
Attribute-Based Publicly Verifiable Secret Sharing

Liang Zhang1,3, Xingyu Wu1, Qiuling Yue∗1, Haibin Kan2, and Jiheng Zhang3

1 Hainan University, Renmin Road 58, Haikou, China
{zhangliang,22210839000029,yueqiuling}@hainanu.edu.cn

2 Fudan University, Handan Road 220, Shanghai, China
hbkan@fudan.edu.cn

3 Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
jiheng@ust.hk

Abstract. Can a dealer share a secret without knowing the shareholders? We provide a positive
answer to this question by introducing the concept of an attribute-based secret sharing (AB-SS)
scheme. With AB-SS, a dealer can distribute a secret based on attributes rather than specific
individuals or shareholders. Only authorized users whose attributes satisfy a given access structure
can recover the secret. Furthermore, we introduce the concept of attribute-based publicly verifiable
secret sharing (AB-PVSS). An AB-PVSS scheme allows external users to verify the correctness of
all broadcast messages from the dealer and shareholders, similar to a traditional PVSS scheme.
Additionally, AB-SS (or AB-PVSS) distinguishes itself from traditional SS (or PVSS) by enabling
a dealer to generate shares according to an arbitrary monotone access structure. To construct an
AB-PVSS scheme, we first implement a decentralized ciphertext-policy attribute-based encryption
(CP-ABE) scheme. The proposed CP-ABE scheme offers a smaller ciphertext size and requires fewer
computational operations, although it is not fully-fledged as a trade-off. We then incorporate non-
interactive zero-knowledge (NIZK) proofs to enable public verification of the CP-ABE ciphertext.
Based on the CP-ABE and NIZK proofs, we construct an AB-PVSS primitive. Furthermore, we
present an intuitive implementation of optimistic fair exchange based on the AB-PVSS scheme.
Finally, we conduct security analysis and comprehensive experiments on the proposed CP-ABE
and AB-PVSS schemes. The results demonstrate that both schemes exhibit plausible performance
compared to related works.

Keywords: attribute-based secret sharing · decentralized CP-ABE · attribute-based publicly ver-
ifiable secret sharing · NIZK

1 Introduction

A secret sharing (SS) scheme [1] is a cryptographic primitive where a dealer commits to a secret,
which can only be recovered by a threshold number of shareholders. However, in an SS scheme, a dealer
can broadcast invalid shares to deviate from the protocol. To address this issue, a verifiable secret sharing
(VSS) scheme [3] ensures that the dealer behaves honestly, as shareholders can verify the validity of the
dealer’s shares through corresponding proofs. Building on this, a publicly verifiable secret sharing (PVSS)
scheme [4,5] allows the dealer to publish shares publicly, enabling any external user to verify the dealer’s
honesty in a non-interactive manner.

Traditional (PV)SS schemes enable the dealer to share a secret with specific shareholders. Some
other works have extended this concept to more complex scenarios where shareholders are organized
hierarchically, such as in weighted access structures (WAS) [1,6], disjunctive access structures (DAS) [7],
conjunctive access structures (CAS) [8], and compartmented access structures [9,10]. However, these
access structures represent particular instances of arbitrary monotone access structures when applied
in secret sharing schemes. Consequently, the resulting secret sharing schemes are limited in their appli-
cability. An arbitrary monotone access structure allows a dealer to distribute shares according to more
flexible and versatile policies. The question of whether it is possible to construct (PV)SS schemes with
more general attribute-based access structures remains an open problem.

In this paper, we fill the gap by proposing an attribute-based secret sharing (AB-SS) scheme and
an attribute-based publicly verifiable secret sharing (AB-PVSS) scheme. AB-SS and AB-PVSS schemes
adopt a general access structure, providing versatile and fine-grained access control policies. More impor-
tantly, AB-SS qualifies a dealer to share a secret according to attributes, rather than concrete sharehold-
ers. We construct an AB-SS scheme by studying how SS schemes are leveraged in BSW CP-ABE [36]
and achieve an AB-PVSS scheme based on a newly proposed lightweight decentralized CP-ABE. The

decentralized CP-ABE uses secret shares only once4 in the ciphertext. Furthermore, an encryptor can
incorporate an arbitrary number of users as the authorities when generating a ciphertext, making the
CP-ABE scheme decentralized. To enable encryptors to prove knowledge of plaintext, we use Sigma
protocol [21] and Fiat-Shamir (FS) heuristic [19] to obtain NIZK proofs for the proposed decentralized
CP-ABE.

Our contributions. We put forward the concept of attribute-based secret sharing (AB-SS), allowing
a dealer to share/hide a secret according to attributes, rather than individuals or shareholders. We focus
on attribute-based publicly verifiable secret sharing (AB-PVSS) scheme, a sub-topic of AB-SS. AB-PVSS
not only inherits the advantage of AB-SS scheme, but also extends the functionalities of traditional PVSS
scheme. To implement an AB-PVSS scheme, we propose a more efficient decentralized CP-ABE scheme.
The main idea of the proposed CP-ABE is that we use secret shares only once in Encrypt algorithm.
Moreover, the CP-ABE is proved to be secure under discrete logarithm (DL) assumption. To prove
plaintext knowledge of the proposed CP-ABE ciphertext, we achieve NIZK proofs by incorporating
Sigma protocol with Fiat-Shamir heuristic. Comprehensive complexity analysis and experiments are
conducted for both the proposed CP-ABE scheme and AB-PVSS scheme. The results show that both
schemes outperform respective related works.

2 Related Works

2.1 Ciphertext-Policy Attribute-Based Encryption (CP-ABE)

Ciphertext-policy attribute-based encryption (CP-ABE) [36,41,42] employs access control policy
(ACP) in its ciphertext, enabling one-to-many public key encryption paradigm. In most existing CP-
ABE schemes, access control policy is implemented using secret sharing techniques (either Shamir secret
sharing or linear secret sharing scheme (LSSS) [22]). Hence, the CP-ABE encryption algorithm performs
the secret sharing phase and the CP-ABE decryption algorithm executes the secret reconstruction phase.

CP-ABE schemes enable a user to encrypt a ciphertext with attributes without caring about who
are the concrete decryptors. The Sahai and Waters research team has led an overwhelming development
of CP-ABE. CP-ABE originates from the Fuzzy identity-based encryption (IBE) [11] scheme which
was proposed by Sahai and Waters. Fuzzy IBE supports only threshold semantics access control policy,
leading to a limitation in applications. Bethencourt, Sahai and Waters (BSW) [36] presented the first
expressive CP-ABE construction based on bilinear mapping and Shamir secret sharing. The method on
translating an access control policy tree into multiple Shamir secret-sharing instances in their encryption
algorithm motivates our work. Herranz1 et al. [13] proposed a constant size threshold CP-ABE scheme.

To eliminate the single point of failure problem in CP-ABE, an intuitive method is to decentralize
the authorities who are capable of issuing decryption keys. Lewko and Waters (LW) [41] proposed a
multi-authority CP-ABE, where the authorities are autonomous and anyone can become an authority
by using an initial set of common reference parameters. They resolve the collusion attack by tying
a user’s key with a global identifier. We also inherit the idea in the proposed decentralized CP-ABE
introduced in Section 5.1. Rouselakis and Waters (RW) extended Lewko’s work by supporting large
university attributes and attributes can be used without being enumerated during setup. Both Lewko’s
and Rouselakis’s implementations incorporated LSSS to express access control policy in the encryption
algorithm.

2.2 Publicly Verifiable Secret Sharing (PVSS)

PVSS is a fundamental primitive in secure multi-party computation (SMPC) applications, especially
when fault-tolerance, public communication channels or public verifiability is required. These SMPC
applications include but not limited to distributed key generation [14], public distributed randomness
beacon [5,15], byzantine agreement [16] and blockchain consensus [17].

Most of the existing PVSS protocols are built upon a VSS scheme, where a public-key encryption
(PKE) scheme is used to encrypt the shares. Roughly speaking, VSS is realized via SS and verifiable
techniques or non-interactive zero knowledge (NIZK) proofs. Hence, shares in VSS are verifiable. Then,
through encrypting shares of VSS schemes via PKE, PVSS allows shares to be delivered and verified

4 Traditional CP-ABE schemes use secret shares multiple times [36,41,42] in the encryption algorithm, providing
the opportunity to reduce ciphertext size and the numbers of cryptograhpic operations

2

in a public channel. It’s interesting to notice that ciphertext-policy attribute-based encryption (CP-
ABE) [36,41,42] combines PKE and SS techniques. By intuition, we are motivated to design a (AB-)PVSS
scheme based on CP-ABE.

PVSS scheme has been studied for more than two decades. The intuition to achieve a PVSS protocol
is to choose a proper encryption algorithm to encrypt VSS shares. Stadler [4] is the first to propose a
PVSS protocol, based on ElGamal encryption [24] under number-theoretic settings. Fujisaki et al. [18]
uses complicated proof to prove that a share is correctly encrypted via RSA. Schoenmakers [23] resolves
PVSS problem using ElGamal encryption under elliptic curves setting. Ruiz et al. [25] construct a PVSS
protocol using Paillier’s cryptosystem [26] to encrypt shares. Later, Jhanwar et al. [29] improves the
Ruiz et al.’s protocol [25] by lowering the computation cost (in both the distribution and reconstruction
phase). Heidarvand et al. [27] build a PVSS protocol by leveraging bilinear pairings to prove dealer’s
honesty. All the above PVSS schemes [4,18,23,25,27,29] have verification complexity O(nt), where n is
the number of shareholders and t is the threshold. Cascudo et al. invent a SCRAPE PVSS protocol [5]
that achieves verification complexity O(n) using Reed-Solomon error-correcting code [30]. In SCRAPE,
the authors put forward two PVSS constructions. Further, Cascudo et al. [39] propose ALBATROSS
PVSS based on packed Shamir secret sharing, which aims at generating multiple secrets at a time.
ALBATROSS leverages low-degree exponent interpolation (LDEI) in the sharing phase to generate NIZK
proofs and LocalLDEI in the reconstruction phase to check validity of decrypted shares. The LDEI
technique is essentially Sigma protocol and Fiat-Shamir heuristic, which is similar to our construction in
this paper. Both ALBATROSS[39] and our protocol hide secret shares as pksii , and generate NIZK proofs
using Sigma protocol for the hiding process. HEPVSS[38] uses ElGamal encryption to hide secret share
and produce corresponding NIZK proofs. DHPVSS[38] optimizes the hiding process of HEPVSS and
uses Reed-Solomon code to verify the correctness of reconstruction phase. Recently, Cascudo et al. [2]
introduce qCLPVSS, a PVSS scheme based on class groups and it allows to reconstruct the original secret
in a finite field. They point out the distinctive application scenario is to construct MPC protocols. Since
the operational cost of class group is relatively high, they omit the concrete analysis about verification
complexity. Gentry et al. [12] propose a PVSS scheme, using lattice-based encryption to protect the
privacy of shares and using bulletproofs to provide non-interactive zero knowledge proofs.

Table 1 gives a brief comparison on the related works.

Table 1. Comparison of different PVSS schemes

Ref. Verif. Tech. Protocol ACP Applications
Stadler [4] O(nt) ElGamal PVSS threshold key escrow
Fujisaki et al. [18] O(nt) RSA PVSS threshold key escrow
Schoenmakers [23] O(nt) ElGamal PVSS threshold voting
Ruiz et al. [25] O(nt) Paillier PVSS threshold -
Heidarvand et al. [27] O(nt) Pairing PVSS threshold -
Jhanwar et al. [29] O(nt) Paillier PVSS threshold -
Cascudo et al. [5] O(n) Reed-Solomo PVSS threshold beacon
Cascudo et al. [39] O(n) LDEI PVSS threshold beacon
Cascudo et al.[38] O(n) ElGamal PVSS threshold resharing
Cascudo et al. [2] O(n) Class group PVSS threshold DKG, MPC
Gentry et al. [12] O(n) Lattice PVSS threshold -
ours O(n) CP-ABE AB-PVSS versatile fair exchange

2.3 Multi-Level Secret Sharing

In real-world distributed systems, trust is not distributed uniformly over all parties. The degree
of trust for distributed parties differs based on each party’s authority. When designing secret sharing
schemes, shareholders may have various ability to recover the dealer’s secret. Hence, different kinds of
access structures are employed in building secret schemes.

In the WAS-based secret sharing scheme [1,6], shareholders with higher privilege possess a greater
number of shares. WAS-based secret sharing is achieved through a quantitative method. Simmons [28]
introduced DAS-based and compartmented secret sharing schemes to distribute asymmetric trust among
shareholders. In the DAS-based secret sharing scheme [7], the distributed parties are put in multiple
levels. Any at least a threshold number of parties in a same level can recover the secret. If the number

3

of low-level parties is less than the threshold value, higher-level parties can participate in recovering the
secret. Parties at higher levels have more importance or higher authority than the parties at lower levels.
In compartmented secret sharing [9,10], parties are divided into disjoint compartments. The secret can
be recovered by any threshold number of parties in a compartment. In the CAS-based secret sharing
scheme [8], parties are also placed in multiple levels. Every group of a threshold number of parties in a
same level must cooperate to recover the secret. Similar to DAS-based secret sharing, higher-level parties
can be of help in case low-level parties do not reach the threshold value.

Benaloh et al.’s work [32] proved existence of generalized secret sharing and monotone functions.
However, we give a more practical construction using attributes in our AB-SS scheme. AB-SS is a new
cryptographic primitive and it provides the feature of anonymity, since a dealer does not necessarily need
to know the shareholders.

3 Preliminaries

3.1 Access Control Policy

Definition 1. (Access Structure [6]) Let A = {a1, a2, . . . , an} be a set of attribute and A be its power
set. A collection Γ ∈ A is an access structure, if it meets the following two conditions:

(1) non-triviality: if B ∈ Γ , then |B| ≠ 0.
(2) monotonicity: if B ∈ Γ , B ⊆ C, then C ∈ Γ .
If B ∈ Γ , we call it authorized, and if B /∈ Γ , we call it unauthorized.

Armed with the knowledge of access structure, we will frequently use another related concept, access
control policy (ACP), in the subsequent article. ACP can be regarded as an instance of access structure,
enabling only qualified users to access specific resources. Access control policy acp can be represented
using a tree structure, containing attribute strings. Each leaf node of the tree is an attribute string
appeared in acp. Each non-leaf node represents the threshold gate, described by its direct children
and a threshold value. A policy is satisfied only when enough (the threshold-gate value) attributes are
combined. The collection of the qualified attributes is called an authorized attribute set. For example,
t of (attr1, attr2, ..., attrn) is an access control policy and at least any t out of the n attributes can make
the policy satisfied. In another example, i.e., 2 of ((1 of (attr1, attr2)), attr3, attr4), [attr1, attr3] and
[attr2, attr4] are authorized attribute sets in this example.

3.2 Decentralized CP-ABE

Decentralized ciphertext-policy attribute-based encryption (CP-ABE) scheme is defined as below,
slightly modified from previous schemes [41,42]. The main modification is that partial ciphertext Cui is
input of key generation algorithm for authority i.

– GP← GlobalSetup(Λ). It takes in the security parameter Λ and outputs global parameters GP.
– (ski, pki)← AuthSetup(GP). Each authority i takes GP as input to produce a key pair (ski, pki).
– C ← Encrypt(s, acp,GID,GP, {pki}). The algorithm takes in GP, a message s ∈ G0, an access control

policy acp, an identity GID, and a set of public keys {pki}. Denote U be the all the attributes (leaf
nodes’ value) appeared in acp. It outputs a ciphertext C = (C0, {Cui}), where ui is the attribute
value controlled by authority i.

– Kui
← KeyGen(GP, Cui

, ui, ski). The algorithm takes in GP, an attribute ui belonging to the author-
ity i, a ciphertext Cui

associated with the attribute ui and an authority’s secret key ski. It produces
a decryption key Kui . If a set {ui} satisfies an access control policy acp, we say the corresponding
set {Kui} is an authorized key set.

– s ← Decrypt(GID, C,GP, {Kui
}). The decryption algorithm takes in GP, the ciphertext C, and a

collection of decryption keys {Kui
}. Only if {Kui

} is an authorized key set for the access control
policy acp in C, it outputs the message s.

Definition 2 (CP-ABE Security Game). The CP-ABE security model is defined through the following
game5:

5 In the CP-ABE defined above, ciphertext should be generated before decryption keys. It is unnecessary to
define a query phase before the challenge phase, which is required in previous works [36,41].

4

– Setup: The challenger runs GlobalSetup(Λ) to generate global parameters GP and obtains a key pair
(ski, pki) for each authority via AuthSetup(GP) algorithm. Then, it sends all public parameters to the
adversary.

– Challenge: The adversary constructs a challenge access control policy acp∗. Then, it sends two equal
length messages (s0, s1), acp∗ and GID to the challenger. The challenger randomly chooses b ∈ {0, 1}
and encrypts sb with acp∗ to obtain the resultant ciphertext C∗ = (C0, {Cui

}) which is sent to the
adversary.

– Query: By constructing each attribute value ui=“attrj@AUTHi”, the adversary queries a decryption
key Kui

from the challenger. Denote all the queried attributes as set U ′ ={“attrj@AUTHi”}∀j,∀i.
After current phase, any S ⊆ 2U

′
does not satisfy acp∗.

– Guess: The adversary outputs a guess b′ of b.

The scheme is breakable if an adversary has a non-negligible advantage in correctly guessing the bit b in
the above security game.

3.3 Sigma Protocol and NIZK Proof

In generic linear relationship Sigma protocol [21], a prover P can prove zero knowledge of X =
{x1, ..., xm} for Y , where Y = hx1

1 ...hxm
m and h1, ..., hm are generators of G, as follows:

P(X,Y) V

x′
1, ..., x

′
m

R←− Zq

Y ′ = h
x′
1

1 ...h
x′
m

m

c = Hash(Y, Y ′)

x̃1 = x′
1 − c · x1

...

x̃m = x′
m − c · xm

Y, Y ′, c

{x̃1, ..., x̃m}
Y ′ ?

= hx̃1
1 ...h ˜xm

m · Y c

Hash is modeled as a random oracle, as required by Fiat-Shamir heuristic [19]. Y ′ is called the commit-
ment value, c is the challenge value and {x̃1, ..., x̃m} the response value. The transcript (Y ′, c, {x̃1, ..., x̃m})
is called a conversation between P and V . The transcript is also regarded as NIZK proof proofsX for
proving knowledge of owning X.

A sigma protocol is required to achieve following security properties.

– Correctness: If P is honest, honest V always outputs True.
– Knowledge soundness: Given two correct conversations (Y ′, c, {xi}) and (Y ′, c′, {x′

i}) where c ̸= c′,
it is efficient to extract the private value X.

– Special honest verifier zero knowledge (HVZK): The proof proofsX reveals nothing information
about X.

4 Attribute-based Secret Sharing

Definition 3. (Attribute-based Secret Sharing) An attribute-based secret sharing scheme (AB-SS) is
defined with following two phases.

(1) Distribution Phase: The dealer chooses an ACP Γ and takes a secret s ∈ Zq as input. Then
using a randomized algorithm Share(Γ, s) −→ {s1, s2, · · · , s|Γ |} to output shares, where |Γ | is the number
of leaf nodes in Γ .

(2) Reconstruction phase: Using a deterministic algorithm Recon(Γ, S) −→ s to reconstruct the
secret, if S is an authorized attribute set for Γ , i.e., S ∈ Γ .

AB-SS is a secret sharing scheme that allows a dealer to share a secret based on attributes, not
individuals or shareholders. We give an AB-SS instance which is inspired by the BSW CP-ABE con-
struction [36], as below.

In the Distribution phase, the dealer constructs an ACP tree Γ to share a secret s. Denote U
be the set containing all the attribute values of leaf nodes in Γ . Each non-leaf node has a pre-defined
threshold value. Then, each (leaf and non-leaf) node in Γ is attached with a value, which is calculated

5

in a top-down manner. s is attached to the root node R. For each node x, define a polynomial px with
degree dx, where dx is one less than the threshold value. Next, set px(0) = pparent(x)(index(x)) for any
other node x, where the parent function returns x’s parent and the index function represents x’s index
value in its parent. Finally, the secret share for attribute ui is defined as pui

(H(ui)) and the values of
non-leaf node are discarded. For simplicity, H maps the |U | attributes to integers belong to [1, |U |].

In the Reconstruction phase, given an authorized attribute set S ∈ Γ , the dealer’s secret is recovered
in a down-top manner. For each non-leaf node, its value is recovered by its direct children nodes’ values,
using Lagrange interpolation. Finally, s is recovered.

5 Efficient Decentralized CP-ABE

In this section, we propose an efficient decentralized CP-ABE. The notations are following those in
Section 4.

5.1 Construction of the Decentralized CP-ABE

Let G0 be bilinear groups of prime order q, and let g0 be generators of G0. Besides, e : G0×G0 → G1

denotes the bilinear map. Λ is the security parameter, determining the size of the groups. Figure 1 shows
the proposed decentralized CP-ABE construction.

Functionality Decentralized CP-ABE algorithms

GlobalSetup(Λ) :

GP← GlobalSetup(Λ) = (g0,G0, H)

AuthSetup(GP) :

ski
R←− Zq

pki ← g
ski
0

Encrypt(s, acp,GID,GP, {pki}) :

w
R←− Zq

C =

{
C0 = s · gw·H(GID)

0 ,

{Cui = pk
pui

(0)·H(ui)

i }∀ui∈U

KeyGen(GP, Cui , ui, ski) :

Kui = C
1/ski
ui = g

pui
(0)·H(ui)

0

Decrypt(GID, C,GP, {Kui}) :

for leaf node z:

Fz = K
H(GID)/H(ui)
ui = g

pz(0)·H(GID)
0

for non-leaf node x:

Fx =
∏

y∈Sx
F

µ(S′
x)

y = ... = g
px(0)·H(GID)
0

s = C0/g
pR(0)·H(GID)
0 , where pR(0) = w

Fig. 1. Construction of the decentralized CP-ABE

The GlobalSetup algorithm chooses bilinear groups G0 of prime order q with generator g0. Also, it
defines a hash function H : {0, 1}∗ → Zq which is modeled as a random oracle. The function maps an
arbitrary value to a random element in Zq.

The AuthSetup algorithm takes in the global parameters GP = {g0,G0, H}, and authority i randomly
chooses ski ∈ Zq and calculates the corresponding public key pki = g

ski
0 .

The Encrypt algorithm takes in the a secret/plaintext s, an access control policy acp, the global
parameters GP, a global identifier GID and public keys {pki}. Denote T be the access control policy
acp tree. Each non-leaf node of T has a pre-defined threshold value. In the algorithm, each node of the
access control policy tree is attached to a value and the value is calculated in a top-down manner. As

6

clarified in Section 3.1, the secret sharing phase of the SS scheme is conducted for each non-leaf node in
the Encrypt algorithm. Denote U be the set containing all the values of leaf nodes in acp. For each node
(or attribute value) x, define a polynomial px with dx, where dx is one less than the threshold value. s is
the random value for the root node R. Then, set px(0) = pparent(x)(index(x)) for any other node x, where
the parent function returns x’s parent and the index function represents x’s index value in its parent.
Finally, computes the ciphertext C = (C0 = s ·gw·H(GID)

0 , {Cui
= pk

pui
(0)·H(ui)

i }∀ui∈U), where GID is used
to identify current encryption instance.6 Obviously, each Cui

in the ciphertext corresponds to a unique
leaf node.

The KeyGen algorithm invoked by authority i generates its key Kui for attribute value ui as follows:
Kui

= C
1/ski
ui = g

pui
(0)·H(ui)

0 . Since we propose a decentralized CP-ABE, multiple authorities exist. Here,
ui is used to represent that the attribute value is controlled by authority i.

As opposed to Encrypt algorithm, the secret reconstruction phase of the SS scheme is included in
the Decrypt algorithm, taking ciphertext C, GP and an authorized key set {Kui

} as the input. Define
µ(Z) =

∏
j,k∈Z,j ̸=k

k
k−j be the Lagrange coefficient. The Decrypt algorithm is a recursive operation from

down to top with the following two rules:

– For any leaf node x with attribute value ui, set recovered value Fx = K
H(GID)/H(ui)
ui = g

px(0)·H(GID)
0 .

px means the randomly chosen polynomial of node x.
– For a non-leaf node x with arbitrary child node z, denote Fz be the recovered value for node z, Sx

be an arbitrary authorized attribute set for node x, S′
x is defined as S′

x = {index(z) : z ∈ Sx}. If
{Kui

} does not comprise of an authorized key set, return ⊥ for the Decrypt algorithm. Otherwise,
calculate:

Fx =
∏

z∈Sx
F

µ(S′
x)

z

=
∏

z∈Sx
(g

pz(0)·H(GID)
0)µ(S

′
x)

=
∏

z∈Sx
(g

pparent(z)(index(z))·H(GID)
0)µ(S

′
x)

= g
px(0)·H(GID)
0

Hence, we recursively obtain gw·H(GID) for the root node of tree T . Finally, calculate plaintext M =

C0/g
pR(0)·H(GID)
0 , since pR(0) = w.

5.2 Security Analysis

Theorem 1. Under the DL assumption, the proposed CP-ABE scheme is secure against a static proba-
bilistic polynomial time adversary.

Proof: We say that a CP-ABE scheme is secure if for any polynomial time adversary, whose attributes
set U ′ do not satisfy the access control policy acp∗, has a negligible advantage in the security game (by
Definition 2) played against a challenger. Suppose the adversary can break the DL assumption with
advantage of η. The security game goes as follows:

– Setup: The challenger runs GlobalSetup(Λ) to generate global parameters GP and invokes AuthSetup(GP)
to obtain a key pair (ski, pki) for each authority. Then, it sends all public parameters to the adversary.

– Challenge: The adversary constructs a challenge access control policy acp∗. Then, it sends two equal
length messages (s0, s1), acp∗ and GID to the challenger. The challenger randomly chooses b ∈ {0, 1}
and encrypts sb with acp∗. The corresponding ciphertext is C∗ = (C0 = sb · gw·H(GID)

0 , {Cui
=

pk
pui

(0)·H(ui)

i }) which is sent to the adversary.
– Query: By constructing each attribute value ui, the adversary queries a decryption key Kui

=

{gpui
(0)·H(ui)

0 }, where i and j are parameters. Denote all the queried attributes as set U ′ ={“attrj@AUTHi”}∀j,∀i.
After the current phase, acp∗ is satisfied by none of set S ⊆ 2U

′
. These decryption keys {Kui}ui∈U ′

are sent to the adversary.
– Guess: The adversary makes a guess of b′.

Since w is randomly chosen, Pr[C0 = s0 · gw·H(GID)
0] = Pr[C0 = s1 · gw·H(GID)

0] = 1/2. If the adversary
wants to distinguish sb, it needs to compute g

w·H(GID)
0 . The adversary will succeed if it is able to recover

g
pR(0)
0 for the root node R given an acp∗. Due to the fact that the calculation of gw0 is a process from

bottom to top of acp∗. For each non-leaf node x, it is associated with a (t − 1)-degree polynomial px,
6 The use of GID follows decentralized CP-ABE schemes [41,42].

7

where t is the threshold number required to recover gpx(0)
0 . Since U ′ /∈ acp∗ after the Query phase, there

exists a non-leaf node x where less than t decryption keys are provided for the adversary. As is known,
less than t points interpolate infinite (t − 1)-degree polynomials, making it infeasible to defer g

px(0)
0 at

node x. Therefore, the adversary cannot recover gw0 where w = pR(0) and R denotes the root of acp∗.
Then, the last chance to obtain gw0 is by breaking the DL assumption so that pui

(0) can be obtained
directly from Cui

. Hence, the probability that the adversary succeeds in guessing Pr[b′ = b] is 1
2 + η,

where η is negligible.

5.3 Complexity of Decentralized CP-ABE schemes

In the CP-ABE Encrypt algorithm, C has two parts C0 and {Cui}. C0 costs 1 exponentiation on
G0 and each Cui

costs n exponentiations on G0. In the CP-ABE KeyGen algorithm, Kui
is generated

with only 1 exponentiation on G0. In the CP-ABE Decrypt algorithm, each (leaf or non-leaf) node
performs 1 exponentiation on G0. Table 2 summarizes the computation complexity on decentralized
CP-ABE schemes [41,42]. With regard to ciphertext size, our scheme takes up n + 1 elements on G0.
Table 3 summarizes the ciphertext size on decentralized CP-ABE schemes [41,42], where G1 is the bilinear
mapping group, i.e., G0 ×G0 → G1.

Table 2. Computation complexity

Ref. Encrypt KeyGen Decrypt

Exp. Pair Exp. Exp. Pair
Lewko et al. [41] 5n+ 1 0 2 n 2n

Rouselakis et al. [42] 6n+ 1 0 4 n 3n

Ours n+ 1 0 1 2n− 1 0

Note: n is the number of leaf nodes in the access control policy tree. As a binary tree, the number of non-leaf
nodes is n− 1.

Table 3. Ciphertext size

Ref. Decrypt

G0 G1

Lewko et al. [41] 2n n+ 1

Rouselakis et al. [42] 3n n+ 1

Ours n+ 1 0

Note: n is the number of leaf nodes in the access control policy tree.

6 Construction of AB-PVSS

6.1 AB-PVSS Definition

Definition 4. (Attribute-based Publicly Verifiable Secret Sharing) Let Γ ∈ A be an access control policy,
where A = 2{a1,a2,...,an}. An attribute-based publicly verifiable secret sharing scheme (AB-PVSS) contains
four phases, i.e., Setup, Distribution, Verification,Reconstruction:

(1) Setup Phase: On input security parameter Λ, global parameters GP = {g0,G0, H} is generated.
Each authority generates his key pair (pki, ski). The dealer collects all public keys {pki}i∈[1,n].

(2) Distribution Phase: The dealer chooses a Γ and takes a random value s ∈ G0. The dealer picks
w ∈ Zq and calculates and utilizes a randomized algorithm Share(Γ,w) −→ {w1, w2, · · · , w|Γ |} to output
shares for each leaf node in Γ . The dealer encrypts s with w to C and encrypts wj with the corresponding
authority’s public key pki to Cui , where ui is the attribute value of a leaf node. The whole result is denoted
by C. Also, the dealer generates an NIZK proof proofss for proving the correctness of the encryption.

(3) Verification phase: Any external user can verify that C correctly contains valid shares of some
secret non-interactively.

8

(4) Reconstruction phase: Firstly, each authority decrypts each Cui
with his private key ski to obtain

a decryption key Kui
. Note that any user should be check whether Kui

is correctly computed or not. With
enough decryption keys collected to be an authorized key set, a user can recover the secret value s.

Similar to PVSS scheme [5], an AB-PVSS scheme should satisfy the following three security require-
ments:

– Correctness. If the dealer and the authorities are honest, then all check in Verification and Recon-
struction phases will pass and the secret can be reconstructed in the Reconstruction phase with
any authorized key set.

– IND2-Secrecy [27]. Without an authorized key set, no one can learn any information about the secret
before Reconstruction. It is formally defined by Definition 5.

– Verifiability. If the Verification phase passes, the C is a valid sharing of some secret with high
probability. If the verification in the Reconstruction phase passes, Kui

is a correct decryption key
generated for attribute ui.

Definition 5 (IND2-Secrecy Game). An AB-PVSS has IND2-Secrecy if for any polynomial time
adversary A corrupting some authorities who cannot produce an authorized key set, A has negligible
advantage in a game with a challenger C.
1. Setup: C runs the PVSS Setup phase and sends (GP, pki, ski) to each uncorrupted shareholder Pi.
C sends public information and corrupted authorities’ private keys {ski} to A.

2. Challenge: The adversary A sends two equal length secrets (s0, s1) to C. C randomly chooses b ←
{0, 1} and runs the Distribution phase with secret sb. It sends all the output to A, along with s1−b.

3. Query: The adversary A queries a set of decryption keys, and the whole set should be unauthorized.
4. Guess: A outputs a guess b′ ∈ {0, 1}.
A’s advantage over the game is defined as |Pr[b = b′]− 1/2|.

The game is actually similar to the proposed CP-ABE security model in Definition 2.

6.2 NIZK Proofs for CP-ABE Ciphertext

In this section, we demonstrate how to achieve proof of plaintext knowledge for the proposed CP-
ABE ciphertext using the Sigma protocol and FS heuristic. Suppose a prover encrypts a secret s ∈ G0

to obtain C using the CP-ABE algorithm, as Equations (1) show.

C = Encrypt(s, acp,GID,GP, {pki}) =

{
C0 = s · gw·H(GID)

0 ,

{Cui
= pk

pui
(0)·H(ui)

i }ui∈U

(1)

Then, the prover composes the commitment value C ′, which is encrypted from s′
R←− G0, as Equa-

tions (2) show.

C ′ = Encrypt(s′, acp,GID,GP, {pki}) =

{
C ′

0 = s′ · gw
′·H(GID)

0 ,

{C ′
ui

= pk
p′
ui

(0)·H(ui)

i }ui∈U

(2)

where w′(̸= w) is randomly chosen from Zq; p′R is a randomly chosen polynomial for root node R, and
p′R(0) = w′. Next, the prover calculates the Sigma protocol challenge value c = H1(C

′, C), where H1 is
a hash function that maps data to an element in Zq. Then, the response value includes:

s̃ = s′/sc, w̃ = w′ − cw, {p̃ui
(0) = p′ui

(0)− c · pui
(0)}ui∈U

Thus, the NIZK proof proofss ← NIZK(C) = (C ′, c, (s̃, w̃, {p̃ui(0)}ui∈U)).
Any honest external verifier can be convinced that the prover has plaintext knowledge of s, if

CheckCiphertext , defined by Equations (3), outputs true:

CheckCiphertext(C, proofss) :
C ′

0
?
= s̃ · gw̃·H(GID)

0 Cc
0

{C ′
ui

?
= pk

p̃ui
(0)·H(ui)

i · Cc
ui
}ui∈U

w̃
?
= interpolate({p̃ui

(0)}ui∈U)

(3)

The last equation in Equations (3) provides binding relationship of s in C0 and {Cui
}. interpolate

implements the Lagrange polynomial interpolation process from bottom to top according to the acp tree.

9

Lemma 1 (Completeness). A dealer can use the CheckCiphertext algorithm to prove knowledge of the
secret s.

Proof. Given the CP-ABE ciphertext and an NIZK proofss, then the Equations (3) is proved to hold
as follows.

C ′

0 = s′ · gw
′·H(GID)

0 = s̃ · sc · g(w̃+cw)·H(GID)
0 = s̃ · gw̃·H(GID)

0 Cc
0

{C ′
ui

= pk
p′
ui

(0)·H(ui)

i = pk
(p̃ui

(0)+c·pui
(0))·H(ui)

i = pk
p̃ui

(0)·H(ui)

i · Cc
ui
}ui∈U

w̃ = w′ − cw = interpolate({p′ui
(0)}ui∈U)− c · interpolate({p̃ui

(0)}ui∈U) = interpolate({p̃ui
(0)}ui∈U)

Lemma 2 (Special knowledge soundness). Given two correct conversations with the same commit-
ment and different challenge value, it is efficient to calculate the plaintext s.

Proof. Given two accepting conversations (C, proofss) and (C, proofs′s), where proofss = (C ′, c, (s̃, w̃,
{p̃ui

(0)}ui∈U)) and proofs′s= (C ′, c′, (s̃′, w̃′, {p̃′ui
(0)}ui∈U)). Note that the two conversations share the

same sigma protocol value C ′. With

{
w̃ = w′ − cw,

w̃′ = w′ − c′w
, one can calculate w = w̃′−w̃

c−c′ . Thus, s can be

calculated as : s = C

g
w·H(GID)
0

.

Lemma 3 (Special HVZK). The proof proofss reveals nothing information about s.

Proof. The special HVZK is proved with a simulator. We need to prove that the simulator can
always generate a conversation that is identical with real conversation between P and V. The simulator
can generate the conversation in arbitrary order. Upon receiving the CP-ABE ciphertext C = {C0, Cui

}
and challenge value c, the simulator randomly chooses response values ŝ ∈ G0, ŵ ∈ Zq and multiple
polynomials according to the access control policy Γ in C, where ŵ invokes the AB-SS Share(Γ, ŵ)
algorithm to obtain {p̂ui

(0)}ui∈U for each leaf node in Γ . Then, generates a conversation as:

proofs′s = (C ′ = {C ′
0, C

′
ui
}, c, (ŝ, ŵ, {p̂ui

(0)}ui∈U))

where C ′
0 ← ŝ ·gŵ·H(GID)

0 Cc
0 and {C ′

ui
← pk

p̂ui
(0)·H(ui)

i ·Cc
ui
}ui∈U . Obviously, proofs′s always represents an

accepting conversation, as required. Furthermore, since Share is a random algorithm and ŝ, c, ŵ, {p̂ui
(0)}

are uniformly distributed in G0 and Zq, C ′
0 and {C ′

ui
} are uniformly distributed in G0. That means the

simulator can always output a proof proofs′s and the distribution is identical to the real randomized
conversation. Hence, proofss constructs an NIZK proofs for s in C.

6.3 Construction of AB-PVSS

In this section, we introduce how to build an AB-PVSS scheme based on the proposed CP-ABE
algorithm. Firstly, we introduce an algorithm CheckKey to check whether a CP-ABE decryption key
Kui is correctly generated with attribute ui. The CheckKey algorithm takes in Kui , pki and u, then
outputs true or false. The algorithm costs constant time, i.e., two bilinear pairings.

CheckKey(Kui
, pki, g0, Cui

) :

e(Kui
, pki)

?
= e(Cui

, g0)

For convenience, we introduce three entities in the AB-PVSS scheme, namely the dealer, authorities
and an external verifier/user. The dealer can share a secret using attribute values. The authorities are
responsible for generating keys according to attributes. The external verifier/user checks whether the
dealer or an authority is honest or not. If secret recovery is required, the external verifier/user acts as
the role to collect decryption keys from authorities.

Figure 2 depicts the diagram of data flow in four phases.

1. Setup Given the decentralized CP-ABE GP← GlobalSetup algorithm is initialized. Each authority
i invokes AuthSetup(GP) to obtain the key pair (ski, pki). The dealer collects all public keys {pki}.

2. Distribution The dealer constructs an access control policy acp. Then, the dealer encrypts his
secret s by invoking Encrypt(s, acp,GID,GP, {pki}) and obtains ciphertext C. At the same time, the
corresponding NIZK proofs proofss ← NIZK(C) is attached. Next, the dealer publishes C, proofss in
the public channel.

10

Dealer(input:s, acp) External verifier/user Authority Pi

. .Setup .

GP← GlobalSetup(Λ)

(ski, pki)← AuthSetup(GP)

. .Distribution .

C = (C0, {Cui})
← Encrypt(s, acp,GID,GP, {pki})

proofss ← NIZK(C)

. Verification .

CheckCiphertext(C, proofss)

. Reconstruction .

Kui ← KeyGen(GP, Cui , ui, ski)

CheckKey(Kui , pki, g0, Cui)

s← Decrypt(GID, C,GP, {Kui})

Fig. 2. The proposed AB-PVSS protocol based on CP-ABE

3. Verification Any external verifier can check C by CheckCiphertext(C, proofss). If the verfication
result is true, the verifier is sure that s is indeed encrypted to C but learns nothing about s.

4. Reconstruction Each authority i runs the KeyGen(GP, Cui , ui, ski) algorithm for each attribute ui

to obtain Kui . Each key Kui is checked via CheckKey(Kui , pki, g0, Cui). After collecting an authorized
key set {Kui

}, any user can invoke Decrypt(GID, C,GP, {Kui
}) to recover the secret s.

6.4 Security Analysis

This section analyzes the security requirements of the AB-PVSS scheme defined in Section 6.1.

Theorem 2 (Correctness). If the dealer and authorities are honest, Verification phase outputs true
and Reconstruction phase outputs the dealer’s secret s for any honest external verifier/user.

Proof: In the Distribution phase, the honest dealer computes C by encrypting a secret s under
access control policy acp and generate NIZK proofs proofss. proofss will always makes the Verification
outputs true for any honest external verifier/user due to completeness of Sigma protocols, as Lemma 1
shows. In the Reconstruction phase, honest authorities issue correct CP-ABE decryption keys to the
external user. Then, the decryption keys {Kui

} form an authorized key set, guaranteeing that attribute
set {ui} ∈ acp and s← Decrypt(GID, C,GP, {Kui

}) is successfully recovered.

Theorem 3 (IND2-secrecy). The proposed AB-PVSS is IND2-secrect against a probabilistic polynomial
time adversary A, without an authorized key set under the DL assumption and random oracle model.

Proof. By Lemma 3, we prove that A has negligible advantage to obtain the secret s from the NIZK
proofss. Moreover, we prove the A has negligible advantage in the CP-ABE security game by Theorem 1.
The proving process of Theorem 1 is also applicable to the IND2-Secrecy game, since the behaviors of A
are the same in both games given CP-ABE ciphertext. Thus, A also has negligible advantage in learning
information about plaintext s.

Theorem 4 (Verifiability). The protocol is (publicly) verifiable, i.e., the dealer is verifiable in Distri-
bution and authorities are verifiable in Reconstruction.

Proof: Theorem 2 has shown that Verification phase outputs true if the dealer is honest. If the dealer
is dishonest, it can be uncovered and the output is false by the soundness of Sigma protocols, as Lemma 2
shows. Hence, the dealer is verifiable in the Distribution phase. We introduce CheckKey algorithm to
check whether a CP-ABE decryption key Kui

is valid or not. The CheckKey is based on bilinear group

11

pairing, i.e., e(Kui
, pki)

?
= e(Cui

, g0). It is infeasible to find a invalid decryption key K ′
ui
̸= Kui

for a
dishonest authority, owing to one-wayness of bilinear mapping. Thus, the authorities are verifiable in the
Reconstruction phase.

6.5 Complexity of the Proposed AB-PVSS

PVSS scheme usually contains only one instance of secret sharing, which can be expressed with a
one-level threshold secret sharing. However, our protocol is attribute-based, enabling multi-level secret
sharing. To compare the computation and communication complexity with PVSS schemes, the below
analysis only considers a one-level threshold access control policy. Hence, n is the number of authori-
ties/shareholders, t is the threshold value.

Computation Complexity: In the Distribution phase, the dealer invokes Encrypt algorithm to gen-
erate C. It costs n+ 1 exponentiations to produce a ciphertext. The NIZK proofs generation algorithm
NIZK(C) generates C ′, c, (s̃, w̃, {p̃ui

(0)}ui∈U), where C ′ also takes n+1 exponentiations and s̃ takes 1 ex-
ponentiation. Hence, the Distribution phase takes 2n+ 3 exponentiations. In the Verification phase,
the CheckCiphertext costs 2 exponentiations for verifying C0 and 2n exponentiations for verifying all
{Cui}. Therefore, the Distribution phase takes 2n+2 exponentiations. In the Reconstruction phase,
the CheckKey costs 2 pairings for each decryption key. Besides, the Decrypt algorithm is used for recov-
ering secret s, costing t exponentiations. Therefore, the computation complexity of the Reconstruction
phase costs t exponentiations and 2t pairings in total.

Communication Complexity: In the Distribution phase, the dealer publishes the ciphertext C of
s and the corresponding NIZK proofs proofss = (C ′, c, (s̃, w̃, {p̃ui

(0)}ui∈U)). The proposed CP-ABE
ciphertext contains n elements on G0 and 1 element on G1. Hence, the Distribution contains 2n + 3
elements on G in total and n + 2 elements on Zq. In the Reconstruction phase, each authority i
publishes a CP-ABE decryption key Kui for each attribute u. Moreover, only t valid keys are enough for
the CP-ABE Decrypt algorithm. Hence, Reconstruction phase costs t elements on G for an external
user to recover the secret.

Table 4. Computation complexity

Ref. Distribution Verification Reconstruction
Exp. Exp. Pair Exp. Pair

SCRAPEDBS [5] 2n n 2n t+ 1 2t+ 1

SCRAPEDDH [5] 4n 5n − 5t+ 3 −
ALBATROSS[39] 2n+ 1 2n − 6t+ 10 −

HEPVSS[38] 7n 4n − 3t −
DHPVSS[38] n(n− t+ 2) + 2 n(n− t) + 4 − 5t −

Ours 2n+ 3 2n+ 2 − t 2t

Table 5. Communication complexity

Ref. Distribution Reconstruction
G Z G Z

SCRAPEDBS [5] 2n 0 t 0

SCRAPEDDH [5] 4n n+ 1 3t t+ 1

ALBATROSS[39] 2n n+ 1 3t t+ 1

HEPVSS[38] 3n 2n t 2

DHPVSS[38] n+ 2 1 3t t

Ours 2n n+ 3 t 0

Table 4 and Table 5 compare the computation and communication complexity of our protocol with
state-of-the-art (O(n) verification) PVSS schemes. To further underscore our contribution beyond com-
plexity, it is important to note that previous PVSS protocols [23,27,5,39,38] only enable a dealer to
distribute shares among individuals or shareholders. In contrast, our protocol is attribute-based, allow-
ing a dealer to share a secret using attribute values. This capability enables arbitrary monotone access
control, making our protocol applicable to more general and diverse scenarios.

12

7 Discussion

7.1 Notes on the Decentralized CP-ABE

1. The mask of using H(GID) and H(ui) seems useless in C, since ui and GID are public and adversaries
can invert a value without these masks. However, ui is an attribute in the access control policy policy
which is essential to CP-ABE schemes. And H(GID) is used to identify each CP-ABE ciphertext,
resembling previous schemes [41,42].

2. Our CP-ABE outperforms related works, because we use secret shares only once and remove bilinear
mapping. Let’s take decentralized RW CP-ABE [42] as an example to show how we reduce ciphertext
size and computation cost. A random value tx, two tuple of secret shares {λx} and {ωx} are generated
and used for attribute x in ciphertext. Another random value t is used in two fields KGID,u and
K ′

GID,u in KeyGen algorithm. Hence, the random values {tx} and t can be eliminated by bilinear
pairings in Decrypt algorithm. However, in our CP-ABE implementation, the ciphertext Cui

uses
each secret share pui

(0) only once in Encrypt algorithm. Then, the decryption key Kui
inputs the

ciphertext Cui
and no new random value is generated in KeyGen algorithm. Thus, we do not need

bilinear pairing operation to get rid of randomness in Decrypt algorithm.
3. As a sacrifice, our KeyGen algorithm requires the ciphertext Cui

as an input. That means traditional
CP-ABE Encrypt and KeyGen algorithms are independent and enables a decryption key to be
useful for future-generated ciphertext. However, our CP-ABE require Encrypt to be invoked before
KeyGen is executed for a plaintext. Hence, our scheme is a relaxation of functionality, which is
the weakness compared with related works. Strictly speaking, this may violate the concept of CP-
ABE for some researchers. We neglect the accuracy of the concept of CP-ABE, because our primary
contribution is to introduce AB-(PV)SS and its particularity. But it does impact its usage and
security in implementing our AB-PVSS scheme.

4. Although the encryptor can generate keys for decryptors without authorities, our decentralized CP-
ABE is still non-trivial in some distributed scenarios. These scenarios include those where a com-
mitment scheme or threshold decryption is required. We depict a fair exchange application based on
the decentralized CP-ABE or AB-PVSS in Section 7.3.

5. We implement this decentralized CP-ABE in order to uncover the connection between CP-ABE and
PVSS, as presented in Section 7.2.

7.2 Relationship Between AB-PVSS and CP-ABE

To our knowledge, AB-PVSS can be obtained by any CP-ABE along with NIZK. Actually, we have
also successfully constructed AB-PVSS with single-authority BSW CP-ABE [36] and multi-authority
RW CP-ABE [42], which are less efficient than the proposed AB-PVSS in this paper. That also explains
why we construct the more efficient decentralized CP-ABE. As a sacrifice, ciphertext has to be an input
of the KeyGen algorithm, indicating restrictions in some applications. AB-PVSS construction might
also be obtained based on traditional PVSS and multi-level ACP. Hence, CP-ABE is not a necessity in
building AB-PVSS schemes. In the future, we will investigate more about new constructions of AB-PVSS
schemes.

7.3 Applications Based on AB-(PV)SS

AB-SS can be useful in applications where SS can be applied, such as key escrow, distributed Elgamal
encryption, distributed key generation, distributed randomness beacon or other MPC protocols. However,
AB-SS has another plausible property for shareholders, i.e., anonymity. AB-SS allows a dealer to share
secret without knowing who are the potential shareholders. For example, in a business company, the
CEO’s secret, which will impact the company’s strategy, needs to be shared to all of the company’s
stockholders. The CEO can issue shares according to a stockholder’s attributes, such as the job field, the
nationality, the amount of stocks, the stock holding time, etc.

Also, the AB-PVSS protocol can be used in secure multi-party computation algorithms, such as
beacon protocol [5,39], distributed key generation (DKG) [2], where PVSS can apply. To more specifically,
the AB-PVSS scheme is suitable in applications where commitments in distributed environment are
required. Then, we describe a practical example, optimistic fair exchange (OFE) [31,35], based on AB-
PVSS primitive to highlight our contribution. In OFE protocol, two players, Alice (with secret x ∈ GT)
and Bob (with secret y ∈ GT), want to exchange their secrets fairly. It’s known that the fairness is hard
to guarantee without a trusted third party (TTP) [33]. One TTP may suffers the single point of failure

13

problem and we can solve the problem by employing decentralized TTPs [34]. In this example, Alice and
Bob can choose arbitrary n users as decentralized TTPs, of whom at least n/2 are honest. The OFE
protocol can be described with two communication rounds. In round-1, Alice and Bob obtains X and Y
by executing the AB-PVSS Distribution algorithm to hide x and y, respectively, where:

acp = 2 of (attr1@Alice, attr1@Bob, n/2 of (attr1@TTP1, ..., attr1@TTPn))

If both Alice and Bob are honest, each can obtain the other’s secret, since Reconstruction algorithm
can be successfully invoked with Alice’s key (generated with attribute “attr1@Alice”) and Bob’s key
(generated with attribute “attr1@Bob”) in round-2. If one player (say Bob) is malicious, honest TTPs
can be of help for Alice to recover y, since the acp can be satisfied by the set which is composed of
honest TTPs’ and Alice’s attributes. In this example, AB-PVSS is used to build decentralized TTPs
with property of autonomity (the TTPs do not need to negotiate with each other), optimism (the TTPs
are involved in only when arbitration requires) and even statelessness (the TTPs do not need to store
variables for an OFE instance).

8 Implementations

We implement the decentralized CP-ABE scheme and AB-PVSS scheme with Charm-Crypto li-
brary [40], which is a framework for constructing cryptographic schemes. It provides Python programming
language interfaces. The Charm-Crypto framework relies on the GMP (GNU multiple precision) arith-
metic library and the PBC (pairing-based cryptography) library written in C language. Charm-Crypto
also provides classic cryptographic primitives as its built-in examples, including the BSW CP-ABE [36],
LW CP-ABE [41] and RW CP-ABE [42]. Based on the built-in example, we first make it compatible with
the threshold-based access control policy. Then we implement our proposed decentralized CP-ABE. Fur-
ther, we implement our AB-PVSS and some of above mentioned PVSS schemes [5,39]. The experiments
are conducted on AWS Ubuntu 18.04, 4 GB RAM, with Python 3.6.9 and curve “SS512".

200 400 600 800

0

5

10

Number of attributes appeared in acp

E
n
cr
yp

t
co

st
(s

)

Ours
LW [41]
RW [42]

Fig. 3. Encrypt cost of decentralized CP-ABE

200 400 600 800

0

2

4

6

Number of attributes appeared in acp

D
ec
ry
p
t

co
st

(s
)

Ours
LW [41]
RW [42]

Fig. 4. Decrypt cost of decentralized CP-ABE

200 400 600 800

0

2

4

6

8

10

Number of shareholders/authorities n

T
im

e
co

st
(s

)

AB-PVSS
SCRAPEDBS

SCRAPEDDH

ALBATROSS
DHPVSS

Fig. 5. Distribution cost

200 400 600 800

0

2

4

6

8

Number of shareholders/authorities n

T
im

e
co

st
(s

)

AB-PVSS
SCRAPEDBS

SCRAPEDDH

ALBATROSS
DHPVSS

Fig. 6. Verification cost

200 400 600 800

0

2

4

6

8

Number of shareholders/authorities n

T
im

e
co

st
(s

)

AB-PVSS
SCRAPEDBS

SCRAPEDDH

ALBATROSS
DHPVSS

Fig. 7. Reconstruction cost

We then compare the performance of the proposed CP-ABE with other decentralized CP-ABE
schemes, i.e., LW CP-ABE [41] and RW CP-ABE [42]. Figure 3 and Figure 4 depict the Encrypt and
the Decrypt time cost, respectively. Though our decentralized CP-ABE scheme is not fully-fledged, these
figures indicate that our scheme outperforms previous constructions.

14

We then evaluate the performance with the proposed AB-PVSS scheme by downgrading the AB-PVSS
to a PVSS scheme and compare it with other PVSS schemes [5,39,38]. Figure 5, Figure 6 and Figure 7
show the concrete computation overhead of the Distribution phase (by the dealer), the Verification
phase (by a verifier), and the Reconstruction phase (by a user), respectively. SCRAPEDBS has the
lowest distribution time cost, which is identical to Table 4. It can be seen that our AB-PVSS and AL-
BATROSS have the lowest verification overhead. However, ALBATROSS has the highest reconstruction
overhead. DHPVSS has the lowest reconstruction overhead, but it requires superlinear complexity in the
distribution and verification phase due to point evaluations with a random (n-t-1)-degree polynomial.
HEPVSS is not shown in the figures, as it does not appear to be optimized in either phase by Table 4.

9 Conclusion

We achieve two favorable functionalities in the field of secret sharing schemes by proposing the
concept of AB-SS. They are: 1) a dealer can share a secret with an arbitrary monotone access structure;
2) a dealer also can share a secret without knowing the shareholders. We give the definition of AB-SS
rigorously and present an AB-SS scheme by adopting some ideas from BSW CP-ABE. Then, we build
an efficient decentralized CP-ABE by reducing the times of secret shares usage in Encrypt algorithm.
Further, NIZK proofs are attached to prove plaintext knowledge for the proposed CP-ABE ciphertext.
The NIZK proofs are obtained by leveraging generic linear Sigma protocol and Fiat-Shamir heuristic.
Finally, AB-PVSS scheme is formally defined and an AB-PVSS scheme is constructed by incorporating
the proposed CP-ABE scheme and NIZK proofs.

References

1. Shamir, A. How to share a secret. Comm. of the ACM, 1979, 22(11), 612–613.
2. Cascudo, I., & David, B. Publicly verifiable secret sharing over class groups and applications to DKG and

YOSO. In Eurocrypt’24, 2024, pp. 216–248.
3. Feldman, P. A practical scheme for non-interactive verifiable secret sharing. In FOCS’87, 1987, pp. 427–438.
4. Stadler, M. Publicly verifiable secret sharing. In Eurocrypt’96, 1996, pp. 190–199.
5. Cascudo, I., & David, B. SCRAPE: Scalable randomness attested by public entities. In ACNS’17, 2017, pp.

537–556.
6. Beimel, A., Tassa, T., & Weinreb, E. Characterizing ideal weighted threshold secret sharing. In TCC’05,

2005, pp. 600–619.
7. Belenkiy, M. Disjunctive multi-level secret sharing. Cryptology ePrint Archive, 2008.
8. Tassa, T. Hierarchical threshold secret sharing. Journal of cryptology, 2007, 20(2), 237–264.
9. Tassa, T., & Dyn, N. Multipartite secret sharing by bivariate interpolation. Journal of Cryptology, 2009,

22(2), 227–258.
10. Chen, Q., Tang, C., & Lin, Z. Efficient explicit constructions of multipartite secret sharing schemes. IEEE

TIT, 2021, 68(1), 601–631.
11. Sahai, A., & Waters, B. Fuzzy identity-based encryption. In Eurocrypt’05, 2005, pp. 457–473.
12. Gentry, C., Halevi, S., & Lyubashevsky, V. Practical non-interactive publicly verifiable secret sharing with

thousands of parties. In Eurocrypt’22, 2022, pp. 458–487.
13. Herranz, J., Laguillaumie, F., & Ràfols, C. Constant size ciphertexts in threshold attribute-based encryption.

In PKC’10, 2010, pp. 19–34.
14. Fouque, P. A., & Stern, J. One round threshold discrete-log key generation without private channels. In

PKC’01, 2001, pp. 300–316.
15. Syta, E., Jovanovic, P., Kogias, E. K., Gailly, N., Gasser, L., Khoffi, I., Fischer, M. J., & Ford, B. Scalable

bias-resistant distributed randomness. In SP’17, 2017, pp. 444–460.
16. Bessani, A. N., Alchieri, E. P., Correia, M., & Fraga, J. S. DepSpace: a Byzantine fault-tolerant coordination

service. In Eurosys’08, 2008, pp. 163–176.
17. Kiayias, A., Russell, A., David, B., & Oliynykov, R. Ouroboros: A provably secure proof-of-stake blockchain

protocol. In Crypto’17, 2017, pp. 357–388.
18. Fujisaki, E., & Okamoto, T. A practical and provably secure scheme for publicly verifiable secret sharing and

its applications. In Eurocrypt’98, 1998, pp. 32–46.
19. Fiat, A., & Shamir, A. How to prove yourself: Practical solutions to identification and signature problems.

In Eurocrypt’86, 1986, pp. 186–194.
20. Zhang, L., Qiu, F., Hao, F., & Kan, H. 1-Round Distributed Key Generation With Efficient Reconstruction

Using Decentralized CP-ABE. IEEE TIFS, 2022, 17, 894–907.
21. Damgård, I. On Σ-protocols. Lecture Notes, University of Aarhus, Department for Computer Science, 2002.
22. Beimel, A., Ben-Efraim, A., Padró, C., & Tyomkin, I. Multi-linear secret-sharing schemes. In TCC’14, 2014,

pp. 394–418.

15

23. Schoenmakers, B. A Simple Publicly Verifiable Secret Sharing Scheme and Its Application to Electronic. In
Crypto’99, 1999, pp. 148–164.

24. ElGamal, T. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE TIT,
1985, 31(4), 469–472.

25. Ruiz, A., & Villar, J. L. Publicly verifiable secret sharing from Paillier’s cryptosystem. In SAC’05, 2005.
26. Paillier, P. Public-key cryptosystems based on composite degree residuosity classes. In Eurocrypt’99, 1999,

pp. 223–238.
27. Heidarvand, S., & Villar, J. L. Public verifiability from pairings in secret sharing schemes. In SAC’09, 2009,

pp. 294–308.
28. Simmons, G. J. How to (really) share a secret. In Asiacrypt’98, 1988, pp. 390–448.
29. Jhanwar, M. P., Venkateswarlu, A., & Safavi-Naini, R. Paillier-based publicly verifiable (non-interactive)

secret sharing. Designs, Codes and Cryptography, 2014, 73, 529–546.
30. McEliece, R. J., & Sarwate, D. V. On sharing secrets and Reed-Solomon codes. Communications of the ACM,

1981, 24(9), 583–584.
31. Zhang, L., Kan, H., Qiu, F., & Hao, F. A Publicly Verifiable Optimistic Fair Exchange Protocol Using

Decentralized CP-ABE. The Computer Journal, 2024, 67(3), 1017–1029.
32. Benaloh, J., & Leichter, J. Generalized secret sharing and monotone functions. In Crypto’88, 1990.
33. Pagnia, H., & Gärtner, F. C. On the impossibility of fair exchange without a trusted third party. Technical

Report, Darmstadt University of Technology, Department of Computer Science, Darmstadt. 1999.
34. Küpçü, A. Distributing trusted third parties. ACM SIGACT News, 2013, 44(2), 92–112.
35. Asokan, N., Shoup, V., & Waidner, M. Optimistic fair exchange of digital signatures. In Eurocrypt’98, 1998,

pp. 591–606.
36. Bethencourt, J., Sahai, A., & Waters, B. Ciphertext-Policy Attribute-Based Encryption. In SP’07, 2007, pp.

321–334.
37. Berrut, J.-P., & Trefethen, L. N. Barycentric lagrange interpolation. SIAM Review, 2004, 46(3), 501–517.
38. Cascudo, I., David, B., Garms, L., & Konring, A. YOLO YOSO: fast and simple encryption and secret

sharing in the YOSO model. In Asiacrypt’21, 2022, pp. 651–680.
39. Cascudo, I., & David, B. ALBATROSS: publicly attestable batched randomness based on secret sharing. In

Asiacrypt’20, 2020, pp. 311–341.
40. Akinyele, J. A., Garman, C., Miers, I., Pagano, M. W., Rushanan, M., Green, M., & Rubin, A. D. Charm: a

framework for rapidly prototyping cryptosystems. Journal of Cryptographic Engineering, 2013, 3, 111–128.
41. Lewko, A., & Waters, B. Decentralizing attribute-based encryption. In Eurocrypt’11, 2011, pp. 568–588.
42. Rouselakis, Y., & Waters, B. Efficient statically-secure large-universe multi-authority attribute-based encryp-

tion. In FC’15, 2015, pp. 315–332.

16

	Attribute-Based Publicly Verifiable Secret Sharing

