
A preliminary version of this paper appears in the proceedings of PKC 2025. This is the full version.

Intermundium-DL: Assessing the Resilience of Current
Schemes to Discrete-Log-Computation Attacks on

Public Parameters

Mihir Bellare1 Doreen Riepel2 Laura Shea3

April 11, 2025

Abstract

We consider adversaries able to perform a nonzero but small number of discrete logarithm
computations, as would be expected with near-term quantum computers. Schemes with public
parameters consisting of a few group elements are now at risk; could an adversary knowing the
discrete logarithms of these elements go on to easily compromise the security of many users? We
study this question for known schemes and find, across them, a perhaps surprising variance in
the answers. In a first class are schemes, including Okamoto and Katz-Wang signatures, that we
show fully retain security even when the discrete logs of the group elements in their parameters
are known to the adversary. In a second class are schemes like Cramer-Shoup encryption and
the SPAKE2 password-authenticated key exchange protocol that we show retain some partial
but still meaningful and valuable security. In the last class are schemes we show by attack to
totally break. The distinctions uncovered by these results shed light on the security of classical
schemes in a setting of immediate importance, and help make choices moving forward.

1 Department of Computer Science & Engineering, University of California San Diego, 9500 Gilman Drive, La
Jolla, California 92093, USA. Email: mbellare@ucsd.edu. URL: http://cseweb.ucsd.edu/˜mihir/. Supported in
part by NSF grant CNS-2154272 and KACST.

2 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany. Email: riepel@cispa.de. Work
done while at UCSD, supported in part by KACST.

3 Department of Computer Science & Engineering, University of California San Diego, 9500 Gilman Drive, La
Jolla, California 92093, USA. Email: lmshea@ucsd.edu. Supported by NSF grants CNS-2048563, CNS-1513671 and
CNS-2154272.

Contents

1 Introduction 2

2 Preliminaries 6

3 Signatures under parameter subversion 9
3.1 Signature definitions . 9
3.2 Positive signature results: Okamoto . 11
3.3 Positive signature results: Katz-Wang . 14
3.4 Blind, threshold and modern signature schemes . 16

4 Encryption under parameter subversion 17
4.1 Public-key encryption definitions . 17
4.2 Mixed PKE results: Cramer-Shoup . 18

5 PAKEs under parameter subversion 23
5.1 PAKE definitions . 24
5.2 Negative PAKE results: KOY and derivatives . 26
5.3 Mixed PAKE results: SPAKE2 and derivatives . 28

References 31

A Converses of signature theorems 35

B Multi-user DT-DDH is implied by single-user 38

C Proof of Theorem 5.3 41

1

1 Introduction

We suggest that in a relatively near term, we will see quantum computers with which computation
of discrete logarithms in currently standardized groups is feasible, but still slow and costly. An
attacker may be able to compute a few discrete logarithms, but not many. How might they best
exploit this capability?

A natural and potentially lucrative target is public parameters, which, for many schemes in
public-key cryptography, consist of a short list π = (h1, . . . , hw) of elements in an underlying group
G. Assumed to have been generated in a trusted way, the parameters are the same across some
large number n of users, each of whom individually generates her public and secret key as a function
of them. Importantly, however, the schemes, and their current proofs of security, assume that the
discrete logarithms logg(h1), . . . , logg(hw) are hidden and not available to the adversary. (Here g
is a fixed, public generator of G.) Our adversary, however, can violate this assumption via an
intensive computation that yields it logg(h1), . . . , logg(hw). What it hopes for is to be able to easily
and quickly compromise the security of many users, maybe even all n of them.

The question we ask in this paper is whether, for current schemes, such an adversary would
succeed. Put another way, we want to assess the security of schemes when the attacker knows the
discrete logarithms of the group elements in the parameters. The known proofs break down, but this
does not necessarily mean attacks exist. In fact we show an interesting variation in security across
schemes in the literature: some break fully, some only partially, and some (surprisingly) not at
all, meaning security is provably retained. The message is that some schemes offer more resistance
than others to discrete-log-computing attacks on parameters, and this should be a consideration in
what we call Intermundium-DL, the era in which well-equipped attackers can compute a few, but
just a few, discrete logarithms.

Computation is not the only way an attacker may know logg(h1), . . . , logg(hw). Through another
lens, largely inspired by the Dual EC backdoor [22], the attacker could have picked, and retained
as a backdoor, a list (β1, . . . , βw) of exponents, defined hi = gβi (1 ≤ i ≤ w), and then used its
political influence to have (h1, . . . , hw) installed as parameters. Our model and setting captures
this as well, so that our results can also be seen as showing variations, across different schemes, in
their resistance to backdooring of this form.

Below we discuss our setup, results and motivation in more detail. We then discuss related
work on parameter-focused attacks.

Schemes with group-element parameters. Let G be a group of order p with generator g. We
consider cryptographic schemes whose public parameters π = (h1, . . . , hw) consist of a list of w
group elements h1, . . . , hw ∈ G. We refer to w as the width. The scheme-prescribed parameter-
generation algorithm Pg picks x1, . . . , xw←$ Zp and sets hi ← gxi (1 ≤ i ≤ w). A user can now
generate her public and secret keys as (pk, sk)←$ Kg(π) where Kg is a scheme-prescribed key-
generation algorithm that depends, through its input, on π. We imagine a large number n of users,
all using the same π. We refer to such schemes as group-element parameter (GEP) schemes.

Importantly, the discrete logs x1, . . . , xw are not made public and are assumed unknown to
the adversary. This assumption is made in the known proofs of security of all GEP schemes that
we know or consider. In particular, known proofs offer no security guarantees if the xi values are
revealed to the adversary.

There are many examples of such GEP schemes. Classical ones are the Okamoto signature
scheme [49] and the Cramer-Shoup encryption scheme [25], both of which are GEP schemes with
width w = 1. The Katz-Wang signature scheme [41] is also a GEP scheme with width w = 1.
SPAKE2 [7,51], a PAKE protocol that is a draft standard [43], is a GEP scheme with width w = 2.

2

The KOY PAKE protocol [40] is a GEP scheme with width w = 4.
Security against dl-equipped adversaries. Let us refer to an adversary as dl-equipped if it
knows the discrete logarithms logg(h1), . . . , logg(hw) of the group elements in the public parameters.
In this paper, we aim to assess the security of GEP schemes against such adversaries. Why do this?
To motivate the question, we consider three possible worlds in the vein of Impagliazzo [35].

Opti-DL. In the optimistic world, DL computation remains infeasible. On the one hand, in
the space of classical computers, the currently known DL algorithms remain the best possible. On
the other hand, quantum computers — which as we know can theoretically compute discrete logs
in polynomial time [56] — encounter engineering bottlenecks due to which they are never built. In
this world, our question is uninteresting, since the discrete logs of the parameters are safe. However,
we do not believe we live in this world. The expectation is that quantum computers will advance,
albeit slowly.

Pessi-DL. In the pessimistic world, blindingly fast quantum computers are right around the
corner, and all DL-based cryptography is forfeit. In this case, DL-based schemes should be aban-
doned and our question is again uninteresting. However, we do not believe we live in this world, for
although significant efforts are underway to build quantum computers, the progress is expensive
and slow.

Intermundium-DL. In this place in between the above two worlds, discrete log computations
are feasible but at a significant per-computation cost. This world may arise due to increasingly
efficient but still slow quantum computers, or to marginally improved classical algorithms or im-
plementations. The cost is large enough to preclude large-scale (per-user) DL computations, but
may allow a well-equipped adversary to compute the w discrete logs x1, . . . , xw underlying the pa-
rameters. This, we believe, is the world we live in, at least for the foreseeable future. The question
of security of the scheme against dl-equipped adversaries now becomes very relevant.
Definitions with advice. Before we can meaningfully assess security against dl-equipped ad-
versaries, we need to say what it means. Our requirement is simple but strong, namely that the
usual security for the primitive continues to be provided even against a dl-equipped adversary. For
example, for a signature scheme S, the regular notion of security is UF-CMA in the n-user setting.
Game Guf-cma

S,n starts, in procedure Init, by generating and giving the adversary the parameters
π = (h1, . . . , hw). We denote our notion A-UF-CMA. The game Ga-uf-cma

S,n capturing it is the same
as Guf-cma

S,n except that Init additionally gives the adversary logg(h1), . . . , logg(hw). We call this
additional information advice, and it is the reason for the “A-” prefix in “A-UF-CMA.” Other ora-
cles (here, for signing) and the winning condition are the same. In particular, the adversary wins
if it forges a signature for even one user. In this regard, our definition is strong; the concern we
discussed above is that the adversary breaks security of all n users, but our definition asks that
it not break even one user. We similarly extend definitions for public-key encryption (obtaining
A-IND-CPA, A-IND-CCA1, A-IND-CCA2) and Password-Authenticated Key Exchange (obtain-
ing A-PAKE). We note that the definitions we give in the body are actually more general than
discussed here, allowing alternative and arbitrary advice choices.
Security tiers. The fact that current proofs of security for GEP schemes deny the adversary
logg(h1), . . . , logg(hw) may lead us to think this is necessary for security, meaning a dl-equipped
adversary would be able to violate security. Somewhat surprisingly, we show that this is not always
true, and that different schemes offer quite different types of resilience to such adversaries. We
distinguish three tiers as follows. The information below is summarized in Figure 1.

Fully A-secure. These are schemes for which we can prove that regular security is retained even
if adversaries are dl-equipped. In particular we show A-UF-CMA security for both Okamoto [49]

3

Tier Scheme Result

Fully A-secure Okamoto signatures A-UF-CMA security
Katz-Wang signatures under DL

Partially A-secure
SPAKE2 A-PAKE security for good passwords,

under SCDH
Cramer-Shoup encryption A-IND-CCA1 security under DT-DDH

A-Insecure KOY-style PAKE protocols Attacks

Figure 1: Overview of results. Schemes ranked from greatest to least in terms of A-security,
meaning resistance to adversaries that know the discrete logarithms of the group elements in the
public parameters.

and Katz-Wang [41] signatures, meaning these schemes remain UF-CMA-secure even if the dis-
crete logs of the group elements in the parameters are known to the adversary. Such schemes are
effectively “better than advertised,” seeing no security degradation in Intermundium-DL.

Partially A-secure. These are schemes that, in the face of dl-equipped adversaries, may
not provide the same security as before, but do retain and provide some meaningful and valuable
security. Our first example is the IND-CCA2 Cramer-Shoup encryption scheme [25]. It is a GEP
scheme with width 1. With regard to A-IND-CCA2, we have neither a proof nor an attack, but we
are able to show A-IND-CCA1. We note that what in our framework is A-IND-CPA was shown by
Rosulek in a StackExchange post [52]. (For completeness, we have stated this result in our paper.)
Our second example is the draft-standard SPAKE2 protocol [7, 43, 51] for password-authenticated
key exchange. We show that in the presence of dl-equipped adversaries, it will still provide security
for users whose passwords are well chosen. This is significant because many, even if not all users,
do take care to pick good passwords, and other PAKE protocols (see below) do not provide even
this security.

A-Insecure. These are schemes that break totally in the face of dl-equipped adversaries,
meaning knowledge of the discrete logs of the group elements in the parameters allows an attacker
to easily compromise security of all users. This is true for the KOY PAKE protocol [40], as we
show via an attack given in Section 5.2. We note that similar attacks work to break follow-up
protocols including ones in the framework of Gennaro-Lindell [31], the protocol proposed by Jiang
and Gong [36] which simplifies the design of KOY, and its generalization by Groce and Katz [34].
Technical overview. We expand here on some of the computational assumptions and techniques
underlying our results. The body of the paper gives formal definitions of security and of the
assumptions, scheme descriptions, theorem statements and proofs.

Recall that Okamoto is a width-1 GEP scheme, so the public parameters consist of one group
element h1. The classical UF-CMA security of the scheme is shown under the standard DL assump-
tion [49]. Given a UF-CMA adversary, the proof constructs an adversary that finds logg(h1). Since
our dl-equipped adversary is given logg(h1) upfront, the same proof will of course not work to show
A-UF-CMA security. Our approach is different. We prove A-UF-CMA security of Okamoto (The-
orem 3.1) assuming regular UF-CMA security of the Schnorr signature scheme [55]. That is, given
an A-UF-CMA adversary against Okamoto, we construct a UF-CMA adversary against Schnorr.
Since the latter scheme is well known to be UF-CMA under the DL assumption [1, 55] and also
(with tighter proofs) under other assumptions [15, 53], we conclude that Okamoto is A-UF-CMA-
secure under the same assumptions and (since our reduction is tight) with the same tightness. In

4

conclusion, resistance to dl-equipped adversaries is not only present but is proven without extra
assumptions. We use the same approach for the Katz-Wang signature scheme [41], again proving
its A-UF-CMA security (Theorem 3.2) assuming UF-CMA security of Schnorr and thus concluding
A-UF-CMA security under DL and other assumptions.

The Cramer-Shoup public-key encryption scheme [25] is a width-1 GEP scheme, so again the
public parameters consist of one group element h1. The proof of IND-CCA2 is under DDH [25].
We prove A-IND-CCA1 (Theorem 4.1) under the delayed-target DDH (DT-DDH) assumption.
The assumption was introduced by Lipmaa [44] (under a different name). We call it DT-DDH in
light of [42] and of Freeman [29], who introduced DT-CDH. With regard to A-IND-CCA2 security
of Cramer-Shoup, we leave as an open problem to either give an attack or give a proof under a
reasonable assumption.

Moving on to PAKEs, we give an attack showing that SPAKE2 does not retain security against
offline dictionary attacks in the face of a dl-equipped adversary. We then show (Theorem 5.3) that
it does retain A-PAKE security against dl-equipped adversaries for users whose passwords have
enough entropy. This proof is under the strong CDH (SCDH) assumption introduced in [4], and
the result stands in contrast to the attacks that emerge for KOY and other PAKE protocols.
Converses of signature results. We have shown A-UF-CMA security of Okamoto and Katz-
Wang (KW) assuming UF-CMA security of Schnorr. A natural question is whether this assumption
is necessary. We show that it is, by establishing, in Appendix A, the converses of our signature
results. Namely we show that A-UF-CMA of Okamoto implies UF-CMA of Schnorr and similarly
A-UF-CMA of KW implies UF-CMA of Schnorr. This means A-UF-CMA of Okamoto, A-UF-CMA
of KW and UF-CMA of Schnorr are all equivalent.
Discussion and related work. One way to avoid attacks on public parameters is to not have
public parameters at all. There are a few ways to do this. First, for GEP schemes, each user could
make her own independent choice of π and put it in her public key. But this increases the size of
public keys, which becomes a significant cost. Reduction in key size is one of the motivations for
schemes having public parameters. Second, one could use schemes that are already parameter-free.
Many such are known, and more could be invented. This works if one is designing a new system
and has the freedom to pick the scheme. But GEP schemes are, or may, already be in use in legacy
systems, or, like SPAKE2, be draft standards. The systems using them are not easily changed or
replaced, so we need to understand the security of current GEP schemes in the face of dl-equipped
adversaries. Our work has accordingly focused on existing schemes; we do not give new schemes
as, for example, [9] do.

Our question is related to the quantum annoyance property [28] introduced in the context of
password-authenticated key exchange (PAKE). Typically, a PAKE protocol should protect against
offline dictionary attacks. If a quantum attacker additionally needs to solve one discrete log for
each (online) password guess, we say that the protocol is also quantum annoying. In a sense, if
public parameters allow one to break all protocol instances, it cannot be quantum annoying. One
can view our results as an extension of this basic idea to other primitives.

BRT [18] introduced multi-instance security, which was further studied for public-key encryption
by AGK [10]. The question here is how adversary effort scales with the number of users it can
compromise. Viewing our results in this model, we could make statements of the form: GEP
schemes that can be broken efficiently by a dl-equipped adversary do not offer any scalability.
However, we are not claiming the converse, namely that GEP schemes secure against dl-equipped
adversaries would be considered scalable under the definitions of [10,18]. Meeting their definitions
would involve, in our setting, considering all attacks that could be mounted using a small number
of DL computations. But we consider only a single, natural attack, namely to compute the discrete

5

logarithms of the group elements in the public parameters. Our model and results are in this way
pragmatic.

The main motivating setting for Intermundium-DL is elliptic curve groups and quantum discrete-
log-computing algorithms in them. For groups of integers modulo a prime, the situation is more
delicate. Work including [8] shows that, in these groups, the NFS [24] can be implemented so that,
after an expensive precomputation phase that depends only on the prime, individual discrete logs
can, in an online phase, be computed more efficiently (although still with subexponential time).
The Intermundium-DL setting is applicable here to the extent that the cost of the online phase
remains large enough to preclude bulk discrete log computations. This may not always be true
(with 512-bit primes, the online phase is reported in [8] as taking only minutes per discrete log)
but could be true for large primes. For quantum adversaries however, and for elliptic curve groups,
feasible precomputation that makes subsequent discrete log computations easy is, to the best of
our knowledge, not known to be possible.

The backdooring perspective. Backdoors in, or subversion of, public parameters, has been a
historical theme in cryptography. In our context it would mean that the entity generating π =
(h1, . . . , hw) is untrusted. It may have itself picked exponents β1, . . . , βw, set hi = gβi (1 ≤ i ≤ w)
and arranged for π = (h1, . . . , hw) to be published, while retaining the backdoor (β1, . . . , βw). But
such an entity, knowing the discrete logarithms logg(hi) (1 ≤ i ≤ w) is, in our language, just
another dl-equipped adversary, and thus our results, both positive and negative, continue to hold.
The positive ones in particular indicate that the schemes in question resist backdooring of this
form. In our framework, Dual EC [22] emerges as a width-1 GEP scheme that is insecure against
dl-equipped adversaries, again making a connection with classical backdooring work.

We note that backdooring can be prevented by requiring that hi = H(i) for some public hash
function H. (The SPAKE2 draft standard [43] does precisely this.) But this is not applicable
to all schemes, and one must still consider legacy systems where this step was not taken. Also,
hash-based derivation of parameters will not change the picture for Intermundium-DL because the
hashing does not prevent the adversary from computing the discrete logs of h1, . . . , hw.

We do not claim to give results about all possible malicious parameter generation. We are
rather concerned with one, natural form, where the adversary picks, and thus knows, the discrete
logs of the public parameters. This captures Dual-EC-style backdoors but not necessarily all types
of backdoors. Our formal definitions and results further assume that the discrete logs are randomly
chosen, but can, in this regard be extended. In particular our theorems hold even if the adversary is
allowed to select exponents (β1, . . . , βw) arbitrarily before publishing parameters π = (gβ1 , . . . , gβw).

The takeaway is that the Intermundium-DL setting does capture some, natural backdoors,
including realistic ones that have been implemented in the real world.

2 Preliminaries

Notation and terminology. By ε we denote the empty string. By |Z| we denote the length of
a string Z. We denote a vector v in bold. Its length is |v| and for 1 ≤ i ≤ |v| we refer to entry i of
the vector by v[i]. To make clear that something is a boolean expression, we may use the notation
b← JexprK to evaluate the boolean expression expr and assign the result to b.

If X is a finite set, we let x←$ X denote picking an element of X uniformly at random and
assigning it to x. If A is an algorithm, we let y ← A[O1, . . .](x1, . . . ; r) denote running A on
inputs x1, . . . and coins r with oracle access to O1, . . ., and assigning the output to y. We let
y←$ A[O1, . . .](x1, . . .) be the result of picking r at random and computing y ← A[O1, . . .](x1, . . . ; r).

6

Game Gdl
G,p,g

Init:
1 x←$ Zp ; X ← gx

2 Return X

Fin(x′):
3 Return (gx′

= X)

Game Gddh
G,p,g

Init:
1 d←$ {0, 1}
2 z←$ Zp ; t←$ Zp

3 Z ← gz ; T ← gt

4 If (d = 1) then S ← gzt

5 If (d = 0) then S←$ G
6 Return (Z, T, S)

Fin(d′):
7 Return (d′ = d)

Game Gcdh
G,p,g

Init:
1 z←$ Zp ; t←$ Zp

2 Z ← gz ; T ← gt

3 Return (Z, T)

Fin(S′):
4 Return (S′ = gzt)

Figure 2: Standard computational problems over a cyclic group specified by (G, p, g).

We let OUT(A[O1, . . .](x1, . . .)) denote the set of all possible outputs of A when invoked with inputs
x1, . . . and oracles O1,

Algorithms are randomized unless otherwise indicated. Running time is worst case, which for
an algorithm with access to oracles means across all possible replies from the oracles. An adversary
is an algorithm. We use ⊥ (bot) as a special symbol to denote rejection, and it is assumed to not
be in {0, 1}∗. We may interchangeably refer to the boolean false and integer 0, or to the boolean
true and integer 1.

For sets D, R we let FUNC(D, R) denote the set of all functions f : D → R.

Games. We use the code-based game-playing framework of BR [20]. A game G starts with an
optional Init procedure, followed by a non-negative number of additional procedures called oracles,
and ends with a Fin procedure. Execution of adversary A with game G begins by running Init
(if present) to produce input←$ Init. This Init call precedes all other oracle calls, including an
RO (if present). A is then given input and is run with query access to the game oracles. When A
terminates with some output, execution of game G ends by returning Fin(output). By Pr[G(A)] we
denote the probability that the execution of game G with adversary A results in Fin(output) being
the boolean true.

Different games may have procedures (oracles) with the same names. If we need to disambiguate,
we may write G.O to refer to oracle O of game G. In games, integer variables, set variables, boolean
variables and string variables are assumed initialized, respectively, to 0, the empty set ∅, the boolean
false and ⊥. Tables are initialized with all entries being ⊥. Games may occasionally Require: some
condition, which means that all adversaries must obey this condition. This is used to rule out
trivial wins.

Groups. In all of our considered schemes, the public parameters are based on a cyclic group. A
group specification is a triple (G, p, g) where G is a cyclic group of order p and g is a generator of
G. We let Gens(G) ⊆ G be the set of generators of G. Note that Gens(G) = { gx : x ∈ Z∗

p } and
hence “x←$ Z∗

p ; return gx” returns a random generator of G. If h ∈ Gens(G) and g′ ∈ G then
logh(g′) is the unique x ∈ Zp such that hx = g′.

In general we do not assume p is prime. This means our results are true for (cyclic) groups
of any order. They hold not only for prime-order elliptic curve groups but also for groups of
integers modulo a prime, which is important because the latter groups are still in use and are also
of historical interest.

7

GPgw:

1 For i = 1, . . . , w do
2 βi←$ Zp ; hi ← gβi

3 Return (h1, . . . , hw)

GPg∗
w:

4 For i = 1, . . . , w do
5 βi←$ Z∗

p ; hi ← gβi

6 Return (h1, . . . , hw)

AGPgw:

1 For i = 1, . . . , w do
2 βi←$ Zp ; hi ← gβi

3 ad ← (β1, . . . , βw)
4 Return ((h1, . . . , hw), ad)

AGPg∗
w:

5 For i = 1, . . . , w do
6 βi←$ Z∗

p ; hi ← gβi

7 ad ← (β1, . . . , βw)
8 Return ((h1, . . . , hw), ad)

Figure 3: Group-parameter generation, and group-parameter-with-advice generation algorithms,
for a group specification (G, p, g). The integer w is called the width.

We recall some standard computational problems over groups in Figure 2. The Discrete
Log (DL) problem is captured by game Gdl

G,p,g for which the advantage of an adversary A is
Advdl

G,p,g(A) = Pr[Gdl
G,p,g(A)]. Decisional Diffie-Hellman (DDH) is captured by game Gddh

G,p,g for
which the advantage of an adversary A is Advddh

G,p,g(A) = 2 · Pr[Gddh
G,p,g(A)] − 1. Computational

Diffie-Hellman (CDH) is captured by game Gcdh
G,p,g for which the advantage of an adversary A is

Advcdh
G,p,g(A) = Pr[Gcdh

G,p,g(A)]. We will see variants of these hardness assumptions in Sections 4
and 5.
Parameter- and advice-generation algorithms. Let (G, p, g) be a group specification as
above. This paper considers schemes whose parameters are a list (h1, . . . , hw) of group elements.
We refer to integer w as the width. The left panel of Figure 3 shows honest parameter-generation
algorithms that schemes would use to generate these parameters. We refer to these as the group-
parameter generation algorithms. There are two types. The first (GPgw) returns random group
elements, and the second (GPg∗

w) returns random generators, corresponding to these two kinds of
parameters arising in schemes.

We consider attacks, on parameters of the form (h1, . . . , hw) ∈ Gw, that allow the adversary to
learn logg(hi) for all (or for some) i. We call these latter discrete log values the natural advice. This
advice may be obtained by an adversary in a few ways. One is to compute it, for example using
a quantum computer. In the Intermundium-DL setting, this reflects a world in which quantum
DL computation is feasible but expensive, and we suppose an adversary uses its limited resources
to compute the DLs of the public parameters. The backdooring perspective provides another way
in which the adversary may have the discrete logs. Namely, the adversary itself runs parameter
generation, thus picking the βi and letting hi ← gβi . Now it may have the political or institutional
power to influence standardization, causing (h1, . . . , hw) to be installed as the public parameters
for users, while it retains the backdoor (advice) (β1, . . . , βw). In either case, thus, an adversary
obtains both the public parameters π = (h1, . . . , hw) and the natural advice ad = (β1, . . . , βw).

To formally capture adversaries with this natural advice, we define in the right panel of Figure 3
two group-parameter-with-advice generation algorithms corresponding to the honest ones in the
left panel. These return not just the parameters, but also the (natural) advice that we have
just discussed. Again, there are two types, depending on whether parameters are random group
elements or random generators. In the backdooring setting, the adversary is viewed as having

8

Games Guf-cma
S,n , Ga-uf-cma

S,APg,n

Init:
1 H←$ S.HS
2 π←$ S.Pg[H] // Game Guf-cma

S,n only
3 (π, ad)←$ APg[H] // Game Ga-uf-cma

S,APg,n only
4 For i = 1 . . . n do (vk[i], sk[i])←$ S.Kg[H](π)
5 Return (π, vk) // Game Guf-cma

S,n only
6 Return (π, vk, ad) // Game Ga-uf-cma

S,APg,n only

Sign(i, m):
7 σ←$ S.Sign[H](π, sk[i], m)
8 Q ← Q∪ {(i, m)} ; Return σ

Hash(z):
9 Return H(z)

Fin(i, m, σ):
10 If (i, m) ∈ Q then return 0
11 Return S.Vfy[H](π, vk[i], m, σ)

Figure 4: Games defining UF-CMA and A-UF-CMA of a signature scheme S over n users, for a
particular advice-generation algorithm APg.

run these advice algorithms rather than the honest ones, and retained the advice (backdoor) ad.
We clarify that in the Intermundium-DL setting, nobody actually runs these algorithms. They
function, rather, as an abstraction to capture that the adversary knows (β1, . . . , βw) through a
computation on (h1, . . . , hw).

Schemes we will consider will be prescribed as using GPgw or GPg∗
w for some w associated to the

scheme. When we consider security under parameter subversion, we will replace these with AGPgw

or AGPg∗
w, respectively. Specifically, we will see AGPg∗

1 in Sections 3 and 4, and AGPg2, AGPg∗
4 in

Section 5.2.

3 Signatures under parameter subversion

In this section we provide positive results for existing signature schemes where the setup appears
susceptible to parameter attacks, showing that these schemes retain security even if the adversary
knows the discrete logs of the parameters. This shows that the natural attacks on parameters are
not effective.

3.1 Signature definitions

A signature scheme S specifies an (honest) parameter-generation algorithm S.Pg, a key-generation
algorithm S.Kg, a signing algorithm S.Sign and a deterministic verification function S.Vfy. If the
scheme requires a hash function mapping from some domain D to range R, the scheme defines a
set S.HS ⊆ FUNC(D, R) from which the hash function H←$ S.HS is drawn. Making the set S.HS a
scheme parameter yields flexibility. We can set S.HS = FUNC(D, R) to capture the ROM. We can
also set S.HS to the singleton set { SHA256 }, for example, to capture the scheme using a particular
hash function. We introduce this flexibility because our results in this section work with different

9

OS.Pg[H]:

1 β←$ Z∗
p ; h← gβ

2 Return h

OS.Kg[H](h):

3 s1, s2←$ Zp

4 X ← gs1 hs2

5 Return (X, (s1, s2))

OS.Sign[H](h, (s1, s2), m):

6 r1, r2←$ Zp

7 R← gr1 hr2

8 e← H(X, R, m)
9 y1 ← (r1 + es1) mod p

10 y2 ← (r2 + es2) mod p

11 Return σ ← (e, y1, y2)

OS.Vfy[H](h, X, m, σ):

12 (e, y1, y2)← σ

13 R← gy1 hy2 X−e

14 If H(X, R, m) = e then return 1
15 Return 0

SS.Kg[H]:

1 s←$ Zp

2 X ← gs

3 Return (X, s)

SS.Sign[H](s, m):

4 r←$ Zp

5 R← gr

6 e← H(X, R, m)
7 y ← (r + es) mod p

8 Return σ ← (e, y)

SS.Vfy[H](X, m, σ):

9 (e, y)← σ

10 R← gyX−e

11 If H(X, R, m) = e then return 1
12 Return 0

Figure 5: Okamoto signature scheme OS (left) and Schnorr signature scheme SS (right) associated
to group specification (G, p, g) and set HS of hash functions, with H ∈ HS.

choices of this hash-function space, either requiring the ROM or holding for any standard-model
choice of hash function.

We generate parameters as π←$ S.Pg[H] and keys (for verification and signing, respectively)
via (vk, sk)←$ S.Kg[H](π). Signing takes as input π along with a signing key sk and message m to
return signature σ←$ S.Sign[H](π, sk, m). Verification outputs a bit d via d← S.Vfy[H](π, vk, m, σ).
For correctness we require that S.Vfy[H](π, vk, m, S.Sign[H](π, sk, m)) = 1 for all π ∈ OUT(S.Pg[H]),
all (vk, sk) ∈ OUT(S.Kg[H](π)), all m ∈ {0, 1}∗ and all H ∈ S.HS.

Game Guf-cma
S,n in Figure 4 defines the usual UF-CMA security, where parameters π are honestly

generated and we are in the multi-user setting [14, 46] with n > 0 users. Our new notion of
A-UF-CMA security is defined in game Ga-uf-cma

S,APg,n in the same figure. The game is additionally
parameterized by an advice-generation algorithm APg that returns not just parameters π, but
related advice ad, both of which are returned to the adversary. In this way, the game captures
the adversary’s ability to violate UF-CMA when, in addition to the parameters, it also has advice
related to them. The advice-generation algorithm APg is not part of the scheme S, but is instead an
external parameter. The games share many lines, the exceptions indicated in the comments. For an
adversary A we let Advuf-cma

S,n (A) = Pr[Guf-cma
S,n (A)], and we let Adva-uf-cma

S,APg,n (A) = Pr[Ga-uf-cma
S,APg,n (A)].

The particular schemes in this section will have S.Pg = GPg∗
1 so we will correspondingly set

APg = AGPg∗
1. (These algorithms are shown in Figure 3.)

10

3.2 Positive signature results: Okamoto

Okamoto and Schnorr schemes. Let (G, p, g) be a group specification. Let HS ⊆ FUNC(G ×
G×{0, 1}∗,Zp) be a non-empty set of functions. (Functions from this set will serve as hash functions
for the schemes we now define.) We associate to (G, p, g) and HS the Okamoto signature scheme
OS and also the Schnorr signature scheme SS. Their algorithms are shown in Figure 5. Notice
that the parameter-generation algorithm for Okamoto is OS.Pg = GPg∗

1, so that, when considering
A-UF-CMA, we will use AGPg∗

1 in its place. The Schnorr scheme does not use parameters, so we
do not show a parameter-generation algorithm. We set OS.HS = SS.HS = HS, to indicate that
both schemes use a hash function H : G×G× {0, 1}∗ → Zp from the same set.

In the literature, these schemes come in a few variants corresponding to a few choices. For
consistency, we have fixed some choices in the same way for both schemes. To elaborate, first, the
schemes both include a hashing step of the form H(vk, R, m). The values R, m are always included
and vk is sometimes included for tighter security, following [21, 30]. We have decided to always
include vk, but our results hold without it. Second, in both schemes, in reference to the same
hashing step, either R or e = H(vk, R, m) is returned as a component of a signature. (R can be
recovered from e and public information.) For Schnorr these two variants are proved equivalent [12].
(We are not aware of such a proof for Okamoto.) In this paper we consistently include e in the
signature. Third, while our Schnorr verification key is X = gs, another option is X = g−s, with a
corresponding adjustment in verification. Likewise, the Okamoto verification key could be g−s1h−s2

instead. Our proofs work in both cases, but we warn that the change must be consistent across
the two schemes, meaning, for both schemes, one either uses the current version or the option with
negation in the exponent.
Security of Okamoto against parameter attacks. We now ask whether knowledge of the
discrete logarithm β = logg(h) allows an attacker to forge Okamoto signatures. It is worth noting
that existing security proofs of the UF-CMA security of Okamoto [1, 49] rely on the hardness of
finding the discrete logarithm of h. Specifically, these proofs take an adversary against Okamoto
and build an adversary that finds β = logg(h). This may seem to indicate that β would allow an
attacker to violate security of Okamoto. Maybe somewhat surprisingly, we show this is not true.
We provide an alternative proof showing security of Okamoto even against adversaries that know
β. Formally, in our framework, this is a proof of A-UF-CMA for OS relative to advice-generation
algorithm AGPg∗

1. The assumption we make for this proof is the (standard) UF-CMA security of
the Schnorr signature scheme. (The latter is well understood and has been shown under many
different assumptions and with different degrees of tightness [1,15,50,53,54].) Our result is stated
below.

Theorem 3.1 Let (G, p, g) be a group specification. Let HS ⊆ FUNC(G×G×{0, 1}∗,Zp) be a non-
empty set of functions. Let OS and SS be the Okamoto and Schnorr signature schemes, respectively,
associated to (G, p, g) and HS as above. Let n > 0 be a number of users. Given an adversary B in
game Ga-uf-cma

OS,AGPg∗
1,n we can construct an adversary A in game Guf-cma

SS,n such that

Adva-uf-cma
OS,AGPg∗

1,n(B) ≤ Advuf-cma
SS,n (A) . (1)

Adversary A makes the same number of signing and hashing queries as B, and has running time
close to that of B.

Before proving the theorem, we make a few remarks. First, the set HS of hash functions is arbitrary.
As per the discussion above, setting HS = FUNC(G × G × {0, 1}∗,Zp) captures the ROM, so in
particular the result holds there. But it also holds in the standard model, for example when the

11

Adversary A(ε, X):

1 β←$ Z∗
p ; h← gβ

2 (i, m, σ)← B[SignSim,HSim](h, X, β)
3 (e, y1, y2)← σ

4 y ← (y1 + βy2) mod p

5 Return (i, m, (e, y))

Subroutine SignSim(i, m):

6 σ ← Guf-cma
SS,n .Sign(i, m)

7 (e, y)← σ

8 y2←$ Zp ; y1 ← (y − βy2) mod p

9 σ′ ← (e, y1, y2)
10 Return σ′

Subroutine HSim(z):

11 Return Guf-cma
SS,n .Hash(z)

Figure 6: Adversary A for the proof of Theorem 3.1.

schemes use one particular hash function like SHA256, captured by setting HS to the singleton
set consisting of just this one hash function. Second, the reduction of Eq. (1) is tight, meaning
there is no tightness loss relative to Schnorr. Leveraging known results about the latter, this
actually brings new results even on the classical UF-CMA security of Okamoto. Since A-UF-CMA
implies UF-CMA, Theorem 3.1 says that UF-CMA security of Okamoto reduces tightly to that
of Schnorr, which, beyond the usual results from DL, yields tighter proofs for Okamoto from the
MBDL assumption via [15] and also from the 2-moment-DL assumption via [53].

One may ask whether an assumption weaker than UF-CMA of Schnorr suffices to prove A-UF-
CMA of Okamoto. Towards this, we give in Appendix A a result that is the converse of Theorem 3.1.
It shows that A-UF-CMA of Okamoto implies UF-CMA of Schnorr. This means that A-UF-CMA
of Okamoto and UF-CMA of Schnorr are in fact equivalent.

Proof of Theorem 3.1: We give adversary A in Figure 6. It is playing game Guf-cma
SS,n . Accordingly

it receives as input empty public parameters (since π = ε for the Schnorr scheme) and a list X of
verification keys where X[i] = gs[i]. It itself picks the advice β to compute h and runs adversary B
on input (π, X, ad) with π = h and ad = β. It defines subroutine SignSim to answer B’s signing
queries; this calls A’s own signing oracle to compute the simulated signatures as shown. A responds
to Hash queries of B via its own Hash, through subroutine HSim. When B returns its forgery
at line 2, A processes it as shown at lines 3,4 to return its own forgery at line 5. Now we have to
show that this works. This involves a few claims. First, we have to show that simulated signatures
are properly distributed, then we have to show that if B’s forgery is correct, so is that of A. The
former is somewhat delicate, and our approach is to use a game sequence in which we slowly morph
Okamoto signatures into Schnorr signatures.

Thus, consider the games of Figure 7, to be executed with adversary B. Game G0 is simply game
Ga-uf-cma

OS,AGPg∗
1,n, the A-UF-CMA game for the Okamoto scheme OS, and hence by definition we have

Adva-uf-cma
OS,AGPg∗

1,n(B) = Pr[G0(B)] .

Next, consider game G1, which includes the boxed code. It defines the verification key X[i] dif-
ferently. Namely, it picks s[i], s2[i] at random at line 4, defines s1[i] at line 5 and then sets X[i]
as shown at line 6. We claim this is equivalent to the choice made by G0. This is true because
s[i] = (s1[i] + βs2[i]) mod p and h = gβ so gs[i] = gs1[i]+βs2[i] = gs1[i]hs2[i]. Furthermore, the distri-
butions of s1, s2 are identical in the two games. Likewise, Sign in G1 picks signatures differently
from, but in a way we argue is equivalent to, G0. At line 8 of G1, values r, y2 are chosen at random,
and R is defined as gr. Lines 10,11 now define r2, r1 in such a way that y2 = (r2 + es2[i]) mod p

12

Game G0

Init:
1 H←$ HS
2 β←$ Z∗

p ; h← gβ

3 For i = 1, . . . , n do
4 s1[i], s2[i]←$ Zp

5 X[i]← gs1[i]hs2[i]

6 Return (h, X, β)

Sign(i, m):
7 r1, r2←$ Zp ; R← gr1 hr2

8 e← H(X[i], R, m)
9 y1 ← (r1 + es1[i]) mod p

10 y2 ← (r2 + es2[i]) mod p

11 σ ← (e, y1, y2)
12 Q ← Q∪ {(i, m)} ; Return σ

Hash(z):
13 Return H(z)

Fin(i, m, σ):
14 If (i, m) ∈ Q then return 0
15 (e, y1, y2)← σ

16 R← gy1 hy2 X[i]−e

17 If H(X[i], R, m) = e then return 1
18 Return 0

Games G1 , G2

Init:
1 H←$ HS
2 β←$ Z∗

p ; h← gβ

3 For i = 1, . . . , n do
4 s[i]←$ Zp ; s2[i]←$ Zp

5 s1[i]← (s[i]− βs2[i]) mod p

6 X[i]← gs[i]

7 Return (h, X, β)

Sign(i, m):
8 r, y2←$ Zp ; R← gr

9 e← H(X[i], R, m)
10 r2 ← (y2 − es2[i]) mod p

11 r1 ← (r − βr2) mod p

12 y ← (r + es[i]) mod p

13 y1 ← (y − βy2) mod p

14 σ ← (e, y1, y2)
15 Q ← Q∪ {(i, m)} ; Return σ

Hash(z):
16 Return H(z)

Fin(i, m, σ):
17 If (i, m) ∈ Q then return 0
18 (e, y1, y2)← σ

19 y ← (y1 + βy2) mod p

20 R← gyX[i]−e

21 If H(X[i], R, m) = e then return 1
22 Return 0

Figure 7: Games for proof of Theorem 3.1. G1 includes the boxed code and G2 does not.

and r = (r1 + βr2) mod p. Due to the latter and h = gβ we have R = gr = gr1hr2 and furthermore
r1, r2 are uniformly and independently distributed over Zp, as in G0. Line 12 defines a value y so
that at line 13 we have

y1 = (y − βy2) mod p = (r + es[i]− βy2) mod p

= (r1 + βr2 + e(s1[i] + βs2[i])− βy2) mod p

= (r1 + β(y2 − es2[i]) + e(s1[i] + βs2[i])− βy2) mod p

= (r1 + es1[i]) mod p

as in G0. So the distribution of returned signatures in G1 matches that in G0. Finally, game G1
checks the forgery at lines 19,20 somewhat differently through first defining y, but this is equivalent
to the check in G0 because h = gβ. At this point we have shown that

Pr[G1(B)] = Pr[G0(B)] . (2)

13

KW.Pg[H]:

1 β←$ Z∗
p ; h← gβ

2 Return h

KW.Kg[H](h):

3 s←$ Zp

4 Xg ← gs ; Xh ← hs

5 Return ((Xg, Xh), s)

KW.Sign[H](h, s, m):

6 r←$ Zp

7 Rg ← gr ; Rh ← hr

8 e← H((Xg, Xh), Rg, Rh, m)
9 y ← (r + es) mod p

10 Return σ ← (e, y)

KW.Vfy[H](h, (Xg, Xh), m, σ):

11 (e, y)← σ

12 Rg ← gyX−e
g ; Rh ← hyX−e

h

13 If H((Xg, Xh), Rg, Rh, m) = e then return 1
14 Return 0

Figure 8: Katz-Wang signature scheme KW associated to group specification (G, p, g), with hash
function H ∈ KW.HS.

Now observe that in game G1, the values computed in the boxed code are never used in computing
what an oracle returns to the adversary. (We only used these values to argue that Eq. (2) is true.)
So game G2 simply drops these lines. Clearly, since as we just said these lines do not affect oracle
responses, we have

Pr[G2(B)] = Pr[G1(B)] .

We now observe that in G2 the keys are Schnorr ones, and (e, y) is a Schnorr signature, as a function
of which the Okamoto signature is computed. This allows us to see that

Advuf-cma
SS,n (A) ≥ Pr[G2(B)] .

For this (which concludes the proof) we identify the s in game G2 with the secret keys chosen in
Guf-cma

SS,n . Then we see the Schnorr signature (e, y) in G2 as the one returned at line 6 of SignSim in
Figure 6. The subsequent lines of SignSim now mimic G2 in how the Okamoto signature (e, y1, y2)
is computed. Finally, the forgery at line 5 of Figure 6 mimics Fin of G2. Adversary A of Figure 6
makes the same number of signing and hashing queries as B, as claimed.

3.3 Positive signature results: Katz-Wang

Katz-Wang signatures. We now turn to proving a similar positive result for the Katz-Wang
signature scheme [41]. The scheme, associated to a group specification (G, p, g), is denoted KW. Its
algorithms are shown in Figure 8. Note that the parameter-generation algorithm is again KW.Pg =
GPg∗

1, so the advice-generation algorithm for A-UF-CMA will be AGPg∗
1. The scheme uses a hash

function H : (G×G)×G×G×{0, 1}∗ → Zp. We set KW.HS = FUNC((G×G)×G×G×{0, 1}∗,Zp)
to the full space of all such functions, reflecting that here, unlike in Theorem 3.1, we will rely on,
not just allow, the ROM.
Security of Katz-Wang against parameter attacks. The KW scheme is shown in [41] to
be UF-CMA under the DDH assumption. Their proof assumes honest parameter generation, so
that in particular the discrete log β = logg(h) of the parameter h is not given to the adversary,
a fact that the proof crucially exploits. We ask what happens if, instead, the attacker does have
β. That is, we ask about A-UF-CMA relative to advice-generation algorithm AGPg∗

1. As with

14

Adversary A(ε, X):

1 β←$ Z∗
p ; h← gβ

2 For i = 1 . . . n do Xg[i]← X[i] ; Xh[i]← X[i]β ; X[i]← (Xg[i], Xh[i])
3 (i, m, σ)← B[SignSim,HSim](h, X, β)
4 Return (i, m, σ)

Subroutine SignSim(i, m):

5 σ ← Guf-cma
SS,n .Sign(i, m)

6 Return σ

Subroutine HSim(z):
7 If HT[z] ̸= ⊥ then return HT[z]
8 ((a1, a2), b, c, m)← z // Parse z as shown where a1, a2, b, c ∈ G and m ∈ {0, 1}∗

9 If (a2 = aβ
1 and c = bβ) then HT[z]← Guf-cma

SS,n .Hash(a1, b, m)
10 Else HT[z]←$ Zp

11 Return HT[z]

Figure 9: Adversary A for the proof of Theorem 3.2.

Okamoto (Theorem 3.1), the perhaps surprising answer is that security is retained. Again, the
assumption made is UF-CMA security of Schnorr. The result is below. We note that, in contrast
to Theorem 3.1, here we make crucial use of the ROM, reflected formally in the choices made for
the spaces KW.HS and SS.HS.

As in the Okamoto case, we are able to prove the converse of Theorem 3.2 in Appendix A. (It
also relies on the random oracle model.) Thus a reduction to Schnorr is again the best possible
result for A-UF-CMA of Katz-Wang.

Theorem 3.2 Let (G, p, g) be a group specification. Let KW be the associated Katz-Wang signature
scheme as above. Let SS be the Schnorr signature scheme associated to (G, p, g) and FUNC(G ×
G× {0, 1}∗,Zp). Let n > 0 be a number of users. Given an adversary B in game Ga-uf-cma

KW,AGPg∗
1,n we

can construct an adversary A in game Guf-cma
SS,n such that

Adva-uf-cma
KW,AGPg∗

1,n(B) ≤ Advuf-cma
SS,n (A) . (3)

Adversary A makes at most the same number of signing and hashing queries as B, and has running
time close to that of B.

The reduction of Eq. (3) is again tight. Nonetheless we note that, in contrast to Theorem 3.1,
there will be a tightness loss in reducing A-UF-CMA security of KW, as compared to its UF-CMA
security, to algebraic assumptions. Namely, UF-CMA of KW is shown with a tight reduction to
DDH [41]. However, there is no known tight reduction of UF-CMA of Schnorr to DDH. So from
Theorem 3.2, the best we can get for A-UF-CMA are looser reductions to DL, MBDL or 2-moment-
DL via [1, 15, 50, 53, 54]. Still, Theorem 3.2 is showing the stronger A-UF-CMA security, and thus
better-than-advertised security for Katz-Wang in a new setting.

Again, we give in Appendix A a converse to Theorem 3.2, showing that A-UF-CMA of KW
implies UF-CMA of Schnorr. This means that A-UF-CMA of KW and UF-CMA of Schnorr are in
fact equivalent.

Proof of Theorem 3.2: We construct adversary A as shown in Figure 9. In the Schnorr UF-

15

CMA game, A receives as input verification keys where X[i] = gs[i]. It picks β to compute h and
sets up the Katz-Wang verification keys where X[i] = (Xg[i], Xh[i]) = (gs[i], hs[i]). Now A runs
adversary B, forwarding signing queries to its own oracle, unchanged. When B makes a query
SignSim(i, m) to obtain signature σ = (e, y), the e value is not the expected Katz-Wang hash but
is instead Guf-cma

SS,n .Hash(X[i], gr, m). The y value is computed identically between Schnorr and
Katz-Wang, as y = (r + es[i]) mod p.

However, we ensure that (e, y) is a correct Katz-Wang signature by programming the random oracle.
In brief, we enforce that

HSim((Xg[i], Xh[i]), gr, hr, m) = Guf-cma
SS,n .Hash(X[i], gr, m) (4)

when a given i, r and m are encountered. Now the Schnorr signature (e, y) is a correct Katz-Wang
signature when used with hash function HSim, as is B’s perspective.

We implement the above condition at lines 8,9 of HSim in Figure 9. Namely, parsing the input z
into four group elements and a message on line 8, the check on line 9 ensures that for all X, r, m
we have:

HSim((X, Xβ), gr, gβr, m) = Guf-cma
SS,n .Hash(X, gr, m) (5)

which in particular implies Eq. (4).

The above ensures that (m, (e, y)) is a valid Schnorr signature for A (using Guf-cma
SS,n .Hash) if and

only if it is a valid Katz-Wang signature for B (using HSim). In particular this means that any
forgery output by B may be reused directly by A. We finally argue that HSim behaves appropriately
like a random oracle to B. Note that for any given a1, b values parsed in HSim there is only one
corresponding a2 and only one c that cause line 9 to return. More concisely, the mapping from
line-9-passing inputs ((a1, a2), b, c, m) to (a1, b, m) is one-to-one, since β is fixed and known to
A. Thus a value Guf-cma

SS,n .Hash(a1, b, m) is never returned twice. This, along with lines 7,10 that
instantiate the random oracle in all other cases, ensure that all the HSim responses are independent
and uniform to B. We conclude the proof by noting that A makes the same number of signing
queries as B, and at most the same number of Hash queries.

3.4 Blind, threshold and modern signature schemes

One may justly say that our positive results apply to a few schemes that are not prominent in
practice. Nonetheless we posit that resistance to parameter attacks remains a useful security
property. GEP signature schemes continue to be designed, including [11,23,26,38]. In one example
from 2023 [57], trusted setup is called for to generate the Okamoto parameter h (p. 3 of the full
version). The results of this section clarify that this is actually not necessary for Okamoto, which
continues to be revisited.

We leave positive results for more recent schemes as an open question. In [23], the authors
present three blind signature schemes for a group specification (G, p, g); all include a random
element W ∈ G in the public parameters. If one knows logg W , unforgeability is broken in all three
schemes. In [11], when instantiated with the AOMCDH variant, the threshold signature scheme is
close to our setting. It uses a group specification (G, p, g′) and random element g ∈ G. But g′ is
not used in the scheme, only g is, so while it is syntactically a GEP scheme, it is different than the
spirit of our setting. Recent papers also take care to explain parameter generation such as [38,39].
The goal is to prevent subversion but precomputation attacks continue to apply.

16

4 Encryption under parameter subversion

In this section we define security of public-key encryption against attackers with parameter-related
advice. We then consider Cramer-Shoup, in the form where it has parameters and the advice is
their discrete logs. We prove that the scheme retains IND-CCA1 security in this setting. With
regard to IND-CCA2 in this setting, we have neither a proof nor an attack. We start with the
definitions.

4.1 Public-key encryption definitions

A PKE scheme PKE consists of algorithms PKE.Pg for (honest) parameter generation, PKE.Kg
for key generation, PKE.Enc for encryption and PKE.Dec (which is deterministic) for decryption.
Public parameters are generated via π←$ PKE.Pg and per-user keys via (ek, dk)←$ PKE.Kg(π).
Encryption takes as input π and ek along with a message m ∈ PKE.MS to return a ciphertext
C←$ PKE.Enc(π, ek, m), where PKE.MS is the message space for PKE. Decryption recovers m ∈
PKE.MS ∪ {⊥} via m ← PKE.Dec(π, dk, C). Correctness requires that PKE.Dec(π, dk, PKE.Enc(π,
ek, m)) = m for all π ∈ OUT(PKE.Pg), all (ek, dk) ∈ OUT(PKE.Kg(π)) and all m ∈ PKE.MS.

We don’t, unlike for signatures, include a hash-function space associated to the scheme because
our results will not use the ROM. (Cramer-Shoup does use a hash function, but it is only assumed
collision-resistant.) Games correspondingly will have no Hash oracle. Games will be parameterized
by a number of users n as we continue to be in the multi-user setting.

Usual security notions for public-key encryption are IND-CPA [33], IND-CCA1 [48] and IND-
CCA2 [16,27], where public parameters π are honestly generated. We use the multi-user setting [14],
with a single, global choice of parameters from which users independently generate their own
encryption and decryption keys. For all three usual definitions, we give new, advice-based analogues.
These are A-IND-CPA, A-IND-CCA1 and A-IND-CCA2.

We give the definitions via the games in Figure 10. The games Ga-ind-cpa
PKE,APg,n, Ga-ind-cca1

PKE,APg,n and
Ga-ind-cca2

PKE,APg,n are parameterized by an advice-generation algorithm through which the public param-
eters and advice are generated as (π, ad)←$ APg. In these advice games, an adversary A is given
both π and ad by the Init procedure. Otherwise the adversary has access to the same oracles as
in the standard security game. In this way, the games capture the adversary’s ability to violate
security when, in addition to the parameters, it also has advice related to them. As before, in some
cases this reflects how parameter generation was done (and possibly subverted), and in other cases
models an adversary that computes the advice from the actual parameters (Intermundium-DL).

The games WLOG allow only one challenge Enc query per user. Dec queries are not present in
the (A-)IND-CPA games. The (A-)IND-CCA1 games allow any number of Dec queries prior to an
Enc query, after which further queries are disallowed for that user. Lastly, in the (A-)IND-CCA2
games, an adversary may make Dec queries at any time, and the only restriction is that Dec not
be called on challenge ciphertexts C∗

i , once they are defined for users i. The different advantages
of an adversary A are defined in the natural way, via:

Advind-cpa
PKE,n (A) = 2 · Pr[Gind-cpa

PKE,n (A)]− 1 and Adva-ind-cpa
PKE,APg,n(A) = 2 · Pr[Ga-ind-cpa

PKE,APg,n(A)]− 1

Advind-cca1
PKE,n (A) = 2 · Pr[Gind-cca1

PKE,n (A)]− 1 and Adva-ind-cca1
PKE,APg,n(A) = 2 · Pr[Ga-ind-cca1

PKE,APg,n(A)]− 1

Advind-cca2
PKE,n (A) = 2 · Pr[Gind-cca2

PKE,n (A)]− 1 and Adva-ind-cca2
PKE,APg,n(A) = 2 · Pr[Ga-ind-cca2

PKE,APg,n(A)]− 1 .

In this section we give results about A-IND-CPA and A-IND-CCA1, and we discuss, but don’t give
results for, (A-)IND-CCA2.

17

Games Gind-cpa
PKE,n , Ga-ind-cpa

PKE,APg,n

Init:
1 d←$ {0, 1}
2 π←$ PKE.Pg // Game Gind-cpa

PKE,n only
3 (π, ad)←$ APg // Game Ga-ind-cpa

PKE,APg,n only
4 For i = 1 . . . n do (ek[i], dk[i])←$ PKE.Kg(π)
5 Return (π, ek) // Game Gind-cpa

PKE,n only
6 Return (π, ek, ad) // Game Ga-ind-cpa

PKE,APg,n only

Enc(i, m0, m1):
7 If done[i] then return ⊥
8 C←$ PKE.Enc(π, ek[i], md)
9 done[i]← true

10 Return C

Fin(d′):
11 Return (d′ = d)

Games Gind-cca1
PKE,n , Ga-ind-cca1

PKE,APg,n

Init:
1 d←$ {0, 1}
2 π←$ PKE.Pg // Game Gind-cca1

PKE,n only
3 (π, ad)←$ APg // Game Ga-ind-cca1

PKE,APg,n only
4 For i = 1 . . . n do (ek[i], dk[i])←$ PKE.Kg(π)
5 Return (π, ek) // Game Gind-cca1

PKE,n only
6 Return (π, ek, ad) // Game Ga-ind-cca1

PKE,APg,n only

Enc(i, m0, m1):
7 If done[i] then return ⊥ // One Enc query allowed
8 C←$ PKE.Enc(π, ek[i], md)
9 done[i]← true // Dec queries now disallowed

10 Return C

Dec(i, C):
11 If done[i] then return ⊥
12 m← PKE.Dec(π, dk[i], C)
13 Return m

Fin(d′):
14 Return (d′ = d)

Games Gind-cca2
PKE,n , Ga-ind-cca2

PKE,APg,n

Init:
1 d←$ {0, 1}
2 π←$ PKE.Pg // Game Gind-cca2

PKE,n only
3 (π, ad)←$ APg // Game Ga-ind-cca2

PKE,APg,n only
4 For i = 1 . . . n do (ek[i], dk[i])←$ PKE.Kg(π)
5 Return (π, ek) // Game Gind-cca2

PKE,n only
6 Return (π, ek, ad) // Game Ga-ind-cca2

PKE,APg,n only

Fin(d′):
7 Return (d′ = d)

Enc(i, m0, m1):
8 If done[i] then return ⊥
9 C∗

i ←$ PKE.Enc(π, ek[i], md)
10 done[i]← true
11 Return C∗

i

Dec(i, C):
12 If C = C∗

i then return ⊥
13 m← PKE.Dec(π, dk[i], C)
14 Return m

Figure 10: Games defining IND-CPA and A-IND-CPA security (top left), IND-CCA1 and A-IND-
CCA1 security (top right) and IND-CCA2 and A-IND-CCA2 security (bottom), all of a public-key
encryption scheme PKE. The “A-” games are parameterized by a particular advice-generation
algorithm APg. Without loss of generality we restrict attention to adversaries who make one
challenge Enc query per user.

4.2 Mixed PKE results: Cramer-Shoup

Cramer-Shoup encryption. Let (G, p, g) be a group specification. Let H : G×G×G→ Zp be a
hash function that is assumed collision-resistant. We associate to (G, p, g) and H the Cramer-Shoup
encryption scheme CS whose algorithms are shown in Figure 11. The message space is CS.MS = G,

18

CS.Pg:

1 β←$ Z∗
p ; h← gβ

2 Return h

CS.Kg(h):

3 (x1, x2, y1, y2, z)←$ Z5
p

4 c← gx1 hx2

5 d← gy1 hy2

6 f ← gz

7 ek ← (c, d, f)
8 dk ← (x1, x2, y1, y2, z)
9 Return (ek, dk)

CS.Enc(h, ek, m):

10 k←$ Zp

11 (c, d, f)← ek // Parse ek as shown
12 u1 ← gk ; u2 ← hk

13 e← fkm

14 α← H(u1, u2, e)
15 v ← ckdkα

16 Return (u1, u2, e, v)

CS.Dec(h, dk, (u1, u2, e, v)):

17 α← H(u1, u2, e)
18 (x1, x2, y1, y2, z)← dk // Parse dk as shown
19 If v ̸= ux1

1 ux2
2 (uy1

1 uy2
2)α then return ⊥

20 m← eu−z
1

21 Return m

Figure 11: Cramer-Shoup encryption scheme CS associated to group specification (G, p, g) and hash
function H.

meaning messages are group elements.
This description views the second generator h of the scheme as a public parameter; this has

always been a possibility in Cramer-Shoup [25]. In some versions, h is explicitly part of a user’s
encryption key, and a different h is selected for each user. Scheme CS1b of [25] is a good example;
here h = gβ is included in ek while β is retained in dk and speeds up decryption. Beyond the
Intermundium-DL setting it is thus interesting that knowledge of β does not allow one to break
security, as we will show.

Delayed-target DDH. We will show A-IND-CCA1 security of CS under the DT-DDH (delayed-
target DDH) assumption. We define it over n users via game Gdt-ddh

G,p,g,n on the right side of Fig-
ure 12 associated to group specification (G, p, g). For an adversary A, we let Advdt-ddh

G,p,g,n(A) =
2 · Pr[Gdt-ddh

G,p,g,n(A)]− 1 be its advantage. In this game, for each user, an adversary is given a usual
DDH challenge (gz, T, S) and tries to decide whether S = T z or if S is a random group element
(lines 4,5 of Figure 12). However, prior to receiving (T, S), the adversary has access to an oracle
DH which on input Y , returns Y z (line 8 of the figure). The ordering of queries is enforced by a
done flag; note that without this an adversary could simply call DH(T) and easily win the game.

In our definitions and in Figure 12 this game is over n users — meaning, specifically, that
there is a single challenge bit d and n independent tuples (Z[i], T[i], S[i]) — but a standard hybrid
argument, provided for completeness in Appendix B, shows that this is implied (non-tightly) by
the single-user case.

In referring to this as the delayed-target DDH problem, we use the terminology of Koblitz
and Menezes [42]. Delayed-target CDH (under a different name) was first used by Freeman [29,
Definition 4.2] to prove security of an identification scheme. Delayed-target DDH (under a different
name) was used by Lipmaa [44, Section 4] to prove security of Elgamal. These works all considered
the single user (n = 1) case.

We note that if the adversary makes no DH queries, then DT-DDH is equivalent to DDH, over
the same number n of users. (The multi-user DDH problem is defined on the left side of Figure 12.)

19

Game Gddh
G,p,g,n

Init:
1 d←$ {0, 1}
2 For i = 1, . . . , n do z[i]←$ Zp ; Z[i]← gz[i]

3 For i = 1, . . . , n do T[i]←$ G ; R[i]←$ G
4 If (d = 1) then S← Tz

5 If (d = 0) then S← R
6 Return (Z, T, S)

Fin(d′):
7 Return (d′ = d)

Game Gdt-ddh
G,p,g,n

Init:
1 d←$ {0, 1}
2 For i = 1, . . . , n do z[i]←$ Zp ; Z[i]← gz[i]

3 For i = 1, . . . , n do T[i]←$ G ; R[i]←$ G
4 If (d = 1) then S← Tz

5 If (d = 0) then S← R
6 Return Z

DH(i, Y):
7 If done[i] then return ⊥
8 Return Y z[i]

GetTgt(i):
9 done[i]← true

10 Return (T[i], S[i])

Fin(d′):
11 Return (d′ = d)

Figure 12: The DDH and DT-DDH (delayed-target decisional Diffie-Hellman) games. The notation
S← Tz, over vectors, indicates that if |T| = |z| = n then |S| = n and S[i] = T[i]z[i] for all 1 ≤ i ≤ n.

In particular this means that DT-DDH⇒ DDH, when there are zero DH queries. We will use this
in Theorem 4.2 to obtain A-IND-CPA security of Cramer-Shoup under DDH as a corollary of its
A-IND-CCA1 security under DT-DDH that we show in Theorem 4.1.

Attacks for delayed-target Diffie-Hellman problems have been described by Joux, Lercier, Nac-
cache and Thomé [37]. (Specifically they attack DT-CDH.) Such attacks take subexponential time
for the group of integers modulo a prime, but do not extend to elliptic curve groups.
Security of Cramer-Shoup against parameter attacks. The Cramer-Shoup PKE scheme
CS was shown IND-CCA2-secure under DDH in [25]. Now considering parameter attacks, The-
orem 4.1 shows A-IND-CCA1 security. The assumption we make for this is DT-DDH. We leave
A-IND-CCA2 security as an interesting open question, to either prove it under a reasonable as-
sumption, or give an attack violating it. In the theorem below, the parameter-generation algorithm
for CS is CS.Pg = GPg∗

1, so in considering definitions with advice we will set APg = AGPg∗
1.

Below is the formal statement and proof. In the latter, the adversary strategy is to embed the Z
component of the DT-DDH challenge into the f = gz component of the Cramer-Shoup encryption
key. This is different from [25]. The proof refers to the games of Figure 13.

Theorem 4.1 Let (G, p, g) be a group specification and H : G×G×G→ Zp a hash function. Let
CS be the associated Cramer-Shoup encryption scheme as above. Let n > 0 be a number of users.
Given an adversary B in game Ga-ind-cca1

CS,AGPg∗
1,n we can construct an adversary A in game Gdt-ddh

G,p,g,n such
that

Adva-ind-cca1
CS,AGPg∗

1,n(B) ≤ 2 ·Advdt-ddh
G,p,g,n(A) . (6)

Adversary A makes the same number of DH queries as B makes Dec queries, at most one GetTgt
query per user, and has running time close to that of B.

20

Games G0, G1

Init:
1 δ←$ {0, 1} ; β←$ Z∗

p ; h← gβ

2 For i = 1, . . . , n do
3 (x1, x2, y1, y2)←$ Z4

p

4 z[i]←$ Zp ; Z[i]← gz[i]

5 c← gx1 hx2 ; d← gy1 hy2

6 ek[i]← (c, d, Z[i]) ; dk[i]← (x1, x2, y1, y2, z[i])
7 Return (h, ek, β)

Enc(i, m0, m1):
8 If done[i] then return ⊥
9 (c, d, Z[i])← ek[i]

10 t←$ Zp ; u1 ← gt ; u2 ← ht

11 t[i]← t ; T[i]← u1

12 S[i]← Z[i]t[i] // Game G0

13 R[i]←$ G ; S[i]← R[i] // Game G1

14 e← S[i] ·mδ

15 α← H(u1, u2, e)
16 v ← ctdtα

17 done[i]← true
18 Return (u1, u2, e, v)

Dec(i, C):
19 If done[i] then return ⊥
20 (x1, x2, y1, y2, z[i])← dk[i]
21 (u1, u2, e, v)← C ; α← H(u1, u2, e)
22 If v ̸= ux1

1 ux2
2 (uy1

1 uy2
2)α then return ⊥

23 m← e · u−z[i]
1

24 Return m

Fin(δ′):
25 Return (δ′ = δ)

Adversary A(Z):

1 δ←$ {0, 1} ; β←$ Z∗
p ; h← gβ

2 For i = 1, . . . , n do
3 (x1, x2, y1, y2)←$ Z4

p

4 c← gx1 hx2 ; d← gy1 hy2

5 ek[i]← (c, d, Z[i]) ; dk[i]← (x1, x2, y1, y2,⊥)
6 δ′ ← B[EncSim,DecSim](h, ek, β)
7 If (δ′ = δ) then return 1
8 Else return 0

Subroutine EncSim(i, m0, m1):

9 If done[i] then return ⊥
10 (x1, x2, y1, y2,⊥)← dk[i]
11 (T[i], S[i])← GetTgt(i)
12 u1 ← T[i] ; u2 ← T[i]β

13 e← S[i] ·mδ

14 α← H(u1, u2, e)
15 v ← ux1

1 ux2
2 (uy1

1 uy2
2)α

16 done[i]← true
17 Return (u1, u2, e, v)

Subroutine DecSim(i, (u1, u2, e, v)):

18 If done[i] then return ⊥
19 (x1, x2, y1, y2,⊥)← dk[i]
20 α← H(u1, u2, e)
21 If v ̸= ux1

1 ux2
2 (uy1

1 uy2
2)α then return ⊥

22 w ← DH(i, u1)
23 m← e · w−1

24 Return m

Figure 13: Left: Games for the proof of Theorem 4.1. Lines with comments are only present in
the indicated game. Right: Adversary A for the proof of Theorem 4.1.

Proof of Theorem 4.1: Adversary A is in the right panel of Figure 13. A is in game Gdt-ddh
G,p,g,n

and receives as input a vector Z of length n. While it will eventually receive the corresponding
DT-DDH challenge components T, S, this occurs in stages, as we will describe. In this proof we
refer to the games G0, G1 in the left panel of Figure 13. Oracles Init, Dec and Fin are as in game
Ga-ind-cca1

CS,AGPg∗
1,n, but G0 and G1 vary in how they respond to Enc queries. We claim that

Pr[Ga-ind-cca1
CS,AGPg∗

1,n(B)] = Pr[G0(B)] (7)

Pr[G0(B)]− Pr[G1(B)] ≤ Advdt-ddh
G,p,g,n(A) (8)

Pr[G1(B)] = 1/2 . (9)

21

The above three equations prove Eq. (6), as we can see by rearranging:

Adva-ind-cca1
CS,AGPg∗

1,n(B) = 2 · Pr[Ga-ind-cca1
CS,AGPg∗

1,n(B)]− 1

= 2 · Pr[G0(B)]− 1

≤ 2 ·
(
Advdt-ddh

G,p,g,n(A) + Pr[G1(B)]
)
− 1

= 2 ·
(
Advdt-ddh

G,p,g,n(A) + 1/2
)
− 1

= 2 ·Advdt-ddh
G,p,g,n(A) .

We now turn to proving the three numbered equations above.

We start with Eq. (7). This holds because game G0 is exactly the A-IND-CCA1 game when
instantiated with Cramer-Shoup and advice-generation algorithm AGPg∗

1 over n users. There are
a few syntactic differences: the challenge bit is called δ, Z[i] is used in place of f in encryption
keys and nonce t, rather than k, is used during encryption. Nonetheless note that encryption on
lines 12,14 computes e = Z[i]t[i] · mδ which, in this naming, matches Cramer-Shoup computing
e = fk ·m in Figure 11.

Next, game G1 runs line 13 instead of line 12 in Figure 13. That is, e is selected as e = S[i] ·mδ =
R[i] ·mδ for R[i]←$ G. To justify Eq. (8), we first explain adversary A of Figure 13. Initially, A
only receives Z in game Gdt-ddh

G,p,g,n. At this point, A chooses its own challenge bit δ and generates
all of the parameters and keys for Cramer-Shoup as usual, except, on line 5, for assigning the Z[i]
components of ek from its input Z, and setting the z[i] components of dk to be ⊥ as they are
unknown to A. Then A runs B, responding to Enc and Dec queries via EncSim and DecSim as
shown.

Let us first explain why Dec queries are correctly answered. On input a user i and ciphertext
(u1, u2, e, v), the checks on lines 20,21 of Figure 13 are the same as in Cramer-Shoup decryption.
Now, instead of decrypting m = e · u−z[i]

1 (since z[i] is unknown), A computes m = e ·DH(i, u1)−1

on lines 22,23 using its DH oracle from game Gdt-ddh
G,p,g,n. The latter returns precisely u

z[i]
1 , meaning

that A correctly responds to B’s decryption queries with m = e · u−z[i]
1 .

Next consider the Enc responses, which depend on A’s call to GetTgt(i) on line 11, and in CCA1
games occur after all Dec queries for that user i. We claim that if A receives initial input Z followed
by DT-DDH challenge components (T[i], S[i]) where S[i] = T[i]z[i], then the Enc responses match
G0. Else, if S[i] = R[i] for random R[i], then the Enc responses match G1. Recall the definition
of DT-DDH advantage, such that for challenge bit d,

Advdt-ddh
G,p,g,n(A) = 2 · Pr[Gdt-ddh

G,p,g,n(A)]− 1

= Pr[Gdt-ddh
G,p,g,n(A) | d = 1] + Pr[Gdt-ddh

G,p,g,n(A) | d = 0]− 1 .

We now claim that

Pr[Gdt-ddh
G,p,g,n(A) | d = 1] ≥ Pr[G0(B)]

Pr[Gdt-ddh
G,p,g,n(A) | d = 0] = 1− Pr[G1(B)]

and thus that

Advdt-ddh
G,p,g,n(A) ≥ Pr[G0(B)]− Pr[G1(B)] .

The above is justified by the fact that if d = 1 in A’s DT-DDH game, then S[i] = T[i]z[i] and B

22

receives encryption responses consistent with G0. If B correctly guesses δ′ = δ then A returns 1
(a correct DT-DDH answer) on line 7 of Figure 13. On the other hand, if d = 0 in the DT-DDH
game, then S[i] is random and B receives encryption responses consistent with G1. If B incorrectly
guesses δ′ then A returns 0 (a correct DT-DDH answer) on line 8. This proves the above and
Eq. (8).

Lastly we explain why Pr[G1(B)] = 1/2. Here, the game selects e as R[i] ·mδ for R[i]←$ G. Since
G is a group under multiplication (in our notation), e is then a uniformly random element of G.
Crucially, e is independent of the challenge bit δ so adversary B’s advantage can only be 1/2. (Note
that e is the only encryption component that could depend on δ.)

We conclude by noting that A makes one DH query for each of B’s Dec queries and has running
time otherwise close to that of B. If B makes one Enc query per user then A makes one GetTgt
query per user. Moreover, the ordering of the GetTgt queries in DT-DDH is respected as long as
the ordering of the Enc queries is respected in A-IND-CCA1. That is, for a particular user i, the
GetTgt(i) query follows all DH(i, ·) queries as long as the Enc(i, ·, ·) query follows all Dec(i, ·)
queries.

Rosulek has pointed out that CS remains IND-CPA-secure under DDH to an adversary who knows
logg(h) [52]. Our definitions allow us to formalize this result; in our language, it says that the scheme
is A-IND-CPA-secure under DDH. We note that we can obtain this as a corollary of Theorem 4.1.
We state the result below.

Theorem 4.2 Let (G, p, g) be a group specification and H : G×G×G→ Zp a hash function. Let
CS be the associated Cramer-Shoup encryption scheme as above. Let n > 0 be a number of users.
Given an adversary B in game Ga-ind-cpa

CS,AGPg∗
1,n we can construct an adversary A in game Gddh

G,p,g,n such
that

Adva-ind-cpa
CS,AGPg∗

1,n(B) ≤ 2 ·Advddh
G,p,g,n(A) . (10)

Adversary A has running time close to that of B.

Proof of Theorem 4.2: We can cast B as an adversary for game Ga-ind-cca1
CS,AGPg∗

1,n that makes no
queries to its Dec oracle. Now Theorem 4.1 gives us an adversary in game Gdt-ddh

G,p,g,n. As per the
statement of that theorem, this adversary will make no queries to its DH oracle. This means it
can be easily cast as an adversary for game Gddh

G,p,g,n and the theorem follows.

The two theorems above involve n-user (DT-)DDH games. The tight equivalence of multi- and
single-user DDH is known [14]. We prove the same (non-tightly) for DT-DDH in Appendix B.

5 PAKEs under parameter subversion

A password-authenticated key exchange (PAKE) protocol allows two parties to establish a shared
session key using a short secret, the password, which may be drawn from a small set of values.
In this section we begin by reviewing PAKE definitions and introduce our security notion for dl-
equipped adversaries. In Section 5.2 we give schemes that are totally broken in this setting, and
then in contrast, give a proof of security for SPAKE2 in Section 5.3. Regarding practical usage,
SPAKE2 has a 2023 RFC [43] and appears in Kerberos [45,47].

23

5.1 PAKE definitions

We refer to the two parties involved in an execution of the protocol as the client and the server.
In the multi-user setting, we denote the set of clients by C and that of servers by S, which are
assumed to be disjoint. Each pair (C, S) ∈ C × S holds a shared password pwCS. When we refer
to a party P, then P may be either a client or a server. Following [19], each party P has multiple
instances τ1

P, τ2
P, . . . and each instance has its own state. We denote the session key space by K.

It may depend on global parameters such as the group. We further denote the password space as
PW. We continue to let π denote public parameters.

A protocol specifies how parties compute the next message to send, as a function of their state
and a received message. We let PAKE.nr be the fixed number of rounds of a protocol PAKE. Such
a protocol is often described in a picture such as Figure 14. We only consider 2-round (SPAKE2)
or 3-round (KOY) protocols so our definitions are tailored to these cases.

In the below, we recall the game-based security model from Abdalla and Barbosa [2] which
builds on the indistinguishability-based security model by Bellare, Pointcheval and Rogaway [17]
and its extension to multiple test queries by Abdalla, Fouque and Pointcheval [5]. Recent works
on PAKEs often prefer the UC model [3,6,13] or to incorporate password-sampling methodologies
into game-based definitions [32], but the below is enough to surface distinctions among different
schemes’ parameter resilience.

For a protocol PAKE we denote the standard security experiment simply by Gpake
PAKE, and the

security experiment for a dl-equipped adversary by Ga-pake
PAKE,APg for a particular advice-generation al-

gorithm APg. Technically, the property that the following game captures is key-indistinguishability
with weak forward secrecy, but we abbreviate this to “pake” in superscripts.
Instance state. The state of an instance τ i

P is a tuple (e, tr, sk, acc) where

• e stores the (secret) ephemeral values chosen by the party in that instance. In our considered
schemes, these are elements of Zp.

• tr stores the trace (or transcript) of that instance, meaning the client and server name involved
in the protocol execution and the messages sent and received by that instance. We assume
without loss of generality that the client sends the first message.

• sk is the accepted session key.

• acc is a boolean flag that indicates whether the instance has accepted the session key. This
can only be set to acc = true when the instance has received its last message, as per PAKE.nr.

To access individual components of the state, we write τ i
P.{e, tr, sk, acc}.

Partnering. Partnering is defined via matching conversations [19]. A client instance τ i
C and a

server instance τ j
S are partnered if and only if

τ i
C.acc = τ j

S .acc = true and τ i
C.tr = τ j

S .tr .

Two client instances are never partnered; neither are two server instances. We define a partner
predicate Partner(τ i

P0
, τ j

P1
) which outputs 1 if the two instances τ i

P0
and τ j

P1
are partnered and

outputs 0 otherwise.
(Standard) security experiment. The security experiment is played between a challenger and
an adversary A. The challenger draws a random challenge bit d and creates the public parameters
π←$ PAKE.Pg. Then it outputs the public parameters to A. Now A has access to the following
oracles:

24

• Execute(C, i, S, j): One complete protocol execution between client instance τ i
C and server

instance τ j
S . This query captures security against passive adversaries, and returns a list of all

(public) messages exchanged during the protocol execution.

• SendInit, SendResp, SendTermInit, SendTermResp: These four Send oracles model
security against active adversaries. Recall that an initiator (Init) is a client and a respondent
(Resp) is a server. Oracle SendInit(C, i, S) starts a session with client instance τ i

C and
intended partner S and outputs the first protocol message m1. Oracle SendResp(S, i, C, m1)
starts a session with server instance τ i

S, intended partner C and first protocol message m1,
and it outputs the second message m2. Oracle SendTermInit(C, i, S, m2) sends message m2
to instance τ i

C and outputs ⊥ (to indicate termination in the case of 2-message protocols) or
the third protocol message m3. Similarly SendTermResp(S, i, C, m3), which is only present
for 3-message protocols, sends message m3 to τ i

S and outputs ⊥.

• Corrupt(C, S): Outputs the shared password pwCS of C and S.

• Reveal(P, i): Outputs the session key of instance τ i
P.

• Test(P, i): A challenge query. Depending on the challenge bit d, the experiment outputs
either the session key of instance τ i

P (d = 0) or a uniformly random key (d = 1). If instance
τ i

P is not fresh (explained below), Test instead returns ⊥.

• Hash: A random oracle, or hash function.

• Fin(d′): Returns true iff d′ = d.

(Advice) security experiment. We modify the usual security experiment to generate parame-
ters via APg, which parameterizes the experiment. That is, the challenger draws a random challenge
bit d and generates (π, ad)←$ APg, and outputs both π and ad to the adversary A. The remaining
oracles are as described in the prior paragraph.
Freshness. During the game, we register if a query is allowed in the Test oracle to prevent trivial
wins. A query Test(P, i) is allowed if instance τ i

P is fresh; in that case Test returns a challenge
key, and if not, Test returns ⊥. In brief, an instance τ i

P is fresh if it has accepted a session key
τ i

P.sk which the adversary does not already trivially know. To capture this formally, we define a
freshness predicate Fresh(τ i

P) which takes as input an instance and returns a boolean. (We refer
to [2] for the origin of this predicate.) Fresh(τ i

P) returns true if and only if

1. τ i
P accepted, meaning that τ i

P.acc = true and thus that τ i
P.sk is defined.

2. There has not been a prior Test(P, i) nor Reveal(P, i) query.

3. At least one of the following conditions holds:

(3.1) τ i
P was involved in a query to Execute, meaning that for some other P1, i1 either
Execute(P, i, P1, i1) or Execute(P1, i1, P, i) returned a non-⊥ answer.

(3.2) There exist at least two partner instances, meaning distinct i1, i2 and party P1 such that
Partner(τ i

P, τ i1
P1

) = true and Partner(τ i
P, τ i2

P1
) = true.

(3.3) One fresh partner exists. That is, there is an instance τ i1
P1

such that Partner(τ i
P, τ i1

P1
) =

true and Fresh(τ i1
P1

) = true. Instance τ i1
P1

is necessarily fresh due to (3.1) or (3.4).
(3.4) No partner exists and Corrupt was not queried on the parties C, S listed in τ i

P.tr.

25

Intuitively, condition (3.1) captures passive eavesdroppers who do not know the ephemeral values
of either party. The remaining conditions capture adversaries who make Send queries, depending
on the number of partners of the queried instance. If that number of partners is zero, (3.4) captures
an adversary who actively participates on one side but knows neither the password nor the other
party’s ephemeral values. If there is exactly one partner, (3.3) captures the fact that either both or
none of the partnered pair are fresh, as they have the same accepted session key. (One party must
be the first to receive a terminal message, and that party is the first to be classified as fresh or
not.) Lastly, (3.2) captures adversaries who are able to violate the uniqueness of partner instances,
and thus are understood to have broken the PAKE’s desired security.

The above definition captures weak forward secrecy since condition (3.1) does not restrict the
adversary from calling Corrupt; such an adversary could learn a password but not ephemeral
values. Recall that we denote the (standard) security experiment by Gpake

PAKE and the security
experiment with advice by Ga-pake

PAKE,APg. For a detailed description of the game in pseudocode,
we refer to game G0 in Appendix C, which is the Ga-pake

PAKE,APg game instantiated with protocol
SPAKE2. For an adversary A we define the advantages Advpake

PAKE(A) = 2 · Pr[Gpake
PAKE(A)]− 1 and

Adva-pake
PAKE,APg(A) = 2 · Pr[Ga-pake

PAKE,APg(A)]− 1, respectively.
Since passwords are assumed to be chosen from a possibly small set PW, a PAKE is considered

secure if the best attack the adversary can do is an online dictionary attack. More concretely, this
means that the advantage of the adversary should be negligibly close to qs/|PW| when passwords
are drawn uniformly and independently from PW, where qs is the number of Send queries made
by the adversary (to any of the four Send oracles).

5.2 Negative PAKE results: KOY and derivatives

The KOY protocol. Katz, Ostrovsky and Yung (KOY) [40] proposed a PAKE protocol in the
standard model based on the DDH assumption. It is shown in Figure 14, associated to a group
description (G, p, g1), hash function H and signature scheme Sig. The public parameters consist
of four randomly chosen group generators (g2, h, c, d)←$ Gens(G)4. The session key space is the
group G.

Follow-up works, most notably the Gennaro-Lindell framework [31], the protocol proposed by
Jiang and Gong [36], which simplifies the design of KOY, and its generalization by Groce and
Katz [34], use a similar approach and are vulnerable to the same attack as we describe below for
KOY.
The KOY parameter attack. The KOY protocol is vulnerable to parameter attacks; specifi-
cally, knowledge of the natural backdoor β = logg1 h allows an attacker to passively learn g

pwCS
1 .

This enables the attacker to impersonate a client or server without knowing the password pwCS. We
state and justify this in the proposition below, referring to Figure 15. We describe an impersonation
of a client, but one could similarly use g

pwCS
1 to impersonate a server. Note, nonetheless, that this

does not contradict any security claims of KOY [40], because there it is assumed the adversary
does not have any discrete logs of the public parameters.

Proposition 5.1 Let (G, p, g1) be a group specification. Let KOY be the associated PAKE protocol
as in Figure 14. The adversary Akoy in Figure 15 achieves A-PAKE advantage

Adva-pake
KOY,AGPg∗

4
(Akoy) ≥ 1− 1/p . (11)

Adversary Akoy makes one Execute and Test query, two Send queries and two Hash queries.
It takes about the time of a client execution of KOY.

26

Public Parameters: (g2, h, c, d)←$ Gens(G)4

Client C
Input: pwCS ∈ Zp

(vk, sk)←$ Sig.Kg
r1←$ Zp ; A← gr1

1 ; B ← gr1
2

C ← hr1g
pwCS
1

α← H(C, vk, A, B, C)
D ← (cdα)r1

x1, y1, z1, w1←$ Zp

γ′ ← H(S, E, F, G, I)
K ← gx1

1 gy1
2 hz1(cdγ′)w1

σ←$ Sig.Sign(sk, (γ′, K))

I ′ ← I/g
pwCS
1

SK← Er1F x1Gy1(I ′)z1Jw1

Output: SK

C, vk, A, B, C, D-

S, E, F, G, I, J�

K, σ -

Server S
Input: pwCS ∈ Zp

x2, y2, z2, w2, r2←$ Zp

α′ ← H(C, vk, A, B, C)
E ← gx2

1 gy2
2 hz2(cdα′)w2

F ← gr2
1 ; G← gr2

2 ; I ← hr2g
pwCS
1

γ ← H(S, E, F, G, I) ; J ← (cdγ)r2

If Sig.Vfy(vk, (γ, K), σ) = 0
SK′←$ G

Else:
C ′ ← C/g

pwCS
1

SK′ ← Kr2Ax2By2(C ′)z2Dw2

Output: SK′

Figure 14: The KOY protocol associated to group specification (G, p, g1), hash function H and
signature scheme Sig.

Adversary Akoy(π, ad):
1 (g2, h, c, d)← π ; (β1, β2, β3, β4)← ad
2 β ← β2 // In fact, we only need one dl
3 Pick any client C and server S ; (vk′, sk′)←$ Sig.Kg
4 tr← Execute(C, 0, S, 0)
5 (vk, A, B, C, D, E, F, G, I, J, K, σ)← tr
6 P ← C ·A−β // P = g

pwCS
1

7 Compute message m1 ← (C, vk′, A′, B′, C′, D′) as usual,
except with C′ ← hr1 · P , and ensuring that A′ ̸= A.

8 (S, E′, F ′, G′, I ′, J ′)← SendResp(S, 1, C, m1)
9 Compute message m3 ← (K′, σ′) as usual

10 SendTermResp(S, 1, C, m3)
11 I ′′ ← I ′/P ; SK∗ ← (E′)r1 (F ′)x1 (G′)y1 (I ′′)z1 (J ′)w1

12 SK← Test(S, 1)
13 If (SK = SK∗) then return 0 else return 1

Figure 15: Adversary Akoy which breaks A-PAKE security of the KOY protocol. When a step
occurs “as usual” it follows the code in Figure 14.

Proof of Proposition 5.1: In the Ga-pake
KOY,AGPg∗

4
security experiment, adversary Akoy executes the

steps shown in Figure 15. On line 1 it receives public parameters (g2, h, c, d) and additionally the
advice (β1, β2, β3, β4). The attack only requires one discrete log; we use β = β2. On lines 3-6 the

27

adversary passively eavesdrops on an instance 0 execution. This is enough to learn P = C ·A−β =
g

pwCS
1 , which is the critical step of the attack. After line 6, Akoy impersonates the client to server

instance 1 and computes the correct session key SK∗ on line 11. On lines 12,13 it compares SK∗ to
a challenge key SK, to determine the game’s challenge bit.
Adversary Akoy succeeds with probability 1 − 1/p, where p is the order of G. The latter term is
because line 13 passes with probability 1/p on a random key. Otherwise, Akoy learns the correct
session key SK∗ and can thus determine the challenge bit. This does require that Test(S, 1) on
line 12 is run on a fresh instance, meaning that all three freshness conditions hold. (1) is true
because instance τ1

S would have accepted after receiving both correct protocol messages m1, m3.
(2) is true because τ1

S had not previously been queried to Test or Reveal. (3.4) holds because
no partner for τ1

S exists and Corrupt was not queried; ensuring A′ ̸= A on line 7 guarantees that
τ0

C is not partnered to τ1
S .

While we are not sure if such an attack on KOY has already been pointed out, we provide it
to contrast the following result, which seems to be a unique property to SPAKE2 among PAKE
protocols that use group-element parameters.

5.3 Mixed PAKE results: SPAKE2 and derivatives

In contrast to KOY, we next show that SPAKE2 retains some security against parameter attacks.
On the negative side, an offline dictionary attack applies, so the usual PAKE guarantee is not
achieved. Nonetheless, we prove that this is the best possible attack, concluding that SPAKE2
retains security if passwords are high-entropy.
The SPAKE2 protocol. We recall the protocol in Figure 16. It was originally proposed by
Abdalla and Pointcheval [7] and different variants have been considered in the literature, such
as [51]. It is also published as a draft standard [43]. In addition to the group specification (G, p, g),
the protocol uses two public group elements M , N and a hash function H : {0, 1}∗ → K which maps
to the key space K. We consider passwords to be elements in Zp; in practice, these may be obtained
by hashing the actual password. We set the hash space to be SPAKE2.HS = FUNC({0, 1}∗,K),
indicating that our positive result (Theorem 5.3) will rely on the ROM.
Offline dictionary attack. We describe the attack in Figure 17, letting M = gm and N = gn

so the natural advice is (m, n). Adversary Aq
dict is in game Ga-pake

SPAKE2,AGPg2
. We claim that if Aq

dict
tests the correct password during its dictionary attack (over q password guesses), then it will be
able to compute the correct session key and win the A-PAKE game. We explain this in detail in
the following proposition.

Proposition 5.2 Let (G, p, g) be a group specification. Let SPAKE2 be the associated PAKE pro-
tocol as in Figure 16 with password space PW ⊆ Zp and key space K. The adversary Aq

dict in
Figure 17 achieves A-PAKE advantage

Adva-pake
SPAKE2,AGPg2

(Aq
dict) ≥ q

(1
|PW|

− 1
|K|

)
, (12)

assuming passwords are chosen uniformly from PW. Adversary Aq
dict makes q queries to Hash,

one Send and one Test query. It takes about the time of q client executions of SPAKE2.

The above advantage equation depends on password entropy. If PW = Zp the bound becomes
q(1/p − 1/|K|). However if passwords are human-chosen and |PW| ≪ |K|, the advantage could
become greater. Note also that this is an offline attack, as Aq

dict makes q Hash queries but only a
single initial Send query and final Test query. We now proceed to the proof.

28

Public Parameters: (M, N)←$ G2

Client C
Input: pwCS ∈ Zp

x←$ Zp

X∗ ← gx ·MpwCS

Y ← Y ∗/NpwCS ; Z ← Y x

SK← H(C, S, pwCS, X∗, Y ∗, Z)
Output: SK

C, X∗
-

S, Y ∗
�

Server S
Input: pwCS ∈ Zp

y←$ Zp

Y ∗ ← gy ·NpwCS

X ← X∗/MpwCS ; Z ′ ← Xy

SK′ ← H(C, S, pwCS, X∗, Y ∗, Z ′)
Output: SK′

Figure 16: The SPAKE2 protocol associated to group specification (G, p, g), with hash function
H ∈ SPAKE2.HS.

Proof of Proposition 5.2: Adversary Aq
dict is in Figure 17. It is initialized with public parameters

(M, N) and advice (m, n) where gm = M and gn = N . It is acting as a client, sending the first
protocol message m1 on line 5 and there receiving the second protocol message m2 = (S, Y ∗). On
line 6 it requests a challenge key SK, where instance τ0

S is fresh due to condition (3.4), and on line 7
begins its dictionary attack. We claim that if the adversary tests the correct password during this
loop, that it will compute Z∗ on line 8 which matches Z ′ computed by the server. From there it
can compute the correct session key and win the game.

Let us explain in more detail. Recall that the server in SPAKE2 computes Z ′ = Xy = (X∗/MpwCS)y

and sends Y ∗ = gȳ = gy+n·pwCS . On the correct password pwCS this means:

Z ′ =
(

gx̄

gm·pwCS

)y

= g(x̄−m·pwCS)y = g(x̄−m·pwCS)(ȳ−n·pwCS)

= gȳ(x̄−m·pwCS) · g−n·pwCS(x̄−m·pwCS) = (Y ∗)x̄−m·pwCS · gn·m·pw2
CS−x̄·n·pwCS .

The last expression is what Aq
dict computes on line 8, and thus if pwCS is encountered during the

iteration, the true Z∗ = Z ′ will be computed. The remaining values (C, S, X∗, Y ∗) are public so
the true SK∗ is computed on line 9.

Suppose that the challenge SK is the true key, meaning the challenge bit is d = 0. Now Aq
dict will

output 0 as long as it encounters the correct password (at least). This probability is q/|PW| for
a uniformly random password. If the challenge bit is d = 1, Aq

dict will incorrectly return 0 if the
random SK happens to match any of the values SK∗ computed on line 9. Since SK is uniformly
random in K this probability is at most q/|K|. Combining the two cases yields Eq. (12).

The above shows that offline dictionary attacks can be performed by an attacker with m, n. But
the above attack is not necessarily efficient, as the attack on KOY was. In particular, if passwords
are high-entropy or uniformly random elements of Zp, the above is infeasibly expensive. Can we
prove that SPAKE2 retains some security in this case? In other words, is Aq

dict the best possible
attack?

Partial security of SPAKE2 against parameter attacks. The above allows an attacker
to brute-force the value Z ′ by iterating through the password space. Since in the protocol Z ′ is
used as an input to a hash function (modeled as a random oracle), we can “measure” the complexity

29

Adversary Aq
dict(π, ad):

1 (M, N)← π ; (m, n)← ad
2 Pick any client C and server S
3 x̄←$ Zp ; X∗ ← gx̄

4 m1 ← (C, X∗)
5 (S, Y ∗)← SendResp(S, 0, C, m1)
6 SK← Test(S, 0)
7 For q candidate passwords pw ∈ Zp do:
8 Z∗ ← (Y ∗)x̄−m·pw · gn·m·pw2−x̄·n·pw

9 SK∗ ← Hash(C, S, pw, X∗, Y ∗, Z∗)
10 If (SK∗ = SK) then return 0
11 Return 1

Figure 17: Adversary Aq
dict which performs an offline dictionary attack (of q password attempts)

on the A-PAKE security of SPAKE2.

Game Gscdh
G,p,g,n

Init:
1 For i = 1, . . . , n do xi←$ Zp ; Xi ← gxi

2 For i = 1, . . . , n do Yi←$ G
3 Return (X1, . . . , Xn, Y1, . . . , Yn)

DDH(i, Y ′, Z):
4 If Z = (Y ′)xi then return 1
5 Else return 0

Fin(i, Z′):
6 If Z′ = (Yi)xi then return 1
7 Else return 0

Figure 18: The n-user strong CDH problem (SCDH) for group specification (G, p, g).

of the attack. Put differently, we can give a concrete security bound in the game-based model, as
captured in the following theorem. It involves the strong CDH (SCDH) assumption [4] which we
give over n users in Figure 18. The term in the theorem below involves the n-user strong CDH
problem with n = qe, but this is tightly equivalent to the single-user version. We denote the
former game by Gscdh

G,p,g,n. An adversary A has advantage Advscdh
G,p,g,n(A) = Pr[Gscdh

G,p,g,n(A)]. We now
proceed to the theorem statement.

Theorem 5.3 Let (G, p, g) be a group specification. Let SPAKE2 be the associated PAKE protocol
as in Figure 16 with password space PW ⊆ Zp. Given an adversary A in game Ga-pake

SPAKE2,AGPg2
that

makes at most qh Hash queries, qe Execute queries and qs Send queries, we can construct an
adversary B in game Gscdh

G,g,p,qe
such that

Adva-pake
SPAKE2,AGPg2

(A) ≤ 2qh
|PW|

+ 2 ·Advscdh
G,g,p,qe(B) + 2(qs + qe)2

p
, (13)

assuming passwords are chosen uniformly from PW. Adversary B makes at most qh queries to its

30

DDH oracle, and has running time close to that of A.

Note that the offline dictionary attack is captured by the first term in the bound. Hence, the above
does not match the desired PAKE bound of qs/|PW| that captures online attacks. However, if
passwords are chosen from a high-entropy distribution, this term becomes negligible. This is the
“partial security” that we claim. The proof of Theorem 5.3 is in Appendix C.
Per-user parameters. We conclude our discussion of SPAKE2 by noting the RFC [43] men-
tions the possibility of using per-user M and N to avoid concerns that an attacker could break
authentication by learning only m, n. (Secret m, n is described as needed for the security proof,
but an attack is not described.) Our analysis shows that while SPAKE2 is indeed subject to offline
dictionary attacks, the situation is not as bad as for the KOY family of protocols. Deriving M and
N via hashing the client and server identity is a solution that can mitigate precomputation attacks
from a theoretical standpoint. However, it may not be easily implemented in practice when client
or server identities are not available or need to be exchanged in advance, therefore introducing
additional rounds.

Acknowledgments

We thank the anonymous reviewers for their feedback and suggestions.

References

[1] M. Abdalla, J. H. An, M. Bellare, and C. Namprempre. From identification to signatures
via the Fiat-Shamir transform: Minimizing assumptions for security and forward-security. In
L. R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 418–433. Springer,
Berlin, Heidelberg, Apr. / May 2002. (Cited on 4, 11, 15.)

[2] M. Abdalla and M. Barbosa. Perfect forward security of SPAKE2. Cryptology ePrint Archive,
Report 2019/1194, 2019. (Cited on 24, 25, 41, 42.)

[3] M. Abdalla, M. Barbosa, T. Bradley, S. Jarecki, J. Katz, and J. Xu. Universally composable
relaxed password authenticated key exchange. In D. Micciancio and T. Ristenpart, editors,
CRYPTO 2020, Part I, volume 12170 of LNCS, pages 278–307. Springer, Cham, Aug. 2020.
(Cited on 24.)

[4] M. Abdalla, M. Bellare, and P. Rogaway. The oracle Diffie-Hellman assumptions and an
analysis of DHIES. In D. Naccache, editor, CT-RSA 2001, volume 2020 of LNCS, pages
143–158. Springer, Berlin, Heidelberg, Apr. 2001. (Cited on 5, 30.)

[5] M. Abdalla, P.-A. Fouque, and D. Pointcheval. Password-based authenticated key exchange
in the three-party setting. In S. Vaudenay, editor, PKC 2005, volume 3386 of LNCS, pages
65–84. Springer, Berlin, Heidelberg, Jan. 2005. (Cited on 24.)

[6] M. Abdalla, B. Haase, and J. Hesse. Security analysis of CPace. In M. Tibouchi and H. Wang,
editors, ASIACRYPT 2021, Part IV, volume 13093 of LNCS, pages 711–741. Springer, Cham,
Dec. 2021. (Cited on 24.)

[7] M. Abdalla and D. Pointcheval. Simple password-based encrypted key exchange protocols. In
A. Menezes, editor, CT-RSA 2005, volume 3376 of LNCS, pages 191–208. Springer, Berlin,
Heidelberg, Feb. 2005. (Cited on 2, 4, 28.)

31

[8] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A. Halderman, N. Heninger,
D. Springall, E. Thomé, L. Valenta, B. VanderSloot, E. Wustrow, S. Zanella-Béguelin, and
P. Zimmermann. Imperfect forward secrecy: How Diffie-Hellman fails in practice. In I. Ray,
N. Li, and C. Kruegel, editors, ACM CCS 2015, pages 5–17. ACM Press, Oct. 2015. (Cited
on 6.)

[9] B. Auerbach, M. Bellare, and E. Kiltz. Public-key encryption resistant to parameter subversion
and its realization from efficiently-embeddable groups. In M. Abdalla and R. Dahab, editors,
PKC 2018, Part I, volume 10769 of LNCS, pages 348–377. Springer, Cham, Mar. 2018. (Cited
on 5.)

[10] B. Auerbach, F. Giacon, and E. Kiltz. Everybody’s a target: Scalability in public-key encryp-
tion. In A. Canteaut and Y. Ishai, editors, EUROCRYPT 2020, Part III, volume 12107 of
LNCS, pages 475–506. Springer, Cham, May 2020. (Cited on 5.)

[11] R. Bacho, J. Loss, S. Tessaro, B. Wagner, and C. Zhu. Twinkle: Threshold signatures from
DDH with full adaptive security. In M. Joye and G. Leander, editors, EUROCRYPT 2024,
Part I, volume 14651 of LNCS, pages 429–459. Springer, Cham, May 2024. (Cited on 16.)

[12] M. Backendal, M. Bellare, J. Sorrell, and J. Sun. The Fiat-Shamir zoo: Relating the security
of different signature variants. In N. Gruschka, editor, NordSec 2018, pages 154–170, Cham,
2018. Springer International Publishing. (Cited on 11.)

[13] M. Barbosa, K. Gellert, J. Hesse, and S. Jarecki. Bare PAKE: Universally composable key
exchange from just passwords. In L. Reyzin and D. Stebila, editors, CRYPTO 2024, Part II,
volume 14921 of LNCS, pages 183–217. Springer, Cham, Aug. 2024. (Cited on 24.)

[14] M. Bellare, A. Boldyreva, and S. Micali. Public-key encryption in a multi-user setting: Security
proofs and improvements. In B. Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS,
pages 259–274. Springer, Berlin, Heidelberg, May 2000. (Cited on 10, 17, 23, 38.)

[15] M. Bellare and W. Dai. The multi-base discrete logarithm problem: Tight reductions and
non-rewinding proofs for Schnorr identification and signatures. In K. Bhargavan, E. Oswald,
and M. Prabhakaran, editors, INDOCRYPT 2020, volume 12578 of LNCS, pages 529–552.
Springer, Cham, Dec. 2020. (Cited on 4, 11, 12, 15.)

[16] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of security for
public-key encryption schemes. In H. Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS,
pages 26–45. Springer, Berlin, Heidelberg, Aug. 1998. (Cited on 17.)

[17] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure against
dictionary attacks. In B. Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS, pages
139–155. Springer, Berlin, Heidelberg, May 2000. (Cited on 24.)

[18] M. Bellare, T. Ristenpart, and S. Tessaro. Multi-instance security and its application to
password-based cryptography. In R. Safavi-Naini and R. Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 312–329. Springer, Berlin, Heidelberg, Aug. 2012. (Cited on 5.)

[19] M. Bellare and P. Rogaway. Entity authentication and key distribution. In D. R. Stinson,
editor, CRYPTO’93, volume 773 of LNCS, pages 232–249. Springer, Berlin, Heidelberg, Aug.
1994. (Cited on 24.)

32

[20] M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based
game-playing proofs. In S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS,
pages 409–426. Springer, Berlin, Heidelberg, May / June 2006. (Cited on 7.)

[21] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang. High-speed high-security
signatures. In B. Preneel and T. Takagi, editors, CHES 2011, volume 6917 of LNCS, pages
124–142. Springer, Berlin, Heidelberg, Sept. / Oct. 2011. (Cited on 11.)

[22] D. J. Bernstein, T. Lange, and R. Niederhagen. Dual EC: A standardized back door. In
P. Ryan, D. Naccache, and J.-J. Quisquater, editors, The New Codebreakers. Springer, Heidel-
berg, 2016. (Cited on 2, 6.)

[23] R. Chairattana-Apirom, S. Tessaro, and C. Zhu. Pairing-free blind signatures from CDH
assumptions. In L. Reyzin and D. Stebila, editors, CRYPTO 2024, Part I, volume 14920 of
LNCS, pages 174–209. Springer, Cham, Aug. 2024. (Cited on 16.)

[24] A. Commeine and I. Semaev. An algorithm to solve the discrete logarithm problem with the
number field sieve. In M. Yung, Y. Dodis, A. Kiayias, and T. Malkin, editors, PKC 2006,
volume 3958 of LNCS, pages 174–190. Springer, Berlin, Heidelberg, Apr. 2006. (Cited on 6.)

[25] R. Cramer and V. Shoup. Design and analysis of practical public-key encryption schemes secure
against adaptive chosen ciphertext attack. SIAM Journal on Computing, 33(1):167–226, 2003.
(Cited on 2, 4, 5, 19, 20.)

[26] S. Das and L. Ren. Adaptively secure BLS threshold signatures from DDH and co-CDH. In
L. Reyzin and D. Stebila, editors, CRYPTO 2024, Part VII, volume 14926 of LNCS, pages
251–284. Springer, Cham, Aug. 2024. (Cited on 16.)

[27] D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM Journal on Computing,
30(2):391–437, 2000. (Cited on 17.)

[28] E. Eaton and D. Stebila. The “quantum annoying” property of password-authenticated key
exchange protocols. In J. H. Cheon and J.-P. Tillich, editors, Post-Quantum Cryptography -
12th International Workshop, PQCrypto 2021, pages 154–173. Springer, Cham, 2021. (Cited
on 5.)

[29] D. Freeman. Pairing-based identification schemes. Cryptology ePrint Archive, Report
2005/336, 2005. (Cited on 5, 19.)

[30] G. Fuchsbauer and M. Wolf. Concurrently secure blind schnorr signatures. In M. Joye and
G. Leander, editors, EUROCRYPT 2024, Part II, volume 14652 of LNCS, pages 124–160.
Springer, Cham, May 2024. (Cited on 11.)

[31] R. Gennaro and Y. Lindell. A framework for password-based authenticated key exchange. In
E. Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 524–543. Springer, Berlin,
Heidelberg, May 2003. (Cited on 4, 26.)

[32] K. Gjøsteen. Password-authenticated key exchange and applications. Cryptology ePrint
Archive, Report 2024/1057, 2024. (Cited on 24.)

[33] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System
Sciences, 28(2):270–299, 1984. (Cited on 17.)

33

[34] A. Groce and J. Katz. A new framework for efficient password-based authenticated key ex-
change. In E. Al-Shaer, A. D. Keromytis, and V. Shmatikov, editors, ACM CCS 2010, pages
516–525. ACM Press, Oct. 2010. (Cited on 4, 26.)

[35] R. Impagliazzo. A personal view of average-case complexity. In Proceedings of the Tenth Annual
Structure in Complexity Theory Conference, Minneapolis, Minnesota, USA, June 19-22, 1995,
pages 134–147. IEEE Computer Society, 1995. (Cited on 3.)

[36] S. Jiang and G. Gong. Password based key exchange with mutual authentication. In H. Hand-
schuh and A. Hasan, editors, SAC 2004, volume 3357 of LNCS, pages 267–279. Springer,
Berlin, Heidelberg, Aug. 2004. (Cited on 4, 26.)

[37] A. Joux, R. Lercier, D. Naccache, and E. Thomé. Oracle-assisted static Diffie-Hellman is easier
than discrete logarithms. In M. G. Parker, editor, 12th IMA International Conference on
Cryptography and Coding, volume 5921 of LNCS, pages 351–367. Springer, Berlin, Heidelberg,
Dec. 2009. (Cited on 20.)

[38] J. Kastner, K. Nguyen, and M. Reichle. Pairing-free blind signatures from standard assump-
tions in the ROM. In L. Reyzin and D. Stebila, editors, CRYPTO 2024, Part I, volume 14920
of LNCS, pages 210–245. Springer, Cham, Aug. 2024. (Cited on 16.)

[39] S. Katsumata, M. Reichle, and Y. Sakai. Practical round-optimal blind signatures in the ROM
from standard assumptions. In J. Guo and R. Steinfeld, editors, ASIACRYPT 2023, Part II,
volume 14439 of LNCS, pages 383–417. Springer, Singapore, Dec. 2023. (Cited on 16.)

[40] J. Katz, R. Ostrovsky, and M. Yung. Efficient password-authenticated key exchange using
human-memorable passwords. In B. Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of
LNCS, pages 475–494. Springer, Berlin, Heidelberg, May 2001. (Cited on 3, 4, 26.)

[41] J. Katz and N. Wang. Efficiency improvements for signature schemes with tight security
reductions. In S. Jajodia, V. Atluri, and T. Jaeger, editors, ACM CCS 2003, pages 155–164.
ACM Press, Oct. 2003. (Cited on 2, 4, 5, 14, 15.)

[42] N. Koblitz and A. Menezes. Another look at non-standard discrete log and Diffie-Hellman
problems. Journal of Mathematical Cryptology, 2(4):311–326, 2008. (Cited on 5, 19.)

[43] W. Ladd. RFC 9382: SPAKE2, a password-authenticated key exchange. https://datatracker.
ietf.org/doc/rfc9382/, Sept. 2023. (Cited on 2, 4, 6, 23, 28, 31.)

[44] H. Lipmaa. On the CCA1-security of Elgamal and Damg̊ard’s Elgamal. In X. Lai, M. Yung,
and D. Lin, editors, Information Security and Cryptology, pages 18–35, Berlin, Heidelberg,
2011. Springer Berlin Heidelberg. (Cited on 5, 19.)

[45] N. McCallum, S. Sorce, R. Harwood, and G. Hudson. RFC 9588: Kerberos simple password-
authenticated key exchange (SPAKE) pre-authentication. https://datatracker.ietf.org/doc/
rfc9588/, Aug. 2024. (Cited on 23.)

[46] A. Menezes and N. P. Smart. Security of signature schemes in a multi-user setting. DCC,
33(3):261–274, 2004. (Cited on 10.)

[47] MIT Kerberos documentation: SPAKE preauthentication. https://web.mit.edu/kerberos/
krb5-1.21/doc/admin/spake.html. (Cited on 23.)

34

https://datatracker.ietf.org/doc/rfc9382/
https://datatracker.ietf.org/doc/rfc9382/
https://datatracker.ietf.org/doc/rfc9588/
https://datatracker.ietf.org/doc/rfc9588/
https://web.mit.edu/kerberos/krb5-1.21/doc/admin/spake.html
https://web.mit.edu/kerberos/krb5-1.21/doc/admin/spake.html

[48] M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen ciphertext
attacks. In 22nd ACM STOC, pages 427–437. ACM Press, May 1990. (Cited on 17.)

[49] T. Okamoto. Provably secure and practical identification schemes and corresponding signature
schemes. In E. F. Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages 31–53. Springer,
Berlin, Heidelberg, Aug. 1993. (Cited on 2, 3, 4, 11.)

[50] D. Pointcheval and J. Stern. Security proofs for signature schemes. In U. M. Maurer, editor,
EUROCRYPT’96, volume 1070 of LNCS, pages 387–398. Springer, Berlin, Heidelberg, May
1996. (Cited on 11, 15.)

[51] D. Pointcheval and G. Wang. VTBPEKE: Verifier-based two-basis password exponential key
exchange. In R. Karri, O. Sinanoglu, A.-R. Sadeghi, and X. Yi, editors, ASIACCS 17, pages
301–312. ACM Press, Apr. 2017. (Cited on 2, 4, 28.)

[52] M. Rosulek. Is Cramer-Shoup backdoorable?, 2015. https://crypto.stackexchange.com/
questions/27290/is-cramer-shoup-backdoorable. (Cited on 4, 23.)

[53] L. Rotem and G. Segev. Tighter security for schnorr identification and signatures: A high-
moment forking lemma for Σ-protocols. In T. Malkin and C. Peikert, editors, CRYPTO 2021,
Part I, volume 12825 of LNCS, pages 222–250, Virtual Event, Aug. 2021. Springer, Cham.
(Cited on 4, 11, 12, 15.)

[54] C.-P. Schnorr. Efficient identification and signatures for smart cards. In G. Brassard, editor,
CRYPTO’89, volume 435 of LNCS, pages 239–252. Springer, New York, Aug. 1990. (Cited on
11, 15.)

[55] C.-P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4(3):161–
174, Jan. 1991. (Cited on 4.)

[56] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM Rev., 41(2):303–332, 1999. (Cited on 3.)

[57] S. Tessaro and C. Zhu. Threshold and multi-signature schemes from linear hash functions. In
C. Hazay and M. Stam, editors, EUROCRYPT 2023, Part V, volume 14008 of LNCS, pages
628–658. Springer, Cham, Apr. 2023. (Cited on 16.)

A Converses of signature theorems

In Section 3 we proved A-UF-CMA security of Okamoto (Theorem 3.1) and of Katz-Wang (The-
orem 3.2) assuming standard UF-CMA security of Schnorr. Could A-UF-CMA of the former two
schemes be proved with a weaker assumption? Here we prove that the answer is no; in fact A-UF-
CMA security of Okamoto (and of Katz-Wang) is equivalent to UF-CMA security of Schnorr.

This is justified by proving the converses of Theorems 3.1 and 3.2. There, we gave theorem
statements of the form: Given an adversary B in game Ga-uf-cma

OS,AGPg∗
1,n we could construct an ad-

versary A in game Guf-cma
SS,n with similar advantage and running time. (Equivalently for the KW

statement.) In the below theorems, we state and prove the converses. That is, given A in game
Guf-cma

SS,n we can construct B in game Ga-uf-cma
OS,AGPg∗

1,n with similar advantage and running time. As in
Section 3, the Okamoto result (Theorem A.1) holds for any hash function while the Katz-Wang
result (Theorem A.2) assumes a random oracle.

35

https://crypto.stackexchange.com/questions/27290/is-cramer-shoup-backdoorable
https://crypto.stackexchange.com/questions/27290/is-cramer-shoup-backdoorable

Adversary B(h, X, β):

1 (i, m, σ)← A[SignSim,HSim](ε, X)
2 (e, y)← σ

3 y2 ← 1
4 y1 ← (y − β · y2) mod p

5 Return (i, m, (e, y1, y2))

Subroutine SignSim(i, m):

6 σ ← Ga-uf-cma
OS,AGPg∗

1 ,n.Sign(i, m)
7 (e, y1, y2)← σ

8 y ← (y1 + β · y2) mod p

9 σ′ ← (e, y)
10 Return σ′

Subroutine HSim(z):

11 Return Ga-uf-cma
OS,AGPg∗

1 ,n.Hash(z)

Figure 19: Adversary B for the proof of Theorem A.1.

Theorem A.1 Let (G, p, g) be a group specification. Let HS ⊆ FUNC(G×G×{0, 1}∗,Zp) be a non-
empty set of functions. Let OS and SS be the Okamoto and Schnorr signature schemes, respectively,
associated to (G, p, g) and HS as described in Section 3. Let n > 0 be a number of users. Given an
adversary A in game Guf-cma

SS,n we can construct an adversary B in game Ga-uf-cma
OS,AGPg∗

1,n such that

Advuf-cma
SS,n (A) ≤ Adva-uf-cma

OS,AGPg∗
1,n(B) . (14)

Adversary B makes the same number of signing and hashing queries as A, and has running time
close to that of A.

Proof of Theorem A.1: We give adversary B in Figure 19. B runs adversary A with access
to the subroutines SignSim,HSim as specified in the figure. On line 1, A is initialized with empty
public parameters and a list of verification keys X for the Schnorr scheme. These are of the form
X[i] = gs1[i]hs2[i] from the Okamoto game. We may equivalently write this as X[i] = gs[i] where
s[i] = (s1[i] + β · s2[i]) mod p. Thus adversary B is setting up A’s perspective to be that of the
Schnorr UF-CMA game with s as the list of secret keys. Moreover X is distributed correctly; we
have s1[i]←$ Zp from the Okamoto A-UF-CMA game which implies (from the relation above) that
s[i] is also uniformly and independently random in Zp for each i.
Next let us consider the SignSim,HSim oracles. The latter simply forwards A’s HSim queries
to B’s own Hash oracle. (From now on, we write Hash to refer to the hash function both A
and B are using.) The former requires some explanation. On lines 6-7 adversary B forwards A’s
query to its own signing oracle to receive an Okamoto signature (e, y1, y2). As defined by the
Okamoto scheme, we have e = Hash(X[i], gr1hr2 , m) for nonces r1, r2 and we have for j ∈ {1, 2},
yj = (rj + esj [i]) mod p. Now we claim that σ′ = (e, y) for y = (y1 + β · y2) mod p is a correct, and
correctly distributed, Schnorr signature for the same user i and message m. First, looking at y, we
may write:

y = (y1 + β · y2) mod p = (r1 + es1[i]) + β · (r2 + es2[i]) mod p

= (r1 + βr2) + e(s1[i] + β · s2[i]) mod p

= (r1 + βr2) + es[i] mod p .

The above is precisely a Schnorr signature with nonce (r1 + βr2) mod p. The nonce is correctly
distributed; as long as r1←$ Zp (as is done in Okamoto) we have (r1 + βr2) mod p also uni-
formly distributed. Finally, this agrees with the e value used in the signature. Recall that e =
Hash(X[i], gr1hr2 , m), which we can rewrite as e = Hash(X[i], gr, m) where r = (r1 + βr2) mod p.

36

Adversary B(h, X, β):

1 For i = 1 . . . n do (Xg[i], Xh[i])← X[i]
2 (i, m, σ)← A[SignSim,HSim](ε, Xg)
3 Return (i, m, σ)

Subroutine SignSim(i, m):

4 σ ← Ga-uf-cma
KW,AGPg∗

1 ,n.Sign(i, m)
5 Return σ

Subroutine HSim(z):
6 If HT[z] ̸= ⊥ then return HT[z]
7 (a, b, m)← z // Parse z as shown where a, b ∈ G and m ∈ {0, 1}∗

8 HT[z]← Ga-uf-cma
KW,AGPg∗

1 ,n.Hash((a, aβ), b, bβ , m)
9 Else if parsing fails HT[z]←$ Zp

10 Return HT[z]

Figure 20: Adversary B for the proof of Theorem A.2.

This is exactly what is hashed for a Schnorr signature with nonce r.
Thus signature queries are correctly answered. We lastly argue that the forgery output by B on
line 5 wins the A-UF-CMA game as long as A’s forgery on line 1 wins its UF-CMA game. First,
since i, m are unchanged, B’s forgery is fresh as long as A’s is. As for correctness, if (e, y) is a
correct Schnorr signature we have e = Hash(X[i], gyX[i]−e, m). Defining y1, y2 as we do on lines 3,4
we then have

e = Hash(X[i], gyX[i]−e, m)

= Hash(X[i], gy1+βy2X[i]−e, m)

= Hash(X[i], gy1hy2X[i]−e, m) .

This last line matches verification of the Okamoto scheme, as per lines 13,14 of Figure 5. Note that
we select y2 = 1 for concreteness, but the argument holds for any y2 ∈ Zp. We conclude the proof
by remarking that B makes the same number of signing and hashing queries as A, and otherwise
has running time close to that of A.

Theorem A.2 Let (G, p, g) be a group specification. Let KW be the associated Katz-Wang signature
scheme as described in Section 3. Let SS be the Schnorr signature scheme associated to (G, p, g)
and FUNC(G × G × {0, 1}∗,Zp). Let n > 0 be a number of users. Given an adversary A in game
Guf-cma

SS,n we can construct an adversary B in game Ga-uf-cma
KW,AGPg∗

1,n such that

Advuf-cma
SS,n (A) ≤ Adva-uf-cma

KW,AGPg∗
1,n(B) . (15)

Adversary B makes at most the same number of signing and hashing queries as A, and has running
time close to that of A.

Proof of Theorem A.2: We give adversary B in Figure 20. In the Katz-Wang A-UF-CMA
game, B receives as input h, β and verification keys X where X[i] is a tuple that we write as
(Xg[i], Xh[i]). Recall that Katz-Wang selects verification keys such that, for secret keys s, we have

37

Xg[i] = gs[i] and Xh[i] = Xg[i]β. Thus Xg, as given to adversary A on line 2, is a correct list of
Schnorr verification keys corresponding to the same secret keys s.
Next let us consider the SignSim,HSim oracles. The former simply forwards signing queries to its
own oracle and returns them, unchanged. In HSim we program the random oracle to ensure that
these signature responses are correct. In particular we have

HSim(a, b, m) = Ga-uf-cma
KW,AGPg∗

1,n.Hash((a, aβ), b, bβ, m) ,

as implemented on lines 7-8 and assuming parsing works. This implies, then, that for the verification
keys at hand, and for any exponent r ∈ Zp, we get

HSim(Xg[i], gr, m) = Ga-uf-cma
KW,AGPg∗

1,n.Hash((Xg[i], Xg[i]β), gr, grβ , m)

= Ga-uf-cma
KW,AGPg∗

1,n.Hash((Xg[i], Xh[i]), gr, hr, m) .

On this most recent line, the righthand expression is the e value computed for a Katz-Wang
signature on message m using nonce r. On the prior line, the lefthand expression is the e value
computed for a Schnorr signature, also on message m and nonce r. Hence we may use e as a correct
signature component for both schemes. Moreover, y = (r + es[i]) mod p is computed identically in
Katz-Wang and in Schnorr. All of this proves that the σ = (e, y) values returned by SignSim are
in fact correct Schnorr signatures, given that they are selected as correct Katz-Wang signatures.
Adversary B finally outputs the same forgery (i, m, σ) as A on line 3. As argued above, this is a
correct Katz-Wang signature, under Ga-uf-cma

KW,AGPg∗
1,n.Hash, if it is a correct Schnorr signature under

HSim. We conclude by noting that B makes at most the same number of signing and hashing
queries as A, and has running time close to that of A. The same set of queried (i, m) is tracked in
both games, so B’s forgery is fresh as long as A’s is.

B Multi-user DT-DDH is implied by single-user

In Section 4 we proved A-IND-CCA1 security of Cramer-Shoup assuming DT-DDH, where both
games were in the n-user setting. The latter game Gdt-ddh

G,p,g,n was defined in Figure 12. In this section
we prove that security in game Gdt-ddh

G,p,g,n is asymptotically equivalent to security in the single-user
case Gdt-ddh

G,p,g,1. This is known, with a tight reduction, for standard DDH [14]. As DT-DDH is a
non-standard assumption, we prove its corresponding reduction here, albeit non-tightly, with a
factor of n in the advantage bound. The challenge in removing this factor is that game Gdt-ddh

G,p,g,1
allows for only a single GetTgt query, after which all DH queries are disallowed; it is not obvious
how an adversary A1 could answer an adversary An who intersperses n GetTgt queries among
DH queries to any of the n users.

Below, we formally state and prove our result, that multi-user security of DT-DDH is implied
by single-user. (The opposite direction is proved immediately.) The proof uses a standard hybrid
argument.

Theorem B.1 Let (G, p, g) be a group specification and n > 0 a number of users. Given an
adversary An in game Gdt-ddh

G,p,g,n we can construct an adversary A1 in game Gdt-ddh
G,p,g,1 such that

Advdt-ddh
G,p,g,n(An) ≤ n ·Advdt-ddh

G,p,g,1(A1) . (16)

Adversary A1 makes at most the same number of DH queries as An, at most one GetTgt query,
and has running time close to that of An.

38

Games G0, . . . , GJ , . . . , Gn

Init:
1 For i = 1, . . . , n do z[i]←$ Zp ; Z[i]← gz[i]

2 For i = 1, . . . , n do T[i]←$ G ; R[i]←$ G
3 For i = 1, . . . , J do S[i]← T[i]z[i]

4 For i = (J + 1), . . . , n do S[i]← R[i]
5 Return Z

DH(i, Y):
6 If done[i] then return ⊥
7 Return Y z[i]

GetTgt(i):
8 done[i]← true
9 Return (T[i], S[i])

Fin(d′):
10 Return d′

Adversary BJ (Z∗):

1 For i = 1, . . . , n do
2 If (i = J) then Z[J]← Z∗

3 Else
4 z[i]←$ Zp ; Z[i]← gz[i]

5 T[i]←$ G ; R[i]←$ G
6 For i = 1, . . . , (J − 1) do S[i]← T[i]z[i]

7 For i = (J + 1), . . . , n do S[i]← R[i]
8 d′ ← An[DHSim,GetTgtSim](Z)
9 Return d′

Subroutine DHSim(i, Y):

10 If done[i] then return ⊥
11 If (i = J) then return DH(1, Y)
12 Else return Y z[i]

Subroutine GetTgtSim(i):

13 done[i]← true
14 If (i = J) then (T ∗, S∗)← GetTgt(1) ; return (T ∗, S∗)
15 Else return (T[i], S[i])

Figure 21: Left: Games GJ for the proof of Theorem B.1, for 0 ≤ J ≤ n. Right: Adversaries BJ

for the proof of Theorem B.1, for 1 ≤ J ≤ n.

Proof of Theorem B.1: This proof refers to the games and adversaries in Figure 21. There,
over index J , we define games GJ for 0 ≤ J ≤ n and we give adversaries BJ for 1 ≤ J ≤ n. We
begin by recalling the definition of DT-DDH advantage, such that for challenge bit d, we can write

Advdt-ddh
G,p,g,n(An) = 2 · Pr[Gdt-ddh

G,p,g,n(An)]− 1

= Pr[Gdt-ddh
G,p,g,n(An) | d = 1] + Pr[Gdt-ddh

G,p,g,n(An) | d = 0]− 1 .

Next, we consider GJ for J = n and J = 0. In general, game GJ selects “real” DT-DDH values
for S[1], . . . , S[J] (on line 3) and “random” DT-DDH values for S[J + 1], . . . , S[n] (on line 4).
Otherwise the DH and GetTgt oracles are as usual in the DT-DDH game. (For now, ignore
Fin.) Now, game Gn is exactly game Gdt-ddh

G,p,g,n with challenge bit d = 1 because all n users have a
“real” challenge value S[i] = T[i]z[i]. On the opposite end, game G0 is exactly game Gdt-ddh

G,p,g,n with
challenge bit d = 0 because all of the challenge values are “random” with S[i] = R[i]. Thus, we
argue that Pr[Gdt-ddh

G,p,g,n(An) | d = 1] is the probability that An outputs d′ = 1 in game Gn. Similarly,
Pr[Gdt-ddh

G,p,g,n(An) | d = 0] is the probability that An outputs d′ = 0 in game G0. Hence, because
game GJ in Fin simply returns the guess d′ (and is true iff d′ = 1), we can write

Advdt-ddh
G,p,g,n(An) = Pr[Gdt-ddh

G,p,g,n(An) | d = 1] + Pr[Gdt-ddh
G,p,g,n(An) | d = 0]− 1

= Pr[Gdt-ddh
G,p,g,n(An) | d = 1]−

(
1− Pr[Gdt-ddh

G,p,g,n(An) | d = 0]
)

= Pr[Gn(An)]− Pr[G0(An)] .

39

Moving on to general J , we claim that for all 1 ≤ J ≤ n, we have

Pr[GJ(An)]− Pr[GJ−1(An)] ≤ Advdt-ddh
G,p,g,1(BJ) . (17)

Let us explain why the theorem statement follows from Eq. (17). From above, we have

Advdt-ddh
G,p,g,n(An) = Pr[Gn(An)]− Pr[G0(An)]

= Pr[Gn(An)]− Pr[G0(An)] +
n−1∑
J=1

Pr[GJ(An)]−
n−1∑
J=1

Pr[GJ(An)]

=
n∑

J=1
Pr[GJ(An)]− Pr[GJ−1(An)]

≤
n∑

J=1
Advdt-ddh

G,p,g,1(BJ) .

Finally, consider the adversary A1 which selects at random J ←$ [1..n] and then operates as BJ .
The advantage of A1 in game Gdt-ddh

G,p,g,1 is

Advdt-ddh
G,p,g,1(A1) = 1

n
·

n∑
J=1

Advdt-ddh
G,p,g,1(BJ)

which we can combine with the above to obtain

Advdt-ddh
G,p,g,n(An) ≤ n ·Advdt-ddh

G,p,g,1(A1) ,

matching the theorem statement. Adversary A1 in all cases makes one GetTgt query and at most
the same number of DH queries as An, as needed.

Lastly, it remains to justify Eq. (17). To do so, observe that games GJ and GJ−1 differ only in
their selection of S[J]. While GJ selects S[J] = T[J]z[J], game GJ−1 instead selects S[J] = R[J].
All other indices of S match. That is, all indices prior to J are “real” and all indices after J are
“random” in both games. Now consider adversary BJ in game Gdt-ddh

G,p,g,1. At a high level, BJ embeds
its single DT-DDH challenge (Z∗, T ∗, S∗) at user J . This happens at line 2, line 11 and line 14 of
the adversary in Figure 21. For all other users, BJ selects the game values on its own, in particular
so that all indices prior to J are “real” and all indices after J are “random.”

Now, if BJ is in game Gdt-ddh
G,p,g,1 with challenge bit d = 1, this means that (Z∗, T ∗, S∗) is a “real”

tuple and thus user J matches game GJ . If BJ is in game Gdt-ddh
G,p,g,1 with challenge bit d = 0, then

(Z∗, T ∗, S∗) is a “random” tuple and user J instead matches game GJ−1. On line 9, Bj outputs
the same guess d′ as An. In particular,

Advdt-ddh
G,p,g,1(BJ) = 2 · Pr[Gdt-ddh

G,p,g,1(BJ)]− 1

= Pr[Gdt-ddh
G,p,g,1(BJ) | d = 1] + Pr[Gdt-ddh

G,p,g,1(BJ) | d = 0]− 1

= Pr[BJ guesses 1 in Gdt-ddh
G,p,g,1 | d = 1]− Pr[BJ guesses 1 in Gdt-ddh

G,p,g,1 | d = 0]

≥ Pr[An guesses 1 in GJ]− Pr[An guesses 1 in GJ−1]

= Pr[GJ(An)]− Pr[GJ−1(An)] .

The last line is precisely Eq. (17). This completes the proof.

40

C Proof of Theorem 5.3

Proof of Theorem 5.3: The proof closely follows the one of Abdalla and Barbosa [2]. Nonethe-
less, we are considering A in game Ga-pake

SPAKE2,AGPg2
rather than Gpake

SPAKE2 and are ultimately proving
a different advantage bound. We use the sequence of games shown in Figures 22 and 23.

Game G0. This is the original A-PAKE security game, parameterized by advice algorithm AGPg2
since SPAKE2 has two group-element parameters M, N . We have

Adva-pake
SPAKE2,AGPg2

(A) = 2 Pr[G0(A)]− 1 .

Note that line 1 selects random group elements, not generators, to implement AGPg2. Also, instead
of the game selecting a hash function H←$ SPAKE2.HS, the oracle Hash in game G0 implements
a random mapping from {0, 1}∗ to K, which is equivalent.

Game G1. In this game, we return ⊥ when two traces collide (among parties that should not be
considered partnered) in any of the Execute or Send oracles. This is implemented on lines 8-
9 for the Execute oracle, on lines 38-39 for the SendResp oracle and on lines 48-49 for the
SendTermInit oracle. Note that SendInit does not yet involve a full trace, so we there omit a
change. Also, in the SendTermInit oracle, we include an exception (the \{S} component) for a
server partnered to the current client, as these parties are expected to have the same trace. For
the first two locations (Execute and SendResp), it is evident from the preceding lines that the
traces only collide if one (or two) uniformly random X∗, Y ∗ collide. This can be bounded by the
birthday bound.

We claim the same for the third location (SendTermInit) but this requires care. First, the
SendTermInit oracle always returns ⊥, regardless of the check on line 48, so the return value is
unchanged. However, if ⊥ is returned on line 49 rather than on line 56, then the instance τ i

C will
not be updated to include Y ∗ and SK, which could cause a difference from G0 in later queries. But,
note that games G0, G1 both include line 46 which first asserts, before proceeding in the oracle,
that τ i

C = (x, (C, S, X∗,⊥),⊥, false). In particular, X∗ is populated in the state already but Y ∗

is not. Such a scenario only arises from a SendInit query, which selects X∗ as a random group
element on line 33. Hence, while Y ∗ is selected by the adversary, the X∗ value involved in a passing
line 48 must be a uniformly random group element.

In total, then, over the three locations where game G1 returns ⊥ if traces collide, this check is
always over one (or two) uniformly random group element(s). Thus the probability that traces
collide is bounded by the birthday bound, and we can bound the difference between games G0, G1
by

|Pr[G1(A)]− Pr[G0(A)]| ≤ (qs + qe)2

p
.

Game G2. In this game, we make the freshness condition explicit by adding a variable fr to each
instance. Now an instance τ i

P is a tuple (e, tr, sk, acc, fr). This addition is shown in the boxed code
in Figure 22. This is only a conceptual change, hence

Pr[G2(A)] = Pr[G1(A)] .

Note that in Figure 22, we use the notation fr ← JexprK to evaluate the boolean expression expr
and assign the result to fr.

41

With freshness defined as in Section 5.1, let us consider the additions to game G2. First, in
Execute queries, both client and server are labeled as fr = true on lines 15,16 as per condition
(3.1). In a Reveal(P, i) query, the instance τ i

P itself, and any partners, are labeled as fr = false.
Since we have already required unique traces, there is at most one partner, and we do not violate
(3.2) here. The Test oracle simply uses the variable fr rather than the function Fresh. Moving on
to the Send oracles, we set fr = false in SendInit because the instance has not accepted yet. In
SendResp, the instance τ i

S cannot yet have a partner because the trace is unfinished. It’s also not
part of an Execute query because of the requirement on line 36. Line 40 thus implements the only
relevant freshness check, which is that there is no parter and Corrupt was not queried. Finally,
consider SendTermInit. Instance τ i

C could either have one or zero partners; it cannot have two (a
potential partner τ j

S could only be defined during SendResp or Execute, which both return ⊥ if
a trace collides with a prior instance). Now, if τ i

C has zero partners, condition (3.4) is implemented
on line 51. Else, if it has one partner, condition (3.3) is implemented on line 50. There, we use
“∃!” to make clear that the check is for exactly one partner, but as argued above, there is at most
one j that could pass line 50.

Game G3. In this game, we pick session keys for Execute queries uniformly at random from
the key space. In particular, this is specified on line 14 for G2 versus line 12 for G3. To bound
the difference between G2 and G3, we construct an adversary B against the strong computational
Diffie-Hellman problem (SCDH). The description of B is given in Figure 24. Note that this is
specifically in the qe-user strong CDH game, but this is tightly equivalent to the single-user version.
We claim:

|Pr[G3(A)]− Pr[G2(A)]| ≤ Pr[G3(A) sets bad] (18)

Pr[G3(A) sets bad] ≤ Advscdh
G,g,p,qe(B) . (19)

To explain Eq. (18), we observe that game G3 only differs from G2 if it encounters a query in
contradiction with its selection of SK values. (Else, it is expected that Hash selects them at random
from K, as game G3 may do on line 12 instead.) We let the table HT keep track of Hash responses,
in particular mapping instance information (C, S, X∗, Y ∗, pwCS, gxy) to the associated session key
SK. We let table Te contain the same information for keys assigned during an Execute query
in G3. Now flag bad is set on line 11 if Execute encounters an instance which already has an
assigned key in HT, or bad is set on line 27 if Hash encounters an instance which already has an
assigned key in Te. Otherwise G2, G3 are identical-until-bad, which proves Eq. (18).

To prove Eq. (19), the reduction again follows [2]. We give adversary B in Figure 24. Adversary B
runs A with access to subroutines InitSim, ExecuteSim and HSim as shown in Figure 24, while
the remaining oracles are implemented according to game G3. Adversary B may output its SCDH
answer during either an ExecuteSim (line 13) or HSim (line 23) response, or will output ⊥ if A
terminates without having triggered either of these lines.

Recall that in the qe-user SCDH game, B receives as input X1, . . . , Xqe , Y1, . . . , Yqe and is attempting
to output some (Yi)xi value. We claim that if G3(A) sets bad on line 11 then B will output a winning
SCDH answer on line 13; and if G3(A) sets bad on line 27 then B will output a winning SCDH
answer on line 23 (here, line numbers refer to the respective G3 and B figures).

Let us start by explaining ExecuteSim queries. In the k-th ExecuteSim query made by A,
B embeds its k-th SCDH challenge Xk, Yk. Specifically, B sets the protocol execution to consist
of X∗ = Xk · gm·pwCS and Y ∗ = Yk · gn·pwCS . Since Xk = gxk for xk←$ Zp in the SCDH game
(and Yk similarly), this selection of X∗, Y ∗ matches the SPAKE2 specification. The remainder of

42

ExecuteSim (ignoring lines 11-13 momentarily) matches game G3. Since B does not know Y xk
k

at this point, it is not included in the Te information; however Y xk
k is completely determined by

X∗, Y ∗, pwCS. Now consider the table Tcdh used on lines 11-13. Looking ahead, this is populated
on line 24 only if a DDH query returns true, which in particular checks that for some k′ where
Xk′ = gxk′ and (Y ∗/NpwCS) = Yk′ , we have Y

xk′
k′ = Z. In fact this holds for the current round k,

which uses the same X∗, Y ∗, pwCS. Thus the Z finalized on line 13 is such that Y xk
k = Z, which

makes (k, Z) a winning SCDH output. When does line 11 pass? Only if (C, S, X∗, Y ∗, pwCS, Y xk
k)

has been encountered in a Hash query already, which is exactly the condition that sets bad on
lines 10-11 of G3.

Next let us consider Hash queries, as implemented by HSim. Lines 19 and 25-27 are as usual.
Line 20 checks whether the password in the query is correct, and line 21 checks whether the query
corresponds to an SCDH input pair (Xk′ , Yk′), as would be embedded in an Execute query. If
there is a match, line 22 then checks to see if the Z component of the Hash input is in fact Y

xk′
k′ .

If it is, it is either returned as an SCDH answer on line 23, or is saved on line 24 to be returned
by a future Execute query. (In either case, requiring that the DDH oracle result be true ensures
that the returned (k′, Z) is correct.) When does line 23 pass? It is exactly when Hash is queried
on an instance (consisting of the given X∗, Y ∗, pwCS) that already appeared in an Execute query.
This is the same condition that sets bad on line 27 of G3.

The analysis of these two cases proves Eq. (19); namely B wins its SCDH game whenever G3(A)
sets bad. Finally note that B makes at most qh queries to its DDH oracle and otherwise has
running time about that of A.

Game G4. The next game is given in the following figure, Figure 23. Here, we remove the lines
that are no longer needed, and indicate with boxes the lines that differ from G3. We claim that
these differing lines do not actually change the operation of the game; they merely make obvious
that messages X∗, Y ∗ can be equivalently selected without depending on the password pwCS. To
explain, we note that the instruction “x←$ Zp ; X∗ ← gx · gm·pwCS” is equivalent to “x̄←$ Zp ;
X∗ ← gx̄ ; x ← x̄ −m · pwCS” and similarly for Y ∗. Hence, the game proceeds identically to the
previous one, and we have

Pr[G4(A)] = Pr[G3(A)] .

Game G5. In this final game, we modify the Send and Hash oracles. In brief, we aim to have game
G5 always select session keys and protocol messages uniformly at random, so that, crucially, they
are independent of passwords. (Game G3 already did this for Execute queries, and G4 did this
for protocol messages X∗, Y ∗.) The consequence of this is that no oracles provide any information
about passwords, other than the Hash oracle. We claim that we can bound the difference between
games G4, G5 as:

|Pr[G5(A)]− Pr[G4(A)]| ≤ qh
|PW|

. (20)

Let us proceed to the details, starting with the Send oracles. In SendResp, game G4 selects the
session key by hashing on line 55. Game G5 alters this selection on lines 48-54, only if the instance is
fresh. A difference could only arise on lines 51-54. Here we set bad if a session key for this instance
is already determined by a prior Hash response, on lines 51-52. On line 53 we select SK←$K and
then store this information in table Ts. This does not change the oracle response but this stored
information could cause the game to set bad in a later Hash query; this occurs on lines 27-29 of
Hash.

43

Thus for SendResp there are two places where bad could be set, indicating a difference between
G4, G5. In brief, it is when a session key SK selected in SendResp disagrees with the output of
the Hash oracle, or vice versa, when Hash is queried on the appropriate instance inputs. Oracle
SendTermInit is modified in a similar way as SendResp in G5. On lines 68-69, the game checks
if SK has already been determined during a SendResp response, in which case it continues on with
that key. On lines 71-74 the game again selects SK uniformly at random, checking for disagreement
with the Hash oracle and storing the information in table Ts. This information is checked again
for disagreement on lines 30-32 of the Hash oracle.
Now, what is the probability that bad is set during execution of game G5? Observe that in all
locations where bad is set, the correct password pwCS must have been queried, along with the rest
of the instance information, to the Hash oracle. Either this is because the game checks that the
password is pwCS (lines 28,31), or the stored hash input must contain pwCS (lines 51,71). However,
all of the game responses (aside from Hash) are independent of, and thus provide no information
about, pwCS. Recall that this was chosen via pwCS←$ PW on line 3. Now bad can only be set if
the adversary is able to guess a correct pwCS to include in a Hash query. Over qh queries, and
assuming uniformly random passwords, this is at most qh/|PW|. This completes the justification
of Eq. (20).
Finally, we claim

Pr[G5(A)] = 1
2 .

This is because in G5, the session key is always selected as SK←$K. Recall that the A-PAKE
game’s challenge bit d determines whether, for a fresh instance in a Test query, a true session key
SK0 or a random key SK1 is returned. (This occurs on lines 23,24 of G5.) When the true session
keys are also chosen as SK0←$K, an adversary A has no advantage in distinguishing between
SK0, SK1, meaning that the probability of guessing d is 1/2. To conclude, collecting the terms from
the above sequence of game hops, we prove the equation in the theorem statement.

44

Games G0 = Ga-pake
SPAKE2,AGPg2

, G1, G2, G3

Init:
1 d←$ {0, 1} ; m, n←$ Zp ; M ← gm ; N ← gn

2 π ← (M, N) ; ad ← (m, n)
3 For (C, S) ∈ C × S do pwCS←$ PW
4 Return (π, ad)

Execute(C, i, S, j):
5 Require: τ i

C = ⊥ ∧ τ j
S = ⊥

6 x←$ Zp ; X∗ ← gx · gm·pwCS

7 y←$ Zp ; Y ∗ ← gy · gn·pwCS

8 If ∃P ∈ C ∪ S and j′ s.t. τ j′

P .tr = (C, S, X∗, Y ∗) then // G1-G3

9 Return ⊥ // G1-G3

10 If HT[C, S, X∗, Y ∗, pwCS, gxy] ̸= ⊥ then // G3

11 bad← true ; Return ⊥ // G3

12 SK←$K // G3

13 Te[C, S, X∗, Y ∗, pwCS, gxy]← SK // G3

14 SK← Hash(C, S, X∗, Y ∗, pwCS, Xy) // G0-G2

15 τ i
C ← (x, (C, S, X∗, Y ∗), SK, true, true)

16 τ j
S ← (y, (C, S, X∗, Y ∗), SK, true, true)

17 Return (X∗, Y ∗)

Corrupt(C, S):
18 CS← CS ∪ {(C, S)} ; Return pwCS

Reveal(P, i):
19 Require: τ i

P.acc = true ∧ (P, i) /∈ TS

20 For (P′, j) s.t. τ j
P′ .tr = τ i

P.tr do τ j
P′ .fr← false

21 Return τ i
P.sk

Test(P, i):
22 Require: τ i

P.acc = true ∧ (P, i) /∈ TS
23 If Fresh(τ i

P) = false then return ⊥ // G0-G1

24 If τ i
P.fr = false then return ⊥

25 SK0 ← Reveal(P, i) ; SK1←$K
26 TS← TS ∪ {(P, i)} ; Return SKd

Hash(z):
27 If Te[z] ̸= ⊥ then bad← true ; Return ⊥ // G3

28 If HT[z] ̸= ⊥ then return HT[z]
29 HT[z]←$K
30 Return HT[z]

Fin(d′):
31 Return (d′ = d)

SendInit(C, i, S):
32 Require: τ i

C = ⊥
33 x←$ Zp ; X∗ ← gx · gm·pwCS

34 τ i
C ← (x, (C, S, X∗,⊥),⊥, false, false)

35 Return X∗

SendResp(S, i, C, X∗):
36 Require: τ i

S = ⊥
37 y←$ Zp ; Y ∗ ← gy · gn·pwCS

38 If ∃P ∈ C ∪ S and j s.t. τ j
P .tr = (C, S, X∗, Y ∗) then // G1-G3

39 Return ⊥ // G1-G3

40 fr← J(C, S) /∈ CSK
41 X ← X∗/gm·pwCS

42 Z ← Xy

43 SK← Hash(C, S, X∗, Y ∗, pwCS, Z)
44 τ i

S ← (y, (C, S, X∗, Y ∗), SK, true, fr)
45 Return Y ∗

SendTermInit(C, i, S, Y ∗):
46 If τ i

C ̸= (x, (C, S, X∗,⊥),⊥, false, false) for some x, X∗ then
47 Return ⊥
48 If ∃P ∈ C ∪S \{S} and j s.t. τ j

P .tr = (C, S, X∗, Y ∗) then // G1-G3

49 Return ⊥ // G1-G3

50 fr← J∃! j s.t. (τ j
S .tr = (C, S, X∗, Y ∗) ∧ τ j

S .fr = true)K

51 fr← fr ∨ J(C, S) /∈ CSK
52 Y ← Y ∗/gn·pwCS

53 Z ← Y x

54 SK← Hash(C, S, X∗, Y ∗, pwCS, Z)
55 τ i

C ← (x, (C, S, X∗, Y ∗), SK, true, fr)
56 Return ⊥

Figure 22: Games G0-G3 for the proof of Theorem 5.3.

45

Games G4, G5

Init:
1 d←$ {0, 1} ; m, n←$ Zp ; M ← gm ; N ← gn

2 π ← (M, N) ; ad ← (m, n)
3 For (C, S) ∈ C × S do pwCS←$ PW
4 Return (π, ad)

Execute(C, i, S, j):
5 Require: τ i

C = ⊥ ∧ τ j
S = ⊥

6 x̄←$ Zp ; X∗ ← gx̄ ; x← x̄−m · pwCS

7 ȳ←$ Zp ; Y ∗ ← gȳ ; y ← ȳ − n · pwCS

8 If ∃P ∈ C ∪ S and j′ s.t. τ j′

P .tr = (C, S, X∗, Y ∗) then
9 Return ⊥

10 If HT[C, S, X∗, Y ∗, pwCS, gxy] ̸= ⊥ then
11 Return ⊥
12 SK←$K
13 Te[C, S, X∗, Y ∗, pwCS, gxy]← SK
14 τ i

C ← (x, (C, S, X∗, Y ∗), SK, true, true)
15 τ j

S ← (y, (C, S, X∗, Y ∗), SK, true, true)
16 Return (X∗, Y ∗)

Corrupt(C, S):
17 CS← CS ∪ {(C, S)} ; Return pwCS

Reveal(P, i):
18 Require: τ i

P.acc = true ∧ (P, i) /∈ TS
19 For (P′, j) s.t. τ j

P′ .tr = τ i
P.tr do τ j

P′ .fr← false
20 Return τ i

P.sk

Test(P, i):
21 Require: τ i

P.acc = true ∧ (P, i) /∈ TS
22 If τ i

P.fr = false then return ⊥
23 SK0 ← Reveal(P, i) ; SK1←$K
24 TS← TS ∪ {(P, i)} ; Return SKd

Hash(z):
25 If Te[z] ̸= ⊥ then return ⊥
26 (C, S, X∗, Y ∗, pw, Z)← z

27 If Ts[C, S, X∗, Y ∗] = (“server”, ȳ, SK) then // G5

28 If (pw = pwCS) ∧ (Z = (X∗/gm·pw)ȳ−n·pw) then // G5

29 bad← true ; Return ⊥ // G5

30 If Ts[C, S, X∗, Y ∗] = (“client”, x̄, SK) then // G5

31 If (pw = pwCS) ∧ (Z = (Y ∗/gn·pw)x̄−m·pw) then // G5

32 bad← true ; Return ⊥ // G5

33 If HT[z] ̸= ⊥ then return HT[z]
34 HT[z]←$K
35 Return HT[z]

Fin(d′):
36 Return (d′ = d)

SendInit(C, i, S):
37 Require: τ i

C = ⊥
38 x̄←$ Zp ; X∗ ← gx̄ ; x← x̄−m · pwCS

39 τ i
C ← (x, (C, S, X∗,⊥),⊥, false, false)

40 Return X∗

SendResp(S, i, C, X∗):
41 Require: τ i

S = ⊥
42 ȳ←$ Zp ; Y ∗ ← gȳ ; y ← ȳ − n · pwCS

43 If ∃P ∈ C ∪ S and j s.t. τ j
P .tr = (C, S, X∗, Y ∗) then

44 Return ⊥
45 fr← J(C, S) /∈ CSK
46 X ← X∗/gm·pwCS

47 Z ← X ȳ−n·pwCS

48 If ¬ fr then // G5

49 SK← Hash(C, S, X∗, Y ∗, pwCS, Z) // G5

50 Else // G5

51 If HT[C, S, X∗, Y ∗, pwCS, Z] ̸= ⊥ then // G5

52 bad← true ; Return ⊥ // G5

53 SK←$K // G5

54 Ts[C, S, X∗, Y ∗]← (“server”, ȳ, SK) // G5

55 SK← Hash(C, S, X∗, Y ∗, pwCS, Z) // G4

56 τ i
S ← (y, (C, S, X∗, Y ∗), SK, true, fr)

57 Return Y ∗

SendTermInit(C, i, S, Y ∗):
58 If τ i

C ̸= (x, (C, S, X∗,⊥),⊥, false, false) for some x, X∗ then
59 Return ⊥
60 If ∃P ∈ C ∪ S \ {S} and j s.t. τ j

P .tr = (C, S, X∗, Y ∗) then
61 Return ⊥
62 fr← J∃! j s.t. (τ j

S .tr = (C, S, X∗, Y ∗) ∧ τ j
S .fr = true)K

63 fr← fr ∨ J(C, S) /∈ CSK
64 Y ← Y ∗/gn·pwCS

65 x̄← x + m · pwCS ; Z ← Y x̄−m·pwCS

66 If ¬ fr then // G5

67 SK← Hash(C, S, X∗, Y ∗, pwCS, Z) // G5

68 Else if Ts[C, S, X∗, Y ∗] ̸= ⊥ // G5

69 (·, ·, SK)← Ts[C, S, X∗, Y ∗] // G5

70 Else // G5

71 If HT[C, S, X∗, Y ∗, pwCS, Z] ̸= ⊥ then // G5

72 bad← true ; Return ⊥ // G5

73 SK←$K // G5

74 Ts[C, S, X∗, Y ∗]← (“client”, x̄, SK) // G5

75 SK← Hash(C, S, X∗, Y ∗, pwCS, Z) // G4

76 τ i
C ← (x, (C, S, X∗, Y ∗), SK, true, fr)

77 Return ⊥

Figure 23: Games G4-G5 for the proof of Theorem 5.3. The boxed code is included in both G4 and
G5, and indicates a difference from G3 of the prior figure.

46

Adversary B(X1, . . . , Xqe , Y1, . . . , Yqe)

InitSim:
1 d←$ {0, 1} ; m, n←$ Zp ; M ← gm ; N ← gn ; k ← 0
2 π ← (M, N) ; ad ← (m, n)
3 For (C, S) ∈ C × S do pwCS←$ PW
4 Return (π, ad)

ExecuteSim(C, i, S, j):
5 Require: τ i

C = ⊥ ∧ τ j
S = ⊥

6 k ← k + 1
7 X∗ ← Xk · gm·pwCS

8 Y ∗ ← Yk · gn·pwCS

9 If ∃P ∈ C ∪ S and j′ s.t. τ j′

P .tr = (C, S, X∗, Y ∗) then
10 Return ⊥
11 If Tcdh[C, S, X∗, Y ∗, pwCS] ̸= ⊥ then
12 Z ← Tcdh[C, S, X∗, Y ∗, pwCS]
13 Gscdh

G,p,g,qe .Fin(k, Z)
14 SK←$K
15 Te[C, S, X∗, Y ∗, pwCS, k]← SK
16 τ i

C ← (x, (C, S, X∗, Y ∗), SK, true, true)
17 τ j

S ← (y, (C, S, X∗, Y ∗), SK, true, true)
18 Return (X∗, Y ∗)

HSim(z):
19 (C, S, X∗, Y ∗, pw, Z)← z

20 If pw = pwCS then
21 Set k′ to be the smallest index in [1..qe] s.t. (X∗/Mpw, Y ∗/Npw) = (Xk′ , Yk′)
22 If k′ ̸= ⊥ and if DDH(k′, Yk′ , Z) = true then
23 If k′ ≤ k then Gscdh

G,p,g,qe .Fin(k′, Z)
24 If k′ > k then Tcdh[C, S, X∗, Y ∗, pw]← Z

25 If HT[z] ̸= ⊥ then return HT[z]
26 HT[z]←$K
27 Return HT[z]

Figure 24: Adversary B for proof of Theorem 5.3. B runs A[InitSim,ExecuteSim,HSim, . . .]
with access to subroutines InitSim, ExecuteSim and HSim as shown. The remaining Corrupt,
Reveal, Test and Send oracles are implemented as subroutines matching game G3 of Figure 22.

47

	Introduction
	Preliminaries
	Signatures under parameter subversion
	Signature definitions
	Positive signature results: Okamoto
	Positive signature results: Katz-Wang
	Blind, threshold and modern signature schemes

	Encryption under parameter subversion
	Public-key encryption definitions
	Mixed PKE results: Cramer-Shoup

	PAKEs under parameter subversion
	PAKE definitions
	Negative PAKE results: KOY and derivatives
	Mixed PAKE results: SPAKE2 and derivatives

	References
	Converses of signature theorems
	Multi-user DT-DDH is implied by single-user
	Proof of Theorem 5.3

