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Abstract

Recent advancements in Large Language Models (LLMs) have transformed communication, yet their
role in secure messaging remains underexplored, especially in surveillance-heavy environments. At the
same time, many governments all over the world are proposing legislation to detect, backdoor, or even
ban encrypted communication. That emphasizes the need for alternative ways to communicate securely
and covertly over open channels. We propose a novel cryptographic embedding framework that enables
covert Public Key or Symmetric Key encrypted communication over public chat channels with human-
like produced texts. Some unique properties of our framework are: 1. It is LLM agnostic, i.e., it allows
participants to use different local LLM models independently; 2. It is pre- or post-quantum agnostic; 3.
It ensures indistinguishability from human-like chat-produced texts. Thus, it offers a viable alternative
where traditional encryption is detectable and restricted.
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1 Introduction
It is an undisputed and consensually accepted fact that Artificial Intelligence (AI) and Machine Learning
are the most disruptive technologies that cause civilization and societal transformation. They profoundly
affect industry, economy, work relations, and manufacturing procedures [32].

Large Language Models (LLMs), most notably ChatGPT [27] but also free and open source models like
LLaMA [34], and DeepSeek [4], recently the top-ranked Grok 3 [39] (in [9] where more than 200 models are
ranked), are the key part of why AI is seen as a disruptive technology. They’re particularly impactful in
human language applications like customer service, education, task automation, and efficiency improvement.
While other AI fields, such as computer vision, are also disruptive, LLMs are currently at the forefront due
to their recent popularity and broad applications. LLM models possess remarkable capabilities in generating
human-like text responses and addressing queries across various aspects of daily life. Leveraging the attention
mechanism, they process and generate contextually relevant responses with high coherence. LLMs can also
facilitate communication between two parties, each using their own LLM to generate responses, enabling
AI-mediated conversations.

With increasing interest in LLMs, significant research [10, 40, 11, 41] has focused on embedding secret
messages within LLM-generated responses, particularly for secure communication between two parties. These
approaches enable private communication over public channels, as LLM responses are inherently transmitted
in such settings. The security of these methods is fundamentally based on the principle that an LLM-
generated response containing an embedded secret message must be indistinguishable from a regular LLM-
generated response without any hidden information, preventing adversarial detection.

Nevertheless, all the previous approaches are based on certain assumptions, e.g., about the minimum
entropy of the public channel or the implementation of a random oracle. These assumptions are rather strict
and hard to follow while implementing these approaches. Therefore, in this work, we remove these assump-
tions and present a construction to enable private communication over public chat channels. To do that,
we construct a special function that embeds a given set of characters in specific positions in LLM-generated
text. Though there is a recent work [12] addressing if ChatGPT can count letters, the special function in our
work addresses a bit similar but much harder problem of indistinguishable embedding ciphertexts at exactly
desired positions. This challenge becomes more critical amid rising threats to user data privacy.

1.1 Motivation
Recent political agendas and actions significantly threaten user data privacy, as evidenced by multiple recent
events. The UK government has demanded that Apple implement a backdoor to access users’ encrypted
data [24]. Similarly, the French government considered measures to allow message transmission within the
framework of investigative requests [25]. In a related development, Russia-backed hacking groups have
devised techniques to compromise encrypted messaging services, including Signal, WhatsApp, and Tele-
gram [16]. These developments raise serious concerns about the future of secure communication. Given
the potential scenario where public communication lacks encryption, it becomes crucial to explore alterna-
tive methods for embedding hidden information within publicly available content. This work addresses this
challenge and proposes a novel approach to achieving covert communication under such constraints.

While existing techniques such as anamorphic encryption [31] provide a means of protecting privacy, their
applicability remains limited under certain constraints. Notably, if a repressive regime were to monitor, de-
tect, and ultimately ban all conventional encryption methods, there would be a critical need for alternative
ways to communicate over open channels securely. Motivated by this challenge, our work proposes a frame-
work to facilitate covert communication under such restrictive conditions.

1.2 Contribution
In this paper, we present a novel framework for covert encrypted communication over public chat channels.
The contributions of the paper are as follows.

1. We construct a novel function EmbedderLLM that algorithmically places given characters within
contextually appropriate words at specific positions in the LLM-generated response.
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2. We propose a framework where we use EmbedderLLM to conduct symmetric LLM cryptography or
public-key cryptography.

(a) As a use case example, we show how a password-based authenticated encryption scheme can be
implemented to use EmbedderLLM. It embeds a secret message within the produced ciphertext
encoded in an LLM-generated text.

(b) As another use case example, we show how to implement an Elliptic Curve Diffie−Hellman key
exchange with Ephemeral keys (ECDHE) within our framework.

1.3 Paper Organization
The remainder of the paper is organized as follows: Section 2 reviews related work. Section 3 provides an
overview of transformers. Section 4 introduces the notation and details the construction of EmbedderLLM.
Section 5 explores the LLM framework to enable LLM-based cryptography, categorizing approaches into
symmetric and public-key cryptography. Finally, Section 6 concludes the paper and outlines promising
directions for future research.

2 Related Work
Anamorphic Encryption Persiano et al. [31] invented the notion of anamorphic encryption, which allows
private communication between parties even if a dictator gets the secret keys of the parties. Technically, an
anamorphic encryption scheme enables two parties, sharing a double key, to embed covert messages within
ciphertexts of an established PKE scheme. This protects against a dictator who can force the receiver to
disclose the PKE secret keys, but remains unaware of the existence of the double key.

Banfi et al. [3] refine the original anamorphic encryption model, identifying two key limitations. First, the
original scheme restricts double key generation to once, requiring a new key-pair after a dictator takes power,
which may raise suspicion. Second, the receiver cannot determine if a ciphertext contains a covert message.
To address these, Banfi et al. propose a model allowing multiple double keys per public key and enabling
covert channels after key deployment. They provide constructions showing schemes like ElGamal, Cramer-
Shoup, and RSA-OAEP support these robust extensions, enhancing secure communication in authoritarian
regimes.

Following the work of Banfi et al., another important contribution comes from Catalano et al. [8].
In this work, the authors investigate the constraints of implementing anamorphic encryption using black-
box techniques, focusing on the message space size. They show that any black-box approach can only
support a message space that is polynomially bounded by the security parameter, limiting its scalability.
Moreover, they prove that certain stronger forms of anamorphic encryption, like asymmetric anamorphic
encryption [7], cannot be achieved through black-box constructions. However, under specific assumptions
about the underlying public-key encryption scheme, the authors demonstrate that it is possible to realize
anamorphic encryption with a much larger message space, providing valuable insights into the practical
limitations and possibilities of black-box anamorphic encryption.

While anamorphic encryption is effective in mitigating risks under a dictatorship, several challenges
remain. For instance, the frequency of encrypted communications between two parties may arouse suspicion,
prompting the dictator to take measures that disrupt private communication. Another potential issue arises
if the dictator outright bans encrypted communications or anamorphic schemes hindering surveillance [6],
forcing citizens to communicate publicly. In such a scenario, private exchanges between individuals would be
entirely thwarted, rendering secure communication using anamorphic encryption or any sort of encryption
impossible.

Steganography Steganography enables covert communication by embedding secret messages within
carrier signals such as text, images, audio, or video. In linguistic steganography (LS), natural language
text serves as the carrier, producing a steganographic (stego-) text that conceals hidden information. The
primary challenge in LS is generating stego-texts that not only encode secret messages but also maintain
naturalness and fluency to avoid detection.
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Wang et al. [37] propose DAIRstega, a linguistic steganography method that dynamically allocates cod-
ing intervals based on token conditional probabilities using a roulette wheel approach. By favoring higher-
probability tokens, DAIRstega enhances the naturalness of the generated text while embedding secret mes-
sages efficiently. This approach improves stego-text quality, making it harder for adversaries to distinguish
from ordinary text.

Steganographic communication typically occurs in a public setting where an eavesdropper, Eve, attempts
to detect hidden messages. Alice, the sender, must ensure that Bob, the receiver, can decode the message
while minimizing the risk of Eve discovering its presence. A conventional analogy compares Bob to a prisoner
receiving a letter from Alice, a family member outside the prison, while Eve, the prison guard, scrutinizes
the letter for unusual content. Traditional linguistic steganography methods modify an existing cover text
through subtle alterations, such as synonym replacements, to avoid detection. However, with advancements
in generative models, particularly LLMs, coverless steganography has emerged as a promising alternative.
This approach generates stego-texts that appear indistinguishable from natural language while embedding
more information within shorter messages compared to conventional cover-text-based techniques.

Huang et al. [17] introduce a coverless LLM-based steganography method where an arithmetic coding
decoder guides text generation to embed secret messages seamlessly. Their approach optimizes a modified
probability distribution for token generation while imposing a KL divergence constraint to balance secrecy
and fluency. Their work demonstrates how LLMs can be leveraged to improve the security and reliability
of linguistic steganography. Building upon this, Huang et al. [18] introduce a framework that enhances
embedding efficiency by modeling the steganographic process as a Constrained Markov Decision Process
(CMDP). In recent work, Bai et al. [2] introduced a method that pseudorandomly shifts the probability
interval of an LLM’s distribution to create a private distribution for token sampling.

An LLM-based steganography has certain assumptions. For example, the tokenization process for the
sender and the receiver parties must match. Another assumption is about the entropy of the channel which
defines the undetectability property of the steganography. However, these assumptions can be exploited,
e.g., by tokenization error, creating a drawback of LLM-steganography.

However, a recent work [36] employs a similar idea of embedding a message within a context using sparse
sampling for provably secure steganography. Nevertheless, technicalities such as optimal ranges for human-
like chat conversations, embedding of the most frequent characters, cryptographic approach for defining the
framework, and broadness to cover both symmetric and public-key cryptography is where we differ.

Watermarking Watermarking, like steganography, embeds secret messages in a model’s output. How-
ever, unlike steganography, watermarking ensures the message remains detectable even after modifications.
With the rise of LLMs, research has increasingly focused on developing robust watermarking techniques for
generated text [10, 40, 19, 11, 41, 42], as detailed in recent surveys [20, 21]. While watermarking is used to
verify ownership, authorship, or track usage across various media, steganography prioritizes confidentiality
and undetectability, concealing the the hidden message’s presence.

Recent advancements in watermarking techniques for LLMs have focused on embedding undetectable
watermarks to ensure the integrity and authenticity of generated text. Christ et al. [10] introduced a
cryptographically-inspired method where watermarks can only be detected with a secret key, making it
computationally infeasible for unauthorized users to distinguish between watermarked and non-watermarked
outputs. This approach ensures that the quality of the text remains unaffected, and the watermark remains
undetectable even under adaptive querying.

Building upon the concept of undetectable watermarks, Zamir [40] proposed a method to hide arbitrary
secret payloads within LLM responses. A secret key is required to extract the payload, and without it,
distinguishing between original and payload-embedded responses is provably impossible. Notably, this tech-
nique preserves the generated text quality, thereby extending the applicability of undetectable watermarking
in secure communications.

To counter adaptive users, Cohen et al. [11] developed a multi-user watermarking scheme that traces
model-generated text to users or groups, even under adaptive prompting. Their construction builds on
undetectable, adaptively robust, zero-bit watermarking, ensuring watermark detectability despite text mod-
ifications.

To further enhance the resilience of watermarks against various text alterations, recent research [41, 42]
has proposed methods that maintain the watermark’s detectability even after the text undergoes paraphras-
ing or other modifications. These approaches aim to ensure that the embedded watermarks are not only
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imperceptible but also robust against a range of potential attacks, thereby strengthening the security and
reliability of watermarking in LLMs.

These studies collectively illustrate the evolving landscape of LLM watermarking techniques, emphasizing
the need to balance undetectability, robustness, and adaptability to diverse user behaviors and adversarial
threats. However, key properties such as robustness and publicly accessible detection APIs can also introduce
vulnerabilities, potentially exposing these systems to various attacks [29, 30, 13].

3 Transformers
LLMs represent a specific type of neural network architecture. They use transformers and attention mecha-
nisms, which Vaswani et al. introduced in a 2017 paper [35] titled “Attention Is All You Need.”

The fundamental mathematical techniques and theories employed in all LLMs include: 1. Linear Algebra
methods such as high-dimensional embeddings and matrix operations; 2. Probability Theory, particularly the
softmax functions that transform numerical values (typically the results of dot products) into probabilities
(probability distributions) over tokens; and 3. Calculus, notably partial derivatives used in gradient descent
algorithms to identify minima.

In this work, we will use some of the transformer’s parameters known as temperature T , top-k, and top-p
(nucleus) sampling. Those parameters are used to control the diversity and quality of the generated text.
Let us briefly elaborate on the role of these parameters.

Transformers output a set of raw scores, called logits, for each token in the vocabulary. These logits,
denoted zi for token i, are converted into probabilities using the softmax function:

pi = ezi∑
j ezj

Here, pi represents the probability of token i, and the sum is calculated across all tokens in the vocabulary.
The model then samples the next token from this probability distribution. Parameters such as temperature
T , top-k, and top-p adjust these probabilities.

Temperature T , is a parameter that scales the logits before applying the softmax function. The modified
probability distribution becomes:

pi = ezi/T∑
j ezj/T

(1)

• When T = 1: This is the standard softmax, and the probabilities reflect the model’s raw predictions.
When T > 1: Dividing the logits by a larger T diminishes the magnitude of the exponents, making the
distinctions between logits less emphasized. This flattens the distribution and leads to probabilities
that are more uniform. Consequently, the model becomes less confident, fostering increased diversity
in token selection.

• When T < 1: Dividing by a smaller T amplifies the exponents, exaggerating differences between logits.
This sharpens the distribution, making high-probability tokens even more likely and low-probability
ones less likely. The output becomes more deterministic and focused.

Thus, temperature controls the smoothness or confidence of the probability distribution: High temperature
(T > 1) invokes more randomness and creativity; Low temperature (T < 1) causes more predictable, high-
confidence outputs.

Top-k sampling restricts the model to sample from only the k most likely tokens, rather than the entire
vocabulary. More concretely:

1. Identify the k tokens
Ytop−k = {y1, . . . , yk} (2)

with the highest logits, say zi1 , zi2 , . . . , zik
(where i1, i2, . . . , ik are the indices of these tokens).
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2. Compute probabilities only over Ytop−k tokens, setting the probabilities of all other tokens to zero:

pij = ezij∑k
m=1 ezim

(3)

for j = 1, 2, . . . , k, and pi = 0 for all other tokens.

3. Sample the next token from this truncated distribution.

Thus, the effect of top-k sampling is that it eliminates unlikely tokens, which reduces the chance of incoherent
or random outputs. Smaller values of k create more focused output, while larger values of k allow for greater
diversity among the top candidates.

Top-p sampling, also known as nucleus sampling, is a technique that dynamically selects a subset of
tokens based on cumulative probability instead of using a fixed number k. Given a threshold p (e.g., 0.9):

1. Sort the tokens by decreasing probability: pi1 ≥ pi2 ≥ · · · ≥ pin .

2. Find the smallest set of tokens (the “nucleus”) such that their cumulative probability is at least p:

k∑
j=1

pij
≥ p

3. Sample only from these k tokens, either by keeping their original probabilities or renormalizing them
over the nucleus (depending on the implementation).

Unlike top-k, which fixes the number of tokens, the effect of top-p is that it adapts the size of the candidate
set based on the distribution. It focuses on the most probable tokens that collectively account for p of the
probability mass, balancing diversity and coherence.

Temperature and sampling methods like top-k or top-p are often used together. The standard approach
is:

1. Apply temperature to the logits to adjust the distribution: zi/T .

2. Compute probabilities using the softmax function.

3. Apply top-k or top-p sampling to truncate the distribution.

In this work, when we write

Ytop−k ← LLM(TOPIC, Story, T, k) (4)

It means that we ask LLM to extend the story Story within the topic TOPIC; moreover, instead of picking
a token, we ask the transformer to use the temperature T and to identify the top k most probable tokens
Ytop−k = {y1, . . . , yk}. In the next section, we will add more criteria for selecting which token from Ytop−k

to choose.
Since this research aims to establish a framework for strong cryptographic communication over human-

like texts generated by LLMs, a generic advice for the parameters is: Start with T = 0.7. It will produce
a focused story that still has an internal variety and will mimic a human who types in a thoughtful, yet
casual way. Choose k = 40 for producing texts with lexical variety, yet still coherent and diverse. That
resembles how humans choose words from their familiar word capacity. While the generic LLM folklore advice
concerning the value p is to be in the range [0.9, 0.95], and many LLM use cases that mimic human-like texts
prefer using the top-p parameter over top-k, in this work, we will not use and change top-p parameter.
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4 Notations and a special function EmbedderLLM
Before we outline our framework for performing cryptographic operations on LLM outputs, let us first
introduce the following notations and definitions.

Let us denote the sets Si, i = 1, . . . , 4 as S1 = {0, 1}, S2 = {0, 1, 2, 3}, S3 = {0, . . . , 7}, S4 = {0, . . . , F},
where the elements in S4 are the 16 hexadecimal numbers from 0 up to F.

In a similar manner, we denote the sets Li, i = 1, . . . , 4 as

L1 = {’ ’, E},

L2 = {’ ’, E, T, A},

L3 = {’ ’, E, T, A, O, N, I, S},

L4 = {’ ’, E, T, A, O, N, I, S, R, H, D, L, U, C, M, F}.

We note that while L1 ⊂ L2 ⊂ L3 ⊂ L4, the set L4 is a sorted set of 15 most frequent letters in English
texts prepended with an even more frequent character in English texts, and which is the blank (SPACE)
character. The letters’ frequencies are taken from [38] and adjusted by adding the SPACE character as
done in [1] and here presented in Table 1. The case of the letters (lowercase or uppercase) was considered
equivalent. Notice the bold font probabilities for the letters E, A, S and F.

For i = 1, . . . , 4, we define four bijective maps hi : Si → Li where the mapping is the natural mapping
between the ordered sets Si and Li, i.e., 0 7→ ’ ’, 1 7→ E, 2 7→ T and so on until F 7→ F. While h1, h2,
and h4 are the most adequate maps for our purposes, we note that with some technical tricks (padding the
ciphertexts), we can also use the map h3.

Table 1: Frequencies of the top 16 characters in English texts (including SPACE) [1].

With a slight abuse of notation, when we write hi(Enc) for a hexadecimal string Enc, we refer to a
character-by-character mapping of each character in Enc to its corresponding image defined by hi.

We will extend the generic top-k sampling described with equations (3) and (4) with the function
EmbedderLLM. This function adds additional criteria for selecting the next token from Ytop−k. The
details of this function are as follows:

EmbedderLLM(LLM, TOPIC, Story0, T0, k0, C, b)

It outputs a string Story. As input parameters, it receives the name of a specific LLM model to be used,
a topic TOPIC discussed in the Story, a potentially previously generated Story0 that we want to continue,
a starting value T0 for a temperature, an initial value k0 for the top k0 tokens with top k0 probabilities, a
sequence C = [C0, C1, . . . , Cn−1] of characters from some of the sets S1, . . . , S4, and an increasing sequence
of integers b = [b0, b1, . . . , bn−1]. Notice that both C and b have the same number of elements n.

An implicit yet crucial parameter regarding the generation of the sequence b is a parameter do called the
offset value. Its role is described as follows. Let us first denote by PRF() some pseudo-random cryptographic
function that, once properly initiated, with each call, gives cryptographically strong uniformly distributed
pseudo-random integer outputs in the range [0, 2bit chunk size) for some value of bit chunk size. For example,
if bit chunk size = 5, the function PRF() will give uniformly distributed outputs in the range [0, 32). Next,
when we write b = PRF() it means that b has received a pseudo-random integer value generated by PRF() and
b is uniformly distributed in the range b ∈ [0, 2bit chunk size).

Then, the sequence b = [b0, b1, . . . , bn−1] is recursively generated as follows:{
b0 ← do + PRF(),
bi ← bi−1 + do + PRF(), for i ∈ [1, n− 1] (5)
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Table 2: Digram frequencies of the top 16 characters in English texts (including SPACE) [1].

The goal in defining EmbedderLLM is to produce a grammatically correct and sound string Story such
that its length is constrained

bn−1 + 1 ≤ len(Story) ≤ bn−1 + do − 1,

and where the set C is embedded in Story exactly on positions given in b, i.e.,

Uppercase(Story[bi]) = Ci, for i ∈ [0, n),

and the words containing characters Ci are from language dictionary on which LLM was trained. In our
experiments, we used LLMs trained in the English language.

Before we describe algorithmically the function EmbedderLLM, let us introduce the following additional
notations.

We overload the definition of indexing the characters of a string as follows:

Char(string, b) =
{

string[b], if b < len(string)
None, if b ≥ len(string) (6)

where len(string) returns the length of string and string[b] is the usual 0-based Python string indexing. The
reason for this overloading is that the usual Python string indexing will return IndexError : string index out
of range if the value of b is greater or equal to the length of the string.

When we write
string ← ε,

then means string becomes an empty string.
The expression

string ← string||token,

means that the new value of string is the old string concatenated with another string called token, while
the expression

string ← string[: position],
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means a classical Python string slicing such that the new value of string is the old string stripped off by
the characters from the index position.

If we write
token

$← Y,

it means that token gets a value from the set of tokens Y and token is chosen uniformly at random from Y .
Finally the expression

Ashuffled ← RandomShuffle(A),

means the elements in Ashuffled are randomly reordered elements from A.
The crucial algorithm in our framework for LLM Cryptography is Algorithm 1. Let us discuss its steps.

After the initialization steps 1 and 2, it reads a value from Table 3 for the maximum number of repetitive
attempts to find an appropriate token by increasing just the temperature before it rises the k parameter.
In Step 4 it calculates the temperature increase amount. Then it enters the main ‘while’ loop for updating
a human-like Story about the topic TOPIC, that contains embedded characters C = [C0, C1, . . . , Cn−1] on
positions b = [b0, b1, . . . , bn−1]. The ‘while’ loop is executed as long as the counter i is less than n. In
Step 6 it calls the LLM model to return a list of k tokens that are candidates for continuing the Story.
Then, in Step 7, it checks whether there are tokens {y} that, if appended to the Story, would contain
the character Ci exactly at position bi. The set of such tokens is named Y . In Step 8 it checks if Y is a
non-empty set. If yes, then in Steps 9 – 15, it chooses uniformly at random an element of Y , it updates
Story by appending the next token, it remembers the position in Story where the last successful embedding
happened, it resets the values of temperature T , k, Slow Down, and Close to their initial starting values
(since it might happen later in the algorithm that we updated these parameters) and increases the counter
i. If the set Y is empty, the algorithm tries to append an in-between token from the initial set Ytop−k that
is randomly shuffled in Step 17. It tries all tokens from the shuffled list (Steps 19 – 41) and checks for the
first case where len(Story||next token) < bi − 6. If that happens, it updates Story with a new token (Step
21). The reason why we put the limiting value bi−6 and not bi is that we want to detect the event when the
length of Story will approach the crucial position bi. Once entering the proximity of bi we want to try up
to top f attempts to find a non-empty Y by just increasing the temperature T in Step 34, before go to the
part of the algorithm in Step 42. The algorithm would reach Step 42 if there was no appropriate token in
all attempted Ytop−k. In that case, the algorithm shortens the story to the length where the last successful
embedding happened (Step 43), relaxes both parameters T and k (Steps 44 and 45), and resets the variables
Slow Down and Close. In such a case, the ‘while’ loop continues with the relaxed parameters and tries
again to embed Ci at the position bi.

First, let us justify using a non-zero value do in (5). Let the sequences C = [C0, C1, . . . , Cn−1] and
b = [b0, b1, . . . , bn−1] be the sequences produced as described above, where PRF() in the recurrent equations
(5) gives uniformly distributed integers in the range b ∈ [0, 2bit chunk size).

Table 2 gives the probability of diagrams in English texts. Apparently, there are digrams with zero or
very low probability. We can look at digrams as a pair of characters with an offset do = 0. Then, in a
sufficiently long sequence of characters, we might have the situation where (Ci, Ci+1) is a diagram with zero
or very low probability. From Table 2 such digrams could be CM, CF, CN, TD, HH and so on (presented in
bold font in the table). It means that regardless of how many calls to LLM(TOPIC, Story, T, k) we make
in Step 5 of Algorithm 1, there will be no tokens that give non-empty set Y in Step 6. From an empirical
perspective, in our experiments, we noticed that offset digrams where do < 6 still give potentially small
probabilities. Thus, we set the default value do = 32.

4.1 Modeling the Distinguishability of Texts Outputs From Algorithm 1 From
Human-Like Produced Texts

We are going to model the distinguishability of texts generated by Algorithm 1 from human-like produced
texts within the following plausible constraints (assumptions):

1. The average token size [28] (in number of characters) used in modern LLMs is 4.

2. Optimal parameters for the imitation of human-produced chat texts are T ∈ [0.7, 0.9] and k ∈ [40, 60].
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Algorithm 1 EmbedderLLM(LLM, TOPIC, Story0, T0, k0, C, b, l, sec)
Input: LLM model, TOPIC discussed in Story, initial content of story Sorty0, initial values for
temperature T0 and k0 for selection of top k tokens, sequence of characters C = [C0, . . . , Cn−1] and the
sequence of integers b = [b0, . . . , bn−1]. The value of l can be one from [1, 2, 3, 4] and determines which set
Ll we use, and sec ∈ [32, 48, 64, 96, 128] where 2−sec is the probability a used token to be produced with
parameters outside the optimal ranges.
Output: A text string Story

1: i← 0, n← len(C), Story ← Story0, prev pos← len(Story)
2: Close← False, T ← T0, k ← k0, Slow Down← 0
3: top f ← T able[sec, l]
4: tslow down ← 0.2

21×top f

5: while i < n do
6: Ytop−k ← LLM(TOPIC, Story, T, k)
7: Y = {y ∈ Ytop−k | Char(Story||y, bi) = Ci}
8: if Y ̸= ∅ then ▷ Successful embedding
9: next token

$← Y
10: Story ← Story||next token
11: prev pos← len(Story)
12: T ← T0, k ← k0 ▷ Reset values
13: Slow Down← 0
14: Close← False
15: i← i + 1 ▷ Go for the next embedding
16: else ▷ Check if we can add an in-between token
17: Yshuffled ← RandomShuffle(Ytop−k)
18: Unsuccessful← True
19: for next token ∈ Yshuffled do
20: if len(Story||next token) < bi − 6 then
21: Story ← Story||next token
22: Unsuccessful← False
23: Break
24: else if len(Story||next token) < bi then
25: if (Not Close) then
26: Close← True
27: Story ← Story||next token
28: Unsuccessful← False
29: Break
30: else
31: Slow Down← Slow Down + 1
32: if Slow Down < top f then
33: Unsuccessful← False
34: T ← T + tslow down ▷ Try again. Just increase T
35: Break
36: else
37: Slow Down← 0
38: end if
39: end if
40: end if
41: end for
42: if Unsuccessful then
43: Story ← Story[: prev pos]
44: T ← T + tslow down ▷ Try again with increased T
45: k ← k + 1 ▷ and increased k
46: Slow Down← 0, Close← False
47: end if
48: end if
49: end while
50: Return Story
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3. We assume that the adversary possesses the exact local LLM used in the call of Algorithm 1. By this,
we assume that the adversary knows even the local fine-tunings of a publicly available LLM model.
This makes the adversary a very powerful entity, which in practice might not be the case, but from a
security perspective, it is a preferred modeling style.

4. The adversary does not know the values of the sequences C and b.

5. Knowing the exact LLM, the adversary successfully distinguishes the captured Story if it distinguishes
a token in Story that was produced with parameters T and k outside of the ranges [0.7, 0.9] and [40, 60]
(we call these ranges ”optimal ranges”).

Table 3: A table of top-f parameters for achieving probabilities less than 2−sec for a used token to be
produced with parameters outside the optimal ranges.

Theorem 1. The probability a Story generated by EmbedderLLM(LLM, TOPIC, ε, T0, k0, C, b, l, sec) to
have a token produced with parameters T /∈ [0.7, 0.9] and k /∈ [40, 60] denoted as Pdist is less than 2−sec.

Proof. Let us compute the probability of Algorithm 1 to reach and execute steps 44 – 46. First, let us use
the fact that the average token size [28] in modern LLMs is four characters. Plausible modeling of k tokens
whose average size is four is a multinomial distribution with a central value of length 4. More concretely, we
can model that k tokens belong to seven categories (seven bins) determined by token length. We consider
the probability of having a token of length eight or higher to be very small. In that case, the probability
that a token has a length j ∈ [1, . . . , 7] can be modeled with

P (j) = 2−6
(

6
j − 1

)
, j ∈ [1, . . . , 7]. (7)

Then, in Step 7, we compute the set
Y = {y ∈ Ytop−k | Char(Story||y, bi) = Ci}. The lower bound of the probability the set Y is non-empty
depends on the number k of elements in the set Ytop−k and the probability pl of character with the lowest
frequency in the set Ll, l ∈ [1, . . . , 4] (given in Table 3). The lower bound can be computed as:

Pr(Y ̸= ∅) = P (k, pl) = 1
7

7∑
j=1

(
pl

j

)kP (j)
. (8)

Now we can compute the upper bound of the probability of a token to be produced with parameters T
and k that are outside the ranges [0.7, 0.9] and [40, 60] as a consecutive product of the probabilities of the
opposite event, i.e.,

Pr(Y = ∅) = 1− Pr(Y ̸= ∅). (9)

However, here, with a slight increase in the temperature (between the events when we also increase the value
of k) in Step 34, we want to increase the number of attempts to find a non-empty set Y . The number of
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such attempts is also given in Table 3, and plays a role in Step 4, where we calculate the appropriate value
for temperature increase tslow down. Then, the upper bound of the probability Pdist can be calculated with
the following formula:

Pdist ≤
60∏

k=40
(1− P (k, pl))top f

. (10)

For concrete values of l, i.e., pl one can compute that indeed for the values top f given in Table 3, the
probabilities Pdist are upper bounded by 2−sec.

4.2 Discussion on Algorithm 1
4.2.1 Execution (in)efficiency

Algorithm 1 is not an efficient algorithm. It repeatedly calls the LLM model with slightly changed parameters
in an effort to build a story with the required properties. A smarter strategy might involve the use of
dictionaries, thesaurus, and grammar tools in order to replace certain words with appropriate synonyms or
similar phrases that would not change the narrative and meaning but would tweak the length of the story
such that the required character Ci is placed exactly on position bi. However, in that case, the probabilities
modeling that we have conducted in Theorem 1 might not hold.

4.2.2 Redundancy (in)efficiency

From the redundancy perspective, apparently, for sending a short encrypted text, Algorithm 1, embeds it in
a longer Story. Choosing bigger values for do linearly increases the length of produced Story. Our default
recommended value is do = 32. It allows every token that contains a mapped ciphertext character Ci to be
at a safe distance from each other such that finding appropriate tokens is a procedure independent of the
embedding token found previously. Another crucial parameter that affects the redundancy, i.e., the size of
Story, is the parameter l, i.e., the mapping set L1, L2, L3, or L4. With smaller l, we get bigger values of n;
thus, the length of Story increases.

4.2.3 Practical vs cryptographically strong probabilities

Table 3 displays values of top f for different combinations of sec and l. However, from a cryptographic point of
view, only the lowest row with sec = 128 offers parameters that ensure the probabilities are lower than 2−128

for producing a token with temperature T and k outside the optimal ranges. Why do we give parameters for
lower probabilities? The answer can be summarized as: in practice, users might choose relaxed parameters
and still be comfortable that all produced tokens, with overwhelming probabilities, will be within the optimal
ranges. For example, in Steganography for distinguishing between classes, so-called Linear Distinguishing
Analysis (LDA) is used, and typically, the values of ∆LDA (considered as good indistinguishing properties)
are in the range [0.004, 0.007] (see for example [37]). In Table 3, the parameters for sec = 16 already surpass
that range because 2−16 ≈ 0.000015.

4.2.4 (In)Plausability of assumption 3

In assumption 3, we assume that the adversary possesses the exact local LLM used in the call of Algorithm 1.
In practice, this makes the adversary a very strong adversary. For example, currently, on “Hugging Face”
there are 1,514,210 models [15]. Moreover, users can locally produce their own variants of the models, and
those models can be kept private.

4.2.5 Using Algorithm 1 with more than one LLM model

Closely related to the previous point, users can modify the algorithm so that in Step 6, it calls different LLM
models. Users can even call several different models in parallel, check which one gives non-empty Y , and
continue to the next Ci and bi.
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5 LLM Cryptography
5.1 Symmetric Key LLM Cryptography (Password-Based AEAD)
Key Idea: Alice and Bob want to have a secure communication. They share an initial secret password.
They generate keys dk1, dk2 using a Password-based Key Derivation Function (PBKDF2) [26]. To send
a secret message M = plaintext, Alice encrypts it using Authenticated Encryption with Associated Data
(AEAD) function [5] with key dk1, generating ciphertext Enc. She then maps Enc to an encoded form
C using a function h, ensuring the characters belong to a set of frequent English letters. Alice embeds C
in a generated Story on a Topic using EmbedderLLM, which algorithmically places each character of C
within contextually appropriate words at specific positions, determined using dk2 and public parameters.
The crucial challenge is ensuring these insertions maintain the natural distribution of human-like but LLM-
generated text. Alice then transmits the story over a public channel to Bob. Upon receiving it, Bob extracts
C using dk2, reverses the mapping via h−1, and decrypts the recovered ciphertext using AEAD with dk1 to
retrieve M .

Construction:
Let us denote a generic Authenticated Encryption with Associated Data (AEAD) [5] function as

ciphertext, tag ← AEADenc(dk1, nonce, AD, plaintext),

and its corresponding inverse function of decryption and verification as

plaintext← AEADdec(dk1, nonce, AD, ciphertext, tag).

The AEADenc() function receives as parameters a secret key dk1, publicly known values of nonce (which
should be some non-repeatable value) and associated data AD, and a plaintext to be encrypted. It returns
the encrypted output ciphertext and a verification (checksum) value tag. The AEADdec() might return the
plaintext if the verification tag tag passes the test, or it might return the value Fail otherwise.

Let us further denote a generic Password Based Key Derivation Function (PBKDF) (version 2) [26] as

DK = PBKDF2(password, Salt, count, dkLen).

The PBKDF2() function receives as parameters a value of password, a string known as Salt, the number
count of applications of some cryptographic hash function (not explicitly mentioned here, but in practical
implementations should be instantiated with functions such as SHA2 or SHA3), and the size of the output
in bytes as a number dkLen. For example, if we put dkLen = 64, the output DK will be long 64× 8 = 512
bits.

The assumption is that Alice and Bob share a secret password along with other information that need
not be secret. That non-secret information is:

1. Which character mapping function h1, . . . , h4 they will use; In the descriptions below we assume they
use h4.

2. Values of count and Salt for PBKDF2;

3. Values of nonce and AD for AEAD() functions;

4. An offset value do. As a default value, we set do = 32.

5. The authentication tag size in AEAD() functions is fixed to 128 bits, i.e., to 32 hexadecimal values.

6. The use of SHAKE128 Extendable-Output Function

7. Parsing the output of SHAKE128 into chunks of chunk size bits. As a default value, we set chunk size =
5.
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Algorithm 2 LLM Authenticated Encryption
Input: A shared secret password
Output: A text string Story

1: dk1, dk2 ← PBKDF2(password, Salt, count, 64) ▷ assert len(dk1) = len(dk2) = 256 bits
2: Alice generates a message plaintext to be encrypted.
3: ciphertext, tag ← AEADenc(dk1, nonce, AD, plaintext)
4: Treat ciphertext and tag as hexadecimal strings.
5: Enc← tag ∥ ciphertext
6: C← h4(Enc), n← len(C)
7: Init(SHAKE128(dk2))
8: b0 = do + SHAKE128(chunk size)
9: b← [bi | i ∈ [0, n)]

where bi ← bi−1 + do + SHAKE128(chunk size)
10: Alice chooses a topic TOPIC.
11: Story ← EmbedderLLM(LLM, TOPIC, ε, T0, k0, C, b, l, sec)
12: Alice sends Story to Bob.

The second derived key dk2 is used as a key material to initialize Extendable-Output Function (XOF)
SHAKE128 [14] by calling Init(SHAKE128(dk2)). If SHAKE128 is called again as

SHAKE128(chunk size),

its output can be seen as an chunk size bits output from the XOF SHAKE128.
For authenticated decryption and verification, Bob does not require the same LLM model as Alice. In

fact, he does not need any LLM model at all.

Algorithm 3 LLM Authenticated Decryption and Verification
Input: A shared secret password and a text string Story
Output: plaintext or Fail

1: dk1, dk2 ← PBKDF2(password, Salt, count, 64)
2: Enc← empty string
3: Init(SHAKE128(dk2))
4: pos← do + SHAKE128(chunk size)
5: while pos < len(Story) do
6: Enc← Enc + Story[pos]
7: pos← pos + do + SHAKE128(chunk size)
8: end while
9: tag ← Enc0, . . . , Enc31

10: tag ← h−1
4 (tag)

11: ciphertext← Enc32, . . . , Enclast

12: ciphertext← h−1
4 (ciphertext)

13: plaintext← AEADdec(dk1, nonce, AD, ciphertext, tag)

Notice the while loop steps 5 – 8 in the decryption algorithm. While Alice does not send the explicit
length of tag and ciphertext, Bob, from the knowledge of password and the length of Story, can exactly
determine tag and ciphertext.

By embedding AEAD-encrypted messages in LLM-generated text, it remains indistinguishable from
normal output, even against advanced “LLM” or “ML classifier” adversaries trained on data consisting of
normal/covert stories. The message M is first encrypted with key dk1, then EmbedderLLM places the
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ciphertext in a fluent story guided by dk2. Randomized token selection and natural phrasing minimize
statistical traces, while PBKDF2-derived keys resist brute-force attempts. Without dk1 and dk2, attackers
cannot detect or recover hidden data, ensuring resilience against steganalysis.

5.2 Public Key LLM Cryptography
Before we describe how our EmbedderLLM algorithm can be used in Public Key Cryptography, let us first
prove one simple (although a negative) result concerning a distinguishability of texts Story produced by
LLMs and EmbedderLLM whether they contain or do not contain embedded cryptographic ciphertext.

Proposition 1. Let Story1 be generated by an LLM and Story2 be generated by

EmbedderLLM(LLM, TOPIC, ε, T0, k0, C, b, l, sec).

If the sequence b is known to an adversary, then there is an efficient algorithm that distinguishes Story1 and
Story2.

Proof. It is just a simple character extraction. Let us construct two sets Y1 = {Ci| Story1[bi] = Ci}
and Y2 = {Ci| Story2[bi] = Ci}. Since Story1 is generated by an LLM without any constraints, with an
overwhelming probability

Y1 ̸⊆ Li, ∀i ∈ [1, . . . , 4].

On the other hand, we get that
Y2 ⊆ Ll,

for some l ∈ [1, . . . , 4].

In a public key setup, the positions of characters b should be known to both key exchange parties. This
implies that b should be publicly known information accessible also to the adversary. While this might seem
like a negative result, there are a lot of use cases and cryptographic protocols that separate the phases of
initial (covert exchange of information) key exchange and public key DH key exchange for generating session
keys. The initial exchange of some information between communicating parties, which is unavailable to the
adversary, is a plausible assumption. The plausibility comes from the fact that in modern society, there
are numerous possibilities to perform that first phase of the initial covert information exchange, such as via
mobile networks or personal physical meetings combined with websites that dynamically publish data or
randomness beacons [33]. We list two cases that use this plausible assumption:

1. The popular messenger application Signal [23] uses the “Double Ratchet Algorithm”. It needs a root
key that is subsequently used to renew and generate short-lived session keys. The session key genera-
tion combines Diffie−Hellman key exchange (DH) and a key derivation function (KDF). The root key
is assumed to be in possession of both parties and is outside the definition of the Double Ratchet Algo-
rithm. It can be in the form of so-called “pre-keys” or established with so-called “triple Diffie−Hellman
key exchange (3-DH)”.

2. The anamorphic encryption [31, 3] assumes that “double key” dk is somehow sent covertly from Bob
to Alice without the knowledge of the adversary.

In our case, once that initial information is shared between Alice and Bob, it can be used to produce
sequences b unknown to the adversary. Yet, we formulate as a challenging open problem the following:

Research Problem 1. Let Story1 be generated by an LLM. Is it possible to design an algorithm

EmbedderLLM(LLM, TOPIC, Story0, T0, k0, C, b, l, sec)

that produces Story2, such that when the sequence b is known to an adversary A, then the advantage of the
adversary A of distinguishing Story1 and Story2 is negligible?
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Algorithm 4 ECDHE-LLM
Input: Shared parameters for Curve25519. Potentially a shared secret rootkey. Shared parameters for
operations related to LLMs such as l, (here l = 4), T0, k0.
Output: A shared session key SharedKey

Alice and Bob compute
1: if rootkey then
2: dk1, dk2 ← PBKDF2(rootkey, Salt, count, 64)
3: else
4: dk1, dk2 ← PBKDF2(ε, Salt, count, 64)
5: end if

assert len(dk1) = len(dk2) = 256 bits
6: Init(SHAKE128(dk1))
7: b0 = do + SHAKE128(chunk size)
8: bAlice ← [bi | i ∈ [0, 64)

where bi ← bi−1 + do + SHAKE128(chunk size)
9: Init(SHAKE128(dk2))

10: b0 = do + SHAKE128(chunk size)
11: bBob ← [bi | i ∈ [0, 64)

where bi ← bi−1 + do + SHAKE128(chunk size)
12: Chat← ε

Alice computes
13: A random integer in the range a

$← [1, 2255 − 19)
14: compAlice ← rand low bound fixed len comp(64, 3, 10)

assert compAlice = [aa0, aa1, . . . , aa9] such that
∑9

j=0
aaj = 64

15: xA = Curve25519(a, xg)
16: CA ← h4(xA)
17: CPartA ← Partition(CA, compAlice)
18: bPartA ← Partition(bAlice, compAlice)
19: StoryA ← ε

Bob computes
20: A random integer in the range b

$← [1, 2255 − 19)
21: compBob ← rand low bound fixed len comp(64, 3, 10)

assert compBob = [bb0, bb1, . . . , bb9] such that
∑9

j=0
bbj = 64

22: xB = Curve25519(b, xg)
23: CB ← h4(xB)
24: CPartB ← Partition(CB , compBob)
25: bPartB ← Partition(bBob, compBob)
26: StoryB ← ε

27: Chat← Chat||AliceInitialMessage
28: Chat← Chat||BobInitialResponse
29: for j ∈ [0, 9] do

Alice side
30: OldStoryA ← StoryA

31: StoryA ← EmbedderLLM(LLM, Chat, StoryA, T0, k0, CAj
, bAj , l, sec)

32: AliceInputj ← StoryA \OldStoryA

33: Chat← Chat||AliceInputj

Bob side
34: OldStoryB ← StoryB

35: StoryB ← EmbedderLLM(LLM, Chat, StoryB , T0, k0, CBj
, bBj , l, sec)

36: BobInputj ← StoryB \OldStoryB

37: Chat← Chat||BobInputj

38: end for
Alice side

39: StoryB ← BobInput0|| . . . ||BobInput9
40: P ublicKeyBob← {Ci | StoryB [bBob[i]] = Ci, i ∈ [0, 64)}
41: P ublicKeyBob← h−1

4 (P ublicKeyBob)
42: SharedKeyAlice← Curve25519(a, P ublicKeyBob)

Bob side
43: StoryA ← AliceInput0|| . . . ||AliceInput9
44: P ublicKeyAlice← {Ci | StoryA[bAlice[i]] = Ci, i ∈ [0, 64)}
45: P ublicKeyAlice← h−1

4 (P ublicKeyAlice)
46: SharedKeyBob← Curve25519(b, P ublicKeyAlice)
47: SharedKey = SharedKeyAlice = SharedKeyBob
48: rootkey ← SharedKey
49: Return SharedKey

Let us now describe an Elliptic Curve Diffie−Hellman key exchange with Ephemeral keys (ECDHE)
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within our framework. We will use one popular and standardized group of elliptic points, Curve25519. It is
defined with the equation

y2 = x3 + 486662x2 + x,

over the finite field F2255−19. As the generator point G = (xg, yg), we take the standard value G = (9, yg),
i.e., xg = 9 where the value of yg is not necessary to know since it can be computed from the value of xg.
When we write

xA = Curve25519(a, xg),

we mean the x coordinate of the multiplication of G by an integer a that is in the range [1, 2255 − 19),

(xA, yA) = a ·G.

We can interpret xA as a 256-bit string (to be used with mapping h1) or as a sequence of 128 elements in
the range [0..3] (appropriate for the use with the mapping h2) or as e sequence of 64 hexadecimal values (in
the range [0..F ]) (appropriate for the use with the mapping h4).

When we write
comp← rand low bound fixed len comp(n, low, m),

it means that comp is a list of m integers greater or equal to low that is a composition of n, i.e., sum(comp) =
n. In the Algorithm 4, we use arbitrary parameters low = 3 and m = 10. That means the instruction

compAlice ← rand low bound fixed len comp(64, 3, 10),

randomly generates a list
compAlice = [aa0, aa1, . . . , aa9]

such that
∑9

j=0 aaj = 64. Similarly, we produce the list

compBob = [bb0, bb1, . . . , bb9]

such that
∑9

j=0 bbj = 64.
The instructions

CPartA ← Partition(CA, compAlice),
bPartA ← Partition(bAlice, compAlice),

partition CA and bAlice into sublists where CPartA = [CA0 , . . . , CA9 ] and bPartA = [bA0, . . . , bA9]
according to the composition compAlice i.e., len(CAj ) = len(bAj) = aaj . Similar applies for

CPartB ← Partition(CB , compBob),
bPartB ← Partition(bBob, compBob),

where CPartB = [CB0 , CB1 , . . . , CB9 ], bPartB = [bB0, . . . , bB9] and len(CBj
) = len(bBj) = bbj .

By asserting that StoryA ≡ OldStoryA||AliceInputj with the instruction

AliceInputj ← StoryA \OldStoryA,

we extract the new text AliceInputj that was appended to OldStoryA.
A brief discussion about the steps in Algorithm 4 follows.
Alice and Bob share parameters for Curve25519. If they had a previously shared secret key (denoted

as rootkey), they might use it to calculate the embedding positions. They also share parameters for LLM
operations, such as l (a default value is l = 4), T0, and k0. The first 12 steps calculate the positions where the
characters related to the ephemeral public keys of Alice and Bob will be embedded. Then, in steps 13–19,
Alice computes her public key xA, which is mapped to the embeddable characters CA. Due to the specifics
of Curve25519, when h4 is used, the size of the public keys is 64 characters. The goal is to transfer (later)
LLM-generated messages that embed those 64 characters in an interactive chat style. For that, in Step 14,
Alice needs to generate a random composition compAlice of the number 64 into m summands (here, we take
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m = 10 summands, but it can be some other suitable values). Each summand is lower bounded by some
value (here, we take low = 3). According to compAlice Alice in Steps 17 and 18 computes the partition lists
CPartA and bPartA. Alice resets her story as an empty string in Step 19. Bob conducts similar computing
actions in steps 20 – 26.

The ephemeral key exchange is initiated by Alice in Step 27 and is followed by the initial response from
Bob. Those two initial messages do not contain embedded public key characters.

Then, in an interactive chat session of m = 10 messages (back and forward), Alice and Bob gradually
embed their public keys, calling the EmbedderLLM() function, trying to continue the stories StoryA and
StoryB correspondingly. The smaller incremental parts of the components of the stories StoryA and StoryB

are depicted as AliceInputj and BobInputj for j ∈ [0..9]. In the final stage (steps 39–42), Alice extracts
Bob’s chat inputs, extracts his public key, and computes the shared key. Bob performs similar actions in
steps 43- 46. The shared keys should be equal, and the value of the rootkey is set to that shared key for
some future session.

We can emphasize several properties of Algorithm 4, which portray the features of our overall framework:

5.2.1 LLM agnostic

Alice and Bob can use their own locally trained LLMs. The specific local LLMs are invoked in steps 31 and
35. There is no need for those LLMs to be the same.

5.2.2 Pre- or post-quantum agnostic

While we used pre-quantum elliptic curve public key cryptography as an example, we can easily use some
post-quantum key exchange schemes. The expected price will be longer chat sessions for transmitting the
ephemeral public keys of the communicating parties.

5.2.3 Big number of parameter customizations for further mitigation the distinguishing of an
encrypted communication

Since the goal is for the chat sessions to conduct undetectable encrypted communication for any totalitarian
regime that monitors people’s chats, our default parameters l = 4, m = 10, low = 3, as well as the choice of
the public key scheme can be additionally chosen by the participants. The choice of the sets of embeddable
characters L1, L2, L3, L4 can also be a parameter that can have some variations. Another variant with
enriched parameters can be a variant where in between those m Alice-Bob chat-pairs-sentences that hold the
embedded characters, there are chat-pairs that are just there for confusion and do not hold any embedded
characters.

6 Conclusion
In this work, we introduced a novel cryptographic framework that enables secure and covert communication
using LLMs. Our approach facilitates encrypted messaging-whether through Public Key or Symmetric Key
encryption - while maintaining indistinguishability from natural human-like text in public chat environments.
A key advantage of our framework is its LLM agnosticism, allowing participants to use different local models
independently. Additionally, it remains resilient against both pre- and post-quantum adversaries, ensuring
long-term security. By seamlessly integrating encryption with human-like text generation, our method
provides an alternative for secure communication in scenarios where conventional encryption mechanisms
are easily detected or restricted.

Implementing our framework remains as a future work. Furthermore, there are several promising avenues
for future research. One immediate direction is to solve the Research Problem 1 stated in this work. Another
potential direction is the integration of error-correcting codes [22] into our framework. If the bits in the
secret positions b are flipped, the received secret message may deviate from the intended one. Exploring
efficient methods to incorporate error correction could enhance the robustness of our approach. Another
important direction is optimizing the framework for real-time covert messaging, improving both efficiency
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and scalability. Investigating broader applications of our framework in privacy-preserving systems could
further expand its impact and usability.

7 Ethical Declaration and Consideration
The work presented, including theoretical formulations and cryptographic constructions, is original, except
for minor language refinements in the introduction and related work sections, where ChatGPT was used.
These refinements do not influence the technical contributions or the core results of the paper. This research
does not include human subjects, personal data, or ethical risks.
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B A toy-example of a ECDHE-LLM as a proof of concept
As a proof of concept for ECDHE-LLM let us use the small didactical elliptical curve secp112r1. Its
parameters are the following: p = (2128 − 3)/76439, and the elliptic curve E defined over Fp is the curve

y2 =x3 + a4x + a6,

a4 =4451685225093714772084598273548424,

a6 =2061118396808653202902996166388514
G =(188281465057972534892223778713752, 3419875491033170827167861896082688).

Let us assume that Alice and Bob had agreed (on a slightly changed and permuted L4 from the set defined
in Section 4) set of embeddable characters:

L4 = {’ ’, E, T, A, O, I, N, S, H, R, D, L, C, U, M, W}.

Using L4, for this toy example, the public keys of Alice and Bob will consist of just 28 characters. Let other
shared values be m = 3 and low = 7.

Shortening further the text of this example, let us assume that both Alice and Bob have calculated in
steps 1–18 the following sequences:

bAlice = [20, 34, 50, 66, 86, 100, 122, 140, 153, 167, 177, 197, 220, 234, 249, 269, 291, 308, 325, 343, 359, 381, 395, 416, 427, 437, 455, 478],

bBob = [15, 40, 51, 64, 88, 99, 113, 134, 152, 176, 198, 222, 245, 267, 291, 302, 312, 332, 355, 368, 392, 417, 440, 454, 468, 483, 508, 531].

Let Alice randomly generated the following:

a = 1287024140169629488460400054015049,

compAlice = [7, 10, 11].

Then, the values of xA, CPartA and bPartA will be

xA = 0x373ac0abcfdf4cf30b9a0cfbe5d6,

CPartA = [[A, S, A, D, C, ’ ’, D], [L, C, W, U, W, O, C, W, A, ’ ’], [L, R, D, ’ ’, C, W, L, M, I, U, N]],
bPartA = [[20, 34, 50, 66, 86, 100, 122], [140, 153, 167, 177, 197, 220, 234, 249, 269, 291], [308, 325, 343, 359, 381, 395, 416, 427, 437, 455, 478]].

Similarly, let us suppose that Bob has generated the following values:

b = 1447986075431300329725329948154560,

compBob = [9, 9, 10],
xB = 0x7dc525c3afa5307918fb6026d144,

CPartB = [[U, S, D, M, U, S, T, O, W], [M, O, R, L, ’ ’, E, R, A, E], [S, A, U, O, ’ ’, D, H, U, ’ ’, T]],
bPartB = [[15, 40, 51, 64, 88, 99, 113, 134, 152], [176, 198, 222, 245, 267, 291, 302, 312, 332], [355, 368, 392, 417, 440, 454, 468, 483, 508, 531]].

The following chat conversation resembles what would be a generated chat by Algorithm 4.
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Figure 1: The chat between Alice and Bob with highlighted embedded characters and positions
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C Adversarial Models and Future Directions
We formalize adversarial models to analyze the security of our framework. These models extend classi-
cal cryptographic notions to account for the unique properties of LLM-generated text and the threat of
steganalysis.

C.1 Indistinguishability for Covert Communication (IND-CC)
Definition 1 (IND-CC Game). Let A be a probabilistic polynomial-time (PPT) adversary and C a challenger.
The IND-CC game proceeds as follows:

1. Setup:

• C generates dk1, dk2 ← PBKDF2(password, Salt, count, 64).
• C initializes SHAKE128(dk2) to sample b using (5).

2. Query Phase:

• A adaptively submits messages {mi}. For each mi, C computes Enci ← AEADenc(dk1, nonce, AD, mi).
• C returns Storyi ← EmbedderLLM(LLM, TOPIC, ε, T0, k0, h4(Enci), bi, l, sec).

3. Challenge:

• A submits m∗. C flips a bit b ∈ {0, 1}.
• If b = 1, C returns Story∗ ← EmbedderLLM(m∗).
• If b = 0, C returns Story∗ ← LLM(TOPIC) (no embedding).

4. Guess: A outputs b′ ∈ {0, 1}.

The scheme achieves IND-CC security if A’s advantage

AdvIND-CC
A =

∣∣∣∣Pr[b′ = b]− 1
2

∣∣∣∣
is negligible under Theorem 1.

Relation to Theorem 1: Theorem 1 bounds the probability of tokens deviating from the LLM’s optimal
parameter ranges (T ∈ [0.7, 0.9], k ∈ [40, 60]). IND-CC security holds if SHAKE128 is pseudorandom and
EmbedderLLM’s outputs are indistinguishable from natural text (Table 3).

C.2 Steganographic Secrecy Against Adaptive Adversaries (SS-ADV)
Definition 2 (SS-ADV Game). Let A interact with an oracle O:

• O.Embed(m): Returns Story ← EmbedderLLM(m).

• O.Gen(TOPIC): Returns Story ← LLM(TOPIC).

A adaptively queries O and guesses its mode. The scheme achieves SS-ADV security if A’s distinguishing
advantage

AdvSS-ADV
A =

∣∣Pr[AO.Embed = 1]− Pr[AO.Gen = 1]
∣∣

is negligible.

Alignment with Framework: SS-ADV security relies on the uniformity of C characters in L4 (Ta-
ble 1) and pseudorandom b offsets. Adversaries cannot statistically distinguish h4(Enc)-embedded text from
natural sequences (see digram frequencies in Table 2).
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C.3 Public Key Security (ECDHE-LLM)
Definition 3 (PK-DH Security). Let A observe a transcript Chat containing public keys CA = h4(xA) and
CB = h4(xB) embedded via EmbedderLLM (Algorithm 4). A’s goal is to compute Curve25519(a, xB).
The scheme is PK-DH-secure if A’s success probability is negligible, assuming:

• The hardness of ECDH on Curve25519.

• The IND-CC security of CA, CB embeddings.

Relation to Proposition 1: If b is leaked (Proposition 1), PK-DH security requires h4(xA) to be
pseudorandom in L4. Otherwise, security follows directly from ECDH.

C.4 Token Statistical Analysis (TOK-STAT)
Definition 4 (TOK-STAT Distinguishability). Let A know the LLM’s token distribution DLLM and receive
Story generated via EmbedderLLM. A wins if it detects statistical deviations (e.g., via KL divergence).
The scheme is TOK-STAT-secure if:

SD (DEmbedder,DLLM) ≤ 2−sec,

where SD is the statistical distance and sec is the security parameter (Table 3).

Link to Theorem 1: Theorem 1 ensures TOK-STAT security by bounding the probability of sampling
tokens outside T ∈ [0.7, 0.9] and k ∈ [40, 60].

C.5 Future Research Directions
• Known-Position Resistance: Address Open Problem 1 by dynamically masking b or injecting

dummy embeddings.

• Post-Quantum LLM Cryptography: Integrate lattice-based KEMs (e.g., Kyber) and formalize
indistinguishability under quantum queries.

• Efficiency Optimizations: Accelerate EmbedderLLM’s token search (Steps 19–41, Algorithm 1)
using GPU parallelism.

• Multimodal Covert Channels: Extend the framework to image/video LLMs (e.g., DALL–E, Sora)
for cross-modal embeddings.
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