
Eccfrog512ck2: An Enhanced 512-bit Weierstrass
Elliptic Curve

Vı́ctor Duarte Melo and William J. Buchanan

Blockpass ID Lab, Edinburgh Napier University, Edinburgh

Abstract. Whilst many key exchange and digital signature methods
use the NIST P256 (secp256r1) and secp256k1 curves, there is often a
demand for increased security. With these curves, we have a 128-bit se-
curity. These security levels can be increased to 256-bit security with
NIST P-521 Curve 448 and Brainpool-P512. This paper outlines a new
curve - Eccfrog512ck2 - and which provides 256-bit security and enhanced
performance over NIST P-521. Along with this, it has side-channel resis-
tance and is designed to avoid weaknesses such as related to the MOV
attack. It shows that Eccfrog512ck2 can have a 61.5% speed-up on scalar
multiplication and a 33.3% speed-up on point generation over the NIST
P-521 curve.

1 Introduction

Around 1985, Neal I. Koblitz [1] and Victor Miller [2] independently invented
ECC. Their idea came from preliminary work conducted by H.W Lenstra Jr on
using elliptic curves to crack the RSA method. His paper was entitled Factoring
Integers using Elliptic Curves [3]. Although they created ideas between 1985
and 1987, the main methods of ECC did not take off until 2005. While NIST
P-256 has become popular in TLS communications and secp256k1 is popular
for blockchain applications, in some circumstances, there is a need for enhanced
security, such as with NIST P-521 Curve 448 and Brainpool-P512. This paper
adds the Eccfrog512ck2 curve, and which improves performance over the NIST
P-521 curve.

2 Basics of Elliptic Curve Cryptography

Overall, there are three main curves used in production. With an Edwards curve,
we have the form of:

x2 + y2 = 1 + d.x2y2 (mod p) (1)

and is named after Harold Edwards. An example of this curve is Ed25519.
For a Montgomery curve, we have the form:

By2 = x3 + Ax2 + x (mod p) (2)

and named after Peter Montgomery. With the Weierstrass curve, we have
the form:

y2 = x3 + bx + c (mod p) (3)

and which is used with Bitcoin. This elliptic curve is defined with p, a, b ,
gx, gy, and n, and where (gx,gy) is a base point on our curve, and n is the order
of the curve. The curve used in Bitcoin and Ethereum is secp256k1, and which
has the form of:

y2 = x3 + 7 (mod p) (4)

and where p = 2256 − 232 − 977. We can also use the NIST P256 (secp256r1)
curve or the NIST-defined P-521 curve.

3 Curve design

EccFrog512CK2 is a custom-designed 512-bit elliptic curve and is aimed at
providing robust cryptographic security.

3.1 Prime field

The curve uses a 512-bit prime field and has a precisely selected prime modulus,
ensuring heightened resistance to classical and potential quantum cryptographic
threats.

3.2 Deterministically generated coefficient

The curve has a deterministically generated coefficient (b) and which is com-
puted using the cryptographically secure BLAKE3 hash function. This ensures
reproducibility and verifiable integrity.

3.3 Curve equation

The curve equation used is:

y2 ≡ x3 − 7x + b (mod p) (5)

and where p is the carefully chosen 512-bit prime modulus. In terms of secu-
rity validations and characteristics. The following sections define these.

3.4 Non-singularity

Verified via discriminant computation, ensuring:

∆ ̸= 0 (6)

3.5 Prime Order

Fully verified prime order curve, eliminating small subgroup vulnerabilities.

3.6 Resistance to MOV and Twist Attacks

The curve has extensive checks confirming immunity to common elliptic curve
vulnerabilities. This includes the MOV and Twist Attacks [4]. The MOV attack
was outlined by Menezes and Vanstone [5] and defined how we can reduce the
strength of the elliptic curve method to a discrete logarithm problem. It uses
key pairing where we have two cyclic groups (G1 and G2), and which are of
an order of a prime number (n). A pairing on (G1,G2,GT) defines the function
ê : G1 ×G2 → GT , and where g1 is the generator for G1 and g2 is the generator
for G2. If we have the points of P on G1 and Q on G2, we get a pairing of:

e(P,Q) (7)

Now, if we select a private key value of x, the public key will become:

Ppub = x · P (8)

In order to find x, we would have to search the values of x to match P to x.
In pairing, we can reduce the difficulty with:

ê(xP,Q) = ê(P,Q)x (9)

This now becomes a discrete logarithm problem within a finite field, and
which makes it easier to find x [6].

3.7 Scalar Multiplication Techniques

The curve has been implemented using wNAF (windowed Non-Adjacent Form),
the Montgomery Ladder, and GLV methods for performance optimization and
side-channel attack resistance [7].

3.8 Side-Channel Resistance

The curve uses constant-time operations and secure memory handling in order
to prevent timing and cache-based attacks [7].

4 Methodology

The core parameters defined for the curve are defined in Table 1 and Table 2
outlines the parameters selected. The code for validation is then given in Listing
1.1. Table 3 outlines the general security properties of the curve, and Table 4
outlines the comparison with P-521 (secp521r1) and Curve 25519. The processor
used for the tests is AMD Ryzen 9 5950X with 3.4 GHz base clock. The code
for the curve is defined at [8].

Table 1: Overview of the curve parameters and structural choices
Property EccFrog512CK2

Prime field size 512 bits
Field type Prime field Fp

Curve form Short Weierstrass
Coefficient a −7 mod p
Coefficient b Deterministic via BLAKE3
Curve order Verified prime
Cofactor 1
Discriminant ∆ ̸= 0 (non-singular)
Twist security Verified
MOV security Resistant

Table 2: Parameters for curve
Parameter Value

p 9149012705592502490164965176888130701548
0539186997936896723448077728011058306814
9878074662253072941885847710307359191805
8480028776841126664954537807339721

a p - 7
b 9586418985095791770393300613179378564924

0252916618759767550461391845895018181
n 9149012705592502490164965176888130701548

0539186997936896723448077728011058305572
6912325585091574506354113315750370728404
8429261692283957712127567713136519

Gx 84262416976592003711835827711532609665699556
99615044232640972423431947060129573736112298
74497733241617502133708277585605805839478626
4506901662703740544432

Gy 49701299341637352480834526098098434962319296
20419038489506391366136186485994288320758668
17279006080180981068819208214643197068311355
7239433570011112556001

Table 3: Cryptographic security properties of the curve.
Security Aspect EccFrog512CK2

Subgroup attacks Not possible (cofactor = 1)
Curve validation Transparent generation
Side-channel resistance Constant-time ops
Field structure No special form
Hash-to-curve support Planned

Table 4: High-level comparison between EccFrog512CK2 and well-known ECC
curves

Feature EccFrog512CK2 P-521 Curve25519

Bits of security ∼256 ∼256 ∼128
Transparency Yes No Yes
Prime field 512-bit 521-bit 255-bit
Implementation freedom Full control NIST only Medium
Open-source origin Community Government Yes

5 Evalution

The evaluation of the timing of the operations for point generation, scalar multi-
plication and ECDH key exchange is defined in Table 5. We can see a significant
speed for all the areas, including a 61.5% speed-up on scalar multiplication and a
33.3% speed-up on point generation. Table 6outlines the timing for the important
ECC operations, such as key pair generation, shared secret generation, signature
generation and signature verification. The evaluation of the Eccfrog512ck2 curve
against NIST P-521 is defined in Figure 1.

Table 5: Time taken for core ECC operations
Operation EccFrog512CK2 (ms) NIST P-521 (ms) Speed-up (%)

Point Generation 0.4 0.6 33.3
Scalar Multiplication 0.826 2.143 61.5
Point Validation 0.097 0.15 35.3
ECDH Key Exchange (total) 1.81 3.2 43.4

6 Conclusions

Eccfrog512ck2 provides a significant enhancement in performance and security
over NIST P-521 and could be used in applications which require enhanced
security levels over NIST P-256 and secp256k1.

7 Appendix

Table 6: Approximate timing benchmarks for key ECC operations
Metric EccFrog512CK2

Keypair generation (ms) ∼0.85 ms
Shared secret derivation (ECDH) ∼1.81 ms
Signature generation (est.) ∼0.95 ms
Signature verification (est.) ∼1.20 ms

Fig. 1. Performance comparison between NIST P-521

Listing 1.1. SageMath script to verify EccFrog512CK2

parameters
p = I n t e g e r (” 9149012705592502490164965176888130701548
0539186997936896723448077728011058306814
9878074662253072941885847710307359191805
8480028776841126664954537807339721 ”)
a = p − 7
b = I n t e g e r (” 9586418985095791770393300613179378564924
0252916618759767550461391845895018181 ”)
n = I n t e g e r (” 9149012705592502490164965176888130701548
0539186997936896723448077728011058305572
6912325585091574506354113315750370728404
8429261692283957712127567713136519 ”)

F = F i n i t e F i e l d (p)
E = E l l i p t i c C u r v e (F , [a , b])

d i s c r im inant = E. d i s c r im inant ()
hasse bound = 2 ∗ s q r t (p)
w i th in ha s s e = abs (n − (p + 1)) <= hasse bound
non s ingu l a r = d i s c r im inant != 0

print (”=== EccFrog512CK2 Cryptographic Va l idat i on ===”)
print (”Prime p (b i t s) : ” , p . nb i t s ())
print (” C o e f f i c i e n t a : ” , a)
print (” C o e f f i c i e n t b : ” , b)
print (”Curve order n i s prime : ” , n . i s p r i m e ())
print (” Discr iminant i s non−zero : ” , non s ingu l a r)
print (”Hasse ’ s theorem bound s a t i s f i e d : ” , w i th in ha s s e)
print (”2 s q r t (p) (Hasse bound) : ” , hasse bound)
print (” | n − (p + 1) | : ” , abs (n − (p + 1)))

References

1. N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of computation, vol. 48,
no. 177, pp. 203–209, 1987.

2. V. S. Miller, “Use of elliptic curves in cryptography,” in Conference on the theory
and application of cryptographic techniques. Springer, 1985, pp. 417–426.

3. H. W. Lenstra Jr, “Factoring integers with elliptic curves,” Annals of mathematics,
pp. 649–673, 1987.

4. djb, “SafeCurves: Twist security — safecurves.cr.yp.to,” https://safecurves.cr.yp.
to/twist.html, [Accessed 11-04-2025].

5. A. Menezes, S. Vanstone, and T. Okamoto, “Reducing elliptic curve logarithms to
logarithms in a finite field,” in Proceedings of the twenty-third annual ACM sympo-
sium on Theory of computing, 1991, pp. 80–89.

https://safecurves.cr.yp.to/twist.html
https://safecurves.cr.yp.to/twist.html

6. W. J. Buchanan, “Cracking elliptic curves with the mov attack using kryptology,”
https://asecuritysite.com/bls/mov, Asecuritysite.com, 2025, accessed: April 10,
2025. [Online]. Available: https://asecuritysite.com/bls/mov

7. V. Meloasm and W. Buchanan, “GitHub - victormeloasm/OpenFrogget: Open-
Frogget is a secure file encryption tool combining custom elliptic curve eccfrog512ck2
cryptography with AES-GCM for hybrid encryption. Built in modern C++ with
a fully open GPL license. — github.com,” https://github.com/victormeloasm/
OpenFrogget, [Accessed 11-04-2025].

8. ——, “OpenFrogget/src/eccfrog512ck2.cpp at main · victormeloasm/OpenFrogget
— github.com,” https://github.com/victormeloasm/OpenFrogget/blob/main/src/
eccfrog512ck2.cpp, [Accessed 13-04-2025].

https://asecuritysite.com/bls/mov
https://asecuritysite.com/bls/mov
https://github.com/victormeloasm/OpenFrogget
https://github.com/victormeloasm/OpenFrogget
https://github.com/victormeloasm/OpenFrogget/blob/main/src/eccfrog512ck2.cpp
https://github.com/victormeloasm/OpenFrogget/blob/main/src/eccfrog512ck2.cpp

	Eccfrog512ck2: An Enhanced 512-bit Weierstrass Elliptic Curve

