
Efficient Verifiable Mixnets from Lattices,
Revisited

Jonathan Bootle1 , Vadim Lyubashevsky1 , and
Antonio Merino-Gallardo1,2⋆

1 IBM Research Europe, Zurich, Switzerland
{jbt,vad}@zurich.ibm.com

2 Hasso-Plattner-Institute, University of Potsdam, Potsdam, Germany
antonio@m-g.es

Abstract. Mixnets are powerful building blocks for providing anonymity
in applications like electronic voting and anonymous messaging. The en-
cryption schemes upon which traditional mixnets are built, as well as the
zero-knowledge proofs used to provide verifiability, will, however, soon
become insecure once a cryptographically-relevant quantum computer is
built. In this work, we construct the most compact verifiable mixnet that
achieves privacy and verifiability through encryption and zero-knowledge
proofs based on the hardness of lattice problems, which are believed to
be quantum-safe.

A core component of verifiable mixnets is a proof of shuffle. The starting
point for our construction is the proof of shuffle of Aranha et al. (CT-
RSA 2021). We first identify an issue with the soundness proof in that
work, which is also present in the adaptation of this proof in the mixnets
of Aranha et al. (ACM CCS 2023) and Hough et al. (IACR CiC 2025).
The issue is that one cannot directly adapt classical proofs of shuffle
to the lattice setting due to the splitting structure of the rings used in
lattice-based cryptography. This is not just an artifact of the proof, but
a problem that manifests itself in practice, and we successfully mount an
attack against the implementation of the first of the mixnets. We fix the
problem and introduce a general approach for proving shuffles in split-
ting rings that can be of independent interest.

The efficiency improvement of our mixnet over prior work is achieved by
switching from re-encryption mixnets (as in the works of Aranha et al.
and Hough et al.) to decryption mixnets with very efficient layering based
on the hardness of the LWE and LWR problems over polynomial rings.
The ciphertexts in our scheme are smaller by approximately a factor of
10X and 2X over the aforementioned instantiations, while the linear-size
zero-knowledge proofs are smaller by a factor of 4X and 2X.

⋆ Work done while at ETH Zurich.

https://orcid.org/0000-0003-3582-3368
https://orcid.org/0009-0003-5149-264X
https://orcid.org/0009-0001-3766-2476

2 J. Bootle et al.

1 Introduction

A mixnet is a multi-party protocol that allows users to anonymously send mes-
sages. Introduced by Chaum in 1981 [19], mixnets are a fundamental building
block for applications like electronic voting [19], anonymous messaging [18, 19,
24,36,39], and electronic cash [38].

There are two main approaches for realizing mixnets. The original construc-
tion by Chaum is what we today call a decryption mixnet. Users encrypt their
messages under several layers of encryption and send the ciphertexts to the first
server in the mixnet. The mixing servers participate one after the other in a
chain-like manner. They remove one layer of encryption from every ciphertext,
change their order (or shuffle them) according to a secret permutation, and
forward them to the next server. The last server can finally publish the fully-
decrypted messages. The idea is that as long as one of the servers performs its
shuffling permutation honestly and keeps it secret, an adversary cannot trace
back which message corresponds to which user.

A drawback of Chaum’s construction is that the size of the ciphertexts grows
with the number of servers in the mixnet. This was resolved by the construc-
tion of Park, Itoh and Kurosawa [49] with their re-encryption mixnets. These
mixnets are tailored to encryption schemes that are re-randomizable, i.e., that
allow modifying the randomness of a ciphertext without changing the encrypted
message, and while only having access to the public key of the scheme. A no-
table example is the ElGamal encryption scheme [25]. In these mixnets, users
encrypt their messages under a single layer of encryption, and again send the
ciphertexts to the first mixing server. Rather than decrypting and shuffling, the
servers proceed by re-randomizing and shuffling the ciphertexts. The last server
in the mixnet finally publishes the ciphertexts, whose order looks random as long
as one of the servers keeps their shuffling permutation hidden. This mixing phase
is followed by a distributed decryption phase in order to obtain the messages in
the clear. While it avoids the ciphertext growth of the decryption mixnet, the
re-encryption mixnet requires an encryption scheme that has efficient distributed
decryption.

Besides their privacy guarantees, mixnets are usually expected to provide
verifiability, i.e., some method to verify that the mixing servers have not manip-
ulated the ciphertexts. This is crucial, for instance, in applications like electronic
voting, so as to ensure that the published votes at the end indeed correspond to
the ones the voters submitted to the mixnet. While several different techniques
have been proposed for adding verifiability to a mixnet (see [33] for an analysis
of different approaches), zero-knowledge proofs provide the strongest guarantees.
In essence, the mixing servers publish a cryptographic proof that their output
list of ciphertexts is related to the input list of ciphertexts exactly as specified
by the protocol, while not revealing any information about their secret shuffling
permutation. The core of these proofs are the so-called proofs of correct shuffle.

A proof of correct shuffle, in its most general form, demonstrates that two
lists contain the same elements without revealing the permutation that links
them. These proofs can then be tailored to a particular mixnet. For instance, in a

Efficient Verifiable Mixnets from Lattices, Revisited 3

decryption mixnet, a mixing server can prove that their output list of ciphertexts
is a permutation of the decryption of their input list of ciphertexts. Shuffling
proofs have been the focus of study of many works [1,8,29,48,50]. A particularly
efficient paradigm was introduced by Neff [48], where the lists are represented
by polynomials that have the messages as roots, and the proof comes down to
showing that two polynomials are equal. Most of these proofs of shuffle have
been tailored to ElGamal ciphertexts, mainly because of their suitability to re-
encryption mixnets.

With the aim of achieving quantum-safe mixnets, several works construct
mixnets or proofs of shuffle based on lattices. While the proof of shuffle from
Costa, Martínez and Morillo [21] is constructed for lattice ciphertexts, its sound-
ness relies on the discrete logarithm problem. The proof of Strand [53], in turn,
is tailored to fully homomorphic encryption. Boyen, Haines and Müller [16] con-
struct an efficient lattice-based decryption mixnet whose verifiability relies on
auditors (who can detect if the servers cheat a lot, but would not be able to
detect, with high probability, a server who makes a few illegal substitutions) so
as to avoid the use of zero-knowledge proofs.

Three proofs of shuffle relying on lattice-based zero-knowledge proofs are
proposed for use in re-encryption mixnets: the one by Herranz, Martínez and
Sánchez, that represent the permutation using a permutation network; and the
ones by Costa, Martínez, Morillo [22], and Aranha, Baum, Gjøsteen, Silde and
Tunge [5], that follow Neff’s polynomial approach. The proof from [22] is im-
proved and implemented by Farzaliyev, Willemson and Kaasik [26]. The work by
Aranha, Baum, Gjøsteen and Silde [4], that extends the proof of shuffle from [5],
is the first that deals with adding verifiability to the distributed decryption phase
required by re-encryption mixnets. This is also achieved in the subsequent work
of Hough, Sandsbråten and Silde [37]. However, the introduction of distributed
decryption comes at the cost of large parameters and therefore large output sizes.

1.1 Contributions

We construct a verifiable lattice-based decryption mixnet that features a low
ciphertext expansion, namely around 3KB per layer of encryption, while being
friendly to lattice-based proofs.

Proof of Shuffle. One of the core components of the verifiable mixnet is a proof
of shuffle. We start by demonstrating an attack against the soundness of the
proof of shuffle from [4], originated in [5], and also present in [37]. We then
introduce a general approach for proving shuffles in the rings used in lattice-
based cryptography (see Lemma 5).

If we have lists of elements (a1, . . . , aN) and (b1, . . . , bN), where all the ai, bi
are in some field F, then the two lists are a permutation of each other if and only
if over F[X], we have

N∏
i=1

(ai −X) =

N∏
i=1

(bi −X) .

4 J. Bootle et al.

The above implication, however, does not hold in case ai, bi are in a ring R
that is not a field, and this was the place where the error was made in [4,5,37]3. In
R = Zq[x]/(x

n+1), which is the most common ring used in lattice cryptography,
for all choices of prime q and integer n, this ring is never a field because xn + 1
always factors into at least two non-trivial polynomials over Zq[x]. When R is
not a field, one could have a1 · a2 = b1 · b2, without (a1, a2) being a permutation
of (b1, b2). In [4,5,37], the proof of shuffle is used inside a voting protocol, and we
implement an attack against the implementation in [4] showing that the shufflers
could indeed modify votes and still have the zero-knowledge proofs go through.

The idea for fixing this problem is to instead define a permutation π over
indices (1, . . . , N) and link it to the permutation over the messages in the ring.
Let (σ1, . . . , σN) be a permutation of (1, . . . , N). Then, as long as the difference
between every two elements in {1, . . . , N} is invertible, proving

N∏
i=1

(ai + i ·X1 −X2) =

N∏
i=1

(bi + σi ·X1 −X2)

overR[X1, X2] implies that (a1, . . . , aN) and (b1, . . . , bN) are related by the same
permutation.4

Having established the multiplicative relation needed to prove that one list
is a permutation of the other, we use it as follows: given a list of ciphertexts
(Enc(a1), . . . , Enc(aN)), we create a permuted list of ai, and then prove that the
permuted list and the decryption of the first list satisfy the above multiplicative
relation. The product expression is inspired by the lattice-based proof of shuffle of
Costa, Martínez and Morillo [22] adapted from Bayer-Groth’s classical proof [8],
but some of our design decisions (see Section 4.2) make the proof noticeably
more efficient.

Mixnet. To obtain an efficient decryption mixnet (we’ll use two mix servers
as a running example here), we would like to send Encpk1

(Encpk2
(m)) to the

network, then have each of the servers remove their encryption layer in turn. We
don’t want to exclusively use public key encryption, because public key lattice
ciphertexts have a fairly large expansion in practice, and this would increase the
size of the plaintext exponentially with the number of layers. Instead, a common
technique is to use a combination of symmetric encryption Sym with public key
encryption and for symmetric keys k1 and k2, send

Encpk1
(k1), Symk1

(
Encpk2

(k2), Symk2
(m)

)
. (1)

3 We were able to identify the issue in these works based on an earlier observation by
Katerina Sotiraki about how this approach fails outside unique factorization domains
[51].

4 We can use another set instead of 1, . . . , N provided that the pairwise differences
between set elements are invertible. For example, in our setting when working over
rings Zq[x]/(x

n + 1), we replace i with a polynomial whose coefficients are a binary
representation of i.

Efficient Verifiable Mixnets from Lattices, Revisited 5

Note that if the symmetric scheme does not expand its ciphertext, then the
size of the resulting mixnet ciphertexts increases only linearly in the number
of layers, because the public key encryption is never nested. In order to make
the above efficiently compatible with our lattice-based zero-knowledge proofs,
we need to have a “lattice-friendly” symmetric encryption scheme that does not
have ciphertext expansion. Our solution is to use a stream cipher based on the
hardness of the Learning with Rounding (LWR) problem. For example, if we let
k1 be a vector with small coefficients, then we can expand it into an arbitrary-
length vector by computing r = ⌈A ·k1⌋ where the number of rows of the matrix
A determines how many samples we obtain. Then (1) becomes something akin
to

Encpk1
(k1), ⌈A1 · k1⌋+

(
Encpk2

(k2), ⌈A2 · k2⌋+m
)

. (2)

Since proving correct encryption, and also rounding, can be done fairly ef-
ficiently using lattice-based proof systems (e.g. [11, 41]), the nested encryption
scheme in (2) is compatible with the rest of the lattice-based protocol. We can
further improve (2) by minimizing the size of ki that we need to encrypt. Be-
cause the public key encryption scheme is over a “large” modulus ≈ 3000 as in
Kyber [14], Encpk1

(k1) is over a ring with this modulus, and then presumably
⌈A1 · k1⌋ needs to be over the same ring because we are adding the ciphertext
to it. This would require k1 to be quite large because its dimension will need to
be large enough for LWR to be hard in a ring with modulus ≈ 3000. The way to
keep ki small is to apply the LWR assumption over a small ring (with modulus
e.g. 256) and use the result as the secret for the LWR (or LWE) assumption over
the bigger ring. This is described in more detail in Section 3.

As an example application of our decryption mixnet, we instantiate it with
parameters suitable for an electronic voting scheme (see Section 5), and compare
it to the ones from [4] and [37] 5, which used re-encryption mixnets. Because using
a decryption mixnet allows us to use a much smaller modulus for the encryption
scheme, we are able to decrease the ciphertext size by a factor of approximately
10X and 2X, if one uses linear-sized lattice-based ZK proofs, then the proof sizes
decrease by approximately a factor of 4X and 2X (see Figure 4). This shows that
unless the state of the art in distributed decryption improves substantially for
lattice-based schemes, decryption mixnets seem like the more compact option
over re-encryption mixnets.

2 Preliminaries

2.1 Notation

For a positive integer N we define [N] = {1, 2, . . . , N} and denote by PermN the
set of permutations of [N]. We define an equivalence relation ∼P such that two
lists (a1, . . . , aN) and (b1, . . . , bN) satisfy (a1, . . . , aN) ∼P (b1, . . . , bN) if, and
5 Even though those schemes are lacking soundness, as we demonstrated, we believe

that they can be fixed using our techniques and have very similar proof sizes to those
stated in the papers.

6 J. Bootle et al.

only if, they are related by a permutation, i.e., there exists π ∈ PermN such that
ai = bπ(i) for all i ∈ [N].

We use the notation a ← b to assign to a the value of b. We denote by
a

$← S the uniform sampling from a finite set S, and similarly a
$← χ to sample

according to a distribution χ. If an algorithm is deterministic, we use a← A(b) to
assign to a the result of the algorithm A on input b. For probabilistic algorithms
we use a

$← A(b) instead. We use the acronym PPT to describe a probabilistic
polynomial-time algorithm. A security parameter 1ω with ω ∈ N is implicitly
provided as input to all the algorithms in this document.

A function f : N→ R is said to be negligible if for all c ∈ N there exists ωc ∈ N
such that for all ω > ωc, we have |f(ω)| < 1

ωc . Throughout this document, when
we say that some quantity is negligible, we mean that it is a negligible function
of the implicit security parameter 1ω. In the context of probabilities, we write
a ≈ b to mean that a− b is negligible.

For all a ∈ Q, we denote by ⌊a⌋ the largest integer smaller than or equal to
a, by ⌈a⌉ the smallest integer larger than or equal to a, and by ⌈a⌋ the closest
integer to a, with ties broken up.

Ring of integers. Let Zq be the ring of integers modulo q. For all w ∈ Zq we de-
note by |w| the absolute value of w when written as an element of {− ⌊q/2⌋ , . . . , 0,
. . . , ⌈q/2⌉ − 1}. This way, we define the ℓ∞ and ℓ2 norms of a vector w ∈ ZN

q

as ∥w∥∞ := maxi∈[N] |w[i]| and ∥w∥ :=

√
|w[1]|2 + · · ·+ |w[N]|2, where w[i]

denotes the i-th element of the vector w.
Given two moduli q1, q2, we define a rounding operation from Zq1 to Zq2 that

maps w ∈ Zq1 to ⌈w⌋q1→q2
:= ⌈(w · q2)/q1⌋ mod q2.

2.2 Polynomial Rings

Notation. For a modulus q and n > 1 a power of 2, we denote by Rq the quotient
ring

Rq := Zq[x]/(x
n + 1) .

Unless otherwise stated, we will work over a prime modulus q. Elements of Rq

are denoted by plain lower-case letters, e.g. a ∈ Rq, vectors by bold lower-case
letters, e.g. a ∈ RN

q , and matrices by bold upper-case letters, e.g. A ∈ RN×M
q .

We use bracket notation to index the elements of vectors and matrices, e.g. a[i]
and A[i][j], counting from 1.

Every element of Rq can be uniquely represented as a polynomial of degree
at most n − 1 over Zq, so we define its ℓ∞ and ℓ2 norms as the norms of the
vector of coefficients. We naturally extend this to a vector w ∈ RN

q as

∥w∥∞ := max
i∈[N]

∥w[i]∥∞ , and ∥w∥ :=
√
∥w[1]∥2 + · · ·+ ∥w[N]∥2.

Given two moduli q1, q2, we define a rounding operation ⌈·⌋q1→q2
from Rq1 to

Rq2 , simply by applying the rounding operation ⌈·⌋q1→q2
from Zq1 to Zq2 to each

Efficient Verifiable Mixnets from Lattices, Revisited 7

of the coefficients. We also naturally extend this operation to vectors over the
rings, by applying the rounding to each of the ring elements.

Binary elements and binomial distribution. We introduce the following notation
for working with ring elements with binary coefficients.

– is_bin : R∗
q → {True,False}. Predicate that takes a vector over Rq and

evaluates to True if all the coefficients of all its elements are in {0, 1}, and
to False otherwise.

– int_to_bin : {0, . . . , 2n − 1} → Rq. Function that maps an integer in the
domain to the ring element whose coefficients are the binary representation
of the integer, with the least significant bit in the constant coefficient.

– ring_to_bin : RN
q × N → (RN

q)∗. Binary decomposition of (a vector of)
ring elements. For d ∈ RN

q with coefficients in [−2b−1, 2b−1) we denote by

(d(0), . . . ,d(b−1))← ring_to_bin(d, b)

the decomposition of d into b binary vectors whose coefficients are the binary
decomposition of the coefficients of d in two’s complement.

– Stack : (RN
q)b → RNb

q . Function that stacks b vectors into a vector in RNb
q .

– G
(b)
N := (IN | 2IN | 4IN | · · · | 2b−2IN | − 2b−1IN). Gadget matrix. We have

d = G
(b)
N · Stack(ring_to_bin(d, b)) .

We write G(b) for short when N can be inferred from the context.
– Bη: centered binomial distribution for some positive integer η. We first define

it over the integers as

B⋆
η :=

{
η∑

i=1

a[i]−
η∑

i=1

b[i] : a, b
$← {0, 1}η

}
.

We extend it to the ring Rq: we write w
$← Bη to denote that we are sam-

pling an element of Rq by sampling each of its coefficients independently
according to B⋆

η. We write w
$← BN

η to obtain a vector with elements sam-
pled independently according to Bη. Another way to express this works by
defining a matrix

B
(η)
N := (IN | · · · | IN︸ ︷︷ ︸

η times

| −IN | · · · | − IN︸ ︷︷ ︸
η times

) ∈ ZN×2ηN
q .

If we have a vector d† ∈ R2ηN
q with binary coefficients that have been sam-

pled independently and uniformly at random, then we can obtain a binomi-
ally distributed vector as w ← B

(η)
N d†. We write B(η) for short when the

dimension N can be inferred from the context.

8 J. Bootle et al.

General Facts. We state some results about polynomial rings that we will use
throughout this work. One core result is a corollary of the Chinese Remainder
Theorem (CRT) that allows us to see the quotient ringRq as a product of smaller
rings, as many as the number of irreducible factors of xn + 1 over Zq[x].

Fact 1. Let f(x) = f1(x)f2(x) · · · ft(x) be a decomposition into irreducible fac-
tors fi ∈ Zq[x] of a polynomial f ∈ Zq[x]. Then, we have the following ring
isomorphism

Zq[x]/(f(x)) ∼= (Zq[x]/(f1(x)))× · · · × (Zq[x]/(ft(x))) ,

where each of the factors Zq[x]/(fi(x)) is a field. In particular, the isomorphism
consists in reducing modulo each of the fi(x).

A recurrent theme will be that of obtaining invertible elements. The fol-
lowing result provides a simple and sufficient condition for a polynomial to be
invertible, namely that it has small norm. Additionally, the result gives us the
decomposition of xn + 1 in terms of the value of q.

Lemma 1 ([42, Corollary 1.2]). Let n ≥ k > 1 be powers of 2 and q = 2k+1
(mod 4k) be a prime. Then the polynomial xn + 1 factors as

xn + 1 ≡
k∏

j=1

(xn/k − rj) (mod q)

for distinct rj ∈ Z∗
q where xn/k−rj are irreducible in the ring Zq[x]. Furthermore,

any y ∈ Zq[x]/(x
n + 1) that satisfies either

0 < ∥y∥∞ <
1
√
q
· q1/k or 0 < ∥y∥ < q1/k

has an inverse in Zq[x]/(x
n + 1).

Finally, we state (a generalized version of) the Schwartz-Zippel Lemma, a
powerful tool for proving the equality of polynomials.

Lemma 2 ([22, Lemma 1]). Let p ∈ R[X1, X2, . . . , Xk] be a non-zero poly-
nomial of total degree d ≥ 0 over a commutative ring R. Let D be a finite subset
of R such that none of the differences between two elements of D is a divisor of
0 and let r1, r2, . . . , rk be selected at random independently and uniformly from
D. Then

Pr[p(r1, r2, . . . , rk) = 0] ≤ d

|D|
.

While Lemma 2 has a probabilistic formalization, it is sometimes convenient
to use a counting argument. The following lemma is also proven within the proof
in [22, Lemma 1], this time for a univariate polynomial.

Lemma 3. Let p ∈ R[X] be a non-zero polynomial of total degree d ≥ 0 over
a commutative ring R. Let D be a finite subset of R such that none of the
differences between two elements of D is a divisor of 0. Then p has at most d
roots in D.

Efficient Verifiable Mixnets from Lattices, Revisited 9

2.3 Hardness Assumptions

We state the lattice computational problems Module-Learning with Errors (MLWE),
Module-Learning with Rounding (MLWR) and Module-Short Integer Solution
(MSIS). We note that in MLWE we fix the distribution of the secrets s and e
to be the centered binomial distribution Bη, in line with Kyber [14], whereas in
MLWR we instead fix the distribution of the secret s to be binary.

Definition 1 (MLWEN,M,η). The Module-LWE problem with parameters N,M >
0 and 0 < η < q asks the adversary A to distinguish between the following two
distributions:

– D0 := {(A,As+ e) : A
$← RN×M

q ; s
$← BM

η ; e
$← BN

η }.
– D1 := {(A,u) : A

$← RN×M
q ; u

$← RN
q }.

We denote the advantage of A in solving MLWEN,M,η by

AdvMLWE
N,M,η (A) :=|Pr[b = 0 : (A, t)

$← D0; b
$← A(A, t)]

− Pr[b = 0 : (A, t)
$← D1; b

$← A(A, t)]|.

We say that MLWEN,M,η is hard if for all PPT adversaries A, the advantage
AdvMLWE

N,M,η (A) is negligible.

Definition 2 (MLWRN,M,q1,q2). The Module-LWR problem with parameters
N,M, q1, q2 > 0 asks the adversary A to distinguish between the following two
distributions:

– D0 := {(A, ⌈As⌋q1→q2
) : A

$← RN×M
q1 ; s

$← {0, 1}M}.
– D1 := {(A, ⌈u⌋q1→q2

) : A
$← RN×M

q1 ; u
$← RN

q1}.

We denote the advantage of A in solving MLWRN,M,q1,q2 by

AdvMLWR
N,M,q1,q2(A) :=|Pr[b = 0 : (A, t)

$← D0; b
$← A(A, t)]

− Pr[b = 0 : (A, t)
$← D1; b

$← A(A, t)]| .

We say that MLWRN,M,q1,q2 is hard if for all PPT adversaries A, the ad-
vantage AdvMLWR

N,M,q1,q2(A) is negligible.

Definition 3 (MSISN,M,B). The Module-SIS problem with parameters N,M >

0 and 0 < B < q asks to find, given A
$← RN×M

q , a vector z ∈ RM
q such that

0 < ∥z∥ ≤ B and Az = 0. We denote the advantage of an algorithm A in solving
MSISN,M,B by

AdvMSIS
N,M,B(A) = Pr[0 < ∥z∥ ≤ B ∧Az = 0 : A

$← RN×M
q ; z

$← A(A)] .

We say that MSISN,M,B is hard if for all PPT adversaries A, the advantage
AdvMSIS

N,M,B(A) is negligible.

10 J. Bootle et al.

2.4 MLWE Encryption

We describe a PKE scheme MLPKE based on the hardness of the MLWE problem
stated in Section 2.3. We follow the presentation of the PKE that underlies
Kyber [14].

– MLPKE.KGen(): output the key-pair sk← s, pk← (A, t = As+ e1), where
A

$← RkLWE×kLWE
q and s, e1

$← BkLWE
η .

– MLPKE.Encpk(m): take a message m ∈ Rq with binary coefficients. Sample
r, e2

$← BkLWE
η and e3

$← Bη, and output the ciphertext

c← (uT = rTA+ eT2 , v = rT t+ e3 +
⌈q
2

⌋
m) .

– MLPKE.Decsk(c): compute the ring element m̃ = v − uT s. Each coefficient
of the plaintext m ∈ Rq is set to 0 or to 1 by checking whether the corre-
sponding coefficient in m̃ is closer to 0 or to q/2.

If the parameters are set so that 2kLWEη
2+η < q/4, the decryption procedure

will indeed return the correct plaintext. In some settings it might be fine just to
have approximate correctness. In that case, one can set the parameters so that
the failure probability is as low as desired (see, e.g., [40, Section 2.3.2]).

As previously stated, the security of the scheme can be reduced to the MLWE
problem. For a proof see, e.g., [40, Section 2.3.1].

Theorem 1. If the problem MLWEkLWE,kLWE,η is hard, then the scheme MLPKE
is IND-CPA secure.

While we have only defined the scheme MLPKE for messages that are a
single ring element, we extend it to support vectors of ring elements, simply by
computing a separate ciphertext for each of the elements in the vector.

2.5 Ajtai Commitments

We describe a commitment scheme Com⋆ = (Setup⋆,Commit⋆,Verify⋆) based on
the hardness of the MSIS and MLWE problems stated in Section 2.5. It is a
version of the original construction implicitly introduced by Ajtai in [3].

– Setup⋆(): choose parameters: MSIS rank kSIS, message length L, and bino-
mial parameter η. Set B :=

√
nL+ n2kSISη2. The message space, random-

ness space, commitment space and randomness distribution are defined as:

SM := {m ∈ RL
q : is_bin(m)}, SR := {r ∈ R2kSIS

q : ∥r∥∞ ≤ η} ,

SC := RkSIS
q , χ := B2kSIS

η .

Additionally, sample matrices A1
$← RkSIS×L

q and A2
$← RkSIS×2kSIS

q . The
public parameters are set to be:

pp := (kSIS, L, η,B,A1,A2) .

Efficient Verifiable Mixnets from Lattices, Revisited 11

– Commit⋆(m; r): sample r
$← B2kSIS

η and output the commitment

c← A1m+A2r .

– Verify⋆(c,m, r) : check that∥∥∥∥(mr
)∥∥∥∥ ≤ B ∧ c = A1m+A2r .

If the checks succeed, output 1; otherwise output 0.

Note that we have parametrized the scheme Com⋆ in terms of the length
of the messages to be committed. If one wants to have a single instantiation
of Com⋆ for messages of different lengths, it is enough to instantiate it for the
maximum length needed and then pad the other messages with zeros.

The analysis of the correctness, binding and hiding properties of the scheme
Com⋆ can be found in Appendix B.

2.6 Mixnets

The two main realizations of mixnets are decryption and re-encryption mixnets.
In this paper, we only work with decryption mixnets.

Decryption mixnets. The original mixnet introduced by Chaum in 1981 [19] is
what we today call a decryption mixnet. Let PKE = (KGen,Enc,Dec) be a public-
key encryption scheme such that the ciphertexts are part of the message space,
i.e., C ⊆ M. A decryption mixnet is composed of ρ mixing servers with public
keys pk1, . . . , pkρ ∈ PK. There are N users that submit their encrypted messages
to the mixnet. In particular, the i-th user performs a layered encryption of their
message mi ∈M of the form

ci,1 := Encpk1(Encpk2(· · · (Encpkρ(mi)))) .

If we denote ci,ρ+1 := mi, then the ciphertexts can also be recursively defined as
ci,j := Encpkj (ci,j+1) for all j ∈ [ρ]. The procedure of the mixnet is as follows. All
the users submit their outermost ciphertexts ci,1 to the first server in the mixnet.
The servers take part in the process one after the other in a chain-like manner.
The j-th server takes each ciphertext ci,j and decrypts it. This is done for every
user, hence obtaining the list of ciphertexts (c1,j+1, . . . , cN,j+1). Next, the server
shuffles this list according to a freshly sampled permutation and forwards it to
the (j + 1)-th server. In the end, the last server obtains the decrypted messages
and publishes them once shuffled. The idea is that, as long as one of the shuffling
permutations is kept secret, it is not possible to link the published messages to
the ciphertexts that were initially submitted by the users.

12 J. Bootle et al.

Verifiability. As described so far, plain mixnets do not provide all the guarantees
that one would expect for many applications. For instance, a mixing server could
simply replace one of the ciphertexts in the mixnet by another of their choice.
In the context of e-voting, this would translate to replacing votes. This is the
reason why mixnets are upgraded to have verifiability, i.e., some mechanism
by which they can ensure that all the servers have behaved according to the
specified protocol. Several approaches have been studied to add verifiability to
a mixnet. Haines and Müller [33] conduct a detailed comparison of several such
techniques, identifying aspects like their trust assumptions, verifiability levels or
cryptographic primitives that they rely on.

Some of these techniques offer a relaxed verifiability, where some (small
amount) of manipulations might go undetected. For instance, the lattice-based
decryption mixnet of Boyen, Haines and Müller [16] involves external auditors
who inject some dummy messages into the mixnet and check that the mixing
servers have not manipulated them. The idea is that if a mixing server wants
to manipulate some ciphertexts and happens to choose one from the auditors,
then this action will be detected. Allowing for certain amount of manipulations,
these techniques are typically quite efficient.

Instead, we are interested in the mixnets that achieve verifiability through
Zero-Knowledge Proofs (ZKPs), as they provide the strongest guarantees. In
these, all the servers provide a cryptographic proof that they have indeed pro-
ceeded according to the specified protocol. These mixnets offer perfect verifia-
bility, up to the negligible soundness error of the ZKPs. The core component
of these proofs is the proof of correct shuffle. Essentially, the servers need to
prove that their input and output lists of ciphertexts are indeed connected by
a permutation, while keeping this permutation private. In particular, in decryp-
tion mixnets, the mixing servers need to prove that the output ciphertexts are
a permutation of the decryption of the input ciphertexts.

2.7 Related Work

The first proof of correct shuffle was proposed by Sako and Kilian in 1995 [50].
Since then, many proofs of shuffle have been developed, mostly with the aim of
achieving verifiability for mixnets. They can be grouped in terms of the way in
which they represent the secret permutation.

Abe and Hoshino constructed a proof of shuffle [1, 2] representing the per-
mutation using a Beneš network. A Beneš network is composed of gates that
take two inputs and either leave them in the same order or swap them. Any
permutation can be represented using such a network, with the number of gates
in the network being in the order of N logN gates for permuting N elements.
The proof of shuffle works by proving knowledge of the configuration of the gates
that results in the correct secret permutation. More recently, Herranz, Martínez
and Sánchez [35] followed this paradigm to obtain a lattice-based proof of shuffle,
proving the network via the proof of circuit satisfiability from [7].

Another approach was proposed by Furukawa and Sako [29], representing
the permutation using matrices. In particular, any permutation on N elements

Efficient Verifiable Mixnets from Lattices, Revisited 13

can be represented by an N ×N binary matrix with exactly one 1 in each row
and column. For a proof of shuffle, one can commit to the matrix, prove that
it is of the right form, and prove that the output vector is indeed obtained by
multiplying the input vector by the matrix. This approach was subsequently
improved [28, 32, 54, 55]. In 2017, Costa, Martínez and Morillo [21] applied this
technique to a lattice-based encryption scheme, but using commitments whose
binding property relies on the discrete logarithm problem.

Lastly, another classical and generally more efficient approach for proving a
shuffle is due to Neff [48]. It relies on the invariance of polynomials under the
permutation of their roots: two polynomials can be defined, each having as roots
the messages of each of the lists; the proof consists in proving that those two
polynomials are equal. Several works improved on this approach [30, 31], most
notably the efficient proof of shuffle from Bayer and Groth [8]. This approach
generally leads to more efficient constructions, mainly because of the complexity
of the instance size: compare the degree N polynomials to the N logN gates or
the N ×N matrices. One caveat is that, while the elements of the permutation
matrices and the gates are binary, and therefore short and easy to commit to
using lattice-based schemes, the coefficients of the polynomials might be larger.

Several lattice-based proofs of shuffle have been proposed in recent years
following Neff’s paradigm [48]. Strand [53] constructs a shuffling proof tailored
to a fully homomorphic encryption scheme. Costa, Martínez and Morillo [22]
adapt the proof of shuffle from [8]. This proof is subsequently improved and im-
plemented by Farzaliyev, Willemson and Kaasik [26]. In turn, Aranha, Baum,
Gjøsteen, Silde and Tunge [5] construct a proof of shuffle with techniques based
on the original [48]. This proof is extended by Aranha, Baum, Gjøsteen and
Silde [4], who also introduce a proof of correct distributed decryption for BGV
ciphertexts [17], hence obtaining a verifiable re-encryption mixnet that also deals
with the final decryption of the messages. The more recent re-encryption mixnet
by Hough, Sandsbråten and Silde [37], while also relying on the proof of shuf-
fle from [5], improves on [4] by switching to the single-element NTRU cipher-
texts [52] with optimized parameters, and by proving a tighter bound on the
drowning noise required for distributed decryption. It is that distributed de-
cryption, however, that imposes the use of large parameters on [4,37], ultimately
worsening the efficiency of their constructions.

3 A decryption mixnet from lattices

3.1 Large lattice parameters in re-encryption mixnets

Re-encryption mixnets re-randomize and shuffle the ciphertexts so that it is not
possible to link the output ciphertexts to the input ones. A subsequent dis-
tributed decryption phase is needed to recover the original messages. In lattice-
based schemes, however, distributed decryption generally requires large param-
eters, hence it negates the benefits of having no ciphertext expansion in re-
encryption mixnets, and also leads to less efficient proofs.

14 J. Bootle et al.

Distributed decryption requires large parameters. Given a ciphertext (u, v) and
a secret key s, standard decryption proceeds by computing v − ⟨u, s⟩ and then
rounding the noise away to obtain the plaintext.6 If the secret key is shared addi-
tively as s =

∑
i si, each party with a share si can compute a partial result ⟨u, si⟩.

Combining all these partial results, the value ⟨u, s⟩ can be recovered, hence de-
cryption can be completed in a distributed way. However, the value ⟨u, si⟩ leaks
information about the secret share si, so instead of publishing it directly, each
party publishes a noisy version ⟨u, si⟩ + ẽ. When combining the partial results,
a noisy version of ⟨u, s⟩ will now be recovered, but the parameters of the scheme
can be adjusted (enlarged) so that the rounding in decryption will successfully
return the original plaintext. This technique for securing distributed decryption,
known as “noise flooding”, “noise drowning” or the addition of “smudging noise”,
was introduced in [9], with a noise ẽ that is exponentially large in the security
parameter, hence also requiring an exponentially large modulus.

Recent works propose ways to construct lattice-based schemes that feature
distributed decryption with a polynomial modulus [15, 20, 44]. One of the main
insights from [44] is that, instead of considering fixed ciphertext noise, the dis-
tribution of the ciphertext noise can be taken into account when choosing the
distribution of the smudging noise. Hence, their approach relies on the cipher-
texts being fresh encryptions with noise from the specified distribution. In re-
encryption mixnets, however, several mixing servers add encryptions of 0 to the
users’ ciphertexts. Although the servers prove that the randomness they are
adding is small, it could still potentially come from a different distribution. For
this reason, we believe that the approach of [44] is not directly applicable to the
mixnet setting. As for [15,20], they construct FHE schemes that can perform dis-
tributed decryption with a polynomial modulus. They do so by following a Rényi
divergence analysis to prove that polynomial-size smudging noise is sufficient to
achieve game-based security for distributed decryption. It would be interesting
to investigate whether any of these techniques can be used to construct verifiable
schemes suitable for re-encryption mixnets.

Impact on ciphertext size. The main motivation for the introduction of re-
encryption mixnets in [49] is to avoid the ciphertext length expansion of de-
cryption mixnets. In the discrete logarithm setting, re-encryption mixnets in-
deed have smaller ciphertexts and better overall efficiency. We argue that this
is not necessarily the case in the lattice setting, because of the large parameters
imposed by distributed decryption. As an example, we look at the lattice-based
re-encryption mixnet from [4]. Their application of the noise flooding techinque
for distributed decryption leads them to use a large modulus q ≈ 278, as well as
polynomials of large degree n = 4096. Their BGV ciphertexts [17] are composed
of two such polynomials, hence have a size of 2n log2 q ≈ 80KB. Another exam-
ple is the re-encryption mixnet from [37], that also relies on noise flooding, but
improves on [4] by switching to smaller NTRU ciphertexts [52] with a smaller

6 We use the MLWE encryption scheme from Section 2.4 as a running example, but
similar ideas apply to the BGV [17] and NTRU [52] ciphertexts used in [4, 37].

Efficient Verifiable Mixnets from Lattices, Revisited 15

modulus q ≈ 259, resulting in ciphertexts of 15KB. In turn, in Section 3.2 we
construct a decryption mixnet that features ciphertexts of smaller size than those
of [4, 37], even when accounting for several layers of encryption. In particular,
each layer of encryption results in approximately 3KB (see Section 5). We do so
while preserving the zero-knowledge friendliness of the mixnet, so that it can be
made verifiable with efficient lattice-based proofs.

Impact on proof efficiency. When adding verifiability to a mixnet via zero-
knowledge proofs, the efficiency of these proofs—measured in terms of proof
size, and prover and verifier complexity—plays a crucial role in the overall ef-
ficiency of the mixnet. The smaller moduli of decryption mixnets allows us to
add verifiability at a lower cost (see Section 5).

3.2 Our decryption mixnet

In a decryption mixnet with ρ mixing servers, each user encrypts their message
mi in a layered way as

ci,1
$← Encpk1(Encpk2(· · · (Encpkρ(mi))))

or, equivalently, ci,j
$← Encpkj (ci,j+1) for all j ∈ [ρ], where ci,ρ+1 := mi. The

servers participate one after the other removing one layer of encryption and
shuffling the ciphertexts, so the last server finally publishes the shuffled messages.

The mixnet gets determined by a concrete instantiation of public-key encryp-
tion scheme PKE = (KGen,Enc,Dec). Since the ciphertext length increases with
the number of layers, low ciphertext length expansion is desirable. A common
solution [23] is to use a hybrid scheme where a short secret is encrypted under
a standard PKE scheme (e.g. lattice-based) and the plaintext is encrypted un-
der a one-time SE scheme that uses the secret as key. Note that, instead of the
PKE scheme, one could directly use a Key Encapsulation Mechanism (KEM)
that generates and encapsulates the secret to be used as key. The decryption
mixnet of [16] follows this approach, combining a lattice-based KEM with a SE
scheme based on AES. Since we want to rely on zero-knowledge proofs to make
the mixnet verifiable, we need to replace AES with a one-time SE scheme that
is friendlier to lattice proof systems.

With that in mind, we construct a lattice-based one-time SE scheme OTSE
and combine it with the PKE scheme MLPKE from Section 2.4 to obtain a hybrid
PKE scheme HPKE, described in Figure 1.

The one-time symmetric scheme OTSE, described in Figure 2, is defined over
the following key, message and ciphertext space:

K = {s̄ ∈ RkLWR
q | is_bin(̄s)} and M = C = RL

q ,

where kLWR, L ≥ 1. The scheme OTSE is also parametrized in terms of the
binomial parameter η and on the following two matrices:

H
$← R(kLWE+L)×kLWR

2ζ
and H′ = (H′′ | IL) ∈ RL×(kLWE+L)

q ,

16 J. Bootle et al.

HPKE.KGen()

01 (sk, pk)
$← MLPKE.KGen()

02 Return (sk, pk)

HPKE.Encpk(m)

03 s̄
$← OTSE.KGen()

04 c′
$← MLPKE.Encpk(̄s)

05 c⋆ ← OTSE.Encs̄(m)
06 Return (c′, c⋆)

HPKE.Decsk((c
′, c⋆))

07 s̄← MLPKE.Decsk(c
′)

08 m← OTSE.Decs̄(c
⋆)

09 Return m

Fig. 1. Description of the PKE scheme HPKE. The scheme MLPKE is the MLWE-based
PKE scheme from Section 2.4, and the scheme OTSE is described in Figure 2.

OTSE.KGen()

01 s̄
$← {0, 1}kLWR

02 Return s̄

OTSE.Encs̄(m)
03 d← ⌈Hs̄⌋2ζ→22η

04 (d(0), . . . ,d(2η−1))← ring_to_bin(d, 2η)
05 d† ← Stack(d(0), . . . ,d(2η−1))
06 a← H′B(η)d†

07 c⋆ ← m+ a
08 Return c⋆

OTSE.Decs̄(c
⋆)

09 d← ⌈Hs̄⌋2ζ→22η

10 (d(0), . . . ,d(2η−1))← ring_to_bin(d, 2η)
11 d† ← Stack(d(0), . . . ,d(2η−1))
12 a← H′B(η)d†

13 m← c⋆ − a
14 Return m

Fig. 2. Description of the one-time SE scheme OTSE. The functions ring_to_bin and
Stack are defined in Section 2.2, as well as the binomial matrix B(η). The matrices H
and H′ are public parameters of the scheme.

where ζ > 2η, kLWE ≥ 1 and H′′ $← RL×kLWE
q .

The intuition for the construction of OTSE is to expand a random seed s̄ into a
one-time pad a that masks the message. The first half of the expansion consists
in generating a uniformly random vector of binary elements d† based on the
MLWR assumption. Multiplying by the binomial matrix B(η) turns this vector

Efficient Verifiable Mixnets from Lattices, Revisited 17

into a binomially distributed one, that is finally used to compute a uniformly
distributed vector a over Rq based on the MLWE assumption.

3.3 Verifiability

We extend our mixnet with zero-knowledge proofs to achieve verifiability. This
way, at any point after the output of the mixnet is published, anyone can check
that the output messages are indeed the same as the ones in the ciphertexts
submitted to the mixnet. We do this by having a public board where

– each user publishes their ciphertext along with a proof of correct encryption,
i.e., a proof of knowledge of a plaintext such that the ciphertext is a correct
layered encryption of it, and

– each server publishes their output list of ciphertexts, along with a proof of
correct decryption of the input ciphertexts and a proof that the output is
indeed related to the decrypted input by a permutation.

Servers take their input list of ciphertexts from the published output of the
previous server (or from the users in the case of the first server). In order to
ensure that servers do not try to decrypt malformed ciphertexts, they will check
that all the users’ and previous servers’ proofs indeed verify correctly before
starting the decryption procedure.

The proofs of correct encryption/decryption are specific to our construction
and will be covered in this section. We present the proof of correct shuffling
separately Section 4, as we believe it will find other applications.

Proof of correct decryption. Each mixing server needs to prove that it decrypted
all of its input ciphertexts correctly. As a preliminary step, this requires a proof
of knowledge of the secret key s ∈ RkLWE

q related to the public key pk = (A, t) ∈
RkLWE×kLWE

q ×RkLWE
q . The main relation to prove is

As+ e = t mod q ,

where e ∈ RkLWE
q is the secret error used to construct t. Additionally, we need

to ensure that the entries of vectors s and e are ring elements with small coef-
ficients, by proving that their ℓ2 norm is not too large. Aside from the proof of
knowledge of the secret key, the server needs to prove the correct decryption of
each user’s ciphertexts according to HPKE. In fact, it is enough for the server to
prove, starting from the ciphertexts (c′i, c

⋆
i), the correct decryption of the seed

s̄i contained in c′i, and its expansion into the value d†
i from OTSE. The correct

expansion of d†
i into the pad ai that masks the plaintext is implicitly proven in

the proof of shuffle from Section 4.4. Since each seed s̄i is made of kLWR ring
elements, we consider c′i to be a list of kLWR ciphertexts (c′i,1, . . . , c

′
i,kLWR

).
Given the ciphertexts (c′i,1, . . . , c′i,kLWR

) = MLPKE.Encpk(̄si), the server needs
to prove the correctness of:

18 J. Bootle et al.

1. Decryption of the seed s̄i ∈ RkLWR
q . Denoting the secret decryption errors by

e′i,1, . . . , e
′
i,kLWR

, the relations to prove are

e′i,j = c′i,j
T

(
−s
1

)
−

⌈q
2

⌋
s̄i[j] mod q,

∥∥e′i,j∥∥∞ < q/4

for j ∈ [kLWR].
2. Computation of di ← ⌈Hs̄i⌋2ζ→22η . This can be proven by showing that

2ζ−2ηdi + ri = Hs̄i mod 2ζ , (3)

where ri is the rounding error. Additionally, we need to bound the coefficients
of this error to ensure that they are in the range [− 2ζ

2·22η ,
2ζ

2·22η). For this, the
server can prove that they can be written in ζ − 2η bits.

3. Binary decomposition of di, that is, di = G(2η)d†
i , and is_bin(d†

i).

Instead of committing to elements that will be binary decomposed, we can
optimize the proof by only committing to their binary decomposition and sub-
stituting it in the relations where those elements appear. This way, the binary
decompositions are implicitly proven.

We now make the private elements that need to be committed explicit, along
with the norm bounds/binary constraints that we need to prove about them:

– s, e ∈ RkLWE
q : secret and error such that As+ e = t mod q, where (A, t) is

the public key of the server. They must satisfy ∥s∥ ≤ δ and ∥e∥ ≤ δ, where
δ depends on the binomial parameter η from MLPKE.

– s̄i ∈ RkLWR
q for all i ∈ [N]: seed made of kLWR binary ring elements.

– e′i,j ∈ Rq for all i ∈ [N], j ∈ [kLWR]: decryption errors for the seed cipher-
texts. They must satisfy

∥∥e′i,j∥∥∞ < q/4.

– d†
i ∈ R

2η(kLWE+L)
q for all i ∈ [N]: binary decomposition of di, i.e., G(2η)d†

i =
⌈Hs̄i⌋22η .

– r†i ∈ R
(ζ−2η)(kLWE+L)
q for all i ∈ [N]: binary decomposition of the rounding

error, i.e., G(ζ−2η)r†i = ri.

The relations that the mixing server needs to prove are:

1. Knowledge of the secret key associated to the public key (A, t):

As+ e = t mod q .

2. Decryption of the seed s̄i for all i ∈ [N]:

e′i,j = c′i,j
T

(
−s
1

)
−
⌈q
2

⌋
s̄i[j] mod q ∀j ∈ [kLWR] .

3. Correct rounding of Hs̄i for all i ∈ [N]:

2ζ−2ηG(2η)d†
i +G(ζ−2η)r†i = Hs̄i mod 2ζ .

Efficient Verifiable Mixnets from Lattices, Revisited 19

Proof of correct encryption. Each user needs to prove knowledge of a message mi

such that the outermost ciphertext ci,1 that they submit to the mixnet is indeed
a correct layered encryption of it. In particular, they need to prove the correct
encryption of ρ seeds under MLPKE, and the correct encryption of the messages
under OTSE using the seeds as keys. The proofs of correct encryption of the
seeds consist of simple linear proofs (the computation of the (u, v) ciphertext
components). As for the encryption under OTSE, it involves a proof of correct
rounding exactly the same as the one in the decryption proof described above,
plus the additional relation:

c⋆ = m+H′B(η)d† mod q .

3.4 Security

The mixnet users perform a layered encryption of their messages under the
PKE scheme HPKE. We can show that HPKE is IND-CPA secure based on
lattice hardness assumptions. The idea of the proof is as follows. Recall that
HPKE is constructed as a hybrid scheme combining the PKE scheme MLPKE
from Section 2.4 (used as a KEM), and the one-time SE scheme OTSE from
Section 3. According to the standard KEM/DEM composition theorem (see,
e.g., [34, Theorem 3.1]), it suffices to prove that MLPKE is IND-CPA secure,
which is exactly Theorem 1, and that OTSE is IND-OT, which follows from the
MLWR and MLWE assumptions.

Theorem 2. If MLWRkLWE+L,kLWR,2ζ ,22η and MLWEL,kLWE,η are hard, then
OTSE is IND-OT secure. In particular, given a PPT adversary A against the
IND-OT security of OTSE, we construct PPT algorithms B1 and B2 such that

AdvIND-OT
OTSE (A) ≤ 2

(
AdvMLWR

kLWE+L,kLWR,2ζ ,22η (B1) + AdvMLWE
L,kLWE,η(B2)

)
.

The proof of Theorem 2 is given in Appendix C.
Strictly speaking, OTSE is a family of one-time SE schemes parametrized by

the public matrices H and H′. We prove OTSE secure based on the fact that H
and H′ were randomly sampled.

We also discuss the possibility of security beyond IND-CPA for HPKE, in
particular, security in the presence of a decryption oracle (IND-CCA). Mixnet
users produce proofs of plaintext knowledge with their ciphertexts. Following the
Naor-Yung paradigm [45], we can achieve IND-CCA security by attaching a sec-
ond encryption of the plaintext under a different public key, along with a second
proof of plaintext knowledge (proving the plaintext is the same as for the other
encryption), effectively doubling the size of the ciphertext. As an optimization,
it would be interesting to analyze whether the shared randomness technique
from [12] is applicable in this case. This technique would allow reuse of the seed
from OTSE in the symmetric part of the encryption, so only the encryption of
the seed with its corresponding proof would actually need to be duplicated. In
this case, IND-CCA security could be achieved without a significant overhead in
the ciphertext size.

20 J. Bootle et al.

In this work we focus on the IND-CPA security, since our mixnet is a replace-
ment for re-encryption mixnets with re-randomizable PKEs that are IND-CPA
but not IND-CCA secure.

4 Lattice-Based Proof of Shuffle

4.1 The Issue with Non-Unique Factorization

In this section, we discuss Neff’s approach to proving that two lists of messages
have been shuffled [48], and explain why a direct adaptation of this approach
to the lattice setting (such as in [4, 5, 37]) does not work and leads to practical
attacks.

The idea of Neff’s approach is to construct two polynomial products that
have the messages as roots, and then prove the equality of the polynomials. The
unique factorization of such polynomials over fields implies that the messages are
related by a permutation. The essence of the approach is contained in Lemma 4.

Lemma 4. Let F be a field and N ∈ N. Let (a1, . . . , aN), (b1, . . . , bN) ∈ FN . If

N∏
i=1

(ai −X) =

N∏
i=1

(bi −X) (4)

over F[X], then (a1, . . . , aN) ∼P (b1, . . . , bN).

Proof. The field F is a unique factorization domain, hence so is the polynomial
ring F[X]. Therefore, given two decompositions of a polynomial over F[X] into
irreducible factors, the factors must be the same up to order and multiplication
by units. Since all the factors have the same leading coefficient, those units are
the identity. ⊓⊔

Several works on proofs of shuffle use variants of this approach, most notably
Bayer and Groth [8]. With the transition to quantum-safe cryptography, it is
natural to try to adapt this strategy to lattice-based proofs. The proof of [5],
adapted in [4, 37], directly adopted Neff’s approach in the lattice setting. They
implicitly rely on Lemma 4, but in the quotient rings from lattices instead of
in finite fields. In particular, they work over a ring of the form Zq[x]/(x

n + 1),
where q is chosen so that the ring splits into t factors for t > 1. This means
that the ring does not have unique factorization and that Lemma 4 does not
actually hold, leading to an attack on the soundness of the proof of shuffle used
in [4, 5, 37].

In order to introduce the attack, it is helpful to understand the gap between
the permutation result proven in Lemma 4 and what we can actually prove over
the splitting ring used in [4,5,37]. Fact 1 implies that their ring is isomorphic to
the cartesian product of t fields, i.e., we can see each ring element as a tuple of
t CRT components of field elements. Hence, we can apply Lemma 4 separately
over each of those fields to obtain t permutations that relate the lists over each

Efficient Verifiable Mixnets from Lattices, Revisited 21

of the CRT components. The issue is, however, that those permutations might
not be the same across the different components. In that case, the lists will not
actually be related by a permutation when seen over the full ring.

The attack is then straight-forward. We want to construct two lists of mes-
sages that are not related by a permutation, but for which the product from
Equation (4) holds. We start with any two ring elements that are different in
the first and second CRT components. We then create two new messages by
swapping the values of the first CRT component of the original elements. These
messages will be different from the original ones, but the polynomial product will
still be the same. This means that the shuffling proofs from [4,5,37] will verify for
these pairs of messages, even though they are not permuted. We have successfully
tested the attack against the implementation of the shuffling proof from [4], and
can be accessed in github.com/amerigal/shuffle-attack. While this shows that
their proof of shuffle is unsound, it is also important to analyze the impact of
the attack in the context of the e-voting protocol where the proof is embedded.
In [4], the proof of shuffle is performed by the mixing servers of a re-encryption
mixnet to show that they have correctly shuffled and re-randomized the cipher-
texts that encrypt the votes. Following the presented attack, a malicious server
can choose some ciphertexts, permute them in some CRT components, and still
provide a valid proof of shuffling.

What can a server achieve by permuting ciphertexts in some CRT compo-
nents? It is not clear how they could leverage this to transform an encrypted vote
into another vote of their choice. In any case, they certainly have the ability to
invalidate votes in an undetectable way. Note that the encryption schemes used
in these re-encryption mixnets do not have integrity protection, as they need
to allow for re-randomization. Hence the targeted ciphertexts with the modified
CRT components will still be valid ciphertexts; they will just decrypt to some
unpredictable sequence of bits. Depending on how the votes are encoded, they
might turn out to be other (random) votes, or invalid votes. This is specially
concerning when the first mixing server is malicious, as they know the identity
of the voter associated to each ciphertext.

4.2 Fixing the Shuffle

Neff’s approach [48] does not work in the lattice setting, which uses rings without
unique factorization. A natural solution would be to work instead over finite
fields, e.g. by focusing on lattice cryptography over quotient rings that do not
split, as is the case with NTRU Prime [10]. However, the most common choice
of ring in lattice cryptography is Zq[x]/(x

n + 1) for an odd prime q and n > 2
a power of 2, used e.g., in the standardized ML-KEM [47] and ML-DSA [46].
This ring is never a field because xn + 1 factors for all choices of odd prime q
(see [40, Lemma 8]).

Therefore, to build shuffle proofs that work well with standardized schemes,
we modify the product used in Neff’s approach, generalizing and improving ideas
from the work of Costa, Martínez and Morillo [22].

https://github.com/amerigal/shuffle-attack

22 J. Bootle et al.

In the ring setting, the standard product equality from Lemma 4 only implies
that the messages are permuted within each of the fields in which the ring splits,
but not necessarily according to the same permutation. To fix this, we add more
terms to the factors of the product to ensure the consistency of the permutation,
and analyze the new polynomial expression in Lemma 5, which works over any
ring which factors into integral domains, and in particular, over Rq and the
quotient rings used in lattice-based cryptography.

Lemma 5. Let R := R1 × · · · × Rt be a product of integral domains Ri. Let
N ∈ N. Let D ⊆ R and an injective map g : [N]→ D such that u−v is invertible
for all distinct u, v ∈ D. Let (a1, . . . , aN), (b1, . . . , bN) ∈ RN . If

N∏
i=1

(ai + g(i) ·X1 −X2) =

N∏
i=1

(bi + σi ·X1 −X2) (5)

over R[X1, X2], where σi ∈ D for all i ∈ [N], then

(a1, . . . , aN) ∼P (b1, . . . , bN) .

In particular, it follows that σi = g(π(i)) where π ∈ PermN is a permutation
such that bi = aπ(i) for all i ∈ [N].

Proof. Let j ∈ [N]. Looking at the products of Equation (5) as polynomials
in X2, the term (aj + g(j) · X1) ∈ R[X1] is a root of the left hand side over
R[X1][X2], so it also has to be a root of the right hand side. Therefore,

N∏
i=1

(bi + σi ·X1 − aj − g(j) ·X1) = 0

or, equivalently,
N∏
i=1

((σi − g(j)) ·X1 + (bi − aj)) = 0 .

Let ℓ ∈ [t]. Since the factor Rℓ is an integral domain, so is the polynomial ring
Rℓ[X1]. Hence, there exists ij,ℓ ∈ [N] such that

(σij,ℓ − g(j)) ·X1 + (bij,ℓ − aj) = 0

over Rℓ[X1], i.e., when looking at the ℓ-th component of the ring element. There-
fore, σij,ℓ = g(j) and bij,ℓ = aj over Rℓ.

The map j → ij,ℓ is the permutation that relates the lists. We need to argue
that the map is well defined, i.e., that ij,ℓ does not depend on ℓ, and that it is
indeed a permutation.

We claim that the equality σij,ℓ = g(j) holds not only over Rℓ, but also over
the full ringR. Otherwise, σij,ℓ−g(j) would be a zero divisor, as it would have a 0
in the ℓ-th component, but would not be 0 over R. However, since σij,ℓ , g(j) ∈ D,
their difference would have to be invertible, leading to a contradiction. Therefore,

Efficient Verifiable Mixnets from Lattices, Revisited 23

σij,ℓ = g(j) over the ring R. Since this is true for all ℓ ∈ [t] and j ∈ [N] and g is
injective, we have ij,1 = ij,2 = · · · = ij,t for all j ∈ [N].

Denoting ij := ij,1, we have obtained that σij = g(j) and bij = aj for all
j ∈ [N]. The injectivity of g implies that the ij are distinct. Hence, the mapping
j → ij is indeed the permutation that we were looking for. ⊓⊔

Lemma 5 is inspired by the product expression from the lattice-based proof
of shuffle of Costa, Martínez and Morillo [22] adapted from Bayer-Groth’s classi-
cal proof [8]. Their product can be seen as an instantiation of Lemma 5. In [22],
it is correctly analyzed that, despite the non-unique factorization of their ring,
the product from [8] still implies that the lists of messages have been correctly
permuted. It is worth noting that [22], following [8], uses the product to prove
the permutation of some auxiliary values and then uses those to prove the per-
mutation of the messages. It is actually not necessary to perform both of these
two steps in the lattice setting, and we instead use the product to prove the
permutation of the messages directly.

Another advantage of Lemma 5 over the proof from [22] is that the lemma
captures the properties that the product needs to satisfy to ensure the permu-
tation, hence allowing for different and more suitable choices of terms that still
satisfy the properties. For instance, the product from [22] is an instantiation of
Lemma 5 where R = Rq, D is the set of ring elements with degree 0 and the
function g maps each integer to the ring element with that value as constant
coefficient. This choice not only limits the number of messages to the size of the
modulus (which we typically want to be small for efficiency), but also involves
proving that certain ring elements have degree 0 (for the prover to show that
the additional elements are in D). In our proof of shuffle, we instead choose D
to be the set of polynomials with binary coefficients and g mapping each integer
to the polynomial whose coefficients are the binary representation of the integer.
This choice allows for 2n messages, and we set n = 256 as done, e.g., in ML-
KEM [47]. Additionally, we can use efficient lattice-based proofs to show that
the ring elements have binary coefficients.

Working with small messages. The simpler product from Lemma 4 can actually
be used in the lattice setting in the special case that the pairwise differences
between messages are invertible. This holds for messages with small norm, as
their differences also have small norm and Lemma 1 implies that they are in-
vertible. This approach is not suitable for verifiable mixnets, as their proofs of
shuffle are meant to prove the permutation of ciphertexts, that can be arbitrary
ring elements. In any case, as it might be useful for other protocols, we state the
corresponding lemma and its proof in Appendix D.

4.3 How to Prove the Product

Proving that a list of messages has been permuted can be reduced to proving an
equality of polynomial products over the ring, e.g., applying Lemma 5. We now
explain how we prove the equality of such polynomial products.

24 J. Bootle et al.

Using the Schwartz-Zippel lemma, it suffices to prove the equation on a
random evaluation point chosen by the verifier. This converts an equality of
products of polynomials of ring elements into an equality of products of ring
elements:

N∏
i=1

āi =

N∏
i=1

b̄i , (6)

for (ā1, . . . , āN), (b̄1, . . . , b̄N) ∈ RN
q , where at least one of the tuples is committed.

We reduce this to the task of proving only linear relations, following the approach
of Neff [48] and its adaptation to the lattice setting in the shuffling proof of
Aranha, Baum, Gjøsteen, Silde and Tunge [5].

A simplified version of the method is as follows. Suppose that we have com-
mitted to the āi and b̄i and want to prove Equation (6). The prover sends the
auxiliary value

ui := (−1)i
i∏

j=1

āj
b̄j

to the verifier for each i ∈ [N − 1]. Note that we require the b̄i to be invertible,
but this will generally be the case in our protocols. It is now enough to prove
the N linear equations

(1) ā1 + u1b̄1 = 0 ,

(2) ui−1āi + uib̄i = 0 ∀i ∈ {2, . . . , N − 1} ,

(3) uN−1āN + (−1)N b̄N = 0 ,

which together imply Equation (6). It is not hard to see that the ui do indeed
satisfy these N equations. The idea for the soundness of this approach is that
a non-trivial solution (1, u1, . . . , uN−1) to a linear system closely related to the
equations above implies that its determinant has to be 0, where the determinant
is

∏N
i=1 āi −

∏N
i=1 b̄i. Hence, we have reduced the equality of products from

Equation (6) to N linear equations on the committed values āi and b̄i.
This simplified method will not give a zero-knowledge protocol because the ui

leak information about the āi and b̄i. The solution is to include random masking
values. For this, the verifier sends a random challenge γ, and the prover samples
masks θi

$← Rq for all i ∈ [N − 1]. The coefficients ui are now computed as

ui := (−1)iγ
i∏

j=1

āi
b̄i

+ θi

for all i ∈ [N−1]. The masks θi mean that the ui no longer reveal any information
about the āi and b̄i. However, the introduction of the masks changes the linear
system. The new linear system to be proven is

(1) γā1 + u1b̄1 = θ1b̄1 ,

(2) ui−1āi + uib̄i = θi−1āi + θib̄i ∀i ∈ {2, . . . , N − 1} ,

(3) uN−1āN + (−1)Nγb̄N = θN−1āN .

Efficient Verifiable Mixnets from Lattices, Revisited 25

The prover will commit to the terms on the right hand side of the system and
prove to the verifier that each linear equation is satisfied.

Intuitively, the soundness of this approach relies on the prover being able
to provide two sets of solutions ui, u′

i for different challenges γ, γ′. This means
that the prover can obtain a solution (γ − γ′, u1 − u′

1, . . . , uN−1 − u′
N−1) to the

homogeneous version of the system, whose determinant is
∏N

i=1 āi−
∏N

i=1 b̄i. The
verifier’s challenge γ is needed this time to ensure that the first component of
the solution is non-zero, hence the solution is non-trivial, so the determinant has
to be 0. We actually require the solution to be non-trivial over each of the fields
the ring splits into, but this will follow from the choice of challenge space. See
the proof of Theorem 5 in Appendix E for more details.

4.4 Our Proof of Shuffle

The verifiability of our decryption mixnet requires the servers to provide a proof
of shuffle for the ciphertexts they decrypt. We construct such a proof by rely-
ing on Lemma 5 and proving the product equality using Neff’s linear approach
discussed in the previous section.

Recall that a mixing server receives N ciphertexts of the form

(c′i, c
⋆
i = H′B(η)d†

i + ci)

for all i ∈ [N], where the first component c′i encrypts a seed, the binary vector
d†
i is the result of expanding that seed, and the matrices H′,B(η) transform

that binary vector into a ring element used to mask the inner ciphertext ci. The
output of the server is a permutation of the inner ciphertexts (ĉ1, . . . , ĉN) =
(cπ(1), . . . , cπ(N)). The server needs to prove that the output list and the list
(c⋆1−H′B(η)d†

1, . . . , c
⋆
N−H′B(η)d†

N) are indeed related by a permutation, where
the permutation π is kept secret and the vectors d†

i are committed inside D. We
use Ajtai’s commitment scheme Com⋆ = (Setup⋆,Commit⋆,Verify⋆) described in
Section 2.5. Accordingly, the parameter generator algorithm G will be Setup⋆,
and the prover and verifier will implicitly receive the public parameters of the
commitment scheme.

The relation to be proven is:

Rshuffle :=

x = ((c⋆1, . . . , c
⋆
N), (ĉ1, . . . , ĉN),D) ,

w = (π, (d†
1, · · · ,d

†
N), rD)

Verify⋆(D, (d†
1, . . . ,d

†
N), rD) = 1

∧ ĉi = c⋆π(i) −H′B(η)d†
π(i)

∧ is_bin(d†
i) ∀i ∈ [N]

 .

It is important to ensure the consistency of the d†
i between this proof of shuffle

and the proof of correct decryption from Section 3.3, namely by using the same
commitment D in both. Note that the correctness of that commitment and the
binary nature of the d†

i only has to be proven once.
The proofs of shuffling that we have been discussing work with lists of ring

elements, whereas we are now dealing with lists of vectors of ring elements.

26 J. Bootle et al.

We simply compress those vectors into single ring elements by applying the
Schwartz-Zippel lemma. Accordingly, the verifier sends a challenge λ ∈ Rq and
we set

zi =

L∑
j=1

(c⋆i −H′B(η)d†
i)[j] · λ

j−1 and ẑi =

L∑
j=1

ĉi[j] · λj−1

for all i ∈ [N], where L is the length of the vectors. We can then rely on Lemma 5
to show that the lists (z1, . . . , zN), (ẑ1, . . . , ẑN) ∈ RN

q are related by the secret
permutation π.

We instantiate the ring Rq with a prime q ≡ 5 (mod 8). According to
Lemma 1, for this choice of modulus, the polynomial xn + 1 factors into two
irreducible polynomials xn+1 = p1 ·p2 mod q, where deg(p1) = deg(p2) = n/2.
Fact 1 gives us the isomorphism Rq

∼= Zq[x]/(p1) × Zq[x]/(p2), where both of
the factors are fields.

In order to instantiate Lemma 5, we need to determine a set D where the
differences of its elements are invertible and an injective map g : [N] → D.
We choose D to be the set of ring elements with binary coefficients, and g =
int_to_bin : [N] → Rn

q mapping each integer to the ring element whose coef-
ficients are the binary decomposition of that integer. The differences of distinct
elements of D have infinity norm at most 2, hence Lemma 1 implies that such
differences are invertible.

We also require the challenge space to be such that the differences of distinct
elements are invertible. However, nothing needs to be proven about these ele-
ments, as they are publicly known, hence we do not need to take them of small
norm. We want a large set that is easy to sample from. For this reason we set
the challenge space to be C := {p ∈ Rq | deg(p) < n/2}.

The proof of shuffle is described in Protocol 1. It is presented as an interactive
proof, but can be made non-interactive using the Fiat-Shamir transformation.

Theorem 3. If ZK⋆ has statistical completeness with completeness error ϵ, then
Protocol 1 has statistical completeness with completeness error ϵ+ 2Nq−n/2.

Theorem 4. If ZK⋆ is Special Honest Verifier Zero-Knowledge (SHVZK), then
Protocol 1 is also SHVZK.

Theorem 5. Suppose that ZK⋆ has witness extended emulation with knowledge
error κ. Then Protocol 1 has witness extended emulation with knowledge error
at most 2(N + 1)2((L− 1)N + 1)κ+ ((L+ 1)N + 1)q−n/2.

The proofs of Theorem 3, Theorem 4 and Theorem 5 can be found in Ap-
pendix E.

Efficient Verifiable Mixnets from Lattices, Revisited 27

P (x,w) V (x)

For 1 ≤ i ≤ N :
σi ← int_to_bin(π(i))

P← Commit⋆(σ1, . . . , σN ; rP)
P−−−−−−−−−−−−−−−−−−−−−−−→

α, β, λ
←−−−−−−−−−−−−−−−−−−−−−−− α, β, λ

$← C
Λ← (1, λ, . . . , λL−1)
For 1 ≤ i ≤ N :

zi ← ⟨c⋆i −H′B(η)d†
i ,Λ⟩

ẑi ← ⟨ĉi,Λ⟩
hi ← zi + int_to_bin(i) · β − α

ĥi ← ẑi + σi · β − α

For 1 ≤ i ≤ N − 1 :

θi
$←Rq

w1 ← θ1h1

For 2 ≤ i ≤ N − 1 :

wi ← θi−1ĥi + θihi

wN ← θN−1ĥN

For 1 ≤ i ≤ N :

Compute w†
i s.t. wi = G(⌈log q⌉)w†

i

W← Commit⋆(w†
1, . . . ,w

†
N ; rW)

W−−−−−−−−−−−−−−−−−−−−−−−→
γ

←−−−−−−−−−−−−−−−−−−−−−−− γ
$← C

For 1 ≤ i ≤ N − 1 :

ui ← (−1)iγ
i∏

j=1

ĥj

hj
+ θi

u1, . . . , uN−1−−−−−−−−−−−−−−−−−−−−−−−→

(ZK⋆)

x = ((c⋆1, . . . , c
⋆
N),

(ĉ1, . . . , ĉN),
(u1, . . . , uN−1),

D,P,W, α, β, λ, γ),

w = ((d†
1, · · · ,d

†
N),

(σ1, . . . , σN),

(w†
1, . . . ,w

†
N),

rD, rP, rW)

Denoting hi, ĥi as computed above then
(1) γĥ1 + u1h1 = G(⌈log q⌉)w†

1

(2) ui−1ĥi + uihi = G(⌈log q⌉)w†
i ∀i ∈ {2, . . . , N − 1}

(3) uN−1ĥN + (−1)NγhN = G(⌈log q⌉)w†
N

is_bin(d†
i) ∧ is_bin(σi) ∧ is_bin(w†

i) ∀i ∈ [N]

∧Verify⋆(D, (d†
1, . . . ,d

†
N), rD) = 1

∧Verify⋆(P, (σ1, . . . , σN), rP) = 1

∧Verify⋆(W, (w†
1, . . . ,w

†
N), rW) = 1

Protocol 1: Proof of shuffle for one mix server.

28 J. Bootle et al.

5 Mixnet size

We provide an estimation for the size of our decryption mixnet and compare it
to the state-of-the-art re-encryption mixnets from Aranha, Baum, Gjøsteen and
Silde [4], and Hough, Sandsbråten and Silde [37]. While their proofs of shuffle
would have to be updated with the fix we present in Section 4.2, the overhead
should not be significant. We start by giving a concrete choice of parameters for
our construction in Figure 3.

q n kLWE kLWR kSIS η ζ

3109 256 3 2 3 2 6

Fig. 3. Our choice of parameters aiming for at least 128 bits of security.

The elements that contribute to the size of our decryption mixnet are: (1)
the ciphertexts submitted by the users, as well as those outputted by the mixing
servers in every layer, and (2) the proofs of correct decryption and shuffle that
the mixing servers perform. A separate cost is that of the proofs of correct
encryption submitted by the users, that only need to be checked by the mixing
servers, and that we discuss at the end. Figure 4 summarizes the comparison
with [4, 37]. A more detailed comparison follows.

Ciphertext Proof Total
[4] 80 290 + 157 2188

[37] 15 115 + 85 875

Our 8 103 444

Fig. 4. Comparison to [4] and [37] in terms of ciphertext, proof, and total mixnet
size. All the quantities are in KB per user. The ciphertexts in [4,37] are constant size,
whereas for our work we give the average for 4 layers. The proof size is given per
server: in [4, 37] we distinguish between the shuffle & re-randomization proof, and the
distributed decryption proof, whereas for our work we report on the single shuffle &
decryption proof, giving an average size for 4 layers. The total size is computed for a
setting with 4 servers. See the discussion for more details.

Ciphertext size. We recall that the users encrypt their messages in a layered way
using HPKE. The PKE scheme HPKE, described in Section 3.2, is a hybrid scheme
where a seed s̄ ∈ RkLWR

q is encrypted under the MLWE-based encryption from
Section 2.4, resulting in ciphertexts made of kLWR · (kLWE + 1) ring elements.
The seed is then used as key in OTSE to generate a one-time pad that masks the
ciphertext/message from the previous layer. Starting with a message m ∈ Rq

Efficient Verifiable Mixnets from Lattices, Revisited 29

and performing ρ layers of encryption results in ciphertexts made of ρ · kLWR ·
(kLWE+1)+1 ring elements. The size of an element in Rq = Z3109[x]/(x

256+1)
is 384B. This means that the ciphertext starts with the message size of 384B
and each layer of encryption increases the size by 3072B. A common scenario of
ρ = 4 mixing servers, as suggested in [4, 37], results in ciphertexts of 12.7KB.
While that is the size of the input ciphertexts to the first mixing server, a layer
of encryption of 3KB is removed by each server. This results in an average
ciphertext size per layer of around 8KB. We can compare this to the 80KB and
15KB constant-size ciphertexts from the mixnets of [4] and [37].

Proof size (servers). Each of the mixing servers in our decryption mixnet per-
forms a proof of correct shuffle and decryption, essentially proving that their
output list of ciphertexts/messages is obtained by removing one layer of en-
cryption and permuting their input list of ciphertexts. We compute the size of
these proofs using the zero-knowledge linear proofs from LaZer [43], a library for
lattice-based proofs. In a scenario of 4 mixing servers, the proofs that the servers
perform have a size per user of 156KB, 120KB, 85KB, and 49KB. This results
in an average proof size per server and per user of 103KB. An analogous setting
in the re-encryption mixnets of [4, 37] would be composed of 4 mixing servers
and 4 decryption servers. Each of the mixing servers in [4] performs a proof
of re-randomization and shuffle of 290KB per user, and each of the decryption
servers outputs a proof of 157KB per user. For the mixnet of [37] the proof sizes
are 115KB and 85KB respectively.7

Mixnet size. The size per user of a decryption mixnet with 4 mixing servers is
given by the 4 proofs computed by the servers, the 4 layers of ciphertexts, and the
finally outputted plaintexts. This gives a total of 444KB for our mixnet. In the
re-encryption mixnets of [4] and [37], we need to account for 4 shuffling proofs,
4 decryption proofs and 5 layers of ciphertexts (the input layer, and the output
of each mixing server), resulting in a total of 2188KB and 875KB respectively.
The plaintexts in these mixnets are an implicit output in the decryption proofs.

We note that a significant improvement can be achieved in all three mixnets
by using a succinct proof system like LaBRADOR [11]. Its proofs can aggregate
many relations and range from 40KB to 60KB in total, with a very slow asymp-
totic growth. While LaBRADOR does not directly provide zero-knowledge, [11]
states that this property can be achieved by combining their proof system with
a simple protocol that masks the witness, and that results in a proof size not
much larger than that of the original system. Overall, one could obtain proofs of
a few hundred KB accounting for all the users in the mixnet. With such proofs,
the size of the mixnet would be overwhelmingly dominated by the size of the
ciphertexts.

7 Compared to [37, Table 1], we exclude the ciphertext size from the proof of shuffle,
so as to make more explicit the contribution of the ciphertext size to the total size
of the mixnet.

30 J. Bootle et al.

Proof size (users). Along with the ciphertext that encrypts their message, each
user needs to submit a proof of correct encryption, i.e., a proof of knowledge of
the plaintext contained in the layered encryption. These proofs are only present
at the beginning and are checked by all the servers. Each proof involves several
linear relations per layer of encryption, that we again implement in LaZer [43],
obtaining a proof size per user of 343KB. While these proofs are noticeably
large, we stress that this cost is of a different kind than the ones outlined before.
The proofs of correct encryption only need to be checked by the mixing servers,
so as to make sure that no ciphertext is malformed; or else decryption could
potentially leak information about their secret keys. If some user or third party
wants to verify the correctness of the procedure of the mixnet, only the proofs
of correct shuffle and decryption are relevant. For this reason, the proofs of
plaintext knowledge can be deleted once the servers have verified them. We also
note that the size of these proofs could be decreased by using a succinct proof
system like LaBRADOR [11]. As for [4, 37], they do not report on the sizes of
their so-called ballot proofs, but they should be smaller because of the single
layer of encryption of the simpler schemes that they use.

Acknowledgments. We would like to thank Katerina Sotiraki for the observation
that the polynomial approach to proving permutations does not work over rings which
are not unique factorization domains. We also thank the anonymous reviewers from
PKC2025 for their useful feedback. This work was supported by the EU H2020 ERC
Project 101002845 PLAZA.

References

1. Abe, M.: Mix-networks on permutation networks. In: Lam, K.Y., Okamoto, E.,
Xing, C. (eds.) ASIACRYPT’99. LNCS, vol. 1716, pp. 258–273. Springer, Berlin,
Heidelberg (Nov 1999). https://doi.org/10.1007/978-3-540-48000-6_21

2. Abe, M., Hoshino, F.: Remarks on mix-network based on permutation networks.
In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 317–324. Springer, Berlin,
Heidelberg (Feb 2001). https://doi.org/10.1007/3-540-44586-2_23

3. Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann,
J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 99. LNCS, vol. 1644, pp. 1–9.
Springer, Berlin, Heidelberg (Jul 1999). https://doi.org/10.1007/3-540-48523-6_1

4. Aranha, D.F., Baum, C., Gjøsteen, K., Silde, T.: Verifiable mix-nets and dis-
tributed decryption for voting from lattice-based assumptions. In: Proceedings of
the 2023 ACM SIGSAC Conference on Computer and Communications Security.
p. 1467–1481. CCS ’23, Association for Computing Machinery, New York, NY,
USA (2023). https://doi.org/10.1145/3576915.3616683, https://doi.org/10.1145/
3576915.3616683

5. Aranha, D.F., Baum, C., Gjøsteen, K., Silde, T., Tunge, T.: Lattice-based proof of
shuffle and applications to electronic voting. In: Paterson, K.G. (ed.) CT-RSA 2021.
LNCS, vol. 12704, pp. 227–251. Springer, Cham (May 2021). https://doi.org/10.
1007/978-3-030-75539-3_10

6. Attema, T., Cramer, R., Kohl, L.: A compressed Σ-protocol theory for lattices.
In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part II. LNCS, vol. 12826,

https://doi.org/10.1007/978-3-540-48000-6_21
https://doi.org/10.1007/978-3-540-48000-6_21
https://doi.org/10.1007/3-540-44586-2_23
https://doi.org/10.1007/3-540-44586-2_23
https://doi.org/10.1007/3-540-48523-6_1
https://doi.org/10.1007/3-540-48523-6_1
https://doi.org/10.1145/3576915.3616683
https://doi.org/10.1145/3576915.3616683
https://doi.org/10.1145/3576915.3616683
https://doi.org/10.1145/3576915.3616683
https://doi.org/10.1007/978-3-030-75539-3_10
https://doi.org/10.1007/978-3-030-75539-3_10
https://doi.org/10.1007/978-3-030-75539-3_10
https://doi.org/10.1007/978-3-030-75539-3_10

Efficient Verifiable Mixnets from Lattices, Revisited 31

pp. 549–579. Springer, Cham, Virtual Event (Aug 2021). https://doi.org/10.1007/
978-3-030-84245-1_19

7. Baum, C., Bootle, J., Cerulli, A., del Pino, R., Groth, J., Lyubashevsky, V.: Sub-
linear lattice-based zero-knowledge arguments for arithmetic circuits. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 669–699.
Springer, Cham (Aug 2018). https://doi.org/10.1007/978-3-319-96881-0_23

8. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 263–280. Springer, Berlin, Heidelberg (Apr 2012). https://doi.org/10.1007/
978-3-642-29011-4_17

9. Bendlin, R., Damgård, I.: Threshold decryption and zero-knowledge proofs for
lattice-based cryptosystems. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 201–218. Springer, Berlin, Heidelberg (Feb 2010). https://doi.org/10.1007/
978-3-642-11799-2_13

10. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU prime:
Reducing attack surface at low cost. In: Adams, C., Camenisch, J. (eds.) SAC 2017.
LNCS, vol. 10719, pp. 235–260. Springer, Cham (Aug 2017). https://doi.org/10.
1007/978-3-319-72565-9_12

11. Beullens, W., Seiler, G.: LaBRADOR: Compact proofs for R1CS from module-
SIS. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023, Part V. LNCS,
vol. 14085, pp. 518–548. Springer, Cham (Aug 2023). https://doi.org/10.1007/
978-3-031-38554-4_17

12. Biagioni, S., Masny, D., Venturi, D.: Naor-Yung paradigm with shared ran-
domness and applications. In: Zikas, V., De Prisco, R. (eds.) SCN 16. LNCS,
vol. 9841, pp. 62–80. Springer, Cham (Aug / Sep 2016). https://doi.org/10.1007/
978-3-319-44618-9_4

13. Bootle, J., Chiesa, A., Sotiraki, K.: Sumcheck arguments and their applications.
In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part I. LNCS, vol. 12825, pp.
742–773. Springer, Cham, Virtual Event (Aug 2021). https://doi.org/10.1007/
978-3-030-84242-0_26

14. Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Seiler, G., Stehle, D.: CRYSTALS - Kyber: A CCA-secure module-
lattice-based KEM. In: 2018 IEEE European Symposium on Security and Privacy
(EuroS&P). pp. 353–367 (2018). https://doi.org/10.1109/EuroSP.2018.00032

15. Boudgoust, K., Scholl, P.: Simple threshold (fully homomorphic) encryption from
LWE with polynomial modulus. In: Guo, J., Steinfeld, R. (eds.) ASIACRYPT 2023,
Part I. LNCS, vol. 14438, pp. 371–404. Springer, Singapore (Dec 2023). https:
//doi.org/10.1007/978-981-99-8721-4_12

16. Boyen, X., Haines, T., Müller, J.: A verifiable and practical lattice-based decryption
mix net with external auditing. In: Chen, L., Li, N., Liang, K., Schneider, S.A.
(eds.) ESORICS 2020, Part II. LNCS, vol. 12309, pp. 336–356. Springer, Cham
(Sep 2020). https://doi.org/10.1007/978-3-030-59013-0_17

17. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic en-
cryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS 2012. pp. 309–325.
ACM (Jan 2012). https://doi.org/10.1145/2090236.2090262

18. Chaum, D., Das, D., Javani, F., Kate, A., Krasnova, A., de Ruiter, J., Sherman,
A.T.: cMix: Mixing with minimal real-time asymmetric cryptographic operations.
In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 17International Conference
on Applied Cryptography and Network Security. LNCS, vol. 10355, pp. 557–578.
Springer, Cham (Jul 2017). https://doi.org/10.1007/978-3-319-61204-1_28

https://doi.org/10.1007/978-3-030-84245-1_19
https://doi.org/10.1007/978-3-030-84245-1_19
https://doi.org/10.1007/978-3-030-84245-1_19
https://doi.org/10.1007/978-3-030-84245-1_19
https://doi.org/10.1007/978-3-319-96881-0_23
https://doi.org/10.1007/978-3-319-96881-0_23
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-642-11799-2_13
https://doi.org/10.1007/978-3-642-11799-2_13
https://doi.org/10.1007/978-3-642-11799-2_13
https://doi.org/10.1007/978-3-642-11799-2_13
https://doi.org/10.1007/978-3-319-72565-9_12
https://doi.org/10.1007/978-3-319-72565-9_12
https://doi.org/10.1007/978-3-319-72565-9_12
https://doi.org/10.1007/978-3-319-72565-9_12
https://doi.org/10.1007/978-3-031-38554-4_17
https://doi.org/10.1007/978-3-031-38554-4_17
https://doi.org/10.1007/978-3-031-38554-4_17
https://doi.org/10.1007/978-3-031-38554-4_17
https://doi.org/10.1007/978-3-319-44618-9_4
https://doi.org/10.1007/978-3-319-44618-9_4
https://doi.org/10.1007/978-3-319-44618-9_4
https://doi.org/10.1007/978-3-319-44618-9_4
https://doi.org/10.1007/978-3-030-84242-0_26
https://doi.org/10.1007/978-3-030-84242-0_26
https://doi.org/10.1007/978-3-030-84242-0_26
https://doi.org/10.1007/978-3-030-84242-0_26
https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.1007/978-981-99-8721-4_12
https://doi.org/10.1007/978-981-99-8721-4_12
https://doi.org/10.1007/978-981-99-8721-4_12
https://doi.org/10.1007/978-981-99-8721-4_12
https://doi.org/10.1007/978-3-030-59013-0_17
https://doi.org/10.1007/978-3-030-59013-0_17
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1007/978-3-319-61204-1_28
https://doi.org/10.1007/978-3-319-61204-1_28

32 J. Bootle et al.

19. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM 24(2), 84–90 (feb 1981). https://doi.org/10.1145/
358549.358563, https://doi.org/10.1145/358549.358563

20. Chowdhury, S., Sinha, S., Singh, A., Mishra, S., Chaudhary, C., Patranabis, S.,
Mukherjee, P., Chatterjee, A., Mukhopadhyay, D.: Efficient threshold FHE with
application to real-time systems. Cryptology ePrint Archive, Report 2022/1625
(2022), https://eprint.iacr.org/2022/1625

21. Costa, N., Martínez, R., Morillo, P.: Proof of a shuffle for lattice-based cryp-
tography. In: Lipmaa, H., Mitrokotsa, A., Matulevičius, R. (eds.) NordSec 2017.
LNCS, vol. 10674, pp. 280–296. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-70290-2_17

22. Costa, N., Martínez, R., Morillo, P.: Lattice-based proof of a shuffle. In: Brac-
ciali, A., Clark, J., Pintore, F., Rønne, P.B., Sala, M. (eds.) FC 2019 Workshops.
LNCS, vol. 11599, pp. 330–346. Springer, Cham (Feb 2019). https://doi.org/10.
1007/978-3-030-43725-1_23

23. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Com-
puting 33(1), 167–226 (2003). https://doi.org/10.1137/S0097539702403773

24. Danezis, G., Dingledine, R., Mathewson, N.: Mixminion: Design of a type III anony-
mous remailer protocol. In: 2003 IEEE Symposium on Security and Privacy. pp. 2–
15. IEEE Computer Society Press (May 2003). https://doi.org/10.1109/SECPRI.
2003.1199323

25. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO’84. LNCS, vol. 196,
pp. 10–18. Springer, Berlin, Heidelberg (Aug 1984). https://doi.org/10.1007/
3-540-39568-7_2

26. Farzaliyev, V., Willemson, J., Kaasik, J.K.: Improved lattice-based mix-nets
for electronic voting. In: Park, J.H., Seo, S.H. (eds.) ICISC 21. LNCS,
vol. 13218, pp. 119–136. Springer, Cham (Dec 2021). https://doi.org/10.1007/
978-3-031-08896-4_6

27. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO’86. LNCS, vol. 263,
pp. 186–194. Springer, Berlin, Heidelberg (Aug 1987). https://doi.org/10.1007/
3-540-47721-7_12

28. Furukawa, J.: Efficient and verifiable shuffling and shuffle-decryption. IEICE Trans-
actions 88-A, 172–188 (2005). https://doi.org/10.1093/ietfec/E88-A.1.172

29. Furukawa, J., Sako, K.: An efficient scheme for proving a shuffle. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 368–387. Springer, Berlin, Heidelberg (Aug
2001). https://doi.org/10.1007/3-540-44647-8_22

30. Groth, J.: A verifiable secret shuffle of homomorphic encryptions. In: Desmedt, Y.
(ed.) PKC 2003. LNCS, vol. 2567, pp. 145–160. Springer, Berlin, Heidelberg (Jan
2003). https://doi.org/10.1007/3-540-36288-6_11

31. Groth, J., Ishai, Y.: Sub-linear zero-knowledge argument for correctness of a shuffle.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 379–396. Springer,
Berlin, Heidelberg (Apr 2008). https://doi.org/10.1007/978-3-540-78967-3_22

32. Groth, J., Lu, S.: Verifiable shuffle of large size ciphertexts. In: Okamoto, T., Wang,
X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 377–392. Springer, Berlin, Heidelberg
(Apr 2007). https://doi.org/10.1007/978-3-540-71677-8_25

33. Haines, T., Müller, J.: SoK: Techniques for verifiable mix nets. In: Jia, L., Küsters,
R. (eds.) CSF 2020 Computer Security Foundations Symposium. pp. 49–64. IEEE
Computer Society Press (2020). https://doi.org/10.1109/CSF49147.2020.00012

https://doi.org/10.1145/358549.358563
https://doi.org/10.1145/358549.358563
https://doi.org/10.1145/358549.358563
https://doi.org/10.1145/358549.358563
https://doi.org/10.1145/358549.358563
https://eprint.iacr.org/2022/1625
https://doi.org/10.1007/978-3-319-70290-2_17
https://doi.org/10.1007/978-3-319-70290-2_17
https://doi.org/10.1007/978-3-319-70290-2_17
https://doi.org/10.1007/978-3-319-70290-2_17
https://doi.org/10.1007/978-3-030-43725-1_23
https://doi.org/10.1007/978-3-030-43725-1_23
https://doi.org/10.1007/978-3-030-43725-1_23
https://doi.org/10.1007/978-3-030-43725-1_23
https://doi.org/10.1137/S0097539702403773
https://doi.org/10.1137/S0097539702403773
https://doi.org/10.1109/SECPRI.2003.1199323
https://doi.org/10.1109/SECPRI.2003.1199323
https://doi.org/10.1109/SECPRI.2003.1199323
https://doi.org/10.1109/SECPRI.2003.1199323
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1007/978-3-031-08896-4_6
https://doi.org/10.1007/978-3-031-08896-4_6
https://doi.org/10.1007/978-3-031-08896-4_6
https://doi.org/10.1007/978-3-031-08896-4_6
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1093/ietfec/E88-A.1.172
https://doi.org/10.1093/ietfec/E88-A.1.172
https://doi.org/10.1007/3-540-44647-8_22
https://doi.org/10.1007/3-540-44647-8_22
https://doi.org/10.1007/3-540-36288-6_11
https://doi.org/10.1007/3-540-36288-6_11
https://doi.org/10.1007/978-3-540-78967-3_22
https://doi.org/10.1007/978-3-540-78967-3_22
https://doi.org/10.1007/978-3-540-71677-8_25
https://doi.org/10.1007/978-3-540-71677-8_25
https://doi.org/10.1109/CSF49147.2020.00012
https://doi.org/10.1109/CSF49147.2020.00012

Efficient Verifiable Mixnets from Lattices, Revisited 33

34. Herranz, J., Hofheinz, D., Kiltz, E.: Some (in)sufficient conditions for secure hybrid
encryption. Inf. Comput. 208(11), 1243–1257 (nov 2010). https://doi.org/10.1016/
j.ic.2010.07.002

35. Herranz, J., Martínez, R., Sánchez, M.: Shorter lattice-based zero-knowledge proofs
for the correctness of a shuffle. In: Bernhard, M., Bracciali, A., Gudgeon, L., Haines,
T., Klages-Mundt, A., Matsuo, S., Perez, D., Sala, M., Werner, S. (eds.) FC 2021
Workshops. LNCS, vol. 12676, pp. 315–329. Springer, Berlin, Heidelberg (Mar
2021). https://doi.org/10.1007/978-3-662-63958-0_27

36. van den Hooff, J., Lazar, D., Zaharia, M., Zeldovich, N.: Vuvuzela: scalable private
messaging resistant to traffic analysis. In: Proceedings of the 25th Symposium on
Operating Systems Principles. p. 137–152. SOSP ’15, Association for Computing
Machinery, New York, NY, USA (2015). https://doi.org/10.1145/2815400.2815417

37. Hough, P., Sandsbråten, C., Silde, T.: More efficient lattice-based electronic voting
from NTRU. IACR Communications in Cryptology 1(4) (2025). https://doi.org/
10.62056/a69qudhdj

38. Jakobsson, M., M’Raïhi, D.: Mix-based electronic payments. In: Tavares, S.E., Mei-
jer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 157–173. Springer, Berlin, Heidelberg
(Aug 1999). https://doi.org/10.1007/3-540-48892-8_13

39. Kwon, A., Corrigan-Gibbs, H., Devadas, S., Ford, B.: Atom: Horizontally scaling
strong anonymity. In: Proceedings of the 26th Symposium on Operating Systems
Principles. p. 406–422. SOSP ’17, Association for Computing Machinery, New York,
NY, USA (2017). https://doi.org/10.1145/3132747.3132755

40. Lyubashevsky, V.: Basic lattice cryptography: The concepts behind kyber (ML-
KEM) and dilithium (ML-DSA). Cryptology ePrint Archive, Report 2024/1287
(2024), https://eprint.iacr.org/2024/1287

41. Lyubashevsky, V., Nguyen, N.K., Plançon, M.: Lattice-based zero-knowledge
proofs and applications: Shorter, simpler, and more general. In: Dodis, Y., Shrimp-
ton, T. (eds.) CRYPTO 2022, Part II. LNCS, vol. 13508, pp. 71–101. Springer,
Cham (Aug 2022). https://doi.org/10.1007/978-3-031-15979-4_3

42. Lyubashevsky, V., Seiler, G.: Short, invertible elements in partially splitting cyclo-
tomic rings and applications to lattice-based zero-knowledge proofs. In: Nielsen,
J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 204–224.
Springer, Cham (Apr / May 2018). https://doi.org/10.1007/978-3-319-78381-9_8

43. Lyubashevsky, V., Seiler, G., Steuer, P.: The LaZer library: Lattice-based zero
knowledge and succinct proofs for quantum-safe privacy. In: Luo, B., Liao, X.,
Xu, J., Kirda, E., Lie, D. (eds.) ACM CCS 2024. pp. 3125–3137. ACM Press (Oct
2024). https://doi.org/10.1145/3658644.3690330

44. Micciancio, D., Suhl, A.: Simulation-secure threshold PKE from LWE with polyno-
mial modulus. Cryptology ePrint Archive, Paper 2023/1728 (2023), https://eprint.
iacr.org/2023/1728

45. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In: 22nd ACM STOC. pp. 427–437. ACM Press (May 1990).
https://doi.org/10.1145/100216.100273

46. National Institute of Standards and Technology (NIST): Module-lattice-based digi-
tal signature standard. Tech. Rep. Federal Information Processing Standards Pub-
lications (FIPS PUBS) 204, U.S. Department of Commerce, Washington, D.C.
(2024). https://doi.org/10.6028/NIST.FIPS.204

47. National Institute of Standards and Technology (NIST): Module-lattice-based key-
encapsulation mechanism standard. Tech. Rep. Federal Information Processing
Standards Publications (FIPS PUBS) 203, U.S. Department of Commerce, Wash-
ington, D.C. (2024). https://doi.org/10.6028/NIST.FIPS.203

https://doi.org/10.1016/j.ic.2010.07.002
https://doi.org/10.1016/j.ic.2010.07.002
https://doi.org/10.1016/j.ic.2010.07.002
https://doi.org/10.1016/j.ic.2010.07.002
https://doi.org/10.1007/978-3-662-63958-0_27
https://doi.org/10.1007/978-3-662-63958-0_27
https://doi.org/10.1145/2815400.2815417
https://doi.org/10.1145/2815400.2815417
https://doi.org/10.62056/a69qudhdj
https://doi.org/10.62056/a69qudhdj
https://doi.org/10.62056/a69qudhdj
https://doi.org/10.62056/a69qudhdj
https://doi.org/10.1007/3-540-48892-8_13
https://doi.org/10.1007/3-540-48892-8_13
https://doi.org/10.1145/3132747.3132755
https://doi.org/10.1145/3132747.3132755
https://eprint.iacr.org/2024/1287
https://doi.org/10.1007/978-3-031-15979-4_3
https://doi.org/10.1007/978-3-031-15979-4_3
https://doi.org/10.1007/978-3-319-78381-9_8
https://doi.org/10.1007/978-3-319-78381-9_8
https://doi.org/10.1145/3658644.3690330
https://doi.org/10.1145/3658644.3690330
https://eprint.iacr.org/2023/1728
https://eprint.iacr.org/2023/1728
https://doi.org/10.1145/100216.100273
https://doi.org/10.1145/100216.100273
https://doi.org/10.6028/NIST.FIPS.204
https://doi.org/10.6028/NIST.FIPS.204
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.203

34 J. Bootle et al.

48. Neff, C.A.: A verifiable secret shuffle and its application to e-voting. In: Reiter,
M.K., Samarati, P. (eds.) ACM CCS 2001. pp. 116–125. ACM Press (Nov 2001).
https://doi.org/10.1145/501983.502000

49. Park, C., Itoh, K., Kurosawa, K.: Efficient anonymous channel and all/nothing elec-
tion scheme. In: Helleseth, T. (ed.) EUROCRYPT’93. LNCS, vol. 765, pp. 248–259.
Springer, Berlin, Heidelberg (May 1994). https://doi.org/10.1007/3-540-48285-7_
21

50. Sako, K., Kilian, J.: Receipt-free mix-type voting scheme - a practical solution
to the implementation of a voting booth. In: Guillou, L.C., Quisquater, J.J. (eds.)
EUROCRYPT’95. LNCS, vol. 921, pp. 393–403. Springer, Berlin, Heidelberg (May
1995). https://doi.org/10.1007/3-540-49264-X_32

51. Sotiraki, K.: Personal communication with Jonathan Bootle (January 2022)
52. Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over

ideal lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632,
pp. 27–47. Springer, Berlin, Heidelberg (May 2011). https://doi.org/10.1007/
978-3-642-20465-4_4

53. Strand, M.: A verifiable shuffle for the GSW cryptosystem. In: Zohar, A., Eyal, I.,
Teague, V., Clark, J., Bracciali, A., Pintore, F., Sala, M. (eds.) FC 2018 Workshops.
LNCS, vol. 10958, pp. 165–180. Springer, Berlin, Heidelberg (Mar 2019). https:
//doi.org/10.1007/978-3-662-58820-8_12

54. Terelius, B., Wikström, D.: Proofs of restricted shuffles. In: Bernstein, D.J., Lange,
T. (eds.) AFRICACRYPT 10. LNCS, vol. 6055, pp. 100–113. Springer, Berlin,
Heidelberg (May 2010). https://doi.org/10.1007/978-3-642-12678-9_7

55. Wikström, D.: A commitment-consistent proof of a shuffle. In: Boyd, C., Nieto,
J.M.G. (eds.) ACISP 09. LNCS, vol. 5594, pp. 407–421. Springer, Berlin, Heidel-
berg (Jul 2009). https://doi.org/10.1007/978-3-642-02620-1_28

Appendix

A Cryptographic Primitives

A.1 One-time Symmetric Encryption

Definition 4. A one-time Symmetric Encryption (SE) scheme SE, de-
fined over a key space K, message space M and ciphertext space C, consists of
a triple of algorithms SE = (KGen,Enc,Dec) with the following syntax:

– KGen(): key generation is a PPT algorithm that outputs a key K ∈ K.
– EncK(m): encryption is a deterministic polynomial time algorithm that takes

a key K ∈ K and a message m ∈M and outputs a ciphertext c ∈ C.
– DecK(c): decryption is a deterministic polynomial time that takes a key K ∈ K

and a ciphertext c ∈ C, and outputs a message m ∈M or an error, denoted
by ⊥.

The scheme SE is said to be correct if for all keys K output by KGen and for
all messages m ∈M it holds that

DecK(EncK(m)) = m .

https://doi.org/10.1145/501983.502000
https://doi.org/10.1145/501983.502000
https://doi.org/10.1007/3-540-48285-7_21
https://doi.org/10.1007/3-540-48285-7_21
https://doi.org/10.1007/3-540-48285-7_21
https://doi.org/10.1007/3-540-48285-7_21
https://doi.org/10.1007/3-540-49264-X_32
https://doi.org/10.1007/3-540-49264-X_32
https://doi.org/10.1007/978-3-642-20465-4_4
https://doi.org/10.1007/978-3-642-20465-4_4
https://doi.org/10.1007/978-3-642-20465-4_4
https://doi.org/10.1007/978-3-642-20465-4_4
https://doi.org/10.1007/978-3-662-58820-8_12
https://doi.org/10.1007/978-3-662-58820-8_12
https://doi.org/10.1007/978-3-662-58820-8_12
https://doi.org/10.1007/978-3-662-58820-8_12
https://doi.org/10.1007/978-3-642-12678-9_7
https://doi.org/10.1007/978-3-642-12678-9_7
https://doi.org/10.1007/978-3-642-02620-1_28
https://doi.org/10.1007/978-3-642-02620-1_28

Efficient Verifiable Mixnets from Lattices, Revisited 35

We also write SE.KGen, SE.Enc and SE.Dec to make SE more explicit.
A standard notion for a one-time SE is that of IND-OT security, where the

adversary submits two equal-length messages, is given the encryption of one
of them, and then needs to determine which one was encrypted. Since we are
dealing with a one-time scheme, we only allow the adversary to submit messages
once. This notion is captured in the Game IND-OT(A,SE), depicted in Figure 5.

Game IND-OT(A, SE)
01 b

$← {0, 1}
02 K

$← SE.KGen()

03 (m0,m1)
$← A() // |m0| = |m1|

04 c← SE.EncK(mb)

05 b′
$← A(c)

06 Return (b = b′)

Fig. 5. Game capturing the IND-OT security of a one-time SE scheme.

We define the advantage of an adversary A in this game as follows:

AdvIND-OT
SE (A) := 2 ·

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ .

Definition 5. A one-time SE scheme SE is said to be IND-OT secure if, for
all PPT adversaries, the advantage AdvIND-OT

SE (A) is negligible.

A.2 Public-Key Encryption

Definition 6. A Public-Key Encryption (PKE) scheme PKE, defined over
a key space SK × PK, message space M and ciphertext space C, consists of a
triple of algorithms PKE = (KGen,Enc,Dec) with the following syntax:

– KGen(): key generation is a PPT algorithm that outputs a key-pair consisting
of secret and public key (sk, pk) ∈ SK × PK.

– Encpk(m): encryption is a PPT algorithm that takes a public key pk ∈ PK
and a message m ∈M and outputs a ciphertext c ∈ C.

– Decsk(c): decryption is a deterministic polynomial time algorithm that takes
a secret key sk ∈ SK and a ciphertext c ∈ C and outputs a message m ∈ M
or an error, denoted by ⊥.

The scheme PKE is said to be approximately correct if for all m ∈M,

Pr[m = m′ : (sk, pk)
$← KGen(); c

$← Encpk(m); m′ ← Decsk(c)] ≈ 1.

36 J. Bootle et al.

Game IND-CPA(A,PKE)
01 b

$← {0, 1}
02 (sk, pk)

$← PKE.KGen()

03 (m0,m1)
$← A(pk) // |m0| = |m1|

04 c
$← PKE.Encpk(mb)

05 b′
$← A(pk, c)

06 Return (b = b′)

Fig. 6. Game capturing the IND-CPA security of a PKE scheme.

We also write PKE.KGen, PKE.Enc and PKE.Dec to make PKE more explicit.
A standard security notion for PKE schemes is that of IND-CPA security.

Accordingly, we consider the Game IND-CPA depicted in Figure 6.
We define the advantage of an adversary A in this game as follows:

AdvIND-CPA
PKE (A) := 2 ·

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ .

Definition 7. A public-key encryption scheme PKE is said to be IND-CPA
secure if, for all PPT adversaries A, the advantage AdvIND-CPA

PKE (A) is negligi-
ble.

A.3 Commitment Schemes

Definition 8. A commitment scheme Com is a triple of algorithms Com =
(Setup,Commit,Verify) with the following syntax:

– Setup(): a PPT algorithm that outputs public parameters pp describing a
message space SM , randomness space SR, commitment space SC , and an
efficiently sampleable probability distribution χ over SR.

– Commit(pp,m; r): a PPT algorithm that takes public parameters pp, a mes-
sage m ∈ SM and samples randomness r

$← χ. The output is a commitment
c ∈ SC .

– Verify(pp, c,m, r): a deterministic polynomial time algorithm that takes public
parameters pp, a commitment c ∈ SC , a message m ∈ SM and randomness
r ∈ SR. The output is a bit b ∈ {0, 1} that indicates “accept” when b = 1 and
“reject” otherwise.

For succinctness, we will sometimes omit the public parameters pp as input
to Commit and Verify, but they will implicitly receive them.

Definition 9 (Correctness). A commitment scheme Com =(Setup, Commit,
Verify) is said to be correct if for all adversaries A,

Pr[Verify(c,m, r) = 1 : pp
$← Setup(); m

$← A(pp); c $← Commit(pp,m; r)] = 1.

Efficient Verifiable Mixnets from Lattices, Revisited 37

Definition 10 (Hiding). A commitment scheme Com = (Setup,Commit,Verify)
is said to be computationally hiding if for all stateful PPT adversaries A∣∣∣∣∣Pr

[
b = b′ : pp

$← Setup(); (m0,m1)
$← A(pp);

b
$← {0, 1}; c $← Commit(pp,mb; r); b

′ $← A(c)

]
− 1

2

∣∣∣∣∣ ≈ 0 .

Definition 11 (Binding). A commitment scheme Com = (Setup,Commit,Verify)
is said to be computationally binding if for all PPT adversaries A

Pr

[
m0 ̸= m1 ∧ Verify(c,m0, r0) = Verify(c,m1, r1) = 1

: pp
$← Setup(); (m0, r0,m1, r1, c)

$← A(pp)

]
≈ 0 .

Moreover, Com is strongly computationally binding if we replace m0 ̸= m1 in the
definition above with (m0, r0) ̸= (m1, r1).

A.4 Proof Systems

We follow the presentation in [7]. Let R be a ternary relation, where the first
input will contain some public parameters pp. If (pp,x,w) ∈ R, we say that w
is a witness for the instance x.

A proof system Π = (G,P,V) for the relation R consists of a parameter
generator G, and two interactive and stateful PPT algorithms P and V called
the prover and verifier. We denote the interaction between prover and verifier by
(Σ, b)

$← ⟨P(pp,x,w),V(pp,x)⟩, where the output consists of the communication
transcript Σ and the verifier’s decision bit b, with b = 0 meaning reject and b = 1
meaning accept.

We introduce now the notions of completeness, knowledge soundness, special
soundness, and zero-knowledge for a proof system.

Definition 12 (Statistical completeness). The proof system Π has statis-
tical completness with completeness error ϵ : N → [0, 1] if for all adversaries
A, we have that

Pr

[
(pp,x,w) ∈ R ∧ b = 0 :

pp
$← G(); (x,w)

$← A(pp); (Σ, b)
$← ⟨P(pp,x,w),V(pp,x)⟩

]
≤ ϵ(ω) .

Definition 13 (Witness-extended emulation). The proof system Π has witness-
extended emulation with knowledge soundness error κ : N → [0, 1] if for all
deterministic polynomial time P∗, there exists an expected polynomial time ex-
tractor E such that for all deterministic polynomial-time stateful adversaries A,
we have∣∣∣∣∣Pr

[
A(Σ) = 1 : pp

$← G(); (x,w′)
$← A(pp);

(Σ, b)
$← ⟨A(pp,x,w′),V(pp,x)⟩

]

− Pr

[
A(Σ) = 1 and if Σ is accepting then (pp,x,w) ∈ R :

pp
$← G(); (x,w′)

$← A(pp); (Σ,w)
$← EA(pp,x,w′)(pp,x,w′)

]∣∣∣∣ ≤ κ(ω) ,

where the superscript on the extractor E means that E has oracle access to P∗,
i.e., that E can execute P∗ as a subroutine for challenges of its choice.

38 J. Bootle et al.

Definition 14 (Argument of knowledge). The proof system Π = (G,P,V)
is called an argument of knowledge for the relation R if it is statistically
complete and computationally knowledge sound.

We say that the protocol is public coin if all the messages sent by the verifier
are its challenges, chosen uniformly at random independently of the prover’s
messages.

Definition 15 (Tree of transcripts). An (k1, . . . , kt)-tree of transcripts
for a public-coin protocol is a set of

∏t
i=1 ki transcripts arranged in a tree such

that vertices correspond to prover messages and edges correspond to verifier chal-
lenges. Each node at depth i has ki child edges labelled with distinct challenges.
This way, each transcript corresponds to exactly one root-to-leaf path. We say
that the tree is accepting if the verifier would have accepted every transcript.

Lemma 6 ([13], adapted from [6, Lemma 5]). Let k1, . . . , kt : N → N be
functions such that k :=

∏t
i=1 ki is upper bounded by a polynomial. Let Π be a

(2t+1)-message public-coin interactive argument in which the verifier V samples
each challenge uniformly at random from a challenge set of size K ≥ maxi∈[t] ki.
There is an algorithm Tree such that for any malicious prover A for Π that makes
V accept with probability at least ϵ, TreeA(pp,x) runs in expected time at most K
(where running P∗ takes unit time) and produces a (k1, . . . , kt)-tree of accepting
transcripts for x with probability at least ϵ −

∑t
i=1(ki−1)

K (otherwise producing
a tree that is incomplete or contains non-accepting transcripts). Further, the
first transcript produced by Tree (corresponding to the first leaf in the tree) is
distributed according to ⟨A,V⟩.

Definition 16 (Special honest-verifier zero-knowledge). A public-coin ar-
gument of knowledge Π = (G,P,V) is said to be statistical special honest-
verifier zero-knowledge (SHVZK) if there exists a PPT simulator S such that
for all interactive and stateful adversaties A, the difference between the proba-
bilities

Pr

[
(pp,x,w) ∈ R ∧ b′ = 1 : pp

$← G();
(x,w, ξ)

$← A(pp); (Σ, b)
$← ⟨P(pp,x,w),V(pp,x; ξ)⟩ ; b′ $← A(Σ)

]
and

Pr

[
(pp,x,w) ∈ R ∧ b′ = 1 : pp

$← G();
(x,w, ξ)

$← A(pp); Σ $← S(pp,x, ξ); b′ $← A(Σ)

]
is negligible, where ξ denotes the randomness used by the verifier.

So far we have been referring to interactive argument systems. A standard
approach to turn public coin interactive protocols into non-interactive ones is
via the Fiat-Shamir transform [27]. The idea is that the prover can compute each
challenge as a hash of the instance, previous messages, public parameters, etc.
The resulting proof consists of all the messages, that the verifier can use along
with the instance to recompute the challenges and perform the same checks that
it would perform in the interactive version of the protocol.

Efficient Verifiable Mixnets from Lattices, Revisited 39

B Ajtai Commitments

Theorem 6. The commitment scheme Com⋆ is correct.

Proof. The equation c = A1m+A2r is trivially verified by a properly computed
commitment. As for the L2 norm, a correct message-randomness vector with
maximum L2 norm would be, for instance, one where all the coefficients in m
are set to 1 and all the coefficients in r are set to η. The norm of such a vector
is exactly

√
nL+ n2kSISη2, which is the value that B is set to be. ⊓⊔

Theorem 7. If the problem MSISkSIS,L+2kSIS,2B is hard, then the scheme Com⋆

is strongly computationally binding.

Proof. Suppose a PPT adversary A outputs (c,m0, r0,m1, r1)
$← A(pp) such

that
Verify⋆(m0, r0, c) = Verify⋆(m1, r1, c) = 1 ,

i.e., ∥∥∥∥(m0

r0

)∥∥∥∥ ≤ B ∧
∥∥∥∥(m1

r1

)∥∥∥∥ ≤ B

and
A1m0 +A2r0 = c = A1m1 +A2r1 .

Then,

(A1 | A2)

(
m0 −m1

r0 − r1

)
= 0 ,

where (A1 | A2) ∈ RkSIS×(L+2kSIS)
q is a uniformly random matrix, and∥∥∥∥(m0 −m1

r0 − r1

)∥∥∥∥ ≤ 2B .

Therefore, the adversary has obtained a solution for MSISkSIS,L+2kSIS,2B . ⊓⊔

Theorem 8. If the problem MLWEkSIS,kSIS,η is hard, then the scheme Com⋆ is
computationally hiding.

Proof. Given A2
$← RkSIS×2kSIS

q and r
$← B2kSIS

η , the value (A2,A2r) is indistin-
guishable from random based on the hardness of MLWEkSIS,kSIS,η.

Now if A2r is indistinguishable from random, so is the commitment

c← A1m+A2r ,

independently of the message m. ⊓⊔

40 J. Bootle et al.

C Proof of Theorem 2

Theorem 2. If the problems MLWRkLWE+L,kLWR,2ζ ,22η and MLWEL,kLWE,η are
hard, then OTSE is IND-OT secure. In particular, given a PPT adversary A
against the IND-OT security of OTSE, we construct PPT algorithms B1 and B2
such that

AdvIND-OT
OTSE (A) ≤ 2

(
AdvMLWR

kLWE+L,kLWR,2ζ ,22η (B1) + AdvMLWE
L,kLWE,η(B2)

)
.

Proof. We will follow a game-hopping proof strategy. Let G0 := Game IND-OT(A,OTSE).
This game is depicted in Figure 7. We modify it into games G1 and G2, depicted
in Figure 8.

Game G0

01 b
$← {0, 1}

02 s̄
$← {0, 1}kLWR

03 (m0,m1)
$← A() //m0,m1 ∈ RL

q

04 d← ⌈Hs̄⌋2ζ→22η

05 (d(0), . . . ,d(2η−1))← ring_to_bin(d, 2η)
06 d† ← Stack(d(0), . . . ,d(2η−1))
07 a← H′B(η)d†

08 c⋆ ← mb + a
09 b′

$← A(c⋆)
10 Return (b = b′)

Fig. 7. Game G0 is the Game IND-OT(A,OTSE).

We can express the advantage of the adversary A in breaking the IND-OT
security of OTSE in terms of the described games:

1

2
AdvIND-OT

OTSE (A) =
∣∣∣∣Pr[b = b′ | A plays in G0]−

1

2

∣∣∣∣
≤ |Pr[b = b′ | A plays in G0]− Pr[b = b′ | A plays in G1]|
+ |Pr[b = b′ | A plays in G1]− Pr[b = b′ | A plays in G2]|

+

∣∣∣∣Pr[b = b′ | A plays in G2]−
1

2

∣∣∣∣ . (7)

We proceed to analyze each of the terms separately.
Game G0 → Game G1.
We describe in Fig. 9 an adversary B1 against MLWR that runs A as a

subroutine and whose advantage is

AdvMLWR
kLWE+L,kLWR,2ζ ,22η (B1) = |Pr[b = b′ | A plays in G0]− Pr[b = b′ | A plays in G1]| .

The adversary B1 receives as input (A, t)
$← Db̄ for some bit b̄, where

Efficient Verifiable Mixnets from Lattices, Revisited 41

Game G1

01 b
$← {0, 1}

02 s̄
$← {0, 1}kLWR

03 (m0,m1)
$← A() //m0,m1 ∈ RL

q

04 d
$←RkLWE+L

22η

05 (d(0), . . . ,d(2η−1))← ring_to_bin(d, 2η)
06 d† ← Stack(d(0), . . . ,d(2η−1))
07 a← H′B(η)d†

08 c⋆ ← mb + a
09 b′

$← A(c⋆)
10 Return (b = b′)

Game G2

01 b
$← {0, 1}

02 s̄
$← {0, 1}kLWR

03 (m0,m1)
$← A() //m0,m1 ∈ RL

q

04 d
$←RkLWE+L

22η

05 (d(0), . . . ,d(2η−1))← ring_to_bin(d, 2η)
06 d† ← Stack(d(0), . . . ,d(2η−1))

07 a
$←RL

q

08 c⋆ ← mb + a
09 b′

$← A(c⋆)
10 Return (b = b′)

Fig. 8. Games G1 and G2. The squared boxes mark the modified line with respect to
the previous game.

Adversary B1(A, t)

Instantiate OTSE with H← A.
01 b

$← {0, 1}
02 (m0,m1)

$← A() //m0,m1 ∈ RL
q

03 d← t
04 (d(0), . . . ,d(2η−1))← ring_to_bin(d, 2η)
05 d† ← Stack(d(0), . . . ,d(2η−1))
06 a← H′B(η)d†

07 c⋆ ← mb + a
08 b′

$← A(c⋆)
09 Return (b⊕ b′)

Fig. 9. Adversary B1 against MLWR. The input (A, t) is the challenge received from
the MLWR challenger.

– D0 := {(A, ⌈As⌋2ζ→22η) : A
$← R(kLWE+L)×kLWR

2ζ
; s

$← {0, 1}kLWR}, and

– D1 := {(A, ⌈u⌋2ζ→22η) : A
$← R(kLWE+L)×kLWR

2ζ
; u

$← RkLWE+L
2ζ

}

and needs to guess b̄. Note that since 22η divides 2ζ , the element u can be directly
sampled in the target ring, so we can equivalently express D1 as

D1 = {(A,u) : A
$← R(kLWE+L)×kLWR

2ζ
; u

$← RkLWE+L
22η }.

Recall that the matrix H in OTSE is sampled uniformly at random. Hence,
when b̄ is 0, the distribution of (A, t) is exactly that of (H,d) in G0, whereas
when b̄ is 1, it is exactly that of (H,d) in G1. This means that B1 perfectly
simulates G0 when b̄ = 0 and G1 when b̄ = 1.

42 J. Bootle et al.

Therefore, denoting by b̄′ the guess of B1, we have that

AdvMLWR
kLWE+L,kLWR,2ζ ,22η (B1) =

∣∣Pr[b̄′ = 0 | b̄ = 0]− Pr[b̄′ = 0 | b̄ = 1]
∣∣

=
∣∣Pr[(b⊕ b′) = 0 | b̄ = 0]− Pr[(b⊕ b′) = 0 | b̄ = 1]

∣∣
=

∣∣Pr[b = b′ | b̄ = 0]− Pr[b = b′ | b̄ = 1]
∣∣

= |Pr[b = b′ | A plays in G0]− Pr[b = b′ | A plays in G1]| .

Game G1 → Game G2.
We now describe in Fig. 10 an adversary B2 against MLWE that runs A as

a subroutine and whose advantage is

AdvMLWE
L,kLWE,η(B2) = |Pr[b = b′ | A plays in G1]− Pr[b = b′ | A plays in G2]| .

Adversary B2(A, t)

Instantiate OTSE with H′ ← (A | IL).
01 b

$← {0, 1}
02 (m0,m1)

$← A() //m0,m1 ∈ RL
q

03 d
$←RkLWE+L

22η

04 (d(0), . . . ,d(2η−1))← ring_to_bin(d, 2η)
05 d† ← Stack(d(0), . . . ,d(2η−1))
06 a← t
07 c⋆ ← mb + a
08 b′

$← A(c⋆)
09 Return (b⊕ b′)

Fig. 10. Adversary B2 against MLWE. The input (A, t) is the challenge received from
the MLWE challenger.

The adversary B2 receives as input (A, t)
$← Db̄ for some bit b̄, where

– D0 = {(A,As+ e) : A
$← RL×kLWE

q ; s
$← BkLWE

η ; e
$← BL

η } .
– D1 = {(A,u) : A

$← RL×kLWE
q ; u

$← RL
q } .

and needs to guess b̄.
Recall that in OTSE, the matrix H′ is of the form H′ = (H′′ | IL), where

H′′ $← RL×kLWE
q . Hence the distribution of H′′ is exactly that of A in both D0

and D1. Accordingly, the adversary B2 sets H′ ← (A | IL).
Let’s now look at the distribution of the pad a. In G1, it is computed as

a ← H′B(η)d†. The vector d† is the result of stacking the bit decomposition
of a uniformly random vector d over R2η. Since the modulus is a power of 2,
the binary coefficients in the elements of d† are uniformly random. Hence, when
multiplying by B(η), the result is distributed exactly according to BkLWE+L

η . This

Efficient Verifiable Mixnets from Lattices, Revisited 43

is then multiplied by H′, so the distribution of (H′,a) in G1 is exactly that of
(A, t) in D0. It is also the case that the distribution of (H′,a) in G2 is exactly
that of (A, t) in D1, as they are both uniformly random.

Therefore, the adversary B perfectly simulates G1 when b̄ = 0 and perfectly
simulates G2 when b̄ = 1. Consequently,

AdvMLWE
L,kLWE,η(B2) =

∣∣Pr[b̄′ = 0 | b̄ = 0]− Pr[b̄′ = 0 | b̄ = 1]
∣∣

=
∣∣Pr[(b⊕ b′) = 0 | b̄ = 0]− Pr[(b⊕ b′) = 0 | b̄ = 1]

∣∣
=

∣∣Pr[b = b′ | b̄ = 0]− Pr[b = b′ | b̄ = 1]
∣∣

= |Pr[b = b′ | A plays in G1]− Pr[b = b′ | A plays in G2]| .

Game G2.
In G2, the pad a that masks the message mb is sampled uniformly at random,

hence also the ciphertext c⋆ ← mb + a is uniformly random. In particular, the
distribution of c⋆ is independent of mb and, hence, is independent of b. Therefore,
the output b′ of A is independent of b, so

Pr[b = b′ | A plays in G2] =
1

2
.

Substituting all the terms in Equation (7), we obtain that

1

2
AdvIND-OT

OTSE (A) ≤ AdvMLWR
kLWE+L,kLWR,2ζ ,22η (B1) + AdvMLWE

L,kLWE,η(B2) . ⊓⊔

D Shuffle of small messages

Lemma 7 is an adaptation of Lemma 4 to the lattice setting, valid whenever the
messages are small. Recall that by Lemma 1, the differences of such messages
are invertible.

Lemma 7. Let R := F1 × · · · × Ft be a product of fields Fi. Let N ∈ N and
let D ⊆ R be a set such that u − v is invertible for all distinct u, v ∈ D. Let
(a1, . . . , aN), (b1, . . . , bN) ∈ DN . If

N∏
i=1

(ai −X) =

N∏
i=1

(bi −X)

over R[X], then
(a1, . . . , aN) ∼P (b1, . . . , bN) .

Proof. We can apply Lemma 4 in the field F1 to obtain a permutation π such
that the equality ai = bπ(i) holds over F1, i.e., looking at the first component of
the elements, for all i ∈ [N].

We argue that the permutation is actually valid over the full ring R, i.e., that
ai = bπ(i) holds over R for all i ∈ [N]. Otherwise, there would exist j ∈ [N] such
that aj ̸= bπ(j), so aj− bπ(j) would be a non-zero divisor of 0, as the difference is
0 over F1. However, since aj , bπ(j) ∈ D, their difference would also be invertible,
leading to a contradiction. ⊓⊔

44 J. Bootle et al.

One might think that Lemma 7 allows for another alternative in the general
case: decompose arbitrary ring elements into smaller parts and prove the per-
mutation of each of the parts separately using Lemma 7. The issue is, however,
that we would need to ensure that all the permutations are consistent across the
parts, in addition to proving the correctness of the decomposition. Given that
overhead, it is generally better to use Lemma 5 directly.

E Security of the Proof of Shuffle

Theorem 3. If ZK⋆ has statistical completeness with completeness error ϵ, then
Protocol 1 has statistical completeness with completeness error ϵ+ 2Nq−n/2.

Proof. The ϵ term in the completeness error comes directly from the complete-
ness error of ZK⋆. The 2Nq−n/2 term comes from the possibility that the ui are
not well defined, i.e., that hi is non-invertible for some i ∈ [N].

We can show that

Pr

[
N⋃
i=1

hi is non-invertible

]
≤ 2Nq−n/2 .

We note that the hi can be expressed as hi = yi − α for some yi ∈ Rq, for
all i ∈ [N], where α

$← C.
We recall that an element in the ring Rq

∼= Zq[x]/(p1) × Zq[x]/(p2) is in-
vertible if, and only if, it is non-zero in each of the fields Zq[x]/pj . With this in
mind, by union bound we have that

Pr

[
N⋃
i=1

hi is non-invertible

]
≤

N∑
i=1

Pr [hi is non-invertible]

=

N∑
i=1

Pr

 2⋃
j=1

hi ≡ 0 mod pj

≤

N∑
i=1

2∑
j=1

Pr [hi ≡ 0 mod pj] ,

where the probability is over the random sampling of

α
$← C := {p ∈ Rq | deg(p) < n/2} .

We fix i ∈ [N], j ∈ [2] and analyze the probability Pr [hi ≡ 0 mod pj]. We
have that

Pr [hi ≡ 0 mod pj] = Pr [yi − α ≡ 0 mod pj] = Pr [yi ≡ α mod pj] .

Since deg (pj) < n/2, there is exactly one possible value of α ∈ C such that
yi ≡ α (mod pj), where |C| = qn/2. Therefore,

Pr [hi ≡ 0 mod pj] = q−n/2 ,

Efficient Verifiable Mixnets from Lattices, Revisited 45

hence,

Pr

[
N⋃
i=1

hi is non-invertible

]
≤ 2Nq−n/2 .

Additionally, we can show that the assignment

ui ← (−1)iγ
i∏

j=1

ĥj

hj
+ θi

is such that

γĥ1 + u1h1 = θ1h1, (8)

ui−1ĥi + uihi = θi−1ĥi + θihi ∀i ∈ {2, . . . , N − 1} and (9)

uN−1ĥN + (−1)NγhN = θN−1ĥN . (10)

For Equation (8), we have that

γĥ1 + u1h1 = γĥ1 + (−γĥ1/h1 + θ1)h1 = θ1h1 .

Regarding Equation (9), for i ∈ {2, . . . , N − 1} it holds that

ui−1ĥi + uihi =

(−1)i−1
i−1∏
j=0

ĥj

hj
+ θi−1

 ĥi +

(−1)i
i∏

j=0

ĥj

hj
+ θi

hi

= θi−1ĥi + θihi .

Lastly, for Equation (10) we observe that (ĥ1 · · · ĥN)/(h1 · · ·hN−1) = hN .
This follows from the fact that

∏N
i=1 hi =

∏N
i=1 ĥi, since

((z1, int_to_bin(1)), . . . , (zN , int_to_bin(N))) ∼P ((ẑ1, σ1), . . . , (ẑN , σN)) .

Then,

uN−1ĥN + (−1)NγhN =

(−1)N−1γ

N∏
j=1

ĥj

hj
+ θN−1

 ĥN + (−1)NγhN

= (−1)N−1γhN + θN−1ĥN + (−1)NγhN

= θN−1ĥN .

⊓⊔

Theorem 4. If ZK⋆ is Special Honest Verifier Zero-Knowledge (SHVZK), then
Protocol 1 is also SHVZK.

46 J. Bootle et al.

Proof. The simulator S receives as input an instance

x = ((c⋆1, . . . , c
⋆
N), (ĉ1, . . . , ĉN),D)

for which there exists a valid witness w (that S ignores) such that (x,w) ∈
Rshuffle. Additionally, S receives challenges α, β, λ, γ ∈ C and the randomness ξ
that the verifier uses in ZK⋆. The simulator needs to output a transcript that
is indistinguishable to that of an honest execution of the protocol with those
challenges, instance and randomness.

The simulator S sets its output as follows:

– P
$← Commit⋆(0, . . . , 0; rP).

– W
$← Commit⋆(0, . . . ,0; rW).

– ui
$← Rq for all i ∈ [N − 1].

– Σ⋆ obtained by running the simulator S⋆ of ZK⋆ on input the instance

x′ = ((c⋆1, . . . , c
⋆
N), (ĉ1, . . . , ĉN), (u1, . . . , uN−1),D,P,W, α, β, λ, γ),

and the verifier’s randomness ξ .

We need to argue that these values are indeed indistinguishable from those
generated in an honest execution of the protocol.

The commitments P and W are indistinguishable from the honestly com-
puted ones because of the hiding property of Com⋆.

The values ui are computed in the protocol as

ui ← (−1)iγ
i∏

j=1

ĥj

hj
+ θi

where θi
$← Rq for all i ∈ [N − 1]. Hence, all the ui look uniformly random, and

so that is how S samples them.
Finally, the transcript Σ⋆ is indistinguishable from an honestly computed one

because of the SHVZK property of ZK⋆. There is one technicality, though, since
S⋆ is only guaranteed to output indistinguishable transcripts for valid instances.
However, the instance x′ provided by S is generally not valid, namely because the
linear relations from ZK⋆ are likely not satisfied by the 0 polynomials that are
inside the commitments. In any case, there exist elements (w†

1, . . . ,w
†
N) such that

the linear equations are satisfied, namely the binary decomposition of the values
on the left hand side of the linear equations. Even though S cannot compute
these values without knowing the witness, suppose that the commitment W was
replaced by a commitment W′ to (w†

1, . . . ,w
†
N). In this case, S⋆ would indeed

output a valid transcript. Now if S⋆ did not output a valid transcript when
receiving W, then the hiding property of Com⋆ would be broken, as S⋆ would
be able to distinguish the commitments W and W⋆. Therefore, the transcript
Σ⋆ is indistinguishable from an honestly computed one based on the SHVZK of
ZK⋆ and the hiding property of Com⋆. ⊓⊔

Efficient Verifiable Mixnets from Lattices, Revisited 47

Theorem 5. Suppose that ZK⋆ has witness extended emulation with knowledge
error κ. Then Protocol 1 has witness extended emulation with knowledge error
at most 2(N + 1)2((L− 1)N + 1)κ+ ((L+ 1)N + 1)q−n/2.

Proof. We design a knowledge extractor E for Protocol 1. Suppose that ZK⋆

is a k-round public-coin interactive argument of knowledge. By Lemma 6, we
know that there exists a tree-finding algorithm running in expected time at
most 2(N + 1)2((L− 1)N + 1)κ executions of A which produces a ((L− 1)N +
1)-(N + 1)-(N + 1)-2-1k-tree of accepting transcripts with probability at least
ϵ− ((L+ 1)N + 1)q−n/2, where ϵ is the success probability of the adversary A.

Remark 1. Strictly speaking, since we do not know the size of the sets from
which the verifier samples their challenges in ZK⋆, we rely on a generalization
of Lemma 6 explained in [6], which addresses differently sized challenge sets.
However, since we only sample a tree of transcripts with arity 1 for the challenges
in ZK⋆, there are no terms in the knowledge error depending on the challange
spaces from ZK⋆.

The E for Protocol 1 runs this tree-finding algorithm, but replaces the parts
corresponding to ZK⋆ with the knowledge extractor for ZK⋆. Since the tree has
2(N +1)2((L− 1)N +1) leaves, this changes the success probability by at most
2(N + 1)2((L− 1)N + 1)κ.

Removing the parts of the tree corresponding to ZK⋆ but leaving the witness
produced by its knowledge extractor gives a ((L−1)N+1)-(N+1)-(N+1)-2 tree
of transcripts for an instance x = ((c⋆1, . . . , c

⋆
N), (ĉ1, . . . , ĉN),D) with a witness

for the relation proved by ZK∗ at each leaf. Namely, at each leaf, there is an
instance

x′ = ((c⋆1, . . . , c
⋆
N), (ĉ1, . . . , ĉN), (u1, . . . , uN−1),D,P,W, α, β, λ, γ) ,

for ZK∗, and a witness

w′ = ((d†
1, · · · ,d

†
N), (σ1, . . . , σN), (w†

1, . . . ,w
†
N), rD, rP, rW)

satisfying the relations from ZK⋆. In particular, we have

is_bin(d†
i) ∧ is_bin(σi) ∧ is_bin(w†

i) ∀i ∈ [N] ,

Verify⋆(D, (d†
1, . . . ,d

†
N), rD) = Verify⋆(P, (σ1, . . . , σN), rP)

= Verify⋆(W, (w†
1, . . . ,w

†
N), rW) = 1 ,

and denoting

zi :=

L∑
j=1

(c⋆i −H′B(η)d†
i)[j] · λ

j−1, ẑi :=

L∑
j=1

ĉi[j] · λj−1 ,

hi := zi + int_to_bin(i) · β − α, ĥi := ẑi + σi · β − α , wi := G(⌈log q⌉)w†
i ,

48 J. Bootle et al.

then

γĥ1 + u1h1 = w1 ,

ui−1ĥi + uihi = wi ∀i ∈ {2, . . . , N − 1} , and (11)

uN−1ĥN + (−1)NγhN = wN .

Fix any leaf of this tree. The leaf has a sibling leaf which corresponds to a
challenge γ′ ̸= γ and an instance

x′′ = ((c⋆1, . . . , c
⋆
N), (ĉ1, . . . , ĉN), (u′

1, . . . , u
′
N−1),D,P,W, α, β, λ, γ′) ,

with witness

w′′ = ((d̃†
1, · · · , d̃

†
N), (σ̃1, . . . , σ̃N), (w̃†

1, . . . , w̃
†
N), r̃D, r̃P, r̃W)

satisfying the relations from ZK⋆. In particular, the witness satisfies

Verify⋆(D, (d̃†
1, . . . , d̃

†
N), r̃D) = Verify⋆(P, (σ̃1, . . . , σ̃N), r̃P)

= Verify⋆(W, (w̃†
1, . . . , w̃

†
N), r̃W) = 1

for the same commitments D,P,W. If w′ ̸= w′′, then the extractor can break
the strong binding property of the commitment scheme. Hence, we can assume
that w′ = w′′. In particular, it must also hold that

γĥ1 + u′
1h1 = w1,

u′
i−1ĥi + u′

ihi = wi ∀i ∈ {2, . . . , N − 1} and (12)

u′
N−1ĥN + (−1)NγhN = wN .

Subtracting both sets of equations (11) and (12), we get that

(γ − γ′)ĥ1 + (u1 − u′
1)h1 = 0,

(ui−1 − u′
i−1)ĥi + (ui − u′

i)hi = 0 ∀i ∈ {2, . . . , N − 1} and

(uN−1 − u′
N−1)ĥN + (−1)N (γ − γ′)hN = 0 .

Equivalently,
ĥ1 h1 0 · · · 0

0 ĥ2 h2 · · · 0
...

...
.

...
0 0 · · · ĥN−1 hN−1

(−1)NhN 0 · · · 0 ĥN

H

γ − γ′

u1 − u′
1

...
uN−2 − u′

N−2

uN−1 − u′
N−1

c

=

0
0
...
0
0

 .

We can show that det(H) = 0. Recall that we denote the decomposition of the
ring into fields as Rq

∼= Zq[x]/p1 × Zq[x]/p2. Let j ∈ {1, 2}. Since γ ̸= γ′ and

Efficient Verifiable Mixnets from Lattices, Revisited 49

deg (γ − γ′) < n/2, it follows that c ̸≡ 0 mod pj . Hence, c is a non-zero vector
such that Hc ≡ 0 over the field Zq[x]/pj , so it must be that det(H) ≡ 0 mod pj .
That holds for both j ∈ {1, 2}, so we obtain that det(F) = 0 in Rq.

Let’s now express the determinant of H in terms of the ĥi’s and hi’s. We can
consider the submatrices

H1 =

ĥ2 h2 · · · 0 0

0 ĥ3
. . . 0 0

...
...

. . .
...

...
0 0 · · · ĥN−1 hN−1

0 0 · · · 0 ĥN

 , H2 =

h1 0 · · · 0 0

ĥ2 h2 · · · 0 0

0 ĥ3 · · · 0 0
...

.
...

...
0 · · · 0 ĥN−1 hN−1

 .

Applying the Laplace expansion of the determinant to the first column of H, we
get that

0 = det(H) = ĥ1 det(H1) + (−1)2N+1hN det(H2) =

N∏
i=1

ĥi −
N∏
i=1

hi .

Consequently,
∏N

i=1 ĥi =
∏N

i=1 hi, i.e.,

N∏
i=1

(zi + int_to_bin(i) · β − α) =

N∏
i=1

(ẑi + σi · β − α) . (13)

Now let β1 := β. The parent node of the previous two nodes, corresponding to
the prover’s message W, has N siblings, with edges corresponding to challenges
βℓ for ℓ ∈ {2, . . . , N + 1}. The nature of the tree implies that βℓ1 ̸= βℓ2 for all
ℓ1 ̸= ℓ2. For those N siblings we can apply the same proof strategy to obtain
witnesses satisfying the same product equality as in Equation (6). Since all these
nodes share the same commitments D and P, those witnesses must contain the
same elements (d†

1, · · · ,d
†
N), (σ1, . . . , σN), or else the extractor can break the

binding property of the commitment scheme.
Overall, we have that

N∏
i=1

(zi + int_to_bin(i) · βℓ − α) =

N∏
i=1

(ẑi + σi · βℓ − α)

for all ℓ ∈ [N + 1]. Lemma 3 implies that

N∏
i=1

(zi + int_to_bin(i) ·X1 − α) =

N∏
i=1

(ẑi + σi ·X1 − α)

since the difference of those polynomials is a polynomial of degree N in Rq[X1]
for which we have found N + 1 roots.

We now let α1 := α and focus on the parent of those N + 1 nodes. This
node also has N + 1 siblings, with edges corresponding to challenges αℓ for

50 J. Bootle et al.

ℓ ∈ {2, . . . , N + 1}, such that αℓ1 ̸= αℓ2 for all ℓ1 ̸= ℓ2. We can apply the same
argument as before to obtain that

N∏
i=1

(zi + int_to_bin(i) ·X1 − αℓ) =

N∏
i=1

(ẑi + σi ·X1 − αℓ)

for all ℓ ∈ [N + 1], and Lemma 3 again implies that

N∏
i=1

(zi + int_to_bin(i) ·X1 −X2) =

N∏
i=1

(ẑi + σi ·X1 −X2) .

Substituting the values of zi and ẑi, we have obtained that

N∏
i=1

 L∑
j=1

(c⋆i −H′B(η)d†
i)[j] · λ

j−1 + int_to_bin(i) ·X1 −X2

=

N∏
i=1

 L∑
j=1

ĉi[j] · λj−1 + σi ·X1 −X2

 . (14)

We finally let λ1 := λ and focus on the parent of those last N + 1 nodes.
This node has (L− 1)N siblings, with edges corresponding to challenges λℓ for
ℓ ∈ {2, . . . , (L − 1)N + 1}, such that λℓ1 ̸= λℓ2 for all ℓ1 ̸= ℓ2. Again for those
(L− 1)N nodes, and the respective subtrees that hang from then, we can apply
the same argument to show that Eq. (14) also has to hold for the challenges λℓ,
with the same witness values d†

i , σi beacuse of binding. Hence, we have that

N∏
i=1

 L∑
j=1

(c⋆i −H′B(η)d†
i)[j] · λ

j−1
ℓ + int_to_bin(i) ·X1 −X2

=

N∏
i=1

 L∑
j=1

ĉi[j] · λj−1
ℓ + σi ·X1 −X2

 .

for all ℓ ∈ [(L− 1)N + 1]. Applying Lemma 3 once more, we obtain that

N∏
i=1

 L∑
j=1

(c⋆i −H′B(η)d†
i)[j] ·X

j−1
3 + int_to_bin(i) ·X1 −X2

=

N∏
i=1

 L∑
j=1

ĉi[j] ·Xj−1
3 + σi ·X1 −X2

 .

Denoting

fi(X3) :=

L∑
j=1

(c⋆i −H′B(η)d†
i)[j] ·X

j−1
3 and f̂i(X3) :=

L∑
j=1

ĉi[j] ·Xj−1
3

Efficient Verifiable Mixnets from Lattices, Revisited 51

for all i ∈ [N], we have that

N∏
i=1

(fi(X3) + int_to_bin(i) ·X1 −X2) =

N∏
i=1

(
f̂i(X3) + σi ·X1 −X2

)
,

where fi(X3), f̂i(X3) ∈ Rq[X3].
Since Rq

∼= Zq[x]/p1 × Zq[x]/p2, we also have that

Rq[X3] ∼= (Zq[x]/p1)[X3]× (Zq[x]/p2)[X3],

where each factor (Zq[x]/pj)[X3] is an integral domain, as Zq[x]/pj is a field. Ad-
ditionally, the set of binary ring elements is such that their differences have norm
at most 2, so Lemma 1 implies that those differences are invertible. Therefore,
we can apply Lemma 5 to obtain that

(f1(X3), . . . , fN (X3)) ∼P (f̂1(X3), . . . , f̂N (X3)) ,

i.e., there exists π ∈ PermN such that f̂i(X3) = fπ(i)(X3) for all i ∈ [N], or
equivalently,

ĉi = c⋆π(i) −H′B(η)d†
π(i)

for all i ∈ [N]. The extractor can hence output w := (π, (d†
1, · · · ,d

†
N), rD). ⊓⊔

	Efficient Verifiable Mixnets from Lattices, Revisited

