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Abstract. Proxy re-encryption (PRE) schemes enable a semi-honest
proxy to transform a ciphertext of one user i to another user j while pre-
serving the privacy of the underlying message. Multi-hop PRE schemes
allow a legal ciphertext to undergo multiple transformations, but for
lattice-based multi-hop PREs, the number of transformations is typi-
cally bounded due to the increase of error terms. Recently, Zhao et al.
(Esorics 2024) introduced a lattice-based unbounded multi-hop (homo-
morphic) PRE scheme that supports an unbounded number of hops.
Nevertheless, their scheme only achieves the selective CPA security. In
contrast, Fuchsbauer et al. (PKC 2019) proposed a generic framework
for constructing HRA-secure unbounded multi-hop PRE schemes from
FHE. Despite this, when instantiated with state-of-the-art FHEW-like
schemes, the overall key size and efficiency remain unsatisfactory.
In this paper, we present a lattice-based unbounded multi-hop PRE
scheme with the stronger adaptive HRA security (i.e. security against
honest re-encryption attacks), which is more suitable for practical appli-
cations. Our scheme features an optimized re-encryption process based
on the FHEW-like blind rotation, which resolves the incompatibility be-
tween the noise flooding technique and Fuchsbauer et al. ’s framework
when instantiated with FHEW-like schemes. This results in reduced stor-
age requirements for public keys and offers higher efficiency. Moreover,
our optimized unbounded multi-hop PRE scheme can be modified to an
unbounded homomorphic PRE, a scheme allowing for arbitrary homo-
morphic computations over fresh, re-encrypted, and evaluated cipher-
texts.

Keywords: Proxy re-encryption · Unbounded multi-hop · HRA security
· LWE

1 Introduction

Proxy re-encryption (PRE), introduced by Blaze et al. [5], is a cryptographic
primitive that allows a semi-honest proxy to transform a ciphertext encrypted
under user i’s key into a ciphertext of the same message encrypted under user j’s
key without revealing the original message. Suppose (pk(i), sk(i)) and (pk(j), sk(j))
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are the key pairs of users i and j, respectively. With pk(j) and the secret key
sk(i), user i can generate and provide a re-encryption key rki→j to a semi-honest
proxy. This enables the proxy to convert the ciphertext ct(i) (encrypted for user
i) into a ciphertext decryptable by user j, denoted as ct(j) (the re-encrypted
ciphertext).

Thanks to this functionality, PRE has found a variety of applications, such
as digital rights management (DRM) [17], encrypted email forwarding [5], dis-
tributed system [3], etc. Numerous PRE schemes have been proposed in the liter-
ature, with the majority relying on classical cryptographic assumptions [16,22].
Among these, there are also quantum-resistant schemes, particularly those based
on lattices [6,20]. In this paper, we mainly focus on lattice-based PRE schemes.

CPA Security and HRA Security. As standard public-key encryption (PKE)
schemes, security against chosen-plaintext attacks (CPA) is a well-established se-
curity notion for PREs. However, CPA security is not adequate in real-world ap-
plication scenarios. In the CPA model, re-encryption queries (which allow the ad-
versary to obtain re-encryptions of non-challenge ciphertexts) and re-encryption
key queries (which return re-encryption keys while preventing trivial attacks)
between an honest user and a corrupted user are prohibited. In practice, adver-
saries may gain access to re-encryptions from honest users to corrupted users.
Cohen [9] demonstrated that this capability could lead to practical attacks on
the lattice-based scheme proposed in [25]. To address this, Cohen introduced a
stronger security model known as security against honest re-encryption attacks
(HRA) [9], which accounts for this adversarial capability and is more applicable
to real-world use-cases of related PREs.

Single-hop and (Un)bounded Multi-hop. According to the re-encryption
times of ciphertexts, PRE can be subdivided into single-hop PRE, where ci-
phertexts can be re-encrypted only once, and multi-hop PRE (mPRE), where
the ciphertexts can undergo multiple re-encryptions (e.g., from user i to user j
and then to user k, and so on). Compared to single-hop PRE, multi-hop PRE
schemes are more practical and desirable, as they offer greater flexibility and
convenience for providing re-encryption services.

For multi-hop PRE schemes based on classical cryptographic assumptions,
such as DDH [22], the number of re-encryptions is typically unbounded. How-
ever, in the lattice setting, each re-encryption introduces additional noise into
the ciphertext, and this cumulative noise increases linearly with the number of
re-encryptions. Thus, to ensure that the final re-encrypted ciphertext remains
decryptable, the number of re-encryptions must be bounded by a predefined
threshold, restricting the flexibility of PRE.

Recently, Zhao et al. [28] introduced a lattice-based unbounded multi-hop
homomorphic PRE (HPRE) scheme by emerging the FHEW bootstrapping pro-
cedure [10] into the re-encryption process, thereby supporting an unbounded
number of re-encryptions. However, this approach suffers from redundancy in
both storage and computation. Additionally, their scheme only achieves selec-
tive CPA security, where the target user is designated at the start of the game,
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and the adversary is prohibited from learning re-encryptions between honest
users and corrupted users, which is impractical in real-world scenarios.

We notice that Fuchsbauer et al. [13] introduced a generic framework for
constructing unbounded mPRE schemes from fully homomorphic encryption
(FHE). In their CPA-secure construction, the encryption algorithm is simply
the corresponding FHE encryption, while the re-encryption can be regard as ho-
momorphically evaluating the decryption circuit of the underlying FHE scheme.
To achieve adaptive HRA security, a sanitization algorithm [11] is applied to
both the encryption and re-encryption processes, ensuring the statistical indis-
tinguishability between fresh ciphertexts and re-encrypted ciphertexts.

One of the main approaches for ciphertext sanitization is Ducas-Stehlé wash-
ing machine [11], which involves a sequence of iterations, each including a re-
randomization procedure followed by the invocation of a bootstrapping algo-
rithm. As mentioned in [11], at least 8 iterations are required to sanitize an
FHEW ciphertext with the original FHEW parameters [10], which may not be
considered secure, and achieving provable security necessitates additional iter-
ations. When applied to Fuchsbauer’s framework, this means that the corre-
sponding PRE scheme must invoke multiple bootstrapping operations for both
encryption and re-encryption, leading to significant costs in terms of both stor-
age and computation. An alternative approach, noise flooding [2], can also be
used for ciphertexts sanitization. However, directly applying it to Fuchsbauer’s
framework with the state-of-the-art FHEW-like schemes [10,18] leads to incom-
patibility (see Section 1.2 for a detailed discussion).

Therefore, this paper seeks to advance both security and efficiency in this
direction by proposing efficient lattice-based unbounded multi-hop PRE schemes
that achieve adaptive HRA security.

1.1 Our Contributions

We primarily focuses on investigating how to design a lattice-based HRA-secure
unbounded multi-hop PRE scheme, and aims to reduce the storage and compu-
tational overhead of both encryption and re-encryption algorithms. The contri-
butions of this paper are summarized as follows:

– We propose a lattice-based unbounded multi-hop PRE scheme with HRA
security in the standard model, supporting an unbounded number of re-
encryptions. More precisely, our scheme achieves HRA security in an adap-
tive manner, which allows the adversary to adaptively designate the target
user and make all oracle queries in the case of HRA.

– We introduce a novel re-encryption method that primarily utilizes an FHEW-
like blind rotation algorithm, addressing the incompatibility of the noise
flooding technique with Fuchsbauer et al. ’s framework. Although the use of
noise flooding technique results in a super-polynomial modulus, rather than
the polynomial modulus in [13, 28], our method still outperforms them in
terms of public key size and computational efficiency. For a detailed analysis
and comparison, please refer to Section 1.2 and Table 1.
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– Additionally, our multi-hop PRE scheme can be extended to a homomorphic
PRE scheme, which enables arbitrary homomorphic computations over fresh,
re-encrypted, and evaluated ciphertexts. Refer to Section 4 for details.

We refer to Table 2 for a comparison of our scheme with other existing multi-
hop PRE schemes.

Schemes Security PK KSK RK Mult

FKKP19 [13] HRA O(n3 log4 n) O(n2.5 log3 n) O(n2.5 log3 n) (3n+ N−n
w

)(κ+ 1)

ZWW24 [28] CPA O(n3.5 log5 n) O(n3.5 log4 n) O(n2 log2 n) 2dr(1− 1
Br

)n

Ours HRA O(n2.75 log3 n) − O(n3 logn) 3n+ N−n
w

Table 1. Key size and computation complexity of [13,28] and ours. The columns “PK”,
“KSK” and “RK” represent the bit size of public keys, key switching keys and re-
encryption keys, respectively. The column “Mult” represents the number of the scalar
multiplications between a polynomial and a vector consisting of RLWE ciphertexts in
one re-encryption. The parameter n is the lattice dimension and also serves as security
parameter, N is the ring dimension, w is the window size satisfying 2N/n−2 < w < n,
κ is the number of iterations in Sanitize algorithm with a minimum value of 8, and Br

is the FHEW bootstrapping base, which breaks integers modulus q into dr digits.

Scheme Assumption Security Ubounded? Adaptive? Homomorphic?

LHAM20 [16] iO CCA ✓ × ×
MPW23 [22] DDH HRA ✓ × ×

CCLN+14 [6] LWE HRA × ✓ ×
LMW17 [20] LWE CPA × ✓ ✓
ZLH24 [29] LWE HRA × ✓ ×

FKKP19 [13] − HRA ✓ ✓ ✓
ZWW24 [28] (R)LWE∗ CPA ✓ × ✓

ours (R)LWE∗ HRA ✓ ✓ ✓

Table 2. Comparison with multi-hop PRE schemes. The “✓” indicates that the scheme
satisfies the corresponding property, while “×” indicates that the scheme does not sat-
isfy it. The column “Adaptive?” asks whether the security models allow the adversary
to designate the target user and make all oracle queries adaptively. “− ” denotes that
the assumption is determined by the underlying FHE scheme. “(R)LWE∗” means that
the corresponding PRE schemes require an additional circular security assumption.
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1.2 Technical Overview

We provide a high-level overview of the construction of our unbounded multi-hop
PRE scheme with HRA security.

Fuchsbauer et al.’s Framework. We provide a brief description of Fuchsbauer
et al.’s generic framework, instantiated with the FHEW-like scheme in [18], which
we denote as GPRE. The public key version of the FHEW-like encryption for
m ∈ {0, 1} under user i’s public key (Ai,bi) is of the form:

cti = (Airi + ei,1,b
⊤
i ri + ei,2 + ⌊

q

4
⌉ ·m),

where ri, ei,1 and ei,2 are small randomness. Assume bi = −A⊤i si + ei with
si the corresponding secret key and q is the ciphertext modulus, we denote the
encryption as P-LWEq,si(m) and its symmetric counterpart as LWEq,si(m). The
encryption in GPRE is represented as ct(i) := Sanitize(cti), where Sanitize de-
notes the sanitization algorithm [11], which involves a sequence of iterations, each
consisting of a re-randomization procedure and a bootstrapping algorithm. The
re-encryption algorithm of GPRE first homomorphically evaluates the FHEW
decryption circuit to transform i’s ciphertext ct(i) into j’s ciphertext with a lower
noise, followed by the Sanitize algorithm. The whole re-encryption algorithm of
GPRE is shown in Fig. 1.

Fig. 1. The re-encryption procedure of GPRE [13]

Note that the input to the Sanitize algorithm in the encryption process is
a public key encryption, whereas in the re-encryption process, as can be seen
from FHEW bootstrapping, the input to Sanitize algorithm is a symmetric LWE
ciphertext of the form: (a,−⟨a, sj⟩ + ⌊ q4⌉ ·m + e), where a and e are random-
ness. Therefore, it’s not possible to directly use the noise flooding technique as
the Sanitize algorithm to achieve statistical indistinguishability between fresh
ciphertexts and re-encrypted ciphertexts, as required for HRA security.

Modified Re-Encryption. The key to addressing the above issue is that the
input ciphertext before noise flooding in the re-encryption process should be
encrypted with the public key, as in encryption. We begin with an original re-
encryption algorithm based on the key switching technique, commonly used in
PRE, which transforms the i’s ciphertext ct(i) = (a(i), b(i)) under the secret key
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si into j’s ciphertext ct(j) under sj :

ct(j) =rki→j ·
[
BitDecomp(a(i))

b(i)

]
=

[
AjRi,j +E′i,j 0n×1

b⊤j Ri,j + e′⊤i,j + Powersof2(si)
⊤ 1

]
·
[
BitDecomp(a(i))

b(i)

]
,

where Ri,j , e
′
i,j and E′i,j are error vectors/matrices. Regardless of whether the

input ciphertext is in the public key or symmetric form, it is clear that the
output of the original re-encryption is always in the public key form. Therefore,
our key observation is that we can reverse the order of key switching and
modulus switching in Fig. 1, and then replace key switching with the original
re-encryption process. In this way, we can apply the noise flooding technique
to sanitize ciphertexts, both in encryption and re-encryption. The re-encryption
algorithm of ours is illustrated in Fig. 2.

Fig. 2. The re-encryption procedure of our scheme

Our modified re-encryption algorithm outperforms [13] and [28] in terms of
both public key size and computation complexity. Specifically, the re-encryption
process in [28] (cf. Fig. 3) consists of two parts: original re-encryption and FHEW
bootstrapping [10]. The re-encryption in [13], which instantiates Sanitize with
Ducas-Stehlé washing method, requires multiple bootstrapping (see the dashed
box in Fig. 3) operations for both encryption and re-encryption. This implies
that, in addition to blind rotation keys required for blind rotation, both public
keys must include additional key switching keys. Furthermore, the public key in
[13] also includes large re-randomization keys to sanitize ciphertexts. In contrast,
our method eliminates the need for additional keys, significantly reducing the
size of public key. Due to the use of noise flooding, a super-polynomial modulus
is employed, resulting in a slightly larger re-encryption key in our scheme, but its
size remains smaller than the public key in [13,28], please refer to Section 3.4 for a
detailed analysis. Notably, the use of only one LMKC+ blind rotation [18] in our
re-encryption achieves significantly better efficiency compared to the methods
in [13,28].Adaptive HRA Security. The core idea of our proof follows the FKKP frame-
work [13], which demonstrates that a multi-hop PRE scheme satisfying indis-
tinguishability (IND), weak key-privacy (wKP) and source-hiding (SH) is also
adaptive HRA-secure. The IND security, which requires the indistinguishability
of ciphertexts for adversary who has no access to re-encryption keys or secret
keys, follows from the semantic security of the underlying FHEW scheme. We
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Fig. 3. The re-encryption procedure of [28]

then show that the honestly generated re-encryption key rki→j in our scheme can
be indistinguishably changed into a simulated one from the view of an adversary
who has no knowledge of sk(i), thereby proving wKP security. Finally, the use
of the noise flooding technique ensures statistical indistinguishability between
fresh ciphertexts and re-encrypted ciphertexts, thereby establishing SH security.

1.3 Related Works

Blind Rotation. Blind rotation is a key technique for constructing FHEW [10]
and TFHE [7, 8] bootstrapping algorithms. The AP blind rotation method, in-
troduced by Alperin-Sheriff and Peikert [1], supports arbitrary secret key dis-
tribution but requires a large evaluation key size. The GINX blind rotation
method [14] features a significantly smaller evaluation key size but is practi-
cal only for binary and ternary secrets. Recently, Lee et al. [18] proposed an
automorphism-based blind rotation method that supports arbitrary secret key
distributions, while using small evaluation keys.

Multi-hop PRE. Chandran et al. [6] introduced the first multi-hop unidirec-
tional PRE scheme from program obfuscation, achieving selective obfuscation-
based security. Subsequently, [27] presented a multi-hop PRE scheme with se-
lective CPA security. Later, Cohen [9] demonstrated that CPA security is in-
adequate for PRE and proposed a stronger security definition known as HRA
security. Fuchsbauer et al. [13] presented a generic framework to construct HRA-
secure multi-hop PRE schemes from FHE. More recently, Miao et al. [22] pro-
posed a multi-hop HRA-secure PRE scheme under the DDH assumption that
supports an unbounded number of re-encryptions, but at the cost that the cipher-
text length grows linearly with the number of re-encryptions. Zhou et al. [29]
introduced the first lattice-based multi-hop fine-grained PRE scheme, offering
fine-grained re-encryption capabilities with HRA security.

HPRE. Homomorphic PRE is an extension of PRE that enables homomorphic
evaluation over ciphertexts under the same public key. Ma et al. [21] introduced
a unidirectional single-hop HPRE scheme with CPA security based on the LWE
assumption. Then, Li et al. [19] proposed the first lattice-based multi-hop HPRE
scheme with strong anti-collusion property. Note that all these HPRE schemes
support a bounded number of re-encryptions. More recently, Zhao et al. [28]
proposed a lattice-based unbounded multi-hop FPRE scheme that supports an
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unbounded number of re-encryptions. However, their scheme only achieves se-
lective CPA security.

2 Preliminaries

Notations. Throughout this paper, we set N to be a positive integer of a power
of 2, and set R := Z[X]/(XN + 1). For a positive integer q, denote Zq := Z/qZ
and Rq := R/qR. We denote column vectors by bold lower-case letters (e.g. a)
and matrices by bold capital letters (e.g. A). For i, j ∈ N with i < j, define
[i, j] := {i, i + 1, · · · , j} and [i] := {1, 2, · · · , i}. Symbol x $←− D denotes that a
random variable x is sampled from a distribution D, and whenever D is a finite
set, it indicates x is sampled from a uniform distribution over D. Let ⌊·⌋ (⌈·⌉) be
the floor (ceiling) function, and define ⌊·⌉ := ⌊·+ 1

2⌋. We use negl(n) to represent a
negligible function (w.r.t n). For two sets X and Y, let X△Y be their symmetric
difference. We only consider directed acyclic graphs G = (V, E) with vertices V
and edges E ⊆ V2 in this paper, and say a vertex j is reachable from another
vertex i if there is a directed path from i to j in G. Symbol G(n, δ, d) represents
the set consisting of all directed acyclic graphs with n vertices, outdegree δ and
depth d. We use children(i, G) to denote the set of vertices j such that (i, j) ∈ E .

2.1 Lattices and Gaussian Distributions

For s > 0 and c ∈ Rn, the Gaussian function ρs,c : Rn → R is defined by
ρs,c(x) := e−π∥x−c∥

2/s2 . A discrete Gaussian distribution over Zn isDZn,s,c(x) :=
ρs,c(x)/

∑
y∈Zn ρs,c(y), with parameters omitted when s = 1 and c = 0. No-

tice that DZn,s = (DZ,s)
n. We say a distribution D (over Zn) is B-bounded if

Pr[x
$←− D : ∥x∥ ≥ B] ≤ negl(n). It is known that DZn,s is

√
n · s-bounded, and

DZ,s is log n · s-bounded [23]. We also need the following lemma.

Lemma 1 (Smudging Lemma [2]). Let B1, B2 ∈ N, for any e1 ∈ [−B1, B1],
let E1 and E2 be independent random variables uniformly distributed on [−B2, B2]
and define the two stochastic variables X1 = E1 + e1 and X2 = E2. Then the
statistical distance ∆(X1, X2) <

B1

B2
.

Ever since introduced by Regev [26], the LWE problem (and its variants
Ring/Module LWE problem) has become a fundamental problem in lattice-based
cryptography. For n,m, q ∈ N, and a noise distribution χ over Z, the (normal
form, decision) LWE problem, denoted by LWEm

n,q,χ, is to distinguish (A,As+e)

from (A,u), where A
$←− Zm×n

q , s $←− χn, e $←− χm and u
$←− Zm

q . For any PPT
adversary A, its advantage of attacking LWEm

n,q,χ is defined as

AdvA(LWEm
n,q,χ) := |Pr[A(A,As+ e) = 1]− Pr[A(A,u) = 1]|.

For suitable parameters, there are (quantum) reductions from worst-case lattice
problems (e.g. SIVPγ) to corresponding LWE problems [26]. Also, by using a
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standard hybrid argument, it is possible to show that decision LWE problems
with multiple secrets, denoted by k-LWEm

n,q,χ, are also hard. Namely, it is hard

to distinguish (A,A · S+ E) from (A,U), where A
$←− Zm×n

q , S $←− χn×k, E $←−
χm×k and U

$←− Zm×k
q . Similar results also hold for RLWE problems over R for

our purpose (and we use the so-called coefficient embedding).

2.2 Useful Algorithms in FHEs

Let’s briefly review several algorithms we require. For more details, please refer
to App. A.

Let l = ⌈log q⌉. For any x ∈ Zq, we define BitDecomp(x) := (x0, · · · , xl−1)⊤ ∈
{0, 1}l with

∑l−1
i=0 xi · 2i. Also, we define Powersof2(y) := (y, 2 · y, · · · , 2l−1 ·

y)⊤ ∈ Zl
q. It is easy to verify that BitDecomp(x)⊤ ·Powersof2(y) = x ·y (mod q).

Similarly, for any vectors x,y ∈ Zn
q , BitDecomp(x)⊤ · Powersof2(y) = ⟨x,y⟩

(mod q). We will use the following useful algorithms:

– SampleExtract(c): On input an RLWE ciphertext c = (a, b = −a ·s+m+e) ∈
R2

q, output an LWE ciphertext of the form (a, b = −⟨a, s⟩ + m0 + e0) ∈
ZN
q × Zq, where a is related to a, s is the coefficient vector of s, m0 and e0

are the constant terms of polynomials m and e, respectively.
– ModSwitchQ,q(ct): On input an LWE ciphertext ct = (a, b) ∈ ZN

Q ×ZQ under
a modulus Q, it outputs an LWE ciphertext ct′ = (⌊ qQ ·a⌉, ⌊

q
Q ·b⌉) ∈ ZN

q ×Zq

under a modulus q. Similarly, ModSwitchoddQ,q(ct) outputs ct′ = (⌊ qQ ·a⌉odd, ⌊
q
Q ·

b⌉odd) ∈ ZN
q × Zq, where ⌊x⌉odd is the nearest odd integer to x.

– KeySwitch(ksks→t, ct): On input an LWE ciphertext ct = (a, b) ∈ Zn
q ×Zq of

a messagem under the secret key s ∈ Zn
q and the key switching key ksks→t =

{LWEq,t(kB
i
kssj)}k∈[0,Bks−1],i∈[0,dks−1],j∈[n] where dks = ⌈logBks

q⌉, it com-
putes aj,i such that aj =

∑
i aj,iB

i
ks for all i, j and outputs ct′ = (0, b) +∑

i,j LWEq,t(aj,iB
i
kssj) (mod q).

The blind rotation algorithm we use to control error expansion is the LMKC+
blind rotation algorithm [18]. We summarize related results in Lemma 2, and
the detailed LMKC+ algorithm BlindRotate is described in App. A.2.

Lemma 2 (LMKC+ Blind Rotation [18]). Let n, q,Q,Bg, w, dg be integers
such that 8|Q and dg = ⌈logBg

Q⌉, and let r be a positive real. Then there exists
an algorithm BrKeyGen that takes secret keys s ∈ Zn

q and z ∈ RQ as inputs
and outputs a blind rotation key brk of size 2dg(2n+w + 1)N logQ bits. Here,
brk consists of a group of fresh RLWE ciphertexts with error distribution DR,r.
Meanwhile, for a test polynomial testP ∈ RQ, given an all-odd LWE ciphertext
ct = (a, b) ∈ Zn

2N×Z2N under the secret key s ∈ Zn
q , the blind rotation algorithm

BlindRotate(testP, ct,brk) outputs an RLWE ciphertext (ã,−ã · z + ebr + testP ·
Xb+⟨a,s⟩) for some ã ∈ RQ with ∥ebr∥∞ ≤ (3n+ N−n

w ) · dg ·Bg ·N · r · log n.
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3 Multi-hop Proxy Re-Encryption

In this section, we first review the definition and security models of mPREs.
Then, we present our unbounded mPRE construction and analyze its security.
Finally, we give a brief comparison between schemes in [13,28] and ours.

3.1 Definitions and Security Models

Recall that an mPRE scheme consists of a tuple of PPT algorithms

mPRE = {Setup,KeyGen,Enc,ReKeyGen,ReEnc,Dec}.

Here, Setup(1λ) takes a security parameter λ as input and outputs a set of
public parameters pp 3. The key generation algorithm KeyGen(·) generates a
public/secret key pair (pk(i), sk(i)) for user i. Anyone can use Enc(pk(i),m) to
generate a ciphertext ct(i) for user i. A user i can use ReKeyGen(sk(i), pk(j))
to generate a re-encryption key rki→j from himself to another user j with the
help of his secret key sk(i). With a re-encryption key rki→j , a semi-honest proxy
could invoke ReEnc(pk(i), rki→j , ct

(i)) to convert i’s ciphertext into one that can
be decrypted by j. The algorithm Dec(sk(i), ct(i)) is used for decryption.

The correctness requires that for any pp ← Setup(1λ), any (pk(i), sk(i)) ←
KeyGen(·), any message m ∈ M and ciphertext ct(i) ← Enc(pk(i),m), it holds
that Pr[Dec(sk(i), ct(i)) ̸= m] ≤ negl(λ). Meanwhile, it also requires that for any
L ∈ N (note that this reflects the unbounded property), any pp ← Setup(1λ),
any (pk(ij), sk(ij)) ← KeyGen(·) for j ∈ [0, L], ct(i0) ← Enc(pk(i0),m) with any

m ∈ M, and re-encryption hops ct(i0)
rki0→i1−−−−−→ ct(i1)

rki1→i2−−−−−→ · · ·
rkiL−1→iL−−−−−−−→

ct(iL), in which

rkij−1→ij ← ReKeyGen(sk(ij−1), pk(ij)) and ct(ij) ← ReEnc(pk(ij−1), rkij−1→ij , ct
(ij−1)),

it holds that for all j ∈ [0, L], Pr[Dec(sk(ij), ct(ij)) ̸= m] ≤ negl(λ).

HRA Security. We consider the adaptive HRA security for mPREs as in [13],
and define corresponding security game (denoted by ExpHRAmPRE,A,n) in Fig. 4.

Definition 1 (HRA security for multi-hop PRE). An mPRE scheme mPRE
is HRA secure, if for any PPT adversary A and any polynomial n, it holds that
AdvHRAmPRE,A,n(λ) := |Pr[Exp

HRA
mPRE,A,n = 1]− 1

2 | ≤ negl(λ).

In ExpHRAmPRE,A,n, we use CheckTA(i∗,Qrk,Qc) = 1 to indicate that there exists
a chain of index pairs (i∗, j1, ·), (j1, j2, ·), · · · , (jt−1, jt, ·) ∈ Qrk such that jt ∈ Qc

for some t ≥ 1, and 0 otherwise. This condition ensures the exclusion of all pos-
sible trivial attacks for ExpHRAmPRE,A,n. However, in general cases, the information
recorded in Qrk may be too complicated for one to perform CheckTA(i∗,Qrk,Qc)
in PPT. This is the main reason why we leverage the FKKP framework to
prove adaptive HRA security of our mPREs. As a result, the reduction loss in
3 For simplicity, we regard pp as a default input of other algorithms, and will omit it.
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ExpHRAmPRE,A,n :

Initial. Initialize an empty set Qrk to record re-encryption key queries and certain
re-encryption queries that meet specific conditions. Initialize empty sets Qc,L,L∗

to record corruption queries, honestly generated ciphertexts, and derivatives of
the challenge ciphertext respectively. It also maintains an index i∗ of the challenge
user which is initialized to be ⊥ and a counter ctr which is initialized to be 0.
Setup. The challenger C runs pp ← Setup(1λ), (pk(i), sk(i)) ← KeyGen(·) for
i ∈ [n] and returns public keys {pk(i)}i∈[n] to the adversary A.
Query phase 1. The adversary A can adaptively query the following oracles:

– Re-encryption key oracle OReKey(i, j): Upon receiving an index pair (i, j), if
there exists (i, j, ·) in Qrk, C retrieves (i, j, rki→j) from Qrk and returns rki→j

to A. Else, if CheckTA(i∗,Qrk ∪ {(i, j, ·)},Qc) = 1, C returns ⊥ to A. Other-
wise, C generates re-encryption key rki→j ← ReKeyGen(sk(i), pk(j)), records
(i, j, rki→j) in Qrk, and returns rki→j to A.

– Corruption oracle OCor(i): On input an index i, if CheckTA(i∗,Qrk,Qc∪{i}) =
0 and i ̸= i∗, C records i in Qc and returns sk(i) to A. Otherwise, C returns
⊥.

– Encryption oracle OEnc(i,m): Upon receiving an index i and a message m,
the challenger C computes ct(i) ← Enc(pk(i),m), increments ctr, then records
(ctr, i,m, ct(i)) in L and returns (ctr, ct(i)) to A.

– Re-encryption oracleOReEnc(i, j, k): On input indexes i, j and a counter number
k, if (k, i) ∈ L∗ and CheckTA(i∗,Qrk ∪ {(i, j, ·)},Qc) = 1, C returns ⊥. Else,
if C fails to retrieve (k, i,m, ct′) from L, C returns ⊥. Otherwise, C computes
rki→j ← ReKeyGen(sk(i), pk(j)) and ct(j) ← ReEnc(pk(i), rki→j , ct

(i)), then
increments ctr and records (ctr, j,m, ct(j)) in L. Additionally, if (k, i) ∈ L∗, C
adds (ctr, j) to L∗ and (i, j, rki→j) to Qrk. Finally, returns (ctr, ct(j)) to A.

Challenge phase. Upon receiving a challenge query (i∗,m0,m1, st) from A, if
i∗ ∈ Qc or CheckTA(i∗,Qrk,Qc) = 1, C returns a bit b

$←− {0, 1}. Otherwise, C
chooses a random bit β ∈ {0, 1} and computes ct∗ ← Enc(pk(i∗),mβ). Then, C
increments ctr, records (ctr, i∗,mβ , ct

∗) in L and (ctr, i∗) in L∗. Finally, C returns
ct∗ to A.
Query phase 2. A can continue to make adaptive queries as in Query phase 1.
Guess. A outputs a bit β′, the experiment outputs 1 if β′ = β and 0 otherwise.

Fig. 4. The HRA security experiment ExpHRAmPRE,A,n

corresponding HRA security proof will be inevitably large for complex DAGs.
Nerveless, we remark that other mPREs may suffer similar problems [12,22], as
they all rely on computational assumptions to establish security and require the
challenger to exclude “trivial wins” in corresponding security games within PPT.

Below, we recall three security notions from the FKKP framework [13] that
are used to prove adaptive HRA security of multi-hop PRE.
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Indistinguishability. The IND security of multi-hop PRE considers the indis-
tinguishability of ciphertexts in a multi-challenge setting, where the adversary
is given no re-encryption keys.

Definition 2 (IND Security [13,29]). An mPRE scheme mPRE is IND secure,
if for any PPT adversary A, it holds that AdvINDmPRE,A(λ) := |Pr[ExpINDmPRE,A =

1]− 1
2 | ≤ negl(λ), where ExpINDmPRE,A is defined in Fig. 5.

ExpINDmPRE,A :

pp← Setup(1λ) OCHAL(m0,m1)

(pk, sk)← KeyGen(pp) ct← Enc(pk,mβ)

β
$←− {0, 1} Return ct

β′ ← AOCHAL(·,·)(pk)
If β′ = β : Return 1;Else: Return 0

Fig. 5. The indistinguishability experiment ExpIND
mPRE,A for mPRE.

Weak Key-Privacy. Roughly speaking, the wKP security requires that there
exists a PPT algorithm ReKeyGen∗ which can simulate the generation of re-
encryption keys rk0→j without the knowledge of sk(0).

Definition 3 (wKP Security [13, 29]). An mPRE scheme mPRE has weak
key-privacy, if there exists a PPT simulation algorithm ReKeyGen∗ such that for
any PPT adversary A and any polynomial n, it holds that AdvwKPmPRE,A,n(λ) :=

|Pr[ExpwKPmPRE,A,n = 1]− 1
2 | ≤ negl(λ), where ExpmPRE,A,n is defined in Fig. 6.

ExpwKPmPRE,A,n : OReKey(j ∈ [n])

pp← Setup(1λ) If (j, ·) ∈ Qrk

For i ∈ [0, n] : (pk(i), sk(i))← KeyGen(pp) Retrieve (j, rk0→j) and return rk0→j

Qrk := ∅ Else:
β

$←− {0, 1} If β = 0 :

β′ ← AOReKey(·,·)({pk(i)}i∈[0,n]) rk0→j ← ReKeyGen(sk(0), pk(j))
If β′ = β : Return 1; Else: Return 0 Else :

rk0→j ← ReKeyGen∗(pk(j))
Qrk := Qrk ∪ {(j, rk0→j)}
Return rk0→j

Fig. 6. The weak key-privacy experiment ExpwKPmPRE,A,n for mPRE.

Source-Hiding. Roughly speaking, the SH security requires fresh ciphertexts
to be statistically indistinguishable from re-encrypted ciphertexts, even if the
adversary is given the secret keys for the source and target public keys, as well
as the corresponding re-encryption keys.
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Definition 4 (SH Security). An mPRE scheme mPRE has the property of
source-hiding, if for any (unbounded) adversary A, it holds that AdvSHmPRE,A(λ) :=

|Pr[ExpSHmPRE,A = 1]− 1
2 | ≤ negl(λ), where ExpSHmPRE,A is defined in Fig. 7.

ExpSHmPRE,A : OEnc(m)

pp← Setup(1λ) ctr := ctr + 1

(pk(0), sk(0))← KeyGen(pp) ct(0) ← Enc(pk(0),m)

(pk(1), sk(1))← KeyGen(pp) L := L ∪ {(ctr,m, ct(0))}
rk0→1 ← ReKeyGen(sk(0), pk(1)) Return (ctr, ct(0))
L := ⊥
ctr := 0 OCHAL(k)

β
$←− {0, 1} Retrieve (k,m, ct(0))

β′ ← AOEnc(·),OCHAL(·)(pk(0), pk(1), sk(0), sk(1), rk0→1) If fails, return ⊥
If β′ = β : Return 1 If β = 0 :

Else: Return 0 ct(1) ← ReEnc(pk(0), rk0→1, ct
(0))

If β = 1 :

ct(1) ← Enc(pk(1),m)

Return ct(1)

Fig. 7. The source-hiding experiment ExpSHmPRE,A for mPRE.

Below, we revisit the theorem from [13] that provides a generic framework
for achieving adaptive HRA security of mPREs. Notably, in the proof reduction,
the number of challenge queries QCHAL in IND experiment is 1.

Theorem 1 (IND+wKP+SH =⇒ HRA for multi-hop PRE [13]). If
an mPRE scheme mPRE has IND,wKP and SH security, then it is also HRA
secure. More precisely, for any polynomial n, for any PPT adversary A that
makes at most polynomial queries to OReKey and OReEnc, and forms a chal-
lenge graph G 4 in G(n, δ, d), there exist PPT algorithms B,B′, and B′′ such
that AdvHRAmPRE,A,n(λ) ≤ (AdvINDmPRE,B(λ) + 2τ · AdvwKPmPRE,B′(λ)) · nσ+δ+1 + 2n(n −
1)(QE + QRE)QRE · AdvSHmPRE,B′′(λ), where QRE and QE are the upper bounds of
the OReEnc and OEnc queries, δ denotes the outdegree, d the depth, τ and σ denote
the time complexity and space complexity of the pebbling game (see App. A.3 for
more details) for G(n, δ, d), respectively.

3.2 Construction of Our Unbounded mPREs

In this subsection, we use the following parameters:

– A positive integer n, representing the dimension of lattices/LWE problems,
is also used as the security parameter for simplicity; a power of two integer
N represents the RLWE dimension, two moduli q and Q with 8|Q (one for
plain LWE and one for RLWE), an integer l = ⌈log q⌉.

4 Note that the users [n] and Qrk form a directed graph in ExpHRAmPRE,A,n, we define the
subgraph that is reachable from the challenger user as the challenge graph.
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– A base integer Bg with dg := ⌈logBg
Q⌉, a window size w < n such that

N < (w2 + 1) · n, a test polynomial testP := Q
8 ·X

3N
4 (1 +X + · · · +XN−1)

and a distribution χ̃ = DZ,r̃ for BrKeyGen (See Lemma 2 for more details).
– χ̂ = DZ,r̂ is a distribution for corresponding LWE problems.
– χ = DZ,r is a distribution with r satisfying[

q

Q
(3n+

N − n
w

)dgBgNr̃ log n+Nr̂ log n(l +
1

2
) + 1

]
/r log n = negl(n),

which are mainly used for showing that fresh ciphertexts are indistinguish-
able from re-encrypted ciphertexts by using the error smudging lemma.

To ensure the correctness of encryption and re-encryption, we require

q ≥ 8N

N − 4(1 + nr̂ log n)
·
[
q

Q
· (3n+

N − n
w

)dgBgNr̃ log n+
1 +Nr̂ log n

2

+ r log n+ 2nr̂r +Nl · (2n · r̂2 + r̂ log n)

]
.

A possible choice of parameters is: N = O(n1.5 log n), r̃ = O(
√
n), Q =

O(2
4
√
n·logn · n3), r̂ = O(

√
n), r = O(2

4
√
n · n2.25), dg = O(log n). Given the

parameters defined above, it’s evident that q = O(2
4
√
n · n3.75) is sufficient. We

set r̂ = r′·q ≥ 2
√
n, and a possible choice for r′ is O(2−

4
√
n·n−3.25). Consequently,

there exists a quantum reduction from worst-case SIVPγ to LWE problem for
γ = O( n

r′ ) = O(2
4
√
n · n4.25). Therefore, our scheme is HRA secure, assuming the

hardness of SIVP
O(2

4√n·n4.25)
5 problem and circular security assumption.

Our unbounded mPRE scheme with HRA security is proposed as follows:

– Setup(·): It selects large enough n (and N), and outputs the public parameter
pp = (n,N, q,Q, χ, χ̂, χ̃, l, w,Bg, dg, testP) as defined above.

– KeyGen(·): It generates public/secret keys of user i as follows: (1) Sample a
polynomial zi ∈ RQ with coefficients obeying to χ̂, and sample si

$←− χ̂n; (2)

Sample Ai
$←− Zn×n

q , ei
$←− χ̂n, and compute bi = −A⊤i si+ei ∈ Zn

q ; (3) Run
BrKeyGen(si, zi) to generate blind rotation keys brk(i) as in Lemma 2; (4)

Set p̃k
(i)

= (Ai,bi) ∈ Zn×n
q × Zn

q , and output pk(i) = {p̃k
(i)
,brk(i)} and

sk(i) = (si, z̄i), where z̄i is the coefficient vector of zi.
– Enc(pk(i),m): On input the public key pk(i) and a message m ∈ {0, 1}, it

randomly chooses ri, ei,1
$←− χn and ei,2

$←− χ. Then, it returns a ciphertext
ct(i) = (a(i), b(i)) ∈ Zn

q × Zq where a(i) = Airi + ei,1 ∈ Zn
q and b(i) =

b⊤i ri + ei,2 + ⌊ q4⌉ ·m ∈ Zq.

5 Notice that this bound is normal as security of HEs are usually based on non-
standard LWE assumptions with the ratio of Gaussian parameters and modulus
being super-polynomial [1, 8, 28].
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– ReKeyGen(sk(i), pk(j)): On input the secret key sk(i) of a user i, and the
public key pk(j) of another user j, it samples Ri,j ,E

′
i,j

$←− χ̂n×Nl and e′i,j
$←−

χ̂Nl. Then, it outputs the re-encryption key:

rki→j =

[
AjRi,j +E′i,j 0n×1

b⊤j Ri,j + e′⊤i,j + Powersof2(z̄i)
⊤ 1

]
∈ Z(n+1)×(Nl+1)

q .

– ReEnc(pk(i), rki→j , ct
(i)): On input the public key pk(i), the re-encryption

key rki→j and a ciphertext ct(i), it generates a ciphertext ct(j) of user j as
follows:
• Run ModSwitchoddq,2N (ct(i)) to obtain an LWE ciphertext čt(i) = (ǎ(i), b̌(i))
∈ Zn

2N × Z2N under the secret si;
• Run BlindRotate(čt

(i)
,brk(i), testP) to obtain an RLWE ciphertext c̃(i) ∈

R2
Q under the secret key zi by using Lemma 2;

• Run SampleExtract(c̃(i) + (0, Q8 )) to obtain an LWE ciphertext ĉt
(i)

=

(â(i), b̂(i)) ∈ ZN
Q × ZQ under the secret key z̄i;

• Run ModSwitchQ,q(ĉt
(i)
) to obtain an LWE ciphertext c̄t(i) = (ā(i), b̄(i)) ∈

ZN
q × Zq under the same secret key z̄i;

• Sample r̄j , ēj,1
$←− χn, ēj,2

$←− χ, output a ciphertext ct(j) = (a(j), b(j)) ∈
Zn
q × Zq for j, where a(j) and b(j) are generated as follows:[

a(j)

b(j)

]
= rki→j ·

[
BitDecomp(ā(i))

b̄(i)

]
+

[
Aj r̄j + ēj,1
b⊤j r̄j + ēj,2

]
∈ Zn+1

q .

– Dec(sk(i), ct(i)): On input the secret key sk(i) and a ciphertext ct(i) = (a(i),
b(i)), it outputs m = ⌊ 4q · (b

(i) + s⊤i a
(i))⌉.

3.3 Correctness and Security

Let’s begin by analyzing the correctness of our scheme.

Correctness of Fresh Ciphertexts. For a fresh ciphertext ct(i) = (a(i), b(i))
generated by Enc(pk(i),m), we have a(i) = Airi + ei,1 ∈ Zn

q and b(i) = b⊤i ri +
ei,2 + ⌊ q4⌉ ·m ∈ Zq. Therefore, we can obtain that

⌊4
q
· (b(i) + s⊤i a

(i))⌉ = ⌊4
q
· (b⊤i ri + ei,2 + ⌊

q

4
⌉ ·m+ s⊤i Airi + s⊤i ei,1)⌉

= ⌊m+
4

q
· (e⊤i ri + ei,2 + s⊤i ei,1 + ε)⌉.

Here ε ∈ (− 1
2 ,

1
2 ], and we can recover the original message m as long as

|e(i)| := |e⊤i ri + ei,2 + s⊤i ei,1 + ε| < (2n · r̂ + log n) · r + 1

2
<
q

8
.

Correctness of Re-Encrypted Ciphertexts. For a re-encrypted ciphertext
ct(j) generated by ReEnc(pk(i), rki→j , ct

(i)) where rki→j ← ReKeyGen(sk(i), pk(j))
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and ct(i) ← Enc(pk(i),m), let’s analyze the re-encryption process. It first com-
putes an all-odd LWE ciphertext čt(i) = (ǎ(i), b̌(i)) with modulus 2N satisfying
that b̌(i) + ⟨ǎ(i), si⟩ = ⌊ 2Nq b

(i)⌉odd + ⟨⌊ 2Nq a(i)⌉odd, si⟩ = N
2 m + 2N

q e
(i) + e

(i)
ms1,

where e(i)ms1 = (⌊ 2Nq b
(i)⌉odd− 2N

q b
(i))+ ⟨⌊ 2Nq a(i)⌉odd− 2N

q a(i), si⟩. After the blind
rotation algorithm, we obtain an RLWE ciphertext

c̃(i) = (ã(i),−ã(i) · zi + e
(i)
br + testP ·X

N
2 m+ 2N

q e(i)+e
(i)
ms1) ∈ R2

Q

for some ã(i) ∈ RQ with ∥e(i)br ∥∞ ≤ (3n + N−n
w ) · dgNBg r̃ · log n by Lemma 2.

Notice that testP = Q
8 ·X

3N
4 (1+X+· · ·+XN−1), as long as | 2Nq e

(i)+e
(i)
ms1| < N

4 ,

the constant term of testP ·X
N
2 m+ 2N

q e(i)+e
(i)
ms1 is exactly −Q

8 if m = 0 and Q
8 if

m = 1. Then, according to the sample extraction algorithm, the LWE ciphertext
ĉt

(i)
= (â(i), b̂(i)) ← SampleExtract(c̃(i) + (0, Q8 )) satisfies that b̂(i) + ⟨â(i), z̄i⟩ =

Q
4 ·m + e

(i)
br,0 (mod Q), where e(i)br,0 is the constant term of e(i)br . After modulus

switching, the ciphertext c̄t(i) = (ā(i), b̄(i))← ModSwitchQ,q(ĉt
(i)
) satisfies that

b̄(i) + ⟨ā(i), z̄i⟩ =
q

4
·m+

q

Q
· e(i)br,0 + e

(i)
ms2 (mod q),

where e(i)ms2 = (⌊ qQ b̂
(i)⌉− q

Q b̂
(i))+⟨⌊ qQ â(i)⌉− q

Q â(i), z̄i⟩. Let esum = q
Q ·e

(i)
br,0+e

(i)
ms2,

then we have[
a(j)

b(j)

]
=

[
AjRi,j +E′

i,j 0n×1

b⊤
j Ri,j + e′⊤

i,j + Powersof2(z̄i)
⊤ 1

]
·
[
BitDecomp(ā(i))

b̄(i)

]
+

[
Aj r̄j + ēj,1

b⊤
j r̄j + ēj,2

]
=

[
Aj [Ri,jBitDecomp(ā(i)) + r̄j ] +E′

i,jBitDecomp(ā(i)) + ēj,1

b⊤
j [Ri,jBitDecomp(ā(i)) + r̄j ] + e′⊤

i,jBitDecomp(ā(i)) + esum + ēj,2 +
q
4
·m

]
.

As a result,

b(j) + ⟨a(j), sj⟩ =
q

4
·m+ esum + ēj,2 + s⊤j ēj,1 + s⊤j E

′
i,jBitDecomp(ā(i))

+ e⊤
j (Ri,jBitDecomp(ā(i)) + r̄j) + e′⊤

i,jBitDecomp(ā(i)) (mod q).

Then by a similar argument, the decryption algorithm recovers m as long as

|e(j)| :=|esum + ēj,2 + s⊤j ēj,1 + (s⊤j E
′
i,j + e⊤

j Ri,j + e′⊤
i,j)BitDecomp(ā(i)) + e⊤

j r̄j |

<
q

Q
· (3n+

N − n

w
)dgBgNr̃ logn+

1 +Nr̂ logn

2
+ r logn

+ 2nr̂r +Nl · (2n · r̂2 + r̂ logn) <
q

8
. (1)

Suppose that ct(j) is further re-encrypted to ct(k) ← ReEnc(pk(j), rkj→k, ct
(j)),

where rkj→k ← ReKeyGen(sk(j), pk(k)). For the correctness of BlindRotate(čt(j),
brk(j), testP), we further need that | 2Nq e

(j) + e
(j)
ms1| < N

4 , i.e.,

2N

q

[
q

Q
· (3n+

N − n
w

)dgBgNr̃ log n+
1 +Nr̂ log n

2
+ r log n

+ 2nr̂r +Nl · (2n · r̂2 + r̂ log n)

]
+ 1 + nr̂ log n <

N

4
. (2)
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Note that the input ciphertext ct(j) is refreshed after the blind rotation proce-
dure and the error e(j)br of the ciphertext c̃(j) ← BlindRotate(ct(j), brk(j), testP)

is independent from the input error 2N
q e

(j) + e
(j)
ms1. By a similar analysis, the

decryption recovers m with the same requirement as the single-hop ciphertext
ct(j). Therefore, our mPRE scheme is correct for our choice of q that satisfies (2).

Below we demonstrate the adaptive HRA security of our mPRE scheme by
showing the corresponding IND security, wKP security and SH security.

Theorem 2 (IND security of mPRE). Under the LWE, RLWE and circular
security assumptions, our mPRE scheme is IND secure. More precisely, for any
PPT adversary A that makes at most QCHAL queries to OCHAL, there exist PPT
algorithm B and B′′ against the LWE assumption such that

AdvINDmPRE,A(n) ≤ AdvB(LWEn
n,q,χ̂) +QCHAL · AdvB′′(LWEn+1

n,q,χ).

Proof (Proof Sketch). The IND security requires the indistinguishability of the ci-
phertext for adversary who has no knowledge of re-encryption keys or secret keys.
Therefore, it suffices to show the semantic security of the underlying scheme, i.e.
the challenge ciphertext is computationally indistinguishable from a uniform
distribution. A detailed proof is provided in App. B.1.

Theorem 3 (wKP security of mPRE). Under the LWE, RLWE and corre-
sponding circular security assumptions, our mFHE scheme has wKP security.
More precisely, for any PPT adversary A and for any polynomial n, there exist
PPT algorithms B and B′ against the LWE assumption such that

AdvwKPmPRE,A,n(n) ≤ n · (AdvB(LWEn
n,q,χ̂) +Nl · AdvB′(LWEn+1

n,q,χ̂)).

Proof (Proof Sketch). This proof is somewhat straightforward as a re-encryption
key rki→j is “encryptions” of z̄i under public keys of an “honest” user j. Given
that wKP security ensures that honestly generated re-encryption key rki→j can
be indistinguishably replaced with a simulated one from the view of an adversary
who have no knowledge of sk(i), one could demonstrate this via several hybrid
games under the LWE assumption. The formal proof is detailed in App. B.2.

Theorem 4 (SH security of mPRE). Our mPRE scheme has source-hiding
property, i.e., for any adversary A, it holds that AdvSHmPRE,A(n) ≤ negl(n).

Proof (Proof Sketch). To prove the SH security, it is sufficient to show the hon-
estly re-encrypted ciphertext is statistically indistinguishable from a fresh en-
crypted one. Note that the re-encryption from user 0 to user 1 is of the form:

ct
(1)

=

[
A1[R0,1BitDecomp(ā(0)) + r̄1] + E′

0,1BitDecomp(ā(0)) + ē1,1

b⊤
1 [R0,1BitDecomp(ā(0)) + r̄1] + e′⊤

0,1BitDecomp(ā(0)) + esum + ē1,2 + er + ⌊ q4 ⌉m

]
,

where R0,1,E
′
0,1

$←− χ̂n×Nl, e′0,1
$←− χ̂Nl, r̄1, ē1,1

$←− χn, ē1,2
$←− χ and |er| < 1

2 . Un-
der our parameter selection, we can ensure that r̄1 smudges R0,1BitDecomp(ā(0)),
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ē1,1 smudges E′0,1BitDecomp(ā(0)), and ē1,2 smudges esum+e′⊤0,1BitDecomp(ā(0))+
er by error smudging lemma. As a result, the honestly re-encrypted ciphertext
is statistically indistinguishable from a fresh encrypted one. The formal proof is
provided in App. B.3.

Combining Theorem 1 with Theorem 2, Theorem 3, and Theorem 4, we have
the following corollary showing the HRA security of our mPRE scheme.

Corollary 1 (HRA security of mPRE). Under the LWE, RLWE and circular
security assumptions, our mPRE scheme is HRA secure. More precisely, for any
PPT adversary A that makes at most polynomial queries to OReKey and OReEnc

oracles, and forms a challenge graph G in G(n, δ, d), there exist PPT algorithms
B,B′ and B′′ against the LWE assumption such that

AdvHRAmPRE,A,n(n) ≤nσ+δ+1[(2τn+ 1) · AdvB(LWEn
n,q,χ̂) + 2τnNl · AdvB′(LWEn+1

n,q,χ̂)

+ AdvB′′(LWEn+1
n,q,χ)] + negl(n),

where δ denotes the outdegree, d the depth, τ and σ denote the time complexity
and space complexity of the pebbling game for the class G(n, δ, d), respectively.

3.4 Complexity Analysis

The comparison of the key sizes and computational complexity between [13,28]
and ours is shown in Table 1. Since [13] only provides a framework for the PRE
construction, we instantiate it using the same blind rotation techniques as ours,
along with the Ducas-Stehlé washing machine [11]. The key sizes of all schemes
are expressed as functions of the security parameter n. The re-encryption key
in our scheme is slightly larger than those in [13, 28], due to the fact that our
re-encryption algorithm operates on i’s ciphertext under a secret key z̄i ∈ ZN

q ,
rather than under si ∈ Zn

q . In contrast, our scheme does not require the key
switching algorithm used in bootstrapping, thus eliminates the need to include
key switching keys in the public key, compared to [13, 28]. Additionally, [13]
requires approximately O(n3 log4 n) bits to store O(N logQ) LWE encryptions
with modulus Q and dimension N in the public key, which are used as re-
randomization keys for ciphertext sanitization. Overall, the public key size in
our scheme outperforms that of [13,28].

We measure the computational complexity of the re-encryption algorithm in
terms of the number of the scalar multiplications between a polynomial in RQ

and a vector consisting of RLWE ciphertexts, denoted by “⊙”, as the cost of these
operations dominates the total computational complexity (see App. A for more
details). Specially, each “⊙ ” requires exactly (dg + 1) NTT operations and we
choose a large base Bg to keep the magnitude of dg comparable to that in [13,28].
As illustrated in [18], the number of “⊙ ” in our re-encryption algorithm is less
than [13,28], thereby achieving a better computational complexity.
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4 Homomorphic PRE

Homomorphic proxy re-encryption is an extension of PRE that integrates the
benefits of both homomorphic encryption (HE) and PRE. Adding the following
evaluation algorithm HomNAND, our mPRE scheme can be naturally extended to
a homomorphic PRE, which enables arbitrary homomorphic computations over
original, re-encrypted, and evaluated ciphertexts. Note that we only present the
homomorphic evaluation of a NAND gate, as it is universal and any circuit can
be evaluated through NAND gates compositions.

– HomNAND(evk(i), ct
(i)
1 , ct

(i)
2 ): On input the evaluation key evk(i) = {brk(i),

kskz̄i→si}, ciphertexts ct(i)1 = (a
(i)
1 , b

(i)
1 ) and ct

(i)
2 = (a

(i)
2 , b

(i)
2 ) correspond-

ing to messages m1,m2 ∈ {0, 1}, respectively. The algorithm generates a
ciphertext ct(i) of message m1 ⊼m2 as follows:
• Run ModSwitchoddq,2N (ct

(i)
1 + ct

(i)
2 ) to obtain an LWE ciphertext čt(i).

• Let testP′ = −Q
8 ·X

N
4 (1+X+ · · ·+XN−1), run BlindRotate(čt

(i)
,brk(i),

testP′) to obtain an RLWE ciphertext c̃(i) ∈ R2
Q.

• Run SampleExtract(c̃(i) + (0, Q8 )) to obtain an LWE ciphertext ĉt
(i) ∈

ZN
Q × ZQ under the secret key z̄i.

• Run KeySwitch(ĉt
(i)
,kskz̄i→si) to obtain an LWE ciphertext c̄t(i) ∈ Zn

Q×
ZQ under the secret key si.

• Run ModSwitchQ,q(c̄t
(i)
) to obtain the LWE ciphertext ct(i) ∈ Zn

q × Zq.

Correctness. The correctness of our homomorphic PRE scheme can be proved
in a manner similar to that of mPRE. For more details, please refer to App. C.
Security. The circular security assumption guarantees the usage of blind ro-
tation keys and key switching keys. Therefore, our homomorphic PRE scheme
remains HRA secure under same assumptions.

5 Conclusion

In this paper, we propose a lattice-based HRA-secure unbounded multi-hop PRE
scheme that supports an unbounded number of re-encryptions, making it more
suitable for practical scenarios. We introduce a modified re-encryption method
that reduces both storage and computation costs. Moreover, our scheme can
be extended to an unbounded HPRE scheme by adding a homomorphic NAND
gate evaluation algorithm. An interesting open problem is how to construct an
unbounded multi-hop fine-grained PRE scheme with HRA security to achieve
fine-grained re-encryption capabilities.
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Appendix

A Additional Preliminaries

A.1 Basic Lattice-based Encryption

For positive integers Q and a power of two N , the basic RLWE encryption of
m ∈ R under the secret key z is defined as RLWEz = (a,−a · z +m+ e) ∈ R2

Q.
For a base integer Bg and a degree dg ≥ 1, the gadget vector is defined by g =
(g0, · · · , gdg−1). A gadget decomposition of t ∈ RQ is defined as (t0, · · · , tdg−1)

if t =
∑dg−1

i=0 gi · ti where ∥ti∥∞ < Bg for i ∈ [0, dg − 1]. For a gadget vector g,
we define RLWE′z(m) and RGSWz(m) as follows [24]:

RLWE′z(m) := (RLWEz(g0 ·m),RLWEz(g1 ·m), · · · ,RLWEz(gdg−1 ·m)) ∈ R2dg

Q ,

RGSWz(m) := (RLWE′z(z ·m),RLWE′z(m)) ∈ R2×2dg

Q .

The scalar multiplication “ ⊙ ” between a polynomial in RQ and RLWE′

ciphertext is defined as

t⊙ RLWE′z(m) = ⟨(t0, · · · , tdg−1), (RLWEz(g0 ·m), · · · ,RLWEz(gdg−1 ·m))⟩

=

dg−1∑
i=0

ti · RLWEz(gi ·m) = RLWEz(t ·m) ∈ R2
Q.

The error introduced by “ ⊙ ” is e⊙ =
∑dg−1

i=0 ti · ei, where ei is the error term
in RLWEz(gi ·m).

The multiplication “ ⊛ ” between RLWE ciphertext and RGSW ciphertext
is defined as

RLWEz(m1)⊛ RGSWz(m2) = (a, b)⊛ (RLWE′z(z ·m2),RLWE′z(m2))

= a⊙ RLWE′z(z ·m2) + b⊙ RLWE′z(m2)

= RLWEz(m1 ·m2 + e1 ·m2)

≈ RLWEz(m1 ·m2) ∈ R2
Q.

The error term e1 ·m2 will be sufficiently small if using m2 = ±Xv as messages,
then the error term after “⊛ ” is 2e⊙ + e1, where e1 is the error variance of the
input RLWE ciphertext.

A.2 The LMKC+ Blind Rotation Algorithm

The LMKC+ blind rotation algorithm [18] utilizes the automorphism algorithm,
which can apply the automorphism ψ : R → R given by a(X) 7→ a(Xt) for
t ∈ Z∗2N and transform an RLWE ciphertext RLWEz(m(X)) into the RLWE
ciphertext RLWEz(m(Xt)).
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– EvalAutot(RLWEz(m),akt): Given a ciphertext RLWEz(m) = (a(X), b(X))
and an automorphism key akt = RLWE′z(z(X

t)), it first applies ψt to
RLWEz(m) to obtain a ciphertext RLWEz(Xt)(m(Xt)) = (a(Xt), b(Xt)),
and then, it outputs RLWEz(m(Xt)) = a(Xt)⊙ akt + (0, b(Xt)) (mod Q).

We give a detailed LMKC+ blind rotation algorithm in Alg. 1.

Algorithm 1 LMKC+ Blind Rotation with odd Input: BlindRotate [18]
Input: A test polynomial testP ∈ RQ, an all-odd LWE ciphertext (a, b) ∈ Zn

2N × Z2N

under the secret s, and blind rotation keys brk = {ak−g, {akgu}u∈[w], {brkj =
RGSWz(X

sj )}j∈[0,n−1]}.
Output: An RLWE ciphertext RLWEz(testP ·Xb+⟨a,s⟩).
1: acc← (0, testP(X−g) ·X−gb))
2: v ← 0
3: for (l = N/2− 1; l > 0; l = l − 1) do
4: for i ∈ I−l do
5: acc← acc⊛ brki

6: v ← v + 1
7: if (I−l−1 ̸= ∅ or v = w or l = 1) then
8: acc← EvalAutogv (acc,akgv )
9: v ← 0

10: for i ∈ I−0 do
11: acc← acc⊛ brki

12: acc← EvalAuto−g(acc,ak−g)
13: for (l = N/2− 1; l > 0; l = l − 1) do
14: for i ∈ I+l do
15: acc← acc⊛ brki

16: v ← v + 1
17: if (I+l−1 ̸= ∅ or v = w or l = 1) then
18: acc← EvalAutogv (acc,akgv )
19: v ← 0
20: for i ∈ I+0 do
21: acc← acc⊛ brki

22: return: acc = RLWEz(testP ·Xb+⟨a,s⟩)

A.3 Pebbling Game

The reversible pebbling game on DAG (Directed Acyclic Graph) was originally
introduced in [4] to model reversible computation. Below we recall a variant
proposed in [15] for its application to PRE.

Definition 5 (Pebbling Game [15]). A reversible pebbling of a directed acyclic
graph G = (V, E) with a unique source vertex i∗ is a sequence P := (P0, · · · ,Pτ )
of pebbling configurations Pt ⊆ V with t ∈ [0, τ ]. Two subsequent configurations
differ only in one vertex and the following rule is respected in a move: a pebble
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can be placed on or removed from a vertex if and only if all its children carry a
pebble. That is, P is a valid sequence iff

∀t ∈ [τ ],∃!k ∈ Pt−1△Pt and children(k,G) ⊆ Pt−1.

Starting with an empty graph (i.e., P0 = ∅), the goal of the game is to place a
pebble on the source (i.e., i∗ ∈ Pτ ).

For a DAG G, let PG denote the set of all valid reversible pebbling sequences
for G. The time complexity of a particular sequence P = (P0, · · · ,Pτ ) for a DAG
G is defined as τG(P) := τ , and its space complexity is defined as σG(P) :=
max
t∈[0,τ ]

|Pt|.

For a class of DAGs G, it has time complexity τ and space complexity σ if for
all G ∈ G, there exists a sequence P ∈ PG such that τG(P) ≤ τ and σG(P) ≤ σ.

B Omitted Proofs

Note that the circular security assumption guarantees the security with the usage
of blind rotation keys, as in [28], and we will no longer consider blind rotation
keys in the following proofs for simplicity.

B.1 Proof of Theorem 2

Proof (Proof of Theorem 2). We prove the theorem via games G0, G1 and G2.

Game G0: This is the IND experiment (cf. Fig. 5). Let Win denote the event
that β′ = β. By definition, AdvINDmPRE,A(n) = |Pr0[Win]− 1

2 |.
6

In this game, the challenger runs the KeyGen algorithm to generate (pk, sk),
where pk = p̃k = (A,b) ∈ Zn×n

q × Zn
q for b = −A⊤s+ e and sk = (s, z̄). Then

the challenger chooses a random bit β $←− {0, 1} and answers A’s OCHAL queries
(m0,m1) with ct← Enc(pk,mβ), i.e. ct = (a, b) ∈ Zn

q ×Zq where a = Ar+ e1 ∈
Zn
q and b = b⊤r+ e2 + ⌊ q4⌉ ·mβ ∈ Zq.

Game G1: It’s the same as G0, except that the public key pk = (A,b) is sampled
from the uniform distribution over Zn×n

q × Zn
q . Note that the public key pk in

G0 is (A,b), where b = −A⊤s+e. Under the LWEn
n,q,χ̂ assumption, we get that

|Pr1[Win]− Pr0[Win]| ≤ AdvB(LWEn
n,q,χ̂).

Game G2: It’s the same as G1, except for the reply to OCHAL(m0,m1), now the

challenger returns a uniformly sampled ct $←− Zn
q ×Zq to A, which is independent

of the bit β. Therefore, Pr2[Win] = 1
2 .

Now we construct a PPT adversary B′′ against the LWEn+1
n,q,χ assumption to

show that |Pr2[Win]− Pr1[Win]| ≤ QCHAL · AdvB′′(LWEn+1
n,q,χ).

6 In this paper, we use Pri[Win] to denote the probability of a particular event occur-
ring in game Gi.
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Algorithm B′′: Given a challenge (Ā,U), B′′ wants to distinguish U = ĀS +

E from U
$←− Z(n+1)×QCHAL

q , where Ā
$←− Z(n+1)×n

q , S
$←− χn×QCHAL and E

$←−
χ(n+1)×QCHAL .
B′′ is constructed by simulating G1/G2 as follows. B′′ sets pk = (A,b) ∈

Zn×n
q × Zn

q where (A⊤,b)⊤ = Ā, and returns pk to A. Then B′′ chooses a

random bit β $←− {0, 1} and parses U = (u1| · · · |uQCHAL
) with ui ∈ Zn+1

q . On A’s
i-th OCHAL(m0,m1) query, B′′ computes ct := ui + (0, ⌊ q4⌉ ·mβ)

⊤ and returns ct
to A. Finally, A returns a bit β′ and B′′ outputs 1 to its challenger iff β′ = β.

Now we analyze the advantage of B′′. In the case of U = ĀS + E, we have
ui = Āsi+ei, where si ∈ Zn

q and ei ∈ Zn+1
q are the i-th column vector of S and

E respectively. Then the ciphertext ct = Āsi + ei + (0, ⌊ q4⌉ ·mβ)
⊤, which is the

same as G1. In the case of U $←− Z(n+1)×QCHAL
q , we have ct = uk + (0, ⌊ q4⌉ ·mβ)

⊤

for uk
$←− Z(n+1)

q , which is the same as G2. Consequently, B′′ simulates G1 in the
case of U = ĀS + E and simulates G2 in the case of U $←− Z(n+1)×QCHAL

q , then
it’s easy to see that |Pr2[Win]− Pr1[Win]| ≤ QCHAL · AdvB′′(LWEn+1

n,q,χ).
Therefore, AdvINDmPRE,A(n) ≤ AdvB(LWEn

n,q,χ̂) +QCHAL ·AdvB′′(LWEn+1
n,q,χ), and

Theorem 2 follows.

B.2 Proof of Theorem 3

Proof (Proof of Theorem 3). We prove the theorem via a sequence of Game G0−
Gn, where G0 is the wKP experiment, and in Gn, A has a negligible advantage.

Game G0: This is the wKP experiment (cf. Fig. 6). Let Win denote the event
that β′ = β. By definition, AdvwKPmPRE,A,n(n) = |Pr0[Win]− 1

2 |.

Let pk(i) = p̃k
(i)

and sk(i) = (si, z̄i) denote the public key and secret key of
user i ∈ [0, n], respectively. In this game, the adversary A is given {pk(i)}i∈[0,n],
the challenger chooses a random bit β $←− {0, 1} and answers A’s OReKey queries
(j ∈ [n]) as follows: If there exists (j, ·) in Qrk, then the challenger retrieves
(j, rk0→j) and returns rk0→j to A. Otherwise,

– If β = 0, the challenger invokes rk0→j ← ReKeyGen(sk(0), pk(j)) and returns

rk0→j to A. More precisely, it samples R0,j ,E
′
0,j

$←− χ̂n×Nl, e′0,j
$←− χ̂Nl and

returns

rk0→j =

[
AjR0,j + E′

0,j 0n×1

b⊤
j R0,j + e′⊤

0,j + Powersof2(z̄0)
⊤ 1

]
∈ Z(n+1)×(Nl+1)

q .

– If β = 1, the challenger invokes rk0→j ← ReKeyGen∗(pk(j)) which is defined
as

ReKeyGen∗ : R
$←− Z(n+1)×Nl

q and rk0→j =
[
R 0n×1

1

]
∈ Z(n+1)×(Nl+1)

q .

Then the challenger records (j, rk0→j) in Qrk and returns rk0→j to A.

Game Gt, t ∈ [n]: It’s the same as G0, except for the generation of public keys
{pk(i)}i∈[t] and the reply to A’s OReKey(j) query when β = 0,
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1) For all i ∈ [t], the challenger now generates the public key pk(i) = (Ai,bi)

by uniformly sampling Ai
$←− Zn×n

q and bi
$←− Zn

q .
2) The challenger answers A’s OReKey(j) query when β = 0 as follows:

– For j ≤ t, the challenger uniformly samples R
$←− Z(n+1)×Nl

q to get the
re-encryption key rk0→j =

[
R 0n×1

1

]
∈ Z(n+1)×(Nl+1)

q .
– For j > t, the challenger answers the query just like G0.

Now we show that for t ∈ [n], Gt−1 and Gt are computationally indistinguish-
able under the LWE assumption.

Lemma 3. |Prt−1[Win] − Prt[Win]| ≤ AdvB(LWEn
n,q,χ̂) + Nl · AdvB′(LWEn+1

n,q,χ̂)
for all t ∈ [n].

Proof. We prove the lemma by defining a new experiment Gt−1,1.

Game Gt−1,1: It’s the same as Gt−1, except that the public key pk(t) is changed

into (At,bt) where At
$←− Zn×n

q and bt
$←− Zn

q .
Firstly, we show that Gt−1 and Gt−1,1 is computationally indistinguishable

under the LWE assumption. Note that the only difference between Gt−1 and
Gt−1,1 is the generation of the public key pk(t) of user t. In Gt−1, pk(t) = (At,bt)

where At
$←− Zn×n

q and bt = −A⊤t st+et ∈ Zn
q for st, et ∈ χ̂n. In Gt−1,1, (At,bt)

is uniformly distributed over Zn×n
q ×Zn

q . Therefore, there exists a PPT adversary
B against the LWEn

n,q,χ̂ assumption such that

|Prt−1,1[Win]− Prt−1[Win]| ≤ AdvB(LWEn
n,q,χ̂). (3)

Then we construct a PPT adversary B′ against the Nl-LWEn+1
n,q,χ̂ assumption,

such that |Prt−1,1[Win]− Prt[Win]| ≤ Nl · AdvB′(LWEn+1
n,q,χ̂).

Algorithm B′. Given a challenge (A,U), B′ wants to distinguish U = AS+E

from U
$←− Z(n+1)×Nl

q , where A
$←− Z(n+1)×n

q , S $←− χ̂n×Nl and E
$←− χ̂(n+1)×Nl.

B′ is constructed by simulating Gt−1,1/Gt for A as follows. Firstly, B′ sets
pk(t) = (At,bt) ∈ Zn×n

q ×Zn
q where (A⊤t ,bt)

⊤ = A for the user t. For the users

i ∈ [t − 1], B′ sets pk(i) = (Ai,bi) where (Ai,bi)
$←− Zn×n

q × Zn
q , and honestly

generates secret key sk(i). Then B′ invokes KeyGen algorithm to honestly generate
(pk(i), sk(i)) for users i ∈ [0, n]\[t] and sends {pk(i)}i∈[0,n] to A. After that, B′

initializes an empty set Qrk and chooses a random bit β $←− {0, 1}. On receiving
the OReKey(j ∈ [n]) query from A, if there exists (j, ·) in Qrk, then the challenger
retrieves (j, rk0→j) and returns rk0→j to A. Else, if β = 1, B′ invokes ReKeyGen∗

to obtain rk0→j and gives it to A. Otherwise, B′ answers the OReKey(j ∈ [n]) as
follows:

- For j ≤ t − 1, B′ samples R
$←− Z(n+1)×Nl

q to get the re-encryption key
rk0→j =

[
R 0n×1

1

]
.

- For j = t, B′ returns re-encryption key: rk0→j =
[
U +

(
0n×1

Powersof2(z̄0)
⊤

)
0n×1

1

]
.
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- For j > t, B′ samples R0,j ,E
′
0,j

$←− χ̂n×Nl and e′0,j
$←− χ̂Nl and returns the

re-encryption key:

rk0→j =

[
AjR0,j + E′

0,j 0n×1

b⊤
j R0,j + e′⊤

0,j + Powersof2(z̄0)
⊤ 1

]
∈ Z(n+1)×(Nl+1)

q .

Finally, A outputs a bit β′, and B′ outputs 1 to its challenger iff β′ = β.
Now we analyze the advantage of B′. In case of U = AS + E, B′′ perfectly

simulates Gt−1,1. In case of U
$←− Z(n+1)×Nl

q , U+
(

0n×1

Powersof2(z̄0)
⊤

)
is also uni-

formly distributed over Z(n+1)×Nl
q , then B′ perfectly simulates Gt. Therefore,

|Prt[Win]− Prt−1,1[Win]| ≤ AdvB′(Nl-LWEn+1
n,q,χ̂) ≤ Nl · AdvB′(LWEn+1

n,q,χ̂). (4)

Combining (3) and (4), we complete the proof of Lemma 3.

Finally, in Gn, the challenger’s reply to A’s OReKey query in β = 0 is identical
to that in the case of β = 1. Therefore we have Prn[Win] = 1

2 . Combining this
with Lemma 3, we complete the proof of Theorem 3.

B.3 Proof of Theorem 4

Proof (Proof of Theorem 4). In the SH experiment (cf. Fig. 7), let sk(i) = (si, z̄i)
and pk(i) = (Ai,bi) where bi = −A⊤i si+ei for the user i ∈ {0, 1}. The challenger
invokes rk0→1 ← ReKeyGen(sk(0), pk(1)) and initializes L := ⊥, ctr := 0. Then
the challenger chooses a random bit β $←− {0, 1} and answers A’s OEnc and OCHAL

queries as follows:

– On receiving the encryption query OEnc(m), the challenger increments ctr
and runs Enc(pk(0),m) to generate the ciphertext ct(0). Then the challenger
records (ctr,m, ct(0)) in L and returns (ctr, ct(0)) to A.

– On receiving the challenge query OCHAL(k), the challenger first retrieves
(k,m, ct(0)) and returns ⊥ if fails; otherwise, the challenger answers the query
as follows:
• If β = 0, the challenger runs ReEnc(pk(0), rk0→1, ct

(0)) to generate the
re-encryption ciphertext ct(1), i.e.,

ct
(1)

=

[
A1[R0,1BitDecomp(ā(0)) + r̄1] + E′

0,1BitDecomp(ā(0)) + ē1,1

b⊤
1 [R0,1BitDecomp(ā(0)) + r̄1] + e′⊤

0,1BitDecomp(ā(0)) + esum + ē1,2 + q
4m

]
(5)

where R0,1,E
′
0,1

$←− χ̂n×Nl, e′0,1
$←− χ̂Nl, r̄1, ē1,1

$←− χn and ē1,2
$←− χ.

• If β = 1, the challenger runs Enc(pk(1),m) to generate the fresh cipher-
text ct(1), i.e.,

ct
(1)

=

[
A1r1 + e1,1

b⊤
1 r1 + e1,2 + ⌊ q4 ⌉ ·m

]
, (6)

where r1, e1,1
$←− χn and e1,2

$←− χ.
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By the smudging lemma (cf. Lemma 1), as long as [ qQ (3n+N−n
w )dgBgNr̃ log n

+ 1+Nr̂ logn
2 +Nlr̂ log n+ 1

2 ]/(r log n) = negl(n), the re-encryption ciphertext ct(1)

in (5) and the fresh encryption ct(1) in (6) are statistically indistinguishable.
Combining with the fact that the number of OCHAL queries from A is at most
polynomial, A has a negligible advantage in distinguishing β = 0 and β = 1.
Therefore, with our proper choice of parameters, AdvSHmPRE,A(n) ≤ negl(n), and
Theorem 4 follows.

C The Correctness of Our Homomorphic PRE

For ciphertext ct(i)j = (a
(i)
j , b

(i)
j ) satisfying that b(i)j + ⟨a(i)j , si⟩ = q

4 ·mj + e
(i)
j for

j ∈ [2], we will show the decryption of ct(i) results in m1 ⊼m2.
More precisely, the re-encryption algorithm first computes an all-odd LWE

ciphertext čt(i) = (ǎ(i), b̌(i)) with modulus 2N satisfying that

b̌(i) + ⟨ǎ(i), si⟩ = ⌊
2N

q
(b

(i)
1 + b

(i)
2 )⌉odd + ⟨⌊

2N

q
(a

(i)
1 + a

(i)
2 )⌉odd, si⟩

=
N

2
(m1 +m2) +

2N

q
(e

(i)
1 + e

(i)
2 ) + e

(i)
ms1,

where e(i)ms1 is the rounding error introduced by ModSwitchoddq,2N . After the blind
rotation algorithm, we have

c̃(i) = (ã(i),−ã(i) · zi + e
(i)
br + testP′ ·X

N
2 (m1+m2)+

2N
q (e

(i)
1 +e

(i)
2 )+e

(i)
ms1) ∈ R2

Q.

As long as | 2Nq (e
(i)
1 +e

(i)
2 )+e

(i)
ms1| < N

4 , the constant term of the underlying mes-
sage of c̃(i) is equal to −Q

8 if m1 = m2 = 1; otherwise, it’s equal to Q
8 . According

to the sample extraction algorithm, the LWE ciphertext ĉt
(i)

= (â(i), b̂(i)) ←
SampleExtract(c̃(i) + (0, Q8 )) satisfies that

b̂(i) + ⟨â(i), z̄i⟩ =
Q

4
· (m1 ⊼m2) + e

(i)
br,0,

where e(i)br,0 is the constant term of blind rotation error e(i)br .
After key switching and modulus switching algorithms, we finally obtain a

ciphertext ct(i) = (a(i), b(i)) ∈ Zn
q × Zq satisfying that

b(i) + ⟨a(i), si⟩ =
q

4
· (m1 ⊼m2) + e(i),

where e(i) = q
Q · (e

(i)
br,0 + e

(i)
ks ) + e

(i)
ms2, with e

(i)
ks and e

(i)
ms2 being the error terms

introduced by KeySwitch and ModSwitchQ,q algorithms, respectively. As a result,
the decryption algorithm recovers m1 ⊼m2 as long as

|e(i)| < q

Q
·
[
(3n+

N − n
w

)dgBgNr̃ log n+Ndksr̂ log n

]
+

1 + nr̂ log n

2
<
q

8
.
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Note that the input ciphertexts can be fresh, evaluated, or re-encrypted ci-
phertexts, it’s evident to see that re-encrypted ciphertexts have the largest error
terms. To support further re-encryptions or homomorphic evaluations, and as
shown in (1), our unbounded multi-hop HPRE scheme is correct as long as
| 2Nq (e1 + e2) + ems1| < N

4 for two re-encrypted ciphertexts with errors e1 and
e2, i.e.,

4N

q
·
[
q

Q
· (3n+

N − n
w

)dgBgNr̃ log n+
1 +Nr̂ log n

2
+ r log n

+ 2nr̂r +Nl · (2n · r̂2 + r̂ log n)

]
+ 1 + nr̂ log n <

N

4
.
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