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Abstract

Johnson and Lindenstrauss (Contemporary Mathematics, 1984) showed that for n > m, a
scaled random projection A from Rn to Rm is an approximate isometry on any set S of size at
most exponential in m. If S is larger, however, its points can contract arbitrarily under A. In
particular, the hypergrid ([−B,B] ∩ Z)n is expected to contain a point that is contracted by a
factor of κstat = Θ(B)−1/α, where α = m/n.

We give evidence that finding such a point exhibits a statistical-computational gap precisely
up to κcomp = Θ̃(

√
α/B). On the algorithmic side, we design an online algorithm achieving κcomp,

inspired by a discrepancy minimization algorithm of Bansal and Spencer (Random Structures &
Algorithms, 2020). On the hardness side, we show evidence via a multiple overlap gap property
(mOGP), which in particular captures online algorithms; and a reduction-based lower bound,
which shows hardness under standard worst-case lattice assumptions.

As a cryptographic application, we show that the rounded Johnson-Lindenstrauss embedding
is a robust property-preserving hash function (Boyle, Lavigne and Vaikuntanathan, TCC 2019)
on the hypergrid for the Euclidean metric in the computationally hard regime. Such hash
functions compress data while preserving ℓ2 distances between inputs up to some distortion
factor, with the guarantee that even knowing the hash function, no computationally bounded
adversary can find any pair of points that violates the distortion bound.
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1 Introduction

The celebrated Johnson-Lindenstrauss (henceforth JL) lemma [JL84, IM98] gives us a powerful
dimension-reduction mechanism for data.1 The JL lemma states that for all fixed (small) finite sets
S ⊆ Rn, for a random i.i.d. Gaussian matrix A ∼ N (0, 1)m×n, the linear map 1√

m
·A embeds S

into Rm in a way that approximately preserves all ℓ2 norms. More concretely, the guarantee that

Pr
A∼N (0,1)m×n

[
∀x ∈ S, ∥Ax∥2 ∈ (1± ϵ) ·

√
m · ∥x∥2

]
≥ 2/3,

can be achieved when m = Ω(log(|S|)/ϵ2). The JL lemma has seen a great deal of work in the
mathematics and TCS literature, and has been extended in several directions including faster and
more space-efficient versions [AC09, KN12, CJN18, JPS+22], stronger guarantees [NN19], and a
proof of optimality [LN16, LN17].

The statement of the JL lemma crucially relies on the fact the set S is defined independently of
the matrix A. For example, even considering only singleton sets S = {x}, one can ask whether the
order of quantifiers can be switched so that x can be chosen adaptively based on A, namely:

Pr
A∼N (0,1)m×n

[
∀x ∈ Rn, ∥Ax∥2 ≈

√
m · ∥x∥2

]
≥? 2/3.

However, one immediately observes that this is impossible in a very strong sense. For n > m, for
any matrix A, one can always find a non-zero vector x ∈ ker(A), making ∥Ax∥2 = 0 while ∥x∥2
can be arbitrarily large. Thus, an adaptive choice of the set of points, one that depends on the
dimensionality reduction matrix, kills all nice guarantees that JL gave us.

One does not have to look too far to see the plausibility of such a scenario. If the matrix A is
chosen once and for all (such as in derandomized versions of JL [EIO02]), and made public, adversarial
entities can choose a set of points that violates the correctness of the JL lemma. Less obviously, even
if A is not public and only very limited access to it is available, an adversary can reconstruct it and
use it to mount the above attack, as shown first by Hardt and Woodruff [HW13, GLW+25]. More
generally, such adaptive attacks have been extensively in the context of data structures, streaming,
property testing, especially in the last decade [MNS08, CSS25, GLW+24, ACSS24, CNS+24, NST23,
CLN+22, BKM+22, HKM+20, BEKMR23, ABD+21, BY20].

1.1 The Contracting Hypergrid Vector Problem

Faced with this pessimistic scenario, we ask whether we can recover the guarantees of the JL lemma
if we constrain the set of points S, and restrict to resource-bounded adaptive adversaries.

One way in which one could constrain S, is to zero-out the “most significant bits” of the coordinate
vectors x, i.e., to limit them to some ℓ∞ ball. However, the above kernel strategy still works by
rescaling x down to live in the ball.

Another option would be to zero-out the “least significant bits” of x by requiring x to live in a
discrete set, e.g. x ∈ Zn. But then, if we have no upper-bound on x, we can scale up kernel vectors
arbitrarily high so that they in fact live on the integer grid.

1The original JL work used a matrix whose rows are unit norm and orthogonal to each other. Indyk and
Motwani [IM98] observed that a Gaussian matrix suffices.
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Computationally interesting phenomena occur when combining both these constraints. More
precisely, we will require that for all i ∈ [n], |xi| ≤ B and xi ∈ Z, or more concisely,

x ∈ ([−B,B] ∩ Z)n

for some bound B ∈ N, which could be as small as 1 or polynomially large in n. Phrased another
way, this puts a fixed bound on the precision of x. Like the kernel examples above, one can ask
whether contraction occurs for this hypergrid variant of JL. We can phrase the problem as follows.

Definition 1 (Contracting Hypergrid Vector). For n,m,B ∈ N and κ ∈ R>0, we define the
contracting hypergrid vector (CHV) problem with parameters n,m,B, and κ as follows. Given as
input A ∼ N (0, 1)m×n, a valid solution is some x ∈ ([−B,B] ∩ Z)n such that

∥Ax∥2 < κ · ∥x∥2 ·
√
m.

Here, the parameter κ quantifies the quality of the solution. A direct computation shows that
any non-zero choice of x achieves κ = Θ(1) in expectation. Statistically, the threshold is

κstat = Θ
(
(2B + 1)−n/m

)
.

That is, for κ≫ κstat, solutions exist in expectation, and for κ≪ κstat, they do not.
The story changes if we computationally bound the task of finding x ∈ ([−B,B] ∩ Z)n that

violate JL. That is, we can consider CHV as a computational problem to be solved by polynomial
time algorithms. It is then only natural to ask what the computational complexity of CHV is, and
whether it exhibits a statistical-computational gap.

1.2 Our Results

If we let κcomp denote the best-possible efficiently achievable κ, we show, in a sense to be made
precise below, that

κcomp = Θ̃

(
1

B

√
m

n

)
,

where Θ̃ hides logarithmic terms in all parameters. It is useful to look at these values in terms of
the aspect ratio α, defined as α := m/n < 1. In this language, we have

κstat = Θ
(
(2B + 1)−1/α

)
, κcomp = Θ̃

(√
α

B

)
.

To demonstrate how large the statistical-computational gap is, considering only B = 1 gives a
statistical bound that decays exponentially in 1/α = n/m as opposed to computationally, where it
decays polynomially. We illustrate with a phase diagram in Figure 1.

To establish the above value of κcomp, we give two algorithms for CHV. One algorithm is a simple
variant of the kernel attack described above, while the other is an online algorithm inspired by a
discrepancy minimization algorithm of Bansal and Spencer [BS20].

We then give matching lower bounds. One is via the multiple overlap gap property, which in
particular captures online algorithms. The other is a reduction-based lower bound which shows
hardness under standard worst-case lattice assumptions.
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Figure 1: Phase diagram of CHV in the asymptotic regime (up to lower-order additive terms). The
blue and red boundaries are lnκ−1 = 1

2 lnα
−1 + lnB and lnκ−1 = α−1 lnB, respectively.

Finally, we show a positive use of the statistical-computational gap by giving a cryptographic
application: a construction of robust property preserving hash functions for the Euclidean metric.
These hash functions compress data while preserving ℓ2 distances between input points up to some
distortion factor, with the guarantee that no computationally bounded adversary can find any points
that violate the distortion bound (even though they must exist).

Robust property preserving hash functions imply collision resistance, demonstrating that the
statistical-computational gap for CHV yields cryptography beyond the existence of one-way functions.

We elaborate on our algorithms, hardness, and applications results in the upcoming sections.

1.3 Algorithms

We show two algorithms for CHV. The first uses the same kernel strategy as in the attack against
the non-discretized version but is analyzed carefully; and the second is a novel variant of the
Bansal-Spencer online discrepancy algorithm [BS20]. Here, “online” means that the algorithm
receives every column of A one at a time, and after seeing column j ∈ [n], the algorithm must
commit to some choice xj ∈ [−B,B] ∩ Z.

Theorem 1 (Informal Version of Theorem 7). For all n > m and A ∼ N (0, 1)m×n, scaling and
rounding a random vector in ker(A) yields x ∈ ([−B,B] ∩ Z)n such that

∥Ax∥2
∥x∥2

= O

(
1

B
·
√

m logB

)
with probability 1− o(1). This directly solves CHV where

κ = O

(√
logB

B

)
with probability 1− o(1).
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Theorem 2 (Informal Version of Theorem 6). There is an online algorithm for CHV and a universal
constant K such that as long as n ≥ Km logB, the algorithm achieves

κ = O

(
1

B
·
√

m

n

)
except with probability at most O(logB) · 2−Ω(m).

Taken together, we have the following corollary, which applies for all ranges of n > m.

Corollary 1. There is an algorithm for CHV such that for all n > m and all B, the algorithm
achieves

κ = O

(
logB

B
·
√

m

n

)
except with probability at most O(logB) · 2−Ω(m) + o(1).

Proof of Corollary 1 given Theorems 1 and 2. If n ≥ Km logB for the constant K given in Theo-
rem 2, apply Theorem 2. Otherwise, apply Theorem 1.

1.4 Hardness

We show two flavors of hardness. The first shows an overlap gap property [Gam21] for the problem,
giving evidence that a family of algorithms including local algorithms will fail to solve the problem,
and the second shows computational hardness under the worst-case hardness of lattice problems,
using ideas from [VV25].

The multiple overlap gap property (rOGP) forbids the existence of certain configurations of
multiple solutions x1, . . . ,xr to a search problem. It is viewed as an impediment for “stable”
average-case algorithms in which changing a single input cannot have a large effect on the output. In
our setting, it posits that not all relative angles ∠xi,xj can fall into some proscribed range (θ−, θ+)
that does not vanish with n.

Theorem 3 (Informal Version of Theorem 8). Assuming n ≥ m and

κ≪ 1

B
· 1√

log(n/m)
·
√

m

n
,

most instances of CHV satisfy rOGP for sufficiently large n.

In Theorem 9, we derive hardness of online algorithms in the same parameter regime from OGP
hardness. Our result is not fully general, in the sense that we assume the algorithm is committed to
the approximate norm of the solution x (before seeing the input A). Our online algorithm, as well
as the ones of Bansal and Spencer [BS20], satisfy this assumption. We believe that some assumption
of this type is necessary for an OGP-based argument to ensure stability. In general, we conjecture
that no online algorithm can succeed when κ is at most (

√
π/8− o(1))

√
α/B (Conjecture 1).

The lattice-based lower bound applies to the parameter regime in which κ vanishes as n grows.

Theorem 4 (Informal Version of Theorem 10). Assuming the polynomial hardness of standard worst-
case lattice problems, for all B,n ≤ poly(m), there does not exist any polynomial time algorithm for
CHV satisfying

κ≪ 1

B
· 1√

n
.
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We emphasize that Theorem 4 shows hardness of an average-case problem (namely, CHV)
assuming only the worst-case hardness of lattice problems. We note however that this lower bound
is quantitatively weaker than the OGP analysis, and is meaningful for a somewhat more restricted
range of parameters. For example, when B = Θ(1), we need n ≫ m logm for a solution to exist
for κ ≈ 1/(B

√
n). Nonetheless, this lower bound is still much higher than κstat for a wide range

of parameters. We leave it as a fascinating open question as to whether this lower bound can be
improved to match that of Theorem 3 or similar.

1.5 Robust Locality Sensitive Hashing

Semantic embeddings, which compress data points into vectors whose (Euclidean, say) distance
approximates some semantic distance between data points, are a recent and very popular paradigm
in machine learning [MCCD13, RG19, RKH+21, MTMR23, Hug23].

Several recent works [SRS20, TJS23, ZJBS24] point out the issue of adversarial robustness,
under the term “adversarial semantic collisions”, namely, inputs (text, images, and so on) that are
semantically different yet hash to the same (or close) outputs. In light of this real-world phenomenon,
the question of whether one can design semantically collision-resistant hash functions, ones for which
semantic collisions may exist but are computationally hard to find, is practically important.

While we do not solve this problem, we suggest a possible approach. First, we observe that
the computational-statistical gap for CHV allows us to design robust locality-sensitive hash func-
tions [BLV19] for the Euclidean distance. These compressing hash functions preserve the ℓ2 distance
between input points up to some distortion factor ξ, assuming the points are chosen by a computa-
tionally bounded adversary. (See Definition 3 for a formal definition.) Secondly, if one could design
a collision-free, possibly dimension-expanding embedding from “semantic distance” to Euclidean
distance, we can compose the two to get a compressing semantically collision-resistant hash function.

We do not pursue the second of these problems in this paper; rather, we restrict our attention to
designing a robust locality-sensitive hash function for the Euclidean distance.

Theorem 5 (Informal Version of Theorem 11). Suppose that CHV is hard for parameters n,m,B,
and κ. Then, there is a robust locality sensitive hash function for the Euclidean norm mapping the
domain ([0, B] ∩ Z)n into Rm with distortion

ξ = O

(
1

κ

√
n

m

)
that is compressing as long as

(B + 1)n ≫
(

Bn

κ
√
m

)m

.

The construction is a variant of the Johnson-Lindenstrauss embedding where the output gets
rounded to some grid γZm. Phrased another way, we show that the rounded Johnson-Lindenstrauss
embedding is itself a robust locality sensitive hash function for the Euclidean norm where the
domain is a hypergrid. We give the explicit construction in Figure 5.

Corollary 2 (Informal). Suppose that the online algorithm in Theorem 2 is optimal for CHV. Then,
there is a compressing robust locality sensitive hash function for the Euclidean norm mapping the
domain ([0, B] ∩ Z)n into Rm with the following parameters:
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• For B = Θ(1), as long as n≫ m logm, the distortion ξ can be as low as ≈ n/m.

• For B = nΘ(1), as long as n≫ m, the distortion ξ can be as low as ≈ Bn/m.

We emphasize these distortion bounds are only meaningful up to B
√
n, as any distinct elements

of ([0, B] ∩ Z)n have ℓ2 distance between 1 and B
√
n.

For a concrete application of these hash functions, consider (e.g., grayscale) images with pixel
values in {0, 1, · · · , 255}, where ℓ2 distance encodes some semantic information. Our hash function
generically compresses such images (with B = 255) while preserving approximate ℓ2 norms of images
and approximate ℓ2 distance between images (to a computationally bounded adversary).

As another simple corollary of the construction, we note that our definition of robust locality
sensitive hash functions implies collision resistance, whose existence is known to be stronger than
the existence of one-way functions [Sim98]. Therefore, in particular, the statistical-computational
gap of CHV yields cryptographic utility beyond the existence of one-way functions.

1.6 Related Work

CHV, SBP and NBV. Two problems closely related to CHV are the Symmetric Binary Perceptron
(SBP) problem, introduced by Aubin, Perkins, and Zdeborová [APZ19] and the Nearest Boolean
Vector (NBV) problem, introduced by Mohanty, Raghavendra, and Xu [MRX20]. The differences
from CHV are as follows:

• In SBP and NBV, the domain of x is fixed to {−1, 1}n, as opposed to ([−B,B] ∩ Z)n. In
particular, the norm of x is fixed and x cannot have zero entries.

• SBP asks for a bound on ∥Ax∥∞, as opposed to ∥Ax∥2. (Therefore there is no normalizing√
m term.)

The search variant of SBP has been studied extensively for its statistical and computational
thresholds [APZ19, BDVLZ20, PX21, ALS21, ALS22, GKPX22, GKPX23, BEAKZ24]. Both the
algorithm of Bansal and Spencer and the rOGP bound of Gamarnik, Kızıldağ, Perkins and
Xu [GKPX22] match ours in the special case B = 1.

The study of NBV has focused on refuting proximity to a random subspace in the unsatisfiable
regime [GJJ+20, PTVW22, BR23].

Adaptively Robust X. Adaptive robustness has been studied in many related contexts, perhaps
stemming from the work of Mironov, Naor and Segev [MNS08] in the context of sketching algorithms.
Many recent works have further explored this question in the context of sketching and stream-
ing algorithms [CSS25, GLW+24, ACSS24, CNS+24, CLN+22, BKM+22, HKM+20], randomized
data structures [NY19], property testing [BEKMR23], online algorithms [ABD+21], and sampling
algorithms [BY20].

Gribelyuk, Lin, Woodruff, Yu, and Zhou [GLW+25] give an efficient algorithm that, for any
sufficiently compressing unknown linear embedding A, finds a hypergrid vector x that fails to embed
almost-isometrically under A given only query access to A. In particular, their result implies an
easy regime for CHV when κ is close to one. In contrast, our algorithms apply to much smaller
values of κ (and are thus stronger) but are specific for the Johnson-Lindenstrauss embedding and
assume unrestricted access to A.

6



2 Technical Overview

2.1 Algorithms

We focus on the online algorithm. The algorithm iterates over t ∈ {1, 2, . . . , n} in order, receives
each column at ∼ N (0, 1)m one at at time, and commits to xt ∈ [−B,B] ∩ Z before incrementing t.

At first, we describe a simpler variant of the algorithm that produces xt ∈ {−1, 1} (which is a
stronger constraint, but will yield a weaker bound). This in particular ensures that ∥x∥2 is fixed at√
n, so the goal of the algorithm is simply to minimize ∥Ax∥2. At any given point in time t ∈ [n],

there exists a current state

yt =

t−1∑
i=1

xiai ∈ Rm,

corresponding to the result of the choices it has made so far. The algorithm must choose yt+1 as
yt+1 = yt + bat for some b ∈ {±1}. By rotational symmetry of the Gaussian, it is clear that the
optimal online choice is to choose

xt = argmin
b∈{−1,1}

∥yt + bat∥2,

as the only thing that matters about yt+1 is its ℓ2 norm.
We proceed to analyze this algorithm. We can decompose at into its perpendicular and parallel

components with respect to yt. Explicitly, by spherical symmetry of the Gaussian, we have

at = a∥ · yt

∥yt∥2
+ a⊥,

where a∥ ∼ N (0, 1) and a⊥ is a spherical multivariate Gaussian on the (m−1)-dimensional subspace
perpendicular to the line spanned by yt. By the Pythagorean theorem, it follows that

∥yt + bat∥22 =
∥∥∥∥yt + ba∥ · yt

∥yt∥2
+ ba⊥

∥∥∥∥2
2

=

∥∥∥∥∥yt +
ba∥

∥yt∥2
· yt

∥∥∥∥∥
2

2

+ ∥a⊥∥22.

Choosing b = − sign(a∥) minimizes this quantity, which yields

min
b∈{−1,1}

∥yt + bat∥22 =
(
∥yt∥2 −

∣∣∣a∥∣∣∣)2 + ∥a⊥∥22.
Letting Rt = ∥yt∥2 and expanding, we get the stochastic recurrence

R2
t+1 = R2

t − 2Rt|z1|+ ∥z∥22,

where z = (z1, . . . , zm) ∼ N (0, 1)m. As the typical value of |z1| is Θ(1) and the typical value of
∥z∥22 is Θ(m), we observe that we get negative drift in Rt whenever Rt ≫ m, in the sense that
Rt+1 ≪ Rt with good probability. One can show that the fixed point of this recurrence is Rt = Θ(m),
independent of t. This results in ∥Ax∥2 ≤ O(m) and ∥x∥2 =

√
n, giving

κ =
∥Ax∥2√
m · ∥x∥2

≤ O

(√
m

n

)
,
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as desired.
We briefly describe how to reduce κ by a factor of B by allowing xt ∈ [−B,B] ∩ Z. For the

first half of the steps (i.e., t ≤ n/2), we set the “temperature” all the way up to B, to enforce
xt ∈ {−B,B}. This ensures that ∥x∥2 ≥ Ω(B

√
n), regardless of what happens in the second half

of the steps. However, the fixed point of the recurrence becomes Rn/2 = Θ(Bm), which defeats
the purpose of increasing ∥x∥2. For the second half of the steps, we carefully choose a “cooling”
schedule (see Figure 2) to get back to temperature 1, quickly converging to Rn = Θ(m). This results
in ∥Ax∥2 ≤ O(m) and ∥x∥2 ≥ Ω(B

√
n), giving

κ =
∥Ax∥2√
m · ∥x∥2

≤ O

(
1

B

√
m

n

)
,

as desired, at the cost of requiring n ≥ Km logB for some universal constant K. For more details,
we defer to Section 4.1.

2.2 Hardness

The multi-OGP hardness (Theorem 8) is derived from a first moment (annealed) estimate of the
expected number of forbidden configurations in a random instance. Our analysis extends that of
Gamarnik et al. for the SBP [GKPX22], where the solution space is the Boolean cube.

The main conceptual difference is in the choice of distance metric. Unlike for the Boolean cube,
the Euclidean and Hamming metrics are not equivalent over the hypergrid. We prove OGP with
respect to the normalized inner product. The utility of this metric is demonstrated in our online
lower bound (Theorem 9), which essentially shows that it captures the distance between the outputs
of executions over correlated inputs that share the same prefix and independent suffixes.

For the lattice-based lower bound (Theorem 10), one approach would be to adapt the recent work
of Vafa and Vaikuntanathan [VV25] that shows a reduction from worst-case lattice problems to SBP.
Instead of opening up their proof in a white-box way, we choose to reduce from an intermediate
problem called “Continuous Learning With Errors” (CLWE) [BRST21]. This average-case problem,
which is known to be as hard as worst-case approximate lattice problems [BRST21, GVV22], asks
to distinguish

(A, s⊤A+ e⊤ (mod 1)), and (A,b⊤),

where A ∼ N (0, 1)m×n, s ∼ nε · Sm−1, e ∼ N (0, 1/poly(n))n, and b is a uniformly random vector
mod 1, where Sm−1 denotes the unit sphere in Rm. By using integrality of x and simultaneous
smallness of x and Ax, we can multiply the second element in the pair on the right by x and check
if the result is small modulo 1. We defer the details to Section 5.4.

2.3 Robust Locality Sensitive Hashing

To design robust locality sensitive hash functions in the Euclidean norm, our starting-point is the
JL lemma and the syntax of CHV. We set the hash function to be

HashA : ([0, B] ∩ Z)n → Rm,

x 7→ 1√
m
·Ax,

8



where the key of the hash function is the matrix A ∼ N (0, 1)m×n. By linearity and a direct reduction
from (the hardness of) CHV, it is hard to find x1,x2 ∈ ([0, B] ∩ Z)n such that

∥HashA(x1)−HashA(x2)∥ < κ∥x1 − x2∥, (1)

as otherwise, x1−x2 ∈ ([−B,B]∩Z)n would be a solution to CHV. Therefore, we have the guarantee
for this function, it is computationally hard to find two points whose distance between the hashes is
multiplicatively smaller by a factor of 1/κ.

As is, this construction has two issues:

1. Eq. (1) is only a one-sided guarantee. How do we ensure that it is hard to find x1,x2 ∈
([−B,B] ∩ Z)n such that

∥HashA(x1)−HashA(x2)∥ > η∥x1 − x2∥,

for some parameter η ≫ 1?

2. Even if m < n, what does it mean for this function to be compressing in a bit-complexity
sense if the codomain is Rm?

Thankfully, the solutions to both Items 1 and 2 are relatively simple. For Item 1, we can use the
spectral norm bound that ∥A∥2 ≤ O(

√
n) with high probability. This implies that we can set

η = O(
√

n/m) (since A is scaled down by
√
m). This results in overall distortion

η

κ
= O

(
1

κ

√
n

m

)
.

For Item 2, we can both discretize Rm into a grid γZm and upper bound its ℓ2 norm given that
∥A∥2 ≤ O(

√
n) is bounded anyways. Then, we can set the codomain to γZm∩Ballm(r) for sufficiently

large r. Showing compression amounts to counting the number of points in the discretized ball as
compared to the the number of points in the domain, (B + 1)n. We defer to Section 6 for deatils.

3 Preliminaries

For a natural number n ∈ N, we let [n] denote the set {1, 2, · · · , n}. For real numbers a, b ∈ R
with a ≤ b, we let [a, b] denote the continuous interval {x ∈ R : a ≤ x ≤ b}. We say a function
f : N → R>0 is negligible if for all c > 0, limn→∞ f(n) · nc = 0. We use the notation negl(n) to
denote a function that is negligible (in its input n). We similarly use the notation poly(n) to
denote a function that is at most nO(1). As shorthand, we say an algorithm is p.p.t. if it runs in
probabilistic polynomial time.

We let N (µ, σ2) denote the univariate Gaussian (or normal) distribution with mean µ ∈ R and
standard deviation σ ∈ R>0. For any distribution D, we let Dm denote the product distribution
of m i.i.d. copies of D. We let χ2

m denote the chi-squared distribution with m degrees of freedom,
which is defined as the distribution of a random variable Z such that

Z =
∑
i∈[m]

X2
i

for i.i.d. Xi ∼ N (0, 1). Equivalently, for v ∼ N (0, 1)m, the distribution of ∥v∥22 is identically χ2
m.
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Definition 2 (Contracting Hypergrid Vector Problem (CHV)). For n,m,B ∈ N and κ ∈ R>0 with
m < n, we define the CHV problem with parameters n,m,B, and κ as follows. Given as input
A ∼ N (0, 1)m×n, a valid solution is some x ∈ ([−B,B] ∩ Z)n such that

∥Ax∥2 < κ∥x∥2
√
m. (2)

To match notation in the literature, we use α to denote the aspect ratio m/n < 1.

We say that CHV is (computationally) hard for parameters n,m,B, κ if for all p.p.t. algorithms
A, the probability that A outputs a valid solution to CHV for parameters n,m,B, κ is negl(n).

4 Algorithms

We analyze two efficient algorithms for solving CHV. Taken together, they give algorithms for CHV
whenever κ≫

√
α · logB/B, provided m < n.

4.1 Online Norm Minimization

Our algorithm processes the columns a of A in sequence producing the corresponding entries of x
one by one. It is inspired by one of the algorithms of Bansal and Spencer [BS20] where both A and
x are restricted to ±1 values and, less importantly, their objective is to minimize the infinity norm
of Ax.

We assume B is a power of two. If not, use the largest available. K is a sufficiently large absolute
constant.

Online Algorithm Cool

State: y ∈ Rm, initialized with 0.
Parameter: The temperature b ∈ [−B,B] ∩ Z.

Step: On sample a ∈ Rm,
Update y to y − ba or y + ba, whichever is smaller in 2-norm.
Output the minimizer −b or b.

Algorithm Cool: Run n steps with the temperature b set to:
B in the first n−Km(log(B)− 1) steps,
B/2 in the next Km steps,
B/4 in the next Km steps,

...
1 in the last Km steps.

Figure 2: Online Norm Minimization Algorithm Cool, as analyzed in Theorem 6.

The only difference between Bansal and Spencer’s transition rule and ours is the choice of norm
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to be minimized.2 The 2-norm is more natural in the Gaussian setting. Our innovation is the
cooling schedule which is responsible for the factor B scaling of the discrepancy.

Theorem 6. Assuming the samples are independent normals and n ≥ 2Km logB, the output x of
Cool satisfies ∥Ax∥/∥x∥ = O(m/B

√
n) except with probability at most O(logB) · 2−Ω(m).

The norm of x is dominated by the temperature B part of the schedule so it is at least (B/2)
√
n.

It remains to show that the final state has norm at most O(m).
The state update y′ = y + xa can be decomposed as y + xa∥ + xa⊥, where a∥ is the component

of a in the direction of y, and a⊥ is its orthogonal complement. By Pythagoras’ theorem,

∥y′∥2 = ∥y + xa∥∥2 + ∥xa⊥∥2 = ∥y + xa∥∥2 + b2∥a⊥∥2.

As y and a∥ are aligned, ∥y + xa∥∥ is either ∥y∥ − b∥a∥ or ∥y∥+ b∥a∥. The first choice is clearly
the minimizing one and

∥y′∥2 =
(
∥y∥ − b∥a∥∥

)2
+ b2∥a⊥∥2.

As the entries of a are independent normals, by spherical symmetry, ∥a∥∥ and ∥a⊥∥2 are the absolute
value |N | of a normal random variable and an independent chi-squared random variable χ2

m−1 with
m− 1 degrees of freedom, respectively. The length L = ∥y∥2 satisfies the stochastic recurrence

L′ =
√
(L− b|N |)2 + b2χ2

m−1, (3)

where L′ denotes the updated length after one step.

100 200 300 400

√
π/8

t

Lt/bm

Figure 3: A sample realization of the stochastic process (3) with m = 50 with fixed temperature b.
Since b is fixed, Lt is homogeneously linear in b, so the stochastic process Lt/(bm) is independent of
b.

Applying the inequality
√
1 + x ≤ 1 + x/2 valid for x ≥ 0 yields

L′ ≤ |L− b|N ||+
b2χ2

m−1

2|L− b|N ||
. (4)

2Specifically, their “majority rule” strategy (Strategy 2) can be interpreted as minimizing the ℓ1 norm in the online
step [BS20].
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The typical magnitude of |N | is constant and the typical magnitude of χ2
m−1 is on the order of m.

If L is larger than about bm, the drift is typically negative.

Claim 1. Assume m ≥ 4. Conditioned on L ≥ 2bm, L′ is stochastically dominated by L− bB where
B is independent of L, has mean at least 0.25, and has constant subexponential norm, in the sense
that Pr[|B| ≥ t] ≤ O (exp (−Ω(t))) for all t > 0.

For now, we defer the proof of Claim 1.
To handle the cases when L is small or |N | is atypically large, we can use the simple bound that

∥y′∥ is still at most ∥y∥+ b∥a∥ by the triangle inequality so

L′ ≤ L+ bA, where A is of type
√
χ2
m. (5)

We will refer to the corresponding random variables as in (5) and Claim 1 as being of type A
and type B, respectively. By standard properties of the χ2

m distribution and Jensen’s inequality,
type A is of mean at most

√
m and has subgaussian norm Ω(

√
m).

Let L0, L1, . . . be a stochastic process that evolves according to (3) (with fixed b).

Claim 2. If L0 is at most 8bm then for every t⋆ ≥ Km, Lt⋆ is at most 4bm except with probability
O(2−Ω(m)).

Proof. Let A1, A2, . . . and B1, B2, . . . be sequences of independent type-A and type-B random
variables, respectively. The drift Lt −Lt−1 is stochastically dominated by bAt if Lt−1 < 2bm and by
−bBt otherwise.

Let T be the last time T ≤ Km at which LT < 2bm, if such a time exists. By Claim 1 and (5), Lt⋆

is then stochastically dominated by 2bm+ b(AT −BT+1− · · · −Bt⋆). Otherwise, Lt is stochastically
dominated by L0 − bB1 − · · · − bBt⋆ . By a union bound over the possible choices of T ,

Pr[Lt⋆ > 4bm] ≤ Pr[L0 − bB1 − · · · − bBt⋆ > 4bm] +

t⋆∑
t=1

Pr [bAt − bBt+1 − · · · − bBt⋆ > 2bm]

≤ Pr [B1 + · · ·+Bt⋆ ≤ 4m] +
∞∑
t=0

Pr [A1 −B1 − · · · −Bt > 2m] .

As the type-B random variables have mean at least 0.25 and are subexponential, the first probability
is at most 2−m provided t∗ > Km. As for the tth term in the sum, by union and tail bounds,

Pr [A1 −B1 − · · · −Bt > 2m] ≤ Pr [A1 > m+ t/8] + Pr [B1 + · · ·+Bt < −m+ t/8]

≤ exp
(
−Ω

(√
m+ t/

√
m
)2)

+ exp (−Ω(m+ t))

≤ 2 exp (−Ω(m+ t)) .

By convergence of the geometric series, the sum over t is also bounded by O (exp (−Ω(m))).

Proof of Theorem 6. Apply Claim 2 to L = ∥y∥. At the end of the first stage L is at most
4Bm = 8(B/2)m except with probability O(2−Ω(m)). Assuming it is, at the end of the second stage
L is at most 4(B/2)m = 8(B/4)m except with probability O(2−Ω(m)), and so on. At the very end
L is at most 4m as desired. The cumulative failure probability is at most O(logB)2−Ω(m).
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We now proceed to prove Claim 1.

Proof of Claim 1. Set

B =

{
|N | − χ2

m−1/(2m), if |N | ≤ m

−
√
m2 + χ2

m−1, otherwise.

Stochastic domination follows from (4) and (5), as we can decompose the type A random variable
into its component in the direction of y (i.e., N) and its m− 1 independent other components. By
standard facts and Cauchy-Schwarz, the mean of B is at least

E[B] = E[|N |]−
E
[
χ2
m−1

]
2m

− E
[(√

m2 + χ2
m−1 + |N | −

χ2
m−1

2m

)
1 [|N | > m]

]

≥
√

2

π
− m− 1

2m
−

√m2 + E
[
χ2
m−1

]
+
√

E [N2] +

√
E
[
χ4
m−1

]
4m2

√Pr [|N | > m]

≥ 0.29− (2m+ 2) · 2 exp
(
−m2/4

)
≥ 0.25.

For the subexponential norm, by union and large deviation bounds,

Pr [|B| ≥ t] ≤ Pr [|N | ≥ t] + Pr

[
χ2
m−1

2m
≥ t

]
+ Pr

[√
m2 + χ2

m−1 ≥ t and |N | > m

]
≤ 2 exp

(
−t2/2

)
+ exp (−t/2) + Pr

[√
m2 + χ2

m−1 ≥ t and |N | > m

]
= O(exp(−t/2)) + Pr

[√
m2 + χ2

m−1 ≥ t and |N | > m

]
.

To bound the right-hand term, we consider two cases. If t < m2, then

Pr

[√
m2 + χ2

m−1 ≥ t and |N | > m

]
≤ Pr[|N | > m] ≤ O

(
exp

(
−m2/4

))
≤ O(exp(−Ω(t))).

If t ≥ m2,

Pr

[√
m2 + χ2

m−1 ≥ t and |N | > m

]
≤ Pr

[
χ2
m−1 ≥ t2 −m2

]
≤ exp

(
−Ω

(
t2/m−m

))
≤ exp (−Ω (tm−m))

≤ exp (−Ω (t)) .

Therefore, in all cases, Pr[|B| ≥ t] ≤ O(exp(−Ω(t))).

Limiting behavior In the limit m → ∞ under the scaling U = L/bm, dt = 1/m, (4) is
approximated by the stochastic differential equation

dU =
(
−µ+

1

2U

)
dt+ σdW,
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where µ =
√

2/π and σ =
√
1− 2/π are the statistics of |N |, and W is the Wiener process. The

drift pushes U towards the fixed point

U =
1

2µ
=

√
π

8
≈ 0.627.

Conjecture 1 (Online threshold conjecture). For every δ and B there exists a sufficiently small α
and ϵ so that every online algorithm fails to find x ∈ ([−B,B] ∩ Z)n such that ∥Ax∥/(

√
m∥x∥) <

(
√
π/8− δ)

√
α/B for at least an ϵ fraction of αn by n matrices A for all sufficiently large n.

4.2 Kernel Rounding

Algorithm KernelRound

Input: A ∼ N (0, 1)m×n where m < n.

1. Sample a random x such that Ax = 0 according to the Haar measure.

2. Scale x to have length
√

χ2
n · B√

4K ln+ B
.

3. Define the rounded vector z = ⌈x⌋B.

Output: The vector z ∈ ([−B,B] ∩ Z)n.

Figure 4: Kernel Rounding Algorithm for CHV, as analyzed in Theorem 7.

The rounding function is applied entrywise as

⌈x⌋B =

{
⌈x⌋, if |x| ≤ B,

B signx, otherwise,

where ⌈x⌋ denotes rounding x ∈ R to the nearest integer (and tie-breaking arbitrarily). We will
let ln+ denote the function max{ln, 1}. K ≥ 2 is a (constant) parameter that controls the tradeoff
between approximation quality and failure probability in the regime B = Ω(n1/4).

Theorem 7. For A ∼ N (0, 1)m×n, the algorithm KernelRound outputs a vector z ∈ ([−B,B] ∩ Z)n
such that

∥Az∥2
∥z∥2

= O

(√
mK ln+B

B

)
,

except with probability 2−Ω(m) +min
{
O
(
2−Ω(n(K lnB)2/B4)

)
, 2nB−K

}
.

As the space spanned by the rows of A is a random m-dimensional subspace of Rn, the marginal
distribution of x is identically N (0, B2/(4K ln+B))n. We analyze the conditional distribution of
⟨a,x⟩ for a single row a of A.

Claim 3. Suppose a ∼ N (0, 1)n. Conditioned on x and ⟨a,x⟩ = 0, the random variable ⟨a, ⌈x⌋B⟩ is
a centered normal of variance at most ∥{x}B∥2, where {x}B = x− ⌈x⌋B is applied coordinate-wise.
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We emphasize that {x}B can be arbitrarily large when considering |x| > B.

Claim 4. If N ∼ N (0, 1), then the random variable{
B√

4K ln+B
·N
}2

B

has mean at most 1/4 +O(B−K+2) and subexponential norm O(B2/(K ln+B)).

Proof of Theorem 7. The quantity ∥{x}B∥2 is a sum of n independent{
B√

4K ln+B
·N
}2

B

random variables where N ∼ N (0, 1). By Claim 4 and Bernstein’s inequality [Ver18, Theorem 2.8.1],
∥{x}B∥2 is O(n) except with probability O(2−Ω(n(K lnB)2/B4)), which is meaningful whenever
B = O(n1/4). When B is large relative to n, by a Gaussian tail bound and a union bound, none
of the n entries of x exceed B in absolute value and so ∥{x}B∥2 ≤ n/4 except with probability
2n ·B−K .

By Claim 3, conditioned on x, the entries of A⌈x⌋B are m independent normals of variance O(n)
with the same exceptional probability. By Hoeffding’s inequality ∥A⌈x⌋B∥2 itself is bounded by
O(mn) except with additional probability 2−Ω(m).

Lastly, we lower bound ∥⌈x⌋B∥. Each entry of ⌈x⌋B is of magnitude at least B/
(
4
√
K ln+B

)
with constant probability. By a large deviation bound,

∥⌈x⌋B∥ ≥ Ω

(
B
√
n√

K ln+B

)
,

except with probability 2−Ω(n). By a union bound, the target ratio becomes

∥A⌈x⌋B∥
∥⌈x⌋B∥

≤ O

 √
mn

B
√
n/
(√

K ln+B
)
 = O

(√
mK ln+B

B

)
.

Proof of Claim 3. ⟨a, ⌈x⌋B⟩ = ⟨a,x⟩ − ⟨a, {x}B⟩. Conditioned on x and ⟨a,x⟩ = 0, a is jointly
normal and centered (but not independent), so ⟨a, {x}B⟩ is also centered normal. Conditioning on
⟨a,x⟩ = 0 implies that ⟨a, ⌈x⌋B⟩ is centered normal too.

To derive its variance, we first calculate the conditional covariances of the entries of a given x.
Unconditionally, the entries ai of a are independent standard normal. They decompose as

ai =
xi
∥x∥2

⟨a,x⟩+ a⊥i ,

where a⊥i is a centered normal independent of ⟨a,x⟩ given x. By independence and expanding out

15



the expression,

Cov(ai, aj | x, ⟨a,x⟩ = 0) = Cov
(
a⊥i , a

⊥
j | x, ⟨a,x⟩ = 0

)
= Cov

(
a⊥i , a

⊥
j | x

)
= E

[(
ai −

xi
∥x∥2

⟨a,x⟩
)(

aj −
xj
∥x∥2

⟨a,x⟩
) ∣∣∣ x]

= 1[i = j]− xixj
∥x∥2

.

By the variance of sum formula,

Var (⟨a, {x}B⟩ | x, ⟨a,x⟩ = 0) =
∑
i

{xi}2B −
∑
i,j

{xi}B{xj}B ·
xixj
∥x∥2

= ∥{x}B∥2 −
(
⟨x, {x}B⟩
∥x∥

)2

≤ ∥{x}B∥2.

Once again, conditioned on x and ⟨a,x⟩ = 0, this implies that the variance of ⟨a, ⌈x⌋B⟩ is also at
most ∥{x}B∥2.

Proof of Claim 4. Let L = B/
√
4K ln+B. Then by Cauchy-Schwarz and standard tail bounds,

E
[
{LN}2B

]
≤ E

[
(LN − ⌈LN⌋)2 · 1[LN ≤ B]

]
+ E

[
(LN −B)2 · 1[LN > B]

]
≤ 1

4
+
√

E [(LN −B)4]
√

Pr [LN > B]

≤ 1

4
+O

(
B2 exp

(
−B2/4L2

))
≤ 1

4
+O

(
B2−K

)
.

For every t > 1/2,

Pr
[
{LN}2B ≥ t

]
= Pr

[
|LN | ≥ B +

√
t
]
≤ 2 exp

(
−(B +

√
t)2

2L2

)
= 2 exp

(
−
(
B/
√
t+ 1

L
√
2

)2

· t

)
.

The parenthesized expression squared is at least 1/(2L2), so {LN}2B is subexponential of norm
O(L2).

5 Hardness

5.1 Overlap Gap Property

We study the typical structure of the solution space of (2) under the parametrization m = αn for
fixed α, κ,B and large n. Gamarnik et al. [GKPX22] showed that when the solution x is restricted
to the Boolean cube {±1}n the multi-overlap gap property holds in the regime α≫ κ2 log 1/κ. We
establish the following extension.
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Theorem 8. For all α, κ,B with κ≪ 1/B and α≫ (Bκ)2 log 1/Bκ there exists β and r such that
for all sufficiently large n, for all replicas x1, . . . ,xr such that

1− β ≤ ⟨xi,xj⟩
∥xi∥∥xj∥

≤ 1− β + β/2r for all i ̸= j, (6)

at least one xi fails to satisfy (2) except with probability exp−Ω(αrn).

This theorem can be interpreted as evidence for CHV being hard in the regime α≫ B2κ2 log 1/κ.
In the algorithmic study of random disordered systems, algorithmic efficiency is predicted by

“replica symmetry” of the solution space. Under the replica symmetric model, the uniform distribution
over solutions of ∥Ax∥ ≤ κm is approximated by a product distribution P over {±1}n with different
biases across coordinates.

Assuming P has sufficient entropy, the overlap ⟨x,x′⟩/∥x∥∥x′∥ between two random solutions
ought to be bounded away from 1. Let B(t) be the “bouquet” of vectors x1, . . . ,xr in which the
first t coordinates are sampled identically from P and the rest are sampled independently from P .
By the law of large numbers all pairwise overlaps in B(t) will typically concentrate around some
value 1− β(t). As β(0) is bounded away from zero, β(n) is zero, and β is O(1/n)-Lipschitz, by the
intermediate value theorem β(t) is bound to hit the interval (β − β/2r, β) for some t, contradicting
Theorem 8.

While is difficult to justify the accuracy of the replica symmetric model, and algorithmic easiness
may persist even under replica symmetry breaking, the underlying logic can be used to rigorously
rule out certain natural classes of algorithms. In Section 5.3 we prove that a natural extension of
Theorem 8, known as the ensemble (multi) overlap gap property, rules out online algorithms under
a certain stability restriction in the claimed regime. Before stating this extension it is instructive to
see the proof of Theorem 8.

5.2 Proof of the Overlap Gap Property

The proof goes by a first moment (annealed) estimate. Claim 7 is used to count the number of
forbidden configurations x1, . . . ,xr. Claim 8, together with the explicit formula for the multivariate
Gaussian PDF, is used to bound the probability of any such configuration simultaneously solving (2).
For the parameter regime of interest the expected number of configuration, which is the product of
these two numbers, is close to zero.

Claim 5. Assuming t ≤ 1/12B the number of nonzero B-bounded points x ∈ Zn that are within
angle arctan t of some fixed x0 is at most O((1 + lnB)/t) · expO(nt2B2 ln 1/tB).

Claim 6. For ρ ≤ 1/2 an n-dimensional ball of radius
√
ρn contains at most expO(nρ log 1/ρ)

integer points.

Proof. The number of integer points within distance
√
ρn of y is at most [OM90, Lemma 1]

exp(sρn)
∏
i

∑
k

exp(−s(k − yi)
2)

for every s > 0. The summation is minimized at yi = 0 giving an upper bound of

exp(sρn)

(∑
k

exp(−sk2)
)n

≤ exp(sρn)

(
1 +

2e−s

1− e−s

)n
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Setting s = ln 1/ρ produces the desired bound.

Claim 7. Assume t ≤ 1 and ∥x0∥ = 1. The union of balls with centers (1 + t)ix0 and radii√
5t(1 + t)i where i ranges over the integers covers all nonzero x within angle arctan t of x0.

x0

x

rt

(1 + t)i r (1 + t)i+1

arctan t

Proof. Let rx0, r > 0 be the projection of x in the direction of x0. Take the largest i such that
(1 + t)i ≤ r. The distance between x and its projection rx0 is at most rt. By Pythagoras’ theorem
the distance from x to the center of ball i is at most√

r2t2 +
(
(1 + t)i+1 − (1 + t)i

)2 ≤√r2t2 + (1 + t)2it2

< (1 + t)it
√

(1 + t)2 + 1

because r < (1 + t)i+1. As t ≤ 1 the square root is at most 5.

Proof of Claim 5. Those points are covered by the balls in Claim 7. We can discard the balls
indexed by (negative) i such that (1 +

√
5)(1 + t)i < 1 as they fit into the unit ball and do not cover

any integer points. We can also discard the balls indexed by i with (1 + t)i > (1 +
√
5)B
√
n as they

only cover points of magnitude larger than B
√
n. The largest of the remaining balls has radius

at most (5 +
√
5)Bt/

√
n ≤

√
n/2 so by Claim 6 it contains at most expO(n(Bt)2 log 1/Bt) points.

The number of such balls is O((1 + lnB)/t).

Claim 8. An r by r matrix with diagonal 1 and off-diagonal entries between 1− β and 1− β+ β/2r
is positive semidefinite and has determinant at least (β/2)r−1(β/2 + (1− β)r).

Proof. This matrix has the form (1− β)I + βJ + (β/2r)E for some E of infinity-norm at most 1 so
spectral norm at most r. Here I and J are the identity and the all-ones matrices. The eigenvalues
of (1− β)I + βJ are β of multiplicity r − 1 and β + (1− β)r. The (β/2r)E term cannot change
them by more than β/2 each giving the desired bounds.

Proof of Theorem 8. Let C be a sufficiently large absolute constant. For fixed x1, the number of
xj with the required correlation is at most On(1) · expO(nβB2 ln 1/βB2) by Claim 5, provided
β < 1/CB2. Thus the number of requisite configurations x1, . . . ,xr is at most expO(n lnB + n(r−
1)βB2 ln(1/βB2)).

If (2) holds for all xi then all but a 1/4 fraction of the normalized dot products ⟨a,xi⟩/∥a∥∥xi∥
are bounded by 4κ as a ranges over the rows of A. We bound the probability that some fixed subset
S of 3rm/4 correlations are simultaneously at most 4κ. At least half the as then have normalized
dot product at most 4κ with some r/2 of the xis. The normalized dot products between a and
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x1, . . . ,xr are jointly normal with pairwise correlations between 1− β and 1− β + β/2r. By a union
bound the probability that all r′ = r/2 of them are at most 4κ is at most

1

(2π)r′/2D1/2
(8κ)r

′
(7)

where D is the determinant of the correlation matrix restricted to these r′ entries. By Claim 8 D
is at least (β/2)r

′
which gives an overall probability of at most O(κ2/β)r/4 for a given a. As the

rows of A are independent the overall probability is at most O(κ2/β)mr/8. By a union bound, the
probability that such an S exists is of the same order as there are at most 2mr choices for S.

The expected number of configurations that solve (2) is therefore at most

Z = expO(n lnB + n(r − 1)βB2 ln(1/βB2))− (αnr/8) ln(β/κ2) +O(αnr),

where we replaced m by αn. Setting β = Cκ2, logn Z becomes negative in the claimed regime
α ≥ C2(Bκ)2 logC/Bκ when r is sufficiently large. By Markov’s inequality x1, . . . ,xr cannot
simultaneously solve (2) with high probability in the limit n→∞.

5.3 Hardness for Online Algorithms

The ensemble OGP refers to a correlated ensemble of instances A1, . . . ,Ar. The condition posits
that among all x1, . . . ,xr satisfying (6), at least one pair xi fails to solve instance Ai of (2).

The proof of Theorem 8 extends readily to establish ensemble OGP for any collection of instances
A(t) = (A1, . . . ,Ar) in which the first t columns are sampled identically and the other n− t are
sampled independently across instances, for any t. The reason is that the value of the determinant
D in (7) may only increase and all other quantities are preserved.

In contrast, we argue that any “norm-concentrated” online algorithm admits a choice of t for
which the resulting solutions do satisfy (6). An algorithm is (ϵ, δ)-norm concentrated if the norm of
the output x is within some ϵ

√
n-interval of the median except with probability at most δ. Our

algorithm Cool is (1, 0) concentrated.
The analysis relies on another mild assumption that can be enforced. We say the algorithm

is nice if the (unconditional) distribution of the entries of x is symmetric and the entries have
independent signs.

Claim 9. Every online algorithm that on input A produces a solution x to (2) can be made nice
without affecting its success probability and the norm of the output.

Proof. Choose a random r ∈ {±1}m. Multiply the columns of A pointwise by r, run the algorithm
then multiply the solution x pointwise by r. The pointwise multiplications cancel out, preserving
the solution. The solution is symmetrized and its entries become sign-independent.

Claim 10. Assume ϵ ≤ min{βρ/16r, βρ3/2/16B2r}. For every nice online algorithm that is (ϵ, δ)-
concentrated around norm at least

√
ρn, there exists a (random) t such that its outputs on inputs

A(t) satisfy (6) except with probability rnδ + r2n2−Ω(ϵ2n/B2) for sufficiently large n.

Proof. A(t) can be sampled from a common “stem” A by picking the first t columns in Ai as in A
and the rest independently. Let x be the output of the algorithm on input A and x≤t (resp., A≤t)
be its first t entries (resp., columns). In particular, x1(n) = · · · = xn(n) = x.
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The sequence of random variables ⟨xi(t),xj(t)⟩ − ∥x≤t∥2 is a martingale with respect to the
filtration A≤t. The martingale property is a consequence of niceness. As its increments are
2B2-bounded, by Azuma’s inequality ⟨xi(t),xj(t)⟩ is within ϵn of ∥x≤t∥2 given A≤t except with
probability 2 exp−Ω(ϵ2n/B2). By a union bound, this holds simultaneously for all times and all
replica pairs except with

(
r
2

)
n times this probability.

By another union bound, the 2-norms of all replicas xi(t) at all times t are ϵ
√
n-concentrated

around at least
√
ρn except with probability rnδ.

Assume that the exceptional events do not occur. Let f(t) = ∥x≤t∥2/∥x∥2. As f(0) = 0, f(1) = 1,
and f is B2/(4ϵ2n)-Lipschitz, by the intermediate value theorem there must be a (random) time t
at which it must be within B2/(4ϵ2n) of β − β/4r.

We argue that x1(t), . . . ,xr(t) must satisfy (6). For every pair i ̸= j,∣∣∣∣f(t)− ⟨xi(t),xj(t)⟩
∥xi(t)∥∥xj(t)∥

∣∣∣∣ ≤ ∥x≤t∥2
∣∣∣∣ 1

∥xi(t)∥∥xj(t)∥
− 1

∥x∥2

∣∣∣∣+ |∥x≤t∥2 − ⟨xi(t),xj(t)⟩|
∥x∥2

≤ B2n · 2ϵ

ρ3/2n
+

ϵn

ρn

=
2ϵB2

ρ3/2
+

ϵ

ρ
.

By the assumption on ϵ this is at most β/6r, so for sufficiently large n all overlaps are within β/4r
of β − β/4r as desired.

Theorem 9. For all κ, α,B such that κ ≪ 1/B and α ≫ (Bκ)2 log 1/Bκ there exists an ϵ such
that an online (ϵ, o(1/n))-norm concentrated algorithm cannot solve (2) with probability 1− o(1/n).

Proof. Assume it does. By Claim 9 the algorithm can be assumed nice. Let r and β be the as
promised by Theorem 8. Let ρ = (cα log 1/κ)/ log(α log 1/κ)−1 for a sufficiently small constant c.
By Claim 6, Lemma 3, and a union bound, no solutions to (2) of norm at most

√
ρn exist except

with probability O(κ)αn = o(1/n). By a union bound, all rn instances A(1) ∪ · · · ∪ A(n) are solved
by the algorithm and their solutions have norm at least

√
ρn with at least constant probability.

By Claim 10, the outputs of the algorithm on input A(t) satisfy (6) and (2). Thus (6) and (2)
simultaneously hold with constant probability. This contradicts the ensemble OGP extension of
Theorem 8.

Can the norm concentration assumption be removed from Theorem 9? We believe that some
stability restriction on the output is needed for the outputs to satisfy a condition like (6). A general
online algorithm may be unstable in the sense that changing even a single input can induce an
arbitrarily large change in the norm of its output.

5.4 Reduction from Continuous Learning with Errors

Here, we adapt the proof of [VV25] to give a computational lower bound assuming the worst-case
hardness of approximate lattice problems. To make the proof simpler (albeit less direct), we
reduce from an intermediate problem called Continuous Learning With Errors (CLWE) [BRST21],
which is an average-case problem that is known to be as hard as worst-case approximate lattice
problems [BRST21, GVV22].
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Let Sm−1 denote the unit sphere (according to the usual ℓ2 metric) in Rm. For this section, we
let the (mod 1) notation denote taking fractional representatives in [−1/2, 1/2) coordinate-wise.
We choose these representatives to ensure that |x (mod 1)| ≤ |x| for all x ∈ R.

Assumption 1 (Continuous Learning With Errors (CLWE)). For all choices of parameters n(m) ≤
poly(m), β(m) ≥ 1/poly(m), and γ(m) = mΩ(1), the following holds. For all p.p.t. adversaries, the
following two distributions cannot be distinguished with advantage Ω(1):(

A, s⊤A+ e⊤ (mod 1)
)
,
(
A,b⊤

)
,

where A ∼ N (0, 1)m×n, s ∼ γ · Sm−1, e ∼ N (0, β2)n, and b ∼ [−1/2, 1/2)n.

Previous works [Reg09, BLP+13, BRST21, GVV22] show the following facts:

• Assumption 1 holds under the quantum worst-case polynomial hardness of the approximate
shortest independent vectors problem on lattices (SIVP) and [GVV22, Corollary 2]. For
γ ≥ 2

√
m, this follows from [BRST21, Corollary 3.2], and to get the full range of parameters,

from combining [Reg09, Theorem 1.1] and [GVV22, Corollary 2].

• Assumption 1 holds under the classical worst-case polynomial hardness of the gap shortest
vector problem on lattices (GapSVP). This follows from combining [BLP+13, Theorem 1.1]
and [GVV22, Corollary 2].

In both cases, Assumption 1 holds under the worst-case polynomial hardness of approximately
solving lattice problems.

Theorem 10. Under Assumption 1, for all ε > 0 and B,n ≤ poly(m), there does not exist a p.p.t.
algorithm for CHV that succeeds with probability at least 2/3 for

κ = O

(
1

Bn1/2+ε

)
.

Proof. Suppose for contradiction that there exists ε > 0 and B,n ≤ poly(m) with a p.p.t. algorithm
A succeeding with probability at least 2/3. We then violate Assumption 1 with β = 1/(B · n) and
γ = nε/2 by the algorithm A′ described as follows. On input (A,b⊤), A′ runs x← A(A), ensures
that x ∈ ([−B,B] ∩ Z)n and ∥Ax∥2 < κ∥x∥2

√
m, and then outputs 1 if and only if∣∣∣b⊤x (mod 1)

∣∣∣ < 1

4
. (8)

If x is not a solution to CHV, then the algorithm outputs 0.
We now analyze the performance of A′. For the “null” case of CLWE, where b ∼ [−1/2, 1/2)n,

since x ̸= 0 and x ∈ Zn, it follows that b⊤x (mod 1) is distributed uniformly randomly in [−1/2, 1/2).
Therefore, (8) holds with probability 1/2 (conditioned on x being a valid solution).

For the planted case, we know b⊤ = s⊤A + e⊤ (mod 1) for s ∼ γ · Sm−1, e ∼ N (0, β2)n. By
spherical symmetry of the Gaussian, we can write s as γ · s′/∥s′∥2 for s′ ∼ N (0, 1)n. Since x ∈ Zn,
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we then have ∣∣∣b⊤x (mod 1)
∣∣∣ = ∣∣∣s⊤Ax+ e⊤x (mod 1)

∣∣∣
≤
∣∣∣s⊤Ax

∣∣∣+ ∣∣∣e⊤x∣∣∣
=

γ

∥s′∥2

∣∣∣(s′)⊤Ax
∣∣∣+ ∣∣∣e⊤x∣∣∣

=
γ

∥s′∥2
|v1|+ |v2| ,

where v1 ∼ N (0, ∥Ax∥22) and v2 ∼ N (0, β2∥x∥22), by Gaussianity and independence of s′ and e
from A and x. By standard tail bounds on the (univariate) Gaussian distribution, with probability
at least 99/100, we know that |v1| ≤ O (∥Ax∥2) and |v2| ≤ O(β∥x∥2). Also, by Lemma 3, we
know that ∥s′∥2 ≥ Ω(

√
m) with probability 1− o(1). Putting these all together and continuing the

inequality, with probability at least 99/100− o(1) (conditioned on x being a valid solution), we have∣∣∣b⊤x (mod 1)
∣∣∣ ≤ γ

∥s′∥2
|v1|+ |v2|

≤ O

(
γ∥Ax∥2√

m
+ β∥x∥2

)
≤ O

(
γκ∥x∥2

√
m√

m
+ β∥x∥2

)
= O (γκ+ β) · ∥x∥2.
≤ O (γκ+ β) ·B

√
n.

For A′ to get advantage Ω(1), it suffices to show that (γκ + β)B
√
n = o(1). We directly have

β = o(1/(B
√
n)) by the way we have set β. For the last remaining term, we can plug in our settings

of γ and κ to see that

γκB
√
n = nε/2 ·O

(
1

Bn1/2+ε

)
·B
√
n = O

(
1

nε/2

)
= o(1),

as desired.

6 Robust Locality Sensitive Hash Functions

6.1 Definition

Here, we define robust locality-sensitive hash functions, specialized to the Euclidean norm, following
[BLV19].

Definition 3 (Robust Locality Sensitive Hash Functions). For natural numbers n and m =
m(n) < n, let Xn ⊆ Rn and Yn ⊆ Rm be finite sets. A robust locality sensitive hash function with
approximation factors α = α(n), β = β(n) consists of p.p.t. algorithms (KeyGen,Hash) with the
following syntax:

• KeyGen(1n)→ k. This algorithm is randomized and outputs some key k ∈ {0, 1}poly(n).
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• Hash : {0, 1}poly(n) ×Xn → Yn. This algorithm is deterministic. As shorthand, we will write
Hashk : Xn → Yn to denote the hash function Hash(k,−) for fixed key k ∈ {0, 1}poly(n).

Moreover, we require the following three properties:

1. Compression: We have |Yn| ≤ 1
2 |Xn|. That is, the function Hashk : Xn → Yn is compressing

by at least a factor of 2 (typically, significantly more).

2. Statistical Non-Expansion:

Pr
k∼KeyGen(1n)

[∃x1,x2 ∈ Xn : ∥Hashk(x1)−Hashk(x2)∥2 > α · ∥x1 − x2∥2] = negl(n).

3. Computational Non-Contraction: For all p.p.t. adversaries A,

Pr
k∼KeyGen(1n)

[
(x1,x2)← A (1n, k) :

x1,x2 ∈ Xn ∧
∥Hashk(x1)−Hashk(x2)∥2 < β∥x1 − x2∥2

]
= negl(n),

where the probability is also taken over the internal randomness of A.

We refer to the quantity ξ = α/β as the distortion of the hash function.

We note that this definition is, in particular, stronger than a collision-resistant hash function.3 To
see this, note that if x1,x2 ∈ Xn form a collision, then Hashk(x1) = Hashk(x2) while ∥x1−x2∥2 > 0,
which violates computational non-contraction. Therefore, computational assumptions are necessary
to achieve the definition.

6.2 Preliminaries

Let Ballm(r,y) ⊆ Rm denote the ball of radius r (according to the usual ℓ2 norm) in dimension m
centered at y ∈ Rm. If y is ommitted, it is taken to be the all 0s vector.

Lemma 1 (E.g., Lemma 16 in [KF15]). For all m ∈ N and r ∈ R>0, we have the bound

|Ballm(r) ∩ Zm| ≤ Vol

(
Ballm

(
r +

√
m

2

))
Proof. For all y ∈ Ballm(r) ∩ Zm, consider the (open) cube y + (−1/2, 1/2)m. Note that since
y ∈ Zm, all such cubes are disjoint. Since all cubes have volume 1, we have

|Ballm(r) ∩ Zm| = Vol

 ⊔
y∈Ballm(r)∩Zm

(y + (−1/2, 1/2))m


≤ Vol

 ⋃
y∈Ballm(r)∩Zm

Ballm

(√
m

2
,y

)
≤ Vol

(
Ballm

(
r +

√
m

2

))
,

as desired.
3The only syntactic difference is that the codomain here is not expressed as {0, 1}ℓ for some ℓ, but rather some

efficiently recognizable finite set Yn. By considering a direct binary encoding of ([−r, r] ∩ γZ)m ⊇ Yn, one can make
the codomain {0, 1}ℓ with a slight loss in parameters.
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Corollary 3. For all m ∈ N and all γ, r ∈ R>0, we have the bound

|Ballm(r) ∩ γZm| ≤

(
r
√
2πe

γ
√
m

+

√
2πe

2

)m

.

Proof. By a scaling argument (by 1/γ), we know

|Ballm(r) ∩ γZm| = |Ballm(r/γ) ∩ Zm| .

Plugging in Lemma 1,

|Ballm(r) ∩ γZm| ≤ Vol

(
Ballm

(
r

γ
+

√
m

2

))
.

By using a standard bound that

Vol(Ballm(R)) ≤

(√
2πe

m

)m

Rm,

we get

|Ballm(r) ∩ γZm| ≤

(√
2πe

m

)m

·
(
r

γ
+

√
m

2

)m

=

(
r
√
2πe

γ
√
m

+

√
2πe

2

)m

,

as desired.

For a matrix A, we let ∥A∥2 denote the standard spectral norm of A, i.e., the largest singular
value of A.

Lemma 2 (As in [RV10]). For all t > 0, we have

Pr
A∼N (0,1)m×n

[
∥A∥2 ≤

√
m+

√
n+ t

]
≥ 1− 2e−t2/2.

In particular, for n > m and setting t =
√
n, we have

Pr
A∼N (0,1)m×n

[
∥A∥2 ≤ 3

√
n
]
≥ 1− 2e−n/2.

6.3 Construction

Theorem 11. Suppose that CHV is hard for parameters n,m,B, κ. Then, for r = 4Bn/
√
m and

γ = κ/(2
√
m), there exists a universal constant C and a robust locality sensitive hash function for

Xn = ([0, B] ∩ Z)n and Yn = Ballm(r) ∩ γZm with parameters

α = 4

√
n

m
and β =

κ

2
,

as long as

(B + 1)n >

(
CBn

κ
√
m

)m

.

In particular, the distortion is

ξ =
α

β
=

8

κ

√
n

m
.
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We will use the function ⌊·⌋γ : Rm → γZm to denote coordinate-wise rounding down to the
nearest multiple of γ.

Proof of Theorem 11. We construct a robust locality sensitive hash function as described in Figure 5.

Construction of Robust Locality Sensitive Hash Function

• KeyGen(1n): Sample A ∼ N (0, 1/m)m×n and output k = A ∈ Rm×n.a

• Hashk (x ∈ ([0, B] ∩ Z)n): Parse A ∈ Rm×n from k and output

y =

{
⌊Ax⌋γ if ∥⌊Ax⌋γ∥2 ≤ r,

0 otherwise.

By construction, note that y ∈ Ballm(r) ∩ γZm.

aTechnically, we need to discretize A to match the syntax of Definition 3. Using O(log(n/κ)) bits of precision
per entry is sufficient for all of the analysis.

Figure 5: The construction of the robust locality sensitive hash function, as used in Theorem 11.
See Definition 3 for the syntax of robust locality sensitive hash functions.

For simplicity, we assume for now that it always holds that ∥⌊Ax⌋γ∥2 ≤ r, i.e., that Hashk(x) =
⌊Ax⌋γ for all x ∈ Xn. Later in Claim 13, we show that with 1− negl(n) probability over A, this
indeed holds, allowing us to add a negl(n) term back into the proofs of Items 1 to 3 in Definition 3.
We prove that Item 3, Item 2, and Item 1 hold, in that order.

We begin by showing Item 3.

Claim 11 (Computational Non-Contraction). Item 3 in Definition 3 holds with β = κ/2. That
is, assuming the hardness of CHV, no p.p.t. algorithm can output y, z ∈ Xn such that ∥Hashk(y)−
Hashk(z)∥2 < κ/2 · ∥y − z∥2 with non-negligible probability.

Proof. The reduction from CHV is direct. For an instance of CHV with matrix A′ ∼ N (0, 1)m×n,
let k = A = 1√

m
A′ ∼ N (0, 1/m)m×n be the key for the robust locality sensitive hash function.

For any such violating pair y, z (where it must be the case that y ̸= z), the reduction outputs
x = y − z ∈ ([−B,B] ∩ Z)n. Let e1 = Ay − ⌊Ay⌋γ ∈ [0, γ)m, e2 = Az− ⌊Az⌋γ ∈ [0, γ)m. We have

1√
m
∥A′x∥2 = ∥Ax∥2 = ∥Ay −Az∥2

= ∥⌊Ay⌋γ + e1 − (⌊Az⌋γ + e2)∥2
≤ ∥⌊Ay⌋γ − ⌊Az⌋γ∥2 + ∥e1 − e2∥2
= ∥Hashk(y)−Hashk(z)∥2 + ∥e1 − e2∥2
≤ ∥Hashk(y)−Hashk(z)∥2 + γ

√
m

<
κ

2
· ∥y − z∥2 +

κ

2

≤ κ

2
· ∥y − z∥2 +

κ

2
· ∥y − z∥2

= κ · ∥y − z∥2,
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where the last inequality comes from the fact that y ̸= z and y, z ∈ Zn. Multiplying both sides by√
m gives

∥A′x∥2 < κ
√
m · ∥y − z∥2 = κ

√
m · ∥x∥2,

solving CHV with instance A′.

Next, we show Item 2.

Claim 12 (Statistical Non-Expansion). Item 2 in Definition 3 holds with

α = 4

√
n

m
.

More explicitly, with probability at least 1− 2e−n/2, for all y, z ∈ Xn,

∥Hashk(y)−Hashk(z)∥2 < 4

√
n

m
· ∥y − z∥2.

Proof. Up to rounding concerns, this is equivalent to upper bounding ∥Ax∥2/∥x∥2 over all x ∈
[−B,B]n ∩ Zn \ {0}. We can bound this directly by the spectral norm of A:

max
x∈([−B,B]∩Z)n\{0}

∥Ax∥2
∥x∥2

≤ sup
x∈Rn\{0}

∥Ax∥2
∥x∥2

= ∥A∥2.

Since
√
m ·A ∼ N (0, 1)m×n, by Lemma 2, it follows that with probability at least 1− 2e−n/2,

max
x∈([−B,B]∩Z)n\{0}

∥Ax∥2
∥x∥2

≤ ∥A∥2 ≤ 3

√
n

m
.

Finally, we incorporate the rounding. For y = z, the desired inequality is trivially true, so we
assume y ̸= z. Let e1 = Ay − ⌊Ay⌋γ ∈ [0, γ)m and e2 = Az− ⌊Az⌋γ ∈ [0, γ)m. For x = y − z ̸= 0,
we have

∥Hashk(y)−Hashk(z)∥2 = ∥⌊Ay⌋γ − ⌊Az⌋γ∥2
= ∥Ay − e1 − (Az− e2)∥2
≤ ∥Ay −Az∥2 + ∥e1 − e2∥2
= ∥Ax∥2 + ∥e1 − e2∥2

≤ 3

√
n

m
· ∥x∥2 + γ

√
m

≤ 3

√
n

m
· ∥x∥2 + γ

√
m · ∥x∥2

=

(
3

√
n

m
+

κ

2

)
· ∥x∥2,
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where the last inequality comes from the fact that x ̸= 0. Since m < n and κ < 1, we can continue
the above inequality to see that

∥Hashk(y)−Hashk(z)∥2 ≤
(
3

√
n

m
+

κ

2

)
· ∥x∥2

≤
(
3

√
n

m
+

1

2

)
· ∥x∥2

< 4

√
n

m
· ∥x∥2,

as desired.

As a consequence of Claim 12, we have the following:

Claim 13 (Output Norm Bound). With probability at least 1− (2B + 1)−n, for all y ∈ Xn,

∥⌊Ay⌋γ∥2 <
4Bn√
m

.

Proof. This follows from Claim 12 by setting z = 0 and using the bound ∥y∥2 ≤ B
√
n.

Lastly, we show Item 1.

Claim 14 (Compression). Item 1 holds in Definition 3. More specifically, the function Hashk is
compressing (by a factor of at least 2) if

(B + 1)n > 2

(
Bn
√
128πe

κ
√
m

+

√
2πe

2

)m

.

Proof. Recall that Xn = ([0, B] ∩ Z)n and Yn = Ballm(r) ∩ γZm. The domain has cardinality

|Xn| = |([0, B] ∩ Z)n| = (B + 1)n.

By Corollary 3, we know the codomain Yn has cardinality

|Yn| = |Ballm(r) ∩ γZm| ≤

(
r
√
2πe

γ
√
m

+

√
2πe

2

)m

.

Plugging in our value of r from Claim 13, this becomes

|Yn| ≤

(
Bn
√
32πe

γm
+

√
2πe

2

)m

.

Therefore, since γ = κ/(2
√
m), for the function to be compressing by a factor of at least 2, it suffices

that

(B + 1)n > 2

(
Bn
√
128πe

κ
√
m

+

√
2πe

2

)m

.
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7 Statistical Threshold

In this section, we describe the statistical threshold for CHV by classifying when the expected number
of solutions x is at least 1. For more precise bounds that take into account more than the first
moment (for related variants of this problem), we direct the reader to the works by Aubin, Perkins
and Zdeborová [APZ19], Perkins and Xu [PX21], and Abbe, Li and Sly [ALS21], which confirm
that the first moment bound accurately gives a sharp statistical threshold for binary symmetric
perceptron models.

We begin by stating a lower tail bound on the χ2
m distribution.

Lemma 3. There exist universal constants C1, C2 > 0 such that for all κ ≤ 1/2 and m ∈ N,

(C1 · κ)m ≤ Pr
Z∼χ2

m

[
Z ≤ κ2m

]
≤ (C2 · κ)m.

Proof. We first show the lower bound. Recall that we can characterize Z ∼ χ2
m by

Z =
∑
i∈[m]

X2
i

for i.i.d. Xi ∼ N (0, 1). If for all i ∈ [m] it holds that |Xi| ≤ κ, then

Z =
∑
i∈[m]

X2
i ≤ κ2m.

Therefore,

Pr
Z∼χ2

m

[
Z ≤ κ2m

]
≥ Pr [∀i ∈ [m], |Xi| ≤ κ] = Pr

X∼N (0,1)
[|X| ≤ κ]m ≥ (C1 · κ)m,

for some universal constant C1, where the right-hand-most inequality holds since the measure of
N (0, 1) is at least e−1/8/

√
2π on [−1/2, 1/2] and κ ≤ 1/2.

We now show the upper bound. Using the moment-generating function of the χ2
m distribution

and the proof of Cramér’s theorem, for all κ < 1, we have

Pr
Z∼χ2

m

[
Z ≤ κ2m

]
≤ exp

(
m · ln(κ

2)− κ2 + 1

2

)
= exp

(
m ·

(
ln(κ)− κ2

2
+

1

2

))
=

(
κ · exp

(
−κ2

2
+

1

2

))m

≤ (κ · C2)
m

for some universal constant C2, since the function exp(−κ2/2 + 1/2) lies in the interval [e3/8, e1/2]
for all κ ∈ [0, 1/2].

We proceed to compute the statistical bound. For A ∼ N (0, 1)m×n and fixed x ∈ [−B,B]n ∩Zn,
let Ix be the indicator random variable given by

Ix := 1
[
∥Ax∥2 < κ

√
m · ∥x∥2

]
∈ {0, 1}.
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By linearity of expectation, we know that the expected number of solutions is given by

E
[∣∣{x ∈ [−B,B]n ∩ Zn : ∥Ax∥2 < κ

√
m · ∥x∥2

}∣∣] = ∑
x∈[−B,B]n∩Zn

E [Ix]

=
∑

x∈[−B,B]n∩Zn

Pr
[
∥Ax∥2 < κ

√
m · ∥x∥2

]
.

For A ∼ N (0, 1)m×n and fixed x ∈ [−B,B]n ∩ Zn \ {0n}, by standard properties of the Gaussian
distribution, the distribution of Ax is N (0, ∥x∥22)m. Therefore, Ax/∥x∥2 ∼ N (0, 1)m, so

∥Ax∥22
∥x∥22

∼ χ2
m.

It follows that

Pr
[
∥Ax∥2 < κ

√
m · ∥x∥2

]
= Pr

[
∥Ax∥22
∥x∥22

< κ2m

]
= Pr

Z∼χ2
m

[
Z < κ2m

]
.

For κ ≤ 1/2, by Lemma 3, we have

Pr
Z∼χ2

m

[
Z < κ2m

]
= Θ(κ)m .

Since x = 0n is never a solution, it follows that

E
[∣∣{x ∈ [−B,B]n ∩ Zn : ∥Ax∥2 < κ

√
m · ∥x∥2

}∣∣] = ((2B + 1)n − 1) · Pr
Z∼χ2

m

[
Z < κ2m

]
= ((2B + 1)n − 1) ·Θ(κ)m.

Setting this to 1 gives the statistical threshold

κ = Θ
(
(2B + 1)−n/m

)
.
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Classical hardness of learning with errors. In Dan Boneh, Tim Roughgarden, and Joan
Feigenbaum, editors, Symposium on Theory of Computing Conference, STOC’13, Palo
Alto, CA, USA, June 1-4, 2013, pages 575–584. ACM, 2013. 21

[BLV19] Elette Boyle, Rio LaVigne, and Vinod Vaikuntanathan. Adversarially robust property-
preserving hash functions. In Avrim Blum, editor, 10th Innovations in Theoretical
Computer Science Conference, ITCS 2019, January 10-12, 2019, San Diego, California,
USA, volume 124 of LIPIcs, pages 16:1–16:20. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2019. 5, 22

[BR23] Andrej Bogdanov and Alon Rosen. Nondeterministic Interactive Refutations for Nearest
Boolean Vector. In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, 50th
International Colloquium on Automata, Languages, and Programming (ICALP 2023),
volume 261 of Leibniz International Proceedings in Informatics (LIPIcs), pages 28:1–
28:14, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
6

[BRST21] Joan Bruna, Oded Regev, Min Jae Song, and Yi Tang. Continuous LWE. In Samir
Khuller and Virginia Vassilevska Williams, editors, STOC ’21: 53rd Annual ACM

30



SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021,
pages 694–707. ACM, 2021. 8, 20, 21

[BS20] Nikhil Bansal and Joel H. Spencer. On-line balancing of random inputs. Random
Struct. Algorithms, 57(4):879–891, 2020. 2, 3, 4, 10, 11

[BY20] Omri Ben-Eliezer and Eylon Yogev. The adversarial robustness of sampling. In Dan
Suciu, Yufei Tao, and Zhewei Wei, editors, Proceedings of the 39th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2020, Portland,
OR, USA, June 14-19, 2020, pages 49–62. ACM, 2020. 1, 6

[CJN18] Michael B. Cohen, T. S. Jayram, and Jelani Nelson. Simple analyses of the sparse
Johnson-Lindenstrauss transform. In Raimund Seidel, editor, 1st Symposium on
Simplicity in Algorithms, SOSA 2018, January 7-10, 2018, New Orleans, LA, USA,
volume 61 of OASIcs, pages 15:1–15:9. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2018. 1

[CLN+22] Edith Cohen, Xin Lyu, Jelani Nelson, Tamás Sarlós, Moshe Shechner, and Uri Stemmer.
On the robustness of countsketch to adaptive inputs. In Kamalika Chaudhuri, Stefanie
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