FHE libraries are available within the community, including
HElib [HS20], Microsoft SEAL [SEA23], PALISADE/OpenFHE [BAB+22], Lattigo [lat23],
TFHE [CGGI16b], and Concrete [Zam22]. These libraries are maintained by world-class
FHE experts and provide state-of-the-art implementations of the BFV, BGV, CKKS, and
CGGI schemes.

Informally, an FHE scheme comprises the following four probabilistic polynomial time
(PPT) algorithms:

• KeyGen. Generate the keys (sk, pk, evk) ← KeyGen(1λ). Given the security
parameter λ, output the public key pk, secret key sk, and evaluation key evk.

• Encrypt. Given a plaintext m ∈ Zp and the public key pk, output its ciphertext
ct = Encrypt(m, pk).

• Decrypt. Given a ciphertext ct and the secret key sk, output the corresponding
plaintext m = Decrypt(ct, sk).

• Evaluate. Given two ciphertexts ct0 and ct1, a function F : Z∗
p → Zp, and

the evaluation key evk, output a new ciphertext ct′ = Evaluate(ct0, ct1,F, evk)
that decrypts to the evaluation of the underlying plaintexts of ct0 and ct1: m′ =
F(m0, m1).

Some FHE schemes such as BFV/BGV/CKKS additionally support the following SIMD
functions:

• SIMD Encrypt. Given a vector m⃗ ∈ ZN
p and the public key pk, output the

ciphertext ct = SIMDEncrypt(m⃗, pk).
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• SIMD Decrypt. Given a SIMD encrypted ciphertext ct and the secret key sk,
output the corresponding plaintext vector m⃗ = SIMDDecrypt(ct, sk).

• SIMD Evaluate. Given two SIMD encrypted ciphertexts ct0 and ct1, a func-
tion F : Z∗

p → Zp, and the evaluation key evk, output a new ciphertext ct′ =
SIMDEvaluate(ct0, ct1,F, evk) that decrypts to a vector m⃗′ representing the point-
wise evaluation of the underlying plaintexts of ct0 and ct1:

m⃗′
i = F(m⃗0

i , m⃗1
i ) for all i ∈ {1, 2, . . . , N}.

Note that FHE schemes also support homomorphic evaluations between ciphertext
and plaintext. When the context is clear, we may abbreviate the operations as
Evaluate(ct0, m1,F, evk) or SIMDEvaluate(ct0, m⃗1,F, evk).

Typically, FHE schemes support only a limited evaluation depth, and exceeding this
limit results in a decryption error. In order to implement the computation of arbitrary
multiplication depths, expensive bootstrapping procedure is required:

• Bootstrapping. Given a ciphertext ct that has exhausted its evaluation depth
and an evaluation key evk, output a refreshed ciphertext ct′ = Boot(ct, evk), which
decrypts to the same plaintext as ct but restores the ability to support further
evaluations.

FHE schemes3 and their expansion factors. The security of the BGV [BGV14] and
BFV [Bra12, FV12] schemes relies on the hardness assumption of the Learning With
Errors (LWE) or Ring Learning With Errors (RLWE) problem. RLWE-based schemes
enable SIMD operations, with ciphertexts represented as polynomial pairs with coefficients
modulo q: ct ∈ R2

q,N , where Rq,N = Zq[X]/(XN + 1).
In the SIMD setting, a message vector m⃗ ∈ ZN

p is encoded as a polynomial over
Rp, and then encrypted as ciphertext over R2

q , leading to an initial expansion rate of
2 log q/ log p.4 However, the ciphertext expansion rate could worsen in practice. In the
BGV/BFV schemes, homomorphic functions F operate over the field modulo p. Yet,
real-world applications typically work on integers or real numbers. To ensure meaningful
results, p must be large enough to accommodate the largest possible calculation output.
Consequently, the original plaintext often occupies only a fraction of p, leading to a much
higher real ciphertext expansion rate, frequently reaching tens or even hundreds.

The CKKS scheme [CKKS17] operates like BFV but is significantly faster. The key
distinction is that CKKS does not preserve the plaintext modulus p during homomorphic
operations. Instead, it employs a rescaling step to prevent overflow. The downside of this
approach is that, without the “gap” between q and p, CKKS cannot distinguish small
RLWE noise from the plaintext, resulting in approximate decryption rather than the exact
decryption provided by BGV/BFV. Despite this, the ciphertext expansion rate of CKKS
(with SIMD) remains in the range of several tens [JKLS18, HHCP18, HHW+21].

The CGGI scheme [CGGI16a] is notable for its highly efficient bootstrapping process,
which is two to three orders of magnitude faster than those of the BGV, BFV, or CKKS
schemes. Initially designed for binary operations, recent advancements [CJP21] have
extended CGGI to support multi-bit functional bootstrapping. However, CGGI’s rapid
bootstrapping is incompatible with SIMD packing, in other words, a CGGI ciphertext
over ZN

q can encrypt only a single plaintext message Zp. As a result, CGGI’s ciphertext
expansion rate is orders of magnitude higher than that of other FHE schemes.

3We only introduce widely-used FHE schemes and omit older ones, such as the CLT scheme [CLT14]
based on integers.

4This expansion rate can be optimized to log q/ log p [CLR17].
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Figure 1: Transciphering framework based on stream cipher.

2.2 Transciphering Routines
SIMD transciphering. For transciphering to BFV, BGV, or CKKS, the SIMD property
can be utilized to process multiple symmetric ciphertexts in parallel. Specifically, let the
block size of the symmetric cipher be b, and let Si

j denote the ith value within the jth

block. The symmetric ciphertexts for N blocks can be represented as N vectors:

S⃗j = (S0
j , S1

j , . . . , Sb−1
j ), where 0 ≤ j < N.

These N vectors can be transposed into b vectors, where each vector can be treated as an
FHE plaintext:

m⃗i = (Si
0, Si

1, . . . , Si
N−1), where 0 ≤ i < b.

Since values at the same index across different blocks are typically processed similarly, SIMD
operations can be applied to each m⃗i, thereby handling all N blocks simultaneously. This
method is also referred to as “row packing” in [CHK+21], and it offers higher throughput
compared to other packing methods. Therefore, we have chosen this method for our
experiments.

The first layer of the transciphering circuit performs SIMD ciphertext-plaintext evalua-
tions on m⃗i using the FHE-encrypted secret key, resulting in b FHE ciphertexts. Subsequent
layers execute further SIMD evaluations on these b ciphertexts to complete the transci-
phering process. SIMD plays a crucial role in achieving high transciphering throughput.
However, its effectiveness relies on symmetric encryption modes that allow parallel block
processing. For instance, modes like Cipher Block Chaining (CBC), where each block
depends on the previous one, are inherently sequential and thus incompatible with SIMD-
based transciphering.

Offline-online paradigm. In the introduction, we described the transciphering process
as “homomorphically evaluating the decryption circuit” for simplicity. In practice, more
efficient methods are often employed. One commonly used approach leverages a stream
cipher [CCF+18]. Notably, block ciphers can also be adapted to function as stream ciphers
by operating in counter (CTR) mode. In this framework, the plaintext is masked—typically
using an XOR operation—with a pseudorandom keystream.

This approach splits the transciphering process into an offline (preprocessing) phase and
an online phase, as shown in Fig. 1. In the offline phase, the server uses the FHE-encrypted
secret key to homomorphically generate an encrypted pseudorandom keystream, which
is data-independent and can be computed in advance. In the online phase, the server
combines the precomputed keystream with the symmetric ciphertext, removing the mask
and converting it into an FHE ciphertext of the original plaintext. By offloading intensive
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tasks to the offline phase, this strategy enhances the online process, making it ideal for
low-latency scenarios.

3 Survey Methodology
Rather than listing individual works, we categorize related symmetric ciphers and transci-
phering methods based on their inherent properties, enabling a clearer comparison of their
design principles and efficiency.

3.1 Classification of Symmetric Ciphers
The message format of a symmetric cipher plays a critical role in ensuring seamless
integration with FHE schemes. Different FHE schemes are optimized for specific types of
operations. For example, schemes like CGGI are designed to efficiently handle binary (bit-
wise) operations, whereas schemes such as BGV and BFV are better suited for operations
on larger word sizes modulo p.

Given these considerations, we classify existing symmetric ciphers employed in transci-
phering into four distinct groups based on their message format and compatibility with
different FHE schemes. This categorization helps in selecting the most appropriate cipher
for a given application and FHE scheme.

1) FHE-friendly Z2 Ciphers: This category includes ciphers such as Kreyvium,
FiLIP-like stream ciphers, and LowMC, Rasta-like block ciphers. These ciphers are specifi-
cally designed to minimize the number of Boolean gates in their encryption/decryption
functions, which are formulated as Boolean circuits. Their design makes them highly
compatible with FHE schemes that rely on efficient evaluation of Boolean operations.

2) Fp Ciphers: This group consists of ciphers like Masta, Pasta, HERA, and Rubato,
where encryption and decryption functions are defined over arithmetic modulo a prime
number p. These ciphers are well-suited for FHE schemes that operate on modular
arithmetic, such as BGV or BFV, which can process message in Fp efficiently.

3) Standard Ciphers: This group encompasses widely used and standardized sym-
metric ciphers, with AES serving as the most notable example. Most standard ciphers are
Z2 ciphers, but their design does not account for FHE compatibility. Consequently, their
encryption and decryption functions typically involve a higher number of gates compared
to FHE-friendly Z2 ciphers in Group 1. Despite this, their widespread adoption and
cryptographic robustness make them an important consideration for transciphering.

4) F2n Ciphers: This category includes ciphers whose operations and plaintexts are
defined over the finite field F2n , such as Chaghri and Yu2X. AES can also be interpreted
over F2n [GHS12]. However, an important limitation is that transciphering over F2n can
only be used for FHE computations that operate on F2n . Most practical applications
operate on numeric or Boolean values, and currently, there is no efficient method to convert
elements from F2n into these formats under FHE. While a few studies have explored
F2n -based applications, such as GHASH [MV04], their practicality remains limited. Since
this Systematization of Knowledge (SoK) focuses on transciphering for practical FHE
tasks, we choose not to dedicate significant attention to transciphering methods over F2n .

3.2 Classification of Transciphering Methods
We categorize existing transciphering methods into the following four groups, of which
only the latter three are deemed sufficiently efficient.

Old methods. In the early days of FHE, homomorphically evaluating the AES circuit was
often considered as a “benchmark” for assessing FHE performance. However, compared to
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the more recent transciphering methods, these early efforts are consistently outperformed
and thus less practical for current applications.

• Transciphering to BGV scheme: BGV support extended SIMD operations on
vectors in F2n . This allows F2n or Z2 ciphers5 to use BGV for SIMD transciphering
[GHS12, AMT22]. As mentioned in Section 3.1, due to the infeasibility of F2n for
subsequent computations, We do not delve extensively into methods along this line
in our SoK.

• Transciphering to Vanilla FHE schemes: Cheon et al. [CCK+13] and Coron et
al. [CLT14] tested the AES evaluation based on the vDGHV [VDGHV10] scheme,
while Doröz et al. [DHS16] evaluated the AES circuit using the LTV [LATV12]
scheme. These FHE schemes themselves are usually not efficient enough to complete
useful tasks.

CGGI-based methods. The CGGI-based scheme supports Boolean plaintext domains
by representing bits within a specific interval of the torus, enabling the evaluation of any
binary gate via a single bootstrapping operation, referred to as gate bootstrapping. From
this perspective, CGGI is particularly well-suited for symmetric ciphers whose functionality
can be represented as binary circuits.

In addition to gate bootstrapping (GBS), CGGI supports programmable bootstrapping
(PBS) and circuit bootstrapping (CBS), enabling the evaluation of arbitrary functions in
FHE and LHE modes, respectively. The computational cost ranking is as follows: GBS
< PBS < CBS. GBS is lighter than PBS due to smaller parameters, while CBS, which
uses PBS as a sub-procedure, is roughly ten times more expensive than PBS. All these
bootstrapping methods rely on the CMUX gate as the fundamental operation.

The ciphertext formats in CGGI-based schemes include three types: LWE, RLWE
and GGSW. The first two ciphertext types can be viewed as specific instances of GLWE
ciphertext c ∈ Rk+1

q,N , where LWE corresponds to the case when N = 1 and RLWE
corresponds to k = 1. For GGSW ciphertext, C ∈ R

ℓ(k+1)×(k+1)
q,N , where ℓ is the length of

the decomposition, it essentially consists of multiple GLWE ciphertexts, which encrypts
the secret key of the LWE to serve as bootstrapping key. The homomorphic multiplication
GGSW × GLWE → GLWE is the basic unit of blind rotation. Typically, the size of
a GGSW ciphertext is several times larger than a single GLWE ciphertext. Efficient
conversion between these ciphertext types is supported by CGGI-based schemes, further
enhancing the usability of the framework. For more details, refer to [CGGI20].

These capabilities make CGGI a powerful tool for evaluating symmetric ciphers,
especially those involving S-boxes, such as AES [TCBS23, BPR24, WWL+23, WLW+24].

While CGGI-based methods typically offer lower latency, they tend to have lower
throughput when compared to other FHE schemes, primarily due to the absence of SIMD
support in CGGI. This trade-off arises from the inherent design choices prioritizing fast
execution over parallelism.

Real-to-Finite-field (RtF) framework. The concept of the Real-to-Finite-field (RtF)
framework [CHK+21] involves designing a symmetric cipher where the ciphertext domain
is modulo p, matching the plaintext domain of BFV, thereby facilitating an efficient
transciphering process into BFV ciphertext. Recognizing CKKS’s exceptional performance
in privacy-preserving applications, the RtF framework further proposes converting the
BFV ciphertext into CKKS ciphertext, enabling efficient and secure computation over real
numbers under encryption.

5A Z2 element can be viewed as an F2n element utilizing only one coefficient.
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Binary-to-Real (BtR) framework. Symmetric ciphers usually have an avalanche effect,
that is a single-bit error will lead to totally different decryption results. Given CKKS’s
inherent approximation nature, directly transciphering symmetric ciphertext into CKKS
ciphertext is challenging. Fortunately, as proposed in the BLEACH framework [DMPS24],
CKKS can be used to encrypt binary plaintext by representing a bit x ∈ {0, 1} as a real
number x + ϵ for some small noise |ϵ| ≪ 1. This allows for implementing binary gates such
as AND ( x∧y as x ·y) and XOR ( x

⊕
y as (x− y)2) through arithmetic circuits. A recent

work XBOOT [NHY+25] further optimizes XOR evaluations by using addition with lazy
reduction instead of costly multiplications. The growth of the error term ϵ during these
operations could be addressed by employing step functions [CKK20] or bootstrapping.
These approaches enable efficient CKKS transciphering when the symmetric cipher can be
modeled as a binary circuit. We denote such transciphering method as Binary-to-Real
(BtR).

4 Symmetric Ciphers Used in Transciphering
In this section, we analyze the proposed symmetric ciphers used in transciphering by
groups. We describe the structure and security of these ciphers, and discuss their suitability
for transciphering. An overview is given in Table 1.

Table 1: Overview of symmetric ciphers vs transciphering.
Transciphering method Message format FHE-friendly Z2 ciphers AES Fp ciphers

CGGI-based Binary
RtF Numeric
BtR Binary

( ), ( ), and ( ) denote the compatibility level of the ciphers for each transci-
phering method, ranging from least compatible to compatible ( < < ).

4.1 FHE-friendly Z2 Ciphers
This section includes some newly designed FHE-friendly symmetric ciphers over Z2.

4.1.1 Stream Ciphers

Kreyvium. In a recent exploration, the standardized cipher Trivium [RB08] and its
variant Kreyvium [CCF+16] have been considered as candidates for transciphering [BOS23].
Trivium is one of the seven stream ciphers recommended by the eSTREAM project.6 It
features a small number of nonlinear operations in the warm-up phase7. However, Trivium
offers only an 80-bit security level, which is considered marginal in current standards.
Kreyvium, designed as a variant of Trivium, elevates this security to 128 bits with similar
AND depth and FHE performance.

These NLFSR8-based stream ciphers typically require fewer Boolean gates compared
to block ciphers. This efficiency is due to the fact that only a small number of Boolean
gates are employed at each step, making them particularly well-suited for transciphering
with the CGGI method. Additionally, after the warm-up phase, these ciphers can generate

6The eSTREAM project [DLSK05] is a competition run via a European project, between 2004 and
2008, to identify new stream ciphers.

7To produce k bits of output, one has to run the update function 1152 + k times as it requires to
discard the first 1152 bits of output.

8A Non-Linear Feedback Shift Register (NLFSR)-based stream cipher is a type of stream cipher that
utilizes a non-linear feedback shift register as its core component to generate a pseudorandom keystream.
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a single keystream bit with a low cost. This characteristic leads to improved throughput
in homomorphic evaluations, making them advantageous in FHE.

The Filter Permutator (FP) ciphers. Filter Permutators (FPs) were introduced by Méaux
et al. at Eurocrypt 2016 [MJSC16], alongside the FLIP stream cipher. However, FPs were
later found to have significant vulnerabilities [DLR16]. To address these issues, Improved
Filter Permutators (IFPs) and the FiLIP cipher were proposed [MCJS19], incorporating
lightweight subset selection and whitening steps that are compatible with CGGI-based
FHE schemes.

Limitations. The early versions of the FP cipher family exhibited poor performance
due to the numerous gate bootstrapping operations required to generate a single bit, with
each gate bootstrapping containing several hundred CMUX gates.

Improved throughput. Subsequent research built on multi-value PBS, which enables
the operation of arbitrary functions on multiple bits during a single PBS execution. This
approach led to the development of Elisabeth-4, which defines the plaintext domain in Z16
and improves throughput by outputting 4 bits per evaluation. However, Elisabeth-4 was
later broken by an algebraic attack [GBJR23]. To address these vulnerabilities, Hoffmann
et al. [HMS23] introduced patched designs, including Elisabeth-b, Gabriel, and Margrethe,
which aim to enhance security while preserving the efficiency of FHE. However, these
ciphers incur at least double the TFHE evaluation cost compared to Elisabeth. They still
suffer from the expensive cost of PBS.

Bootstrapping-free. A notable advancement came with the introduction of FiLIP-
144 [HMR20, CDPP22], which incorporates a newly proposed filtering function called
XOR-Threshold. This function eliminates the need for gate bootstrapping, replacing it
with much cheaper CMUX gates. Typically, FiLIP-144 can generate one bit of keystream
at a cost of less than one gate bootstrapping.

Combined optimization. By combining a larger plaintext domain (Z16) with the
bootstrapping-free technique, an optimized implementation of Margrethe was introduced
by [AGHM24]. In their evaluation, only inexpensive CMUX gates and homomorphic
addition were utilized, resulting in excellent performance.

4.1.2 Block Ciphers

LowMC and Rasta family. LowMC, proposed at Eurocrypt 2015, minimizes multiplicative
complexity by using randomly generated matrices in the linear layer, reducing AND depth
and improving transciphering performance [ARS+15]. However, various attacks have
prompted updates, resulting in the current version, LowMCv3 [DEM16, DLMW15, RST18].

The Rasta family [DEG+18] uses a quadratic nonlinear layer and randomized linear
matrices to improve throughput but incurs higher ANDs per bit. While Dasta [HL20]
reduces randomness by using bit-permutations, it doesn’t improve homomorphic perfor-
mance. Fasta [CIR22] optimizes for homomorphic evaluation in HElib but is limited by its
fixed parameters.

Limitations. LowMC and Rasta were designed to minimize multiplication depth and
implemented on the BGV scheme where XOR operations were considered "free". To reduce
AND depth without compromising security, these Z2 block ciphers introduced many gates
at each level. However, when evaluated with CGGI-based methods, the XOR gates are not
free and incur expensive bootstrappings, causing significant transciphering latency and
limiting performance.

FRAST. To address the limitations of LowMC and Rasta, FRAST [CCH+24] was
proposed, which leverages the power of multi-value PBS with the plaintext domain defined
in Z16. By using Z16, FRAST can process the 4-bit S-box with a single PBS evaluation,
significantly reducing the number of PBS compared to earlier schemes.
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A key advancement in FRAST is the use of GGSW-encrypted symmetric keys. Specif-
ically, the CMUX gate is applied, which takes the GGSW-encrypted symmetric key as
input and processes the resulting GLWE ciphertext from the S-box PBS. This approach,
referred to as double-blind rotation, efficiently integrates the symmetric key with several
inexpensive CMUX gates, thus reducing computational overhead and improving overall
performance.

4.1.3 Summary of FHE-friendly Z2 Ciphers.

Security. FHE-friendly block ciphers mitigate statistical attacks by incorporating ran-
domized elements during each encryption, such as randomized linear matrices in LowMC
and Rasta or randomized S-boxes in FRAST. Despite these safeguards, the limited mul-
tiplicative depth inherent to FHE-compatible encryption systems produces low-degree
equations for secret key recovery, rendering them susceptible to algebraic attacks [LSMI21].

Traditional stream ciphers, such as Kreyvium and Trivium, face state-of-the-art attacks
called monomial prediction techniques [HST+21, HHLW24]. These ciphers benefit from
extensive community-driven optimization efforts, with current security records for Trivium
and Kreyvium remaining at 851 and 899 rounds, respectively [HHLW24].

Filter Permutator (FP) ciphers derive their security from the cryptographic strength of
the underlying one-way function [Gol00, BY03]. Researchers should stay informed about
recent advancements in bit-fixing correlation attacks [FLLL24], which have compromised
certain FiLIP PRGs, particularly those incorporating the XOR-Threshold function.

In summary, while cryptanalysis methods for Z2 ciphers are well-developed, newly
proposed techniques still pose significant security threats. Continued efforts from the
research community are essential to bolster confidence in these ciphers and should remain
a priority.

Transciphering efficiency. Most works combine FHE-SCs over Z2 with CGGI-based
transciphering, aiming to reduce the number of bootstrapping operations during evaluation.
This is primarily achieved through two techniques: 1) GGSW-based LUT: This technique
uses GGSW-encrypted ciphertexts as input indices, selecting low-noise plaintext outputs
with minimal use of cheap CMUX gates; 2) Leveraging multi-value PBS: By expanding
the plaintext domain, multiple bits can be updated in a single PBS operation, thereby
reducing the total number of expensive PBS operations.

A limitation of using GGSW-encrypted symmetric keys is the increased key size,
as GGSW ciphertexts are several orders of magnitude larger than LWE ciphertexts.
Nevertheless, these optimizations, when combined with the advanced features of CGGI
schemes, result in significant improvements in overall performance.

Despite these significant improvements, CGGI-based methods still face low throughput
issues due to the absence of SIMD support. The BtR framework, designed for SIMD eval-
uation of boolean circuits, could serve as a potential solution for efficiently transciphering
large volumes of Z2 ciphers.

4.2 Fp Ciphers for Word-Wise HE
The FHE schemes BGV, BFV, and CKKS efficiently handle arithmetic operations, like
addition and multiplication, on multiple data simultaneously. The gap between boolean
symmetric ciphers and FHE operations on prime numbers has inspired the design of
FHE-SCs defined in Fp.

Masta and Pasta. Masta [HKC+20], an Fp variant of the Z2 cipher Rasta, aims to
improve throughput by replacing the bit-based structure of Z2 with larger primes in Fp.
The approach helps to scale better in terms of arithmetic efficiency. However, a key
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challenge arises from the randomized matrices used during evaluation, which result in
quadratically increasing plaintext-ciphertext multiplications. This quadratic complexity
leads to a performance bottleneck, as the number of homomorphic plaintext-ciphertext
multiplications grows significantly with larger block size, limiting the overall efficiency.

Pasta [DGH+23] addresses some of these issues by reducing the latency compared
to Masta. This is achieved through a block-splitting strategy, which halves the matrix
size from 2t to t. While this reduces the processing time for each individual block, the
throughput doesn’t improve significantly because the total output is also halved, thus
limiting the performance gain.

Pastav2 [GLR+24] improves upon Pasta by reducing the randomness required in the
cipher. Only the first round of the matrix multiplication is randomized, while subsequent
matrices are fixed. This reduces the complexity of random matrices generation and
improves client-side performance. However, despite these improvements, the inherent
inefficiency in the homomorphic evaluation remains, as the underlying issue of quadratic
plaintext-ciphertext multiplication persists.

Limitations. A common limitation across Masta, Pasta, and Pastav2 is the reliance
on matrix multiplication in their linear layers to enhance diffusion and security. While
this is effective for cryptographic strength, it introduces significant overhead in SIMD
evaluations. Specifically, the quadratic increase in plaintext-ciphertext multiplications
during such evaluations leads to a bottleneck in performance.

Randomized key schedule: HERA and Rubato. HERA [CHK+21], proposed alongside
the RtF framework, first transciphers data into BFV ciphertext and then converts it
into CKKS ciphertext. HERA enhances security through component-wise multiplication
between a randomized vector and the symmetric key, reducing plaintext-ciphertext multi-
plication to linear growth. It also reduces the block size to t = 16 for better client-side
performance, but this increases multiplication depth to 15 and consumes more server-side
noise budget.

Rubato [HKL+22] reduces multiplication depth by introducing Gaussian noise after
encryption, which lowers server-side costs but increases client-side overhead. This addition
of Gaussian noise effectively combines the hardness assumption of Learning With Errors
(LWE) with the security of symmetric ciphers, significantly enhancing the overall security
of the system.

Limitations. Notably, an algebraic attack on HERA, which exploits multiple collisions
in round keys, was proposed in [LKSM24]. This attack can peel off the last non-linear layer
of the cipher, allowing a full-round attack on its 192/256-bit security claim. While the
128-bit security claim remains unaffected, this highlights the inherent trade-off between
security and performance. For Rubato, a potential full-round attack [GMAH+23] exists
when p is non-prime. Even if Rubato assumes p to be prime, its security still requires
further investigation.

Another limitation of Rubato is its reliance on the CKKS scheme, which leads to a
ciphertext expansion ratio (CER) greater than 1:1, typically around 1:1.26. Specifically,
an additional scaling factor δ is required to convert floating-point data into integers for
transciphering in the BFV scheme, resulting in a CER of p/δ. This expansion arises from
the accuracy rounding similar to the CKKS scheme when dealing with floating-point values.
While this design improves security and server-side performance, it limits the input to a
workload that is less sensitive to small deviations.

4.2.1 Security of Fp Ciphers.

Although ciphers based on Fp are efficient for encryption, their security is not as well
understood as that of Z2 ciphers. Building on the core concept of Rasta, FHE-SCs in Fp

introduces randomness into the update function to mitigate chosen-plaintext attacks [BS91,
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Knu95, BBS99, DS09], meaning that distinct encryption functions are applied to each
quire. However, the primary threat to Fp ciphers arises from algebraic attacks, in which an
adversary treats the secret key as an unknown variable and constructs multiple equations
to solve for it.

Cryptanalysts employ linearization attacks [DEG+18], Gröbner basis attacks [BPW06],
and interpolation attacks [JK97], all of which involve generating equations from the
ciphertext. These equations typically take the form of polynomials with high-degree
monomials. Symmetric ciphers counteract such attacks by increasing the polynomial
density, either by adding more monomials or raising the degree of the terms. To illustrate
this, we focus on linearization attacks to demonstrate how the parameters of Fp ciphers
influence security.

How the parameters of Fp ciphers impact security. A linearization attack consists of
two primary phases: the equation-building phase (where equations are collected from the
output) and the equation-solving phase, which determines the overall time complexity.
The time complexity is estimated as O

((
t+d

d

)ω
)

field operations, where t is the number
of variables, d is the degree of each equation, and 2 ≤ ω < 3 represents the Gaussian
elimination constant.

If the time complexity of attacking an Fp cipher, given specific parameters, is lower
than the claimed security level, the cipher is considered compromised. Typically, the
security level is set to 128 bits. Hybrid approaches can reduce the number of variables
by guessing some of them before building the equations, thus lowering the complexity.
These attacks have a lower-bounded time complexity of O(pj

(
t−j+d

d

)ω) when j primes are
guessed.

Optimization can be achieved by directly constructing low-degree equations, significantly
reducing time complexity based on binomial combinations. This is often accomplished
by peeling off the first or last non-linear layer. However, such attacks involve complex
procedures and additional costs, such as guessing parts of the output block or creating key
schedule collisions [GLR+24, LKSM24]. Countermeasures like truncation in Pasta and
Rubato, or key whitening—where the master key is XORed into the block at the end of
the encryption process—help mitigate these risks in ciphers like Masta and HERA.

In summary, increasing the block size t and the algebraic degree of the cipher’s update
function enhances security, though at the cost of performance. The prime size p of each
element in the block bolsters security by raising the complexity of guessing each element,
but it slightly impacts server-side performance due to greater noise budget consumption
during transciphering. The design of Fp ciphers is still evolving, and the interaction
between cryptanalysis techniques and countermeasures adds complexity to both the design
process and the selection of optimal parameters. Ultimately, Fp ciphers require further
validation to establish confidence in their security.

4.3 AES and Related Transciphering Works
While AES is generally not considered FHE-friendly due to its exceptionally high multipli-
cation depth, it remains a top choice for transciphering applications because of its high
encryption efficiency and widespread adoption.

AES with BGV. In 2012, [GHS12] designed AES-BGV transciphering. Since the BGV
scheme supports SIMD and AES can be treated within F2n , which is highly compatible
with BGV, [GHS12] achieved a remarkable throughput of two seconds per AES block.
However, as discussed in previous sections, elements in F2n are infeasible for subsequent
FHE computations. As a result, AES-BGV transciphering is primarily considered an FHE
benchmark rather than a practical solution for transciphering in real-world workloads.
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AES with CGGI. CGGI supports efficient gate bootstrapping, which can be used to
evaluate AES by replacing all the Boolean gates in the AES circuit. However, this approach
leads to extremely high computational latency [MG21]. Recently, AES evaluation strategies
based on PBS and CBS computation modes have been developed, offering significantly
lower latency.

• PBS-based evaluation: Homomorphic computation of AES based on programmable
bootstrapping technique has been continuously proposed and optimized [SMK22,
TCBS23, BPR24]. Trama et al. [TCBS23] adapted four basic functions of AES to
lookup table operations in order to be compatible with PBS. In particular, they
analyzed the effect of different message spaces on the efficiency of PBS to determine
the optimal parameters for homomorphic computation of AES.

• CBS-based evaluation: Wei et al. [WWL+23] proposed the first efficient AES
homomorphic computation method based on circuit bootstrapping mode. Specifically,
they present a cheap Sbox leveled lookup table using CMux gates combined with
hybrid packing technique. Moreover, the circuit bootstrapping is used to implement
ciphertext conversion to complete the whole AES full-round evaluation. Subsequent
works [WLW+24, WWL+24] further optimize the computational cost of circuit
bootstrapping, thus further improving the evaluation latency of AES.

AES with BtR. The BtR framework enhances Boolean operations and performance in
CKKS. IBM Research [ADE+23] introduced a transciphering method using BtR for the
homomorphic AES evaluation. They fully leveraged SIMD to process thousands of blocks
in parallel, boosting throughput.

While AES was inefficient for bit-wise transciphering like CGGI, its linear layers
(rotations and XORs) are well-suited for BtR. Each block bit maps to a ciphertext, making
bit permutation free through index changes. This efficiency arises from SIMD-friendly,
bitsliced implementations [MN07, Kön08, KS09], enabling parallel processing and high
throughput in BtR.

4.4 Authenticated Encryption in Transciphering
Authenticated Encryption (AE) such as AES-GCM and ASCON not only protects data
confidentiality but also ensures integrity, and has been widely adopted in symmetric
encryption. [BBS21] proposed the idea of transciphering on authenticated encrypted
ciphertext for the first time. [BPR24] implemented ASCON transciphering in CGGI.
[ADE+23] implemented transciphering for AES-GCM and ASCON using BtR.

In traditional AE, the decryptor uses the symmetric key to verify the ciphertext
integrity. However in transciphering, the server has no direct access to the symmetric key.
[ADE+23] suggests letting the server perform FHE computations on the transciphered
data, regardless of whether the data has been compromised. Then, the server transmits
both the result and an encrypted bit indicating the validity of the ciphertext to the client.
The client will only accept the result if this decrypted bit is true. This would waste
computational resources if the symmetric ciphertext were compromised. An alternative
strategy is sending verification data to the client and waiting for a success signal before
proceeding, which increases communication rounds and is less optimal in the FHE scenario,
especially for the resource-limited client. On the contrary, simply having the client sign
the symmetric ciphertext achieves similar goal as AE, but avoids all these drawbacks.

We suggest that the necessity of AE in the context of transciphering is still in doubt,
and requires further examination.
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5 Experiments
In this section, we conduct three sets of experiments. First, we evaluate the efficiency

of various FHE-SCs when paired with different transciphering methods. Next, we design
specific FHE applications and pair them with various transciphering solutions to assess
their practical applicability. Lastly, we measure the encryption cost of different FHE-SCs
from the client’s perspective.

The experiments were conducted on a machine with Intel Xeon CPU operating at 2.70
GHz and 256 GB of RAM. All the numbers were obtained using a single thread9.

All the symmetric ciphers we used satisfy ≥ 128-bit security as evaluated in their
corresponding papers. Early versions of many FHE-SCs (e.g., FLIP, Elisabeth-4, Chaghri,
LowMC, AgRasta) are broken [DLR16, LAW+23, LIM21, GBJR23, LSMI21] and excluded
from the experiments. Transciphering to BGV is not tested due to the reasons mentioned
in Section 3.2.

5.1 Parameters Descriptions
All word-wise FHE-based transciphering (RtF and CKKS) used the same modulus chain
and polynomial degree for consistency, with log2(QP ) ≤ 1555 bits, ensuring at least 128-bit
security level for BFV and CKKS. We then remark the parameters of the symmetric ciphers
as follows:

• Stream Ciphers: We benchmark the stream ciphers by measuring latency until
the 128-bit keystream is output. For throughput, the warm-up costs of Trivium and
Kreyvium are excluded. FiLIP-(DSM/TX)10 and Margrethe with (k, m) denote the
key size and the input size of the nonlinear filtering function.

• Block Ciphers: LowMC, Rasta and AES with parameters (r, t), denote the number
of rounds and block size, respectively.

• Fp ciphers with parameters (r, t, m, p) denote the number of rounds, the block
size, the output size, and the plaintext’s bit-size, respectively. The cipher block is
measured in units of Fp.

5.2 Transciphering Benchmarks
We list the latency and throughput of transciphering different symmetric ciphers with
corresponding methods in Table 2 and illustrated in Fig. 2. Two popular benchmark
criteria are reported: latency (the amount of time required before outputting the first
block of transciphering results, the lower the better.) and throughput (the amortized
amount of symmetric ciphertext transformed per second, the higher the better). We
include both online and offline costs but exclude the one-time setup cost.

Benchmark for Z2 ciphers with CGGI. As shown in Fig. 2 (left) and Table 2, Z2
block ciphers LowMC, Dasta and Rasta suffer from poor performance in CGGI-based
transciphering, characterized by high latency and low throughput. This is primarily due
to their use of multiple XOR gates.

9For multi-threading, CGGI-based schemes generally show better scalability because of its smaller
memory footprint (e.g., we observe a 30x speedup for Kreyvium-CGGI transciphering using 64 threads,
versus 20x for AES-CKKS). We opt to report single-threaded performance due to varying multi-threading
support across different FHE libraries.

10Direct Sum Monomial (DSM) [MJSC16] and XOR-Threshold [HMR20] type of filtering functions
with different input size, respectively.
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Figure 2: Throughput (KB/s in Vertical axis) and Latency (ms in Horizontal axis) of
various FHE-SCs on server-side.

Methods like FiLIP-TX, FRAST, and Margrethe demonstrate good performance,
benefiting from optimized transciphering which reduces the need for bootstrapping. Inter-
estingly, AES is not the worst one. It performs moderately in both latency and throughput
due to a special design of CBS-based method.

The best performer in this group, Margrethe, makes efficient use of the GGSW-based
LUT, as described in Sect. 4.1.1. This results in significantly lower computational costs,
thanks to the combined optimization of a larger plaintext domain, Z16, and bootstrapping-
free strategy.

However, the improved performance of FiLIP-TX, Margrethe, and FRAST all comes at
the cost of a large key size, formatted as GGSW ciphertexts. This aspect will be discussed
in the Key size section.

Benchmark for ciphers with RtF and BtR. As shown in Fig. 2 (right) and Table 2,
Masta and Pasta are less efficient than HERA and Rubato due to the numerous pt× ct
homomorphic operations required by Masta and Pasta’s random matrix multiplication.
The number of pt× ct operations is quadratically related to their block size, implying that
variants with larger block sizes perform even worse.

In contrast, HERA and Rubato avoid using random matrices in their round functions.
They instead introduce randomness into the key schedule via component-wise multiplication
between a randomized vector and the symmetric key, leading to a linear increase in pt× ct
operations.

Rubato outperforms HERA by reducing the multiplicative depth. This improvement
is achieved without compromising security, by introducing Gaussian noise at the final
stage of the symmetric encryption process. This can be viewed as adding an extra layer of
security based on the LWE hardness problem to the encryption scheme. And versions of
Rubato with fewer rounds demonstrate better performance.

For AES transciphering combined with BtR, the SIMD features of the CKKS scheme are
leveraged, resulting in better throughput compared to the CGGI-based method. However,
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Table 2: Throughput and latency of various FHE-SCs were tested in a single-threaded
environment. Throughput is measured in kilobytes of messages transciphered per second.
Fp ciphers are benchmarked in a leveled homomorphic encryption (LHE) mode, where the
BFV-to-CKKS conversion is excluded.

Cipher(Parameters) Schemes Type Evaluation Latency
(ms)

Throughput
(KB/s)

Key Size
(MB)

Trivium-12

CGGI

Z2 PBS[BOS23] 2.66×105 6.61×10−4 10.3
Kreyvium-13 Z2 PBS[BOS23] 2.63×105 5.21×10−4 10.7
FiLIP-DSM(4096,1280) Z2 GBS[DGH+23] 1.43×106 1.10×10−5 41.8
FiLIP-TX(16384,144) Z2 CMUX[MPP24] 2.86×103 5.46×10−3 215
Margrethe(2048,308) Z16 CMUX[AGHM24] 1.08×103 1.45×10−2 128
LowMCv3(14,196)

CGGI

Z2 GBS[DGH+23] 5.36×106 2.91×10−6 11.2
Rasta(5,525) Z2 GBS[DGH+23] 4.94×106 1.30×10−5 13.8
Rasta(6,351) Z2 GBS[DGH+23] 2.87×106 1.50×10−5 12.4
Dasta(5,525) Z2 GBS[DGH+23] 5.03×106 1.27×10−5 13.8
Dasta(6,351) Z2 GBS[DGH+23] 2.94×106 1.46×10−5 12.4
FRAST(40,128) Z16 PBS[CCH+24] 4.20×103 3.72×10−3 11.8/460‡

AES(10,128) Z2 CBS[WWL+23] 1.43×105 1.09×10−4 1500
Masta(4,128,128,33-bit)

BFV

Fp LHE 1.00×107 3.38 5051
Masta(5,64,64,33-bit) Fp LHE 3.17×106 5.31 3451
Masta(6,32,32,33-bit)† Fp LHE 9.38×105 8.99 2651
Pasta(3,256,128,33-bit) Fp LHE 1.61×107 2.09 8251
Pasta(4,64,32,33-bit) Fp LHE 1.48×106 5.68 3451
HERA(5,16,16,28-bit) Fp LHE[CHK+21] 1.38×105 25.95 2251
Rubato(5,16,12,26-bit) Fp LHE[HKL+22] 0.86×105 28.94 2251
Rubato(3,36,32,25-bit) Fp LHE[HKL+22] 1.14×105 56.33 2751
Rubato(2,64,60,25-bit) Fp LHE[HKL+22] 1.48×105 81.07 3451
AES(10,128) BGV Z2 LHE[GHS12] 1.98×105 9.5×10−3 10.5
AES-CTR(10,128)†† CKKS Z2 FHE 2.53×107 0.02 3387

(†): The custom cipher version to clarify the effect of the matrix scale.
(‡): The symmetric key is first compressed into GLWE format, and then converted from
GLWE to GGSW on the server. The terms GLWE/GGSW denote the corresponding key
sizes before and after the conversion, respectively.
(††): We implemented the CKKS transciphering from [ADE+23] in Lattigo, as the original
code was not available.

in BtR, each slot encrypts only a single bit, making it less efficient than RtF, which
encrypts a value over Fp per slot.

Key size. The encrypted symmetric key and evaluation key are transferred from the
client to the server during a one-time setup. To improve efficiency, several methods include
optimizations that increase the transciphering efficiency at the cost of increased key size. To
facilitate a more accurate apples-to-apples comparison, we also include a rough estimation
of the total size of the encrypted symmetric and evaluation keys as part of the benchmark.

A fresh LWE ciphertext, with no homomorphic operations applied, can compress its
random values over ZN

q into a seed, reducing the LWE sample size to log q (the modulus
size). Other ciphertext formats based on CGGI can also benefit from this technique. In this
work, we account for the key size reduction enabled by this optimization. The symmetric
keys are encrypted in multiple formats across different schemes, resulting in different key
sizes. We will briefly introduce these methods below.

• LWE Symmetric Key: The evaluation methods involve gate bootstrapping (GBS)
and programmable bootstrapping (PBS), requiring the symmetric key to be encrypted
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as an LWE sample. The size of this encryption can be estimated as k × log q, where
k is the total number of key bits and log q is the LWE modulus size.

• GGSW Symmetric Key: The symmetric key is encrypted in the lifted form
of GGSW, i.e., GGSW(Xk), which can be evaluated within a single CMUX gate.
However, the storage required for one GGSW ciphertext is tens of thousands of times
larger than that of an LWE ciphertext.

• RLWE Symmetric Key: In RtF and BtR, each ciphertext involves two polynomials
with N coefficients. Suppose N = 65, 536, the size of the ciphertext at a multiplication
depth d is approximately 12 MB for AES-CTR when d = 12, and 25 MB for RtF
benchmarks.

In the CBS-based AES implementation from [WWL+23], the increase in key size arises
from a different reason. They also applies the GGSW-based CMUX tree LUT to eliminate
the expensive S-box evaluation cost, outputting an LWE ciphertext. However, unlike
the FP-based stream cipher, AES requires additional evaluation, which necessitates an
expensive CBS to refresh the noise while converting the LWE ciphertext into GGSW
format. As a result, the computation bottleneck shifts from S-box evaluation to CBS
evaluation. Furthermore, the increase in key size also stems from the CBS evaluation key.

The optimized Margrethe implementation in [AGHM24] leverages the technique of first
sending the GLWE-packed symmetric key, then transforming them from GLWE to GGSW
using the method described in [CCR19]. This approach reduces the communication cost for
transferring the symmetric key during the setup phase. To enable a more comprehensive
comparison, we also include the key size of the expanded symmetric key in GGSW format,
as the conversion time from GLWE to GGSW is not accounted for.

For the CKKS bootstrapping key, we estimate the key size using the Lattigo library,
which is about 1851 MB.

5.3 Application Performances
In this section, we choose two widely used FHE applications as benchmarks to evaluate the
performance of transciphering across different scenarios: the Allelic chi-square test in secure
genome-wide association studies (GWAS) [BGPG20] and privacy-preserving convolutional
neural network (CNN) inference [LLL+]. Both workloads are computationally intensive.
We didn’t choose smaller workloads because, in such cases, the end-to-end server-side cost
would be dominated by the transciphering efficiency, which has already been listed in
Table 2. Only ciphers compatible with SIMD FHE schemes are considered, as other FHE
approaches would be orders of magnitude slower for these computational expensive tasks.

Allelic chi-square test. We perform Pearson’s chi-square test for independence using
the CKKS scheme on the transciphered result. The task involves calculating the sum of
squared differences between observed and expected frequencies. The input consists of data
from 200 individuals, each containing 16,384 Single-Nucleotide Polymorphisms (SNPs),
with each SNP represented as {0, 1, 2} using 2 bits of information. The total size of the
plaintext data is approximately 800 KB.

Privacy-preserving CNN inference. We evaluate the performance of CNN inference for
the ResNet20 model using the CKKS scheme on the transciphered CIFAR-10 dataset.
CNNs involve complex computations with numerous linear convolution layers, as well as
non-linear ReLU layers, which are approximated by high-degree polynomials. The input
data consists of images with dimensions 32× 32× 3, represented as 32-bit floating-point
values, amounting to 12 KB per image. We implemented the CNN inference algorithm
from [LLL+] in Lattigo.
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Gap between application performance. The performance of transciphering along with
applications are shown in Table 3. The HERA and Rubato Fp ciphers still achieve highest
performance, but compared to the orders of magnitude advantage they show against AES
in Table 2, their gaps here become less significant. This is due to workload limitations
that cap the end-to-end performance.

Specifically, the 2-bit data format in chi-square test restricts the effective use of the
slots. As a result, the capacity of each Fp slot for RtF is underutilized, encrypting only a
2-bit value. For secure CNN inference, the computational bottleneck lies in the numerous
layers of ReLU functions, which can cost thousands of seconds. Finally, the expensive
BFV-CKKS halfboot requirement [CHK+21] of Fp ciphers further reduce the advantage
of Fp ciphers.

In summary, if the application workload is complex, the efficiency of transciphering
becomes less important, and AES could still be an acceptable choice.

Table 3: End-to-end time cost of applications, running with single thread.

Cipher(Parameters) Schemes Chi-Square (s) ResNet-20 (s)

Masta(4,128,128,33-bit)

BFV/CKKS

1.10×104 1.10×104

Masta(5,64,64,33-bit) 4.19×103 4.26×103

Masta(6,32,32,33-bit) 2.90×103 2.02×103

Pasta(3,256,128,33-bit) 1.71×104 1.72×104

Pasta(4,64,32,33-bit) 3.99×103 2.57×103

HERA(5,16,16,28-bit)

BFV/CKKS

1.57×103 1.22×103

Rubato(5,16,12,26-bit) 1.45×103 1.17×103

Rubato(3,36,32,25-bit) 1.25×103 1.20×103

Rubato(2,64,60,25-bit) 1.17×103 1.23×103

AES-CTR(10,128) CKKS 5.06×104 2.63×104

5.4 Client Side Performances
The efficiency of symmetric encryption itself is crucial because clients might have limited
computational resources. We re-ran the symmetric encryption code from each study in
our environment. Pastav2 is a variant of Pasta with similar transciphering performance
but significantly improved client-side efficiency.

As shown in Table 4, AES offers the best client-side encryption performance. It’s worth
noting that the current AES implementation (AES-SW) does not utilize any platform-
specific optimization such as the AES-NI (Advanced Encryption Standard New Instructions)
acceleration, which will lead to even better performance if implemented.

Fp ciphers generally outperform Z2 ciphers because they require less calls to Pseudo-
Random Number Generators (PRNGs). One PRNG call in Fp ciphers generates a word,
whereas in Z2 ciphers, it produces only a single bit. Dasta, FRAST and Pastav2 are
designed with fewer random elements, which reduces the need for calls to PRNGs, making
them more efficient than others in their respective groups.

Although Rubato is highly efficient for transciphering, its client-side performance is poor
due to the inclusion of Gaussian noise. This noise addition can be seen as a combination
of expensive LWE encryption and symmetric encryption.

6 Observations
Concluding from the results above, we obtain the following useful observations:
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Table 4: Client side performance of various ciphers. Note that due to the high speed of
client-side encryption, the measurements in this table differ from those in previous tables:
Latency is measured in CPU cycles, and throughput (Thrp.) is measured in CPU cycles
per byte (the lower the better).

Cipher (Parameters) Type Latency (Cycles) Thrp. (C/B)
Trivium-12 Z2 4.89×104 3.02×103

Kreyvium-13 Z2 5.27×104 3.29×103

FiLIP-DSM(4096,1280) Z2 2.56×107 1.60×106

FiLIP-TX(16384,144) Z2 1.01×107 6.31×105

Margrethe(2048,308) Z16 2.81×106 1.76×105

LowMCv3(14,196) Z2 1.73×108 7.05×106

Rasta(5,525) Z2 1.81×108 2.75×106

Rasta(6,351) Z2 4.54×107 1.03×106

Dasta(5,525) Z2 1.70×106 2.59×104

Dasta(6,351) Z2 7.76×105 1.77×104

FRAST(40,128) Z16 1.47×105 0.92×104

Masta(4,128,128,33-bit) Fp 2.28×106 4.33×103

Masta(5,64,64,33-bit) Fp 7.25×105 2.75×103

Masta(6,32,32,33-bit) Fp 2.25×105 1.71×103

Pasta(3,128,64,33-bit) Fp 4.56×106 1.73×104

Pasta(4,64,32,33-bit) Fp 4.70×105 3.57×103

Pastav2(3,128,64,33-bit) Fp 2.16×106 8.20×103

Pastav2(4,64,32,33-bit) Fp 1.92×105 1.46×103

HERA(5,16,16,28-bit) Fp 2.86×104 5.11×102

Rubato(5,16,12,26-bit) Fp 1.22×107 3.14×105

Rubato(3,36,32,25-bit) Fp 1.37×107 1.36×105

Rubato(2,64,60,25-bit) Fp 1.48×107 7.89×105

AES-SW(10,128) Z2 1.86×103 1.16×102

AES-SW is evaluated using the open-source implementation from
GitHub (https://github.com/kokke/tiny-AES-c).

(1) Data shape is the key factor in transciphering. By data shape, we refer to the
size and format of data required by FHE applications. For applications dealing with
small data size, it’s preferable to select a Z2 symmetric cipher in conjunction with CGGI
transciphering. With larger data sets, Fp symmetric ciphers offer the best performance
when matched with the RtF framework.

The boundary between "small" and "large" data size is roughly several kilobytes. As
the data volume grows, one would need to run multiple instances of Z2 ciphers due to
CGGI’s lack of SIMD capabilities, potentially making Fp ciphers a more attractive option.

Additionally, a few Z2 symmetric ciphers can also achieve reasonable efficiency for
larger data sets when paired with the BtR framework. The key distinction is that BtR
supports both binary and arithmetic circuits, whereas RtF is more optimized for arithmetic
circuits. For instance, if Hamming distance (which involves binary circuits) needs to be
computed after transciphering, BtR might be a better choice.

(2) Fp ciphers excel in large-scale transciphering, but concerns persist regarding their
security or client-side complexity. The primary issue is that Fp ciphers are relatively
new, and their resilience against algebraic attacks has not been thoroughly explored. They
are potentially more vulnerable for two reasons: they feature fewer unknown variables
since these variables are counted on a word-wise basis, and their arithmetic operations
might inadvertently introduce exploitable algebraic structures.

https://github.com/kokke/tiny-AES-c
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For efficient transciphering, the primary design strategy for Fp ciphers is to incorporate
more operations that are inexpensive in a homomorphic context at the server side. However,
these operations might not be friendly at the client side. For instance, Rubato employs
Gaussian noise, but this adds additional computational load on the client. A client with
constrained communication resources is often also limited in computational capabilities,
such as an IoT device. Achieving a balance between efficiency, security, and resource
usage is challenging and necessitates a comprehensive analysis of the cipher’s structure
and security considerations.

(3) New designs of Z2 ciphers and corresponding transciphering methods are required.
CGGI serves as effective solutions for transciphering over Z2 ciphers. However, the existing
FHE-friendly Z2 ciphers are predominantly designed to reduce the depth or number of
AND gates, often neglecting the XOR gate, which has the same complexity11 with AND
gate in CGGI. As a result, these designs, such as LowMC, would be even less efficient
than AES for transciphering. Therefore, new designs of Z2 ciphers that feature fewer XOR
gates or utilize other enhanced transciphering methods would be advantageous.

(4) Standard symmetric cipher (AES) is not too bad for transciphering. Surprisingly,
despite extensive efforts in designing new FHE-SCs, AES remains a viable option. It
performs moderately in small-scale transciphering (refer to Figure 2) and is approximately
one order of magnitude slower than the best-performing schemes on larger, more time-
consuming tasks (refer to Table 3). Moreover, AES offers significantly superior performance
on the client side (refer to Table 4). Given the well-established security of AES, users
might prefer to continue using it. This situation challenges FHE-SC researchers: they must
outperform AES by a considerable margin to alter the status quo, taking into account
both client and server-side costs.
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