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Vector Commitment Design, Analysis, and Applications: A Survey
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Due to their widespread applications in decentralized and privacy preserving technologies, commitment schemes have become

increasingly important cryptographic primitives. With a wide variety of applications, many new constructions have been proposed,

each enjoying different features and security guarantees. In this paper, we systematize the designs, features, properties, and applications

of vector commitments (VCs). We define vector, polynomial, and functional commitments and we discuss the relationships shared

between these types of commitment schemes. We first provide an overview of the definitions of the commitment schemes we will

consider, as well as their security notions and various properties they can have. We proceed to compare popular constructions, taking

into account the properties each one enjoys, their proof/update information sizes, and their proof/commitment complexities. We also

consider their effectiveness in various decentralized and privacy preserving applications. Finally, we conclude by discussing some

potential directions for future work.
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1 Introduction

The classical notion of a commitment scheme has proven to be extremely useful in designing sophisticated cryptographic

primitives, such as zero-knowledge protocols. A commitment scheme [17] is a tuple of algorithms which are run by a

committer 𝐴 and a verifier 𝐵. The aim of 𝐴 is to “commit” to a value 𝑣 by generating some value 𝐶 , which is sent to 𝐵.

Later, 𝐴 can “open” the commitment 𝐶 by proving to 𝐵 that 𝑣 is the value corresponding to 𝐶 . Such a protocol should

satisfy both binding as well as hiding properties. Binding refers to the infeasibility for an adversary to produce proofs

convincing the verifier that 𝑣 and 𝑣 ′ are the values committed in 𝐶 , where 𝑣 ≠ 𝑣 ′. Informally, the scheme is hiding if a

commitment reveals nothing about the value it is storing. These protocols have a myriad of applications. Notably, using

commitments is a popular method for adding zero-knowledge (zk) into an argument of knowledge protocol (AoK), as
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2 Pathak et al.

well as constructing other privacy preserving technologies such as anonymous credentials, coin flipping, or signature

schemes [20] [57] [18] [9]. Recent designs of privacy preserving technologies such as zero-knowledge (zk) SNARK

designs, zk elementary databases, stateless blockchains, decentralized storage, or lookup arguments have called for

vector commitments (VC), a more expressive variant of the basic commitment scheme. Our paper specifically focuses on

this primitive, its properties, and some of its most promising applications. We now proceed to informally define VCs, as

well as the related notions of polynomial and functional commitments.

Vector Commitments: In a vector commitment [26], we model the message being committed to as a large vector.

The vector commitment protocol compresses a large vector into a small commitment which is sent to a verifier. Later

the verifier can query the prover for a vector value at any position of its choice, and the prover can provide the

corresponding value as well as a proof that this value is correct. Unlike the basic commitment scheme, the prover can

now provide openings for singular values in the vector, rather than a proof for the entire vector itself. The primitive

comes with a binding guarantee, namely that a computationally bounded adversary cannot submit two proofs 𝜋 and 𝜋 ′

proving values 𝑣𝑖 and 𝑣
′
𝑖
(with 𝑣𝑖 ≠ 𝑣

′
𝑖
) are in position 𝑖 of the vector. The standard notion of hiding in commitment

schemes also extends naturally to VCs, where commitments hide messages which are vectors.

Polynomial Commitments: Instead of committing to a vector and opening at positions, we commit to a polynomial

and open it at evaluations of the polynomial. Polynomial commitments (PCs) are used to construct SNARKs [71] [12].

Namely, they allow a verifier to query parts of a proof string without needing to see the entire proof.

Functional Commitments: Functional commitments (FC) allow us to commit to a vector 𝑣 and provide openings for

any function in some specified function family evaluated at 𝑣 . Functional commitments have applications in SNAR(G)

construction [33], and witness encryption [24]. We discuss in Section 3 various equivalences between these three types

of commitments.

We focus on VCs and comment on the relationships VCs have with polynomial and functional commitments. A

detailed discussion on polynomial/functional commitments and their applications is out of the scope of this paper.

While polynomial commitments are rich in both literature and application, we believe there is a significantly greater

need to systematize the theory for VCs, as similar efforts have already been undertaken for polynomial commitments

[71]. We also chose to focus on VCs instead of functional commitments as VCs are an established primitive. Therefore,

there exists a rich set of applications and literature for VCs, making it desirable to have a systematizing body of work

on the topic.

In this paper, we will give a systematic overview of the landscape of vector commitments and their privacy preserving

applications. We comment on VC’s relationship with polynomial commitments and functional commitments. Our

contributions are the following:

(1) To the best of our knowledge, we gather all known vector commitment schemeswhich suit the privacy preserving

applications discussed in the following sections along with stateless blockchain, SNARK, and decentralized

storage applications. We compare them based on properties each construction has, their security assumptions,

proof/commitment sizes, public parameter sizes, and the complexity of commitment/proof generation. We

choose to examine these specific use cases with special attention as we saw that most VC designs were built

with them in mind.

(2) We identify properties vector commitments need in order to instantiate the applications listed in the previous

point.
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Vector Commitment Design, Analysis, and Applications: A Survey 3

(3) We highlight some future problems to consider. We believe that in order to efficiently instantiate the above

applications with commitments, solutions to these problems will be critically important.

Similar works exist, such as [60] by the team at CryptoNet Lab. Our survey differs from this work by discussing more

recent results and constructions, giving a detailed comparison on properties and complexities, as well as a discussion

on which applications are best suited for each commitment scheme considered. We also consider some additional

properties, such as homomorphic proofs and openings and our new notion of dynamism. Importantly, our work includes

a detailed discussion on privacy preserving VC notions and their applications, such as zero-knowledge protocols, zk

table lookups, (vector) range proofs, and zk elementary databases. Finally, we also explain general techniques found

across many constructions used to realize properties such as aggregation and updatability.

1.0.1 Paper Organization. In order to motivate VCs, we describe applications we will consider in Section 2. In Section 3

we state the relevant definitions for vector commitments, with a view towards polynomial and functional commitments.

In Section 4 we describe desirbale proerties in VC design and in Section 5 we focus on the techniques utilized to achieve

such properties. In Section 6 we provide an extensive comparison of popular vector commitment schemes. Finally, we

conclude in Section 7 with some open problems.

We briefly mention connections between sections in our paper for a reader’s convenience. The applications discussed

in the Background/Motivation Section (Section 2) are revisited in the Comparison Section (Section 6) when discussing

suitable VCs for our selected applications. We discuss desirable VC properties in Section 4, which were previously

motivated in Section 2. Methods to endow VCs with such features are outlined in the section on Construction Techniques

(Section 5). Finally, all properties discussed in Section 4 are used as points of comparison between our selected VC

constructions in Section 6.

2 Background and Motivation

Without defining them formally (see Section 3), a standard vector commitment allows a user to generate a succinct

commitment 𝐶 for a large vector 𝑣 . Later, a prover can generate a proof 𝜋 showing that 𝑣𝑖 is the element at the 𝑖th

position of the vector committed in 𝐶 (for an 𝑖 of the prover’s choice). This proof can be efficiently verified. A hiding

VC scheme has the same functionality, except commitments hide the vector. More formally, an adversary cannot

distinguish between a commitment of the vector 𝑣 and a commitment of the vector 𝑣 ′ (where 𝑣 ≠ 𝑣 ′). To motivate VCs

and demonstrate their power, we first discuss important applications where a hiding VC is not necessary. In the next

section, we will proceed to discuss VC applications where the hiding property will be critical. In Section 6.1, we will

revisit these applications and discuss suitable existing VC constructions for instantiating them.

2.1 Applications for non-hiding VCs

2.1.1 Stateless Blockchains. An important problem in the blockchain space is increasing efficiency. Currently, blockchain

systems like Ethereum [19] can handle around 15 transactions per second [5]. On the other hand, established centralized

services like Visa process 1500 transactions per second on average [30]. In order to compete, blockchain systems must

drastically increase their scalability.

One approach to increase scalability is by achieving stateless validation (in account based cryptocurrencies) for

transactions through vector commitments. Assume there is a way to map account information to an entry in a large

vector 𝑣 = [𝑣1, . . . , 𝑣𝑛] ∈ F𝑛𝑝 , where 𝑛 is the number of accounts. That is, the information for account 𝑖 is stored as the

𝑖th entry in the vector 𝑣𝑖 . Miners store a commitment to the current blockchain state vector and every account stores a
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4 Pathak et al.

proof affirming the value 𝑣𝑖 in the account’s balance. When a transaction between sender 𝑖 and sender 𝑗 is posted to the

network, sender 𝑖 submits a proof that the 𝑖th position in the vector has enough balance to complete the transaction. If

a miner wants to add this transaction to a block he is working on, they will now include this proof as well. To check

validity of the transaction, a validator can verify the proof and subsequently update the commitment accordingly. Once

a new block is posted, new accounts can update their proofs so that they can verify against a commitment reflecting

the updated vector of account information. Note that this requires the VC scheme to be able to efficiently update its

commitment to a new vector, as well as users being able to update their proofs without having to recompute these

values from scratch (see Section 4.2).

2.1.2 SNARK Construction. A popular way to build SNARK systems [71] for all NP is to combine Merkle commitments

and PCPs through the “CS Proofs” Paradigm [73]. PCPs exist for all of NP [34]. In order to achieve the succinctness

properties required in a SNARK, a prover submits a Merkle commitment to the PCP string 𝜋 . When a verifier (simulating

the PCP verifier) wants to see some part of the PCP string, the prover can send this portion of the string to the verifier

as well as a Merkle proof of these positions. In this way, a prover does not have to send a large PCP string but can send

a constant sized Merkle commitment instead. Finally, we can remove interaction using the Fiat-Shamir paradigm [36].

The soundness of this paradigm depends on the collision resistance of the hash function used to generate the Merkle

commitment/proofs.

This paradigm can immediately be improved replacing the Merkle commitment with a vector commitment with

constant opening and commitment sizes. Lai and Malavolta [51] build on this idea using a subvector commitment with

a PCP or a linear map commitment [51] with a linear PCP [44]. If a regular Merkle style SNARK requires 𝑞 queries, then

𝑞 log ℓ dominates the SNARK’s proof size, where ℓ is the length of the PCP string. Using the linear map commitment

(see Section 3.7) or a subvector commitment (see Section 4), we can combine all 𝑞 opening proofs (for each of the

verifier’s 𝑞 queries) into a single proof, significantly reducing proof size. While a natural modification of the CS proofs

paradigm, concrete security bounds were given recently by Chiesa et al. [29].

2.1.3 Decentralized Storage. With a standard centralized storage service, a client sends all the data it would like to

be stored to a single node. In the decentralized storage model [43], the client will send different chunks of his data to

different storage nodes. Unlike the centralized solution, the decentralized solution [11] has no single point of failure,

making it attractive from a security standpoint. Moreover, decentralized solutions tend to be faster, more reliable, and

significantly cheaper compared to centralized alternatives. If a client would like a storage node to store a large amount

of data, and periodically retrieve some of this data with a guarantee of its correctness, we can use a VC scheme [26].

Viewing the data to be stored by the network as a large vector 𝑣 , each participating node stores a subvector of 𝑣 as

well as an opening proof of the subvector the node is storing. A Proof of Storage is simply a subvector proof which a

node presents to a client/validator, along with the data corresponding to the subvector. To be assured of the correctness

of the data presented, one simply runs the verification algorithm specified by the VC scheme. Campanelli et al. [23]

instantiate their decentralized storage scheme in this manner. They optimize it even further by providing arguments of

knowledge of arbitrary subvectors for the committed vector. In this way, a proof of storage is simply such an argument,

which reduces the Storage proof sizes as these arguments are independent of the subvector size.

2.2 Applications for Hiding VCs

Consider a vector commitment which is not only compact and binding, but also hiding. This means that upon seeing

a commitment 𝐶 , an adversary learns no information about the vector committed in 𝐶 . Now given a commitment 𝐶
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hiding vector 𝑣 , imagine that a prover could demonstrate he knows various properties about the vector committed in 𝐶

without revealing anything information about 𝑣 . Such a property could be that 𝑣 has a small norm, or that inputting 𝑣

into some public linear map gives a certain public output. The ability to generate such proofs in zero-knowledge opens

up a wealth of privacy preserving applications, such as compressed Σ protocols, zk-SNARKs, zk-range proofs, zk-lookup

arguments, and zk-elementary databases. We now describe how VCs can play a critical role in such constructions.

2.2.1 Compressed Σ Protocols. A Σ protocol is a 3 round interactive protocol between a prover 𝑃 and verifier 𝑉

satisfying a knowledge soundness property [71]. The prover wants to convince the verifier of knowledge of a witness

𝑤 for a corresponding statement 𝑥 to some relation without revealing any information about the witness. A classic

example is Schnorr’s Σ protocol [66] proving knowledge of a discrete logarithm instance. Recall that any NP relation

can be expressed as an arithmetic circuit [71]. Therefore to build a zk-SNARK for any NP relation, it suffices to build

one for circuit satisfiability. It turns out that arithmetic circuits can be linearized [8], so Σ protocols for the relation

𝑅
linear

= (𝑃,𝑦;𝑥, (𝑟 )) suffice to build zk-SNARKS for arbitrary NP relations. 𝑃 is a hiding commitment and 𝑦 is a public

output value. 𝑃 and 𝑦 make up the public statement. Then the secret witness consists of a vector 𝑥 which is committed

in 𝑃 using implicit randomness (𝑟 ). The Σ protocol proves (in zk) knowledge 𝑥 and 𝑟 and also proves 𝐿(𝑥) = 𝑦, where 𝐿
is some publicly known linear map. Attema et al. [7] devise such a sigma protocol and also manage to compress it using

secret sharing techniques such that the communication complexity goes from linear to logarithmic in the dimension of

the vector 𝑥 .

2.2.2 Zero-Knowledge Lookup Arguments. We now turn our attention to lookup arguments. Lookup arguments [80]

[35] [65] involve two vectors 𝑣1 ∈ F𝑁𝑝 and 𝑣2 ∈ F𝑚𝑝 , with 𝑁 typically being much larger than𝑚. The goal of a prover is

to demonstrate that 𝑣2 is a subtable of 𝑣1. That is, every entry in 𝑣2 is also an entry in 𝑣1. Lookup arguments require that

the prover complexity runs in time independent of the dimension of the large vector 𝑣1. We would also like this proof to

not reveal anything about the structure of the two table 𝑣1 and 𝑣2. Such zk lookups have found usage in decentralized

and privacy preserving settings. For example, lookups serve as an efficient instantiation for range proofs. To prove a

value lies in a certain range, commit to a table of all numbers in the range. Then run a lookup argument proving the

value lies in the table. Campanelli et al. leverage lookups to construct zero-knowledge decision trees [22].

To build such a zero-knowledge lookup argument out of vector commmitments, we generate a hiding commitment

to our large table and to our subtable. Then, we run a zero-knowledge protocol establishing knowledge of a witness for

the following relation 𝑅
link

= (𝑡 ; 𝑓 ) where 𝑡 ∈ F𝑁𝑝 is the public statement and 𝑓 ∈ F𝑚𝑝 with 𝑓 a subtable of 𝑡 . If such

an efficient protocol (with efficiency independent of the size of the large table) exists, we say the vector commitment

scheme has position hiding linkability. That is, zero-knowledge lookup arguments arise naturally out of position hiding

linkable VCs. Zapico et al. [80] were the first to put forth this notion, building a position hiding linkable VC secure in

the Algebraic Group Model and noninteractive in the random oracle model. However, their construction still has a

small (sublinear) dependence on the dimension of the large table.

2.2.3 Zero-Knowledge Range Proofs. In a standard range proof [31], a single value is committed to, and the committer

can prove in zero-knowledge that the committed value lies in a certain range. We can do the same with certain hiding

vector commitments [39] [52]. This allows for range proofs for all (or a subset of) entries in the vector, allowing efficient

batch verification in applications like anonymous credentials. Libert’s construction [52] also allows for proofs showing

the committed vector is short (i.e. has small norm). This feature lends itself well in the lattice setting, as they show their

construction can be used to verify the validity of ring-LWE ciphertexts (e.g. after homomorphic] computations).
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2.2.4 𝑛-Mercurial Commitments and Zero-Knowledge Elementary Databases. Chase first formalized the notion of

mercurial commitment [27]. Informally, it allows for both hard and soft commitments (and openings) to messages. Hard

commitments have binding requirements akin to standard commitment schemes. On the other hand, soft commitments

can be (soft) opened to any message. We require that the hard and soft mechanisms are indistinguishable. Analogously,

one can define 𝑛-mercurial commitments as the mercurial version of standard vector commitments. Catalano and

Fiore show that given a VC scheme and a mercurial commitment scheme, it is possible to construct an 𝑛-mercurial

commitment scheme [26]. They subsequently realize zero-knowledge elementary databases via a generic construction

using 𝑛-mercurial commitments and Merkle trees.

2.2.5 All but one VC. We briefly mention all but one Vector Commitments [18] and their applications. All but one VCs

allow a user to generate a hiding commitment to a vector and later provide an opening for all but one of the entries

(which reveals nothing about the last entry).

To understand their importance, consider zero knowledge proof systems obtained from the MPC-in-the-head (MPC-

ith) [45] paradigm. Let 𝑓 be a representation for an arbitrary circuit over F𝑝 and let 𝑥 ∈ F𝑛𝑝 be a witness for 𝑓 (so

𝑓 (𝑥) = 1). Use an 𝑛 − 1 out of 𝑛 secret sharing mechanism [67] to derive shares {[𝑥]𝑖 }𝑖=1,...,𝑛 of 𝑥 . Then a prover can

compute (on his own) arbitrary MPC protocol computing 𝑓 , taking the shares as input. Here, the prover simulates all 𝑛

parties in the computation. Since 𝑓 (𝑥) = 1, the result of this MPC computation also returns 1.

The prover commits to the views of all 𝑛 parties and sends the commitment to the verifier. A verifier checks that the

output of the MPC is 1. If this is the case, the verifier requests to see the views of a random subset of 𝑛 − 1 parties. The
prover provides the views along with opening proofs which verify against the commitment. Once received from the

prover, the verifier checks the veracity of the views it received by running the commitment verification algorithm. If

this check passes, the verifier next checks if the views are consistent with an honest run of the MPC protocol on the

input shares of the corresponding 𝑛 − 1 parties. The verifier accepts if this is the case.
We note that an all but one VC is ideal for the functionality required for commitments used in MPC-ith based zero

knowledge protocols, as they would generate a succinct commitment to all the parties’ views and provide openings for

all but one of the views. Furthermore, such an opening reveals nothing about the last view, allowing us to appeal to

properties of MPC and secret sharing in order to guarantee security.

3 Preliminaries and Definitions

In this section, we provide the necessary definitions for describing vector commitments. We follow [26] in defining the

basic algorithms and their properties and will refer elsewhere when describing more complex properties.

3.1 Notation

Let F𝑝 be a finite field (𝑝 being a prime).

Definition 3.1 (Vector). By vector, we mean a tuple of values 𝑣 = [𝑣1, 𝑣2, . . . , 𝑣𝑛] where each entry 𝑣𝑖 is an element of

F𝑝 . We also denote vectors by 𝑥 = [𝑥1, 𝑥2, . . . , 𝑥𝑛].
Let 𝐼 ⊆ {1, . . . , 𝑛} be an index set. Then we say the vector 𝑥𝐼 := (𝑥𝑘 )𝑘∈𝐼 is the 𝐼–subvector of the vector 𝑥 .

Definition 3.2 (Linear Map). Let𝑚 and 𝑛 be integers greater than 0. We say a function 𝑓 : F𝑛𝑝 → F𝑚𝑝 is linear if for all

𝑣1, 𝑣2 ∈ F𝑛𝑝 and 𝛼 ∈ F𝑝 , we have
𝑓 (𝛼𝑣1 + 𝑣2) = 𝛼 𝑓 (𝑣1) + 𝑓 (𝑣2) .
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Definition 3.3 (Negligible Function [15]). A function 𝑓 : N→ R is said to be in the class of negligible functions (written

as 𝑓 ∈ 𝑛𝑒𝑔𝑙 (𝜆)) if for all 𝑐 ≥ 0 there exists 𝑛0 ∈ N such that for all integers 𝑛 ≥ 𝑛0, we have |𝑓 (𝑛) | < 1

𝑛𝑐 .

That is, a negligible function is a function which decreases faster than the inverse of any polynomial.

Definition 3.4. Let 𝜆 be a parameter. The class 𝑝𝑜𝑙𝑦 (𝜆) denotes the functions which are bounded from above by a

polynomial in 𝜆.

Definition 3.5. We say a probabilistic algorithm is in the class Probabilistic Polynomial Time (PPT) if its expected

running time is bounded from above by a polynomial in its input size.

3.2 Pairing Preliminaries

We briefly describe cryptographic pairings, which are an important technique in desigining many vector and polynomial

commitment schemes. We will see their importance in the following sections.

Definition 3.6 (Bilinear Pairing [71]). Let G0,G1,G𝑇 be three cyclic groups of prime order 𝑝 and let 𝑔0 ∈ G0, 𝑔1 ∈ G1

be generators. A pairing is an efficiently computable function 𝑒0 : G0 × G1 → G𝑇 satisfying the following:

(1) Bilinearity: For all 𝑢,𝑢′ ∈ G0, 𝑣, 𝑣
′ ∈ G1, we have

𝑒 (𝑢 · 𝑢′, 𝑣) = 𝑒 (𝑢, 𝑣) · 𝑒 (𝑒′, 𝑣)

𝑒 (𝑢, 𝑣 · 𝑣 ′) = 𝑒 (𝑢, 𝑣) · 𝑒 (𝑢, 𝑣 ′).

(2) Non-degenerate:

𝑔𝑇 = 𝑒 (𝑔0, 𝑔1)

is a generator of G𝑇 .

When G0 = G1, we say the pairing is symmetric.

Note that bilinearity implies the following: for all 𝛼, 𝛽 ∈ Z𝑝 , we have

𝑒 (𝑔𝛼
0
, 𝑔
𝛽

1
) = 𝑒 (𝑔0, 𝑔1)𝛼𝛽 = 𝑒 (𝑔𝛽

0
, 𝑔𝛼

1
) .

3.3 Vector, Polynomial, and Functional Commitment

In this subsection, we define vector commitments, polynomial commitments (PCs), and functional commitments (FCs).

We comment on the similarities between each type of commitment scheme, and how one can be instantiated with

another. We consider finite fields of the form F𝑝 , where 𝑝 is a prime.

3.4 Vector Commitment

Definition 3.7 (Vector Commitment). We say a vector commitment is a tuple of the following algorithms:

Setup(1𝜆, 𝑛, (𝑟 )): Given the security parameter 𝜆 and the length 𝑛 = 𝑝𝑜𝑙𝑦 (𝜆) of the vector being committed, output

public parameters 𝑝𝑝 . From here on, we assume all other algorithms in the vector commitment definition take 𝑝𝑝 as

an implicit input. The algorithm also implicitly takes a randomness parameter 𝑟 , hence written in parentheses in the

algorithm signature. If this randomness is public, we say the vector commitment has trustless setup. Otherwise, we say

it has trusted setup.

Com(𝑥, (𝑟 )): Outputs a commitment 𝐶 for a vector 𝑥 of length 𝑛 = 𝑝𝑜𝑙𝑦 (𝜆) previously specified during the 𝑆𝑒𝑡𝑢𝑝

phase. Some auxiliary information 𝑎𝑢𝑥 may also be generated. Some VC schemes may also take an implicit randomness
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input (𝑟 ). The 𝑎𝑢𝑥 data may be information such as proving (opening) or updating keys which make these procedures

more efficient. From here on, we generally do not write the randomness (𝑟 ) as an explicit input unless it is a necessary

point in the discussion.

Open(𝑥𝑖 , 𝑖, 𝑎𝑢𝑥): Possibly using some auxiliary information 𝑎𝑢𝑥 , the opening algorithm generates a proof 𝜋𝑖 convinc-

ing a verifier that 𝑥𝑖 is the value at the 𝑖th position in vector 𝑥 .

Verify(𝐶,𝑦, 𝑖, 𝜋𝑖 ): Given a commitment𝐶 , a value 𝑦, a position 𝑖 , and a proof 𝜋𝑖 , a verifier outputs 1 or 0, respectively

indicating an acceptance or rejection of the proof that 𝑦 is the 𝑖th value in the committed vector (i.e., 𝑦 = 𝑥𝑖 ).

VC’s should be correct. That is, the verifier should be convinced when presented with the correct value 𝑥𝑖 for a

position 𝑖 in the vector 𝑥 as well as the corresponding proof.

Definition 3.8 (Correctness). Let 𝑝 be a prime. We say a VC scheme is correct if the following holds for all 𝜆 ∈ N,

for all 𝑛 ∈ 𝑝𝑜𝑙𝑦 (𝜆), and for all 𝑥 = (𝑥1, ..., 𝑥𝑛) ∈ F𝑛𝑝 : if 𝑝𝑝 ← Setup(1𝜆, 𝑛, (𝑟 )), 𝐶 ← Com(𝑥), and 𝜋𝑖 ← Open(𝑥𝑖 , 𝑖, 𝑎𝑢𝑥),
then for all 𝑖 ∈ [𝑛], Verify(𝐶, 𝑥𝑖 , 𝑖, 𝜋𝑖 ) outputs 1 with overwhelming probability.

We would also like our public parameters, commitments, and proofs to be compact (succinct). That is, their length

should be independent of the length of the vector being committed. Finally, vector commitments should satisfy some

security guarantees. Namely, they should satisfy a certain binding property, which requires that it is computationally

infeasible for an adversary to generate convincing proofs 𝜋𝑖 and 𝜋
′
𝑖
for values 𝑥𝑖 and 𝑥

′
𝑖
(with 𝑥𝑖 ≠ 𝑥

′
𝑖
). We reproduce

the formal definition from [26].

Definition 3.9 (Binding). We say a vector commitment satisfies position binding [26] if for all 𝑖 = 1, . . . , 𝑛 and all PPT

adversaries A the following probability is negligible in the security parameter:

𝑃𝑟
[
Verify(𝐶, 𝑥𝑖 , 𝑖, 𝜋𝑖 ) = 1 ∧ Verify(𝐶, 𝑥 ′𝑖 , 𝑖, 𝜋

′
𝑖 ) = 1

]
where

(𝐶, 𝑥𝑖 , 𝑥 ′𝑖 , 𝑖, 𝜋𝑖 , 𝜋
′
𝑖 ) ←− A(𝑝𝑝)

and

𝑝𝑝 ← Setup(1𝜆, 𝑛, (𝑟 )) .

We give an example VC construction in what follows. We conclude this section by noting that some readers may have

come across the related notion of a cryptographic accumulator [13]. Accumulators are similar to vector commitments,

but accumulator proofs only demonstrate set membership. On the other hand, VC proofs establish the position of a

certain element in a committed vector. Moreover, universal accumulators provide proofs showing set non-membership.

Acharya et al. recently put forth a similar notion for vector commitments [1].

3.4.1 A Simple VC Construction. We present a vector commitment scheme due to Catalano and Fiore [26]. Binding

reduces to the Squared Computational Diffie Hellman Assumption, which has been shown to be equivalent to CDH.

Setup(1𝜆, 𝑛): Generate two bilinear groups G, G𝑇 of prime order 𝑝 and a pairing 𝑒 : G × G→ G𝑇 . Take a random

generator 𝑔 ∈ G. Randomly sample 𝑧1, . . . , 𝑧𝑛 ∈ Z𝑝 and set ℎ𝑖 = 𝑔
𝑧𝑖
, ℎ𝑖, 𝑗 = 𝑔

𝑧𝑖𝑧 𝑗
for 𝑖 = 1, . . . , 𝑛 and 𝑖 ≠ 𝑗 . Output

𝑝𝑝 = (𝑔, {ℎ𝑖 }𝑖=1,...,𝑛, {ℎ𝑖, 𝑗 }𝑖≠𝑗,𝑖, 𝑗=1,...,𝑛)

Com(𝑝𝑝, 𝑥 = [𝑥1, . . . , 𝑥𝑛]): Using the public parameters, compute

𝐶 = ℎ
𝑥1
1
· · ·ℎ𝑥𝑛𝑛 .
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Output 𝐶 and auxiliary information 𝑎𝑢𝑥 = [𝑥1, . . . , 𝑥𝑛].
Open(𝑝𝑝, 𝑖, 𝑥𝑖 , 𝑎𝑢𝑥): Compute

𝜋𝑖 =

𝑛∏
𝑗=1, 𝑗≠𝑖

ℎ
𝑥 𝑗
𝑖, 𝑗

=

𝑛∏
𝑗=1, 𝑗≠𝑖

(
ℎ
𝑥 𝑗
𝑗

)𝑧 𝑗
.

Output 𝜋𝑖 .

Verify(𝐶, 𝑥, 𝑖, 𝜋𝑖 ) : Check if

𝑒 (𝐶/ℎ𝑥𝑖 , ℎ𝑖 ) = 𝑒 (Λ𝑖 , 𝑔) .

Accept if the equation holds and reject if it does not.

Correctness: To see correctness, note that

𝑒 (𝐶/ℎ𝑥𝑖
𝑖
, ℎ𝑖 ) = 𝑒 (ℎ𝑚1

1
· · ·ℎ𝑥𝑖−1

𝑖−1 ℎ
𝑥𝑖+1
𝑖+1 · · ·ℎ

𝑥𝑛
𝑛 , ℎ𝑖 )

= 𝑒 (𝑔𝑧1𝑥1 · · ·𝑔𝑧𝑖−1𝑥𝑖−1𝑔𝑧𝑖+1𝑥𝑖+1 · · ·𝑔𝑧𝑛𝑥𝑛 , 𝑔𝑧𝑖 ) .

On the other hand,

𝑒 (Λ𝑖 , 𝑔) = 𝑒 (𝑔𝑧𝑖𝑧1𝑥1+···+𝑧𝑖𝑧𝑖−1𝑥𝑖−1+𝑧𝑖𝑧𝑖+1𝑥𝑖+1+···+𝑧𝑖𝑧𝑛𝑥𝑛 , 𝑔) .

By the bilinearity of the pairing map, these two quantities are equal and correctness follows.

The main drawbacks of this scheme is that the public parameters grow quadratically in the length of the vector being

committed to. That is, this scheme lacks compactness. The other problem is that this VC requires a trusted setup, as it

generates discrete logarithms 𝑧𝑖 which could break binding if they were known. We also remark that this scheme also

supports efficient proof and commitment updates. A nice property of this scheme is that its verification procedure is

fast: the algorithm just requires a single pairing computation.

3.5 Polynomial Commitment

Definition 3.10 (Polynomial Commitment [71]). Let F be a field. A polynomial commitment over F is a tuple of four

algorithms:

Setup(1𝜆, 𝐷): This algorithm takes in a security parameter and an upper bound on the degree of the polynomial we

would like to commit to. It generates public parameters 𝑝𝑝 .

Commit(𝑝𝑝, 𝑝 (𝑋 )): This algorithm takes in public parameters and polynomial over F. It outputs a commitment 𝐶 to

that polynomial.

Open(𝑝𝑝, 𝑝 (𝑋 ), 𝑧, 𝑣): This algorithm takes in public parameters 𝑝𝑝 , a polynomial 𝑝 (𝑋 ), an input 𝑧 and a value 𝑣 . It

outputs a proof 𝜋 asserting 𝑝 (𝑧) = 𝑣 .
Verify(𝐶, 𝑝𝑝, 𝜋, 𝑧, 𝑣) : This algorithm takes in a commitment 𝐶 , a public parameter string 𝑝𝑝 , a proof 𝜋 , and values

𝑧, 𝑣 . It runs a check to determine if the proof asserting 𝑝 (𝑧) = 𝑣 is correct, where 𝑝 is the polynomial committed to in 𝐶 .

For an example of a polynomial commitment construction, we refer to the popular KZG [47] polynomial commitment

scheme. Due to its fast verification and succinct proof/commitment sizes, KZG is a popular choice for instantiating

zk-SNARKs in applications like zkRollups [5] , data availability sampling protocols, and Verkle trees [49]. Binding

follows from a Diffie Hellman type of assumption.

Definition 3.11 (Polynomial Evaluation Binding [53]). A polynomial commitment scheme 𝑃𝐶 is said to be computa-

tionally binding if any PPT adversary A has negligible advantage in winning the following game:

(1) The challenger generates public parameters 𝑝𝑝 by running Setup(1𝜆, 𝐷) and gives 𝑝𝑝 to A.
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(2) The adversary A outputs a commitment 𝐶 , an input 𝑥 , and two values 𝑦,𝑦′ and two proofs 𝜋, 𝜋 ′. A wins the

game if (𝑖): 𝑦 ≠ 𝑦′ and (𝑖𝑖): Verify(𝐶, 𝑝𝑝, 𝜋, 𝑥,𝑦) = Verify(𝐶, 𝑝𝑝, 𝜋 ′, 𝑥,𝑦′) = 1.

Correctness, binding, and compactness are natural adaptations of the correctness/binding definitions givens for VCs.

A correct polynomial commitment scheme ensures that a verifier accepts a correct proof. A binding PC scheme asserts

that proofs showing 𝑝 (𝑥) = 𝑧 and 𝑝 (𝑥) = 𝑧′ with 𝑧 ≠ 𝑧′ are both accepted with negligible probability. Compactness

requires the sizes of commitments and proofs to be independent of the degree of polynomials being committed.

3.6 Functional Commitment

Definition 3.12 (Functional Commitment). A functional commitment is a tuple of the following algorithms:

Setup(1𝜆𝑛,𝑑, (𝑟 )): Given the security parameter 𝜆, length𝑛 of the vectors being committed, and the depth𝑑 = 𝑝𝑜𝑙𝑦 (𝜆)
of the circuits we open to, output public parameters 𝑝𝑝 . The randomness 𝑟 is as before.

Com(𝑥): Generates a commitment 𝐶 to a vector 𝑥 of length 𝑛 as well as some auxiliary information 𝑎𝑢𝑥 .

Open(𝑓 , 𝑎𝑢𝑥): Using the auxiliary information generated during commitment phase, outputs an opening 𝜋 to the

function/circuit 𝑓 .

Verify(𝐶, 𝑓 ,𝑦, 𝜋) uses 𝜋 to verify that the functon 𝑓 applied to the vector commmitted in 𝐶 yields output 𝑦.

Correctness, binding, and compactness are defined in the natural way. In this case, compactness requires for proof

sizes to be independent of the circuit depth and for commitment sizes to be independent of the vector length.

3.7 Equivalences

A reader may notice the similarities in the definitions between VCs, PCs, and FCs. Indeed, in most cases we are able to

instantiate one type of commitment with the other. In this section, we highlight such (partial) equivalences. Trivially,

we see that a functional commitment can instantiate a vector commitment.

Nextwe observe that polynomial commitments generalize vector commitments. Consider the pairs (𝑥1, 𝑣1), . . . , (𝑥𝑛, 𝑣𝑛)
where 𝑥𝑖 are any field elements with 𝑥𝑖 ≠ 𝑥 𝑗 for 𝑖 ≠ 𝑗 . We can commit to the unique degree 𝑛 − 1 polynomial 𝑝 (𝑋 ) such
that 𝑝 (𝑥𝑖 ) = 𝑣𝑖 for 𝑖 = 1, . . . , 𝑛. Note that 𝑝 (𝑋 ) can be efficiently calculated through Lagrange interpolation given the

pairs (𝑥1, 𝑣1) . . . (𝑥𝑛, 𝑣𝑛). PC binding captures the property that an adversary cannot produce openings for 𝑝 at an input

𝑥 showing that 𝑝 (𝑥) = 𝑦1 and 𝑝 (𝑥) = 𝑦2 with 𝑦1 ≠ 𝑦2, which implies VC binding.

Surprisingly, we can also efficiently instantiate PCs with VCs, but we need the VCs to have some degree of expressivity

(although less than that of a full blown functional commitment). Namely, we need to be able to commit to vector

𝑥 ∈ F𝑛𝑝 and generate proofs with respect to inner products [53]. That is, if we commit to 𝑥 , we need to be able to

generate a proof 𝜋𝑦 for a vector 𝑦 ∈ F𝑛𝑝 attesting to the output of the inner product ⟨𝑥,𝑦⟩. To commit to a polynomial

𝑝 =
∑𝑛−1
𝑖=0 𝑎𝑖𝑋

𝑖
, we commit to the coefficient vector 𝑎𝑖 . To generate an evaluation proof at input 𝑧, we generate a proof

𝜋𝑧 for the inner product opening [𝑎0, ..., 𝑎𝑛−1] · [1, 𝑧, ..., 𝑧𝑛−1]. In the literature, VCs which can open to arbitrary linear

maps (not just inner products) are called linear map commitments [51] (LMC) or linear map vector commitments [25].

We conclude this section by noting that there exist “dual” functional commitments, where a user commits to a function

and can open the function at any input. This closely matches the traditional polynomial commitment functionality

and can be seen as a generalization of it. Moreover, such dual FCs and the notion of FCs we described are actually

equivalent via universal circuits [79] [33].
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4 Desirable Properties of VC Schemes

In this section we define VC properties critical for efficiently instantiating the applications discussed in Section 2.

4.1 Hiding

If we are to instantiate a privacy preserving protocol using VCs, then the underlying VC will need to have a hiding

property. By a (computationally) hiding vector commitment, we mean one where a polynomially bounded adversary

cannot distinguish between a commitment to vector 𝑣 and a commitment to vector 𝑣 ′ (where 𝑣 ≠ 𝑣 ′ but they both have

the same length).

Definition 4.1 (VC (Standard) Hiding). Let 𝑣, 𝑣 ′ be any two vectors in F𝑛𝑝 and let 𝑟, 𝑟 ′ be any two sources of randomness.

We say a VC scheme is Hiding if the distributions of Com(𝑣, (𝑟 )) and Com(𝑣 ′, (𝑟 ′)) are computationally indistinguishable.

Note that a totally deterministic committing procedure can never yield a hiding commitment scheme. Therefore we

felt it necessary to explicitly mention the random input (𝑟 ) in this section. Given a hiding vector commitment, many

privacy preserving applications (such as the ones from Section 2) would like us to efficiently prove in zero-knowledge

that we have knowledge of a vector 𝑣 hidden in public commitment 𝐶 and that vector satisfies a certain relation. This

notion captures many variants of VC hiding. For example, recall that position hiding linkability [80] asks for a zero

knowledge argument of knowledge for the relation 𝑅
link

= (𝑡 ; 𝑓 ) where 𝑡 ∈ 𝐹𝑁𝑝 is the public statement and 𝑓 ∈ 𝐹𝑚𝑝 with

𝑓 a subtable of 𝑡 . When building zk SNARKs in Section 2, we needed a Σ protocol for the relation 𝑅
linear

= (𝑃,𝑦;𝑥, (𝑟 )).
That is, for a public commitment 𝑃 and a public output value 𝑦, we needed to prove knowledge of a vector 𝑥 and

randomness 𝑟 such that committing 𝑥 with randomness 𝑟 results in 𝑃 , and that 𝐿(𝑥) = 𝑦 for some public linear map 𝐿.

Mercurial VCs must satisfy mercurial hiding. That is, an adversary cannot distinguish between hard and soft

commitments, or between hard openings and soft openings with a hard flag. Moreover, we can efficiently simulate both

hard and soft openings. We refer the reader to [26] for the precise definition. Another notion is position hiding [28],

where position proofs reveal nothing about the entries at unopened positions in the committed vector.

4.2 Supporting Updates

A crucial property for a VC is to be able to support updates to the committed vector. These update algorithms should be

more efficient than simply recomputing the updated commitment/proofs from scratch. Updatability is critical for all

VC applications. For example in a stateless blockchain framework, account values are constantly changing with each

transaction. Therefore it is important that the scheme used to commit to the account vector can efficiently update its

commitment and proofs after a change has occurred in one of the account values. Ideally, we would like an algorithm

which can update commitments and proofs after multiple vector value changes. We refer to this property as supporting

batch updates.

Update(𝐶, 𝑥𝑖 , 𝑥 ′𝑖 , 𝑖): On input, this takes a commitment 𝐶 , the 𝑖th value in the committed vector 𝑥𝑖 , a new value 𝑥 ′
𝑖
,

and a position 𝑖 . The algorithm outputs a new commitment 𝐶′ which reflects 𝑥 ′
𝑖
being the value at the 𝑖th position of

the committed vector.

UpdateProof(𝐶, 𝜋 𝑗 , 𝑥 ′𝑖 , 𝑖,𝑈 ): This allows anyone who holds a proof 𝜋 𝑗 for position 𝑗 in the committed vector to

update their proof when the original commitment 𝐶 gets changed in the 𝑖th position from 𝑥𝑖 to 𝑥
′
𝑖
.𝑈 is public update

information which is part of the public parameters generated during Setup time. Alternatively,𝑈 may be part of the

auxiliary information generated by running the Com algorithm on a vector.
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We remark that the public update information𝑈 is sometimes referred to as an update key. Alternatively, 𝑈 can be

used to derive the update keys needed to perform the update operations [60]. If this derivation is efficient, we say the

VC scheme is keyless updatable. Otherwise, the VC is key updatable.

Some authors also make a distinction known as hint updatability. A VC is said to be hint updatable if the VC update

algorithms for commitments and proofs additionally require an opening for the position where the update occurred

[60].

4.3 Opening to Subvectors

Next we proceed to defining subvector commitments (SVC) [51] [25]. These primitives are captured by the same algorithms

Setup, Com, Open, and Verify as in the basic vector commitment definition. However, the opening/verification algorithms

now allow for opening/proving subvectors in addition to individual elements. The Setup and Commitment algorithms

are exactly the same as before.

Definition 4.2 (Subvector Commitment Opening [72]). Open(𝑥𝐼 , 𝐼 , 𝑎𝑢𝑥) : The inputs are an index set 𝐼 ⊆ {1, . . . , 𝑛}, a
subvector 𝑥𝐼 = (𝑥𝑘 )𝑘∈𝐼 of the original committed vector 𝑥 , and some auxiliary information 𝑎𝑢𝑥 . It outputs a proof 𝜋𝐼

convincing a verifier that 𝑥𝐼 is the 𝐼–subvector of the committed vector.

Moreover, the verification algorithm now can take subvectors and subvector proofs as input. That is, the verification

algorithm now looks like

Verify(𝐶, 𝑥 ′𝐼 , 𝐼 , 𝜋𝐼 ) .

Here, 𝐶 is the commitment to the vector 𝑥 , 𝑥 ′
𝐼
is the prover’s claim of what the 𝐼–subvector 𝑥𝐼 of 𝑥 is. As before, the

verifer outputs 1 or 0 accordingly.

For a subvector commitment, the compactness requirement is naturally modified. That is, the size of a proof for a

subvector 𝑥𝐼 must be independent of the total vector length |𝑥 | or the subvector length |𝐼 |.
Among others, subvector commitments have found use cases in SNARK design and decentralized storage. Specifically,

Lai and Malavolta [51] show how to combine any subvector commitment scheme along with any Probabilistically

Checkable Proof system [71] to build a SNARK compiler in Section 2.1.2. We have also seen that opening to subvectors

is a property which lends itself well to decentralized storage applications (see Section 2.1.3).

4.4 Aggregation

Next, we add aggregatability to our subvector commitment. An aggregatable subvector commitment allows a user to

aggregate proofs for individual positions into a compact proof for a single subvector opening. Note, aggregation is

public so anyone can run this algorithm. Formally, an aggregatable subvector commitment consists of the previous

algorithms Setup, Com, Open, and Verify, along with an extra aggregation algorithm which we now describe. Here, the

algorithms Open and Verify support generating and verifying subvector proofs respectively.

Definition 4.3 (Aggregate Proofs [72]). AggregateProofs(𝐼 , (𝜋𝑖 )𝑖∈𝐼 ) : Given proofs 𝜋𝑖 , for all 𝑖 ∈ 𝐼 , outputs a subvector
proof for the subvector in the original commited vector indexed by 𝐼 .

As usual, we require the aggregated proof to be compact, which means its size is independent of the vector length

and number of proofs the aggregation algorithm takes as input. This notion is also referred to as one hop aggregation.

When a user is able to aggregate proofs for subvectors and further aggregate on those proofs, we say the scheme is

incrementally aggregatable. We provide the formal definition for incremental aggregation in section 4.8. Aggregatability
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is a desirable property for all applications discussed in section 2, since it allows for validation of multiple proofs with a

single check.

4.5 Trustless Setup

A commitment scheme has a trusted setup procedure if it requires a trusted party to run the Setup algorithm. This

usually arises because Setup generates some values which would compromise the binding of the scheme if known by

an adversary. A VC scheme with trustless setup has a Setup procedure that can be run by anyone.

Instantiating stateless blockchains with VC schemes that require trusted setup is undesirable because the participants

must trust the third party to destroy the toxic waste and not use it to generate false proofs. To sidestep the trusted setup

issues, efforts have been made to decentralize the trusted setup ceremony using multiparty computation protocols [59],

[16]. However using MPC to decentralize the trusted setup ceremony turns out to be quite an expensive procedure.

4.6 Dynamism

The need for a dynamic vector commitment scheme is apparent when considering applications to (updatable) decentral-

ized storage as well as (updatable) zero-knowledge elementary databases. Namely, we require an efficient procedure to

update a commitment and proofs reflecting a change in the length of the underlying vector.

Definition 4.4. Let 𝑉𝐶 = Setup, Com, Open, Verify be a vector commitment scheme. We say VC is dynamic if there

exists an algorithm Add(𝑖,𝐶, 𝑥) where 𝑖 is a position in vector 𝑣 = [𝑣1, . . . , 𝑣𝑛], 𝐶 is a commitment to 𝑣 , and 𝑥 is a

value we would like to insert at position 𝑖 in the vector. The algorithm Add(𝑖,𝐶, 𝑥) updates the commitment 𝐶 to a

commitment 𝐶′ which is a commitment to the vector 𝑣 ′ = [𝑣1, . . . , 𝑣𝑖−1, 𝑥, 𝑣𝑖 , 𝑣𝑖+1, . . . , 𝑣𝑛].
We also require an AddPf(𝐶, 𝑖, 𝑗, 𝜋 𝑗 ) which allows a user holding a proof for the value at position 𝑗 to update his

proof when 𝑣 has been changed to 𝑣 ′. Note that when 𝑣 = [𝑣1, . . . , 𝑣𝑛] changes to 𝑣 ′ = [𝑣1, . . . , 𝑣𝑖−1, 𝑥, 𝑣𝑖 , 𝑣𝑖+1, . . . , 𝑣𝑛],
then AddPf must be run on all openings for positions 1, . . . 𝑛 in the old vector 𝑣 . Therefore, we desire a property similar

to the maintainability property discussed in Section 4.7. Namely after an insertion/deletion applied to the committed

vector, we would like the VC scheme to be such that updating proofs for all positions is sublinear in the vector length.

We also require analogous Del(𝑖,𝐶) and DelPf(𝐶, 𝑖, 𝑗, 𝜋 𝑗 ) algorithms for when a value has been deleted from the

vector.

4.7 Maintainability

Maintainability is a stronger notion of updatability. It requires that updating proofs for all positions be sublinear in the

vector length. With maintainability, updating the proofs of all participants in the network after a block of transactions

(and a corresponding change in the blockchain state vector) would be a cheap operation.

Definition 4.5. Let 𝑉𝐶 be a vector commitment scheme specified by the tuple of algorithms Setup, Com, Open, and

Verify and let 𝑥 = (𝑥1, ..., 𝑥𝑛) ∈ Fℓ𝑝 be a vector committed to using 𝑉𝐶 . We say 𝑉𝐶 is maintainable if there exists an

algorithm UpdateAllProofs which takes as input a position 𝑖 of the vector 𝑥 , an value 𝛿 reflecting the amount 𝑥𝑖 has

changed by after an update, and proofs 𝜋1, ..., 𝜋𝑛 . The algorithm returns updated proofs 𝜋 ′
1
, ..., 𝜋 ′𝑛 which verify against

the updated vector (𝑥1, ..., 𝑥𝑖 + 𝛿, ..., 𝑥𝑛).

Srinivasan et al., [69] were the first to achieve both aggregation and maintainability by introducing multilinear

trees. Importantly, the multilinear tree structure eliminates the need to read in all the current proofs as input to
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UpdateAllProofs when an entry in the vector changes. The balanceproofs compiler [77] takes any aggregatable VC

scheme and produces a new VC scheme which is both maintainable and aggregatable. In this way, the authors obtain a

maintainable and aggregatable VC scheme by instantiating their compiler with Tomescu et al’s [72] aSVC scheme.

4.8 Incremental Aggregation

Definition 4.6. A VC scheme with subvector openings is called incrementally aggregatable [23] if there exists

algorithms Agg, Disagg working as follows:

Agg(𝑝𝑝, (𝐼 , 𝑥𝐼 , 𝜋𝐼 ), (𝐽 , 𝑥 𝐽 , 𝜋 𝐽 )): takes public parameters and two triples as input. Each input consists of an index set 𝐼

or 𝐽 , the corresponding subvector 𝑥𝐼 or 𝑥 𝐽 , and the corresponding subvector proof 𝜋𝐼 or 𝜋 𝐽 . It outputs a proof 𝜋𝐾 for

the 𝐾–subvector of 𝑥𝐾 of 𝑥 , where 𝐾 = 𝐼 ∪ 𝐽 .
Disagg(𝑝𝑝, 𝐼, 𝑥𝐼 , 𝜋𝐼 , 𝐾): takes in public parameters and a triple consisting of an index set 𝐼 , the corresponding

subvector 𝑥𝐼 , the corresponding subvector proof 𝜋𝐼 , and a set 𝐾 ⊆ 𝐼 . It outputs a proof 𝜋𝐾 for the 𝐾–subvector 𝑥𝐾 of 𝑥 .

We have standard correctness requirements for the Agg and Disagg algorithms. Note that standard aggregation does

not require a DisAgg algorithm. Indeed, the only scheme we know of which has such functionality is due to Campanelli

et al. [23]. The corresponding compactness property states that the length of all proofs produced by aggregation and

disaggregation must be bounded by a polynomial in the security parameter (and independent of the number of proofs

being aggregated/disaggregated).

4.9 Cross Commitment Aggregation

We can further extend the notion of aggregation to include aggregating proofs over different commitments. Consider

vectors 𝑣 (1) , . . . , 𝑣 (ℓ ) , corresponding commitments 𝐶 (1) , . . . ,𝐶 (ℓ ) and openings 𝜋 (1) , . . . , 𝜋 (ℓ ) (where 𝜋𝑖 is an opening

to an arbitrary set of positions for the vector committed in 𝐶 (𝑖 ) ). Then the cross commitment aggregation algorithm

combines the proofs into one proof which can be used to verify any opening proof 𝜋 (𝑖 ) against the corresponding

commitment 𝐶 (𝑖 ) .[41]:

Definition 4.7. For 𝑗 ∈ [ℓ], where𝐶 𝑗 is a commitment to a vector 𝑥 𝑗 , 𝑆 𝑗 is a set of indices, and 𝜋 𝑗 is the corresponding

subvector proof, there exists algorithms AggregateAcross and VerifyAcross such that

𝜋 ← AggregateAcross({𝐶 𝑗 , 𝑆 𝑗 ,𝑚 𝑗 [𝑆 𝑗 ], 𝜋 𝑗 } 𝑗∈ℓ )

𝑏 = 1/0← VerifyAcross({𝐶 𝑗 , 𝑆 𝑗 ,𝑚 𝑗 [𝑆 𝑗 ]} 𝑗∈[ℓ ] , 𝜋).

The value 𝜋 is a cross-aggregated proof which opens all subvectors corresponding to the (not cross aggregated) proofs

𝜋1 . . . , 𝜋ℓ . Correctness and binding definitions extend naturally from the basic notions discussed for “vanilla” vector

commitments.

The compactness requirement for cross commitment aggregation is naturally obtained from the definition given for

standard aggregation.
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4.10 Homomorphic Proofs and Homomorphic Openings

We now describe homomorphic properties for commitments and openings [25]. Linear map commitments with homo-

morphic commitments and homomorphic openings can easily be extended to be aggregatable and cross-commitment

aggregatable respectively [25](see Section 5.3).

Definition 4.8. Let 𝑣 be a vector in Fℓ𝑝 and let 𝜋1, 𝜋2 be openings corresponding to linear functions 𝑓1, 𝑓2. Let 𝛼, 𝛽 be

elements of F𝑝 . If 𝛼𝜋1 + 𝛽𝜋2 is an opening for 𝑣 with respect to the commitment𝐶 and the linear map 𝛼 𝑓1 + 𝛽 𝑓2, we say
the linear map commitment scheme has homomorphic proofs.

Homomorphic proofs allow for “unbounded” aggregation, which we discuss in section 5.3.

5 Constructing VCs and Achieving Properties

We highlight some general techniques which many schemes seem to follow in order to achieve various properties. We

include additional techniques for updates due to Boneh and Tas [70] in Section 5.4.

5.1 The Pairing Approach

Albrecht et al., [3] observe many commitment schemes based on pairings in bilinear groups follow a pattern which we

now outline. The 𝑆𝑒𝑡𝑢𝑝 algorithm generally begins by computing the following public parameters: a triple of pairing

friendly groups (G1,G2,G𝑇 ) (all of prime order 𝑝) along with the pairing map. The trusted party running the 𝑆𝑒𝑡𝑢𝑝

algorithm proceeds to generate a random secret 𝑣 and computes {𝑔(𝑣)}𝑔∈G where G is some set of polynomials specified

by the algorithm. In KZG polynomial commitments for example, the 𝑔 polynomials simply raise the input to some

power. 𝑆𝑒𝑡𝑢𝑝 discards 𝑣 and publishes (G1,G2,G𝑇 , 𝑔1, {𝑔
𝑔 (𝑣)
2
}𝑔∈G) where [𝑘]𝜆 refers to the discrete logarithm with

respect to some generator in the group 𝐺𝜆 (𝜆 = 1, 2,𝑇 ).
To generate a proof, a prover computes 𝜇 =

∑
𝑔∈G 𝑐𝑔 · 𝑔

𝑔 (𝑣)
2

. To verify, the pairing equation check looks like

𝑒 (𝑔1, 𝜇) =
∑
𝑔∈G 𝑔

𝑐𝑔𝑔 (𝑣)
𝑇

. We stress that this is only a general phenomena which can be loosely observed in many

existing constructions (such as the LMC scheme in Appendix 3.4.1), as opposed to a formulaic method to construct

commitment schemes. In [3], Albrecht et al., make this observation to motivate their approach for building lattice

analogues for pairing based commitments, thus achieving plausible post quantum security. Instead of generating a

secret vector, they notice they can achieve analogous schemes by generating secret trapdoors and using them to publish

preimages (under an inner product operation with a public vector) for the values {𝑔(𝑣)}𝑔∈G . We describe this approach

and its limitations in Section 5.6 of the Supplementary Material.

5.2 Achieving Hiding

An easy way to turn any VC scheme into a hiding one is to commit to each element in the vector using a standard

(hiding) commitment scheme. Then use the VC scheme with the vector of hiding commitments. Another way to obtain

a hiding vector commitment scheme and also achieve homomorphic properties [7] is the following: assume we have a

binding and hiding commitment scheme Com
single

where we can only commit to single elements in F𝑝 . Furthermore,

assume our commitment scheme satisfies

Com
single

(𝑥, (𝑟 )) + Com
single

(𝑥 ′, (𝑟 ′)) = Com
single

(𝑥 + 𝑥 ′, (𝑟 + 𝑟 ′)) .

Here, 𝑟 and 𝑟 ′ denote implicit randomness in the single value commitment scheme. Assuming such a scheme exists

[63], we can commit to a vector 𝑥 ∈ F𝑛𝑝 in the following way: sample random 𝑎𝑖 ← F𝑝 and random 𝑟𝑖 . Compute
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𝑤𝑖 = Com
single

(𝑎𝑖 , 𝑟𝑖 ) for all 𝑖 ∈ [𝑛]. Output the𝑤𝑖 as public parameters along with the public parameters generated at

setup time from Com
single

. Then to commit to 𝑥 , compute

∑𝑛
𝑖=1 𝑥𝑖𝑤𝑖 + Comsingle (0, 𝑟 ). The hiding property then follows

from the hiding property of the single value commitment scheme. Note that we do not have to assume the trusted setup

uses random 𝑟𝑖 , because the committer add their Com
single

(0, 𝑟 ). This is the approach taken in [7] to get a (homomorphic)

hiding vector commitment scheme. Note that this scheme has (zk) linear map openings instead of position openings. To

reveal the 𝑖th entry in the committed vector, we can simply publish a proof showing 𝐿(𝑥) = 𝑥𝑖 , where 𝐿 is the linear

form defined by taking the inner product with the 𝑖th basis vector.

5.3 Aggregation Techniques

One aggregation result [25] due to Campanelli et al., is the following: any linear map VC scheme with homomorphic

proofs satisfies unbounded aggregation.

Unbounded aggregation is similar to incremental aggregation, except one must keep a “history" of previous aggrega-

tion operations. We now outline how we can add this property to a linear map VC with homomorphic proofs, following

the example given in [25].

For some linear map VC with homomorphic proofs, let 𝑣 be a vector committed in 𝐶 and let 𝜋1, 𝜋2, 𝜋3 be openings

to linear maps 𝑓1 (𝑣) = 𝑦1, 𝑓2 (𝑣) = 𝑦2, 𝑓3 (𝑣) = 𝑦3. To aggregate 𝜋2 and 𝜋3, compute 𝜋∗
1
= 𝜋2 + 𝛾1𝜋3 where 𝛾1 =

𝐻 (𝐶, {(𝑓2, 𝑦2), (𝑓3, 𝑦3)}) and 𝐻 is a collision resistant hash function. To aggregate 𝜋1 on top of the previous aggregation,

compute 𝜋∗
2
= 𝜋1+𝛾2𝜋∗

1
where𝛾2 = 𝐻 (𝐶, (𝑓1, 𝑦1), 𝛾1). This aggregated proof is valid for the function 𝑓 ∗ = 𝑓1+𝛾1𝛾2 𝑓2+𝛾2 𝑓3.

That is, aggregating proofs is essentially taking the original proofs and computing some random linear combination of

them. To verify, we check if the latest proof verifies against the corresponding random linear combination of random

functions. In this example, we check if 𝜋∗
2
verifies against 𝑓 = 𝑓1 + 𝛾1𝛾2 𝑓2 + 𝛾2 𝑓3 . Note that this strategy can only work

if (1). the scheme has the homomorphic proofs property and (2). the verifier knows what the previous 𝛾 coefficients are.

To ensure property (2)., [25] stores the “aggregation history” in a tree structure [70].

5.4 Update Techniques

In this section, we look at how “algebraic” VCs (i.e. ones based on group and pairing techniques) handle updates. The

idea is publish some public update information𝑈 after a commitment is updated so that participants holding proofs

can efficiently update proofs. We follow Tas and Boneh’s [70] exposition, illustrating this phenomenon with KZG based

vector commitments.

Let us instantiate a VC through a KZG commitment. That is for a vector 𝑣 = [𝑣1, . . . , 𝑣𝑛] ∈ F𝑛𝑝 for some finite field

F𝑝 , we use KZG to commit to the Lagrange polynomial 𝜙 determined by the entries in 𝑣 . For 𝑖 ∈ F𝑝 , let 𝐿𝑖 (𝑥) be the
Lagrange basis polynomial with respect to 𝑖 .

Let 𝐶 be the commitment generated with respect to 𝑣 . Next, suppose that we want to update the vector at positions

(𝑖 𝑗 )𝑘𝑗=1 ⊂ 𝑛. That is, in the updated vector 𝑣𝑖 𝑗 becomes some new 𝑣 ′
𝑖 𝑗
. Boneh and Tas [70] show that the updated

commitment 𝐶′ is 𝐶
∏𝑘
𝑗=1𝐶

𝑣′𝑖 𝑗 −𝑣𝑖 𝑗
𝑖 𝑗

where 𝐶𝑖 𝑗 is the KZG commitment to the Lagrange basis polynomial with respect

to 𝑖 𝑗 ∈ F𝑝 . Assuming these commitments to the basis polynomials are publicly known, we can update the vector

commitment 𝐶 to 𝐶′ knowing only the old vector elements, the updated elements, and the indices where the updates

occurred. A similar story occurs when trying to update an opening proof at some position 𝑖 so that the new proof

verifies with respect to the updated commitment. Namely, to update proofs, we only need to know the old and new
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entries, as well as the indices of updates. However, it takes 𝑘 log(M) time to obtain the updated proof, where 𝑘 is the

number of elements that have been updated andM is the space of possible values that can be entries in the vector 𝑣 .

5.5 Homomorphic Gadget

To open our vector 𝑣 to some function 𝑓 (i.e., generate a proof for 𝑓 (𝑣)), the standard technique in the lattice setting is

to use a gadget repurposed from GSW homomorphic encryption [40]. We state the following theorem from [33].

Lemma 5.1. Let 𝑛, 𝑞 ∈ N with ℓ =
⌈
log

2
𝑞
⌉
and 𝐷 = {0, 1} or 𝐷 = F𝑝𝑛′ for a prime 𝑝 that divides 𝑞 and some 𝑛′ ≤ 𝑛.

There is an efficient deterministic robust matrix encoding for any 𝑣 ∈ 𝐷𝑑 denoted 𝑣𝑡 ⊗ 𝑔𝑡 ∈ Z𝑛×𝑑𝑤𝑞 where𝑤 = 𝑛ℓ , and a

deterministic polynomial time homomorphic evaluation algorithm Eval, where for any function family (we need some

minor restriction on the families we can consider) F = {𝑓 : 𝐷𝑘 → 𝐷}
- Eval’s input in square brackets is optional, and when it is provided, the additional output (also in square brackets) is

also produced. The non-optional output is unaffected whether or not an optional input is provided.

- Eval(𝑓 ∈ F ,𝐶 ∈ Z𝑛×𝑘𝑤𝑞 [, 𝑥 ∈ 𝐷𝑘 ]) outputs a matrix 𝐶𝑓 ∈ Z𝑛×𝑤𝑞 [and an integral matrix 𝑆𝑓 ,𝑥 ∈ Z𝑘𝑤×𝑤], where the
additional output 𝑆𝑓 ,𝑥 satisfies

(𝐶 − 𝑥𝑡 ⊗ 𝑔𝑡 ) · 𝑆𝑓 ,𝑥 = 𝐶𝑓 = 𝑓 (𝑥)𝑡 ⊗ 𝑔𝑡

In [33], the public parameter is some random matrix 𝐶 and the 𝐸𝑣𝑎𝑙 algorithm is used to generate the functional

commitment𝐶𝑓 . To generate proofs, we use 𝐸𝑣𝑎𝑙 again with the vector as our optional input to generate the matrix 𝑆𝑓 ,𝑥

as our proof. A verifier simply plugs in 𝐶𝑓 and 𝑆𝑓 ,𝑥 and checks the above equation holds. This homomorphic gadget is

also used in a similar way in the functional commitment of [79].

5.6 Pairing to Lattice Translation

The pairing paradigm can be translated [3] into a version for lattices. Instead of (G1,G2,G𝑇 , 𝑔1, 𝑔
𝑔 (𝑣)
2
), the Setup

generates public parameters of the form (𝑎, 𝑣, 𝜇𝑔∈G) 𝑎 and 𝑣 are public vectors, G is as before, and

⟨𝑎, 𝜇𝑔⟩ = 𝑔(𝑣) (mod 𝑝) .

We note that the 𝜇𝑔 vectors can be generated with preimage sampling algorithms using secret lattice trapdoors [56].

To generate a proof, the strategy is to compute 𝜇 =
∑
𝑔∈G 𝑐𝑔𝜇𝑔 for some cleverly chosen constants 𝑐𝑔 depending on

the commitment and/or the vector/function being committed to. Finally, verification reduces to checking

⟨𝑎, 𝜇⟩ =
∑︁
𝑔∈G

𝑐𝑔 · 𝑔(𝑣) (mod 𝑝) .

For a concrete example of this translation strategy, we refer to [3]. We also note that [79] uses lattice preimage sampling

to generate public parameters, although the structure of their scheme differs significantly from the above paradigm.

Unfortunately, such a structure requires new lattice assumptions, since now we have additional information to solve

the underlying Short Integer Solutions (see Appendix A.6) problem [2] (namely trapdoors for matrices related to the

original SIS matrix). These assumptions do not have a security reduction to standard lattice assumptions as of now.

Moreover, the extractability assumption they propose has been shown to most likely be insecure [78], so we cannot use

their constructions to build general SNARKs or arguments of knowledge for specific relations.
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Table 1. Reference of Symbols Used

Symbol Meaning

𝑛 = 𝑘 ·𝑚′ = 𝑡𝑟 Vector Length

𝛼 infinity norm bound of vector corresponding to inner product opening

𝜆 security parameter

|G| size of a group element

|F| size of a field element

𝑑 depth of circuits being opened to

𝑤 width of circuits being opened to

𝑘 · P complexity of 𝑘 pairing operations

𝑘 · E complexity of computing 𝑘 group exponentiations

𝑘 ·𝐺𝑀 complexity of 𝑘 group multiplications

F complexity of a field operation in F𝑝

𝑟 · 𝑃𝑃 complexity of computing 𝑟 pairing products

M complexity of a matrix vector product

𝐻 complexity of running a collision resistant hash function

𝐻𝐶𝑆 complexity of verification for the homomorphic computation scheme (see [33])

ℓ size (in bits)of a vector entry

𝜈 constant in (0, 1)
𝑆 upper bound on the number of vector entries to be updated

I index set for a subvector

× analysis left for future work

DLog discrete log problem

CDH Computational Diffie Hellman

SBDH Strong Bilinear Diffie Hellman

SIS Short Integer Solutions

GUO a Group of Unknown Order Assumption

𝑛𝑤 − 𝐵𝐷𝐻𝐸∗ a variant of the weak bilinear Diffie Hellman Problem

AGM Algebraic Group Model

GGM Generic Group Model

ROM Random Oracle Model

6 Comparison

In this section, we compare various VC constructions. We summarize our comparisons between VC constructions

in tables 2, 3, 4, and 5. We define all symbols used in Table 1. In Tables 2, 4, we examine security assumptions,

dynamism, homomorphism, and hiding properties, and note if an implementation can be found. In Table 3, we look
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Table 2. Properties of Commitment Schemes I

Type Scheme Security

Vector

Merkle Tree CRHF

Attema [6] RSA

Caulk [80] AGM, ROM, 𝑛-SBDH

Catalano [26] - CDH CDH

Catalano [26] - RSA RSA

Tomescu [72] 𝑛-SBDH

Boneh [14] GUO

Tas [70] CRHF

Campanelli [23] (1) GUO

Campanelli [23] (2) GUO

Gorbunov [41] nw-BDHE, AGM, ROM
∗

Srinivasan [69] 𝑛-SDH

Krenn [48] DBP

Acharya [1] CRHF (Post-Quantum)

Papamanthou [62] CRHF

Fleichhacker [38] 𝑛-SBDH

Chen [28] CDH

Wang [77] 𝑛-SBDH

Peikert [64] [1] SIS

Libert [54] 𝑞-Diffie Hellman Exponent

Functional

Wee [79] BASISstruct (Post-Quantum)

de Castro [33] SIS(Post-Quantum)

Wang [75] BASISstruct

Balbas [10] [1] 𝑛-HiKer assumption [10]

Balbas [10] [2] Twin-k-R-ISIS [10]

Lipmaa [55] span uber assumption [55]

Linear Map

Lai [51] (LMC) GGM

Campanelli [25](1) AGM, DLog

Campanelli [25] (2) AGM, Dlog

Fisch [37] k-R-ISIS [3] (Post-Quantum)

Chu [32] GUO

Libert [53] Deja Q[53]

at commitment sizes, proof sizes, and public parameter sizes. Finally in Table 5, we examine proving complexities

verification complexities. All properties discussed in Section 4 are discussed in our tables, with the exception of opening

to subvectors and dynamism (which is a property that none of the schemes possess). Wherever possible, our complexity

is with respect to subvectors, where the subvector size is denoted by the size |𝐼 | of the corresponding index set. That is,

our complexity is with respect to generating/verifying a subvector proof instead of a proof for a single position.

Our primary guideline for including a work in our tables was to check if the work proposes a novel VC, linear map

commitment, or FC scheme with functionality similar to our definitions. We also include the balanceproofs VC compiler

[77] (which turns an aggregatable VC into a maintainable and aggregatable one) instantiated with the aggregatable

subvector commitment scheme [72] for analysis.

Our guidelines for excluding a work are as follows:
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Table 3. Comparison of Commitments, Proof, and Public Parameter Sizes.

Scheme |𝐶 | |𝜋 | |𝑝𝑝 |
Merkle Tree |𝐻 | 𝑂 (log𝑛) 𝑂 (1)
Attema [6] |G| 𝑂 (log𝑛) 𝑂 (𝑛)
Caulk [80] |G| 15|G|, 4|F| 𝑂 (𝑛)
Catalano [26] - CDH |G| |G| 𝑂 (𝑛2)
Catalano [26] - RSA |Z

2
𝜆 | |Z

2
𝜆 | 𝑂 (𝑛)

Tomescu [72] |G| |G| 𝑂 (𝑛)
Boneh [14] |G| |G| 𝑂 (1)
Tas [70] |𝐻 | 𝑂 (log𝑛) 𝑂 (1)
Campanelli [23](1) 4|G| + 2|Z

2
2𝜆 | 3|G| |G|

Campanelli [23](2) |Z
2
𝜆 | |Z

2
𝜆 | 𝑂 (1)

Lai [51] |G| |G| 𝑂 (𝑛) |G|
Campanelli [25](1) |G| 3|G| 𝑂 (𝑛)
Campanelli [25] (2) |G| 3|G| 𝑂 (𝑛)
Gorbunov[41] |G| |G| 𝑂 (𝑛) |G|
Srinivasan [69] |G| 𝑂 (log( |𝐼 | log𝑛)) 𝑂 (𝑛)
Wee [79] 𝑂 (𝜆(log 𝜆 + log𝑛)) 𝑂 (𝜆(log2 𝜆 + log2 𝑛)) 𝑛2poly(𝜆, 𝑑, log𝑛)
Fisch [37] 𝑂 (log𝑛 + log𝛼) 𝑂 (log𝑛 + log𝛼) 𝑂 (𝑛)
Krenn [48] |G| |G| 𝑂 (𝑛)
Acharya [1] |𝐻 | 𝑂 (log𝑛) 𝑂 (1)
Wang [75] poly(𝜆, 𝑑, log𝑛) poly(𝜆, 𝑑, log𝑛) 𝑛2poly(𝜆, 𝑑, log𝑛)
Papamanthou [62] |𝐻 | 𝑂 (log𝑛) ∗a

Fleischhacker [38] |G| |G| 𝑂 (𝑛)
Chen [28] 𝑂 (1) 𝑂 (1) 𝑂 (𝑛)
Balbas [10] [1] |G| 𝑂 (𝑑) 𝑂 (𝑆5)
Balbas [10] [2] 𝑂 (log𝑤) 𝑂 (𝑑 log2𝑤) 𝑂 (𝑤5)
Wang [77] |G| |G| 𝑂 (𝑛)
Chu [32] |G| |G| 𝑂 (1)

Peikert [64] 𝑂 (𝑟 log 𝑡) 𝑂 (𝑟3𝑡 log2 𝑡) 𝑂 (𝑟2𝑡2)
Lipmaa [55] × × ×
Libert [54] |G| |G| 𝑂 (𝑛)
Libert [53] |G| |G| 𝑂 (𝑛)

a
This design uses updatable SNARKs to update subvector proofs, so public parameter sizes depend on the choice of SNARK used to instantiate the

construction.
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(1) Unless the work adds a property we consider in Tables 2 or 4, we do not include a construction whose basic

functionalities work in the same manner as a previous construction

(2) We do not include PC constructions

(3) We do not include all but one VC constructions, as their intended opening functionality differs significantly

from standard VC opening functionality.

(4) We do not include schemes whose security is proven in nonstandard models (e.g. the online authority model in

[64])

Our process for finding constructions to analyze was to examine works concerning VCs, linear map commitments, or

FCs, on or after 2013. We chose 2013 as our cutoff year as that was the year of publication for Catalano and Fiore’s [26]

seminal work on VCs. We also include a standard Merkle Tree for a baseline comparison. We found all of our works by

searching through Google Scholar, Eprint, and the Arxiv websites. To find any potential schemes we missed, we also

examined citations of the initial papers we found through this process.

One observationwe canmake from the tables is that a large number of VCs are built from polynomial commitments via

the methods discussed in Section 3.7. In many cases, such VCs are equipped with desirable properties. Tomescu et al. [72]

construct a (one hop) aggregatable VC by extending VCs via KZG [47] polynomial commitments. The authors propose

using their scheme to instantiate a stateless cryptocurrency network, as the scheme enjoys other important properties

necessary for this application such as supporting updates or opening to subvectors. They provide an implemenation

in Rust. Similarly, Hyperproofs [69] was constructed by extending VCs via PST polynomial commitments [61]. Their

scheme is the only construction which is maintainable and aggregatable, although the balanceproofs compiler [77] can

tranform any aggregatable VC into a maintainable one. Hyperproofs also opens to subvectors and enjoys homomorphic

properties. As such, they also advocate for their scheme to be used for constructing a stateless cryptocurrency as well

as provide a sample implementation in Go. One drawback of VCs obtained in this manner is that they lack incremental

aggregation and dynamic properties.

Table 2 also illustrates the current shortcomings in post quantum VCs, many of which are lattice based. Building

post quantum VCs from lattices seems to be popular, as designers can take advantage of many algebraic tools in lattice

based cryptography, such as homomorphic gadgets or preimage sampling mechanisms. In comparison, other post

quantum schemes such as those based on hashing do not enjoy those such structural tools. However, none of the

lattice based designs enjoy a trustless setup, with the exception of the functional commitment construction due to

de Castro et. al [33] which does not support aggregation. The common reference string produced from the trusted

setup process is occasionally critical for aggregation properties. This happens because aggregation generates a random

linear combination of the input proofs, which can be verified with a corresponding random linear combination of the

common reference string elements [79] [25]. Moreover, these schemes are not based on standard lattice assumptions,

such as [10], [79], [3], or [75]. Many of the underlying problems have a similar security structure. That is, their security

is based on a variant of SIS where trapdoors for matrices related to the SIS instance are additionally generated. Such

problems need to be studied in detail and reductions to standard lattice assumptions must be established for users to

have confidence in these schemes’ security.

From table 3, we can also notice stark differences between classical VC schemes and lattice based ones. In particular,

classical constructions tend to be extremely efficient in terms of space, with many commitments being just a single

element in a pairing friendly group or in Z
2
𝜆 . On the other hand, all lattice based commitments have sizes dependent on

the vector length. In the case of functional commitments, proof sizes are also dependent on the circuit depth 𝑑 and/or
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Table 4. Properties of Commitment Schemes II

Scheme Homomorphism Hiding Implementation

Merkle Tree no no yes

Attema [6] yes yes
a

no

Caulk [80] no position hiding

linkability

yes [81]

Catalano [26] - CDH no no no

Catalano [26] - RSA no no no

Tomescu [72] no no no

Boneh [14] no no yes [46]

Tas [70] no no no

Campanelli [23] (1) no no yes [58]

Campanelli [23] (2) no no yes [23]

Lai [51] (LMC) yes no no

Campanelli [25](1) yes no yes [21]

Campanelli [25] (2) yes no no

Gorbunov [41] no no yes [4]

Srinivasan [69] yes no yes [68]

Wee [79] yes no no

de Castro [33] yes no no

Fisch [37] yes no no

Krenn [48] yes no no

Acharya [1] no no no

Wang [75] yes mercurial hiding no

Papamanthou [62] no no yes [50]

Fleichhacker [38] yes yes yes [74]

Chen [28] yes position hiding no

Balbas [10] [1] yes yes no

Balbas [10] [2] yes yes no

Wang [77] no no yes [76]

Chu [32] no no no

Peikert [64] [1] yes no no

Lipmaa [55] no yes
b

no

Libert [54] yes mercurial hiding no

Libert [53] yes yes no

a
comes with a sigma protocol for knowledge of linear map openings

b
comes with a zero knowledge protocol for knowledge of position openings

Manuscript submitted to ACM



1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

Vector Commitment Design, Analysis, and Applications: A Survey 23

width𝑤 which they open to. Finally, public parameters are almost always dependent on the vector dimension. Schemes

based on group of unknown order (GUO) assumptions generally enjoy trustless setup, which tends to result in constant

size public parameters. Most of these schemes build on top of a GUO based accumulator from Boneh et. al. [14], who

show how to translate the accumulator into a VC scheme. However, GUO based schemes are instantiated with class

groups or RSA groups. Such constructions are not post quantum solutions and class group instantiations suffer from

efficiency bottlenecks in comparison to other classical designs.

Table 4 indicates that a large number of VC schemes are not hiding. However, we remark that any VC scheme can be

turned into a hiding one using the transformation described at the beginning of section 5.2. We also note that the lattice

based commitment schemes relying on trapdoor preimage sampling in order to generate commitments and proofs [79]

[75] generate hiding commitments. This is precisely because such schemes follow a certain paradigm:

(1) The commitment is is sampled in a statistcally close to random manner.

(2) a proof is generated such that it solves a matrix vector equation involving the commitment and a verification

key.

(3) This proof is generated using a preimage sampling mechanism, which outputs a short vector satisfying the

equation from the previous point.

Since the commitment generated is statistically close to random, the scheme (information theoretically) hides the

committed vectors. Therefore, this framework guarantees strong privacy properties at the expense of requiring a trusted

setup. Table 4 also shows that lattice based constructions lack implementations. We hope to see more implementations

in order to better understand the real world performance of these constructions.

Most classical VCs based on pairings have homomorphic commitments/proofs, as seen in table 4. Such schemes have

commitments which take the form 𝐶 =
∏𝑛
𝑖=1 𝑔

𝑥𝑖
𝑖
, where 𝑥𝑖 is the 𝑖the element of the vector and 𝑔𝑖 is the 𝑖th element in

the public parameter set. Then if𝐶′ =
∏𝑛
𝑖=1 𝑔

𝑥 ′𝑖
𝑖
, we see that𝐶 ·𝐶′ is a commitment to (𝑥𝑖 + 𝑥 ′

1
, . . . 𝑥𝑛 + 𝑥 ′𝑛). This shows

such commitments are homomorphic. Many of these commitment schemes also have homomorphic proofs because the

verification process involves a pairing check. Such schemes take advantage of the bilinear properties of the pairing

in order to obtain homomorphic proofs. We note that lattice translation of these pairing based VCs 5.6 will continue

to be homomorphic, because the pairing is turned into an inner product operation, which is also bilinear. Finally, we

note that many of the lattice based functional commitment schemes in table 4 are homomorphic, as they enjoy the

properties of the underlying homomorphic gadget (see Section5.5) at the heart of their constructions.

From table 4, we also note that the construction by Wang et. al. [75] yields the first lattice based mercurial VC scheme.

The construction also makes heavy use of the trapdoor preimage sampling properties in order to satisfy the hiding

requirements necessary for mercurial commitments. Recall that commitments generated in that way are statistically

close to uniform random. While it is unclear how to design a scheme with trustless setup in this way, it is clear that the

security properties these techniques yield make it attractive from a VC design standpoint.

6.1 Revisiting Applications

For a stateless blockchain, recall that we need a VC supporting subvector openings as well as aggregation. This way

validators can verify a large number of transactions by checking a single aggregated proof. We also need to be able

to update commitments and proofs efficiently, since the blockchain state vector changes with each published block

of transactions. Some proposals which have these properties are outlined in [72], [14], [79], [23], [41], [51], [25]. For

SNARKs instantiated through subvector or linear map commitments, we can use any of the above schemes for a
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Table 5. Time Complexity of Proof Generation and Verification

Scheme Proof Complexity Verification Complexity

Merkle Tree 𝑂 (log𝑛) 𝑂 (log𝑛)𝐻
Attema [6] 𝑂 (𝑛) 1 ·𝐺𝑀 +M

Caulk [80] 𝑂 ( |𝐼 |2 + |𝐼 | log𝑛) 4P

Catalano [26] - CDH 𝑂 (𝑛) · E 𝑂 (1)P
Catalano [26] - RSA 𝑛 ·𝐺𝑀, 1 · E 1 ·𝐺𝑀
Tomescu [72] 𝑂 (𝑛 log𝑛) +𝑂 ( |𝐼 | log2 |𝐼 |) 𝑂 ( |𝐼 | log2 |𝐼 |)
Boneh [14] 𝑂 ( |𝐼 | · 𝑛 log𝑛)G 𝑂 (𝜆) +𝑂 (ℓ · 𝑛 log𝑛)
Tas [70] 𝑂 (𝜆 · 𝑛 log ℓ) 𝑂 (log𝑛)𝐻
Campanelli [23](1) |G| 𝑂 (ℓ ·𝑚 log(ℓ𝑛)) |Z

2
2𝜆 | +𝑂 (𝜆)G

Campanelli [23](2) 𝑂 (𝑛) ·𝐺𝑀, 1 · E (mod 𝑂 (𝜆)) 𝑂 (1)
Lai [51] 𝑂 (𝜆𝑛ℓ2) 𝑂 (𝜆𝑛ℓ)
Campanelli [25](1) 𝑂 (𝑘) 𝑂 (1)P
Campanelli [25] (2) 𝑂 (𝑘) 4P

Gorbunov[41] 𝑂 ( |𝐼 |𝑛)E 𝑂 ( |𝐼 |)E +𝑂 (1)𝑃𝑃
Srinivasan [69] 𝑂 (𝑛 log𝑛) 𝑂 ( |𝐼 |)
Wee [79] × ×
de Castro [33] × ×
Fisch [37] 𝑂 (𝑛 log𝑛) 𝑂 (log(𝑛𝛼) log log(𝑛𝛼))
Krenn [48] 𝑂 (𝑛) ·𝐺𝑀 1 · 𝑃𝑃 + P
Acharya [1] 𝑂 (log𝑛) 𝑂 (log𝑛)
Wang [75] 𝑂 (𝑑) ×
Papamanthou [62] 𝑂 (log𝑛) 𝑂 (log𝑛)
Fleischhacker [38] 𝑂 (𝑛) · E,𝑂 (𝑛) ·𝐺𝑀 2P

Chen [28] 𝑂 (𝑛) ·𝐺𝑀 2P

Balbas [10] [1] × 𝑂 (𝑑)
Balbas [10] [2] × 𝑂 (log𝑛)
Wang [77] 𝑂 (

√
𝑛 log𝑛) 𝑂 ( |𝐼 | log2 |𝐼 |)

Chu [32] 𝑂 (1) 𝑂 (𝑛) · E 𝑂 (𝜆𝑛2/log(𝜆𝑛))
Peikert [64] × 𝑂 (𝑟 )
Lipmaa [55] × ×
Libert [54] 1 · 𝐸, 𝑂 (𝑛) ·𝐺𝑀 1 · 𝑃𝑃 + P
Libert [53] 𝑂 (𝑛2)· GM 1 · 𝐸 + 1 ·𝐺𝑀 + 1 · P
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subvector commitment, or [51], [25] for a linear map commitment. For Decentralized Storage, we need a VC with most

of the properties mentioned for the stateless blockchain application. Most importantly, we need a VC scheme which is

dynamic. We are unaware of a dynamic VC (to the best of our knowledge).

The types of privacy enhancing applications that a VC can support depends on the types of noninteractive zero

knowledge (NIZK) [42] proofs it can support. For example, Caulk’s [80] position hiding linkability property means

that the scheme is equipped with a zero knowledge argument showing that the values hidden in a committed subtable

are also values in a larger committed table. This makes Caulk amenable for lookup constructions. On the other hand,

the NIZK proof in [6] concerns knowledge of evaluation of the committed vector under a publicly known linear map,

from which the authors show how to design zk SNARKs. Finally, the VC presented in [52] has a NIZK showing the

committed vector is “short”, making it amenable for range proofs.

7 Open Problems

7.1 Dynamism, Incremental Aggregation, and Supporting Updates

To the best of our knowledge, the only VC scheme which supports incremental aggregation and is dynamic is [23].

Dynamism is critical for the decentralized storage application since it can support data coming from new clients.

Incremental aggregation will also be useful for fast verification, since a validator/client can check the data from

multiple storage nodes at once by aggregating all of their subvector proofs. However, an important feature their

schemes miss is supporting updates (and more generally batch updates). To lead to a simple instantiation of verifiable

decentralized storage, we believe an important open problem is to build a compact VC scheme supporting (batch)

updates, is incrementally aggregatable, and dynamic. For short proofs of retrievability, such a scheme should also

support succinct arguments of knowledge of arbitrary subvectors in a committed vector.

7.2 PostQuantum VCs with Extractable Knowledge Openings

A few vector commitments which we considered have knowledge openings for common relations, such as linear maps

or subvectors. All such knowledge openings are extractable (i.e. there exists an algorithm with “rewinding access” to the

prover’s internal state which can recover the witness for the relation instance [71]) under classical assumptions, such as

the algebraic group model. It remains to be seen if we can provide arguments of knowledge for such popular relations

and guarantee extractability in a post quantum setting. Albrecht et al. attempt to do this by introducing new knowledge

assumptions [3]. However their assumptions were shown to most likely be insecure due to Wee and Wu [78].

One potential area in this direction is to design hiding post quantum VCs which support knowledge openings for a

large class of circuits. The hiding VCs which we considered only had knowledge openings for a specific type of relation.

This made them useful for a small subset of possible privacy preserving applications. It would be nice to have a general

purpose post quantum hiding VC which supports NIZKs for multiple types of relations. A VC with knowledge openings

for all NP relations would just be a SNARK, but we could try to build a hiding post quantum functional commitment

which has openings for a class of relations which are immediately useful for practical applications, such as Lipmaa’s

classical FC for sparse polynomials [55].

7.3 Lookups from Vector Commitments

Lookup arguments are extremely similar cryptographic primitives when compared with vector commitments and

accumulators. At a high level, we commit to a large set in a VC or accumulator and we reveal subsets of our choice.
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A VC proof must respect the positions of the revealed entries, while an accumulator proof simply has to respect set

membership. Similarly, a lookup argument proof asserts that the prover’s vector is a “subvector” of the larger table

vector. However in the lookup case, no notion of position is necessary in the proof, and the subtable can also include

repeats of values in the larger table. From this perspective, a lookup argument is similar to an accumulator which

supports multiset proofs. However the main difference comes from the complexity requirements. With many vector

commitment subvector proofs, the complexity is a function of the length of the vector itself. A lookup argument requires

the proving complexity to only be dependent on the length of the subvector. This leads us to ask: given the similarity

between primitives such VCs, accumulators, and lookups, can we find a method to transform one of these primitives

(e.g. a VC or an accumulator) into a lookup argument and vice versa? The authors of the Caulk lookup scheme [80] take

some steps toward this, however their scheme is still somewhat dependent on the size of the large table.

8 Conclusion

In this survey, we presented a systemization of the vector commitment literature. We gave a detailed exposition of

vector commitments and their properties, and showed where they fit among related primitives, such as polynomial and

functional commitments. We proceeded to discuss properties necessary for many decentralized and privacy preserving

applications. Next, we compared and contrasted many of the state of the art vector commitment schemes, discussing

what applications they would be suited for. Finally, we ended our discussion with some open problems which we

believe to be important for improving decentralized and privacy preserving applications instantiated through VCs.

With the increase of VC based instantiations of decentralized and privacy preserving mechanisms, new VC properties

and security notions will be put forth. Moreover, constructions will evolve and new paradigms involving VCs will be

introduced. We hope that our survey helps identification of new applications, facilitates new/improved commitment

designs, and allows researchers to establish new connections between VCs and other cryptographic primitives.
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A Security Assumptions

For completeness, we define the popular security assumptions made by the VC schemes we consider.

A.1 Discrete Logarithm Assumption

Definition A.1. Let𝐺 be a cyclic group of some prime order 𝑞 with 𝑔 ∈ 𝐺 as a generator. Consider the following game

between an adversary A and a challenger:

(1). The challenger computes 𝛼 ← Z𝑞 and sets 𝜇 = 𝑔𝛼 . He sends 𝜇, a description of 𝐺 , and the generator 𝑔 to A.

(2). A outputs some 𝑥 ∈ Z𝑞 .
The adversary A wins the game if 𝑥 = 𝛼 (mod 𝑞). We define A′𝑠 advantage in solving the discrete logarithm

problem on 𝐺 (write DLAdv[A,𝐺] as the probability that A wins the game.

Definition A.2. We say the discrete logarithm assumption holds for the group𝐺 if for all efficient adversaries A, the

quantity DLAdv[A,𝐺] is negligible. The quantity 𝑔𝛼 is an instance of the discrete logarithm problem on the group 𝐺

and that 𝛼 is a solution to this instance. The assumption essentially states that no efficient adversary can solve the

discrete logarithm problem.

A.2 Computational Diffie Hellman Assumption

Definition A.3. Let 𝐺,𝑔 be as before. We again have a game between an adversary A and a challenger.

(1). The challenger computes 𝛼, 𝛽 ← Z𝑞 and computes 𝜇 = 𝑔𝛼 , 𝑣 = 𝑔𝛽 ,𝑤 = 𝑔𝛼𝛽 . He sends 𝜇, 𝑣 , as well as a description

of 𝐺 and the generator 𝑔 to A.

(2). A outputs some 𝑤̂ ∈ 𝐺 .
We define A’s advantage (write CDHAdv[A,𝐺] in solving the Computational Diffie Hellman problem with respect

to 𝐺 as the probability𝑤 = 𝑤̂ .

Definition A.4. We say the Computational Diffie Hellman assumption holds for 𝐺 if for all efficient adversaries A,

the quantity CDHAdv[A,𝐺] is a negligible function in the security parameter.
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A.3 Strong Bilinear Diffie Hellman Assumption

Definition A.5. Let 𝐺 be a group of prime order 𝑝 and 𝑔 be a generator. Consider the string 𝑆𝑅𝑆 = {𝑔,𝑔𝜏 , 𝑔𝜏2 , ..., 𝑔𝜏𝐷 }
where 𝜏 is a random integer chosen from {1, ..., 𝑝 − 1}. The D Strong Bilinear Diffie Hellman Assumption states that

given such a string, there is no efficient algorithm that can output a pair (𝑧, 𝑔
1

𝜏−𝑧 ) except with negligible probability.

A.4 Weak Bilinear Diffie Hellman Assumption

We give the same variant of this problem as defined in Pointproofs [41].

Definition A.6. Let 𝐺1, 𝐺2, 𝐺𝑇 be groups of prime order p with a nondegenerate bilinear pairing 𝑒 : 𝐺1 ×𝐺2 → 𝐺𝑇 .

Fix generators 𝑔1, 𝑔2, and 𝑔𝑇 := 𝑒 (𝑔1, 𝑔2) for the three groups. For some secret exponent 𝛼 , an adversary is given

𝑔𝛼
1
, . . . , 𝑔𝛼

ℓ

1

𝑔𝛼
ℓ+2

1
, . . . , 𝑔𝛼

3ℓ

1

𝑔𝛼
2
, . . . , 𝑔𝛼

ℓ

2
.

The adversary is asked to output 𝑔𝛼
ℓ+1

1
.

A.5 Group of Unknown Order Assumptions

Let GGen(1𝜆) be a probabilistic algorithm that generates a group 𝐺 with order in a range 𝑜𝑟𝑑𝑚𝑖𝑛, 𝑜𝑟𝑑𝑚𝑎𝑥 such that

1

𝑜𝑟𝑑𝑚𝑖𝑛
, 1

𝑜𝑟𝑑𝑚𝑎𝑥
, 1

𝑜𝑟𝑑𝑚𝑎𝑥−𝑜𝑟𝑑𝑚𝑖𝑛
∈ 𝑛𝑒𝑔𝑙 (𝜆). We say the adaptive root assumption holds for Ggen if for any PPT adversary

(A1,A2)

𝑃𝑟

[
𝑢ℓ = 𝑤 ∧𝑤 ≠ 1 : 𝐺 ← GGen(1𝜆),

(𝑤, 𝑠𝑡𝑎𝑡𝑒) ← A1 (𝐺)

ℓ ← 𝑃𝑟𝑖𝑚𝑒𝑠 (𝜆)

𝑢 ← A2 (ℓ, 𝑠𝑡𝑎𝑡𝑒)
]
≤ 𝑛𝑒𝑔𝑙 (𝜆)

where 𝑃𝑟𝑖𝑚𝑒𝑠 (𝑥) denotes the set of all primes less than or equal to 𝑥 .

We say the Strong RSA Assumption holds for GGen if for any PPT adversary A

𝑃𝑟

[
𝑢𝑒 = 𝑔 ∧ e is prime : 𝐺 ← GGen(1𝜆),

𝑔← 𝐺,

(𝑢, 𝑒) ← A(𝐺,𝑔)
]
≤ 𝑛𝑒𝑔𝑙 (𝜆).

We say the Strong Distinct Prime Product Root assumption holds for Ggen if for any PPT adversary A,

𝑃𝑟

[
𝑢
∏

𝑘 = 𝑔,∧𝑒𝑖 ∈ 𝑃𝑟𝑖𝑚𝑒𝑠 (𝜆),∧𝑒𝑖 ≠ 𝑒 𝑗 for 𝑖 ≠ 𝑗 : 𝐺 ← Ggen(1𝜆),

𝑔← 𝐺,

(𝑢, {𝑒𝑖 }𝑖∈𝑆 )

𝑔← 𝐺

(𝑢, {𝑒𝑖 }𝑖∈𝑆 ) ← A(𝐺,𝑔)
]
≤ 𝑛𝑒𝑔𝑙 (𝜆).
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A.6 Short Integer Solutions

Definition A.7 (Short Integer Solutions). Given a matrix 𝐴 ∈ Z𝑛×𝑚𝑞 , the 𝑆𝐼𝑆 (𝑛,𝑚, 𝛽, 𝑞) problem asks us to find a short

and nonzero vector 𝑒 in the kernel of 𝐴. Namely, 0 < | |𝑒 | |2 ≤ 𝛽 .
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