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Abstract—Anonymous token schemes are cryptographic
protocols for limiting the access to online resources to
credible users. The resource provider issues a set of access
tokens to the credible user that they can later redeem
anonymously, i.e., without the provider being able to link
their redemptions. When combined with credibility tests such
as CAPTCHAs, anonymous token schemes can significantly
increase user experience and provider security, without
exposing user access patterns to providers.

Current anonymous token schemes such as the Privacy
Pass protocol by Davidson et al. rely on oblivious
pseudorandom functions (OPRFs), which let server and user
jointly compute randomly looking access tokens. For those
protocols, token issuing costs are linear in the number of
requested tokens.

In this work, we propose a new approach for building
anonymous token schemes. Instead of relying on two-party
computation to realize a privacy-preserving pseudorandom
function evaluation, we propose to offload token generation
to the user by using group verifiable random functions
(GVRFs). GVRFs are a new cryptographic primitive
that allow users to produce verifiable pseudorandomness.
Opposed to standard VRFs, verification is anonymous within
the group of credible users. We give a construction of group
VRFs from the Dodis-Yampolskiy VRF and Equivalence-
Class Signatures, based on pairings and a new Diffie-
Hellman inversion assumption that we analyze in the Generic
Group Model. Our construction enjoys compact public keys
and proofs, while evaluation and verification costs are only
slightly increased compared to the Dodis-Yampolskiy VRF.

By deploying a group VRF instead of a OPRF, we
obtain an anonymous token scheme where communication
as well as server-side computation during the issuing phase
is constant and independent of the number of tokens a
user requests. Moreover, by means of our new concept of
∗ Supported by funding from the topic Engineering Secure Systems of
the Helmholtz Association (HGF) and by KASTEL Security Research
Labs.
† Supported by the Swiss National Science Foundation (SNSF) under the
AMBIZIONE grant “Cryptographic Protocols for Human Authentication
and the IoT”.
‡ Supported by the NWO Talent Programme Veni (VI.Veni.222.348) and
the NWO Gravitation Project QSC.

updatable token policies, the number of unspent tokens in
circulation can retrospectively (i.e., even after the credibility
check) be decreased or increased in order to react to
the current or expected network situation. Our tokens are
further countable and publicly verifiable. This comes at the
cost of higher computational efforts for token redemption
and verification as well as somewhat weaker unlinkability
guarantees compared to Privacy Pass.

Index Terms—Verifiable random functions, anonymous token
schemes, Privacy Pass, pairing-based cryptography

1. Introduction

CAPTCHAs are proofs of human work that protect
internet resources from bot access and DoS attacks. Users
are asked to solve a visual riddle, such as reading distorted
letters or recognizing items in photographs, whenever a
content provider deems their request suspicious. Solving
the riddle reveals nothing about the identity of the user
except that, most likely, there is a human behind the
request. In particular, providers cannot link CAPTCHA
actions, preventing them from tracking users on the
internet. On the negative side, CAPTCHAs constitute
annoying obstacles for users and can prevent them from
accessing contents [22].

In 2018, Davidson et al. [15] proposed Privacy Pass, a
way to significantly decrease the number of CAPTCHAs
for users to solve. In a nutshell, the protocol works as
follows. First, the server (i.e., content provider) is set up
to hold a secret key K. Whenever a user proves that she
is human via a CAPTCHA, the user’s browser and server
engage in an oblivious evaluation of w := PRFK(t),
where t is chosen at random by the browser. Such a
protocol is called an oblivious pseudo-random function
(OPRF), and it reveals nothing to the user beyond w,
and nothing at all to the server. We call the pair (t, w)
an anonymous access token, and the browser can use it
next time the server doubts the user’s credibility: instead
of challenging the user with a CAPTCHA, the browser



sends (t, w)1. The server is convinced that the user has
previously solved a CAPTCHA, as there is no other
way to compute w such that w = PRFK(t). Crucially,
the spending of these tokens is anonymous and even
unlinkable, meaning that the server has no means to
determine which tokens have been generated by the same
user. This property is ensured by the obliviousness of the
PRF evaluation, where the server does not learn anything
about the input t and the output w of the user. To save
even more CAPTCHA work, [15] suggests that the
server can agree to issue multiple tokens per completed
CAPTCHA. Of course, this not only speeds up accesses
but also reduces the number of CAPTCHAs that an
attacker has to solve when gathering Privacy Pass tokens
to be used in a DoS attack. [15] carefully considers the
pro’s and con’s and ends up suggesting a number below
100. Privacy Pass enjoys fast token verification (one PRF
evaluation and one hash), double spending protection,
and seemless key rotation (server chooses a fresh OPRF
key), while the communication and computation of its
issuing phase is linear in the number n of requested
tokens (n PRF evaluations). Privacy Pass is available
through the Chrome and Firefox browsers.

A new approach to building anonymous access tokens.
In this work, we build an alternative to Privacy Pass
trading faster token issuing on the server-side for slower
token verification, which is suitable for scenarios with
few issuing servers and many verification servers (cf.
8. In our system, communication as well as server-side
computation during the issuing phase is constant and
independent of the number of tokens a user gets for
each CAPTCHA solution. The constant-size data (called
pre-token) received during issuance, enables a user to
locally derive (multiple) tokens. Our tokens are further
fine-tunable in the sense that the server can adaptively
decide how many tokens any credible user is allowed
to derive from the pre-token at any given point in time
after the CAPTCHA was already solved. For example, a
server can decide to allow every credible user to compute
another 100 tokens whenever fast content delivery
has priority, and it can decide to limit the number of
newly created tokens to 1 per credible user whenever
there is an increased risk of a bot attack, i.e., security
has priority. This redemption policy update does not
cause any overhead such as further interactions between
issuing server and users. Besides this sort of time-wise
fine-tuning, also a content-specific fine-tuning is possible
(without having separate instances of our scheme),
by allowing a different number of tokens per credible
user for different kind of web contents. This could be
especially beneficial in avoiding further DoS-Attacks by
allowing less tokens for more computation-intensive tasks
as API calls. See Section 8 and Appendix E for further
details on updatable policies.

As in Privacy Pass, token spendings are anonymous
and unlinkable, where we achieve a somewhat weaker
form of unlinkability (cf. Section 8), key rotation is

1. This is a slight simplification: the Privacy Pass protocol does not
send w in the clear, but H(w, con) for some context data con that is
known to both the server and the browser. This allows to bind the token
spending to a specific context.

seemless, and double spending can be prevented by the
server.

A key contribution of our paper is a new cryptographic
primitive that we call group verifiable random function
(GVRF), which is particularly useful for constructing
anonymous tokens. Essentially, we can replace the OPRF
in Privacy Pass with a GVRF, and directly gain the
above-described issuing speedup and fine tuning. In a
nutshell, a GVRF lets a group of users each anonymously
evaluate their own random function, in a verifiable way.
More precisely, if Alice and Bob are two group members
(each holding a secret key skA, skB), their evaluations
VRFskA

(x) and VRFskB
(x) of any input x do not

reveal anything about skA and skB . This description is
already enough to explain the usefulness of GVRFs in the
context of anonymous tokens, and we will give a more
comprehensive introduction of GVRFs later. The main
idea is to replace the “global” PRF in Privacy Pass with the
user-specific random functions of a GVRF. This approach
makes the following simple but significant difference: we
can re-use the user-generated parts t of the tokens among
all users. Let us explain this in more detail. Assume tokens
are of the form (t, f(t)), where f() is a PRF in Privacy
Pass, and a GVRF in our work. If f() is a PRF and the
server holds the PRF key K as in Privacy Pass, every user
needs to receive tokens of the form (t,PRFK(t)) for the
same K, as otherwise the server could recognize users by
PRF keys. This actually decreases the efficiency of Privacy
Pass, where more than half of the user’s computation
complexity is for verifying that the server indeed used
the “global” PRF key K (cf. Table 1 in [15]), which
ensures the user’s anonymity. At the same time, it requires
users to choose random values t, simply to ensure that
nobody else already used t for their token request. On
the other hand, our token scheme replaces the PRF by a
user-specific VRF as (t,VRFsk(t)), where sk is a user’s
VRF evaluation key, which is certified by a group manager
playing the role of the issuing server. However, if we
would use a standard VRF with user-specific certified
public keys for verification, the token system would not
be anonymous. Group VRFs, as designed in this paper,
allow for anonymous yet verifiable evaluations within the
group of all users who ever got issued such evaluation
secret key (i.e., whoever solved a CAPTCHA). Because
every user still evaluates their own VRF, we can now re-
use t among users! And with that, we can let the server
install redemption policies even after a signing key sk was
issued. For example, a server can say “I am now accepting
tokens of the format (t = 2024 − 03 − 19a,VRFsk(t))
with a ∈ {1, ..., 10}”, thereby limiting the number of
tokens that credible users can locally generate for their
access requests to 10. On the downside, restricting the
first component t of all tokens to come from a small set
also causes some leakage: if two tokens with the same
first component t are redeemed, it is clear that they must
have been generated by different users (cf. Section 8 for
further discussions). Besides this new fine-tuning option,
token systems from group VRFs achieve constant token
issuance complexity on the server-side because all that
needs to be computed is a certified sk.

Our Group VRF Construction. We construct a group
VRF by augmenting an asymmetric version of the



Dodis-Yampolskiy (DY) VRF [16] with re-randomizable
certificates of VRF public keys. Recall that the DY VRF
in an asymmetric bilinear group with a pairing e :
G1,G2 → GT , for a PRF key sk ∈ Zp, where p = |Gi|,
with corresponding public key pk := gsk1 , computes the
PRF value of x ∈ Zp as FDY

sk (x) := e(g1, g2)
1/(x+sk).

A proof of correct computation of FDY
sk (x) is given in

form of a preimage π := g
1/(x+sk)
2 under the pairing.

I.e., the computation was correctly performed with sk if
FDY
sk (x) = e(g1, π) and e(pk · gx1 , π) = e(g1, g2). We

modify the DY PRF in essentially two ways to obtain
a group VRF, following the ideas of Ganesh et al. [23]
to achieve anonymity through non-uniqueness of public
keys.

1) Public keys of the form (g1, g
sk
1 ) are signed under a

signing key held by the group manager, and such a
signature (“certificate”) needs to be attached to each
computation and checked upon verification.

2) Public keys (g1, g
sk
1 ) can be randomized to

(gτ1 , g
τsk
1 ). In order to preserve correctness, we

change the proof to g
1/(τ(x+sk))
2 , such that

the randomization factor τ cancels out during
verification.

While this already outlines our construction, we would
like to point out two subtleties when adapting the DY
VRF to a group VRF. First of all, adapting the standard
version of the DY VRF in the symmetric bilinear group
setting, i.e., where FDY

sk (x) = e(g, g)1/(x+sk), would lead
to a candidate where anonymity could be trivially broken,
as public keys pk = (g, gsk), p̃k = (gτ , gτsk) could be
linked via checking e(g, gτsk)

?
= e(gτ , gsk).

Second of all, step (1) requires care. Indeed, we cannot
use a standard signature scheme, since a “static” signature
on a user public key (g1, g

sk
1 ) would void anonymity

guarantees. Hence, we require a signature scheme where
signatures can be randomized and adapted to verify
under randomized messages (i.e., user public keys in our
case). Fuchsbauer et al. [20] construct a signature scheme
where signatures can be “mauled” to verify under another
(random) message in the same equivalence class as the
originally signed message. Plugging in their scheme in
step (1) immediately yields our group VRF.

Further, it turns out challenging to prove our
construction secure. Intuitively, to prove anonymity the
reduction has to be able to generate proofs containing(
gτ1 , g

τα
1 , g

1
τ(x+α)

2

)
without knowing whether α = sk0

or α = sk1, which can be viewed as a combination of
the decisional Diffie-Hellman (DDH) assumption over G1

and a bilinear version of the strong decisional Diffie-
Hellman inversion assumption (which allows proving
pseudorandomness of the DY PRF [16]). However, since
the same challenge α is used for both, merely assuming
hardness of the two assumptions is not sufficient.

Instead, we prove our construction secure under a new
DDH-type assumption. We note that our VRF is pairing-
based, has small proofs for correctness of evaluation and
does not use “generic” NIZKs (e.g., Groth-Sahai proofs
or Fiat-Shamir based Sigma protocols) for those proofs.
For such VRFs, Brandt et al. [10] show that building
on complex (non-standard) assumptions or relying on
idealized models is unavoidable. We prove our new

assumption to hold in the generic group model (GGM)
[33], [29] instead of the more realistic algebraic group
model (AGM) [21], [31], since the latter seem to only
allow a reduction to a non-standard DL-type problem in
our case. In fact, as a by-product we prove hardness in
the GGM for a very broad class of decisional problems
in bilinear settings, encompassing Uber-problems [9] as
special instance, which might be of independent interest.

Naturally, the existence of a group manager comes
with the question of which additional power the group
manager has, compared to group members. For building
anonymous token system, we require that the group
manager cannot break any of the pseudorandomness
or anonymity properties that group members enjoy. In
particular, we require that group managers, just as group
members, cannot lift the anonymity of honest members,
link their evaluations, or falsely accuse them of having
computed an evaluation. Moreover, our group VRF needs
to be dynamic in the sense that it does not require to
update the group public key whenever members join
the group, and it guarantees security in the presence
of maliciously generated public keys. We give formal
definitions for (dynamic) group VRFs and all its desirable
properties, and demonstrate that our group VRF satisfies
them.

Instantiating our GVRF with the structure-preserving
signature scheme of [20] results in the following
efficiency: A user public key including its certificate
consists of 4 G1 and 1 G2 elements. Generating this
certificate requires 3 exponentiations in G1 and 1 in
G2. Verifying it takes 5 pairing evaluations. Computing
a GVRF evaluation costs one GT exponentiation,
computing the VRF proof requires 4 G1 and 2 G2

exponentiations. The resulting proof consists of 4 G1 and
2 G2 elements. Verifying a GVRF evaluation takes 7
pairing evaluations and 1 G1 exponentiation.

Related Work. Anonymous VRFs [23] produce
verifiable but anonymous pseudorandomness by allowing
to transform the verification key in such a way that
it still allows for verification, but cannot be linked
to other public keys. Evaluation keys can however be
generated by anybody, and hence anonymous VRFs
do not direclty lend themselves to building anonymous
token schemes. Our construction of group VRFs follows
the idea of [23] with public key transformation, but
additionally introduces a group manager that allows to
control the overall set of users that can evaluate the VRF
– without breaking the anonymity guarantees. Another
related concept are unique group signatures [19], which
mandate a group manager to control the group, but which
do not preserve the anonymity of group members in front
of this manager. We provide a more detailed comparison
of GVRFs, anonymous VRFs and unique blind signatures
in Appendix A.

Building on Privacy Pass [15], several recent works
design anonymous token systems. Kreuter et al. [28] built
anonymous tokens with so-called private metadata bit.
These tokens embed a single private bit that is accessible
only to the verifying authority. Their construction is DDH-
based and uses non-interactive zero-knowledge proofs,
which can be dispensed with at the cost of a weak
correctness notion. Their construction can be viewed as



modifying the oblivious PRF underlying Privacy Pass, the
so-called 2Hash Diffie Hellman protocol, to achieve the
desirable properties.

Chase et al. [13] revisits the definitions of hidden
metadata bits of Kreuter et al. [28] and provides stronger
versions, from algebraic MACs instead of PRFs.

Benhamouda et al. [5] build similar token system
as Kreuter et al. but with public verification, essentially
combining [28] with blind Schnorr signatures. Similarly,
Silde and Strand [34] build anonymous token systems with
public metadata that allows to add, e.g., an expiration date
to tokens, and that are publicly verifiable. Such tokens
can find adoption in contact tracing. Their work also
suggests batch revokation methods for Privacy Pass and
the token scheme of Kreuter et al., which can be used
instead of key rotation at the token verifier (which would
be arguably problematic in the case of public verifiability).
The anonymous token schemes in our work can have both
private and public verifiability.

Chu et al. [14] formalise rate-limited Privacy Pass,
as currently being standardised in IRTF [26], with two
new entities called mediator and issuer to entforce
rate-limiting. The anonymity trust assumption is that
both parties do not collude. Instead of working with a
vOPRF, a blinded signature scheme is used to sanitise
tokens for anonymity. While such rate limiting is not
the focus of our work, our scheme could be extended
with an authentication scheme during token issuance
to enforce rate limiting while still keeping verification
anonymous without additonal communicational overhead.
The disadvantage here is that rate limiting always applies
to a set of users.

Potentially closest to our work is the token scheme by
Benhamouda et al. [6], which builds so-called counting
tokens. These tokens allow the verifier to count how
many different users obtained a token for a particular
context. Formally, this is achieved by (1) different users
producing different tokens (as opposed to the one PRF
in PrivacyPass), and (2) adding a rate limit that disallows
the same user to successfully redeem two tokens on the
same message. In our work, we follow a similar strategy
and hence our token are also counting. However, while
Benhamouda et al. still use an OPRF (the Boneh-Boyen
PRF) and require communication per issued token, we
replace the OPRF by a group VRF which naturally yields
(1) and (2). On top, our GVRF-based token scheme allows
to adaptively decide on messages, while their construction
requires token contents to be decided prior to online
issuance.

Finally, our approach of making token generation local
by having a PRF key signed instead of the tokens itself
bears resemblance with the construction of compact e-cash
[12].

Outline of this paper. Section 3 introduces the concept
of GVRF. GVRF-based anonymous tokens are explained
in Section 4. Required building blocks and assumptions
GVRFs are described in Section 5. Section 6 presents
our GVRF construction. Finally, Section 7 presents our
benchmarks and Section 8 deployment considerations.

2. Notation

We will use the following notation. By λ ∈ N we
denote the security parameter. By x

$← S we denote the
process of sampling an element x from set S uniformly
at random. By y ← x we denote the process of assigning
y the value of x. We say a function is negligible
in λ, if its inverse vanishes asymptotically faster than
any polynomial in λ. We say that an algorithm A is
probabilistic polynomial time (PPT), if A is a probabilistic
algorithm with running time polynomial in its input
length. We use y ← A(x) to denote that y is assigned
the output of A running on input x.

We consider the adversary in security experiments
to be stateful, e.g., keeping all state from prior runs.
When writing A : ⊥ in a non-interactive method, we
denote an adversary arbitrarily deviating from the protocol
description.

3. Group-Verifiable Random Functions

Our definition of group VRFs is inspired by
Groth’s dynamic group signatures [24]. We first present
the plain definition, which only requires correctness,
pseudorandomness and unique provability. Subsequently,
we define additional notions such as (weak) anonymity
and unique opening.

In our definition of group verifiable random function,
we will assume a group manager (also sometimes referred
to as issuer), who can decide who can join the group.
Definition 1 (Group Verifiable Random Function). A

group verifiable random function (GVRF) is a tuple
of PPT algorithms defined as follows.
• pp ← Setup(1λ) is an algorithm to set up the

public parameters pp including the inputs space X ,
the output space Y . In the following we assume all
algorithms to have access to pp without stating it
explicitly.

• (pkG, skG) ← GroupKG(pp) is a probabilistic
algorithm (run by the issuer) that outputs the group
public key pkG and the group secret key skG, where
the latter is kept private by the issuer.

• b ← VerGroup(pkG) is an algorithm that takes as
input a group public key pkG and outputs a bit b ∈
{0, 1}.

• (pk, sk)← KG(pkG) is a probabilistic algorithm run
by a user that on input of the group public key pkG,
outputs a key pair (pk, sk).

• crt← Join(skG, pk) is a PPT algorithm executed by
the issuer on input skG and user public key pk. The
algorithm outputs a certificate crt.

• b ← VerCert(pkG, pk, crt) is a deterministic
algorithm that on input of the group public key pkG,
the user public key pk and the certificate crt, outputs
a bit b ∈ {0, 1}.

• (y, π, τ) ← Eval(pkG, pk, sk, crt, x) is an algorithm
that on input of the group public key pkG, the user
public key pk and secret key sk, the user value x ∈
X , and the certificate crt, outputs a value y ∈ Y , a
proof π, and opening information τ .

• b ← Ver(pkG, x, y, π) is an algorithm that on input
of the group public key pkG, an input-value pair x ∈
X , y ∈ Y and a proof π and outputs a bit b.



• b ← Judge(pkG, pk, x, y, π, τ) is an algorithm that
takes as input the group public key pkG, a user public
key pk, an input-value pair x ∈ X , y ∈ Y , a proof π,
an opening information τ , and outputs a bit b.

A GVRF must satisfy correctness, pseudorandomness and
unique provability defined below.

We discuss several aspects of the definition, in relation
to the definitions of group signatures. As in [24], our
GVRF is “dynamic” in the sense that users can join
the group at any time, without the need to update the
group public key pkG. Opposed to signature verification,
algorithm Ver cannot take a user public key as input,
since this would violate the desirable anonymity within
the group. Hence, Ver needs to verify from only the group
public key. Finally, users can decide to lift their anonymity
using the Judge algorithm. In this work we focus on this
user-centric flavor of deanonymization, but note that other
approaches are possible (e.g., where the group manager is
given the capability to trace users [24]).

3.1. Basic requirements on GVRFs

In the following we give basic requirements on our
GVRF. Note that these correspond essentially to the
standard VRF properties lifted to the group setting. In
particular, note that our definition of unique verifiability
essentially allows to recover the standard notion of unique
verifiability by using Judge as verification algorithm. Note
that in the following we give the definition relative to a
single public key/ secret key pair (pk, sk), which implies
that correctness holds for every honestly generated key
pair in a group.
Definition 2 (Correctness of a GVRF). A GVRF

(Setup,GroupKG,VerGroup,KG, Join,VerCert,Eval,
Ver, Judge) is correct if it satisfies the following
conditions for all security parameters λ ∈ N,
for all {X ,Y} ⊆ pp in the image of Setup(1λ),
for all (pkG, skG) in the image of GroupKG(pp)
for all (pk, sk) in the image of KG(pp, 1λ) and
crt← Join(pp, skG, pk):
• Correctness of certificates: It holds

VerGroup(pkG) = 1 and VerCert(pkG, pk, crt) = 1.

• VRF correctness: For all x ∈ X , for all (y, π, τ) in
the image of Eval(pkG, pk, sk, crt, x), it holds

Ver(pkG, x, y, π) = 1.

• Opening correctness: For all x ∈ X , for all (y, π, τ)
in the image of Eval(pkG, pk, sk, crt, x), it holds

Judge(pkG, x, y, τ, π) = 1.

We next formalize pseudorandomness of GVRF.
The standard notion of pseudorandomness for VRFs is
extended to the group setting in the following way: outputs
of the GVRF need to appear pseudorandom to every
member of the group, and to the group manager holding
skG.
Definition 3 (Pseudorandomness). A GVRF (Setup,

GroupKG,VerGroup,KG, Join,VerCert,Eval,Ver,
Judge) satisfies pseudorandomness, if for all
admissible PPT adversaries A, there exists a

ExppseudorandomGVRF,A (1λ):
{X ,Y} ⊆ pp← Setup(1λ)
pkG ← A(pp)
Q ← ∅, (sk, pk)← KG(pkG),
crt← A(pk)
x∗ ← AOEvalO(·,·)(1λ)
(y, π, τ)← Eval(pkG, pk, sk, crt, x

∗)

y0 ← y, y1
$← Y, b $← {0, 1}

b∗ ← AOEvalO(·)(yb)
return b = b∗ ∧ x∗ /∈ Q

OEval(x, crt):
Q = Q∪ {x}
(y, π, τ)← Eval(pkG, pk, sk, crt, x)
return (y, π)

Figure 1: Pseudorandomness experiment for GVRF. The
adversary wins if he can distinguish an evaluation of
self-chosen x∗ done with respect to some pk from a
randomly chosen element from the image space, where
only adversaries which provide a valid public key pkG
and valid certificates crt relative to pk are considered.

negligible function negl : N → R>0, such that for all
λ ∈ N it holds

Pr[ExppseudorandomGVRF,A (1λ) = 1]− 1

2
≤ negl(λ),

where ExppseudorandomGVRF,A (1λ) is as defined in Figure
1, where we say an adversary is admissible if it
provides pkG and crt such that VerGroup(pkG) =
VerCert(pkG, pk, crt) = 1, and where the randomness
is taken over the random coins of Setup, Join and
A, as well as the random choices of the bit b and
image y1.

Next we define unique provability. Recall that unique
provability is a property demanded from VRFs. It
demands that it is hard to produce two distinct VRF values
of the same input both with verifying proofs relative to
the same public key. Note that we cannot require unique
provability relative to the verification Ver, since Ver is
defined relative to a group manger, and thus a potential
group of public keys.2 Once keys are opened via Judge
to a unique public key though, we can require the usual
unique provability. Namely:
Definition 4 (Unique Provability). We say a GVRF

(Setup,GroupKG,VerGroup,KG, Join,VerCert,Eval,
Ver, Judge) satisfies unique provability, if for all
λ ∈ N, all public parameters pp in the image
of Setup(1λ), for all (pkG, skG) in the image of
GroupKG(pp), for all possible public keys pk (i.e.,
potentially maliciously generated), for all possible
certificates crt, for all possible input values x, for all
possible function values y0, y1 for all possible proofs
π0, π1 and for all possible opening values τ0, τ1 it
holds the following: if Judge(pkG, pk, x, y0, π0, τ0) =
Judge(pkG, pk, x, y1, π1, τ1) = 1, then y0 = y1. (In
other words, for each x ∈ X there exists at most one
possible function value y to which x can be opened to
under pk. By correctness it is exactly on y, whenever
pk is generated honestly.)

3.2. Group-bounded provability

Recall that in the group setting an adversary could
have potentially corrupted members of the group, and

2. To make the verification algorithm Ver meaningful for applications,
we introduce the notion of “group-bounded provability” below.



hence is in possession of an arbitrarily large fraction of
the secret keys. For an adversary holding n secret keys
(relative to some group defined by pkG), it is thus easy
to produce n images with verifying proofs for the same
input value x ∈ X . We capture the intuition that an
adversary should not be able to produce more valid images
of x (relative to pkG) in the notion of group-bounded
provability.

Expgb−provGVRF,A(1
λ):

pp← Setup(1λ), ctr := 0
(pkG, skG)← GroupKG(pp)
(x∗, y1, . . . , yn, π1, . . . , πn)← AOJoin(·)(pp, pkG)
if [∀i ̸= j : yi ̸= yj ] ∧ [∀i : Ver(pkG, x∗, yi, πi) = 1]
∧ ctr < n

return 1
else return 0

OJoin(pk):
crt← Join(skG, pk)
ctr← ctr + 1
return crt

Figure 2: Group-bounded provability experiment for
GVRF. The adversary wins if it can provide at least one
more evaluation of self-chosen x∗ than it posesses secret
keys within the group.

Definition 5 (Group-bounded provability). We say
a GVRF (Setup,GroupKG,VerGroup,KG, Join,
VerCert,Eval,Ver, Judge) has group-bounded
provability if for all PPT adversaries A, there exists a
negligible function negl : N → R>0, such that for all
λ ∈ N it holds

Pr[Expgb−provGVRF,A(1
λ) = 1] ≤ negl(λ),

where Expgb−provGVRF,A(1
λ) is as defined in Figure 2 and the

randomness is taken over the random coins of Setup,
Join, and A.

3.3. (Weak) Unlinkability

Next, we define two flavors of unlinkability. Weak
unlinkability essentially demands that evaluations of
different preimages should not reveal by which group
member they were computed. If this holds even if the
adversary has already seen an arbitrary set of disjoint
evaluations of the group members in question, we refer
to it as (full) unlinkability.

Definition 6 ((Weak) Unlinkability). A GVRF (Setup,
GroupKG,VerGroup,KG, Join,VerCert,Eval,Ver,
Judge) satisfies (weak) unlinkability, if for all
admissible PPT adversaries A, there exists a
negligible function negl : N → R>0, such that for all
λ ∈ N it holds

Pr[Exp
(weak-)unlink
GVRF,A (1λ) = 1]− 1

2
≤ negl(λ),

where Exp
(weak-)unlink
GVRF,A (1λ) is as defined in Figure 3,

where we say an adversary is admissible if it provides
pkG and crt0, crt1 such that VerGroup(pkG) = 1 and
VerCert(pkG, pk0, crt0) = VerCert(pkG, pk1, crt1) =
1, and the randomness is taken over the random coins
of Setup and A, as well as the random choices of the
bit b and image y1.

Exp
(weak-)unlink
GVRF,A (1λ):

{X ,Y} ⊆ pp← Setup(1λ)
pkG ← A(pp)
Q := ∅, Qopen := ∅
(pk0, sk0)← KG(pkG)
(pk1, sk1)← KG(pkG)
(crt0, crt1)← A(pk0, pk1)
b

$← {0, 1}
b∗ ← AOb

Eval(·),O
0
EvalO(·),O

1
EvalO(·)(1λ)

return (b == b∗) ∧(Q∩Qopen == ∅)

Ob
Eval(x):
Q := Q∪ {x}
(y, π, τ)← Eval(pkG, pkb, skb, crtb, x)
return (y, π)

O0
EvalO(x):
Qopen := Qopen ∪ {x}
(y, π, τ)← Eval(pkG, pk0, sk0, crt0, x)
return (y, π)

O1
EvalO(x):
Qopen := Qopen ∪ {x}
(y, π, τ)← Eval(pkG, pk1, sk1, crt1, x)
return (y, π)

Figure 3: (Weak-)Unlinkability experiment for GVRF.
The adversary needs to recognize which of two public
keys is used for a series of evaluations of self-chosen
inputs. In the full unlinkability experiment, the adversary
additionally has access to the oracles O0

EvalO,O1
EvalO

highlighted in red. Here, we only consider adversaries
which provide a valid public key pkG and valid certificates
crtβ relative to pkβ for β ∈ {0, 1}.

3.4. Unique opening

Next we define unique opening, which prevents
malicious users from claiming ownership of an input/
output pair x, y which was evaluated by an honest user
under pk relative to a maliciously generated public key
pk∗ ̸= pk.
Definition 7 (Unique Opening). We say a group

VRF GVRF = (Setup,GroupKG,VerGroup,KG, Join,
VerCert,Eval,Ver, Judge) satisfies unique opening,
if for all λ ∈ N, all public parameters pp
in the image of Setup(1λ), for all (pkG, skG)
in the image of GroupKG(pp), for all possible
public keys pk0, pk1, for all possible certificates
crt0, crt1, for all possible input values x, for all
possible function values y for all possible proofs
π0, π1 and for all possible opening values τ0, τ1
it holds that: if Judge(pkG, pk0, x, y, π0, τ0) =
Judge(pkG, pk1, x, y, π1, τ1) = 1, then pk0 = pk1. (In
other words, for each input/ output pair (x, y) ∈ X×Y
there exists at most one possible public key pk such
that (x, y) can be opened under pk.)

Note that for the use in anonymous token schemes the
ability to de-anonymize oneself is not required, one could
thus also define GVRFs without opening information τ ,
without a Judge algorithm, and without requiring unique
opening. Since we believe that the possibility to “claim”
an evaluation is useful in contexts like lottery schemes,
where one might want to claim a lottery win, and since our
instantiation naturally satisfies this additional requirement,
we opted for the more general definition.

3.5. Power of the group manager

We want to stress that the only power our group
manager has is to decide who can join the group by
generating a certificate. He cannot, however, evaluate the
VRF relative to a group member (pseudorandomness),
link a VRF evaluation to a group member (unlinkability),
or frame a group member for a (malicious) evaluation
(pseudorandomness & unique provability).



4. Anonymous Tokens from Group VRFs

GVRFs are useful tools for building anonymous
access token systems. We now give an algorithmic
description of a policy-based anonymous token scheme.
We aim at a general definition that can capture previous
constructions such as Privacy Pass, but that is also suitable
to demonstrate particular aspects of GVRF-based access
tokens.

• AT.Setup(1λ) is a global and trusted setup that is run
once to generate the (re-usable) public parameters pp.
All parties and algorithms are assumed to have access
to pp.

• AT.ServerSetup(S : pp) is run by S once and outputs
a secret key skS to the server, and the public key pkS
to all parties.

• AT.VerSSetup(U : pkS) is run by a user (or another
entity advocating privacy) to verify the server setup.
It outputs a bit b ∈ {0, 1}.

• AT.UpdatePolicy(S : {p1, . . . , pn}) for any n ∈ N is
run by S and sets P ← {p1, . . . , pn} or outputs ⊥.

• AT.Generate(U : pkS ;S : skS) is run between a user
U and S. It outputs a pre-token pre or ⊥ to user U .

• AT.Expand(U : p, aux, pre) is an algorithm run by
the user U that, on input a pre-token pre, auxiliary
information aux and an element p from the policy P
outputs a token t and a proof π.

• AT.Verify(V : t, aux, π,P, skS | pkS) is a (stateful)
algorithm run by V that outputs a bit b. If it is
sufficient that the verifier inputs pkS instead of skS
we call the scheme publicy verifiable.

Policy-based anonymous token scheme. A policy-
based anonymous token scheme (pbATS) is run with
arbitrarily many users, one issuing server (S in the below)
that grants access based on the policy and generated (pre-
)tokens, and a verifier V . A pbATS adds a global policy to
standard anonymous token schemes that allows the verifier
to adaptively control the number of tokens that can be
successfully redeemed by a credible user. To model the
adaptivity, users first obtain a so-called pre-token pre from
the issuing server (AT.Generate). According to the current
global policy, they can then locally expand that pre-token
in several actual tokens (AT.Expand), optionally including
auxiliary information aux in the token, e.g., to bind it to a
particular context. A change in policy can then allow users
to compute more tokens even without interacting with the
issuer again. The policy hence allows the verifier to set
the security level: a strict policy P = {p1} allows each
user to extract exactly one token from each pre-token,
requiring to again contact the issuing server if they want
more tokens. A relaxed policy P = {p1, . . . , pn} allows
to expand each pre-token into n access tokens, taking off
the load from the issuing server and hence enabling faster
access to resources.

Intuitively, we want AT.Verify(V : t, aux, π,P, skS |
pkS) to output 1 if and only if there exists a
policy p ∈ P and a pre-token pre generated by
AT.Generate(U : pkS , S : skS) such that (t, π) was an
output of AT.Expand(U : p, aux, pre) and t has not been
used previously. In particular, we want correctness (i.e., a
honestly generated token will be accepted by the verifier),
unforgeability (i.e., a user holding k pre-tokens cannot

generated more than k · |P| accepting tokens relative to
P) and unlinkability (i.e., a server cannot link a pre-token
pre with a token t).

Before formally defining these properties, we will
explain how Privacy Pass can be viewed as a pbATS.
Recall that Privacy Pass is based on a verifiable oblivious
pseudorandom function (vOPRF). A vOPRF is a two-party
primitive, where a server holds a secret key k, such that the
client (user) can evaluate the pseudorandom function fk(·)
on inputs x of her choice, such that the server does not
learn anything about the choice x, and the client does not
learn anything about the secret key k (except the output
fk(x)). Verifiability further guarantess that the client can
verify that fk(x) was correctly evaluated. Now, to obtain a
token in Privacy Pass, the user receives y = fk(x) for an x
of her choice. The user then computes π := MACk′(aux)
for k′ := KDF(y), where KDF is some key derivation
function that allows to derive a key k′ for a message
authentication code MAC.3 To redeem, the user can send
(x, π) to the server, which accepts if and only if x is fresh
(i.e., has not been queried before) and it can recompute
π from x, k and aux. Intuitively, we have unforgeability
because of the pseudorandomness of fk(·) (i.e., generating
an accepting token would correspond to guessing the
output value on a fresh x′) and unlinkability because the
server did not learn anything about x at the time of the
token generation. With this, it is straightforward to obtain
a pbATS. as follows.
• PPass.Setup(1λ) generates public parameters for the

vOPRF used by privacy pass.
• PPass.ServerSetup(S : pp) runs the vOPRF setup

and returns an vOPRF key skS = k to the server
and a public commitment pkS to the key k to all
parties.

• PPass.VerSSetup(U : pkS) is not explicitly
supported by Privacy Pass, instead a correct
server setup (knowledge of k) is implicitly checked
as part of the proof for a valid pre-token.

• Privacy Pass does not support
AT.UpdatePolicy(S : P).

• PPass.Generate(U : pkS ;S : skS) invokes a vOPRF
evaluation between the user U and the server S,
where the user inputs a randomly chosen message
x and the server inputs the vOPRF key skS = k,
and the user obtains the pre-token (x, fk(x)). If the
output does not verify, the user outputs ⊥. Proofs of
multiple vOPRF evaluations are batchable.

• PPass.Expand(U : ⊥, aux, pre) parses
pre =: (x, fk(x)), returns the token t = x and
proof π = MACKDF(y)(aux), i.e., each pre-token
gives exactly one token.4

• PPass.Verify(V : t, aux, π,P, skS) is run by S, who
checks if π = MACKDF(fk(t))(aux) for k = skS and t
has not been used (note that the policy P is ignored).

Because each verifying token t requires one interaction
with the server, Privacy Pass does not allow the verifier

3. Note that for the purpose of obtaining a pbATS, one could also
consider a simplified version of Privacy Pass without auxiliary input
aux, where we set π = fk(x).

4. Note that one can derive many distinct tuples (x, πi) from a pre-
token pre by using different auxiliary inputs auxi, but since they all share
the same x these would be linkeable by the server. To avoid double-use
the server checks freshness of t = x.



to install policies that would allow to locally generate
more tokens through Expand. Further, since access to
skS = k is required in AT.Verify, Privacy Pass requires
to set S = V , i.e., the scheme is not publicly verifiable.
Further, since access to skS = k is required in AT.Verify,
Privacy Pass requires to set S = V , with an extension
in using a blinded signature scheme instead of a vOPRF,
Privacy Pass is also able to be publicly verifiable. We
note that batching techniques can be applied to render the
issuance of n tokens to significantly be more bandwith-
efficient and verifier-efficient than n times the cost of
Generate, particularly through batching the proof of
correct PRF evaluation in the vOPRF. We will later take
these techniques into account when comparing our pbATS
to Privacy Pass.

We now explain how a pbATS ATGVRF with a
flexible policy can be obtained based on group VRFs.
The construction is pretty straightforward: pre-tokens are
GVRF user key pairs certified by S who takes the role of
the GVRF group manager. Tokens are GVRF evaluations
of elements x from the policy under the user secret key.
This allows users to locally generate as many tokens as
the policy has elements. Token verification equals the
verification of a GVRF evaluation, and expiration of all
issued pre-tokens and tokens works by generating a fresh
GVRF group key pair. More formally, let GVRF denote a
group VRF. Then we define a pbATS as follows.
• ATGVRF.Setup(1

λ) outputs pp ← GVRF.Setup(1λ),
where pp includes a description of the input set X
of the GVRF.

• ATGVRF.ServerSetup(S : pp) generates a key pair
(pkS , skS)← GVRF.GroupKG(pp), and outputs skS
to S and pkS to all users.

• ATGVRF.VerSSetup(U : pkS) returns the output of
GVRF.VerGroup(pkS).

• ATGVRF.UpdatePolicy(S : X) for any X ⊂ X sets
P ← X .

• To run ATGVRF.Generate(U : pkS , S : skS), the user
generates a key pair (pk, sk) ← GVRF.KG(pkS)
and sends pk to the server. The server generates
crt ← Join(skS , pk) and sends crt to the user.
The user checks if the obtained certificate verifies
via VerCert(pkS , pk, crt) = 1, if yes it outputs
pre = (pkS , sk, crt), otherwise it outputs ⊥.

• To evaluate ATGVRF.Expand(U : x,⊥, pre), the user
parses the pre-token pre =: (pkS , sk, crt),
computes the GVRF evaluation (y, π, τ) ←
Eval(pkS , pk, sk, crt, x) and outputs token t :=
(x, y) and proof π.

• ATGVRF.Verify(V : t,⊥, π,P, pkS) parses t =: (x, y)
and outputs 1 if x ∈ P and Ver(pkS , x, y, π) = 1 and
t has not been used, and 0 otherwise.

Before proving that this indeed yields a pbATS with
flexible policy, we formally define desirable properties of
a pbATS.

Correctness. For correctness, we require that Expand
always produces verifying tokens when run with a
fresh element from the policy, a pre-token generated
by Generate, an arbitrary auxiliary information. More
formally:
Definition 8 (Correctness and freshness of pbATS).

We say that a pbATS AT = (Setup,ServerSetup,

ExpunforgeableAT,A (1λ):
ctr := 0 , pp← Setup(1λ)
(pkS , skS)← ServerSetup(S : pp)
(P, (ti, πi, auxi)i∈[ℓ])← AOGen()(pp, pkS)
if [∀i ̸= j : ti ̸= tj ] ∧ ctr · |P| < ℓ ∧
[∀i : Ver(V : ti, auxi, πi,P, skS) = 1]

return 1
else return 0

OGen():
pre← AT.Generate(A : ⊥, S : skS)
ctr← ctr + 1
return pre

Figure 4: Unforgeability experiment for anonymous token
schemes.

VerSSetup,UpdatePolicy,Generate,Expand,Verify)
is correct, if for all λ ∈ N, pp ← Setup(1λ),
for all (pkS , skS) ← ServerSetup(S : pp), we
have that VerSSetup(U : pkS) = 1, and for all
possible policies P in the image of UpdatePolicy,
for all policy elements p ∈ P , for all pre-tokens
pre ← AT.Generate(U : pkS , S : skS), we have that
each (t, π) in the image of AT.Expand(U : p, pre)
will pass the verification, i.e., it holds that
AT.Verify(V : t, π,P, skS | pkS) = 1.
We further require freshness of the generated token:
If (t, π) ← AT.Expand(U : p, pre) and (t′, π′) ←
AT.Expand(U : p′, pre′) with p ̸= p′ or pre ̸= pre′

(for p, p′ ∈ P and honestly generated pre, pre′), we
require t ̸= t′, except with negligible probability.

Correctness of our GVRF-based token scheme ATGVRF

immediately follows from the correctness of the GVRF.
If the output space Y of GVRF is sufficiently large (i.e.,
of superpolynomial size), then freshness follows from the
pseudorandomness of the GVRF.

A note on freshness. Note that when redeeming a
token the server only checks if a token has already been
spent (which by freshness does not happen for a newly
generated token, except with negligible probability). If
a user’s token has not been spent yet, an adversary
getting hold of it may spend it. This is a trade-off for
more efficiency, since proving freshness would require an
interactive protocol (involving a server challenge). Instead,
our tokens are static objects (as in Privacy Pass) and
enable faster redemption.

Unforgeability. We require that it is hard to produce a
verifying token beyond what the policy allows to expand
from pre-tokens obtained from the issuer. More formally:
Definition 9 (Unforgeability pbATS). We say a pbATS

AT = (Setup,ServerSetup,VerSSetup,UpdatePolicy,
Generate,Expand,Verify) is unforgeable, if for all
PPT adversaries A there exists a negligible function
negl : N→ R>0, such that for all λ ∈ N it holds

Pr[ExpunforgeableAT,A (1λ) = 1] ≤ negl(λ),

where ExpunforgeableAT,A (1λ) is as defined in Figure 4.

Unforgeability ensures that cooperating users cannot
create fresh tokens, beyond the ones issued by the issuing
server. This property corresponds to “One-More-Token
security” in Privacy Pass.
Theorem 1 (Unforgeability of ATGVRF). Let ATGVRF

as defined above and with GVRF GVRF. If GVRF
has group-bounded provability, then ATGVRF is
unforgeable.



ExpunlinkableAT,A (1λ):
pp← Setup(1λ)
pkS ← A(pp)
pre0 ← AT.Generate(U0 : pkS ,A : ⊥)
pre1 ← AT.Generate(U1 : pkS ,A : ⊥)
Q := ∅, Qopen := ∅
b

$← {0, 1}
b∗ ← AOb

TokChall(·),O
0
Tok(·),O

1
Tok(·)()

return (b == b∗) ∧(Q∩Qopen == ∅)

Ob
TokChall(p, aux):
Q := Q∪ {p}
(t, π)← AT.Expand(Ub : p, aux, preb)
return (t, π)

O0
Tok(p, aux):
Qopen := Qopen ∪ {p}
(t, π)← AT.Expand(U0 : p, aux, pre0)
return (t, π)

O1
Tok(p, aux):
Qopen := Qopen ∪ {p}
(t, π)← AT.Expand(U1 : p, aux, pre1)
return (t, π)

Figure 5: Unlinkable experiment for anonymous token
schemes.

Proof: We explain how a token forger A against
ATGVRF yields a group-bounded provability attacker B.
The reduction is straightforward and essentially only
relays values.
B obtains pp and pkG from the group-bounded

provability challenger and forwards these to the
unforgeability attacker A. When A makes use of his
Generate oracle on a public key pk, B needs to reply back
with the corresponding certificate crt, which he obtains
from his Join oracle OJoin on input pk. Let ctr denote
the number of Generate queries by A. Finally, A outputs
P := {p1, . . . , pn}, t1 := (x1, y1), . . . , tl := (xl, yl) and
proofs π1, . . . , πℓ.

Assuming A’s output constitutes a valid forgery, we
have ctr · n < ℓ and ti ̸= tj for all i ̸= j and
Ver(V : ti,⊥, πi,P, sks) = 1 for all i ∈ [ℓ]. Thus, by
the pigeonhole principle there must exist a p∗ ∈ P and
subset J ⊆ [l] with |J | > ctr and xj = p∗ for all j ∈ J .
B then submits (p∗, (yj)j∈J , (πj)j∈J) as forgery.

Since (xi, yi) ̸= (xj , yj) for all i ̸= j and xi = xj =
p∗ ∀ i, j ∈ J , it must hold yi ̸= yj for all i, j ∈ J . Further,
Ver(V : ti, auxi, πi,P, sks) = 1 for all i ∈ [ℓ] implies
Ver(pkS , p

∗, yi, πi) = 1 for all i ∈ J . Hence, if A outputs
a valid forgery, then B wins the group-bounded provability
experiment.

Unlinkability. We require that it is hard to link a token to a
particular user. In our abstraction of a pbATS, a user is an
owner of a pre-token, and hence we demand that it is hard
to decide whether two tokens, for policy elements p ̸= p′,
were expanded from the same pre-token, or different ones.
We require unlinkability to hold even against a malicious
issuer of pre-tokens. More formally:
Definition 10 (Unlinkability pbATS). We call a

pbATS AT = (Setup,ServerSetup,VerSSetup,
UpdatePolicy,Generate,Expand,Verify) unlinkable,
if for all admissible PPT adversaries A there exists a
negligible function negl : N → R>0, such that for all
λ ∈ N it holds

|Pr[ExpunlinkableAT,A (1λ) = 1]− 1

2
| ≤ negl(λ),

where ExpunlinkableAT,A (1λ) is as defined in Figure 5 and
an adversary is admissible if it outputs pkS with
VerSSetup(pkS) = 1 and prei ̸= ⊥ for i ∈ {0, 1}.

Theorem 2 (Unlinkability of ATGVRF). Let ATGVRF as
defined above with GVRF GVRF. If GVRF is fully
unlinkable (cf. Def. 6), then ATGVRF is unlinkable.

Proof: We explain how an unlinkability adversary
A against ATGVRF yields an attacker B against the full
unlinkability of GVRF. The reduction is straightforward
since B essentially only forwards values between the
unlinkability challenger and A. More detailed, B obtains
public parameters pp and runs A to obtain pkS . Upon
obtaining pk0, pk1 from the challenger, B sends pk0, pk1
to A during the two Generate executions, and receives
back certificates crt∗0, crt

∗
1, which it checks and passes

to the challenger. The token generation oracle Oi
Tok()

is implemented using oracle O1
EvalO(·). Finally, A’s

challenge oracle Ob
TokChall(p) is implemented using B’s

oracle Ob
Eval(·), and A’s decision bit is adopted by B.

Clearly, B is successful if and only if A is.

5. Building Blocks

In this section we recall the definition of signatures on
equivalence classes, and introduce the one-more bilinear
DDH/DDHI assumption, on which our construction relies.

5.1. Signatures on Equivalence Classes

For our construction we require a randomizable
signature scheme. To this end, we recall the definition of
[20] of signatures on equivalence classes in the following.
Let G1 be a group of prime order p, and G∗1 := G1\{1G1

}.
For vectors u⃗ ∈ Gℓ

1, where ℓ ∈ N, and ρ ∈ Zp we denote
by u⃗ρ the pointwise exponentiation (uρ

1, . . . , u
ρ
ℓ ). Then,

the equivalence relation we consider in this paper is of
the form

RDDH := {(u⃗, v⃗) ∈ (G∗1)ℓ × (G∗1)ℓ | ∃ρ ∈ Z∗p : v⃗ = u⃗ρ},

where in this paper we always have ℓ = 2. For u⃗ ∈ (G∗1)ℓ,
this relation defines the equivalence class

[u⃗]RDDH
:= {v⃗ ∈ (G∗1)ℓ | ∃ρ ∈ Z∗p : v⃗ = u⃗ρ}.

In the following we will typically consider ℓ = 2.
We recall the definition of signatures on equivalence

classes of [20]. Note that in [20] such signatures are
referred to as structure-preserving signatures, but as the
definition does not explicitly required the signature to
be structure-preserving, we will simply refer to such
signatures as signatures on equivalence classes in the
following. Further, we will fix ℓ in advance (rather than
giving it as parameter to BGGen), since in the paper we
will only consider ℓ = 2.
Definition 11 (Signatures on Equivalence Classes

([20], Def. 15)). An ℓ-dimensional EQ-R signature
scheme consists of a tuple of algorithms SIG =
(BGGenR,KGR,SignR,ChRepR,VfyR) such that the
following holds:

BGGenR(1
λ): Is a probabilistic polynomial-time

algorithm that on input of the security parameter
1λ outputs BG = (G1,G2,GT , p, g1, g2, e), where
G1,G2,GT are groups of prime order p, g1 is
a generator of G1, g2 is a generator of G2, and
e : G1×G2 → GT is a non-degenerate bilinear map.

KGR(BG): Is a probabilistic alogrithm, which on input
of a bilinear group BG amd dimension ℓ outputs a
key pair (pk, sk).



Expeuf−cma
SIG,A (1λ):

BG← BGGenR(1
λ)

(pk, sk)← KGR(BG)
Q := ∅
(m⋆, σ⋆)← AOsign(·)(BG, pk)
if ∀m ∈ Q : [m⋆]R ̸= [m]R∧Vfy(pk,m⋆, σ⋆) = 1

return 1
else return 0

Osign(m):
Q := Q∪ {m}
σ ← Sign(sk,m)
return σ

Figure 6: Unforgeability experiment for signatures on
equivalence classes.

SignR(sk, u⃗): Is a probabilistic polynomial time
algorithm, which on input of a secret key sk and a
representative u⃗ ∈ (G∗1)ℓ, outputs a signature σ.

ChRepR(pk, u⃗, σ, ρ): Is a probabilistic algorithm, which
on input of a public key pk, representative u⃗ ∈ (G∗1)ℓ,
signature σ and scalar ρ ∈ Z∗p, computes a new
representative v⃗ = u⃗ρ and an updated signature σ̂,
and outputs (v⃗, σ̂).

VfyR(pk, u⃗, σ): Is a deterministic algorithm, which on
input of a public key pk, representative u⃗ and
signature σ outputs a bit b ∈ {0, 1}.

VKeyR(pk, sk) : Is a deterministic algorithm, which on
input of a public key pk and secret key sk outputs a
bit b ∈ {0, 1}.

We further require the scheme to satisfy correctness, EUF-
CMA security and perfect signature adaptation as
defined in the following.

Definition 12 (Correctness). We say an ℓ-dimensional
EQ-R signature scheme SIG = (BGGenR,
KGR,SignR,ChRepR,VfyR) is correct, if for
all security parameters λ ∈ N, for all bilinear groups
BG in the image of BGGenR(1

κ), for all key pairs
(pk, sk) in the image of KGR(BG), for all u⃗ ∈ (G∗)ℓ,
for all σ in the image of SignR(sk, u⃗), it holds

VKeyR(pk, sk) = 1 and VfyR(pk, u⃗, σ) = 1.

Further, for all ρ ∈ Z∗p, we require

VfyR(pk, v⃗, σ̂) = 1,

where (v⃗, σ̂)← ChRepR(pk, u⃗, σ, ρ) and v⃗ = u⃗ρ.

Unforgeability for EQ-R signature schemes demands
that it be hard to forge a verifying signature on an
adversarially-chosen message m∗ from a fresh equivalence
class. Note that it is easy to produce fresh signatures using
the ChRepR algorithm on a signature obtained from the
signing oracle. However, ChRepR is “class preserving”,
meaning that it can only produce signatures for messages
in the same equivalence class as the original message.
Hence, in the EUF-CMA experiment, the adversary is
challenged to produce a forgery for a message from
an equivalence class for which it has never received a
signature from its oracle. We will use EUF-CMA security
in our construction to allow the group manager to control
the size of participant set (i.e., key holders) in a group.
Definition 13 (EUF-CMA security). We say an EQ-
R signature scheme SIG = (BGGenR,KGR,SignR,
ChRepR,VfyR) satisfies unforgeability, if for all
PPT adversaries A there exists a negligible function
negl : N→ R>0, such that for all λ ∈ N

Pr[Expeuf−cma
SIG,A (1λ) = 1] ≤ negl(λ),

Strong
bilinear

DDH/DDHI
(Def. 15)

GGM

One-more
bilinear

DDH/DDHI
(Def. 16)

One-more
bilinear

2DDH/DDHI
(Def. 17)

DDH

Thm. 1
Lemma 1

Figure 7: Implications of the various assumptions defined
in this work. Dashed arrows hold only if the challenge
space of the implied assumption is restricted to polynomial
size.

where Expeuf−cma
SIG,A is as defined in Figure 6.

To prove anonymity we further need that freshly
generated signatures are indistinguishable from re-
randomized signatures, which is captured by the notion
of perfect signature adaptation.
Definition 14 (Perfect signature adaptation). Let

ℓ > 1. We say an ℓ-dimensional EQ-R signature
scheme SIG = (BGGenR,KGR,SignR, ChRepR,
VfyR,VKeyR) perfectly adapts signatures, if for all
λ ∈ N, all bilinear groups BG in the image of
BGGenR(1

λ) and all tuples (sk, pk, u⃗, σ, µ) with

VKey(pk, sk) = 1, u⃗ ∈ (G∗1)ℓ, VfyR(pk, u⃗, σ) = 1,

µ ∈ Z∗p
the outputs of ChRepR(pk, u⃗, σ, µ) and SignR(sk, µ ·
u⃗) are identically distributed.

Instantiating Signatures on Equivalence Classes.
Fuchsbauer et al. [20] give an instantiation of signature
schemes on equivalence classes (Scheme 1, [20]) in the
generic group model, where public keys consist of two
group elements over G2, and signatures consist of two
group element over G1 plus one group element over G2.
Computing the re-randomization of a signature requires
three group exponentiation (+ two group exponentiations
to compute the re-randomized message), and verifications
costs five pairing evaluations.

5.2. The One-More Bilinear DDH/DDHI
Assumption

For proving anonymity of our construction, we rely
on a “one-more” type assumption, which can be viewed
as a strenghtening of bilinear variants of both the DDH
and SDDHI assumption [11], [19] (although it seems
incomparable to the latter). We start with a non-interactive
version of this assumption, where we require the challenge
space X ⊂ Zp to be of polynomial-size. We refer to
this as the strong bilinear DDH/DDHI assumption. In
Appendix D, we show that this assumption holds in the
generic group model.

We refer the reader to Figure 7 for an overview of the
cryptographic assumptions presented in this subsection,
and the relations between them.

Definition 15 (Strong Bilinear DDH/DDHI Assumption).
Let G be a asymmetric bilinear group generator
returning groups BG := (G1,G2,G3, p, g1, g2, e). Let
X ⊂ Zp be a polynomial-sized set. Then, we say
that the strong bilinear DDH/DDHI assumption with



respect to challenge space X is hard relative to G,
if for every PPT adversary A and every polynomial
q there exists a negligible function negl : N → R>0,
such that for all λ ∈ N it holds

Pr

[
A

(
BG, {(x, gτx,i

1 , g
ατx,i

1 , g

1
τx,i(α+x)

2 )}x ̸=x∗,i∈[q],
gα1 , zb

)
= b

]

≤
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+ negl(λ),where

BG← G(1λ), b $← {0, 1}, α, τ, y $← Zp, x
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1
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1
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Theorem 1 (Hardness of Strong Bilinear DDH/DDHI
in GGM). Let P be the strong bilinear DDH/DDHI
problem from Definition 15. Then any generic group
algorithm sending at most t queries to the generic
group oracle can solve P with advantage at most
ϵ ≤ (2560(|X |q + 1)5(t log(p) + t+ 1)2)/p.

For a proof of this theorem we refer to Appendix D.
Relation to other assumption.
Our assumption is a combination of the bilinear

decisional Diffie-Hellman (BDDH) assumption over G1,
stating that given gα1 , g

τ
1 , it is hard to distinguish gατ1 from

random, and a bilinear version of the SDDHI assumption
[11], [19] (in the following referred to as BDDHI),
where the adversary has to distinguish e(g1, g2)

1
α+x∗ from

random and gets oracle access to an oracle Oproof , which

outputs g
1

α+x

2 for any x∗ ̸= x. Intuitively, the only thing
an adversary can do to break the new assumption is to
pair elements and check for equality. To rule out such
attacks, we slightly adapt the assumptions and show that
the resulting combined assumption is hard in the GGM. In
particular, we “weaken” the oracle of the BDDHI security
assumption, as the oracle would allow an adversary to
trivally break BDDH. In this sense, the assumption is
incomparable to the BDDHI security assumption, but in
spirit our assumption can be viewed as a strengthening of
both.

One-more bilinear DDH/DDHI assumption. To
remove the requirement of X being polynomial-sized,
we introduce an interactive version of the assumption,
where the adversary gets to choose the challenge x⋆

after seeing gα1 , which we refer to as one-more bilinear
DDH/DDHI. It is easy to see that this is implied by
the non-interactive variant when the challenge space is
restricted to polynomial-sized X ⊂ Zp, since the reduction
can simply guess the challenge x∗ ahead of time, and

implement Oproof using {(x, gτx1 , gατx1 , g
1

τx(α+x)

2 )}x ̸=x∗ .

Definition 16 (One-More Bilinear DDH/DDHI
Assumption). Let G be a asymmetric
bilinear group generator returning groups
BG := (G1,G2,GT , p, g1, g2, e). Then, we say
that the one-more DDH/DDHI assumption is hard
relative to G, if for every admissible PPT adversary
A = (A0,A1) there exists a negligible function
negl : N→ R>0, such that for all λ ∈ N it holds

Pr
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]
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+ negl(λ), where

BG← G(1λ), b $←{0, 1}, α, τ, y $← Zp, Q := ∅,
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where Oproof(x) on the i-th query samples τi ← Zp, outputs

(g
τi
1 , g

ατi
1 , g

1
τi(α+x)

2 ) and sets Q := Q ∪ {x}. We say a PPT
adversary (A0,A1) is admissible if x∗ /∈ Q.

To show anonymity of our construction we rely on a
variant of the above assumption, which allows to simulate
proofs relative to two secret keys α and α̃. We state the
assumption and show that it is implied by the one-more
bilinear DDH/DDHI assumption in the Appendix F.

Definition 17 (One-More Bilinear 2-DDH/DDHI
Assumption). Let G be a asymmetric bilinear group
generator returning groups BG := (G1,G2,GT , p, g1,
g2, e). Then, we say that the one-more 2-DDH/DDHI
assumption is hard relative to G, if for every admissible
PPT adversary A = (A0,A1) there exists a negligible
function negl : N → R>0, such that for all λ ∈ N it
holds

Pr

[
A

O0
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1
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1 (state, zb) = b

]
≤

1
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+ negl(λ), where

BG← G(1λ), b $← {0, 1}, α0, α1, τ, y
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(state, x∗)← A
O0
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1
proof (·)

0 (BG, gα0
1 , gα1

1 )

zb := (gτ1 , g
αbτ
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and where for β ∈ {0, 1} Oβ
proof(x) on the i-th query samples

τi,β ← Zp and outputs {(gτi,β1 , g
αβτi,β
1 , g

1
τi,β(αβ+x)

2 )} and sets
Q := Q∪{x}. We say a PPT adversary is admissible, if it outputs
x∗ /∈ Q.

Lemma 1. If the one-more bilinear DDH/DDHI
assumption (Def. 16) is hard relative to G, then so
is the one-more bilinear 2-DDH/DDHI assumption
(Def. 17).

6. Construction

We propose a GVRF based on the VRF by Dodis and
Yampolskiy [16], adapted to asymmetric bilinear group
with pairing e : G1 × G2 → G3, combined with a
suitable signature scheme over equivalence classes. The
construction is given in Figure 8. The main idea is as
follows. A GVRF evaluation on input x is essentially
a VRF evaluation of the Dodis-Yampolskiy VRF, i.e.,
y := e(g1, g2)

1/(x+sk) is an evaluation of x under VRF
public key pk := gsk1 , and π′ := g

1/(x+sk)
2 is the

proof of correct evaluation. Using the latter one can
verify correctness of y with respect to pk by means
of the equations (1) e(gx1 · pk, π′) = e(g1, g2) and (2)
e(g1, π

′) = y. To enforce membership in a group, a group
manager could sign pk, and evaluations are only deemed
valid if they (a) verify w.r.t π′ and (b) a valid signature
on pk is presented. There is one remaining problem with
this approach: if a user would now produce evaluations
of multiple inputs, they would become linkable through
pk. We prevent this by a conceptually simple measure:
we let users randomize their public keys and the group
manager’s signature on their public key, such that they
become unlinkable to computationally bounded attackers



Setup(1λ):
BG← SIG.BGGenR(1

λ)

BG =: (G1,G2,G3, p, g, e)

crs← PS.PGen(BG)

X := Zp

Y := G3

Output pp := (BG, crs,X ,Y)

GroupKG(pp):
(pkSIG, skSIG)← SIG.KG(BG)

πG ← PS.PPrv(crs, pkSIG, skSIG)

pkG := (pkSIG, πG)

skG := skSIG

Output (pkG, skG)

VerGroup(pkG)

Parse pkG =: (pkSIG, πG)

b← PS.Ver(crs, pkSIG, πG)

Output b

KG(pkG):

sk
$← Zp

pk1 := g1, pk2 := gsk1
Output ((pk1, pk2), sk)

Join(skG, pk):
crt← SIG.SignR(skG, pk)

Output crt

VerCert(pkG, pk, crt)

Parse pkG =: (pkSIG, πG)

b← SIG.VfyR(pkG, pk, crt)

Output b

Eval(pkG, pk, sk, crt, x):
Parse pkG =: (pkSIG, πG)

τ
$← Z∗p

y := e(g1, g2)
1/(x+sk)

π′ := g
1/(τ(x+sk))
2

(p̃k, c̃rt)← SIG.ChRepR(pk
SIG, pk, crt, τ)

Output (y, (π′, p̃k, c̃rt), τ)

Ver(pkG, x, y, π):
Parse pkG =: (pkSIG, πG)

Parse π =: (π′, p̃k, c̃rt)

Parse p̃k =: (p̃k1, p̃k2)

If SIG.VfyR(pk
SIG, p̃k, c̃rt) = 1 ∧

e(( ˜pk1)
x · p̃k2, π′) = e(g1, g2)∧e(p̃k1, π′) = y

output 1
Else output 0

Judge(pkG, pk, x, y, π, τ):
Parse π =: (π′, p̃k, c̃rt)

If p̃k = pkτ ∧ Ver(pkG, pk, x, y, π) = 1

output 1
Else output 0

Figure 8: Construction GVRF = (Setup,GroupKG,
VerGroup,KG, Join,VerCert,Eval,Ver, Judge) based on
the Dodis-Yampolskiy VRF [16]. Recall that all
algorithms are assumed to have access to pp =
(BG, crs,X ,Y).

(the randomization term is τ in Figure 8). This step
requires us to let the group manager sign using a signature
scheme on equivalence classes, where each equivalence
class then corresponds to the public keys of one user.
However, due the randomization of pk, also the DY PRF
verification equations need to adapted. We extend the
public key by an additional component g1 (keeping track
of the randomization) and also adapt the VRF proof π′

in order to get rid of the randomization factor τ in the
VRF verification equations. This adaption is not generic
but specific to the instance of the VRF [16] and the EQ-R
signature [20] we consider.

Note that to ensure an honest setup of the group
manager’s signature key, we make use of a non-interactive
zero-knowledge proof of knowledge PS proving that
(pkSIG, skSIG) are of the form as specified by SIG.VKeyR.
This proof πG is generated in GroupKG and verified in
VerGroup. That means, it only needs to be computed once
by the group manager when it generates a new key pair,
and it only needs to be verified once by a user for this
new key pair (or this job can even be outsourced to an
entity users trust). Thus, the efficiency of PS is not that
crucial (unless pkG is very short-lived). The verification of
the group key setup is essential in untrusted environments
involving a potentially malicious group manager as in our
pseudorandomness and unlinkability experiments. More
precisely, from a security proof perspective, PS is needed
as the reduction will need skSIG for generating fresh
signatures, which is obtained by using the extractability
of PS.

We achieve the following security result for our
GVRF, proven formally in Appendix C.

Theorem 3. Let G be a bilinear group generator, such
that the one-more bilinear DDH/DDHI assumption
(Def. 16) is hard relative to G. Let R := RDDH

be the DDH relation over G2
1 and let SIG =

(BGGenR,KGR,SignR,ChRepR,VfyR,VKeyR) be a
2-dimensional EQ-RDDH signature scheme that
satisfies perfect signature adaptation. Further, let
PS = (PGen,PTGen,PPrv,PVer,PSim,PExt) be a
non-interactive zero knowledge proof of knowledge
for the relation defined by SIG.VKeyR. Then, the
GVRF given in Figure 8 is a group VRF with
unlinkability. Further, if SIG additionally satisfies
EUF-CMA security (and the proof system PS satisfies
zero knowledge as before), the GVRF also satisfies
group-bounded provability. Finally, the GVRF satisfies
unique opening unconditionally.

7. Implementation

Set-up. By directly comparing the execution times
of the pbATS instances of Privacy Pass and GVRF,
we evaluate the practical feasibility of our proposed
scheme. For this purpose, we implemented both schemes
as a multi-threaded application in C++23 and are only
inspecting the pure cryptography or payload sizes. The
client is running on a notebook equipped with an AMD®
Ryzen® 7 PRO 5875U@ 4.50 GHz, 32 GB RAM and
running Ubuntu 22.04.1 LTS (kernel version 6.5), whereas
the servers are running on an AMD EPYC 9274F 24-
Core Processor @ max. 4.30 GHz with 128 GB RAM
and Ubuntu 24.04.2 LTS (kernel version 6.8.0). Server-
side utilizes all CPU cores for optimal performance,
while client-side is not abusing many threads to reflect
a device with low-resources (e.g. Smartphone). We also
use the RELIC Toolkit v.0.7.0 [2] implementation to
instantiate GVRFs over the pairing-friendly BLS12-381
curve and Privacy Pass over the NIST P-256 curve.
Both curves provide approximately 128 bits of security
and are securitywise comparable to each other. Further,
we use the aforementioned scheme in [20] to create
signatures on equivalence classes for GVRF’s. To the best
of our knowledge, there is currently no working and fast
arithmetic backend available from RELIC for the x86
architecture for P-256. For fairness reasons, we therefore
compare both constructions without optimizations but
include the benchmarks for GVRF with optimizations in
the column “GVRF*” of the Tables.

Token Generation. Privacy Pass clearly has the overall
performance advantage when examining the entire token
generation process on both the client and server side in
Table 1, but places a heavier load on the issuing servers
in terms of computation and bandwidth. For example,
the entire token generation of 25 tokens takes 18.33 ms
for Privacy Pass, compared to 97.24 ms for GVRF and
56.76 ms for GVRF*. Doubling the number of tokens
roughly doubles the execution time in the case of Privacy
Pass.

Further, the results show that AT.Generate is
independent of the number of tokens for GVRF and takes
a constant 435 µs and for GVRF* 163 µs with a total
of 307 bytes to transmit. The request consists of 2 G1

elements, namely the public key, which is 102 bytes, and



TABLE 1: "Token generation costs (AT.Generate() + AT.Expand(), where AT.Expand() can be performed offline) on
client and server-side for Privacy Pass (PP), GVRF (G), and GVRF* (G*), averaged over 100k runs. Timings are in ms;
throughput (issuing requests per second (issue req/s)). Network latency is excluded, as both protocols require only one
communication round. Communication costs are given in bytes and inspects the payload size only. Best performance
in each row is highlighted in bold. (Note that for token generation time per client, we mark both best overall time (PP)
and best online time (G* for > 1 token) in bold.)"

No. of Token Generation Per Entity Communication Costs Throughput
Tokens (ms) (bytes) (issue requests/s)

Server Client Server Client Server
PP G G* PP G G* PP G/G* PP G/G* PP G G*

1 0.081 0.435 0.163 1.1 + 0.006 2.8 + 3.8 1.6 + 2.2 107 205 37 102 12300 2300 6104
10 0.838 0.435 0.163 4.1 + 0.06 2.8 + 38 1.6 + 22 404 205 334 102 1193 2300 6104
25 1.98 0.435 0.163 16.2 + 0.15 2.8 + 95 1.6 + 55 899 205 829 102 505 2300 6104
50 4.07 0.435 0.163 31 + 0.3 2.8 + 190 1.6 + 110 1724 205 1654 102 246 2300 6104
100 8.47 0.435 0.163 61 + 0.6 2.8 + 380 1.6 + 220 3374 205 3304 102 118 2300 6104

TABLE 2: "Average web-server-side verification
AT.Verify() times (ms) for Privacy Pass (PP), GVRF (G)
and GVRF* (G*), with communication costs and server
throughput (verification requests per second). Throughput
reflects cryptographic operations only. Communication
costs (in bytes) inspect the payload size only. Excluding
network latency. Best performance in each row is
highlighted in bold."

Verify Communication Throughput
(ms) (bytes) (verify requests/s)

PP G G* PP G/G* PP G G*
0.094 7 4 71 781 10 600 142 244

the response is a certificate on this public key, which is just
an SPS-EQ signature consisting of 2 G1 and 1 G2 element,
and a global policy of 2 Zp elements. In total the response
is 205 bytes. GVRF’s outperform Privacy Pass with a 10-
token batch, where GVRF* is comparable with the server-
side issuance time of 2 Privacy Pass tokens. Especially in
a CDN setting, where millions of requests per second are
expected for the issuing servers, server-side bandwidth and
computational efficiency become important factors. For
token sizes greater than 1, GVRF performs better in both,
through the constant communicational and computational
costs, since one issuing request is required for a client to
generate tokens as many as the policy allows. Looking
at Table 1 server-side throughput of 10 token batches,
GVRF outperforms Privacy Pass by a factor of 2 and
GVRF* by a factor of almost 6 with a constant number
of 2300 issuing req/s for GVRF and 6104 issuing req/s
for GVRF*. However, on the client side, since expanding
a token by using pairings is cryptographically expensive,
it takes 3.8ms per token generation for GVRF and 2.2ms
for GVRF*.

Expanding tokens from pre-tokens is done on client-
side and can be done offline. The expansion of tokens can
be done in the background by pre-computation and also
on-demand, where an amount of 4ms is an imperceptible
delay for a human. For both protocols, multiple executions
of AT.Expand are independent and can happen in parallel
to speed up computation. Furthermore, a signing request
for 50 pre-tokens in Privacy Pass transmits 1.654 kB
of data and the response 1.724 kB, increasing with the
number of tokens, because elliptic curve points equal to
the number of tokens must be sent in the request and
response. In AT.Expand, on the other hand, Privacy Pass

is able to use a keyed hash function based on SHA-256
in our benchmarks, which outperforms expensive public
key operations in GVRF. The token size is 71 bytes for
Privacy Pass and 781 bytes for GVRF because it consists
of multiple group elements. elements, resulting in 11 times
more memory required for GVRF.

Token Verification. Overall, Privacy Pass is performing
significantly better in the verification process than GVRF.
For Privacy Pass it takes 0.01 ms to verify a token,
for GVRF 7 ms and for GVRF* 4 ms. As the latter
is way slower than Privacy Pass and putting more load
on the server-side, 7ms and 4ms are still acceptable by
distributing the load across multiple verification servers.
When looking at the server throughput, where Privacy
Pass achieves 10 600 verification req/s, GVRF 142
verification req/s and GVRF* 244 verification req/s,
GVRF-based AT needs multiple servers to keep up with
Privacy Pass. Token verification requires transmitting 4
G1, 2 G2, 1 GT , 1 Zp elements for GVRF, which are
781 bytes in our implementation. On the other hand,
Privacy Pass requires transmitting 1 Zp element, 1 MAC
(32bytes), which were 71 bytes in our benchmarks. Here,
Privacy Pass clearly outperforms GVRF communication
and computation-wise.

8. Deployment Considerations

In this section we discuss several aspects which should
be taken into account when considering a deployment of
GVRF-based pbATS as an alternative to Privacy Pass. In
particular, we want to emphasize that GVRF-based pbATS
achieve a different performance tradeoff than Privacy Pass:
a lower computational effort for the issuing servers at
the cost of a higher effort for the verification servers
and clients. Also, they come with somewhat weaker
unlinkability guarantees but offer the feature of updatable
policies which cannot be easily simulated with Privacy
Pass.

Performance tradeoff. As backed by our benchmarks in
Section 7, GVRF-based schemes feature a relatively light
token issuance phase for servers, and can hence avoid
bottlenecks when token issuance is carried out by only
few servers. However, it is important to consider the
trade-offs: GVRF clients need to invest more computing
time to generate their tokens, and verification of the
tokens is significantly more complex than in Privacy Pass.



GVRF-based tokens are hence not suitable when token
redemption is carried out by only a few servers.

Trading faster server-side generation time for slower
server-side verification time becomes beneficial in an
environment where a high load of issuance requests is
expected to be handled by a few servers, while verification
is distributed across many origins, e.g., websites. Such a
scenario is also motivated by the deployment models in
Sections 4.2 and 4.4, and the idea of issuer centralization
in Section 5.2 of RFC 9576. Centralizing the issuer
party has the advantage that the secret key does only
need to be shared by a few servers, thus minimizing the
risk of a key exposure. Distributing the verifier seems
reasonable since verifiers do only need to share public
information like the public key and access to a distributed
or centralized database to prevent double-spending, where
efficient solutions for distributed databases already exist.

GVRF-based schemes seem to be well suited for such
an environment as communication and server-side costs in
the token issuance process are constant and comparable
to the issuance process of a single token in Privacy Pass
(cf. Table 1), even though the client is able to extend
its pre-token to not only one but as many tokens as the
policy allows. Moreover, the number of issuing requests
can further be reduced by using the policy update feature
which enables clients already in possession of a valid pre-
token to generate new tokens without any interaction. On
the other hand, the high verification times of GVRF tokens
need to be compensated by distributing the load to a high
number of verifying servers if client-behavior does not
already induce an appropriate distribution.

Limits of our unlinkability notion. In the unlinkable
experiment we capture that an adversary cannot
distinguish whether two accepted tokens (p, t, π) and
(p′, t′, π′) with for policy elements p ̸= p′ were generated
by the same user or two different users. This does not
prevent leakage based on the used policy elements though.

First of all, it is important that users choose the
policy element at random from the set of available policy
elements. Otherwise, if users use tokens in a deterministic
sequence (i.e., p1, p2, . . . , according to some ordering), an
adversary corrupting both the issuing server and a set of
websites can potentially link queries based on the used
policy, as they give an ordering on the redeemed tokens. In
an extreme case, where a single user makes more requests
than any other user, the latest token redemptions by this
user can be fully linked based on the advanced policy
elements.

Even with this mitigation, the policy elements give
some leakage. Namely, if p = p′, our scheme reveals that
the two corresponding accepted tokens must stem from
two different anonymous users (in the following we refer
to this as “unlinking” leakage). This kind of leakage is
inherent to our definition, where verifying a token requires
to know the exact p, as unforgeability requires that a user
cannot generate more than one accepting token relative to
the same p to allow for rate limiting.

Whether the unlinking leakage is acceptable requires
a careful case study depending on the setting. We believe
that this kind of leakage is not significant in large-scale
settings, such as Cloudflare’s with 32M requests per
second, where the probability that two requests stem from

different users is high in any case. To see this, consider
the following simplified setting, where, say, all servers
accept tokens relative to some fixed policy elements
{p1, . . . , p100}, and there are 100 · N token redemptions
in total. What an adversary corrupting both the issuing
server and all redemption servers can now do, is to
split up all redemption queries (consisting of a token
and the redemption sever) into 100 buckets based on the
used policy element, which is part of the token. As we
assume that policies are chosen at random, we expect all
buckets to roughly contain N redemption queries (which,
for simplification, we assume to be exactly N in the
following). Now, if we look at a single user, we know
that he can have made at most one redemption query in
each bucket (assuming he only made one pretoken query),
as he cannot have redeemed two tokens corresponding to
the same policy element p. As he could have made 0 or 1
out of N possible redemption queries in each bucket, this
gives N+1 possible choices per bucket (corresponding to
no redemption, redemption corresponding to redemption
query 1, . . . , redemption corresponding to redemption
query N ), resulting in (N + 1)100 possibilities in total.
While this leakage can be combined with additional
leakage (such as timing leakage, which can also be
made in a fully unlinkable setting), we believe that the
achieved unlinkability gives a high level of individual
privacy whenever the bucket sizes are expected to be large.
Additionally, redemption servers that receive many queries
are expected to occur in all buckets evenly, therefore not
allowing for any leakage.

In small-scale settings, however, this leakage can be
an issue. For instance, assume the extreme case of a size-
2 policy and 2-user setting with N = 4 websites: If
both users generate tokens relative to the same p1, p2 to
visit websites W1,W2 and W ′1,W

′
2, respectively. Then, an

adversary corrupting both the issuing server and websites
can deduce that both users visited exactly two websites
and that either W1 and W2 or W1 and W ′2 were visited
by the same user (and similarly for W ′1), corresponding
to an entropy loss of 50%.

We note that the leakage in our construction could be
avoided by p not being part of the token, but a range proof,
that proves that p is within the policies interval. Since
this slows down verification even further, we accepted the
leakage in our construction. Privacy Pass, on the other
hand, achieves a stronger notion of unlinkability, where
two requests can neither be linked to the same, nor to
different users, and is thus the preferable choice in small-
scale or other settings where the unlinking leakage is not
acceptable.

Policies and their usage (cf. Appendix E for details).
Policies in our GVRF-based pbATS instantiation are
public subsets P ⊂ Zp = {0, . . . , p−1}, where p is a large
prime. As for each x ∈ P , a user can generate exactly one
token using its pre-token (by evaluation with x) which can
only be spent once, |P| determines the number of tokens
currently available per pre-token. P can be represented by
an interval [a, b] ⊂ Zp, where it suffices to make a and
the length of the interval known to the users.

In this way, one can easily enforce global policies, i.e.,
fixing a maximum number of tokens which can be used
by each pre-token holder and redeemed at all websites.



It also allows to realize more advanced policies like
time-, website-, content-, or service-dependent policies
by encoding time stamps or IDs as prefix of Zp values.
For instance, the policies P9999 = [999901, 999930] and
P8888 = [888801, 888810] allow a pre-token holder to
redeem 30 tokens at the website with ID 9999 and only 10
at the website with ID 8888, respectively. Combinations
of different policy types are also possible. Note that we do
not support user-specific policies as Rate-limited Privacy
Pass [14] does at the cost of introducing a trusted mediator
entity.

Another important feature are policy updates as a
means to react to the current or expected network situation
by retrospectively decreasing or increasing the number
of unspent tokens in circulation. For instance, if for
the current policy there is an overload of token-based
website requests, we can decrease the total number of
remaining tokens by decreasing the size of the policy
interval. In Privacy Pass, not inherently supporting the
concept of updatable policies, the effects of advanced
policies can only be approximated in an inefficient way,
e.g., by frequently rotating pkS (time-dependent policies)
or running several instances of Privacy Pass in parallel
(website-/content-/service-dependent) policies. In general,
with Privacy Pass we cannot really implement the main
goal of policy updates, i.e., to retrospectively adjust the
number of unspent tokens. All we can do is to invalidate
all unspent tokens at once by renewing the issuing key.
On the other hand, a potential downside of policy updates
affecting all holders of valid pre-tokens is the following:
As long as pkS stays the same, we cannot selectively adapt
only the size of newly issued token batches without also
adjusting the size of all previous ones, which however, is
easily possible in Privacy Pass.
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Appendix A.
Related Cryptographic Primitives

In this section we contextualize group VRFs among
related cryptographic primitives. Ganesh et al. [23]
were the first to introduce the concept of anonymous
VRFs. Their central idea is that anonymity requires non-
uniqueness of public keys, such that each evaluation w.r.t
a specific PRF key can be verified under a different public
key. Their construction for the PRF H(x)sk is secure
in the random oracle model under the DDH assumption.
However, as for standard VRFs, anybody can generate
a VRF key pair and hence there is no built-in way to
control the anonymity set. Ganesh et al. [23] suggest to
circumvent this drawback by proving in zero-knowledge
that a randomized public key was generated from a public
list of keys. In our work, we suggest a new notion
of anonymous VRFs which captures the anonymity set.
Namely, we generalize their model to the group setting,
allowing us to control the amount of PRF keys in the
system through a group manager. While we follow the idea
of [23] to introduce non-unique public keys, we select the
DY PRF as underlying PRF and demonstrate that it can

Anonymous Group VRFs Unique group
VRFs [23] this work signatures [19]

Pseudorandomness ✓ ✓ (✓)
Anonymity ✓ ✓ ✓
Dynamic (adaptive joining) ✓ ✓ ✓
Controlled anonymity set ✗ ✓ ✓
Anon. against group manager - ✓ ✗
Security against malicious pk ✓ ✓ ✓

TABLE 3: Cryptographic primitives for producing
verifiable but anonymous pseudorandomness. Group
VRFs are the only primitive that allow to control the
anonymity set by an authority, but without revealing the
evaluator’s identity to that authority. The “-” for [23] is
because they do not require a group manager. Unique
group signatures are not necessarily pseudorandom, but
the dynamic construction of [19] is.

be augmented with anonymity guarantees in the standard
model, without relying on generic NIZKs.

Unique group signatures are a concept that is closely
related to group VRFs. A notable difference is that
signatures need not be pseudorandom, and thus certain
applications such as lotteries work better with VRFs than
signatures. Franklin and Zhang [19] introduce unique
group signatures, and build them from VRFs, committed
PRF keys, and NIZK proofs of correct computation [4].
While their construction relies on similar assumptions to
ours, it is significantly less efficient in terms of signature/
image and proof size. Further, Franklin et al. [19] require
(and allow) the group manager to deanonymize signers
while we aim at avoiding such a central and powerful
entity.

Finally, numerous works explicitly equip the Dodis-
Yampolskiy PRF with anonymity, e.g., [18], [12],
[8], through usage of generic NIZK proofs of correct
computation, without revealing the public key. Our group
VRF might be plugged into these constructions to obtain
more efficient variants of these systems.

We provide a detailed comparison of related schemes’
properties and costs in Table 3. The table shows all
cryptographic primitives in the literature that allow to
produce verifiable pseudorandomness in an anonymous
fashion. The crucial difference is the control over the
anonymity set, which does not exist in anonymous VRFs
as presented in [23]. Our work shows that we can add such
control. While this was previously already demonstrated
in [19] through the concept of unique group signature,
our work provides two significant improvements: first,
we demonstrate that control of the anonymity set can
be added (in terms of a group manager) but without
sacrificing the anonymity property to the group manager,
as is the case in [19]. Second, we greatly improve upon the
efficiency of [19], which relies on computationally heavy
tools such as Groth-Sahai proofs [24] and tag-based CCA-
secure encryption [27]. We further note that the dynamic
construction in [19] does not come with a formal security
proof.

Appendix B.
Non-Interactive Zero-Knowledge Proofs

In the following we give a definition of non-interactive
zero knowledge proofs of knowledge based on [25], where
we additionally require a knowledge extractor. Note that



the latter can be instantiated by adding an encryption
of the witness and extending the proof system to the
corresponding language. The trapdoor will then contain
a key to decrypt.
Definition 18. Let R be a efficiently computable

relation. A non-interactive zero-knowledge proof
system consists of a tuple of PPT algorithms
PS := (PGen,PTGen,PPrv,PVer,PSim,PExt) of the
following syntax.
• PGen(pp) on input of the public parameters pp

generates a common reference string crs.
• PTGen(pp) on input of the public parameters
pp generates a common reference string crs and
additionally a trapdoor td.

• PPrv(crs, x, w) on input of a common reference
string crs, statement x and witness w with (x,w) ∈
R outputs a proof π.

• PVer(crs, x, π) on input of a common reference
string crs, statement x and proof π outputs a bit
b ∈ {0, 1}.

• PSim(crs, td, x) on input a common reference string
crs with trapdoor td and a statement x outputs a proof
π.

• PExt(crs, td, x, π) on input a common reference
string crs with trapdoor td and a statement x with
proof π outputs a witness w.

We further require the following to hold.
• Completeness: For all public parameters pp, for all
(x,w) ∈ R, we have PVer(crs, x, π) = 1.

• Zero knowledge: For all public parameters pp,
we have that the distribution of crs ← PGen(pp)
and crs obtained via (crs, td) ← PTGen(pp) are
computationally indistinguishable.
For all statements x ∈ L with w such that
(x,w) ∈ RL we further have that PPrv(crs, x, w)
and PSim(crs, td, x) are identically distributed for
(crs, td)← PTGen(1λ).

• Knowledge soundness: For all public parameters
pp, for all PPT adversaries A for (crs, td) ←
PTGen(pp), for all statements x, for π ← A(pp, crs)
the following holds: If PVer(crs, x, π) = 1, then the
extractor yields a witness w ← PExt(crs, td, x, π)
such that (x,w) ∈ R, except with negligible
probability. Here, the probability is taken over the
random coins of PTGen,A and PExt.

Appendix C.
Proof of Theorem 3

Proof: We start with showing Correctness. Let
pp ← Setup(1λ), (pkG, skG) ← GroupKG(pp), x ∈ X ,
((pk1, pk2), sk) ← KG(pkG) and (y, (π′, p̃k, c̃rt), τ) ←
Eval(pkG, pk, sk, crt, x). Then, the following holds:
• The public parameters are of the form pp =
(BG,X ,Y), where BG = (G1,G2,G3, p, g1, g2, e)
defines a bilinear group, the input and output space
are defined as X = Zp and Y = G3;

• the key pair (pkG, skG) is of the form
pkG = (pkSIG, πG) and skG = skSIG, such
that πG is a NIZK proof of knowledge for
SIG.VKeyR(pk

SIG, skSIG) = 1 and (pkSIG, skSIG) is
a key pair for the EQ-R signature scheme;

• the secret-key/ public-key pair is of the form sk ∈ Zp

and pk = (g1, g
sk
1 ), i.e., (pk, sk) is a key pair for (an

asymmetric version of) the Dodis-Yampolskiy VRF
(DY PRF);

• the certificate crt is in the image of
SIG.SignR(skG, pk), i.e., crt is an EQ-RDDH

signature for message pk;
• the output value y = e(g1, g2)

1/(x+sk) corresponds
to the output of the DY PRF;

• the first part of the proof π′ = g
1

τ(x+sk)

2 corresponds
to the proof of the DY PRF re-randomized with 1/τ
(where τ is the opening information);

• the second part of the proof (p̃k, c̃rt) corresponds to
the public key pk of the DY PRF re-randomized with
τ , together with a re-randomized EQ-R signature c̃rt
of p̃k = pkτ .

First of all, by the correctness of the EQ-R signature
scheme and completeness of the proof system PS it holds

VerGroup(pkG) = PS.Ver(crs, pkG, π) = 1

VerCert(pkG, pk, crt) = SIG.VfyR(pkG, pk, crt) = 1.

By the correctness of the EQ-R signature scheme for re-
randomized signatures it further holds

SIG.VfyR(pkG, p̃k, c̃rt) = 1.

Further, it holds

e(p̃k
x

1 · p̃k2, π′) = e(gx·τ1 · gsk·τ1 , g
1/τ(x+sk)
2 )

= e(g
τ(x+sk)
1 , g

1/τ(x+sk)
2 ) = e(g1, g2)

and

e(p̃k1, π
′) = e(gτ1 , g

1/τ(x+sk)
2 ) = e(g1, g2)

1/(x+sk) = y

due to the bilinearity of e. Hence we have
Ver(pkG, x, y, π) = 1. Next, we have

p̃k = pkτ

and hence Judge(pkG, pk, x, y, τ, π) = 1. Overall,
correctness of GVRF follows.

Pseudorandomness. We prove pseudorandomness of
GVRF based on the perfect signature adaption of SIG,
the zero knowledge and knowledge soundness of PS
and the one-more bilinear 2-DDH/DDHI assumption
(Definition 17), which is implied by the DDH/DDHI
assumption (Lemma 1).

The reduction is shown in Figure 9. First, we can
switch the generation of the crs of PS to the trapdoor
generation (crs, td). By the zero knowledge property of
PS the adversary is able to detect this switch with at most
negligible probability.

Next, note that by the knowledge soundness of PS, if
the adversary provides a valid proof πG we can extract
a valid secret signing key skSIG from the adversary
except with negligible probability. Therefore, switching
the signature generation in the evaluation oracle to fresh
signatures does not change the view of the adversary by
the perfect signature adaption of SIG.

Further, by setting sk := α we have that the
public key and all proofs and output values satisfy the
correct distribution, and thus we have that the view of



strong bilinear
DDHI challenger Reduction B GVRF pseudorand.

C attacker A
BG← BGGenR(1

λ)
α, y ← Zp

-BG, gα1

(crs, td)← PS.PTGen(BG)
pp := (BG,Zp,G3, crs)

-
pp

�pkG = (pkSIG, πG)

skSIG ← PS.PExt(crs, td, pkSIG, πG)
pk := (g1, g

α
1 )

-pk

� crt

τi
$← Zp �Oproof(xj) � OEvalO(xj) xj

zi ←
(gτi1 , gατi1 , g

1
τi(xj+α)

2 )

-
zi

yi := e(gτi1 , g
1

τj(xj+α)

2 )

π′i ← g
1

τj(xj+α)

2

p̃ki := (gτi1 , gατi1 )

c̃rti ← SIG.SignR(sk
SIG, p̃ki)

-yi, (π
′
i, p̃ki, c̃rti)

�chall. x∗ � chall. x∗

z0 ←
(gτ1 , g

ατ
1 , g

1
τ(x∗+α)

2 )
z1 ←
(gτ1 , g

y
1 , g

1
τx∗+y

2 )
b← {0, 1} -

zb
yb := e(zb,1, zb,3)

-
yb

� b∗ � b∗

output b == b∗

Figure 9: Reduction from the pseudorandomness of GVRF
to the one-more bilinear 2-DDH/DDHI assumption (Def.
17). Note that the adversary A receives access to OEval(·)
both before and after sending the challenge x∗, which
for simplicity is not depicted in the figure. Further, the
reduction B aborts, if x∗ appears at any point as evaluation
query, or if A fails to provide a valid pkG and/ or valid
certificate crt relative to pk.

A is distributed as in the pseudorandomness experiment
depicted in Figure 1

Finally, we have that yb is either the real GVRF

value or random, since y0 = e(gτ1 , g
1

τ·(x∗+α)

2 ) =

e(g1, g2)
1/(x∗+α)) or y1 = e(gτ1 , g

1
τ·x∗+y

2 ) (which is
distributed uniformly at random as y is random), and
hence the success probability of B is equal to the success
probability of A, which concludes the proof.

Unique provability. Let pp ← Setup(1λ), (pkG, skG) ←
GroupKG(1λ). We have to show that for all public
keys pk, for all input values x, output values y0, y1,
proofs π0, π1 and opening information τ0, τ1, for
which it holds that Judge(pkG, pk, x, y0, π0, τ0) =
Judge(pkG, pk, x, y1, π1, τ1) = 1, it holds y0 = y1.
Let πb =: (π′b, p̃kb, c̃rtb) for b ∈ {0, 1}. Then it
must hold p̃k0 = pkτ0 and p̃k1 = pkτ1 , as well as
Ver(pkG, pk, x, y0, π0) = Ver(pkG, pk, x, y1, π1) = 1.
This implies

(i) p̃k0 = p̃k
ρ

1 for ρ := τ0/τ1 ∈ Zp,
(ii) e(p̃k

x∗

b,1 · p̃kb,2, π′b) = e(g1, g2) for b ∈ {0, 1}
(iii) e(p̃kb,1, π

′
b) = yb for b ∈ {0, 1}.

Together, this yields

e(p̃k
x∗

1,1 · p̃k1,2, π′1)
(ii)
= e(g1, g2)

(ii)
= e(p̃k

x∗

0,1 · p̃k0,2, π′0)
(i)
= e(p̃k

x∗·ρ
1,1 · p̃k

ρ

1,2, π
′
0) = e(p̃k

x∗

1,1 · p̃k1,2, π′0
ρ
),

EUF-CMA GVRF unique prov.
challenger C Reduction B attacker A

BG← BGGenR(1
λ)

(pkSIG, skSIG)← KGR(BG)

-BG, pkG (crs, td)← PS.PTGen(BG)
pp := (BG,Zp,G3, crs)

πG ← PS.PSim(crs, td, pkSIG)

pkG := (pkSIG, πG)

-pp, pkG

�Osign(pki) �OJoin(pki) i =
1, . . . , n− 1 :

σi ← Sign(skG, pki) -
σi -

σi

�x
∗, y⃗, π⃗ where

i∗
$← {1, . . . , n} y⃗ := (y1, . . . , yn)

pk∗ ← p̃ki∗ π := (π1, . . . , πn)
�pk

∗, σ∗
σ∗ ← σ̃i∗ πi := (π′i, p̃ki, σ̃i)

Figure 10: Reduction from the group-bounded provability
of GVRF to the EUF-CMA security of SIG.

and hence π′0 = π′1
1/ρ (iv). With this we obtain

y0
(iii)
= e(p̃k0,1, π

′
0)

(i,iv)
= e(p̃k

ρ

1,1, π
′
1
1/ρ

) = e(p̃k1,1, π
′
1)

(iii)
= y1

as required.

Group-bounded provability. We give a reduction of the
group-bounded provability of GVRF to the EUF-CMA
security of the signature scheme SIG, using the zero
knowledge property of PS which allows the reduction
to switch real proofs of correct group key generation
to simulated proofs. Recall that an adversary A breaks
unique provability if it produces one more evaluation y of
x∗ than group members it impersonates.

If the adversary is able generate proof for
n distinct image values y1, . . . , yn, it is able
to generate (p̃k1, c̃rt1), . . . , (p̃kn, c̃rtn) such that
SIG.VfyR(pk

SIG, p̃ki, crti) = 1, where (p̃k1, c̃rt1) is part
of the (valid) proof πi to preimage yi. By the proof of
unique verifiability, if yi ̸= yj for all i ̸= j, we must
also have [p̃ki]RDDH

̸= [p̃kj ]RDDH
for each i ̸= j. Since

the adversary only received the certificates for ctr < n
public keys from the adversary, we can thus transform an
adversary on the group-bounded provability of GVRF to
an adversary on the EUF-CMA security on the signature
scheme. However, since the reduction cannot recognize
equivalence classes either, it needs to guess which of the
overall n VRF values supplied by the GVRF attacker
constitutes the forgery under pkG. We present the formal
reduction B in Figure 10.

Since [p̃ki]RDDH
̸= [p̃kj ]RDDH

for all i, j ∈ {1, . . . , n},
i ̸= j, the probability that B picks i∗ such that no message
of the equivalence class [p̃ki∗ ] was ever signed by the
oracle is at least 1/n. Because reduction B perfectly
implements the unique provability experiment for A, with
Ver(pkG, p̃kℓ, σ̃ℓ) = 1 for all ℓ = 1, . . . , n it follows that
the advantage of reduction B in winning the EUF-CMA
experiment is at least Pr[Expgb−provGVRF,A(1

λ) = 1]/n. This
concludes the proof.

Unlinkability. We show unlinkability of GVRF under
the one-more bilinear 2-DDH/DDHI assumption (omb-
2-DDH/DDHI, Def. 17), the perfect signature adaptation
of the signature scheme SIG and the zero knowledge
and knowledge soundness properties of the proof system
PS. Recall that by Lemma 1, the omb-2-DDH/DDHI is



implied by the one-more bilinear DDH/DDHI assumption
(Lemma 1).

For the proof we first observe that replacing the
honest generation of crs by a trapdoor generation is
computationally indistinguishable by the zero knowledge
property of the proof system. Further, by the knowledge
soundness of the proof system, either the reduction aborts
(if the adversary fails to provide a public key pkSIG with
valid proof π) or the reduction successfully extracts a
secret key skG with SIG.VKeyR(pkG, skG) = 1, except
with negligible probability.

Next, observe that since by assumption our signature
scheme satisfies perfect signature adaptation, and since
the reduction aborts if the adversary fails to provide valid
certificates crt0, crt1 with SIG.VfyR(pkG, pk0, crt0) =
SIG.VfyR(pkG, pk0, crt1) = 1, it does not change the
view of the adversary if we replace re-randomized
signatures by freshly generated signatures under the secret
key skG.

Next, we define a set of hybrids H0, . . . ,Hq, where
q denotes the number of queries to Ob

Eval(·). Hybrid Hi,
for i = 0, . . . , q, denotes the unlinkability game (cf.
Figure 3) with the modification that the evaluation oracle
Ob

Eval(·) no longer depends on the bit b (and is thus in
the following refered to as OEval(·)), but instead the first
i queries are answered with sk1, and queries i+ 1, . . . , q
are answered with sk0. Consequently, H0 denotes the
unlinkability game where the adversary has access to
oracle O0

Eval(·), and Hq is equal to the unlinkability game
where the adversary has access to oracle O1

Eval(·) (with the
only difference that re-randomized signatures are replaced
by freshly generated ones, which does not change the view
of the adversary as elaborated above).

Now, for each i = 0, ..., q − 1, we build an adversary
Bi solving the one-more bilinear 2-DDH/DDHI problem
given a PPT adversary A distinguishing any two of the
consecutive hybrids. The reduction is depicted in Figure
11.

For b∗ = 0, we now have that B perfectly simulates
Hi, since in this case we have:

• p̃ki+1 = (zj,1, zj,2) = (gτ1 , g
α0τ
1 ) = (g1, A0)

τ =
pkτ0 ,

• πi+1 = zj,2 = g
1

τ(α0+xi+1)

2 and
• yi+1 = e(zj,1, zj,3) = e(g1, g2)

1
α0+xi+1 ,

and thus the (i+1)-st evaluation query is answered using
sk0 (as well as all previous queries, independently of the
challenge bit b∗). Similarly, if b∗ = 1, we obtain that B
perfectly simulates Hi+1, since in this case the (i + 1)-
st evaluation query is answered using sk1 (as well as all
following queries, independently of the challenge bit b∗).

Now, let B denote an adversary which first samples i
$←

{0, . . . , q − 1} and then runs Bi on A. Then, we obtain

the following:

Pr[b
∗ ← B]−

1

2

=
1

2
Pr[0← B | b∗ = 0] +

1

2
Pr[1← B | b∗ = 1]−

1

2

=
1

2
Pr[1← B | b∗ = 0]−

1

2
Pr[1← B | b∗ = 1]

=

q−1∑
j=0

1

2q
·
(
Pr[1← Bi | b∗ = 0 ∧ i = j]

−Pr[0← Bi | b∗ = 1 ∧ i = j]
)

=
1

2q
·
q−1∑
j=0

(Pr[1← A in Hi | i = j]− Pr[0← A in Hi+1 | i = j])

=
1

2q
· (Pr[1← A in H0]− Pr[1← A in Hq ]) .

Since Pr[B outputs b∗]− 1
2 is negligible by the one-more

blinear 2-DDH/DDHI assumption, so is the probability
that the adversary A can distinguish between the
evaluation oracle O0

Eval(·) and the evaluation oracle
O1

Eval(·) .

Unique opening. It is left to prove unique opening.
Recall that our public keys are of the form pk = (g1, A).
It thus suffices to show that for any fixed input/
output pair (x, y) there cannot exist two public keys
pk0, pk1, proofs π0, π1 and opening information
τ0, τ1 such that Judge(pkG, pk0, x, y, π0, τ0) =
Judge(pkG, pk1, x, y, π1, τ1) = 1 but [pk0]RDDH

̸=
[pk1]RDDH

, since [pk0]RDDH
̸= [pk1]RDDH

and
pk0,1 = pk1,1 = g1 implies pk0,2 = pk2,1 as required.

Let πb =: (π′b, p̃kb, c̃rtb) the corresponding proof b ∈
{0, 1}. Then, the above implies

(i) e(p̃k
x

b,1 · p̃kb,2, π′b) = e(g1, g2) for b ∈ {0, 1}
(ii) e(p̃kb,1, π

′
b) = y for b ∈ {0, 1}

(iii) p̃kb = pkτbb for b ∈ {0, 1}.
Further, let ρ ∈ Zp be such that p̃k0,1 = p̃k

ρ

1,1 (iv) (note
that such a ρ always exists, since p̃k0,1, p̃k1,1 ∈ G1 are
group elements). With this we obtain

e(p̃k1,1, π
′
1)

(i)
= y

(i)
= e(p̃k0,1, π

′
0)

(iv)
= e(p̃k

ρ

1,1, π
′
0)

= e(p̃k1,1, π
′
0
ρ
)

and hence π′0 = π′1
1/ρ (v). With this, we obtain

e(p̃k
x∗

1,1 · p̃k1,2, π′1)
(i)
= e(g1, g2)

(i)
= e(p̃k

x∗

0,1 · p̃k0,2, π′0)
(iv,v)
= e(p̃k

x∗·ρ
1,1 · p̃k0,2, π′1

1/ρ
)

which implies

e(p̃k1,2, π
′
1)=e(p̃k0,2, π

′
1
1/ρ

)

and thus p̃k0,2 = p̃k
ρ

1,2 and hence p̃k0 = p̃k
ρ

1, which by
(iii) implies [pk0]RDDH

= [pk1]RDDH
as required.

Appendix D.
Hardness of Strong Bilinear DDH/DDHI in
the Generic Group Model

In the following we show the hardness of our new
problem in the generic group model (GGM) [33], [29].
We decided to analyze our new assumption in the GGM
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$← {0, 1}, τ ← Zp �chall. x∗ ← xjif j = i+ 1:

zj ←
(gτ1 , g
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1 , g

1
τ(αb∗+x∗)
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-

zj

τj ← Zp �O
0
proof(xj) if j > i+ 1:

zj ←

(g
τj
1 , g

τjα0

1 , g
1

τj(α0+xj)

2 ) -
zj

yj := e(zj,1, zj,3)

p̃kj := (zj,1, zj,2)
π′j := zj,3
c̃rtj ← SIG.SignR(sk

SIG, p̃kj)
-yj , (π

′
j , p̃kj , c̃rtj)
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proof(xj) �O
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EvalO(xι) ι =
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τι(αβ+xι)
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zι
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c̃rtι ← SIG.SignR(sk

SIG, p̃kι)
-yι, (π

′
ι, p̃kι, c̃rtι)

� b̂
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Figure 11: Reduction from the unlinkability of GVRF to the one-more bilinear 2-DDH/DDHI problem. The adversary
can query the oracles in arbitrary order. The reduction aborts if the adversary fails to provide a valid public key pkG
or valid certificates crt0, crt1 for pk0 or pk1, respectively, or if the adversary asks any x to OEval(·) and Oβ

EvalO(·) for
any β.

instead of the more general algebraic group model (AGM)
[21], [31] for the following reasons: Using the AGM,
one may only show that a new problem P can be
reduced to another problem P ′. Such a reduction is
reasonable and serves as evidence for the hardness of P
if P ′ is a well-analyzed standard problem, e.g., the q-
DL problem. However, in our case, we do not see how
we could reduce our problem to a standard problem: As
our problem involves rational functions f(x⃗) = P (x⃗)

Q(x⃗) ,
with P , Q polynomial, in the exponent, we cannot embed
a q-DL instance (as one of the components of x⃗) as
it is not clear how to compute the denominator Q(x⃗).
Adding an exponent-inversion oracle to q-DL would allow
an embedding but result in a non-standard problem.
To alleviate this issue, we could additionally prove the
hardness of q-DL with exponent-inversion oracle in the
GGM, but we rather decided to show hardness of P in
the GGM in a direct fashion.

Our approach is the following: Instead of studying
only the hardness of strong bilinear DDH/DDHI, we
consider a very general class of problems, called

generalized bilinear decisional problem (GBDP). This
leads to re-usable results and highlights the essential
properties making a decisional problem hard in the GGM.
Note that other general classes of problems have been
analyzed in the GGM and AGM. For instance, [9]
considers the class of so-called Uber-problems in the
GGM where inputs and challenge elements are described
by polynomials. [3] analyzes Uber-problems in the AGM
and also extends this class of computational problems
in several ways, e.g., allowing inputs and challenges to
be described by rational functions, adversarial chosen
challenges, and decisional oracles. Our GBDP seems
closest to a decisional variant of their “Uber Assumption
for Rational Fractions and Flexible Targets”. However,
as [3] restricts to considering computational rather than
decisional problems in the AGM, we cannot make use of
their results to argue about the hardness of GBDP.

To simplify the hardness proof for (non-trivial) GBDP,
we perform two preparative steps: first, we get rid of the
bilinear setting and consider an equivalent problem (in the
GGM) defined over a single group (called G3-projected



problem). The intuition behind this simplification is that
generic algorithms can only obtain information about the
challenge bit by means of (non-trivial) equations between
computed group elements, and equations over G1 and G2,
respectively, can equivalently be checked over the target
group by means of the pairing. Second, we get rid of
the denominators of the rational functions describing a
problem by considering the denominator-free version of
the problem where all functions are multiplied by the
product of all denominators. As generic algorithms may
only learn from equations between elements, this change
is oblivious to them.

D.1. The Generic (Bilinear) Group Model

We base our formal description of the GGM for
bilinear settings on the generic group model introduced by
Shoup [33]. Note that there are alternative formalizations
such as the one by Maurer [29]. However, it appears that
Shoup’s formalization covers a broader set of algorithms
[35].

Let BG := (G1,G2,G3, p, g1, g2, e) be an instance
of a bilinear group setting and Σ ⊂ {0, 1}⌈log2 p⌉+1

a set containing p bit strings which allows for an
efficient random sampling. In Shoup’s GGM, elements of
G1,G2,G3 are represented by random bit strings from Σ
and a generic group oracle is responsible for translating
encodings to elements and executing the (bilinear) group
operations. In the following we will write [a]i ∈ Σ
to denote the encoding of a group element a ∈ Gi

under some (implicitly defined) random encoding function
[·]i : Gi → Σ. If a⃗ ∈ Gk

i is a vector of elements we define
[⃗a]i := ([a1]i, . . . , [ak]i). Since the groups G1,G2,G3 are
all isomorphic to Zp, we (internally) represent them by the
group (Zp,+) with generator 1. So, we actually consider
[·]i : Zp → Σ.

An algorithm A in the GGM interacts with a generic
group oracle O, which computes the group operations and
evaluates the pairing on behalf of A. O receives as input
three vectors of group elements (the problem instance)

I1 = (a1,1, . . . , a1,n1
) ∈ Zn1

p (∼= Gn1
1 ),

I2 = (a2,1, . . . , a2,n2
) ∈ Zn2

p (∼= Gn2
2 ),

I3 = (a3,1, . . . , a3,n3
) ∈ Zn3

p (∼= Gn3
3 ).

As internal state, O maintains two types of lists
namely element lists L1, L2, L3, where Li ⊂ Zp, and
encoding lists E1, E2, E3, where Ei ⊂ Σ. For an index
j let Li,j and Ei,j denote the j-th entry of Li and
Ei, respectively. A list Ei contains the encodings of the
group elements corresponding to the entries of Li, i.e.,
Ei,j = [Li,j ]i. To determine these encodings, each time
an element a should be added to one of the lists Li,
the oracle internally executes the algorithm Encode(a, i)
which returns Ei,j if there already exists j with Li,j = a

and a fresh encoding s
$← Σ \ Ei otherwise.

Each list Li is initially populated with the
corresponding elements given as part of a problem
instance, i.e., Li := Ii. More precisely, an algorithm
Init(I1, I2, I3) is executed, which for 1 ≤ i ≤ 3 and
1 ≤ j ≤ ni appends ai,j to Li, computes [ai,j ]i :=
Encode(ai,j , i), appends [ai,j ]i to Ei, and also sends the
encoding to A.

The algorithm may then query the oracle to perform
operations on the elements by providing the corresponding
encodings. We may always assume that A only provides
already assigned encodings [a]i ∈ Ei as input to the
oracle. The following queries are offered by O:
• GOp([a]i, [a

′]i, i): On input of two encodings
[a]i, [a

′]i and a list index i ∈ {1, 2, 3}, the oracle
first determines the elements a, a′ ∈ Li by lookup,
i.e., it determines indices j and j′ with [a]i = Ei,j

and [a′]i = Ei,j′ and returns Li,j and Li,j′ . Then it
computes c = a + a′ ∈ Zp and [c]i := Encode(c, i),
appends c to Li and [c]i to Ei, and sends [c]i to A.

• BilMap([a]1, [a
′]2): On input of two encodings

[a]1, [a
′]2, it first determines a ∈ L1 and a′ ∈ L2

by lookup. Then it computes c = aa′ ∈ Zp and
[c]3 := Encode(c, 3), appends c to L3 and [c]3 to
E3, and sends [c]3 to A.

Note that a random group element can be efficiently
sampled by A by using GOp(·) to raise a generator to
some r

$← Zp.
The GGM for a single group can be easily derived

from the bilinear version described above. In particular,
the generic group oracle only needs to manage one
element list L ⊂ Zp and one encoding list E ⊂ Σ,
and only answers group operation queries GOp([a], [a′])
associated with this group.

D.2. Generalized (Bilinear) Decisional Problem
and Relations in the GGM

Instead of only showing the hardness of strong
bilinear DDH/DDHI in the GGM, we do this for a
broad class of problems which contains our problem as a
special instance. We start by defining Generalized Bilinear
Decisional Problems.

Definition 19 (Generalized Bilinear Decisional Problem
(GBDP)). Let G be a asymmetric bilinear group
generator returning BG := (G1,G2,G3, p, g1, g2, e).
A ( ⃗f (1), ⃗f (2), ⃗f (3),X ,D,m, ℓ)-GBDP P over BG is
defined by tuples of rational functions ⃗f (1) =

(f
(1)
1 , . . . , f

(1)

n(1)),
⃗f (2) = (f

(2)
1 , . . . , f

(2)

n(2)),
⃗f (3) =

(f
(3)
1 , . . . , f

(3)

n(3)), where f
(1)
j , f

(2)
j , f

(3)
j : {0, 1} ×

Zm
p → Zp, f (i)

1 = 1, a set X ⊂ Zp, a distribution D on
Xm−ℓ, and the following game played with algorithm
A:

x⃗
D← Xm−ℓ

y⃗
$← Zℓ

p

b
$← {0, 1}

b′ ← A(BG, g
⃗

f(1)(b,x⃗,y⃗)
1 , g

⃗
f(2)(b,x⃗,y⃗)
2 , e(g1, g2)

⃗
f(3)(b,x⃗,y⃗)), x⃗)

if b′ = b return 1
else return 0

We call P well-defined if the functions f
(i)
j (b, x⃗, Y⃗ ) =

P
(i)
j (b,x⃗,Y⃗ )

Q
(i)
j (b,x⃗,Y⃗ )

are always well-defined for arbitrary b ∈

{0, 1} and x⃗ ∈ X , i.e., Q
(i)
j (b, x⃗, Y⃗ ) viewed as

a polynomial in variables Y⃗ is never zero. In the
following we always assume that a GBDP is well-
defined without explicitly mentioning this.



Note that in the GGM as defined in Section D.1, the
game specified in Definition 19 translates to

x⃗
D← Xm−ℓ

y⃗
$← Zℓ

p

b
$← {0, 1}

([ ⃗f (1)(b, x⃗, y⃗)]1, [ ⃗f (2)(b, x⃗, y⃗)]2, [ ⃗f (3)(b, x⃗, y⃗)]3)
← O.Init(f (1)(b, x⃗, y⃗), f (2)(b, x⃗, y⃗))f (3)(b, x⃗, y⃗))

b′ ← AO.GOp,O.BilMap(p, [ ⃗f (1)(b, x⃗, y⃗)]1, [ ⃗f (2)(b, x⃗, y⃗)]2, [ ⃗f (3)(b, x⃗, y⃗)]3, x⃗)
if b′ = b return 1
else return 0

To simplify our analysis of GBDP problems (over
bilinear settings) in the GGM, we will define an
appropriate problem over a single group, the former can
be reduced to in the GGM. To this end, we first define
the class of Generalized Decisional Problems (GDP)
analogously to GBDP.
Definition 20 (Generalized Decisional Problem (GDP)).

Let G be a group generator returning the description
(G, g, p) of a cyclic group of prime order p. The
(f⃗ ,X ,D,m, ℓ)-GDP P over (G, g, p) is defined by
a tuple of rational functions f⃗ = (f1, . . . , fn), where
fj : {0, 1} × Zm

p → Zp, a set X ⊂ Zp, a distribution
D on Xm−ℓ, and the following game played with
algorithm A:

x⃗
D← Xm−ℓ

y⃗
$← Zℓ

p

b
$← {0, 1}

b′ ← A((G, g, p), gf⃗(b,x⃗,y⃗), x⃗)
if b′ = b return 1
else return 0

We call P well-defined if the functions fj(b, x⃗, Y⃗ ) =
Pj(b,x⃗,Y⃗ )

Qj(b,x⃗,Y⃗ )
are always well-defined for arbitrary b ∈

{0, 1} and x⃗ ∈ X , i.e., Qj(b, x⃗, Y⃗ ) viewed as a
polynomial in variables Y⃗ is never zero. In the
following we always assume that a GDP is well-
defined without explicitly mentioning this.

The GDP game in the GGM can be described as
follows:

x⃗
D← Xm−ℓ

y⃗
$← Zℓ

p

b
$← {0, 1}

[f⃗(b, x⃗, y⃗)]← O.Init(f(b, x⃗, y⃗))
b′ ← AO.GOp(p, [f⃗(b, x⃗, y⃗)], x⃗)
if b′ = b return 1
else return 0

To define an appropriate problem to reduce a GBDP
to, we consider the G3-projection of a GBDP problem,
which essentially asks to determine b (only) given the
e-images of all initial inputs over the groups G1 and
G2. The idea is that algorithms in the GGM may only
check equations between group elements which could
equivalently be checked over G3 using the pairing.

Definition 21 (G3-Projection). Let ( ⃗f (1), ⃗f (2), ⃗f (3),X ,
D,m, ℓ)-GBDP be given. Then its G3-projection is
the (f⃗ ,X ,m, ℓ)-GDP defined by f⃗ := ((f

(1)
i ·

f
(2)
j )i,j ,

⃗f (3)).

Lemma 2. The G3-projection of a well-defined GBDP is
always well-defined.

Lemma 3 (Reduction to G3-projection). Let P be a ( ⃗f (1),
⃗f (2), ⃗f (3),X ,D,m, ℓ)-GBDP and the (f⃗ ,X ,D,m, ℓ)-

GDP P ′ be its G3-projection. Suppose there exists a
generic group algorithm A solving P with advantage
ϵ using t oracle queries. Then there exists a generic
group algorithm B solving P ′ with advantage ϵ using
at most tn1n2(2 log(p) + 1) oracle queries, where ni

denotes the size of vector ⃗f (i).

Proof: The idea is to let B simulate
O.GOp([a]i, [a′]i, i) for i ∈ {1, 2, 3} and
O.BilMap([a]1, [a

′]2) for A by applying the group
operation and equality tests (via encodings) to the
projected elements offered by B’s generic group oracle
O′. As pairing queries are for elements for which B learns
a linear representation in the input elements f

(1)
j (b, x⃗, y⃗)

and f
(2)
j′ (b, x⃗, y⃗), respectively, and (encodings of) the

pairings of those input elements are given, those queries
can be handled via group operations over the target
group:

e

∏
j

g
zjf

(1)
j (b,x⃗,y⃗)

1 ,
∏
j′

g
z′
j′f

(2)

j′ (b,x⃗,y⃗)

2


=

∏
j

∏
j′

e

(
g
f
(1)
j (b,x⃗,y⃗)

1 , g
f
(2)

j′ (b,x⃗,y⃗)

2

)zjz
′
j′

More precisely, B manages lists E1, E2, E3 containing
encodings for elements of G1, G2, G3, respectively,
just like the original generic group oracle.5 The lists
L1, L2, L3 ⊂ E now also contain encodings (sent by O′)
representing the projected elements in G to which B has
access via its own generic group oracle O′. Those lists are
used to map operations on L1, L2, L3 to operations on L.
We define a modified encoding function Encode′([a], i)
which is executed by B every time an encoded element
should be added to one of the lists during the initialization
or query phase. Encode′([a], i) determines whether there
exists some index j such that Li,j = [a]. If this is the case,
it returns Ei,j as [a]i, otherwise, it randomly samples a
fresh encoding s

$← Σ \ Ei and return it as [a]i.6
During O′.Init, B receives encodings(
([f

(1)
i (b, x⃗, y⃗) · f (2)

j (b, x⃗, y⃗)])i,j , ([f
(3)
i (b, x⃗, y⃗)])i

)
from its oracle. Remind that we assume that
f
(1)
1 (b, x⃗, y⃗) = 1 and f

(2)
1 (b, x⃗, y⃗) = 1 to always

include the default generators in a problem instance. For
1 ≤ i ≤ n1 it appends [ai] := [f

(1)
i (b, x⃗, y⃗) · 1] to L1 and

[ai]1 := Encode′([ai], 1) to E1, and sends [ai]1 to A.

5. Actually, we could use the original encodings sent by B’s oracle
to represent elements of G3, i.e., E3 := E. However, to simplify the
description we simulate all groups in the same way.

6. Note that we cannot simply use the encodings [x] received from
O′ to represent elements from all three groups but rather have to define
a separate encoding function for each group since for O′ all elements
are “considered to be from the same group”. To put it simply, gx1 and
gx2 is treated as equal by O′ and receive the same encoding [x]. So we
need to keep track whether [x] is associated with G1 or G2 and check
whether we have already seen this encoding for the corresponding group,
and assign an old or fresh encoding [x]i accordingly.



Similarly, it initializes L2 and E2 with [1·f (2)
i (b, x⃗, y⃗)] and

its [·]2 encodings, respectively, for 1 ≤ i ≤ n2. The list
L3 is initialized with [ai] := [f

(3)
i (b, x⃗, y⃗)] and E3 with

[ai]3 := Encode′([ai], 3) for 1 ≤ i ≤ n3. Additionally, B
stores the encodings ([f

(1)
i (b, x⃗, y⃗) · f (2)

j (b, x⃗, y⃗)])i,j for
further use when answering pairing queries from A.

Queries from A are answered by B in the following
way:
• GOp([a]i, [a

′]i, i): On input of two encodings
[a]i, [a

′]i and a list index i ∈ {1, 2, 3}, B determines
indices j and j′ with [a]i = Ei,j and [a′]i = Ei,j′ .
Then queries its oracle [c] ← O′.GOp(Li,j , Li,j′),
encodes the result [c]i := Encode([c], i), and appends
[c] to Li and [c]i to Ei, and sends [c]i to A. Note
that by observing the group operation, B knows the
(linear) representation of each c in terms of the
initially given elements f

(i)
j (b, x⃗, y⃗), i.e., it knows zj

s.t. c =
∑

j zjf
(i)
j (b, x⃗, y⃗).

• BilMap([a]1, [a
′]2): On input of two encodings

[a]1, [a
′]2, it first determines [a] ∈ L1 and [a′] ∈ L2

by lookup. Let zj and z′j′ be the coefficients
belonging to the linear representations of a
and a′ in terms of the initially given elements
f
(1)
j (b, x⃗, y⃗) and f

(2)
j′ (b, x⃗, y⃗), respectively, which

are known to B (as explained above). Then for
1 ≤ j ≤ n1, 1 ≤ j′ ≤ n2, B first computes
computes [cj,j′ ] := [ziz

′
j′f

(1)
j (b, x⃗, y⃗)f

(2)
j′ (b, x⃗, y⃗)]

by applying O′.GOp to
[f

(1)
j (b, x⃗, y⃗)f

(2)
j′ (b, x⃗, y⃗)]. Using square-and-multiply

this can be done using at most 2n1n2 log(p) queries
to O′. After that, it computes [c] := [

∑
j,j′ cj,j′ ]

by applying O′.GOp to the [cj,j′ ]. This requires at
most n1n2 queries. Finally, it appends [c] to L3,
[c]3 := Encode(a, 3) to E3, and sends [c]3 to A.

Note that if B is given an instance of P ′ for b = 1 it
perfectly simulates an instance of P for b = 1 in the GGM.
The same holds for b = 0. Thus, if B simply outputs
what A outputs, it can guess b in the game for P ′ with
the same probability as A does in the game for P . In the
worst case A sends t BilMap queries to B which results
in t(2n1n2 log(p) + n1n2) queries to O′.

To simplify the analysis of GDP problems in the
GGM, we want to reduce them to problems which do
not contain quotients in their description of given group
elements but only polynomials. As generic algorithms
can only check equalities between group elements and
equations still hold if we multiply them with non-zero
denominators on both sides, they do not notice any
difference. To this end, we define the denominator-free
version of a GDP.
Definition 22 (Denom-Free GDP). Let a (f⃗ ,X ,D,m, ℓ)-

GDP P be given and let the polynomials Pj , Qj

denote the nominator and denominator of fj =
Pj

Qj
,

respectively. If Qj = 1 for all j ∈ {1, . . . , n} we
call P denom-free. The denom-free version of P is
defined by the denom-free (f⃗ ′,X ,D,m, ℓ)-GDP P ′
with f ′j := Pj

∏
i ̸=j Qi.

Lemma 4 (Reduction to Denom-Free GDP). Let P
denote a (f⃗ ,X ,D,m, ℓ)-GDP and P ′ be its denom-
free version. Suppose there exists a generic group

algorithm A solving P with advantage ϵ using t
oracle queries. Then there exists a generic group
algorithm B which does t queries to solve P ′ with
success probability at least ϵ −

∑
i deg(Qi)

p , where
Qi = Qi(b, x⃗, Y⃗ ) are the denominator polynomials
of fi viewed as polynomials in variables Y⃗ (treating
b and x⃗ as coefficients).

Proof: First note that since P is well-defined all
polynomials Qi = Qi(b, x⃗, Y⃗ ) are non-zero. If one of the
polynomials Qi = Qi(b, x⃗, Y⃗ ) if evaluated with random
y⃗

$← Zℓ
p becomes zero, then the corresponding input

element fi of P is not well-defined. However, for P ′
the corresponding element f ′i is still well-defined. Thus,
in this case a game for P could differ from a game
for P ′. But this happens only with probability at most∑

i deg(Qi)

p using the Schwartz-Zippel Lemma [32]. Let
us assume this simulation failure event does not happen
in the following.

In the reduction, B just forwards queries and responses
between A and its own generic group oracle, and finally
outputs what A outputs. Note that the only information
about the problem instance A might obtain in the GGM
are equalities between encodings. Considering Encode,
two computed elements a =

∑
i zifi(b, x⃗, y⃗) and a′ =∑

i z
′
ifi(b, x⃗, y⃗) (represented in terms of the initial input)

in a game for P are assigned the same encoding if
a = a′ and different encodings if a ̸= a′ . These
equations also holds if we would multiply both sides
with

∏
i Qi(b, x⃗, y⃗) which is assumed to be non-zero

(see above). Now observe that the resulting equations are
exactly the equations that the generic group oracle checks
in a game for P ′. Thus, B perfectly simulates a game
for an instance of P unless the simulation failure event
defined above happens.

Finally, to prove hardness of a GDP in the GGM, the
problem must not be trivially solvable. A GDP is trivially
solvable if there exists an equation that holds for b = 0
but not for b = 1, or vice versa, for arbitrary choice of
the secrets y⃗.

Definition 23 (Non-Trivial GDP). A (f⃗ ,X ,D,m, ℓ)-GDP
is called non-trivial over (G, g, p) if there are no zi ∈
Zp, x⃗ D← Xm−ℓ, b ∈ {0, 1} s.t.∑

i

zifi(b, x⃗, Y⃗ ) = 0 and
∑
i

zifi(1− b, x⃗, Y⃗ ) ̸= 0

Lemma 5 (Non-Triviality of Denom-Free Version). Let P
be a non-trivial (f⃗ ,X ,D,m, ℓ)-GDP. Then the denom-
free version P ′ of P is also non-trivial.

Proof: Multiplying both sides of the equations in
Definition 23 for P with

∏n
i=1 Qi leads to equivalent

equations if
∏n

i=1 Qi ̸= 0. If
∏n

i=1 Qi = 0 then P was
already not well-defined. The resulting equations belong
to P ′.

We may also define non-triviality of GBDP by
considering its G3-projection, which is a GDP.

Definition 24 (Non-Trivial GBDP). A GBDP is called
non-trivial if its G3-projection is non-trivial.



D.3. Generic Hardness of Non-Trivial GBDP

We first prove hardness in the GGM for the broad
class of non-trivial denom-free GDP before we derive the
hardness of non-trivial GBDP and finally the hardness of
strong bilinear DDH/DDHI as a special case.
Theorem 4 (Generic Hardness of Non-Trivial Denom-

Free GDP). Let P be a non-trivial denom-free
(f⃗ ,X ,D,m, ℓ)-GDP. Let n be the size of vector f⃗
and d := maxi(deg(Pi)), where Pi = fi(b, x⃗, Y⃗ ) is
the polynomial describing fi viewed as polynomial in
variables Y⃗ (treating b and x⃗ as coefficients). Then
any generic group algorithm A doing t oracle queries
can solve P with advantage at most 2(t+n)2d

p .

Proof: We start with the real game for b = 1 and
modify Encode until we end up with the real game for b =
0. Unless a (rare) failure event occurs the modifications
are indistinguishable.

Game G1. This is the real game for b = 1 where A
receives the encodings [fi(1, x⃗, y⃗)] for x⃗

D← Xm−ℓ and
y⃗

$← Zℓ
p.

Game G2. In this game, we change the way how
initially given and computed elements are represented
internally by the oracle. We represent all elements which
are added to L by formal polynomials in variables Y⃗ ,
i.e., elements have the form a =

∑
i zifi(1, x⃗, Y⃗ ). To

determine encodings, the polynomials will be evaluated
with the y⃗ ∈ Zℓ

p which have been chosen in the beginning:
Encode(a) checks whether there exists j with Lj(y⃗) =
a(y⃗) (over Zp). If this is the case, the encoding Ej

is returned, otherwise a fresh encoding s
$← Σ \ E

is sampled. As this change is purely conceptional, the
advantage of A in G1 and G2 is identical.

Game G3. In this game, we modify Encode again
to do equality checks over Zp[Y⃗ ]: Encode(a) checks
whether there exists j with Lj = a (over Zp[Y⃗ ]). If
this is the case, the encoding Ej is returned, otherwise
a fresh encoding s

$← Σ \ E is sampled. Clearly, this
modification may lead to a difference between G3 and
G2 if for an element a, the encoding function Encode(a)
returns an old encoding in G3 but a fresh encoding in
G2, or vice versa. The former would happen if there
exists an index j with Lj − a = 0 over Zp[Y⃗ ] but
(Lj − a)(y⃗) ̸= 0 over Zp. This is impossible. The
latter would happen if Lj − a ̸= 0 over Zp[Y⃗ ] but
(Lj − a)(y⃗) = 0 over Zp for uniformly chosen y⃗

$← Zℓ
p.

For a fixed Lj and a, this happens with probability at most
deg(Lj−a)

p ≤ maxi(deg(Pi))
p according to the Schwartz-

Zippel Lemma [32]. Since the total number of pairs of
such polynomials can be upper bounded by (t + n)2,
the probability of such a simulation failure can be upper
bounded by (t+n)2 maxi(deg(Pi))

p . Note that unless this
failure event happens, G3 and G2 are identical.

Game G4. In this game, we switch the challenge bit
b from 1 to 0, i.e., A intially receives the encodings
[fi(0, x⃗, Y⃗ )] for x⃗

D← Xm−ℓ. Again, this change might
result in a difference between G4 and G3 if for an
element a, the encoding function Encode(a) returns an old
encoding in G4 but a fresh encoding in G3, or vice versa.

This would happen if Lj − a =
∑

i zifi(0, x⃗, Y⃗ ) = 0

but
∑

i zifi(1, x⃗, Y⃗ ) ̸= 0, or vice versa. However, this is
excluded by the non-triviality property of P .

Game G5. This game reverts the change done in G3,
i.e., to determine encodings, polynomials are evaluated
with y⃗ again: Encode(a) checks whether there exists j
with Lj(y⃗) = a(y⃗) (over Zp). Similarly, this change can
lead to the simulation failure (so a difference between G5

and G4) already described in G3 whose probability can be
upper bounded by (t+n)2 maxi(deg(Pi))

p .
Game G6. This game reverts the conceptual change of

G2 and is equal to the real game for b = 0. Elements are
not represented by polynomials anymore, i.e., A receives
the encodings [fi(0, x⃗, y⃗)] for x⃗

D← Xm−ℓ and y⃗
$← Zℓ

p.
Clearly, G6 and G5 are perfectly indistinguishable.

In summary, we have shown that G1 and G6 are
perfectly indistinguishable unless a failure event occurrs
in G3 or G5 which happens with probability at most
2(t+n)2 maxi(deg(Pi))

p .

To show hardness of a non-trivial GBDP, we can
restrict to consider the denom-free version of its G3-
projection (cf. Lemma 3 and 4). To apply Theorem 4 to
the latter, the denom-free version needs to be non-trivial
which follows from Lemma 5.

Theorem 5 (Generic Hardness of Non-Trivial GBDP).
Let P be a non-trivial ( ⃗f (1), ⃗f (2), ⃗f (T ),X ,D,m, ℓ)-
GBDP and let P

(i)
j , Q

(i)
j denote the nominator and

denominator polynomial of f (i)
j (b, x⃗, Y⃗ ) =

P
(i)
j (b,x⃗,Y⃗ )

Q
(i)
j (b,x⃗,Y⃗ )

viewed as polynomials in variables Y⃗ (treating b
and x⃗ as coefficients). Let ni denote the size of of
vector ⃗f (i) and d′ := maxi,j(deg(P

(i)
j )), and d′′ :=∑

i,j deg(Q
(i)
j ). Then any generic group algorithm A

doing t oracle queries can solve P with advantage at
most 2(n1n2(2t log(p)+t+1)+n3)

2(d′+d′′)+d′′

p .

Proof: This follows immediately by applying
Lemma 3, 4, 5 and Theorem 4. Let P ′ denote the G3-
projection of P and P ′′ the denom-free version of P ′.
Furthermore, let B and C denote generic group algorithms
for P ′ and P ′′, respectively. Then we get the following
advantage

AdvPA = AdvP
′

B

≤ AdvP
′′

C +
∑

i,j deg(Q
(i)
j )

p

= AdvP
′′

C + d′′

p

≤ 2(TimeP′′
C +n1n2+n3)

2(d′+d′′)
p + d′′

p

≤ 2(tn1n2(2 log(p)+1)+n1n2+n3)
2(d′+d′′)

p + d′′

p

= 2(n1n2(2t log(p)+t+1)+n3)
2(d′+d′′)+d′′

p

The first equation follows from Lemma 3, the second
from Lemma 4, and the fourth from Theorem 4, which
can be applied since Lemma 5 holds. Finally, note that
TimeP

′′

C = TimeP
′

B ≤ TimePA n1n2(2 log(p) + 1).
To apply Theorem 5 to the strong bilinear DDH/DDHI

problem, we just need to show that it is non-trivial.
According to Definition 24, this means to show that its
G3-projection is non-trivial.



Lemma 6. The G3-projection of the strong bilinear
DDH/DDHI problem (Definition 15) is a non-trivial
GDP problem.

Proof: We translate our problem to a
( ⃗f (1), ⃗f (2), ⃗f (T ),X ,D,m, ℓ)-GBDP, where for better
readability, we partially use a double-index notation
instead of a single index as in the original definition.
This gives us:

• f
(1)
1 (b, x1, . . . , xℓ1+1, Y1, Y2, Y3, Y1,1, . . . , Yℓ1,ℓ2) =
1

• f
(1)
2 (b, x1, . . . , xℓ1+1, Y1, Y2, Y3, Y1,1, . . . , Yℓ1,ℓ2) =
Y1

• f
(1)
3 (b, x1, . . . , xℓ1+1, Y1, Y2, Y3, Y1,1, . . . , Yℓ1,ℓ2) =
b · Y3 + (1− b)Y1Y2

• f
(1)
i,j (b, x1, . . . , xℓ1+1, Y1, Y2, Y3, Y1,1, . . . , Yℓ1,ℓ2) =
Yi,j , for 1 ≤ i ≤ ℓ1, 1 ≤ j ≤ ℓ2

• f
(1)
ℓ1+i,ℓ2+j(b, x1, . . . , xℓ1+1, Y1, Y2, Y3, Y1,1, . . . ,
Yℓ1,ℓ2) = Y2Yi,j , for 1 ≤ i ≤ ℓ1, 1 ≤ j ≤ ℓ2

• f
(2)
1 (b, x1, . . . , xℓ1+1, Y1, Y2, Y3, Y1,1, . . . , Yℓ1,ℓ2) =
1

• f
(2)
2 (b, x1, . . . , xℓ1+1, Y1, Y2, Y3, Y1,1, . . . , Yℓ1,ℓ2) =

1
bY3+(1−b)Y1Y2+Y1xℓ1+1

• f
(2)
i,j (b, x1, . . . , xℓ1+1, Y1, Y2, Y3, Y1,1, . . . , Yℓ1,ℓ2) =

1
Yi,j(Y2+xi)

, for 1 ≤ i ≤ ℓ1, 1 ≤ j ≤ ℓ2

• f
(3)
1 (b, x1, . . . , xℓ1+1, Y1, Y2, Y3, Y1,1, . . . , Yℓ1,ℓ2) =
1

Note that ℓ = ℓ1ℓ2 + 3 and m = ℓ+ ℓ1 + 1, where ℓ1 =
|X |−1 and ℓ2 = q, in our case. Moreover, the distribution
D selects xℓ1+1

$← X and xi ∈ X \ {xℓ1+1}. The G3-
projection is the (f⃗ ,X ,D,m, ℓ)-GDP defined by f⃗ :=

((f
(1)
i · f (2)

j )i,j ,
⃗f (3)), which is tedious to roll out.

Regarding Definition 23, to show non-triviality we
need to consider a term of the form

z1 + z2Y1

+ z3Y3 +
∑

i,j z
(1)
i,j Yi,j

+
∑

i,j z
(2)
i,j Y2Yi,j + z4

1
Y3+Y1xℓ1+1

+ z5
Y1

Y3+Y1xℓ1+1
+ z6

Y3

Y3+Y1xℓ1+1

+
∑

i,j z
(3)
i,j

1
Yi,j(Y2+xi)

+
∑

i,j z
(4)
i,j

Y1

Yi,j(Y2+xi)

+
∑

i,j z
(5)
i,j

Y3

Yi,j(Y2+xi)
+

∑
i,j z

(6)
i,j

Yi,j

Y3+Y1xℓ1+1

+
∑

i,j z
(7)
i,j

Y2Yi,j

Y3+Y1xℓ1+1
+

∑
i z

(1)
i

1
Y2+xi

+
∑

i z
(2)
i

Y2

Y2+xi

+
∑

i,j

∑
(i′,j′) ̸=(i,j) z

(i′,j′)
i,j

Yi,j

Yi′,j′ (Y2+xi′ )

+
∑

i,j

∑
(i′,j′) ̸=(i,j) z

(i′,j′)
i+ℓ1,j+ℓ2

Y2Yi,j

Yi′,j′ (Y2+xi′ )

(1)

for b = 1 and
z1 + z2Y1

+ z3Y1Y2 +
∑

i,j z
(1)
i,j Yi,j

+
∑

i,j z
(2)
i,j Y2Yi,j + z4

1
Y1Y2+Y1xℓ1+1

+ z5
Y1

Y1Y2+Y1xℓ1+1
+ z6

Y1Y2

Y1Y2+Y1xℓ1+1

+
∑

i,j z
(3)
i,j

1
Yi,j(Y2+xi)

+
∑

i,j z
(4)
i,j

Y1

Yi,j(Y2+xi)

+
∑

i,j z
(5)
i,j

Y1Y2

Yi,j(Y2+xi)
+

∑
i,j z

(6)
i,j

Yi,j

Y1Y2+Y1xℓ1+1

+
∑

i,j z
(7)
i,j

Y2Yi,j

Y1Y2+Y1xℓ1+1
+

∑
i z

(1)
i

1
Y2+xi

+
∑

i z
(2)
i

Y2

Y2+xi

+
∑

i,j

∑
(i′,j′ )̸=(i,j) z

(i′,j′)
i,j

Yi,j

Yi′,j′ (Y2+xi′ )

+
∑

i,j

∑
(i′,j′) ̸=(i,j) z

(i′,j′)
i+ℓ1,j+ℓ2

Y2Yi,j

Yi′,j′ (Y2+xi′ )

(2)
for b = 0, respectively.

First, note that any term involving Y3 which is equal to
0, remains zero if one replaces Y3 by Y1Y2. The interesting
case is a non-zero term in Y3 which becomes zero if we
replace Y3 by Y1Y2. In the following, we show that this
cannot happen by arguing that any summand containing
Y3 cannot be eliminated when replacing Y3 with Y1Y2 by
adding or subtracting other terms.
z3Y1Y2: First, we observe that there are only two

other summands containing Y1Y2 in the numerator:
z6

Y1Y2

Y1Y2+Y1xℓ1+1
and Y1Y2

∑
i,j z

(5)
i,j

1
Yi,jY2+Yi,jxi

.
When treating xℓ1+1 in the former term as variable
we cannot get rid of the denominator. By setting
xℓ1+1 = 0, we obtain z6 which is not helpful either.
Similarly, the denominators of the latter term do
not vanish either treating xi as variable. Setting all
xi = 0 results in Y1

∑
i,j z

(5)
i,j

1
Yi,j

which cannot be
used to eliminate z3Y1Y2.

z4
1

Y1Y2+Y1xℓ1+1
: We observe that all 4 other terms

with the same denominator have variables in the
numerators. Setting xℓ1+1 = 1 or xℓ1+1 = 0 does not
change the situation. Particularly, besides the 4 terms
from before, we do not need to consider additional
terms as none of them contains Y1Y2 as part of the
denominator.

z5
Y1

Y1Y2+Y1xℓ1+1
: Similar to the term considered above, we

have 4 other terms sharing the same denominator
but lack a monomial Y1 in the numerator. When
considering the simplified fraction z5

1
Y2+xℓ1+1

, we
observe that this term could only be eliminated using∑

i z
(1)
i

1
Y2+xi

by setting xℓ1+1 = xi, however, the
decisional problem requires xℓ1+1 ̸= xi for all i.

z6
Y1Y2

Y1Y2+Y1xℓ1+1
: Similar to the case above, none of

the fractions with the same denominator share a
monomial Y1Y2 in the numerator. Let us consider
the simplified fraction z5

Y2

Y2+xℓ1+1
. Again, this term

could only be eliminated using
∑

i z
(2)
i

Y2

Y2+xi
by

setting xℓ1+1 = xi, which is not allowed by the
decisional problem. If we set xℓ1+1 = 0, we can
simplify the fraction to z5 which could be eliminated
by setting z1 = z5. However, observe that this also
trivially holds for the corresponding term in Y3, so
this is not a non-zero term in Y3 in the first place.∑

i,j z
(6)
i,j

Yi,j

Y1Y2+Y1xℓ1+1
: Similar to the case above, none

of the fractions with the same denominator share



a monomial Yi,j in the numerator. Simplifying the
fraction by setting xℓ1+1 = 0 does not change
this situation as no other terms besides the ones
considered before have denominator Y1Y2.(The term∑

i,j z
(7)
i,j

Y2Yi,j

Y1Y2+Y1xℓ1+1
is simplified to

∑
i,j z

(7)
i,j

Yi,j

Y1

in this case, which is of no use.)∑
i,j z

(7)
i,j

Y2Yi,j

Y1Y2+Y1xℓ1+1
: Similar to the case above, none

of the fractions with the same denominator share
a monomial Y2Yi,j in the numerator. The term∑

i,j z
(7)
i,j

Yi,j

Y1
we obtain by setting xℓ1+1 = 0 has a

denominator which is not shared by any other term,
also when setting xi arbitrarily.∑

i,j z
(5)
i,j

Y1Y2

Yi,j(Y2+xi)
: There are several terms

sharing the same denominator, namely∑
i,j z

(3)
i,j

1
Yi,j(Y2+xi)

,
∑

i,j z
(4)
i,j

Y1

Yi,j(Y2+xi)
,∑

i,j

∑
(i′,j′ )̸=(i,j) z

(i′,j′)
i,j

Yi,j

Yi′,j′ (Y2+xi′ )
, and∑

i,j

∑
(i′,j′ )̸=(i,j) z

(i′,j′)
i+ℓ1,j+ℓ2

Y2Yi,j

Yi′,j′ (Y2+xi′ )
but

none of them share the numerator Y1Y2. Simplifying
the considered fractions by setting xi = 0

leads to
∑

i,j z
(5)
i,j

Y1

Yi,j
. The only terms sharing

the same denominator, by setting x′i = 0, is∑
i,j

∑
(i′,j′ )̸=(i,j) z

(i′,j′)
i+ℓ1,j+ℓ2

Yi,j

Yi′,j′
. But these terms

do not contain the monomial Y1 as numerator.

Finally, we recall and prove Theorem 1:
Theorem 1 (Hardness of Strong Bilinear DDH/DDHI

in GGM). Let P be the strong bilinear DDH/DDHI
problem from Definition 15. Then any generic group
algorithm sending at most t queries to the generic
group oracle can solve P with advantage at most
ϵ ≤ (2560(|X |q + 1)5(t log(p) + t+ 1)2)/p.

Proof: Evaluating the upper bound of Theorem 5
with the parameters of the strong bilinear DDH/DDHI
problem, i.e., n1 = 2ℓ1ℓ2+3 ≤ 2|X |q+3, n2 = ℓ1ℓ2+2 ≤
|X |q+ 2, n3 = 1, d′ = 2, d′′ = 2ℓ1ℓ2 + 2 ≤ 2(|X |q+ 1),
we get

ϵ ≤ 2(n1n2(2t log(p)+t+1)+n3)2(d′+d′′)+d′′
p

=
2((2|X|q+3)(|X|q+2)(2t log(p)+t+1)+1)2(2+2(|X|q+1))+2(|X|q+1)

p

≤ 2((4|X|q+4)(2|X|q+2)(2t log(p)+t+2))2(5|X|q+5)
p

≤ 2(8(|X|q+1)2(2t log(p)+t+2))25(|X|q+1)
p

≤ 640(|X|q+1)5(2t log(p)+2t+2)2

p

≤ 2560(|X|q+1)5(t log(p)+t+1)2

p

Theorem 1 implies that if the size of X and
the parameter q are both polynomial in the security
parameter then strong bilinear DDH/DDHI is intractable
for polynomial-time generic group algorithms.

Appendix E.
Policies and Their Usage

Using the instantiation of a GVRF proposed in Section
6, the policies P of our pbATS scheme are subsets of
Zp = {0, . . . , p − 1}, where p is the prime order of
a bilinear group setting. The size of P determines the
number of tokens available to each user holding a pre-
token valid under the current pkS . Policies are public
sets that do not need to contain random numbers, but
may consist of consecutive numbers. Hence, P might be

represented by an interval [a, b] ⊂ Zp. In this case, to fix
a policy it suffices to make a and the length of the interval
public (e.g., by transmitting it to the user after solving a
CAPTCHA, just before token verification, etc.).

Basic policy types. Using this approach, several basic
policy types can be implemented, including:
• Global policies fix a maximum number of tokens

which can be used by each pre-token holder and
redeemed at all websites for all possible contents and
services until the policy gets updated. A global policy
can be defined by fixing an interval [a, b] ⊂ Zp.

• Time-dependent policies fix a maximum number of
tokens which can be used by each pre-token holder
within a certain period of time. To define such
a policy, the idea is to encode rough fixed-length
time stamps ts (e.g., in the format YYYY-MM-DD-
HH) as “prefix” of a Zp value and append a fixed-
length counter, i.e., Pts,n := {ts||pad(c) | 1 ≤
c ≤ n} = [ts||pad(1), ts||n] ⊂ Zp, where pad(c)
is a representation of c using the same number of
digits as n (i.e., zero-digits are prepended if needed).
For instance, P = [202503101301, 202503101330]
allows each pre-token holder to spend 30 tokens on
March 10th, 2025, between 13:00 and 13:59. Clearly,
the token verifying entities will need to automatically
update the policy they accept according to the current
time. If we assume an agreement on a common
time zone and that the clocks of users are roughly
synchronized with those of the verifying entities, it
suffices to only transfer the current n to the user
to fix a policy. Note that for a new policy of size
n, each pre-token holder will be able to redeem n
tokens independent of how many tokens it spent wrt.
the previous policy.

• Website/content/service-dependent policies fix
website-, content-, or service-specific maximum
numbers of tokens which can be used by each
pre-token holder. For instance, it could be useful
to allow pre-token holders to redeem more tokens
(i.e., make a larger number of requests without
CAPTCHA) for static, small-sized content than for
costly dynamically-generated (e.g., by API requests)
or large-size content (e.g., software downloads).
To define such policies, we can follow a similar
approach as for time-dependent policies: we assign
fixed-length unique IDs to websites, content or
service types, which are then encoded as “prefix” of
a Zp value and append by a fixed-length counter,
i.e., PID,n := [ID||pad(1), ID||n]. Note that when
a pre-token holder has redeemed all its tokens
associated with PIDi,ni , it is still able to redeem
tokens associated with a different policy PIDj ,nj

without being forced to request a new pre-token
(i.e., solve a CAPTCHA).

Combination of basic policies. Obviously, it could also
be useful to combine certain basic policies. For instance,
we can easily obtain time-dependent policies for different
content types by just prepending IDs to the definitions
of the time-dependent intervals. Another interesting use-
case could be combining a global policy with content-
dependent policies in the sense that a pre-token owner has



an overall limit of tokens it can spent as well as content-
specific limits. For this purpose, we enforce that every
time a content-specific token gets spent, also a global
token needs to be spent and the request is only accepted
if both tokens have not been spent before. Note that both
types of tokens can be generated using the same pre-token.

Policy updates. Policy updates are a means to react to
the current or expected network situation. For instance,
if for the current policy there is an overload of token-
based requests, we can decrease the total number of
remaining tokens by adjusting the size of the policy
interval. Similarly, if we start with a very small-sized
policy but the webservers could easily handle more
requests in the current situation, then we can replace the
policy with a larger one. As a change of policy does not
render pre-tokens invalid, all current pre-token holders can
generate new tokens according to the new policy without
interacting with the issuing server. There are different
possibilities to adjust the current policy, including:

• Update by disjunct set: Independently of the number
of tokens a pre-token holder already redeemed for the
old policy, it can redeem a number of tokens equal
to the size of the new policy.

• Update by subset: This is, e.g., obtained when
decreasing the upper bound of the interval of a policy.
In this case, pre-token holders may redeem a number
of tokens with the updated policy which is at most
equal to the size of the new policy (as it may have
already spent tokens before associated with the new
smaller interval). Note that the operator can count the
total number of remaining tokens over all pre-token
holders which would be available for a subset policy.

• Update by superset: This is, e.g., obtained when
increasing the upper bound of the policy interval.
Again, pre-token holders may redeem at most a
number of tokens equal to the size of the new policy
and at least equal to the difference of the sizes of
new and old policy. Also, one can count how many
unspent tokens would be available when doing such
an update.

Invalidation of pre-tokens. Updating policies results in
new tokens for all pre-token holders. If at some point,
the number of pre-token holders is considered too large,
all pre-tokens can be invalidated at once by changing the
key pair (skS , pkS) of the issuing server. Our current
construction does not support expiration dates for pre-
tokens to invalidate them automatically. In order to avoid
a peak of pre-token issuing requests by users whose pre-
tokens have just been invalidated, one can still use the
old server public key (in parallel to the new one) for
the verification of tokens for a certain transitioning period
while the new server secret key is used for issuing new
pre-tokens. The policy used for the old tokens should then
stay the same or could be cut in size to speed-up the
transitioning process. As soon as the holder of an old
pre-token redeemed all tokens according to the old policy
it will contact the issuing server to the a new pre-token.

Simulating policies with Privacy Pass. In Privacy Pass, we
do not have the concept of updatable policies as described
above. However, let us consider if and how the effects of

policies can be simulated by Privacy Pass.
First, observe that our construction with a fixed non-

updatable global policy of size n is essentially functionally
equivalent to Privacy Pass issuing a fixed batch of n
tokens. In both cases, each user can redeem n tokens
for any resource before the issuing server need to be
contacted again, in our system to get a fresh pre-token
and in Privacy Pass to get a new batch. To realize separate
token spending limits per solved CAPTCHA for individual
websites, contents, or services, separate issuing (OPRF)
keys would be required in parallel. Also, a user would
need to explicitly request tokens for a particular resource
which is not the case in our system. To approximate the
effects of time-dependent policies, i.e., during the current
time period only token batches (of size dependent on the
period) issued during the same period are valid, one would
need to change the issuing key for each time period and
adjust the size of issued token batches accordingly. As
the change of the issuing key invalidates tokens from
the previous period, all users need to first interact with
the issuing server again. In our system, old tokens get
invalidated by switching to the new policy interval which
can then be used by all pre-token holders, where the
pre-token could have been issued in the current or any
previous period, to generate tokens for the new period.

In general, with Privacy Pass we cannot really
implement the main goal of policy updates, i.e., to
retrospectively decrease or increase the number of unspent
tokens in circulation. All we can do to decrease the
number of unspent tokens is to renew the issuing key,
which invalidates every unspent token. On the other hand,
changing the number of issued tokens by means of a
policy update in our system, does not only affect new
issuing requests but always also all previous ones. Hence,
if we increase the current policy by a larger (disjunct) one,
not only new requests result in more tokens but also all old
requests. In Privacy Pass, it is possible to only increase the
size of new batches without affecting the size of previous
ones. In our system, we would need to renew the issuing
key to achieve this.

Appendix F.
Proof of Lemma 1

Let A be an adversary on the one-more bilinear 2-
DDH/DDHI assumption. Then, we construct an adversary
B on the one-more bilinear DDH/DDHI assumption
as follows. On input BG, gα1 , the adversary chooses
b

$← {0, 1} and αb ← Zp at random, implicitly sets
α1−b := α (without knowing the exponent α), and sends
(BG, gα0

1 , gα1
1 ) to A. On input of a proof-query Oβ

proof(x)

by A, it proceeds as follows: If β = b it simulates Oβ
proof

using αb. If β = 1− b, it forwards x to its own challenge

query and forwards the response (gτi1 , gατi1 , g
1

τi(α+x)

2 ) to
A. Next, it forwards x∗ by A to its own experiment,
and hands the challenge query z∗ to A. If x∗ appears
as query to either of the proof oracles at any point, B
aborts. Otherwise, on output b′ = b by A, the adversary B
outputs 0 (“real”) to its own experiment. Else, it outputs 1
(“random”) to its own experiment. Towards the analysis of
the success probability of B, note that if b∗ = 0 (where b∗

is the bit chosen by its own experiment), then B perfectly



simulates the one-more bilinear 2-DDH/DDHI game for
A relative to the chosen bit b. Further, if B was successful
(i.e., guesses b′ = b), then so is A. If b∗ = 1 on the other
hand, the view of A is independent of the challenge bit b.
The probability it outputs 1 to its own experiment is thus
exactly 1

2 . Overall, we obtain that B has advantage

ϵB := Pr[B is successful]−
1

2

=
1

2
Pr[B is successful|b∗ = 0]︸ ︷︷ ︸

=ϵA+ 1
2

+
1

2
Pr[B is successful|b∗ = 1]︸ ︷︷ ︸

= 1
2

−
1

2
=

1

2
· ϵA,

where ϵA := Pr[A is successful]− 1
2

. This concludes the proof.

Appendix G.
GVRF from NIZK

Combining a PRF with a NIZK proof is often
the approach that is taken in privacy-preserving
protocols to obtain an unlinkable and verifiable
PRF. Our GVRF instantiation is significantly more
efficient than such a construction. Of course, the
exact performance gap highly depends on the concrete
approach and chosen primitives. For concreteness, let
us consider an approach where the proof of correct
PRF evaluation Fsk(x) = y is for a language of
the following form {(x, y) | ∃ sk, C, r, σ s.t C =

Com(sk; r),Ver(pkSIG, σ, C) = 1, Fsk(x) = y}, where
pkSIG is the signature verification key of an authority
(e.g., the group manager for GVRFs). When instantiating
the above using the DY-PRF [16], Pedersen commitments
[30], the optimal structure-preserving signature scheme
by ABE [1], and (SXDH-based) Groth-Sahai NIZKs
[25], we obtain the following estimates based on Figure
13 in [17] and Table 1 in [7]: generating a proof requires
about 90 G1 and 60 G2 exponentiations, verifying it
about 120 pairing evaluations. This compares to 4 G1

and 2 G2 exponentiations for proof generation and 7
pairing evaluations plus one G1 exponentiation for proof
verification in our GVRF construction.
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