
MultiCent: Secure and Scalable Centrality Measures on
Multilayer Graphs

Andreas Brüggemann

Technical University of Darmstadt

Germany

brueggemann@encrypto.cs.tu-darmstadt.de

Nishat Koti

Aztec Labs

India

nishat@aztec-labs.com

Varsha Bhat Kukkala

IIT Tirupati

India

varshabhat@iittp.ac.in

Thomas Schneider

Technical University of Darmstadt

Germany

schneider@encrypto.cs.tu-darmstadt.de

Abstract

As real-world networks such as social networks and computer

networks are often complex and distributed, modeling them as

multilayer graphs is gaining popularity. For instance, when study-

ing social interactions across platforms like LinkedIn, Facebook,

TikTok, and Bluesky, users may be connected on several of these

platforms. To identify important nodes/users, the platforms might

wish to analyze user interactions using, e.g., centrality measures

when accounting for connections across all platforms. That raises

the challenge for platforms to perform such computation while

simultaneously protecting their user data to shelter their own busi-

ness as well as uphold data protection laws. This necessitates de-

signing solutions that allow for performing secure computation on

a multilayer graph which is distributed among mutually distrusting

parties while keeping each party’s data hidden.

The work of Asharov et al. (WWW’17) addresses this problem

by designing secure solutions for centrality measures that involve

computing the truncated Katz score and reach score on multilayer

graphs. However, we identify several limitations in that work which

render the solution inefficient or even unfeasible for realistic net-

works with significantly more than 10k nodes. We address these

limitations by designing secure solutions that are significantly more

efficient and scalable. In more detail, given that real-world graphs

are known to be sparse, our solutions move away from an ex-

pensive matrix-based representation to a more efficient list-based

representation. We design novel, secure, and efficient solutions for

computing centrality measures and prove their correctness. Our

solutions drastically reduce the asymptotic complexity from the

prohibitive O(|V|2) even for the fastest solution by Asharov et al.

down to O(|V| log |V|), for |V| nodes. To design our solutions, we

extend upon the secure graph computation framework of Koti et

al. (CCS’24), providing a novel framework with improved capa-

bilities in multiple directions. Finally, we provide an end-to-end

implementation of our secure graph analysis framework and estab-

lish concrete efficiency improvements over prior work, observing

several orders of magnitude improvement.

Keywords

Secure multiparty computation, secure graph computation, multi-

graphs, centrality measures

1 Introduction

Many real-world scenarios require modeling different entities in the

system while also capturing the relationship between them. A pop-

ular technique is to model the system as a graph, as done in the case

of social networks, financial networks, computer networks, trans-

portation networks, etc. However, a simple single-layered graph

model often fails to capture the various kinds of complex relation-

ships shared between the entities. To remedy this, many works

rely on advanced modeling via multilayer graphs that consist of

multiple layers, with each layer capturing a specific type of relation

[15, 17, 37, 38, 53, 56, 60]. For instance, consider the scenario where

the same set of users are connected to each other via multiple social

networking platforms. In fact, the ease of logging into one platform

and seamlessly switching to another using the same credentials

greatly encourages cross-platform interactions. User interactions

across various platforms can be collectively modeled as amultilayer
graph where users are represented as a set of nodes V1 while each
platform 𝑖 has its own set of edges E𝑖 representing a layer of user
interactions on the specific platform. Hence, multilayer graphs have

significantly richer information than standalone graphs, making

them a preferred choice for graph analysis.

A key tool for analyzing multilayer graphs is computing central-

ity measures to rank nodes [22, 23, 34, 59]. While centrality mea-

sures have been extensively studied for standalone graphs, their

extension to multilayer graphs is relatively recent and has been

applied in areas such as influence detection across multiple social

media platforms [18], identification of key hubs for efficient routing

across different transportation layers (e.g., road, rail, air) [28], or

identifying individuals in multilayer human contact networks to

model disease spread [55]. However, most of these works assume

that the multilayer graph is available centrally. The challenge arises

when data for each layer is held by different data owners. For ex-

ample, in a multilayer graph formed by considering different social

networking platforms, each platform considers its data private due

to commercial interests and privacy regulations.
2
However, the

platforms may wish to identify influential spreaders across layers

as required for information cascades. Hence, privacy-preserving

solutions to analyze such multilayer graphs are needed.

1
Platforms may use several means of identifying shared nodes, e.g., using names, email

addresses linked to accounts, connected accounts, or logins over third parties.

2
https://techcrunch.com/2013/01/24/my-precious-social-graph, https://mashable.com/

archive/twitter-instagram-find-friends

1

https://techcrunch.com/2013/01/24/my-precious-social-graph
https://mashable.com/archive/twitter-instagram-find-friends
https://mashable.com/archive/twitter-instagram-find-friends

A privacy-preserving approach for computing centrality mea-

sures on multilayer graphs entails computing the measures across

all layers without data owners having to reveal information about

their layers. For this, we use secure multiparty computation (MPC).

MPC enables a set of parties to compute a function on their private

inputs without leaking anything beyond the output. In our setting,

the private input is each layer of the graph, while the output is

a ranking of nodes based on a centrality score computed on the

entire multilayer graph. While several works design MPC-based

solutions to identify the influence of a given node [1, 32, 33], they

focus on single-layer or simple graphs. In this work, we extend this

to multilayer graphs.

To the best of our knowledge, [6] is the only prior work that

designs MPC-based solutions for computing centrality measures

on multilayer graphs. It identifies three key centrality measures

that rank the nodes based on (i) Reach score 𝜋𝐷R : number of nodes

reachable from a given node within a radius of 𝐷 , (ii) Truncated

Katz score 𝜋𝐷K : number of paths of length at most 𝐷 that originate

at a given node, (iii) Multilayer truncated Katz score 𝜋𝐷M: similar

to 𝜋𝐷K but accounts for multiple edges between the same nodes.

In general, the Katz centrality measure and its extensions have

found a wide range of applicability, including problems such as link

prediction [24, 35], anomalous link detection [47], and identifying

influential nodes [36, 44, 48, 61]. While the metrics 𝜋𝐷R , 𝜋𝐷K are

generic enough to be applicable for simple graphs, 𝜋𝐷M is most

relevant for multilayer graphs and hence the primary focus of our

work. We identify and discuss several limitations of [6] next.

Graphs modeling real-world applications are often large. Despite

acknowledging the importance of scalability, [6] relies on a matrix-

based representation to store and process the underlying multi-

graph. This yields an inevitable overhead of O(|V|2) when design-

ing secure solutions via MPC. Furthermore, real-world networks are

typically sparse [19], yet the solution in [6] does not take advantage

of this property to improve efficiency. For this reason, several works,

including those in the cleartext domain [8, 42], prefer list-based

representation with complexity O(|V| + |E |), where E is the set of

all edges across layers. [6] propose to make 𝜋𝐷M more scalable, but it

reveals intermediate values, sacrificing privacy for better efficiency

which we assess to be inadequate here. Our work addresses these

limitations of [6] and provides the following contributions.

1.1 Our contributions

Conscious Design Choices. The limitations of [6] stem from

its design choices that result in unnecessary communication and

computation overhead. To improve efficiency and scalability, as

required for real-world applications, we make the following design

choices: (1) To leverage the sparsity of real-world networks, we

operate on a list-based representation of multigraphs that improves

communication, computation, and memory efficiency. (2) To make

our solutions suitable for multiple lightweight data providers, we

work in the secure outsourced computation (SOC) setting. Here,

data and computations are securely outsourced to non-colluding

servers that run the MPC protocol.
3
(3) To further improve effi-

ciency, we rely on state-of-the-art MPC techniques and operate

3
The servers do not learn the private inputs of the data owners or any intermediate

values during the computation since the data is secret shared among the servers.

in the simplest setting of having two non-colluding semi-honest

servers and a helper assisting with preprocessing.

Secure Centrality Measures. While [6] relies on a matrix-based

representation, we use a list-based representation to improve scala-

bility. While data-obliviousness (i.e., the algorithm’s control flow is

independent of the graph topology to not leak information) comes

for free when operating on matrices, our solution is carefully de-

signed to be data-oblivious despite operating on a list-based rep-

resentation. To this end, we express our computation in a novel

vertex-centric manner where computations are performed by nodes

exchanging messages. These message-passing algorithms are then

realized by building on top of and extending the state-of-the-art

MPC-based graph analysis framework Graphiti [31]. This yields

the first truly scalable computation of the considered centrality

measures on multilayer graphs. For sparse graphs, moving to the

list-based representation not only improves the overall computa-

tion complexity, but also reduces the communication complexity

of data owners from O(|V|2) in [6] to O(|V|). The improvements

in computation of 𝜋𝐷R , 𝜋𝐷K , 𝜋𝐷M on sparse graphs are as follows:

• 𝜋𝐷K /𝜋
𝐷
M: For these measures, the score for all nodes can be

computed at once with a complexity of only O(|V| log |V| +
|V| · 𝐷) for radius 𝐷 , compared to O(|V|2 · 𝐷) in [6].

• 𝜋𝐷R : Although 𝜋𝐷R is the simplest of all the measures, as in [6]

it remains the most expensive to compute. Our protocol

brings down the overall complexity from 𝑂 (|V|3) in [6] to

𝑂 (|V|2), which is a substantial improvement, but still has

limited scalability compared to 𝜋𝐷K /𝜋
𝐷
M.

Framework for Secure Message-Passing. We build a framework

for secure message-passing that we use for computing centrality

measures on multilayer graphs but which can also be used for other

applications. Our framework is based on Graphiti [31], improving

and extending upon Graphiti’s capabilities. First, we describe how

the data owners can perform secure input sharing involving effi-

ciently secret sharing a list-based representation of a (multilayer)

graph in complexity O(|V| + |E |) as opposed to O(|V|2) in [31],

eliminating the last quadratic factor and hence boosting scalability.

This also immediately generalizes to multilayer graphs or even

more general multigraphs, whereas Graphiti only supports stan-

dard graphs. Furthermore, Graphiti focuses on optimizing certain

operations in the message-passing iterations while requiring an

expensive initialization phase in which we discover multiple prob-

lems restricting the protocol’s applicability. We resolve these issues

by carefully engineering a new initialization phase and accordingly

reworking parts of the message-passing iterations, even improving

the asymptotic complexity of Graphiti’s original initialization.

Implementation and Benchmarks. We provide a full implemen-

tation of our new framework and make its code publicly avail-

able
4
. This is also of independent interest, especially given that

Graphiti [31] only provides implementations of single building

blocks of the message-passing iterations but no code for the initial-

ization, and its predecessor [5] does not have any publicly available

code. Based on our framework implementation, we also implement

4
Full code available at https://encrypto.de/code/MultiCent.

2

https://encrypto.de/code/MultiCent

all our protocols and benchmark them against those in [6], show-

casing substantial performance and scalability improvements. On

a small graph with only 1000 nodes, our asymptotic improvement

already makes us an order of magnitude faster than [6]. A direct

comparison quickly becomes unfeasible as the severe memory foot-

print of [6] exceeds 100 GB already before reaching a graph size of

10k nodes. In contrast, our protocols can evaluate 𝜋𝐷M for up to half

a million nodes and 5 million edges within a few minutes, which

would require terabytes of communication with [6].

1.2 Organization

In §2, we give the required notation, definitions for the considered

centrality measures, and details regarding the setting, MPC, and the

secure framework of Graphiti [31] as the foundation of our work. §3

proposes our vertex-centric computation of centrality measures uti-

lizing message-passing. Our secure framework for message-passing

is introduced in §4, and we discuss its improvements over the prior

state of the art [31] in §5. After evaluating the performance of our so-

lution in §6, we discuss related works in §7, and finally conclude our

work in §8. In the appendix, we provide additional details on all used

building blocks in §A, protocols in §B, and evaluation results in §C.

2 Preliminaries

Wedenote the ring of integersmodulo 2
𝑘
byZ

2
𝑘 . Vectors arewritten

as ®x, where𝑥𝑖 corresponds to the 𝑖’th element of the vector, counting

from 1. By ®0 and ®1we denote vectors with all 0 respectively 1 entries.
Furthermore, we write S𝑛 for the symmetric group on {1, . . . , 𝑛}.

2.1 Graph Theory

We denote a directed graph byG = (V, E) with nodes V and directed

edges E ⊆ {(𝑣,𝑤) ∈ V × V | 𝑣 ≠ 𝑤}. We let V = {0, . . . , |V| − 1}.
A multilayer graph, as defined in [6], consists of ℓ graphs G1 =

(V, E1), . . . ,Gℓ = (V, Eℓ) sharing the same set of nodes. We simplify

multilayer graphs to multigraphs where a multigraph is G = (V, E)
with E being a multiset of edges (𝑣,𝑤) ∈ V × V, 𝑣 ≠ 𝑤 , i.e., each

edge is contained as many times as its multiplicity, and E is the

(multiset) union over all E𝑖 . For instance, if an edge (𝑣,𝑤) appears
in E1 and E2, E contains this edge twice. Thus, |E | = ∑ℓ

𝑖=1 |E𝑖 |.
Finally, a multigraph G = (V, E) can be transformed to a unified

graph G = (V, E) by discarding the multiplicity of all edges in E,
transforming the multiset to a standard set.

2.2 Centrality Measures

0 1

2 3

𝐸1:
𝐸2:
𝐸3:

Figure 1: A multilayer graph with ℓ = 3 layers (left) and two

path scenarios on the graph, corresponding to the same path.

We begin by defining paths and path scenarios on multigraphs. A

path from 𝑢 to 𝑣 is a sequence of nodes (𝑤0 = 𝑢,𝑤1, . . . ,𝑤𝑠−1,𝑤𝑠 =

𝑣) such that (𝑤𝑖−1,𝑤𝑖) ∈ E for all 1 ≤ 𝑖 ≤ 𝑠 , i.e., each edge exists

in any of the layers; we call 𝑠 the length of the path. For example,

(0, 1, 3, 1, 2) is a path of length 4 in Fig. 1. A path scenario [6] is

a path as defined above together with a sequence of indices 1 ≤
𝑡1, . . . , 𝑡𝑠 ≤ ℓ such that (𝑤𝑖−1,𝑤𝑖) ∈ E𝑡𝑖 for all 1 ≤ 𝑖 ≤ 𝑠 , indicating

for each edge a specific layer where it exists. In our prior example

of path (0, 1, 3, 1, 2), there are path scenarios using layers (1, 3, 1, 2)
as well as (1, 3, 3, 2) due to edge (3, 1) existing in layers 𝐸1 and 𝐸3.

We next define the three centrality measures that are also con-

sidered in the prior work of [6]
5
:

1. Reach Score 𝜋𝐷R (𝑣): This is the number of nodes reachable from

𝑣 by a path of length ≤ 𝐷 . Formally stated:
6

𝜋𝐷R (𝑣) = |{𝑤 ∈ V | ∃path of length ≤ 𝐷 from 𝑣 to𝑤}| (1)

In Fig. 1, 𝜋2R (2) = 3 as all nodes except for node 3 can be reached

in ≤ 2 hops, starting from node 2.

2. Truncated Katz Score 𝜋𝐷K (𝑣) [21, 39, 58]: This is the number of

paths of length ≤ 𝐷 , starting at node 𝑣 . It is parametrized by

𝛽1 ≥ · · · ≥ 𝛽𝐷 > 0 where paths of length 𝑖 are weighted by 𝛽𝑖 .

𝜋𝐷K (𝑣) =
𝐷∑︁
𝑖=1

𝛽𝑖 · (#paths from 𝑣 of length 𝑖) (2)

In Fig. 1, 𝜋2K (1) = 33 for 𝛽1 = 10, 𝛽2 = 1, as there are 3 outgoing

edges and 3 paths of length 2 starting at node 1.

3. Multilayer Truncated Katz Score 𝜋𝐷M: While 𝜋𝐷R (𝑣), 𝜋
𝐷
K (𝑣) are of

interest for standard and multilayer graphs, 𝜋𝐷M (𝑣) counts the
number of path scenarios of length ≤ 𝐷 on a multilayer graph,

starting at 𝑣 , applying weights as in 𝜋𝐷K (𝑣). By considering path

scenarios, it gives higher weight to connections that exist in

more layers simultaneously, making it a more sensitive choice

for the multilayer case [6]. Formally:

𝜋𝐷M (𝑣) =
𝐷∑︁
𝑖=1

𝛽𝑖 · (#path scenarios from 𝑣 of length 𝑖) (3)

In Fig. 1, 𝜋2M (1) = 34 for 𝛽1 = 10, 𝛽2 = 1, as in contrast to

counting path (1, 3, 1) once as in 𝜋2K, it now corresponds to two

different path scenarios.

2.3 Setting

Among ℓ clients C1, . . . ,Cℓ , each C𝑖 holds a private directed graph

G𝑖 = (V, E𝑖) on the same
7
set of nodes V, all graphs jointly defining

the multilayer graph. Our computation is carried out by two non-

colluding, semi-honest
8
servers (or parties) denoted asP = {𝑃0, 𝑃1}.

The servers are connected via pairwise secure channels, for instance

using TLS. Given the outsourced setting, the computations begin

with the clients secret-sharing (introduced below) their private

input graphs to the servers. The servers then run the secure compu-

tation on the resulting multilayer graph. While our secure protocols

are generic, for efficiency reasons, they are cast in the preprocessing

5
Note that [6] defines the measures immediately on matrices fitting the format of their

data representation. Here, we keep it more general as we do not rely on matrices.

6
We note that [6] has a redundant way of defining the metric by including weights for

paths of different lengths, which is anyway canceled out by a clipping operation.

7
In §4.1 we will discuss the case where clients do not hold the same set of nodes.

8
They do not deviate from the intended computation but still try to derive information

from all data they receive.

3

paradigm, where compute-intensive input-independent computa-

tion is pushed to a preprocessing phase to pave the way for a fast

input-dependent online phase, ensuring low latency once the actual

inputs are given. To facilitate fast preprocessing, as done in several

works [13, 14, 49, 51, 57], we rely on a non-colluding semi-honest

helper server (or party) H that aids in generating preprocessing

data. Our protocols are proven secure in the real-world/ideal-world

simulation paradigm, meaning that no server gains any information

beyond the final results.
9

2.4 Secure Multiparty Computation (MPC)

Our protocols use secure multiparty computation (MPC) to keep

all provided data private. To represent private data, we utilize arith-

metic secret sharing over Z
2
𝑘 , where a client shares its secret input

𝑥 ∈ Z
2
𝑘 by sending random values 𝑥0, 𝑥1 ∈ Z

2
𝑘 to the servers

𝑃0, 𝑃1, respectively, s.t. 𝑥0 + 𝑥1 = 𝑥 , as frequently used, e.g., in [20].

Notation [[𝑥]] denotes sharing of 𝑥 . Note that secret sharing easily

generalizes to, e.g., vectors by sharing each entry. Furthermore, we

generalize secret sharing to permutations 𝜌 ∈ S𝑛 by representing

𝜌 as a vector [[(𝜌 (1), . . . , 𝜌 (𝑛))]], as done, e.g., in [7]. We also use

binary sharings [[𝑏]]
bin

for a single bit 𝑏 ∈ {0, 1}, which is the

special case of setting 𝑘 = 1 in the previous definition. Note that for

𝑘 = 1, addition corresponds to a logical XOR, while multiplication

corresponds to an AND. A shared value can be reconstructed (also

called opened) to a server/client by handing it both shares.

Linear operations on sharings can be executed without interac-

tion and hence are considered cheap. To compute [[𝑥 + 𝑦]] given
[[𝑥]], [[𝑦]], both servers add their corresponding shares 𝑥0 +𝑦0 and
𝑥1+𝑦1. A public constant 𝑐 can be multiplied to [[𝑥]] by both servers
locally multiplying their shares with 𝑐 . Given a constant 𝑐 , it is also

simple to initialize a sharing [[𝑐]] without interaction by setting

𝑐0 = 𝑐, 𝑐1 = 0, also allowing to add constants to shared values.

Multiplying two shared values is more expensive, requiring

communication between the servers. To multiply two sharings

[[𝑥]], [[𝑦]], we use Beaver’s multiplication [9], requiring each party

to send 2 ring elements in the online phase, consuming a triple

([[𝑎]], [[𝑏]], [[𝑐]]) with random 𝑎, 𝑏 ∈ Z
2
𝑘 and 𝑐 = 𝑎𝑏 computed

during preprocessing. Assuming that the helper samples 2 PRF

keys [45, 50], sending one to each party once, together with server

𝑃𝑖 for 𝑖 ∈ {0, 1} it can non-interactively sample shares𝑎𝑖 , 𝑏𝑖 ∈ Z2𝑘 to

set up random [[𝑎]], [[𝑏]]. It can then non-interactively and together
with 𝑃0 sample random 𝑐0 ∈ Z2𝑘 and send 𝑐1 = (𝑎0+𝑎1) (𝑏0+𝑏1)−𝑐0
to 𝑃1 to provide the triple. Hence, the preprocessing of one multi-

plication only requires sending a single ring element.

2.5 Graphiti [31]

To design efficient, secure solutions for graph algorithms via MPC,

the line of works [5, 31, 43] operates on a list representation when

dealing with sparse graphs.We identify the state-of-the-art Graphiti

framework [31] that we use as the basis of our extended framework.

We proceed by providing an overview of the techniques in Graphiti

that we adopt and refer to [31] for further details.

Graphiti takes a data-augmented graph (DAG) as input, denoted

as 𝐺 (V, E, data) where data denotes a user-defined set of values

9
If the result is made available to the clients or some third party, the servers gain no

information at all.

associated with each node and edge. To store the graph topology,

Graphiti uses the following three vectors of length |V| + |E|10—
source (®src), destination (

®
dst), is_Vertex (®isV)—, collectively re-

ferred to as the DAG list. The 𝑖-th entry in each of the vectors

corresponds to a specific node or edge in 𝐺 such that for a node

𝑣 , src𝑖 = 𝑣 , dst𝑖 = 𝑣 , and isV𝑖 = 1, while for an edge (𝑣,𝑤) ∈ E,
src𝑖 = 𝑣 , dst𝑖 = 𝑤 , and isV𝑖 = 0. Additionally, Graphiti maintains a

vector
®

payload of the same dimension to represent the data compo-

nent of each node/edge and other data items that may be required to

store intermediate information generated during computation. The

data associated to the node/edge at index 𝑖 is stored in payload𝑖 .

Graphiti allows evaluating message-passing graph algorithms

consisting of multiple iterations, where each iteration performs:
11

• Propagate: Nodes transmit their current data to all their

outgoing edges,

• Gather: Nodes gather the data from their incoming edges,

aggregating it to the sum over all edges, and

• Apply Update: Each node’s prior data and aggregated (gath-
ered) data are used to determine a new value data, customiz-

able via a function Fapply taking both as inputs.

Graphiti efficiently and securely realizes message-passing by

carefully and privately reordering the DAG list and applying cheap,

non-interactive manipulations of
®

payload. Each iteration starts

with the DAG list in vertex order, where all entries corresponding to
nodes 0 to |V| − 1 appear sequentially in the same order, followed

by entries corresponding to edges. Propagate is then executed in

two stages where we first apply an operation Fpropagate-1 in the

vertex order itself. The DAG list is then brought to source order
where entries corresponding to a node appear immediately before

all entries of its outgoing edges, before finally applying the second

stage of propagate Fpropagate-2. Following this, to perform gather,

the DAG list is brought into destination order, where all entries

corresponding to incoming edges precede immediately before the

destination node entry. Gather is also executed in two stages by

first applying an operation Fgather-1 in the destination order. The

DAG list is then brought back into vertex order, where gather is

finalized using operation Fgather-2. Node data is then updated by

executing Fapply on the prior and newly aggregated data per node.

The details of building blocks Fpropagate-1, Fpropagate-2, Fgather-1,
and Fgather-2 are provided in [31]. For our work, it is only required

to know that they are entirely linear and can hence be realized non-

interactively within MPC. Details regarding the message-passing

will be clarified later in §4 as a component of our system.

In the context of our work, we make the crucial observation that

the DAG list representation naturally also supports multigraphs by

adding the same edge (𝑣,𝑤) to the list at multiple indices 𝑖 .

3 Vertex-Centric Computation of Centrality

In the following, we phrase computations of centrality measures

as message-passing algorithms, which we later securely evaluate

10
The discussed approach is different from Graphiti in terms of notation but is done to

account for the optimizations that we introduce in §4 while achieving the same goal.

11
Graphiti also supports other linear aggregations for gather as well as applying a

customizable function to data in-between propagate and gather. Yet, for simplicity,

we do not introduce these options here as they are not required in our application, but

they could easily be added.

4

with our privacy-preserving framework in §4. We start with the

multilayer truncated Katz score 𝜋𝐷M, as this is most expressive on

multilayer graphs and most scalable to compute. This is followed

by the truncated Katz score 𝜋𝐷K , which follows easily from 𝜋𝐷M, and

finally the reach score 𝜋𝐷R . Our approaches allow computing these

measures for all nodes in parallel, as in [6].

3.1 Multilayer Truncated Katz Score 𝜋𝐷
M

To compute 𝜋𝐷M for each node via message-passing, we utilize a

state 𝑠𝑣 for each node 𝑣 that is iteratively updated until it coincides

with 𝜋𝐷M (𝑣). Initially, we assume that all weights 𝛽𝑖 (§2.2) are set

to 1 (which counts the unweighted number of paths). In the first

iteration of message-passing, each node propagates a ‘1’ on its

incoming edges. Then, each node 𝑣 gathers information from all its

outgoing edges
12
, sums it and writes it to state 𝑠1𝑣 . Thus, 𝑠

1

𝑣 stores

the number of edges starting at 𝑣 , i.e., the number of path scenarios

of length ≤ 1 starting at 𝑣 .

We continue up to 𝐷 iterations to capture all path scenarios with

length ≤ 𝐷 . For this, let state 𝑠𝑖−1𝑣 of iteration 𝑖 − 1 be the number

of path scenarios starting at 𝑣 of length ≤ 𝑖 − 1. Observe that this
holds true for 𝑠1𝑣 . For iteration 𝑖 , we carefully observe the structure

of path scenarios of length ≤ 𝑖 starting at node 𝑣 , as depicted in

Fig. 2. Each edge (𝑣,𝑤) is a path scenario of length 1 starting at 𝑣 .

In addition, there are 𝑠𝑖−1𝑤 path scenarios of length ≤ 𝑖 − 1 starting
at𝑤 (left of Fig. 2). Thus, prepending each (𝑣,𝑤) to existing path
scenarios of length ≤ 𝑖 − 1 starting at 𝑤 gives path scenarios of

total length ≤ 𝑖 starting at 𝑣 (right of Fig. 2). Hence,

𝑠𝑖𝑣 =
∑︁

(𝑣,𝑤) ∈E

(
𝑠𝑖−1𝑤 + 1

)
∀𝑣 ∈ V. (4)

The above computation can be realized by ensuring that for each

outgoing edge (𝑣,𝑤), 𝑣 receives 𝑠𝑖−1𝑤 + 1, where the +1 accounts for
the path scenario that consists of only the single edge (𝑣,𝑤). Since
there can be multiple (𝑣,𝑤) edges, the sum in Eq. (4) is over multi-

set E, counting edges multiple times according to their multiplicity,

which is as required for path scenarios.

𝑣

𝑤 𝑝 . . . 𝑞

𝑠𝑖−1𝑤
𝑠𝑖−1𝑝 𝑠𝑖−1𝑞

length ≤ 𝑖 − 1

𝑣

. . .
length ≤ 𝑖

Figure 2: Inductively computing 𝜋𝐷M (𝑣), counting path scenar-

ios up to length ≤ 𝑖 by taking outgoing edges as a new path

scenario, or by extending them by path scenarios of length

≤ 𝑖 − 1 from the neighboring node. Given a multigraph, path

scenarios can start with any instance of a specific edge, as in

the case of (𝑣, 𝑝) existing twice.

We now consider the general case of arbitrary weights 𝛽𝑖 , where

𝛽𝑖 is the weight assigned to each path scenario of length 𝑖 . In the

12
While we usually consider propagate to outgoing edges and gather from incoming

edges, we can use the opposite direction here, simply by swapping the interpretation

of edge directions.

previous case of 𝛽𝑖 = 1, each iteration extends existing path sce-

narios by passing values 𝑠𝑖−1𝑤 and starting new ones of length 1

from edges (𝑣,𝑤), captured by the +1 in Eq. (4). For the weighted

case, we incorporate weights into this +1 by multiplying it by 𝛽 𝑗
for some 𝑗 before the path scenario gets extended in further iter-

ations. The choice of 𝑗 is determined as follows: Recall from the

case of uniform weights of 1 that each future iteration uses path

scenarios of a certain length to form new scenarios that are one

edge longer. Hence, edge (𝑣,𝑤) added in iteration 𝑖 will be part of

path scenarios of length 2 in iteration 𝑖 + 1 and so on, until being

part of path scenarios of length 𝑗 = 1 + 𝐷 − 𝑖 in iteration 𝐷 . Thus,

in the weighted case, instead of adding a +1 to account for (𝑣,𝑤)
in iteration 𝑖 , we will add +(1 · 𝛽 𝑗) where 𝑗 = 1 +𝐷 − 𝑖 . Overall, we
let 𝑠0𝑣 = 0 ∀𝑣 ∈ V and then for 1 ≤ 𝑖 ≤ 𝐷 ,

𝑠𝑖𝑣 =
∑︁

(𝑣,𝑤) ∈E

(
𝑠𝑖−1𝑤 + 𝛽1+𝐷−𝑖

)
∀𝑣 ∈ V. (5)

Hence, we obtain 𝜋𝐷M (𝑣) = 𝑠𝐷𝑣 ∀𝑣 ∈ V as formalized below.

Theorem 1. Given that 𝑠0𝑣 = 0 ∀𝑣 ∈ V, applying update Eq. (5) to
all nodes for iterations 𝑖 = 1, . . . , 𝐷 yields that 𝜋𝐷M (𝑣) = 𝑠𝐷𝑣 ∀𝑣 ∈ V.

Proof. We prove that for 0 ≤ 𝑖 ≤ 𝐷 , the following invariant

holds:

𝑠𝑖𝑣 =

𝑖∑︁
𝑗=1

𝛽𝐷−𝑖+𝑗 · (#path scenarios from 𝑣 of length 𝑗) (6)

Note that for 𝑖 = 𝐷 , it holds that 𝜋𝐷M (𝑣) = 𝑠𝐷𝑣 , concluding the proof.

We showcase that Eq. (5) satisfies the invariant from Eq. (6)

via induction. For 𝑖 = 0, the invariant trivially holds as per the

initialization of all values. Now, assume that the invariant holds for

an arbitrary but fixed 0 ≤ 𝑖 − 1 < 𝐷 . All path scenarios starting

at some 𝑣 ∈ V first go over an edge (𝑣,𝑤) ∈ E. They either have

length 1, i.e., end immediately at𝑤 , or can be extended by a path

scenario of length ≤ 𝑖 − 1 starting at𝑤 . The number of such path

scenarios is 𝑠𝑖−1𝑤 for which Eq. (6) holds. Now, for path scenarios of

length 𝑖 that start at 𝑣 , we have

𝑖∑︁
𝑗=1

𝛽𝐷−𝑖+𝑗 · (#path scenarios from 𝑣 of length 𝑗)

= 𝛽𝐷−𝑖+1 · (#path scenarios from 𝑣 of length 1) +∑︁
(𝑣,𝑤) ∈E

𝑖−1∑︁
𝑗=1

𝛽𝐷−(𝑖−1)+𝑗 · (#path scenarios from𝑤 of length 𝑗)

= 𝛽𝐷−𝑖+1 ·
©«

∑︁
(𝑣,𝑤) ∈E

1
ª®¬ +

∑︁
(𝑣,𝑤) ∈E

𝑠𝑖−1𝑤

=
∑︁

(𝑣,𝑤) ∈E

(
𝑠𝑖−1𝑤 + 𝛽1+𝐷−𝑖

)
= 𝑠𝑖𝑣 .

□

3.2 Truncated Katz Score 𝜋𝐷
K

As described in §2.2, the Katz score of a node 𝑣 truncated at𝐷 counts

the number of (weighted) paths, unlike path scenarios in 𝜋𝐷M, from

𝑣 of length at most 𝐷 . Observe that computing 𝜋𝐷K is similar to

5

computing 𝜋𝐷M. The only difference among the two measures is that

𝜋𝐷M operates on multigraph G = (V, E), while 𝜋𝐷K operates on a

unified graph G = (V, E). E can be obtained from E by interpreting

E as set E instead of a multiset (i.e., discarding the multiplicity of

existing edges). As each path scenario on a simple G corresponds

to just a path, we can thus reduce 𝜋𝐷K to 𝜋𝐷M by transforming E to

a simple set E, followed by computing 𝜋𝐷M on (V, E).

3.3 Reach Score 𝜋𝐷
R

As summarized in §2.2, the reach score counts the number of nodes

that are reachable from 𝑣 by a path of length at most 𝐷 in the

graph G. Computing the reach score in a vertex-centric manner on

the DAG list representation of the graph can be realized by running

a breadth-first-search (BFS) in a vertex-centric manner.

The iterative algorithm starts with 𝑣 as the source node and

searches (or counts) all nodes within distance 𝐷 from 𝑣 . Assuming

𝑠𝑖𝑤 denotes the state of node𝑤 at iteration 𝑖 , we wish to maintain

the invariant that 𝑠𝑖𝑤 = 1 for all nodes reachable by a path of length

≤ 𝑖 . To this end, we initialize 𝑠0𝑣 = 1 while keeping all other values

at zero, and then in each iteration 𝑖 set

𝑠𝑖𝑤 = clip ©«𝑠𝑖−1𝑤 +
∑︁

(𝑢,𝑤) ∈E
𝑠𝑖−1𝑢

ª®¬ ∀𝑤 ∈ V, (7)

where clip(𝑥) = 1 if 𝑥 > 0 and 0 otherwise. Intuitively, 𝑠𝑖𝑤 = 1 if

𝑤 has already been reached in the previous iteration or if it can

be reached in the current iteration through (𝑢,𝑤) ∈ E from a

node 𝑢 reached in the previous iteration. Realizing this in a vertex-

centric manner is similarly done in Graphiti [31] and deferred

to Appendix B.1. In contrast to the other centrality measures, we

need to run |V| instances of the BFS in parallel to compute 𝜋𝐷R (𝑣)
for all nodes 𝑣 ∈ V.

4 Secure Framework for Message-Passing

In our complete secure system, the clients first secret-share their in-

puts as DAG list among the servers (§4.1). The evaluation phase (§4.2)

then securely computes the centrality measures via the message-

passing algorithms from §3. Finally, the results are revealed to the

intended output parties (§4.3).

4.1 Input Sharing Phase

Depending on the exact application, there are different approaches

to providing the initial inputs. We first present a basic approach in a

setting comparable to that of [6] as the only prior work for securely

computing centrality measures on multilayer graphs. Then, we gen-

eralize this approach, discussing additional techniques providing

more opportunities for customization.

4.1.1 Basic Approach. Assume that clients agree on an ordering of

the vertices in V, e.g., via network reconciliation [30]. Each clientC𝑖

holds the DAG list corresponding to its private graph G𝑖 = (V, E𝑖).
Without loss of generality, let C1 additively secret share (§2.4) its

entire DAG list with the servers, while the other clients C2, . . . ,Cℓ

additively secret only the edge entries of their respective DAG list.

Since the set of vertices is the same across all clients, this ensures

that the servers receive precisely one copy of each vertex entry in

the DAG list corresponding to the multigraph and that they receive

all the edges depending on their multiplicity. Finally, the servers

can concatenate the received DAG lists to obtain the complete DAG

list comprising the vertex and all the edge entries in secret shared

format ([[®src]], [[®dst]], [[®isV]], [[®
payload]]). The data size sent by

a client leaks the number of edges in its private graph (but no

further information). This can be avoided inexpensively if required

by appending some padding entries as shown in Appendix B.4.

4.1.2 Generalization. While [6] relies on a common vertex set V
due to their adjacency matrix representation, our representation

as DAG lists enables a far more general approach. Each client C𝑖

can input an arbitrary number of entries that can be nodes and

edges into the DAG list without the need for public V. We only need

to ensure that different clients do not use the same vertex label.

That can be achieved by each client reserving a range of vertex

labels, e.g., C1 gets a range {0, . . . , 499} to represent its nodes, C2

gets {500, . . . , 999}, etc. Similar to [6], we assume that the clients

identify their common nodes in advance, say via a private set inter-

section protocol [29, 46]. For instance, if considering online social

networks, common nodes/users may be identified by name, email

addresses linked to their account, or logins over third parties such

as Google. Yet, we only need each pair of clients C𝑖 ,C𝑗 to know

their common nodes. They can then, before providing their inputs

to the protocol, coordinate by themselves who inputs which of the

common nodes represented by which vertex label. As an example

for social networks, assume that C1,C2 both have users John Doe
and Jane Doe. They can coordinate that C1 inputs both, using labels

0, 1. Then, C1 notifies C2 that 0 corresponds to John Doe and 1 to

Jane Doe. Without information disclosure to C1, C2 may now also

input an edge (0, 1) if it has such a link. It may also input an edge

(1, 500) for a user A. N. Other (labeled 500) who is unknown to C1.

4.2 Evaluation Phase

Weproceed by introducing our improved secure protocol for privacy-

preserving message-passing algorithms, based on Graphiti [31], and

then present how our message-passing algorithms for centrality

measures from §3 can be securely realized on top of it. We con-

clude with a complexity comparison against the only prior work

on secure computation of centrality measures [6] and discussing

the security of our system. A comparison of our system focusing

on the improvements to Graphiti [31] is discussed later in §5.

Our solution relies on a range of sub-protocols, some of them

from prior works that we translate to our setting, some based on

ideas from prior works, and some new building blocks required

specifically for our application.While we explain our overall system

and crucial protocol components here, we defer detailed specifi-

cation regarding all additionally used sub-protocols alongside an

exact analysis of involved communication cost in Appendix A.

We begin by first providing our full, generic protocol in Prot. 1.

The following parts lead through the different steps of the protocol,

supported by the illustration of our secure approach to message-

passing provided in Fig. 3.

4.2.1 One-Time Initialization. For highly efficient message-passing

in our protocol, it is necessary to alternately bring the DAG list

into vertex order, source order, and destination order (cf. §2.5). Our

6

vertex order

update

source order

destination order

input order

0 1 0 0

0 0 1 a
1 0 0 0

2 2 1 b
1 1 1 c
2 1 0 0

2 0 0 0

2 1 0 0

®
s
r
c ®

d
s
t ®

i
s
V

®
p
a
y
l
o
a
d

C1

C2

C3

FgetSort ⇒
𝜌src 1

𝜌dst 2

𝜌vert 3

0

a

1

c

2

b

0 0 1

1 1 1

2 2 1

0 1 0

1 0 0

2 1 0

2 0 0

2 1 0

a
c
b
0

0

0

0

0

FapplyPerm

4

𝜌vert

0 0 1

1 1 1

2 2 1

0 1 0

1 0 0

2 1 0

2 0 0

2 1 0

a
c − a
b − c
0

0

0

0

0

a
c
b
0

0

0

0

0

Fpropagate-1

6

0 0 1

0 1 0

1 1 1

1 0 0

2 2 1

2 1 0

2 0 0

2 1 0

a
0

c − a
0

b − c
0

0

0

a
0

c
0

b
0

0

0

FswPerm

7

𝜌vert → 𝜌src

0 0 1

0 1 0

1 1 1

1 0 0

2 2 1

2 1 0

2 0 0

2 1 0

0

a
0

c
0

b
b
b

Fpropagate-2

8

0 1

2

a

c

b b
bFswPerm

𝜌src → 𝜌
dst

9

1 0 0

2 0 0

0 0 1

0 1 0

2 1 0

2 1 0

1 1 1

2 2 1

c
b
0

a
b
b
0

0

1 0 0

2 0 0

0 0 1

0 1 0

2 1 0

2 1 0

1 1 1

2 2 1

𝑐

𝑏 + 𝑐
b + c

𝑎 + 𝑏 + 𝑐
𝑎 + 2𝑏 + 𝑐
𝑎 + 3𝑏 + 𝑐
a + 3b + c
a + 3b + c

Fgather-1
10

FswPerm

𝜌
dst
→ 𝜌vert

11

0 0 1

1 1 1

2 2 1

0 1 0

1 0 0

2 1 0

2 0 0

2 1 0

b + c
a + 3b + c
a + 3b + c
𝑎 + 𝑏 + 𝑐

𝑐

𝑎 + 2𝑏 + 𝑐
𝑏 + 𝑐

𝑎 + 3𝑏 + 𝑐

0 0 1

1 1 1

2 2 1

0 1 0

1 0 0

2 1 0

2 0 0

2 1 0

b + c
a + 2b

0
0

0

0

0

0

Fgather-2
12

0

b + c

1

a + 2b

2

0

Fapply13

Figure 3: Overview of our secure system for privacy-preserving message-passing algorithms, based on Graphiti [31]. Cir-

cled numbers correspond to the respective algorithm lines in Prot. 1. The DAG list consists of columns corresponding to

®src, ®dst, ®isV, ®
payload. For instance, the row (0, 0, 1, 𝑎) represents node 0 holding payload value 𝑎 while row (2, 1, 0, 0) represents

edge (2, 1) holding value 0. The DAG list in input order receives its entry rows by different clients and represents the multigraph

on the left side. After finalizing propagate using Fpropagate-1 and Fpropagate-2, the resulting DAG list represents the multigraph

on the right side where all data has been successfully propagated from nodes to their outgoing edges. Then, after gather, the

resulting DAG list represents a new multigraph acting as an update that can be applied to the DAG list before the iteration,

e.g., by replacing it or by payload values being added. ®src, ®dst, ®isV are in gray except for input order as these are never actually

reordered by the protocol and are only provided here for better comprehensibility.

Protocol 1 Our Secure Message-Passing Protocol

1: [[𝜌src]] ← FgetSort ([[®src]], [[®1 − ®isV]]) // equal src⇒ vertex first

2: [[𝜌
dst
]] ← FgetSort ([[®dst]], [[®isV]]) // equal dst⇒ vertex last

3: [[𝜌vert]] ← FgetSort ([[®1 − ®isV]], [[®src]], [[®1 − ®isV]]) // Vertices
first, ordered

4: [[®
payload

v
]] ← FapplyPerm ([[𝜌vert]], [[®

payload]])
5: for 𝐷 iterations do

6: [[®
payload

′
v
]] ← Fpropagate-1 ([[®

payload
v
]])

7: [[®
payload

src
]] ← FswPerm ([[𝜌vert]],[[𝜌src]],[[®

payload

′
v
]])

8: [[®
payload

′
src
]] ← Fpropagate-2 ([[®

payload
src
]])

9: [[®
payload

dst
]]←FswPerm ([[𝜌src]],[[𝜌dst]],[[®

payload

′
src
]])

10: [[®
payload

′
dst
]] ← Fgather-1 ([[®

payload
dst
]])

11: [[®
payload

′
v
]] ← FswPerm ([[𝜌src]], [[𝜌dst]], [[®

payload

′
v
]])

12: [[®
update

v
]] ← Fgather-2 ([[®

payload

′
v
]])

13: [[®
payload

v
]] ← Fapply ([[®

payload
v
]], [[®

update
v
]])

14: end for

protocol follows a novel approach here, contrasting Graphiti [31],

where we first consider the input order (cf. Fig. 3) in which the

rows of the DAG list are provided by the different clients. Then, we

compute three permutations in parallel that, if applied to the DAG

list in input order, would bring it into any of the other orders.

To efficiently compute the required permutations, we utilize

the MPC radix sort of [7] to overcome limitations of Graphiti [31]

using quicksort as we discuss in detail in §5. The sort of [7] imple-

ments functionality FgetSort (Fig. 4) receiving as input a vector

of size 𝑛 and then providing a secret-shared permutation [[𝜌]] =
([[𝜌 (1)]], . . . , [[𝜌 (𝑛)]]) that, if applied on the input vector, would or-
der it stably in ascending order. For performance reasons, we expect

all entries of the input vectors to be available in bit-decomposed

form. This could be implemented by letting all clients already share

in this format or using additional protocols for bit decomposition.

We defer the details regarding that to Appendix A.4. We also ex-

tend the definition of FgetSort to, e.g., FgetSort ([[®dst]], [[®isV]]),
denoting that we sort by destinations dst𝑖 with first priority and

isV𝑖 with second priority, i.e., sort by concatenated keys dst𝑖 | |isV𝑖 ,
for 1 ≤ 𝑖 ≤ 𝑛 (cf. Appendix A.4).

Input: Secret-shared vector [[®x]] of dimension 𝑛 with entry 𝑥𝑖 being

bit-decomposed, consisting of shares [[𝑥𝑘−1
𝑖
]], . . . , [[𝑥0

𝑖
]].

Output: Secret-shared permutation [[𝜌]] with 𝜌 ∈ S𝑛 and 𝜌 (®x) being stably
sorted in ascending order, i.e., equal elements remain in their original order from ®x.

Functionality FgetSort

Figure 4: Functionality to retrieve permutation to sort data.

Now, regarding source order, we useFgetSort ([[®src]], [[®1− ®isV]])
yielding a permutation [[𝜌src]] that can order the DAG list into

blocks of entries with the same source entry with nodes com-

ing before edges inside a block, i.e., with each node appearing

immediately before its outgoing edges. In parallel, we also use

7

FgetSort ([[®dst]], [[®isV]]) yielding [[𝜌dst]] for the destination order

where a block of all edges going into a specific node is immedi-

ately followed by said node. Finally, we could use FgetSort ([[®1 −
®isV]], [[®src]]) yielding permutation [[𝜌vert]] for the vertex order,

ensuring that all nodes come first and are ordered.

Optimization. We note that a radix sort works by first sorting by the

least significant bit of all entries, then ordering by the second least

significant bit in a stable manner, etc., until it finally stably sorts by

the most significant bit. The same structure can also be found in the

MPC version by [7].We observe that instead of using FgetSort ([[®1−
®isV]], [[®src]]), we could also use FgetSort ([[®1 − ®isV]], [[®src]], [[®1 −
®isV]]) still yielding a valid permutation to reach vertex order. We

already require FgetSort ([[®src]], [[®1 − ®isV]]) for the source order,
and appending one single radix sort iteration for the bits in [[®1 −
®isV]] immediately leads over to the permutation for vertex order.

Hence, the combination of radix sort and the correlation between

the different required orderings enables us to compute three sorting
permutations for the price of two. We defer details regarding the

sorting to Appendix A.4.

4.2.2 Message-Passing Iterations. After the one-time initialization

phase, each message-passing iteration follows Graphiti [31] on a

high level. Recall from §2.5 that Graphiti provides non-interactive

instantiations of the functionalities Fpropagate-1 used while the

DAG list is in vertex order and Fpropagate-2 used while in source

order that together realize the propagate of data from nodes to

their outgoing edges. Similarly, it provides Fgather-1 used while

in destination order and Fgather-2 used while in vertex order that

jointly realize gather of data for nodes from their incoming edges.

Note that to represent a multigraph, the DAG list can simply

contain 𝑚 rows representing an edge of multiplicity 𝑚. Our in-

put phase (§4.1) allows the same edge to be added multiple times.

Furthermore, careful observation of building blocks Fpropagate-1,
Fpropagate-2, Fgather-1, and Fgather-2 as provided in [31] reveals

that they indeed require no modification to handle edges appearing

in the DAG list multiple times.

Given the permutations [[𝜌src]], [[𝜌dst]], [[𝜌vert]] from our novel

initialization phase, we now need to apply them to the DAG list

to switch between different orders. First, we apply permutation

[[𝜌vert]] to switch from input to vertex order. To apply a secret-

shared permutation to the secret-shared columns of the DAG list,

we use functionality FapplyPerm (Fig. 5). An efficient protocol for

FapplyPerm is provided in [7] and also given in Appendix A.2.

Input: Secret-shared vector [[®x]] of dimension 𝑛, [[𝜌]] for a permutation

𝜌 ∈ S𝑛 .
Output: Secret-shared vector [[𝜌 (®x)]].

Functionality FapplyPerm

Figure 5: Functionality to apply secret-shared permutation to a

secret-shared vector.

When reordering the DAG list, we note that all message-passing

operations of Graphiti operate on
®

payload only. Hence, only the

permutations computed on the input order during initialization

depend on the other columns of the DAG list. We exploit that fact by,

instead of reordering the entire DAG list during message-passing,

only reordering the payload to improve communication.

After switching to vertex order, we applyFpropagate-1 and switch
from vertex order to source order. As permutation [[𝜌src]] for the
source order has been computed on the input order, we would have

to first switch back to input order, i.e., applying 𝜌−1
vert

, to then go

to source order, i.e., apply 𝜌src. Instead, we introduce functionality

FswPerm (Fig. 6) that merges both steps into one. We hence apply

FswPerm ([[𝜌vert]], [[𝜌src]], [[®
payload]]) which applies 𝜌src ◦ 𝜌−1

vert

to [[®
payload]].13 Appendix A.3 explains how FswPerm could be

naïvely realized based on [7]’s FapplyPerm and finally provides our

own improved implementation of FswPerm that improves the naïve

approach by factor two, requiring only a single round. Propagate

then is finalized by application of Fpropagate-2.

Input: Secret-shared vector [[®x]] of dimension 𝑛, [[𝜌1]], [[𝜌2]] for permutations

𝜌1, 𝜌2 ∈ S𝑛 .
Output: Secret-shared vector [[𝜌2 (𝜌−1

1
(®x))]].

Functionality FswPerm

Figure 6: Functionality to switch order of secret-shared vector from

one secret-shared permutation to another.

As for Graphiti, gather consists of switching to destination or-

der, in our protocol using FswPerm, applying Fgather-1, switching
to vertex order, and then applying Fgather-2. The resulting pay-

load serves as an update to the former one at the beginning of the

message-passing iteration. By individually choosing Fapply, one
could apply this update by, e.g., using it to overwrite the prior pay-

load, or adding prior payload and update, depending on the exact

function to be computed (cf. §4.2.3). Then, the next message-passing

iteration can commence.

As a final remark, in Fig. 3 in-between the propagate respectively

the gather steps, the semantics of the intermediate payloads associ-

ated to the DAG list entries might not appear directly apparent. Yet,

it is exactly what allows to instantiate Fpropagate-1, Fpropagate-2,
Fgather-1, and Fgather-2 non-interactively, utilizing the different

orders of the DAG list to eventually come to the correct result. For

details on this mechanism, we refer the interested reader to [31].

4.2.3 Computing Centrality Measures in our Framework. Secure
computation of 𝜋𝐷M using our previously introduced framework

works as follows: As described in §3.1, in each iteration, a node

propagates its prior state 𝑠𝑖−1𝑣 and replaces it with the newly gath-

ered data. We represent these states as the payload
®

payload which

is secret-shared between the servers. Functionality Fapply now has

to (a) overwrite the state of the node with the newly gathered data,

i.e., the update, and (b) add the weights 𝛽𝑖 to the states propagated

by each node before the iteration.14 Both steps run non-interactively.

As we reduce 𝜋𝐷K to 𝜋𝐷M by transforming the multiset of edges E
to a unified set E (§3.2), we require a one-time preparation step to

13
Only during the change from vertex to source order, we temporarily extend the

payload to two entries per row instead of one, illustrated in Fig. 3, as per the design of

the building blocks provided by Graphiti [31].

14
Adding weights before each iteration requires a slight and simple change from the

template as provided by Prot. 1 by splitting Fapply into two different steps before and

after an iteration. The detailed protocol, including this modification, is provided in

Appendix B.

8

run a deduplication sub-protocol before using our secure message-

passing protocol. As the name suggests, this protocol securely re-

moves duplicate edges by identifying edges that already occurred

before and sets them to invalid such that the message-passing iter-

ations will ignore them. Our secure deduplication follows standard

techniques, which is why we defer details to Appendix A.6.

To securely realize 𝜋𝐷R , the information that is propagated dur-

ing propagate in iteration 𝑖 comprises 𝑠𝑖−1𝑤 , and the subsequently

gathered information is added to 𝑠𝑖−1𝑤 before finally applying clip(·)
to the result as per Eq. (7) in §3.3. In this way, Fapply can be de-

fined as Fapply ([[®
payload

v
]], [[®

update
v
]]) = clip([[®

payload
v
]] +

[[®
update

v
]]). We note that clip(·) can be realized in MPC with stan-

dard techniques and provide details in Appendix A.5. Furthermore,

it is possible to optimize Fapply to only use clipping in the last

message-passing iteration (cf. Appendix B.1), rendering all but the

last instance of Fapply non-interactive. Finally, recall that we need
|V| parallel instances of BFS to compute the score for all nodes. For

this, we simply extend the definition of the payload from a single

vector
®

payload to |V| independent vectors ®
payload

𝑖
, each for one

of the required BFS instances.

We provide the formal full protocols for all considered metrics,

i.e., how they are embedded in the general framework that was

provided by Prot. 1, in Appendix B.2.

4.2.4 Complexity. We report the asymptotic complexities of our

protocols in Tab. 1. For a fair comparison, we report our complexity

and that of [6] using the MPC setting introduced in §2.3, since

the original protocols in [6] are based on less efficient BGW [10]

without outsourcing (where clients themselves carry out the com-

putation). Given a sparse graph, i.e., |E | ∈ O(|V|), observe from
Tab. 1 that we reduce the communication per iteration from qua-

dratic to linear for 𝜋𝐷M, 𝜋𝐷K , and from cubic to quadratic for 𝜋𝐷R . The

complexity of O((|V| + |E |) log |V|) is incurred only as a one-time

cost for our protocols. Both, [6] and our work have local computa-

tion that is linear in the communication. While round complexity

is slightly higher for our protocols, as shown in §6, rounds are not

the bottleneck for any of the considered protocols.

Table 1: Asymptotic communication and round complexity

of all metrics as implemented in [6], and as implemented by

us, for |V| nodes, |E | edges, 𝐷 iterations/depth and ℓ layers.

Communication is in elements of Z
2
𝑘 . Concrete values are

given in Appendix B.3, Tab. 4.

Cost prior [6] ours

𝜋𝐷M
comm. O(|V|2𝐷) O((|V| + |E |) log |V| + (|V| + |E |)𝐷)
rounds O(𝐷) O(log |V| + 𝐷)

𝜋𝐷K
comm. O(|V|2ℓ + |V|2𝐷) O((|V| + |E |) log |V| + (|V| + |E |)𝐷)
rounds O(log(ℓ) + 𝐷) O(log |V| + log(𝑘) + 𝐷)

𝜋𝐷R
comm. O(|V|3𝐷) O((|V|2 + |V| · |E |)𝐷)
rounds O(log(𝑘) + 𝐷) O(log |V| + log(𝑘) + 𝐷)

4.2.5 Security. The security of our protocols immediately follows

from the correctness of the vertex-centric approach and the pri-

vacy guarantees of the MPC protocol for the same. In particular,

our protocols are built from MPC building blocks that, on their

own, are proven secure in the semi-honest setting. Some building

blocks in Appendix A reconstruct intermediate values but only after

masking, and we show their security in Appendix A. Our protocols

inherit the security of the underlying building blocks as they are a

composition of those. The only knowledge on input data that we

assume to be public is the number of DAG list entries, the number

of nodes, and the input sizes by each client, which can be avoided

by padding as discussed in Appendix B.4.

4.3 Output Phase

After the evaluation phase, the computed centrality scores are avail-

able as secret-shared data and hence can be disclosed to any entity

by simply sending all output shares to that entity. Depending on

the exact application, it can be freely decided who receives which

output. For example, all clients could receive the scores for all nodes

or, alternatively, only for the nodes they provided as input individ-

ually. Alternatively, the output could be kept private and utilized in

further secure computation, making our protocol a secure building

block for more complex systems.

5 Discussion of Our Improvements

In this section, we discuss the improvements of our approach to

secure message-passing algorithms introduced in §4 over its basis

provided by Graphiti [31].

First, note that our approach to input sharing (§4.1) improves the

efficiency of not only the protocols for centrality measures from [6]

that are entirely based on adjacency matrices, but also improves

over the input sharing described in Graphiti [31]. Elaborately, while

using DAG lists during the main computation, Graphiti’s input shar-

ing involves generating a secret-sharing of the adjacency matrix

representation for the input graph and incurs O(|V|2) communica-

tion. In contrast, in our case, all clients directly share their slice of

the DAG list, resulting in O(|V| + |E |) communication. Hence, while

Graphiti manages to remove any O(|V|2) factors during the proto-

col’s main computation phase, our approach ensures the absence of

such quadratic factors throughout the complete computation pro-

cess, including the input phase. This is crucial to optimize not only

run time and communication but also local memory requirements

for sparse graphs with many nodes. Yet, starting from an adjacency

matrix allows Graphiti to then non-expensively build a DAG list

immediately in vertex order so that sorting is only required for the

other two orders. Starting from the new, arbitrary input order, our

protocol also requires sorting to reach vertex order, but using the

optimization from §4.2.1 that computes three sorting permutations

at the price of two essentially nullifies this disadvantage.

While we use message-passing functionalities Fpropagate-1,
Fpropagate-2, Fgather-1, and Fgather-2 as provided by Graphiti on

the DAG list alternating between vertex order, source order, and des-

tination order, our protocol substantially differs in how it switches

between these orders. Graphiti uses the same approach as its pre-

decessor [5] for that which is based on quicksort. In detail, sorting

the DAG list entries for each of the specific orders is required as a

one-time initialization, while revisiting the same ordering comes

relatively cheap at the cost of one shuffling operation, which they

implement using only a single communication round.

9

We identify multiple problems with the use of quicksort in the

context of Graphiti:

1. The utilized MPC version of quicksort [5, 25] is secure only if

all keys to sort are unique. To ensure that, [5] adds a unique

padding to all keys. This results in worse asymptotic complexity

and, hence, worse scalability than the MPC radix sort [7] that

we apply (cf. §4.2.1).
15

2. The program flow of quicksort is not oblivious, yielding a lack

of predictability regarding run time and communication cost

of the protocol execution. Furthermore, the dynamic program

flow introduces engineering difficulties for a well-designed and

efficient MPC implementation.

3. The non-constant communication requirements of MPC quick-

sort also translate to the preprocessing phase. The exact amount

of required preprocessing material only becomes known in the

protocol’s online phase, necessitating overprovisioning during

its preprocessing phase.
16

Our solution overcomes these problems by using radix sort for

the initialization phase (§4.2.1), which also changes how the DAG

list is reordered in each of the message-passing iterations (§4.2.2).

Ourmethod for reordering, namelyFswPerm, matches the amortized

performance of changing between orders in Graphiti, especially

also requiring just a single round.

Finally, our protocol supports multigraphs in contrast to Graphiti.

While the message-passing primitives of Graphiti allow for edges of

multiplicity > 1 which we exploit in §4.2.2, Graphiti’s input phase

based on adjacency matrices rules out support for multigraphs.

6 Experimental Evaluation

We evaluate the performance of our protocols, report concrete run

time and communication cost, and compare it against [6].

Benchmark Environment. We fully implement our secure frame-

work for message-passing, building on top of Graphiti’s [31] code-

base that only includes implementation for single building blocks,

intended for micro-benchmarking and excluding the initialization

phase. Using our framework, we implement our instantiation of

the centrality measures from [6] as well as, for a fair comparison,

the prior instantiations from [6] in our setting with two parties and

one helper, thereby immediately improving [6]’s performance by

using state-of-the-art primitives.
17

We use TLS to implement secure

channels, which was missing in the original codebase of [31]. Our

code is publicly available at https://encrypto.de/code/MultiCent.

We benchmark on three servers, each equipped with an Intel

Core i9-7960X CPU@ 2.8 GHz, 128 GB of DDR4 RAM@ 2666MHz.

To simulate realistic real-world network behavior between the

servers, we use the Linux tool tc (traffic control), focussing on a

LAN setting with 1 ms RTT and 1 GBit/s bandwidth. WAN bench-

marks and full benchmark data are provided in Appendix C. The

15
This improvement is not based on hiding the size of keys in the asymptotic notation

as it is sometimes done for plaintext radix sort. To sort 𝑛 keys consisting of 𝑘 bits each,

the radix sort of [7] requires O(𝑘 · 𝑛 log𝑛) bits communication while the quicksort

in [5] requires O((𝑘 + log𝑛) · 𝑛 log𝑛) bits in the average case.

16
One may manage a pool of preprocessing material for multiple protocol runs to reuse

unused material in later protocol runs. Yet, this does not resolve the problem as the

preprocessing material has to be generated for a fixed size of the DAG list, rendering

it partly unsuitable for later use on graphs with other sizes.

17
There exists no public reference implementation of [6] in any setting.

benchmarks report concrete costs assuming the input has been

shared among the servers since input sharing heavily depends on

client-side capabilities, which are generally considered to be much

less than the computing parties. However, note that input sharing

runs in a single round, and communication therein can be derived

from the graph representation size as will be introduced in Tab. 2.

Real-World Graph Instances. We consider several real-world

sparse multigraphs, as used in [6], which are summarized in Tab. 2.

Note that the performance of the secure protocols only relies on

the general size parameters since MPC protocols for graph analysis

must have a control flow independent of the graph structure so that

no private information is leaked. For [6] this is the number of nodes

|V| and layers ℓ , while our approach also requires knowledge of

the total number of edges |E |. Since some of the considered graphs

are undirected, following [6], we reduce these instances to directed

graphs by duplicating each edge, having it once in each direction.

Table 2: Considered datasets
18
, either undirected (U) or di-

rected (D), with ℓ layers, |V| nodes, and |E | = ∑ℓ
𝑖=1 |E𝑖 | edges

across all layers. Graph representation size denotes memory

required by [6] and us when using 32-bit integers (𝑘 = 32).

dataset U/D ℓ |V| |E | graph representation size

prior [6] ours improv.

aarhus U 5 61 620 14.54 KiB 15.25 KiB 0.95×
london U 3 369 503 531.88 KiB 16.11 KiB 33.01×
hiv D 3 1,005 2,688 3.85 MiB 43.28 KiB 91.17×
arabi U 7 6,980 18,117 185.85 MiB 506.41 KiB 375.81×
higgs D 3 304,691 1,110,962 345.84 GiB 16.20 MiB 21.86k×

The graph representation size captures |V|2-sized adjacency ma-

trices for [6] vs. 3(|V| + |E |)-sized DAG lists in our solution. This

results in a smaller graph representation size of up to four orders

of magnitude. That also directly corresponds to the amount of data

that must be secret-shared during input sharing (i.e., total client-to-

server communication cost) and eventually stored as input at the

servers. Thus, memory constraints faced by [6] are evident, where

some of the datasets cannot be represented in the RAM of realistic

hardware. Hence, [6] only reports performance on the smallest

three datasets when securely computing 𝜋𝐷M, 𝜋𝐷K , 𝜋𝐷R .

Experiments on Real-World Graphs. Following experiments

in [6], we benchmark the protocols on graph instances in Tab. 2

for different numbers of iterations 𝐷 . The protocols’ run time and

communication are provided in Fig. 7.

Suitability for Larger Graphs: The protocols [6] only run on the

first three datasets due to memory constraints, also evident in [6]’s

own benchmarks. This showcases the suitability of our protocols

for larger graph instances, whereas handling graphs with as little as

7000 nodes for multiple iterations was infeasible for [6]. Although

we cannot report concrete run time for the larger datasets, we

report the communication cost that would be incurred by [6], as

derived from the detailed analytical costs reported in Appendix B.3,

18
The considered datasets represent offline relationships (aarhus), road networks

(london), genetic interactions (hiv & arabi), and online social networks (higgs). For

details, we refer to [6] that selected these.

10

https://encrypto.de/code/MultiCent

0 2 4 6 8 10
0.0

0.2

0.4
tim

e
[s

]

0 2 4 6 8 10
10 1

100

101

co
m

m
. [

M
iB

]

0 2 4 6 8 10
0

1

2

3

tim
e

[s
]

0 2 4 6 8 10

102

104

co
m

m
. [

M
iB

]

0 2 4 6 8 10
0

5

10

tim
e

[s
]

0 2 4 6 8 10

101

102

103

co
m

m
. [

M
iB

]

0 2 4 6 8 10
0

1

2

3

tim
e

[s
]

0 2 4 6 8 10
10 1

100

101

co
m

m
. [

Gi
B]

0 2 4 6 8 10
 D

0

50

100

150

tim
e

[s
]

0 2 4 6 8 10
D

102

104

co
m

m
. [

Gi
B]

aarhus

london

hiv

arabi

higgs
D
M (ours)
D
K (ours)
D
R (ours)

D
M (prior [6])
D
K (prior [6])
D
R (prior [6])

Figure 7: Total run times and communication (preprocessing

+ online) of our protocols and our implementation of prior

protocols [6] for differentmetrics on graph instances inTab. 2

for varying numbers of iterations 𝐷 .

Tab. 4. Further, we note that run times for our implementation

of [6] are significantly lower than the original numbers from [6]

(e.g., on “hiv” they report > 300 s run time at 10 iterations for

all protocols, whereas our re-implementation takes below 5 s for

𝜋𝐷M, 𝜋𝐷K), showing that our instantiation in the outsourced setting

and efficient computation on rings in contrast to 𝑛-party protocols

over fields significantly improves their performance.

Improved Performance with Increasing 𝐷 : The cost for all pro-
tocols scales linearly with 𝐷 , as expected, given the asymptotic

complexities in Tab. 2. Note that the protocols in [6] incur the same

quadratic cost (for 𝜋𝐷M, 𝜋𝐷K) and cubic cost (for 𝜋𝐷R) for each iteration

𝐷 . On the other hand, our protocols incur a one-time cost for the ini-

tialization phase (including the cost of clip(·) for 𝜋𝐷R), captured via

𝐷 = 0, which is our bottleneck. The subsequent message-passing

iterations, captured by 𝐷 > 0, are highly efficient incurring only

linear cost for 𝜋𝐷M, 𝜋𝐷K , and quadratic cost for 𝜋𝐷R , thereby improv-

ing [6] by a factor of |V|. Despite the one-time initialization cost

being a bottleneck, we observe that our protocols for all metrics

outperform those of [6], for all instances where [6] is reported,

except the “aarhus” dataset. This is because the graph is small and

dense while our constant factors are higher.

Observations Specific to 𝜋𝐷M, 𝜋𝐷K , 𝜋𝐷R : Concerning 𝜋𝐷M and 𝜋𝐷K ,

trends are similar, with the only difference in cost attributed to

the additional computations required for our 𝜋𝐷K to transform the

multilayer graph to a unified graph, which is a one-time operation.

Although no explicit initialization is required for any of the

protocols in [6], there is a difference in the first iteration (𝐷 = 1).

For 𝜋𝐷M, note that this computation does not require any interactions

among the parties since the operations comprise simple additions

performed on the input matrix that is already shared. For 𝜋𝐷K , this

captures the cost of performing some aggregation using interactive

MPC operations on the input. Hence, the cost of 𝜋𝐷K is slightly

higher than 𝜋𝐷M. However, note that this is a one-time cost. Similarly,

for 𝜋𝐷R this denotes the one-time cost of performing clipping to

bring down the values to {0, 1}. Hence, across all the protocols,

the quadratic (𝜋𝐷M, 𝜋𝐷K) and cubic (𝜋𝐷R) growth w.r.t. the graph size

starts at 𝐷 > 1 after a cheap, first iteration.

Note that computing 𝜋𝐷R , in the case of both ours and [6], be-

comes infeasible with increasing 𝐷 , due to significantly higher

complexity than the other metrics. This is clearly evident for “hiv”,

where the prior [6] protocol for 𝜋𝐷R only runs for 𝐷 = 1 and further

iterations immediately exhaust the available memory.

Scalability for Larger Graphs. To showcase the scalability of

our protocols for much larger graphs (in addition to the real-world

datasets considered above), we investigate the performance of our

protocols by varying |V| and compare it against [6]. Moreover, to

account for different levels of sparsity
19
, we consider graphs with

|E | = 10|V|, |E | = 50|V|, and |E | = 100|V|. Recall that the cost per
iteration remains the same for the protocols in [6] as well as ours

(except for a one-time initialization cost). Hence, for varying |V|
and |E |, Fig. 8 explicitly reports the one-time cost and the cost per

iteration (allowing extrapolation to arbitrarily many iterations).

Observations for 𝜋𝐷M, 𝜋𝐷K , 𝜋𝐷R : Regarding our 𝜋𝐷M, 𝜋𝐷K , as also re-

ported above, the one-time cost is higher than the per iteration

cost.
20

This is consistent with our O(|V| log |V|) one-time asymp-

totic complexity and O(|V|) per iteration for |E | ∈ O(|V|). Interest-
ingly, despite one-time communication for the prior 𝜋𝐷M protocol [6]

being 0, their run time is worse than our protocol as their local

computation still scales with the quadratic size of the adjacency

matrix, showcasing the adverse impact of quadratic computation

cost. The poor scalability of [6] also immediately becomes appar-

ent for all metrics from the cost per iteration. It is not feasible to

run the prior protocols [6] on more than 8k nodes at all, whereas

our protocols for 𝜋𝐷M and 𝜋𝐷K scale well. Our protocol for 𝜋𝐷R also

outperforms the prior one [6] due to better cost per iteration, yet it

is not very efficient on larger graphs.

Scalability for Huge Graphs: In Fig. 9, we investigate the scal-

ability of 𝜋𝐷M for even larger graphs with up to 500k nodes using

|E | = 10|V|. Recall that the online run time determines the run

time of the protocol once the input is made available. Due to its

significance, we also investigate the split between online and pre-

processing run times and communication here. Even for 500k nodes

and 5 million edges, the total one-time cost is 300 s, only 124 s of

them being online, with communication of at most 17GiB total. The

cost per iteration is significantly cheaper, staying at 8 s and 400MiB

total, with only 3 s in the online phase, making our approach highly

scalable for varying numbers of iterations.

19
Due to operating on adjacency matrices, the cost of [6] is independent of the sparsity.

20
The discontinuities in communication are at powers of two, stemming from the

O(|V | log |V |) complexity which concretely contains a ⌈log
2
|V | ⌉ term.

11

0 10k 30k 50k
0

200

tim
e

[s
]

0 10k 30k 50k
0

10

co
m

m
. [

Gi
B]

0 10k 30k 50k
0

10

20

tim
e

[s
]

0 10k 30k 50k
0.0

0.5

1.0

co
m

m
. [

Gi
B]

0 20k 40k
0

200

tim
e

[s
]

0 20k 40k
0

25

50

co
m

m
. [

Gi
B]

0 20k 40k
0

10

20

tim
e

[s
]

0 20k 40k
0.0

0.5

1.0

co
m

m
. [

Gi
B]

0 400 800
|v|

0

20

40

tim
e

[s
]

0 400 800
|v|

0

1

co
m

m
. [

Gi
B]

0 400 800
|v|

0

50

tim
e

[s
]

0 400 800
|v|

0

10

co
m

m
. [

Gi
B]

one-time cost cost per iteration

D
M

D
K

D
R

ours (| | = 10|V|) ours (| | = 50|V|) ours (| | = 100|V|) prior [6] (arbitrary | |)

Figure 8: Total run times and communication (preprocessing + online) of our protocols vs. prior protocols [6] (ℓ = 3 layers).

0 100k 200k 200k 400k 500k
0

100

200

300

tim
e

[s
]

0 100k 200k 200k 400k 500k
0

2

4

6

8

tim
e

[s
]

0 100k 200k 200k 400k 500k
|v|

0

5

10

15

co
m

m
. [

Gi
B]

0 100k 200k 200k 400k 500k
|v|

0

100

200

300

co
m

m
 [M

iB
]

one-time cost cost per iteration

online total (preprocessing + online)

Figure 9: Run times and communication (over all parties) for

our 𝜋𝐷M with |E | = 10|V|, split into online and total (prepro-

cessing + online) cost (ℓ = 3 layers).

7 Related Work

To the best of our knowledge, [6] is the only work that designs

secure solutions for analyzing multilayer graphs. It completely

relies on encoding graphs as adjacency matrices A. To compute

paths of length 𝑖 , it exploits that (A𝑖)𝑣,𝑤 equals the number of paths

from node 𝑣 to𝑤 . While this approach via matrix multiplication is

simple on a conceptional level, it requires |V|3 multiplications for

each but the first iteration. For 𝜋𝐷M, 𝜋𝐷K , [6] optimize this to quadratic

complexity, still ruling out scalability as we can also concretely see

in §6. All required operations in [6] are instantiated using the BGW

protocol [10], additionally reducing practical performance. Due to

the lack of other solutions for multilayer graphs, in what follows,

we focus our attention on works that design secure solutions for

graph analysis, despite them being on simple graphs.

There have been several works in the literature that design se-

cure MPC-based solutions specific to the considered graph algo-

rithms [2–4, 11, 12, 16]. Apart from considering traditional graph

algorithms, a few works specifically look at securely computing

centrality measures on simple graphs [27, 32, 33, 52, 54]. How-

ever, with scalability being the primary concern in all of these

works, GraphSC [43] was the first work to design a generic frame-

work that facilitated secure realizing any graph algorithm that is

expressed as a message-passing algorithm. GraphSC proposed a

vertex-centric approach where data is passed between nodes over

their connecting edges in multiple iterations, thereby operating on

a DAG list (cf. §2.5) representation of the graph. Further, to effi-

ciently realize message passing, GraphSC proposed transitioning

between different orderings of the DAG list. Performance of this

approach was greatly improved in [5] by (1) switching from a two-

party to a three-party honest majority setting, and (2) improving

the reordering of the DAG list by only requiring to run sorting

algorithms once during an initialization phase while [43] needs to

sort in each iteration. Graphiti [31] is the state of the art in this

line of work. It uses [5]’s approach for efficient reordering, but

improves upon the propagate and gather steps of message-passing

themselves (cf. §2.5). Furthermore, it allows one party to act as a

helper only, assisting in a preprocessing phase that was not utilized

in [5]. There also exist message-passing works leaking structural

information on the graph [40, 41] predating the work of [5] that

also discusses the limitations yielded by the leakage.

We discuss our conceptual improvements over [31] as state of

the art for analysis of simple graphs using message-passing in §5.

We provide no concrete efficiency comparison due to the lack of

details on and implementation of an end-to-end system in [31].

8 Conclusion

We design secure and efficient protocols for computing centrality

measures in multilayer graphs. In contrast to the prior work [6],

we develop practical and scalable solutions by making several con-

scious design choices. Most notably, we switch from a matrix rep-

resentation to a list representation, a paradigm shift that signifi-

cantly improves efficiency. However, this shift requires carefully

designed, data-oblivious protocols to ensure no information about

the underlying graph is leaked. To address this, we introduce novel

vertex-centric protocols for computing centrality measures based

12

on the list representation. As a basis for our protocols, we develop

a secure graph analysis framework for multigraphs, extending and

improving Graphiti [31] while also providing a functional end-to-

end implementation. Implementing our protocols for centrality

measures on top of this new framework, we show that they are, by

orders of magnitude, more efficient than prior work [6] and now

scale to handle graph sizes in the millions.

Acknowledgments

The authors thank Joachim Schmidt (TU Darmstadt) and Maxim-

ilian Stillger (TU Darmstadt) for contributing to the codebase the

clipping operation as well as TLS channels and their integration.

This project received funding from the European Research Coun-

cil (ERC) under the European Union’s research and innovation

programs Horizon 2020 (PSOTI/850990) and Horizon Europe (PRIV-

TOOLS/101124778). It was co-funded by the Deutsche Forschungs-

gemeinschaft (DFG) within SFB 1119 CROSSING/236615297.

References

[1] Pranav Shriram A, Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, and Bhav-

ish Raj Gopal. 2023. Find Thy Neighbourhood: Privacy-Preserving Local Cluster-

ing. In PETS.
[2] AbdelrahamanAly, Edouard Cuvelier, SophieMawet, Olivier Pereira, andMathieu

Van Vyve. 2013. Securely Solving Simple Combinatorial Graph Problems. In FC.
[3] Abdelrahaman Aly and Mathieu Van Vyve. 2015. Securely Solving Classical

Network Flow Problems. In ICISC.
[4] Mohammad Anagreh, Peeter Laud, and Eero Vainikko. 2021. Parallel Privacy-

Preserving Shortest Path Algorithms. Cryptography (2021).

[5] Toshinori Araki, Jun Furukawa, Kazuma Ohara, Benny Pinkas, Hanan Rosemarin,

and Hikaru Tsuchida. 2021. Secure Graph Analysis at Scale. In CCS.
[6] Gilad Asharov, Francesco Bonchi, David Garcia-Soriano, and Tamir Tassa. 2017.

Secure Centrality Computation Over Multiple Networks. In WWW.

[7] Gilad Asharov, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Ariel Nof, Benny Pinkas,

Katsumi Takahashi, and Junichi Tomida. 2022. Efficient Secure Three-Party

Sorting with Applications to Data Analysis and Heavy Hitters. In CCS.
[8] Muhammad A Awad, Saman Ashkiani, Serban D Porumbescu, and John D Owens.

2020. Dynamic Graphs on the GPU. In IPDPS.
[9] Donald Beaver. 1991. Efficient Multiparty Protocols Using Circuit Randomization.

In CRYPTO.
[10] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. 1988. Completeness The-

orems for Non-Cryptographic Fault-Tolerant Distributed Computation (Extended

Abstract). In STOC.
[11] Marina Blanton and Siddharth Saraph. 2015. Secure and Oblivious Maximum

Bipartite Matching Size Algorithm with Applications to Secure Fingerprint Iden-

tification. In ESORICS.
[12] Marina Blanton, Aaron Steele, and Mehrdad Alisagari. 2013. Data-Oblivious

Graph Algorithms for Secure Computation and Outsourcing. In ASIACCS.
[13] Elette Boyle, Nishanth Chandran, Niv Gilboa, Divya Gupta, Yuval Ishai, Nishant

Kumar, and Mayank Rathee. 2021. Function Secret Sharing for Mixed-Mode and

Fixed-Point Secure Computation. In EUROCRYPT.
[14] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2019. Secure Computation With Pre-

processing via Function Secret Sharing. In TCC.
[15] Guillaume Braun, Hemant Tyagi, and Christophe Biernacki. 2021. Clustering

Multilayer Graphs with Missing Nodes. In AISTATS.
[16] Justin Brickell and Vitaly Shmatikov. 2005. Privacy-Preserving Graph Algorithms

in the Semi-Honest Model. In ASIACRYPT.
[17] Sharma Chakravarthy, Abhishek Santra, and Kanthi Sannappa Komar. 2019. Why

Multilayer Networks Instead of Simple Graphs? Modeling Effectiveness and

Analysis Flexibility and Efficiency!. In Big Data Analytics.
[18] Manlio De Domenico, Albert Solé-Ribalta, Elisa Omodei, Sergio Gómez, and

Alex Arenas. 2015. Centrality in Interconnected Multilayer Networks. Nature
Communications (2015).

[19] Charo I Del Genio, Thilo Gross, and Kevin E Bassler. 2011. All Scale-Free Networks

are Sparse. Physical Review Letters (2011).
[20] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY - A Frame-

work for Efficient Mixed-Protocol Secure Two-Party Computation. In NDSS.
[21] Kurt C Foster, Stephen QMuth, John J Potterat, and Richard B Rothenberg. 2001. A

Faster Katz Status Score Algorithm. Computational & Mathematical Organization
Theory (2001).

[22] Hildreth Robert Frost. 2023. Eigenvector Centrality for Multilayer Networks

with Dependent Node Importance. In Complex Networks.
[23] H Robert Frost. 2024. A Generalized Eigenvector Centrality for Multilayer Net-

works with Inter-Layer Constraints on Adjacent Node Importance. Applied
Network Science (2024).

[24] Zhie Gao and Amin Rezaeipanah. 2023. A Novel Link Prediction Model in

Multilayer Online Social Networks Using the Development of Katz Similarity

Metric. Neural Processing Letters (2023).
[25] Koki Hamada, Ryo Kikuchi, Dai Ikarashi, Koji Chida, and Katsumi Takahashi.

2012. Practically Efficient Multi-party Sorting Protocols from Comparison Sort

Algorithms. In ICISC.
[26] Yan Huang, David Evans, and Jonathan Katz. 2012. Private Set Intersection: Are

Garbled Circuits Better than Custom Protocols?. In NDSS.
[27] Florian Kerschbaum and Andreas Schaad. 2008. Privacy-Preserving Social Net-

work Analysis for Criminal Investigations. In WPES.
[28] Mikko Kivelä, Alex Arenas, Marc Barthelemy, James P Gleeson, Yamir Moreno,

and Mason A Porter. 2014. Multilayer Networks. Journal of Complex Networks
(2014).

[29] Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, and Ni Trieu.

2017. Practical Multi-Party Private Set Intersection from Symmetric-Key Tech-

niques. In CCS.
[30] Nitish Korula and Silvio Lattanzi. 2014. An Efficient Reconciliation Algorithm

for Social Networks. VLDB (2014).

[31] Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, and Bhavish Raj Gopal. 2024.

Graphiti: Secure Graph Computation Made More Scalable. In CCS.
[32] Varsha Bhat Kukkala and S. R. S. Iyengar. 2018. Computing Betweenness Cen-

trality: An Efficient Privacy-Preserving Approach. In CANS.
[33] Varsha Bhat Kukkala and S. R. S. Iyengar. 2020. Identifying Influential Spreaders

in a Social Network (While Preserving Privacy). In PETS.
[34] Tarun Kumar, Ramanathan Sethuraman, Sanga Mitra, Balaraman Ravindran,

and Manikandan Narayanan. 2023. MultiCens: Multilayer Network Centrality

Measures to Uncover Molecular Mediators of Tissue-Tissue Communication.

PLOS Computational Biology (2023).

[35] David Liben-Nowell and Jon Kleinberg. 2003. The Link Prediction Problem for

Social Networks. In CIKM.

[36] Mingkai Lin, Wenzhong Li, Lynda J Song, Cam-Tu Nguyen, Xiaoliang Wang,

and Sanglu Lu. 2021. Sake: Estimating Katz Centrality Based on Sampling for

Large-Scale Social Networks. TKDD (2021).

[37] Boge Liu, Fan Zhang, Chen Zhang, Wenjie Zhang, and Xuemin Lin. 2019. Core-

Cube: Core Decomposition in Multilayer Graphs. In WISE.
[38] Dandan Liu and Zhaonian Zou. 2023. gCore: Exploring Cross-layer Cohesiveness

in Multi-layer Graphs. VLDB (2023).

[39] Zhengdong Lu, Berkant Savas, Wei Tang, and Inderjit S Dhillon. 2010. Supervised

Link Prediction Using Multiple Sources. In ICDM.

[40] Sahar Mazloom and S. Dov Gordon. 2018. Secure Computation with Differentially

Private Access Patterns. In CCS.
[41] SaharMazloom, Phi Hung Le, Samuel Ranellucci, and S. Dov Gordon. 2020. Secure

Parallel Computation on National Scale Volumes of Data. In USENIX Security.
[42] DuaneMerrill, Michael Garland, and AndrewGrimshaw. 2015. High-Performance

and Scalable GPU Graph Traversal. In TOPC.
[43] Kartik Nayak, Xiao Shaun Wang, Stratis Ioannidis, Udi Weinsberg, Nina Taft,

and Elaine Shi. 2015. GraphSC: Parallel Secure Computation Made Easy. In IEEE
S&P.

[44] Vanni Noferini and Ryan Wood. 2024. Efficient Computation of Katz Centrality

for Very Dense Networks via Negative Parameter Katz. Journal of Complex
Networks (2024).

[45] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein Yalame. 2021. ABY2.0:

Improved Mixed-Protocol Secure Two-Party Computation. In USENIX Security.
[46] Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay Yanai.

2019. Efficient Circuit-Based PSI with Linear Communication. In EUROCRYPT.
[47] Matthew J Rattigan and David Jensen. 2005. The Case for Anomalous Link

Discovery. ACM SIGKDD Explorations Newsletter (2005).
[48] Hunter Rehm, Mona Matar, Puck Rombach, and Lauren McIntyre. 2023. The

Effect of the Katz Parameter on Node Ranking, with a Medical Application. Social
Network Analysis and Mining (2023).

[49] M Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M Songhori,

Thomas Schneider, and Farinaz Koushanfar. 2018. Chameleon: A Hybrid Secure

Computation Framework for Machine Learning Applications. In ASIACCS.
[50] M. Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M. Songhori,

Thomas Schneider, and Farinaz Koushanfar. 2018. Chameleon: A Hybrid Secure

Computation Framework for Machine Learning Applications. In ASIACCS.
[51] Théo Ryffel, Pierre Tholoniat, David Pointcheval, and Francis Bach. 2022. ARI-

ANN: Low-Interaction Privacy-Preserving Deep Learning via Function Secret

Sharing. In PETS.
[52] Alex Sangers, Maran van Heesch, Thomas Attema, Thijs Veugen, Mark Wigger-

man, Jan Veldsink, Oscar Bloemen, and Daniël Worm. 2019. Secure Multiparty

PageRank Algorithm for Collaborative Fraud Detection. In FC.

13

[53] Longxu Sun, Xin Huang, Zheng Wu, and Jianliang Xu. 2024. Efficient Cross-layer

Community Search in Large Multilayer Graphs. In ICDE.
[54] Tamir Tassa and Francesco Bonchi. 2014. Privacy Preserving Estimation of Social

Influence. In EDBT.
[55] Eugenio Valdano, Luca Ferreri, Chiara Poletto, and Vittoria Colizza. 2015. Ana-

lytical Computation of the Epidemic Threshold on Temporal Networks. Physical
Review X 5, 2 (2015).

[56] Sara Venturini, Andrea Cristofari, Francesco Rinaldi, and Francesco Tudisco.

2023. Learning the Right Layers a Data-Driven Layer-Aggregation Strategy for

Semi-Supervised Learning on Multilayer Graphs. In ICML.
[57] Sameer Wagh, Divya Gupta, and Nishanth Chandran. 2019. SecureNN: 3-Party

Secure Computation for Neural Network Training. In PETS.
[58] ChaoWang, Venu Satuluri, and Srinivasan Parthasarathy. 2007. Local Probabilistic

Models for Link Prediction. In ICDM.

[59] Dan Wang, Feng Tian, and Daijun Wei. 2023. A New Centrality Ranking Method

for Multilayer Networks. Journal of Computational Science (2023).
[60] Run-An Wang, Dandan Liu, and Zhaonian Zou. 2024. FocusCore Decomposition

of Multilayer Graphs. In ICDE.
[61] Tianming Zhang, Junkai Fang, Zhengyi Yang, Bin Cao, and Jing Fan. 2024. TATKC:

A Temporal Graph Neural Network for Fast Approximate Temporal Katz Cen-

trality Ranking. In WWW.

A Protocol Building Blocks

This section provides details on all building blocks used throughout

this work. Note that multiple building blocks that were not defined

before act as additional sub-building blocks here. As an orientation,

Tab. 3 provides an overview of all building blocks introduced or

used in §4 and this appendix.

A.1 Shuffling

A fundamental building block to scalable graph analysis is efficient

shuffling [5, 31]. For our protocols, we use the shuffling of [31] that

matches our setting with some modifications.

The first modification is that we allow the helperH to know the

permutations used for shuffling, saving the computational cost of

both parties applying an additional blinding permutation. This does

not violate the security of our protocols as these permutations are

sampled at random and are used only to mask information revealed

to the parties in intermediate steps of the protocol. The helper has

no access to this revealed information and does not collude with

the parties. Hence, the security proofs of [31] still hold true when

using this modification.

In addition, [31] allows to reuse some correlations between dif-

ferent instances of shuffling if the same random permutation is

used. We make this explicit, yielding first functionality FgetShuffle
(Fig. 10) that prepares a random permutation for shuffling and sec-

ond functionality Fshuffle (Fig. 11) which then applies a previously

prepared permutation. For a random shuffling permutation 𝜋 , we

utilize a new sharing semantic << 𝜋 >> that is defined as follows:

𝑃𝑖 holds 𝜋𝑖 , 𝜋
′
𝑖
∈ S𝑛 for 𝑖 ∈ {0, 1} with 𝜋0, 𝜋

′
0
, 𝜋1, 𝜋

′
1
being sampled

uniformly at random from S𝑛 subject to 𝜋0 ◦ 𝜋1 = 𝜋 ′
1
◦ 𝜋 ′

0
= 𝜋 . The

helperH additionally holds all of the mentioned permutations.

Input: 𝑛 ∈ N.
Output: <<𝜋 >> for a randomly sampled 𝜋 ∈ S𝑛 .

Functionality FgetShuffle

Figure 10: Functionality for generating a new secure shuffle.

Input: Secret-shared vector [[®x]] of dimension 𝑛 and <<𝜋 >> for a 𝜋 ∈ S𝑛 .

Functionality Fshuffle

Output: Secret-shared vector [[𝜋 (®x)]].

Figure 11: Secure shuffling functionality.

FgetShuffle, Fshuffle are implemented using Prot. 2 respectively

Prot. 3. Note that the protocols requireH and a party to sample the

same random values, which can be done non-interactively using

pre-shared PRF keys.

Protocol 2 Secure Shuffle Generation, based on [31]

Preprocessing Phase

1: For 𝑖 ∈ {0, 1}, 𝑃𝑖 ,H sample random 𝜋𝑖 ∈ S𝑛 .
2: H sets 𝜋 ← 𝜋0 ◦ 𝜋1.
3: 𝑃0,H sample random 𝜋 ′

0
∈ S𝑛 .

4: H computes 𝜋 ′
1
← 𝜋 ◦ 𝜋 ′

0

−1
and sends it to 𝑃1.

Protocol 3 Secure Shuffling, based on [31]

Preprocessing Phase

1: For 𝑖 ∈ {0, 1}, 𝑃𝑖 ,H sample random ®Ri ∈ Z𝑛
2
𝑘
.

2: H samples random ®R ∈ Z𝑛
2
𝑘
.

3: H computes ®B0 ← 𝜋 (®R1) − ®R and sends it to 𝑃0.

4: H computes ®B1 ← 𝜋 (®R0) + ®R and sends it to 𝑃1.

Online Phase

5: 𝑃0 computes ®t0 ← 𝜋 ′
0
(®x0 + ®R0) and sends it to 𝑃1.

6: 𝑃1 computes ®t1 ← 𝜋1 (®x1 + ®R1) and sends it to 𝑃0.

7: 𝑃0 computes ®y0 ← 𝜋0 (®t1) − ®B0.

8: 𝑃1 computes ®y1 ← 𝜋 ′
1
(®t0) − ®B1.

9: Return [[®y]].

If there is a need to unshuffle, i.e., applying the inverse of a shuf-

fling permutation, we use Funshuffle (Fig. 12) which we implement

by Prot. 4. This is a modification of Prot. 3 that, by swapping and

inverting permutations, applies 𝜋−1 instead of 𝜋 :

®y = 𝜋 ′−1
0
(®t1) − ®B0 + 𝜋1−1 (®t0) − ®B1

= 𝜋 ′−1
0
(𝜋 ′−1

1
(®x1 + ®R1)) − ®B0 + 𝜋1−1 (𝜋0−1 (®x0 + ®R0)) − ®B1

= 𝜋−1 (®x) + 𝜋−1 (®R1) + 𝜋−1 (®R0) − 𝜋−1 (®R1) − ®R − 𝜋−1 (®R0) + ®R
= 𝜋−1 (®x)

Input: Secret-shared vector [[®x]] of dimension 𝑛 and <<𝜋 >> for a 𝜋 ∈ S𝑛 .
Output: Secret-shared vector [[𝜋−1 (®x)]].

Functionality Funshuffle

Figure 12: Secure unshuffling functionality, inverse of Fshuffle.

Complexity. Instantiating FgetShuffle costs 𝑛 ring elements of com-

munication in preprocessing. Instantiating Fshuffle of Funshuffle
each costs 2𝑛 ring elements communication in preprocessing, 𝑛

ring elements online communication per party, and a single online

round.

14

Table 3: Overview of all used building blocks.

Building Block Description Functionality Protocol

<<𝜋 >>← FgetShuffle (𝑛) prepare new shuffling permutation Fig. 10 (p. 14) Prot. 2 (p. 14)

<<𝜔 ◦ 𝜋−1>>← FgetMergedShuffle (<<𝜋 >>, <<𝜔 >>) compose two shuffling permutations Fig. 14 (p. 16) Prot. 8 (p. 16)

[[𝜋 (®x)]] ← Fshuffle ([[®x]], <<𝜋 >>) apply shuffling permutation Fig. 11 (p. 14) Prot. 3 (p. 14)

[[𝜋−1 (®x)]] ← Funshuffle ([[®x]], <<𝜋 >>) apply inverse shuffling permutation Fig. 12 (p. 14) Prot. 4 (p. 15)

[[𝜌 (®x)]] ← FapplyPerm ([[®x]], [[𝜌]]) apply secret-shared permutation Fig. 5 (p. 8) Prot. 5 (p. 15)

[[𝜌−1 (®x)]] ← FreversePerm ([[®x]], [[𝜌]]) apply inverse secret-shared permutation Fig. 13 (p. 15) Prot. 6 (p. 15)

[[𝜌2 (𝜌−1
1
(®x))]] ← FswPerm ([[®x]], [[𝜌1]], [[𝜌2]]) switch from one permutation to another Fig. 6 (p. 8) Prot. 9 (p. 16)

[[𝜌]] ← FgetCompaction ([[®x]]) get permutation to sort 0/1-entries Fig. 15 (p. 17) [7]

[[𝜌]] ← FsortIteration ([[®x]], [[𝜎]]) radix sort iteration after applying 𝜎 Fig. 16 (p. 17) Prot. 10 (p. 17)

[[𝜌]] ← FgetSort ([[®x]]) full radix sort with ®x bit-decomposed Fig. 4 (p. 7) Prot. 11 (p. 17)

[[𝑏]]
bin
← Feqz ([[𝑥]]) equal-zero check, 𝑥 = 0⇔ 𝑏 = 1 Fig. 17 (p. 17) circuit in §A.5

[[𝑥]] ← FB2A ([[𝑥]]bin) binary-to-arithmetic conversion Fig. 18 (p. 17) [45]

([[®src𝑑]], [[®dst
𝑑
]]) ← Fdeduplication ([[®src]], [[®dst]]) set duplicate entries to invalid values Fig. 19 (p. 18) Prot. 12 (p. 18)

Protocol 4 Secure Unshuffling

Preprocessing Phase

1: For 𝑖 ∈ {0, 1}, 𝑃𝑖 ,H sample random ®Ri ∈ Z𝑛
2
𝑘
.

2: H samples random ®R ∈ Z𝑛
2
𝑘
.

3: H computes ®B0 ← 𝜋−1 (®R1) − ®R and sends it to 𝑃0.

4: H computes ®B1 ← 𝜋−1 (®R0) + ®R and sends it to 𝑃1.

Online Phase

5: 𝑃0 computes ®t0 ← 𝜋0
−1 (®x0 + ®R0) and sends it to 𝑃1.

6: 𝑃1 computes ®t1 ← 𝜋 ′−1
1
(®x1 + ®R1) and sends it to 𝑃0.

7: 𝑃0 computes ®y0 ← 𝜋 ′−1
0
(®t1) − ®B0.

8: 𝑃1 computes ®y1 ← 𝜋1
−1 (®t0) − ®B1.

9: Return [[®y]].

A.2 Applying Permutations

Another essential building block of our protocols is the applica-

tion of a secret-shared permutation to secret-shared data. This is

achieved by FapplyPerm (Fig. 5 in §4.2.2), which is efficiently im-

plemented in [7] for the three-party setting. We translate it to our

setting, also including optimizations in case the same permutation
21

is applied to different data vectors. The resulting protocol is given

in Prot. 5, correctness and security are as in [7].

Protocol 5 Secure Application of a Secret Permutation, based on [7]

If [[𝜌]] has not been used by instance of

FapplyPerm/FreversePerm before

1: <<𝜋 >>← FgetShuffle (𝑛)
2: [[𝜋 (𝜌)]] ← Fshuffle ([[𝜌]], <<𝜋 >>)
3: Open 𝜋 (𝜌) = 𝜌 ◦ 𝜋−1 // Observation 2.4 in [7]

Always (use <<𝜋 >>, 𝜋 (𝜌) from last instantiation with [[𝜌]] if
exists)

4: [[𝜋 (®x)]] ← Fshuffle ([[®x]], <<𝜋 >>)
5: [[𝜌 (®x)]] ← (𝜌 ◦ 𝜋−1) ([[𝜋 (®x)]])

21
Same as in the same variable/wire, not as in different variables/wires with the same

(but secret) value

Based on this protocol, we also implement another functional-

ity FreversePerm (Fig. 13) applying the inverse of a secret-shared

permutation in Prot. 6. Regarding security, the same arguments as

for Prot. 5 apply as the same masked data is revealed. Considering

correctness, note that 𝜋−1 ((𝜌 ◦𝜋−1)−1 (®x)) = (𝜋−1 ◦𝜋 ◦𝜌−1) (®x) =
𝜌−1 (®x).

Input: Secret-shared vector [[®x]] of dimension 𝑛, [[𝜌]] for a permutation

𝜌 ∈ S𝑛 .
Output: Secret-shared vector [[𝜌−1 (®x)]].

Functionality FreversePerm

Figure 13: Functionality to apply the inverse of a secret-shared

permutation to a secret-shared vector.

Protocol 6 Secure Inverse Application of a Secret Permutation

If [[𝜌]] has not been used by instance of

FapplyPerm/FreversePerm before

1: <<𝜋 >>← FgetShuffle (𝑛)
2: [[𝜋 (𝜌)]] ← Fshuffle ([[𝜌]], <<𝜋 >>)
3: Open 𝜋 (𝜌) = 𝜌 ◦ 𝜋−1 // Observation 2.4 in [7]

Always (use <<𝜋 >>, 𝜋 (𝜌) from last instantiation with [[𝜌]] if
exists)

4: [[𝜋 (𝜌−1 (®x))]] ← (𝜌 ◦ 𝜋−1)−1 ([[®x]])
5: [[𝜌−1 (®x)]] ← Funshuffle ([[𝜋 (𝜌−1 (®x))]], <<𝜋 >>)

Complexity. Regarding the instantiation of FapplyPerm: If [[𝜌]] has
been used before: 2𝑛 ring elements communication in preprocess-

ing, 𝑛 ring elements per party online (due to Fshuffle), and 1

online round as the final step runs locally. If [[𝜌]] is used the

first time, 3𝑛 ring elements communication in preprocessing, 2𝑛

ring elements per party online, and one online round more (from

FgetShuffle, Fshuffle and opening 𝑛 elements, but both instances

of Fshuffle can be run in parallel). The complexity for FreversePerm
is the same where FapplyPerm and FreversePerm have cost savings

after any of them used [[𝜌]] once.
15

A.3 Switching Between Permutations

Recall from Prot. 1 (§4.2) that besides Fapply if applicable, the only
interaction in message-passing iterations stems from switching

between permutations, emphasizing the importance of optimizing

this operation. To change the ordering of some secret-shared vector

from permutation 𝜌1 to 𝜌2, we use functionality FswPerm (Fig. 6

in §4.2.2). Functionality FswPerm could be simply implemented by

composing FreversePerm with input 𝜌1 and FapplyPerm with input

𝜌2 which would result in Prot. 7.

Protocol 7 Secure Permutation Switching, first attempt

1: Obtain <<𝜋 >>, <<𝜔 >>, 𝜋 (𝜌1) = 𝜌1 ◦𝜋−1, 𝜎 (𝜌2) = 𝜌2 ◦𝜎−1 for
𝜋,𝜔 ∈ S𝑛 as in Prot. 5.

2: [[𝜋 (𝜌−1
1
(®x))]] ← (𝜌1 ◦ 𝜋−1)−1 ([[®x]])

3: [[𝜌−1
1
(®x)]] ← Funshuffle ([[𝜋 (𝜌−1

1
(®x))]], <<𝜋 >>)

4: [[𝜔 (𝜌−1
1
(®x))]] ← Fshuffle ([[𝜌−1

1
(®x)]], <<𝜔 >>)

5: [[𝜌2 (𝜌−1
1
(®x))]] ← (𝜌2 ◦ 𝜔−1) ([[𝜔 (𝜌−1

1
(®x))]])

Observe that the only interactive steps (except when the per-

mutations are used for the first time) are unshuffling and shuffling

in direct succession. This can be optimized by shuffling only once

with a composed permutation <<𝜔 ◦ 𝜋−1>>. Utilizing the sharing

semantics of << ·>>, specifically thatH knows the entire permu-

tation, allows to implement the shuffle composition functionality

FgetMergedShuffle (Fig. 14) as provided in protocol Prot. 8. A simi-

lar shuffle composition is used in [31] but not provided as explicit

functionality/protocol there which we provide here. Regarding cor-

rectness, note that 𝜎0 ◦ 𝜎1 = 𝜎′
1
◦ 𝜎′

0
= 𝜔 ◦ 𝜋−1. Furthermore,

regarding security, note that each message sent byH is perfectly

masked by a randomly sampled permutation only known to H
and the other respective party. The final protocol for FswPerm is

provided in Prot. 9 with correctness and security directly following

from the prior considerations and the properties of FapplyPerm and

FreversePerm.

Input: <<𝜋 >>,<<𝜔 >> for 𝜋,𝜔 ∈ S𝑛 .
Output: <<𝜎 >> for 𝜎 = 𝜔 ◦ 𝜋−1 .

Functionality FgetMergedShuffle

Figure 14: Functionality for composing two secure shuffles.

Protocol 8 Secure Shuffle Composition

Preprocessing Phase

1: 𝑃0,H sample random 𝜎0 ∈ S𝑛 ; 𝑃1,H sample random 𝜎′
1
∈ S𝑛

2: H computes 𝜎′
0
← 𝜎′

1

−1 ◦ 𝜔 ◦ 𝜋−1 and sends it to 𝑃0.

3: H computes 𝜎1 ← 𝜎−1
0
◦ 𝜔 ◦ 𝜋−1 and sends it to 𝑃1.

Communication. Our instantiation of FswPerm, if used for the same

permutations before, costs 2𝑛 ring elements communication in

preprocessing, 𝑛 ring elements communication per party online,

and a single round which it directly inherits from Fshuffle. For
an instantiation with << 𝜌1 >> or << 𝜌2 >> never used before in

FapplyPerm, FreversePerm, or FswPerm there is an additionally cost

Protocol 9 Secure Permutation Switching, optimized version

If [[𝜌1]] has not been used by instance of

FapplyPerm/FreversePerm/FswPerm before

1: <<𝜋 >>← FgetShuffle (𝑛)
2: [[𝜋 (𝜌1)]] ← Fshuffle ([[𝜌1]], <<𝜋 >>)
3: Open 𝜋 (𝜌1) = 𝜌1 ◦ 𝜋−1 // Observation 2.4 in [7]

If [[𝜌2]] has not been used by instance of

FapplyPerm/FreversePerm/FswPerm before

4: <<𝜔 >>← FgetShuffle (𝑛)
5: [[𝜔 (𝜌2)]] ← Fshuffle ([[𝜌2]], <<𝜔 >>)
6: Open 𝜔 (𝜌2) = 𝜌2 ◦ 𝜔−1 // Observation 2.4 in [7]

If [[𝜌1]], [[𝜌2]] have not been used in this combination by

instance of FswPerm before

7: <<𝜔 ◦ 𝜋−1>>← FgetMergedShuffle (<<𝜋 >>, <<𝜔 >>)
Always (use <<𝜋 >>, <<𝜔 >>, <<𝜔 ◦ 𝜋−1>>, 𝜋 (𝜌1), 𝜔 (𝜌2) from
prior existing instantiations if available)

8: [[𝜋 (𝜌−1
1
(®x))]] ← (𝜌1 ◦ 𝜋−1)−1 ([[®x]])

9: [[𝜔 (𝜌−1
1
(®x))]] ← Fshuffle ([[𝜋 (𝜌−1

1
(®x))]], <<𝜔 ◦ 𝜋−1>>)

10: [[𝜌2 (𝜌−1
1
(®x))]] ← (𝜌2 ◦ 𝜔−1) ([[𝜔 (𝜌−1

1
(®x))]])

of 3𝑛 ring elements communication in preprocessing, 2𝑛 ring el-

ements communication per party online and one round per new

permutation (rounds may be parallelized if multiple). There also is

an additional cost of 2𝑛 ring elements communication in prepro-

cessing the first time that FswPerm is instantiated with two specific

permutations. A naïve implementation simply using FreversePerm
and FapplyPerm would instead have double the cost in all metrics if

repeated; only the additional cost for the first instantiation would

be lower by 2𝑛 ring elements in preprocessing otherwise used for

FgetMergedShuffle.

A.4 Sorting

To instantiate our protocols, we need access to functionalityFgetSort
generating a permutation that is necessary to apply to bring data

into a sorted order. This is formalized as FgetSort (Fig. 4 in §4.2.1),

and the resulting permutation can then be applied for the final

sorting using FapplyPerm (cf. §A.2).

We implement such stable sorting based on the radix sort con-

struction of [7]. It assumes the input elements to be decomposed

into their bit representation, i.e., in the format ([[®xk−1]], . . . , [[®x0]])
where 𝑥𝑖 =

∑𝑘−1
𝑗=0 𝑥

𝑗
𝑖
· 2𝑗 . The decomposition sharings still are as-

sumed to be over Z
2
𝑘 and can be obtained, e.g., by running conver-

sion protocols as in [20]. We also use notation FgetSort ([[®x]], [[®y]])
to indicate that we sort elements 𝑥𝑖 | |𝑦𝑖 where concatenation of the

components is trivial in decomposed format.

As one atomic step of sorting, [7] computes the permutation to

sort a vector ®x where all entries are 0 or 1 which we formalize as

FgetCompaction (cf. Fig. 15). They show how FgetCompaction can

be instantiated using 𝑛 multiplications in parallel.

16

Input: Secret-shared vector [[®x]] of dimension 𝑛 with 𝑥𝑖 ∈ {0, 1} ∀1 ≤ 𝑖 ≤ 𝑛.

Output: Secret-shared permutation [[𝜌]] with 𝜌 ∈ S𝑛 and 𝜌 (®x) being stably
sorted in ascending order.

Functionality FgetCompaction

Figure 15: Functionality to retrieve permutation to sort data with

only 0/1-entries.
Sorting in [7] is constructed from multiple iterations that we

formalize as FsortIteration (Fig. 16). For completeness, we provide

its instantiation in Prot. 10 that follows from [7], including their

proposed optimizations. Note that 𝜌 = 𝜎′ ◦ 𝜎 ◦ 𝜋−1 ◦ (𝜋−1)−1 =

𝜎′ ◦𝜎 by Observation 2.4 of [7]. As 𝜎′ stably sorts 𝜎 (®x), correctness
immediately follows.

Input: Secret-shared vector [[®x]] of dimension 𝑛 with 𝑥𝑖 ∈ {0, 1} ∀1 ≤ 𝑖 ≤ 𝑛,

[[𝜎]] with 𝜎 ∈ S𝑛 .
Output: Secret-shared permutation [[𝜌]] with 𝜌 ∈ S𝑛 and 𝜌 (®x) being a stably
sorted version in ascending order of 𝜎 (®x) .

Functionality FsortIteration

Figure 16: Iteration of sorting from [7]

Protocol 10 Secure Sorting Iteration, based on [7]

1: <<𝜋 >>← FgetShuffle (𝑛)
2: [[𝜋 (𝜎)]] ← Fshuffle ([[𝜎]], <<𝜋 >>)
3: Open 𝜋 (𝜎) = 𝜎 ◦ 𝜋−1 // Observation 2.4 in [7]

4: [[𝜋 (®x)]] ← Fshuffle ([[®x]], <<𝜋 >>)
5: [[𝜎 (®x)]] ← (𝜎 ◦ 𝜋−1) ([[𝜋 (®x)]])
6: [[𝜎′]] ← FgetCompaction ([[𝜎 (®x)]])
7: [[𝜎′ ◦𝜎 ◦𝜋−1]] ← (𝜎 ◦𝜋−1)−1 ([[𝜎′]]) // Observation 2.4 in [7]

8: [[𝜌]] ← Funshuffle ([[𝜎′ ◦ 𝜎 ◦ 𝜋−1]], <<𝜋 >>)

Now, we can give an instantiation of FgetSort in Prot. 11 which is
a restructured version of its original in [7]. Here, we denote the 𝑗 ’th

bits of all entries of ®x by
®xj
. Note how the protocol precisely displays

the structure of a plaintext radix sort: In iteration 𝑗 , we compute a

permutation of the 𝑗 ’th bits to sort themwhile maintaining for equal

bits their order resulting from the prior permutation necessary to

sort w.r.t. bits 𝑗 − 1 to 0.

Protocol 11 Secure Computation of Sorting Permutation, restruc-

tured from [7]

1: [[𝜌]] ← FgetCompaction ([[®x0]])
2: for 𝑗 = 1, . . . , 𝑘 − 1 do
3: [[𝜌]] ← FsortIteration ([[®xj]], [[𝜌]])
4: end for

Complexity. Instantiating FgetCompaction as in [7] costs 𝑛 ring ele-

ments communication in preprocessing and 2𝑛 ring elements com-

munication per party in a single round online. Each instantiation

of FsortIteration costs 8𝑛 ring elements in preprocessing, 6𝑛 ring

elements per party online, and 4 rounds (note that both instances

of Fshuffle can be parallelized). Hence, generating the full sorting

permutation costs 8𝑘𝑛−7𝑛 ring elements in preprocessing, 6𝑘𝑛−4𝑛
ring elements per party online, and 4𝑘 − 3 online rounds.

Optimizations. We note that if the sorting keys do not utilize the

whole domain Z
2
𝑘 , we can optimize the sorting further. If we sort

by nodes and assign ids 0, 1, . . . , |V| − 1 to them, only the ⌈log
2
|V|⌉

lowest bits are not zero. Hence, we can decrease from 𝑘−1 iterations
down to ⌈log

2
|V|⌉ − 1 iterations.

As already sketched in §4.2.1, we exploit correlations between the

permutations to sort by concatenated keys src| | (1 − isV), dst| |isV,
and 1 − isV| |src| | (1 − isV). We compute the first two permutations

using the aforementioned approach on ⌈log
2
|V|⌉ + 1 bit keys. To

compute the third permutation, it suffices to use that for src| | (1 −
isV) and append one more radix sort iteration for adding 1 − isV as

the new most significant bit. Hence, computing the permutation

for vertex ordering only requires an additional 8𝑛 ring elements

in preprocessing, 6𝑛 ring elements per party online, and 4 rounds

instead of running another full-fletched radix sort.

Assuming that ®x is not provided in a bit-decomposed fashion,

we could prepend decomposition protocols as in [20]. Yet, we opt

for instead letting the input parties provide their inputs for src, dst

already in a bit-decomposed fashion which increases the input

size by a factor of ⌈log
2
|V|⌉, but overall is significantly cheaper

than running decomposition protocols. In a scenario where the

input parties’ network connection is significantly worse than the

network between the computing parties, reducing the input data

size and instead running a decomposition protocol might be the

better choice.

A.5 Clipping (clip(·))
For the clipping operation for 𝜋𝐷R (§3.3) as well as for secure dedu-

plication (§A.6), we need to check if a secret-shared value is equal to

zero. To this end, we first use functionality Feqz (Fig. 17) computing

a binary sharings that represents 1 if the input is 0. Furthermore, as

most of our computation is carried out over the arithmetic domain,

we use FB2A (Fig. 18) to convert binary sharings back to arithmetic

ones.

Input: [[𝑥]] with 𝑥 ∈ Z
2
𝑘 .

Output: [[1]]bin if 𝑥 = 0, [[0]]bin otherwise.

Functionality Feqz

Figure 17: Equal-Zero Check

Input: [[𝑥]]bin with 𝑥 ∈ {0, 1}.
Output: [[𝑥]].

Functionality FB2A

Figure 18: Bit-to-Arithmetic Conversion

For FB2A, we take the conversion technique from [45] where the

parties secret share their shares 𝑥0, 𝑥1 in the arithmetic domain and

then compute [[𝑥]] = [[𝑥0]] + [[𝑥1]] − 2[[𝑥0]] [[𝑥1]]. For Feqz, we
observe that 𝑥 = 0⇔ 𝑥0 + 𝑥1 = 0⇔ 𝑥0 = −𝑥1. We let the parties

decompose 𝑥0 respectively −𝑥1 into bits which they then share

in the binary domain as [[(𝑥0)𝑘−1]]bin, . . . , [[(𝑥0)0]]bin respectively

[[(−𝑥1)𝑘−1]]bin, . . . , [[(−𝑥1)0]]bin. Then, they check if 𝑥0 = −𝑥1
by running a binary equality circuit: 𝑥0 = −𝑥1 ⇔ ((𝑥1)𝑘−1 =

(−𝑥2)𝑘−1) ∧ · · · ∧ ((𝑥1)0 = (−𝑥2)0) ⇔ (𝑥1)𝑘−1 ⊕ (−𝑥2)𝑘−1 ∧ · · · ∧
(𝑥1)0 ⊕ (−𝑥2)0.

17

Complexity. Note that a server can share values non-interactively

by both servers sampling the other server’s share using a pre-shared

PRF key. Our instantiation of Feqz requires 𝑘 − 1 bits = 1− 1/𝑘 ring

elements communication in preprocessing, 2𝑘 − 2 bits = 2 − 2/𝑘
ring elements per party online, and ⌈log

2
𝑘⌉ online rounds.22 The

instantiation for FB2A comes at the cost of one multiplication, i.e.,

1 ring element communication in preprocessing, 2 ring elements

per party online, and one round.

A.6 Deduplication

For computing 𝜋𝐷K , we rely on deduplication of the edges, i.e., re-

moving duplicates so that each specific edge only remains in the

DAG list once. To not leak the number of duplicates, we opt to not

completely remove entries but instead mark them so that they do

not influence the later computation. Our strategy for that is to set

the least significant bit among the bits that are 0 for all DAG list

entries (i.e., 𝑥 ⌈log
2
|V | ⌉) to 1 for all duplicates (assuming node labels

0, 1, ..., |V| − 1). This will force the duplicates to be at the end of the

DAG list in source order, destination order, and vertex order, where

they have no effect on any of the other active entries as per the

design of [31]. We note that another more efficient option could be

to remove these entries from the list altogether, leaking the number

of duplicates, which provides a tradeoff between efficiency and

privacy. Our procedure for deduplication Fdeduplication (Fig. 19) is

given in Prot. 12, which is based on ideas in [26].

Input: Secret-shared vectors [[®src]], [[®dst]] of dimension 𝑛 = |V | + | E | .
Output: [[®src𝑑]], [[®dst

𝑑
]] with src

𝑑
𝑖
= src𝑖 + 2⌈log2 |V|⌉ , dst𝑑𝑖 = dst𝑖 + 2⌈log2 |V|⌉ if

∃ 𝑗 < 𝑖 : src𝑗 = src𝑖 ∧ dst𝑗 = dst𝑖 and src
𝑑
𝑖
= src𝑖 , dst

𝑑
𝑖 = dst𝑖 otherwise, for

1 ≤ 𝑖 ≤ |V | + | E | .

Functionality Fdeduplication

Figure 19: Functionality for Deduplication

Protocol 12 Secure Deduplication, based on [26]

1: [[𝜌]] ← FgetSort ([[®src]], [[®dst]])
2: [[®src′]] ← FapplyPerm ([[𝜌]], [[®src]])
3: [[®dst

′
]] ← FapplyPerm ([[𝜌]], [[®dst]]) // DAG list is now ordered

so that duplicates are grouped together

4: for 𝑖 = 2, . . . , 𝑛 = |V| + |E | do
5: [[𝛿 ′

1
]] ← [[src′

𝑖
]] − [[src′

𝑖−1]] // 0 iff same as predecessor

6: [[𝛿 ′
2
]] ← [[dst′𝑖]] − [[dst

′
𝑖−1]]

7: [[Δ′
1
]]
bin
← Feqz ([[𝛿 ′

1
]]) // 1 if same as predecessor

8: [[Δ′
2
]]
bin
← Feqz ([[𝛿 ′

2
]]) // 0 otherwise

9: [[Δ′]]
bin
← [[Δ′

1
]]
bin
∧ [[Δ′

2
]]
bin

10: [[Δ′]] ← FB2A ([[Δ′]]bin) // 1 if duplicate
11: end for

12: [[Δ]] ← FreversePerm ([[𝜌]], [[Δ′]]) // back to original order

13: [[®src𝑑]] ← [[®src]] + (2⌈log2 |V | ⌉) · [[Δ]]
14: [[®dst

𝑑
]] ← [[®dst]] + (2⌈log2 |V | ⌉) · [[Δ]]

22
Our implementation packs these bits into 32 bit integers, not fully utilizing their

capacity, leading to slightly worse actual performance than what is theoretically given.

Optimizations. Recall that the improvements from §A.4 require the

entries of ®src, ®dst to be bit-decomposed. As this would cause a

significant overhead when reordering these vectors by FapplyPerm,
we here instead compose the single bits back using non-interactive

linear combinations

∑𝑘−1
𝑗=0 [[𝑥

𝑗
𝑖
]] · 2𝑗 for each vector entry 𝑥𝑖 .

Furthermore, we consider the deduplication in the context of

the overall graph analysis that, as discussed in §A.4, later com-

putes permutations to sort by keys src
𝑑 | | (1 − isV), dst𝑑 | |isV, and

1 − isV| |src𝑑 | | (1 − isV) after deduplication. Instead of sorting by

keys src| |dst here, the protocol’s correctness is also preserved when
sorting by src| |dst| |isV instead. This allows to exploit a correlation

to the later required permutation ordering for destination order

dst
𝑑 | |isV: When sorting by src| |dst| |isV, we keep the radix sort

intermediate result considering dst| |isV to then alternatively ap-

pending one final iteration sorting by Δ describing exactly the new

most significant non-zero bit in dst
𝑑
, also yielding the permutation

for sorting by dst
𝑑 | |isV.

Complexity. Each iteration of the loop in Prot. 12 costs 3 − 1/𝑘 ring

elements communication in preprocessing, 6 − 2/𝑘 ring elements

communication per party online, and ⌈log
2
𝑘⌉ + 2 rounds. Then,

the overall standalone complexity of the protocol for 𝑛 = |V| + |E |,
considering the sorting optimizations from §A.4, is

• (16𝑛 · ⌈log
2
|V|⌉ − 7𝑛) + 7𝑛 + (𝑛 − 1) · (3 − 1/𝑘) + 2𝑛 = 16𝑛 ·

⌈log
2
|V|⌉ + (5−1/𝑘)𝑛−3+1/𝑘 ring elements communication

in preprocessing,

• (12𝑛 · ⌈log
2
|V|⌉ − 4𝑛) + 4𝑛 + (𝑛 − 1) · (6 − 2/𝑘) + 𝑛 = 12𝑛 ·

⌈log
2
|V|⌉ + (7−2/𝑘)𝑛−6+2/𝑘 ring elements communication

per party online,

• and 8⌈log
2
|V|⌉ − 3 + 2 + ⌈log

2
𝑘⌉ + 2 + 1 = 8⌈log

2
|V|⌉ +

⌈log
2
𝑘⌉ + 2 rounds.

B Full Protocol Details

This section contains details regarding our overall computation of

centrality measures from §4. §B.1 provides additional information

about the vertex-centric computation for 𝜋𝐷R , followed by the formal

specification of the complete protocols for all centrality measures

in §B.2. §B.3 analyzes the exact and concrete communication cost

of our protocols, and §B.4 elaborates on how even the input sizes

could be hidden from the parties if needed.

B.1 Vertex-Centric Approach for Realizing 𝜋𝐷
R

In a vertex-centric approach, Eq. (7) is computed as follows: Each

node 𝑤 propagates 𝑠𝑖−1𝑤 on its outgoing edges, following which

it gathers the propagated data on all its incoming edges. Tak-

ing as input the prior state 𝑥 = 𝑠𝑖−1𝑤 and the collected data 𝑦 =∑
(𝑢,𝑤) ∈E 𝑠

𝑖−1
𝑢 , node 𝑤 sets 𝑠𝑖𝑤 = clip(𝑥 + 𝑦). After 𝐷 iterations,

we compute the sum over 𝑠𝐷𝑤 for all 𝑤 ∈ V to get the number of

reached nodes 𝜋𝐷R (𝑣) for a given source node 𝑣 . If we wish to com-

pute 𝜋𝐷R (𝑣) for all nodes 𝑣 , we compute BFS for all 𝑣 as source in

parallel and require maintaining states 𝑠𝑖𝑤 for each starting node 𝑣

separately. This unfortunately yields an overhead with a factor |V|
increase, the same overhead also occurring in [6].

As an optimization also mentioned in [31] for BFS starting at a

single node, we can relax our invariant from 𝑠𝑖𝑤 = 1 to 𝑠𝑖𝑤 ≥ 1 for

18

all nodes reachable by a path of length ≤ 𝑖 . This makes applying

clip(·) unnecessary, so we omit it to improve performance (since

clip is expensive when performed via MPC). However, after the last

iteration, to compute the number of reachable nodes, we clip 𝑠𝐷𝑤
once and then compute the sum of the clipped 𝑠𝐷𝑤 over all nodes

𝑤 ∈ V.

B.2 Full Secure Protocols for 𝜋𝐷
M, 𝜋

𝐷
K , 𝜋

𝐷
R

We give the complete secure message-passing protocols for cen-

trality measures 𝜋𝐷M, 𝜋𝐷K , 𝜋𝐷R which follow the template already

provided by Prot. 1 in §4.2. The protocols do not include any input

or output phase as we assume our input to be already given as

a DAG list and as the output or parts of it can be opened to an

arbitrary party or subsequently be used in another MPC protocol,

depending on the exact requirements of the system. Recall from

§4.2 that the message-passing of Graphiti requires a functionality

Fapply responsible for updating the state of all nodes in each iter-

ation. As this only needs to happen at some point in vertex order,

we slightly deviate from the template of Prot. 1 to optimize and

enhance readability. Furthermore, we extend Prot. 1 by additional

initialization for the different centrality measures.

For computing 𝜋𝐷M, we give Prot. 13. As discussed in §4.2.3, Fapply
is used here to add a weight 𝛽1+𝐷−𝑖 for all nodes before each itera-

tion 𝑖 . Hence, we split Fapply here into two parts: Weights 𝛽1+𝐷−𝑖
are added before each iteration and after the iteration,

®
update

simply overwrites the prior
®

payload. Furthermore, all entries of

®
payload are initialized to 0.

Protocol 13 Secure Message-Passing for 𝜋𝐷M

1: [[®
payload]] ← [[®0]]

2: [[𝜌src]] ← FgetSort ([[®src]], [[®1 − ®isV]]) // equal src⇒ vertex first

3: [[𝜌
dst
]] ← FgetSort ([[®dst]], [[®isV]]) // equal dst⇒ vertex last

4: [[𝜌vert]] ← FgetSort ([[®1 − ®isV]], [[®src]], [[®1 − ®isV]]) // Vertices
first, ordered

5: [[®
payload

v
]] ← FapplyPerm ([[𝜌vert]], [[®

payload]])
6: for 1 ≤ 𝑖 ≤ 𝐷 do

7: [[®
payload

v
]] ← [[®

payload]]
+(𝛽1+𝐷−𝑖 , . . . , 𝛽1+𝐷−𝑖︸ ︷︷ ︸

|V | times

, 0, . . . , 0︸ ︷︷ ︸
| E | times

) // Fapply

8: [[®
payload

′
v
]] ← Fpropagate-1 ([[®

payload
v
]])

9: [[®
payload

src
]]←FswPerm ([[𝜌vert]], [[𝜌src]], [[®

payload

′
v
]])

10: [[®
payload

′
src
]] ← Fpropagate-2 ([[®

payload
src
]])

11: [[®
payload

dst
]]←FswPerm ([[𝜌src]], [[𝜌dst]], [[®

payload

′
src
]])

12: [[®
payload

′
dst
]] ← Fgather-1 ([[®

payload
dst
]])

13: [[®
payload

′
v
]]←FswPerm ([[𝜌dst]], [[𝜌vert]], [[®

payload

′
dst
]])

14: [[®
update

v
]] ← Fgather-2 ([[®

payload

′
v
]])

15: [[®
payload

v
]] ← [[®

update]] // Fapply
16: end for

The complete protocol for 𝜋𝐷K is given in Prot. 14. Recall that

this reduces 𝜋𝐷K to 𝜋𝐷M by deduplication, that is provided in §A.6.

Protocol 14 Secure Message-Passing for 𝜋𝐷K

1: ([[®src𝑑]], [[®dst
𝑑
]])←Fdeduplication ([[®src]], [[®dst]]) // cf. §A.6

2: Run Prot. 13 on [[®src𝑑]], [[®dst
𝑑
]], [[®isV]].

Finally, Prot. 15 describes how 𝜋𝐷R can be computed securely.

From §4.2.3, recall that we use |V| independent instances of BFS by
working on |V| vectors ®

payload

𝑗
in parallel. For each BFS, we set

®
payload to 1 at the position representing the BFS starting point.

Fapply considers both, the prior state ®
payload

𝑗

v
as well as

®
update

𝑗

resulting from a message-passing round, updating
®

payload to the

sum of both. The results after all iterations are clipped using a

comparison Feqz, which outputs a single bit that we then convert

back to arithmetic using FB2A. This process is elaborated on in §A.5.
Then,

®
payload

𝑗
contains 1 for each reached node, allowing us to

count reached nodes by simply computing a sum. Note that while

we use |V| vectors ®
payload

𝑗
, our permutations 𝜌src, 𝜌dst, 𝜌vert still

need to be computed only once s.t. there is no overhead in the

one-time initialization.

Protocol 15 Secure Message-Passing for 𝜋𝐷R

1: [[®
payload

𝑗
]] ← [[®0]] ∀1 ≤ 𝑗 ≤ |V|

2: [[𝜌src]] ← FgetSort ([[®src]], [[®1 − ®isV]]) // equal src⇒ vertex first

3: [[𝜌
dst
]] ← FgetSort ([[®dst]], [[®isV]]) // equal dst⇒ vertex last

4: [[𝜌vert]] ← FgetSort ([[®1 − ®isV]], [[®src]], [[®1 − ®isV]]) // Vertices
first, ordered

5: for 1 ≤ 𝑗 ≤ |V| (in parallel) do

6: [[®
payload

𝑗

v
]] ← FapplyPerm ([[𝜌vert]], [[®

payload

𝑗
]])

7: [[®
payload

𝑗

v
]] ← [[®ej]] // initial state: node can reach itself, ®ej denotes

the 𝑗 ’th unit vector

8: for 1 ≤ 𝑖 ≤ 𝐷 do

9: [[®
payload

′𝑗
v
]] ← Fpropagate-1 ([[®

payload

𝑗

v
]])

10: [[®
payload

𝑗

src
]]←FswPerm ([[𝜌vert]], [[𝜌src]], [[®

payload

′𝑗
]])

11: [[®
payload

′𝑗
src
]] ← Fpropagate-2 ([[®

payload

𝑗

src
]])

12: [[®
payload

𝑗

dst
]]←FswPerm ([[𝜌src]], [[𝜌dst]], [[®

payload

′𝑗
]])

13: [[®
payload

′𝑗
dst
]] ← Fgather-1 ([[®

payload

𝑗

dst
]])

14: [[®
payload

′𝑗
v
]]←FswPerm ([[𝜌dst]], [[𝜌vert]], [[®

payload

′𝑗
]])

15: [[®
update

𝑗

v
]] ← Fgather-2 ([[®

payload

′𝑗
v
]])

16: [[®
payload

𝑗

v
]] ← [[®

payload

′𝑗
v
]] + [[®

update

𝑗

v
]] // Fapply

17: end for

18: [[payload𝑗
v𝑖
]] ← 1−FB2A (Feqz ([[payload𝑗v𝑖]])) ∀1 ≤ 𝑖 ≤ |V|

// apply clipping

19: [[payload𝑗]] ←
∑ |V |
𝑖=1
[[payload𝑗

v𝑖
]] // final output

20: end for

B.3 Communication Complexity Analysis

For brevity, we use 𝑛 := |V| + |E | as a shorthand notation for the

length of the DAG list throughout this section.

19

Table 4: Communication and round complexity of allmetrics as implemented in [6], translated to our setting, and as implemented

by us. Communication is in elements of Z
2
𝑘 . Fractionals exist due to binary domain computation used to compute Feqz (§A.5).

Preprocessing communication is what is sent by the dealer, online communication is what is sent by each of the online parties.

Metric Cost prior [6] ours

𝜋𝐷M

preproc. com |V|2 · (𝐷 − 1) 16(|V| + |E |) · ⌈log
2
|V|⌉ + 27(|V| + |E |) + 8(|V| + |E |) · 𝐷

online com 2|V|2 · (𝐷 − 1) 12(|V| + |E |) · ⌈log
2
|V|⌉ + 17(|V| + |E |) + 4(|V| + |E |) · 𝐷

online rounds 𝐷 − 1 4 · ⌈log
2
|V|⌉ + 7 + 3 · 𝐷

𝜋𝐷K

preproc. com |V|2 · (𝐷 + ℓ − 2) 24(|V| + |E |) · ⌈log
2
|V|⌉ + (55 − 1/𝑘) (|V| + |E |) − 3 + 1/𝑘 + 8(|V| + |E |) · 𝐷

online com 2|V|2 · (𝐷 + ℓ − 2) 18(|V| + |E |) · ⌈log
2
|V|⌉ + (40 − 2/𝑘) (|V| + |E |) − 6 + 2/𝑘 + 4(|V| + |E |) · 𝐷

online rounds ⌈log
2
(ℓ)⌉ + 𝐷 − 1 8 · ⌈log

2
|V|⌉ + 15 + ⌈log

2
(𝑘)⌉ + 3 · 𝐷

𝜋𝐷R

preproc. com (2 − 1/𝑘) |V|2 + |V|3 · (𝐷 − 1) 16(|V| + |E |) · ⌈log
2
|V|⌉ + (4 − 1/𝑘) |V|2 + 2|V| |E | + 25(|V| + |E |) + 8(|V| + |E |) · |V| · 𝐷

online com (4 − 2/𝑘) |V|2 + 2|V|3 · (𝐷 − 1) 12(|V| + |E |) · ⌈log
2
|V|⌉ + (5 − 2/𝑘) |V|2 + |V| |E | + 16(|V| + |E |) + 4(|V| + |E |) · |V| · 𝐷

online rounds ⌈log
2
(𝑘)⌉ + 𝐷 4 · ⌈log

2
|V|⌉ + 8 + ⌈log

2
(𝑘)⌉ + 3 · 𝐷

Overall, our protocols require to first set up the permutations

[[𝜌src]], [[𝜌dst]], [[𝜌vert]] including all optimizations from §A.4. We

need one instance of FgetSort over ⌈log2 |V|⌉ +1 bits/iterations and
one over ⌈log

2
|V|⌉ + 2 bits/iterations to retrieve all three permuta-

tions. This costs a total of

• 𝑛+ ⌈log
2
|V|⌉ ·8𝑛+𝑛+ (⌈log

2
|V|⌉ +1) ·8𝑛 = 16𝑛 · ⌈log

2
(|V|)⌉ +

10𝑛 ring elements communication in preprocessing,

• 2𝑛+⌈log
2
|V|⌉ ·6𝑛+2𝑛+(⌈log

2
|V|⌉+1)·6𝑛 = 12𝑛· ⌈log

2
(|V|)⌉+

10𝑛 ring elements communication per party online,

• and 1 + (⌈log
2
(|V|)⌉ + 1) · 4 = 4 · ⌈log

2
(|V|)⌉ + 5 rounds.

Furthermore, each of the message-passing iteration instantiates

FswPerm three times for order changes 𝜌vert → 𝜌src, 𝜌src → 𝜌
dst

,

and 𝜌
dst
→ 𝜌vert. Besides potentially Fapply, these switches require

the only interaction per iteration as the other operations run non-

interactively [31]. In addition, once before the first iteration, we

need to instantiate FapplyPerm once to reach vertex order. We finally

note that as per [31], when switching from vertex order to source

order, the intermediate payload has two entries per row instead

of one, doubling the payload size for this step only.
23

Hence, for a

total of 𝐷 message-passing iterations, the collective cost (without

Fapply) is
• 3 · 3𝑛 + 3 · 2𝑛 + 2𝑛 + 4 · 2𝑛 · 𝐷 = 17𝑛 + 8𝑛 · 𝐷 ring elements

communication in preprocessing,

• 3 ·2𝑛+𝑛+4 ·𝑛 ·𝐷 = 7𝑛+4𝑛 ·𝐷 ring elements communication

per party online,

• and 2 + 3 · 𝐷 rounds,

noting that three permutations are used in three distinct combina-

tions of two and carefully observing that during the two rounds of

instantiating FapplyPerm, the one-time operations for later instances

of FswPerm are executed in parallel.

B.3.1 Complexity for 𝜋𝐷M. The protocol for 𝜋𝐷M (Prot. 13) uses a

non-interactive Fapply. Hence, the total complexity immediately

results from adding together the previously discussed costs, yielding

the numbers in Tab. 4.

B.3.2 Complexity for 𝜋𝐷K . Recall from §A.6 that we only need to

incorporate an additional deduplication step, partially merging it

23
In more detail, we apply two instances of FswPerm for the same permutations on

two vectors, each containing one of the two entries per row.

with the computation of the permutations [[𝜌src]], [[𝜌dst]], [[𝜌vert]]
for optimization. If we add one initial sorting iteration by ®isV to

the deduplication, it already computes [[𝜌
dst
]] except for the last

iteration, saving some cost to set up the permutations. Furthermore,

the other sorting procedure needs to be extended by one iteration

too to incorporate the newly added bits ®∆ shifting duplicates to the

end of the list. Combining the cost from §A.6 with the savings from

correlated permutations yields an overhead compared to 𝜋𝐷M of

• (16𝑛 · ⌈log
2
|V|⌉ + (5 − 1/𝑘)𝑛 − 3 + 1/𝑘) − (𝑛 + ⌈log

2
|V|⌉ ·

8𝑛) + 3 · 8𝑛 = 8𝑛 · ⌈log
2
|V|⌉ + (28 − 1/𝑘)𝑛 − 3 + 1/𝑘 ring

elements communication in preprocessing,

• and (12𝑛 · ⌈log
2
|V|⌉ + (7−2/𝑘)𝑛−6+2/𝑘) − (2𝑛+ ⌈log

2
|V|⌉ ·

6𝑛) + 3 · 6𝑛 = 6𝑛 · ⌈log
2
|V|⌉ + (23 − 2/𝑘)𝑛 − 6 + 2/𝑘 ring

elements communication per party online.

The 8⌈log
2
|V|⌉ + ⌈log

2
𝑘⌉ +2 rounds for deduplication get increased

by 4 for the additional iteration w.r.t. ®isV. Other operations mostly

run in parallel, but the deduplication needs to be finalized in order

to run the additional sorting iteration based on the newly added

bits
24

which still needs to be followed by another iteration to reach

[[𝜌vert]]. Then, the message-passing phase follows, yielding the

results given in Tab. 4.

B.3.3 Complexity for 𝜋𝐷R . From §B.2, recall that all iterations are

executed on |V| many payloads in parallel. As the parallel instances

use the same permutation, this yields an overhead of 2𝑛 + 8𝑛 · 𝐷
communication during preprocessing and 𝑛+4𝑛 ·𝐷 communication

per party online for each node but the first. The final clipping oper-

ation on |V| values yields the remaining overhead (§A.5) leading to

the numbers reported in Tab. 4.

B.3.4 Complexity for Prior Work [6]. To compare to the only prior

work computing centrality measures on multilayer graphs using

MPC [6], for fairness reasons, we translate their protocols to our

setting. The cost analysis for our instantiation of [6] then is simple:

For 𝜋𝐷M, 𝜋𝐷K , all but the first iteration require |V|2 multiplications,

𝜋𝐷R requires |V|3 multiplications. In addition, 𝜋𝐷K initially computes

the OR over all input matrices using ℓ − 1 multiplications per entry

in ⌈log
2
(ℓ)⌉ rounds, as documented in [6], where ℓ is the number

24
This takes 3 rounds as the iteration is only waiting for the input vector, not the input

permutation.

20

of layers. For 𝜋𝐷R , we need to apply clipping (§A.5) to |V|2 matrix

entries.

B.4 Preventing Information Leakage from

Input Dimensions

Our protocol’s efficient input phase comes with the downside of

requiring each client to disclose their number of submitted entries to

the DAG list to the servers. Depending on the application scenario,

if such disclosure is not appropriate, clients may input a randomized

number of additional invalid entries as a padding, or agree upon

an upper bound 𝑏 with |E𝑖 | ≤ 𝑏 for all layers 1 ≤ 𝑖 ≤ ℓ that they

pad their entries to. Padding elements can be marked by adding

an additional flag ∈ {0, 1} to each DAG list entry which is 1 for all

padding elements. On the server side, the flag values can be used

to set entries to invalid elements that are ignored by the message-

passing, which is done as for duplicate entries as described in §A.6.

Another option is to run a secure compaction
25
, pushing all padding

entries to the end of the DAG list. Revealing the ordered flag values
then allows discarding padding elements, decreasing the size of the

DAG list and hence increasing performance at the cost of leaking

how many padding elements were used in total only instead of the

padding used per party.

C Additional Evaluation Results

Besides considering a LAN setting assuming excellent connections

between our servers, we also benchmark the protocols for 𝜋𝐷M for a

substantially slower WAN with only 100 MBit/s links and 100 ms

RTT instead of 1 GBit/s and 1 ms RTT. The results are depicted

in Fig. 20. For larger instances, the run times for WAN are 6× to

9× higher than LAN, regarding both one-time cost and cost per

iteration, as well for our and the prior protocols from [6]. Hence,

with the significantly slower network, the protocols are slowed

down by one order of magnitude, revealing a corridor for moderate

network settings where, even in the worst case, one iteration for

50k nodes and 5 million edges still takes less than a minute.

Furthermore, for all benchmark results featuredwithin this paper,

we provide full benchmark results regarding run time and observed

maximum allocation of virtual memory in Tab. 5, Tab. 6, Tab. 7,

Tab. 8, Tab. 9, and Tab. 10. Recall that allocated memory is of interest

here as this was the limiting factor for our benchmarks, especially

for the protocols from [6]. We do not provide the communication

here as it can be directly derived from Tab. 4.

25
Secure sorting by single bit keys, which matches a single iteration of the radix sort

described in §A.4.

0 10k 20k 30k 40k 50k
|v|

0

500

1000

1500

tim
e

[s
]

0 10k 20k 30k 40k 50k
|v|

0

50

100

tim
e

[s
]

one-time cost cost per iteration

LAN

WAN

ours (| | = 10|V|)
ours (| | = 50|V|)
ours (| | = 10|V|)
ours (| | = 50|V|)

ours (| | = 100|V|)
prior [6] (arbitrary | |)
ours (| | = 100|V|)
prior [6] (arbitrary | |)

Figure 20: Total run times and communication (preprocess-

ing + online) of our protocol for 𝜋𝐷M vs the prior protocol

from [6] s vs. prior protocols from [6], using different net-

work settings. LAN corresponds to 1ms RTT, 1GBit/s and

WAN corresponds to 100ms RTT, 100MBit/s links between

the parties. (ℓ = 3 layers)

Table 5: Run times andmaximal observedmemory allocation

for our protocols for 𝜋𝐷M, 𝜋𝐷K , in a LAN setting, on the larger

datasets from §6, Tab. 2. Run times are split into preprocess-

ing + online.

𝜋𝐷M 𝜋𝐷K
ours ours

𝐷 run time memory run time memory

a
r
a
b
i

0 0.9+0.5 s 1.2 GB 1.3+1.0 s 1.8 GB

1 0.8+0.6 s 1.5 GB 1.5+1.0 s 1.8 GB

2 0.9+0.6 s 1.5 GB 1.5+1.0 s 1.7 GB

3 1.0+0.6 s 1.6 GB 1.5+1.0 s 1.7 GB

4 1.0+0.6 s 1.6 GB 1.5+1.0 s 1.9 GB

5 1.0+0.7 s 1.6 GB 1.5+1.0 s 1.9 GB

6 1.0+0.7 s 1.5 GB 1.5+1.1 s 1.9 GB

7 1.0+0.7 s 1.6 GB 1.5+1.1 s 1.9 GB

8 0.9+0.7 s 1.6 GB 1.6+1.1 s 1.8 GB

9 0.9+0.7 s 1.4 GB 1.5+1.1 s 1.9 GB

10 1.0+0.7 s 1.7 GB 1.6+1.1 s 2.0 GB

h
i
g
g
s

0 36.6+29.2 s 28.9 GB 59.7+45.8 s 40.4 GB

1 38.0+29.8 s 29.7 GB 60.9+46.7 s 41.2 GB

2 38.8+30.4 s 30.1 GB 61.3+47.2 s 41.8 GB

3 39.6+30.8 s 30.8 GB 62.0+48.0 s 42.5 GB

4 39.9+31.1 s 31.4 GB 62.8+48.0 s 43.2 GB

5 41.1+31.9 s 32.0 GB 63.9+49.0 s 43.8 GB

6 41.2+32.2 s 32.7 GB 64.7+49.3 s 44.5 GB

7 42.1+33.0 s 33.4 GB 65.4+50.3 s 45.1 GB

8 42.5+33.8 s 34.0 GB 66.3+50.4 s 45.8 GB

9 43.5+34.5 s 34.4 GB 66.8+51.3 s 46.4 GB

10 44.3+34.7 s 35.4 GB 67.2+52.0 s 47.1 GB

21

Table 6: Run times and maximal observed memory allocation for our and prior [6] protocols for 𝜋𝐷M, 𝜋𝐷K , 𝜋𝐷R , in a LAN setting,

on the smaller datasets from §6, Tab. 2. Run times are split into preprocessing + online.

𝜋𝐷M 𝜋𝐷K 𝜋𝐷R
ours prior [6] ours prior [6] ours prior [6]

𝐷 run time memory run time memory run time memory run time memory run time memory run time memory

a
a
r
h
u
s

0 20.5+28.0 ms 0.9 GB 52.8+63.7 ms 0.8 GB 61.5+52.0 ms 0.9 GB

1 31.3+33.3 ms 0.8 GB 6.8+2.9 ms 0.8 GB 49.1+65.7 ms 0.8 GB 14.2+1,0.0 ms 0.8 GB 98.4+78.6 ms 0.8 GB 21.0+11.6 ms 0.8 GB

2 28.3+34.5 ms 0.9 GB 7.4+2.7 ms 0.9 GB 47.2+71.0 ms 0.9 GB 13.3+9.1 ms 0.8 GB 142.9+98.9 ms 1.0 GB 82.4+60.2 ms 1.0 GB

3 30.4+36.0 ms 0.9 GB 10.2+5.3 ms 0.9 GB 43.8+71.1 ms 0.8 GB 13.8+9.2 ms 0.9 GB 159.6+131.3 ms 1.1 GB 193.9+98.4 ms 1.1 GB

4 35.8+40.2 ms 0.8 GB 9.0+4.5 ms 0.8 GB 56.8+75.7 ms 0.9 GB 15.1+9.8 ms 0.9 GB 212.6+148.5 ms 1.1 GB 178.9+130.6 ms 1.0 GB

5 36.4+43.2 ms 0.7 GB 9.3+6.6 ms 0.9 GB 60.8+76.6 ms 0.9 GB 16.6+11.5 ms 0.8 GB 263.9+183.6 ms 1.0 GB 220.5+163.2 ms 1.3 GB

6 37.6+46.6 ms 0.8 GB 9.7+8.4 ms 0.9 GB 44.5+78.9 ms 0.9 GB 27.3+12.6 ms 0.9 GB 244.4+197.8 ms 1.2 GB 299.1+199.3 ms 1.3 GB

7 36.6+49.9 ms 0.9 GB 11.5+9.4 ms 0.9 GB 64.3+85.0 ms 0.9 GB 26.1+10.7 ms 0.7 GB 289.3+214.8 ms 1.1 GB 320.7+228.8 ms 1.4 GB

8 38.4+53.8 ms 0.7 GB 22.3+12.3 ms 0.9 GB 61.5+86.0 ms 0.9 GB 22.2+15.8 ms 0.8 GB 313.3+237.1 ms 1.1 GB 308.2+292.2 ms 1.2 GB

9 42.1+56.9 ms 0.8 GB 17.1+10.9 ms 0.6 GB 49.9+89.6 ms 0.9 GB 30.3+17.2 ms 0.9 GB 411.8+260.3 ms 1.3 GB 367.3+293.1 ms 1.2 GB

10 42.7+56.3 ms 0.6 GB 18.4+11.6 ms 0.8 GB 59.9+93.5 ms 0.9 GB 26.6+16.5 ms 0.9 GB 437.4+276.0 ms 1.2 GB 352.3+341.0 ms 1.6 GB

l
o
n
d
o
n

0 42.0+40.5 ms 0.9 GB 54.6+86.3 ms 0.9 GB 0.3+0.3 s 1.3 GB

1 36.8+46.7 ms 0.9 GB 59.8+34.6 ms 1.1 GB 61.7+88.7 ms 0.9 GB 167.5+92.0 ms 1.1 GB 0.6+0.4 s 1.5 GB 0.4+0.2 s 1.3 GB

2 46.3+47.8 ms 0.9 GB 89.0+65.1 ms 1.0 GB 70.0+92.5 ms 0.8 GB 270.2+133.8 ms 1.2 GB 0.8+0.6 s 1.7 GB 8.6+8.1 s 20.7 GB

3 37.7+50.5 ms 0.7 GB 169.6+80.0 ms 1.0 GB 60.0+98.7 ms 0.9 GB 168.4+144.7 ms 1.2 GB 1.1+0.7 s 2.0 GB 16.7+16.1 s 38.9 GB

4 42.7+51.1 ms 0.8 GB 179.8+120.7 ms 1.2 GB 63.2+97.7 ms 0.9 GB 183.9+160.2 ms 1.3 GB 1.3+0.9 s 2.1 GB 24.8+23.9 s 57.0 GB

5 44.7+55.3 ms 0.8 GB 142.3+142.2 ms 1.3 GB 78.0+101.1 ms 0.9 GB 257.4+176.5 ms 1.1 GB 1.5+1.0 s 2.2 GB 32.7+31.9 s 75.6 GB

6 46.3+58.6 ms 0.8 GB 202.3+164.9 ms 1.2 GB 80.6+105.5 ms 0.6 GB 288.4+200.3 ms 1.4 GB 1.8+1.2 s 2.6 GB 40.4+40.1 s 93.8 GB

7 43.7+61.1 ms 0.9 GB 202.7+193.2 ms 1.2 GB 84.4+108.1 ms 0.8 GB 264.2+241.1 ms 1.4 GB 2.0+1.3 s 2.8 GB – –

8 46.9+65.1 ms 0.9 GB 278.9+207.1 ms 1.5 GB 58.4+112.4 ms 0.9 GB 274.4+238.7 ms 1.5 GB 2.1+1.5 s 3.1 GB – –

9 54.7+67.5 ms 0.9 GB 238.9+214.6 ms 1.4 GB 81.7+110.0 ms 0.8 GB 306.6+263.2 ms 1.5 GB 2.4+1.6 s 3.3 GB – –

10 45.3+70.7 ms 0.6 GB 244.1+228.8 ms 1.5 GB 62.1+115.7 ms 0.7 GB 329.5+282.5 ms 1.6 GB 2.6+1.8 s 3.5 GB – –

h
i
v

0 0.1+0.1 s 0.9 GB 0.1+0.1 s 1.0 GB 2.1+1.8 s 3.6 GB

1 0.1+0.1 s 1.0 GB 0.4+0.2 s 2.2 GB 0.1+0.1 s 1.0 GB 0.8+0.6 s 2.8 GB 3.6+2.8 s 5.3 GB 2.1+1.3 s 3.3 GB

2 0.1+0.1 s 1.0 GB 0.5+0.4 s 2.6 GB 0.1+0.1 s 0.9 GB 1.0+0.8 s 3.0 GB 5.1+3.8 s 6.9 GB – –

3 0.1+0.1 s 1.0 GB 0.7+0.6 s 3.0 GB 0.1+0.1 s 0.8 GB 1.2+0.9 s 3.5 GB 6.5+4.8 s 8.5 GB – –

4 0.1+0.1 s 0.8 GB 0.8+0.7 s 3.2 GB 0.1+0.1 s 0.8 GB 1.3+1.1 s 3.9 GB 8.0+5.8 s 10.2 GB – –

5 0.1+0.1 s 0.9 GB 1.0+0.9 s 3.7 GB 0.1+0.1 s 1.0 GB 1.4+1.2 s 4.2 GB 9.5+6.8 s 11.8 GB – –

6 0.1+0.1 s 0.9 GB 1.1+1.0 s 4.0 GB 0.1+0.1 s 1.0 GB 1.6+1.4 s 4.6 GB 10.9+7.8 s 13.5 GB – –

7 0.1+0.1 s 0.9 GB 1.3+1.2 s 4.4 GB 0.1+0.1 s 1.0 GB 1.8+1.6 s 5.0 GB 12.4+8.8 s 15.3 GB – –

8 0.1+0.1 s 0.9 GB 1.4+1.3 s 4.7 GB 0.1+0.2 s 1.0 GB 2.0+1.7 s 5.3 GB 13.8+9.8 s 17.1 GB – –

9 0.1+0.1 s 0.9 GB 1.6+1.5 s 5.1 GB 0.2+0.2 s 0.9 GB 2.1+1.9 s 5.6 GB 15.5+10.7 s 18.8 GB – –

10 0.1+0.1 s 1.0 GB 1.8+1.6 s 5.5 GB 0.1+0.2 s 1.0 GB 2.3+2.0 s 5.9 GB 16.9+11.8 s 20.6 GB – –

Table 7: Run times and maximal observed memory allocation for our and prior [6] protocols for 𝜋𝐷M with different sparsity, in a

LAN setting. Run times are split into preprocessing + online.

ours (|E | = 10|V|) ours (|E | = 50|V|) ours (|E | = 100|V|) prior [6] (arbitrary |E |)
one-time cost cost per iteration one-time cost cost per iteration one-time cost cost per iteration one-time cost cost per iteration

|V| run time memory run time memory run time memory run time memory run time memory run time memory run time memory run time memory

100 29.0+33.3 ms 0.8 GB 3.2+2.3 ms 0.0 GB 92.5+58.7 ms 0.9 GB 18.3+2.8 ms 0.0 GB 160.7+94.2 ms 1.0 GB 2.5+3.8 ms 0.0 GB 11.2+2.8 ms 0.9 GB 0.0+3.0 ms 0.0 GB

200 65.2+44.9 ms 0.8 GB 0.0+1.6 ms 0.1 GB 166.8+101.9 ms 0.9 GB 0.0+3.6 ms 0.0 GB 270.7+170.9 ms 1.1 GB 35.5+8.0 ms 0.0 GB 16.9+7.8 ms 0.9 GB 25.1+9.3 ms 0.0 GB

300 86.7+53.0 ms 0.8 GB 0.0+4.2 ms 0.0 GB 219.1+148.1 ms 1.0 GB 0.0+9.2 ms 0.0 GB 383.9+280.9 ms 1.1 GB 47.6+9.4 ms 0.0 GB 61.7+22.6 ms 0.9 GB 61.9+19.4 ms 0.0 GB

400 130.1+68.0 ms 0.9 GB 0.0+0.5 ms 0.0 GB 343.4+195.7 ms 1.1 GB 0.0+5.0 ms 0.0 GB 524.4+368.0 ms 1.3 GB 23.4+10.8 ms 0.0 GB 106.4+42.9 ms 1.1 GB 23.5+39.0 ms 0.1 GB

500 124.0+73.2 ms 0.9 GB 0.0+0.7 ms 0.0 GB 418.7+244.5 ms 1.1 GB 0.0+6.5 ms 0.0 GB 780.9+498.0 ms 1.2 GB 0.0+18.6 ms 0.0 GB 121.4+55.3 ms 1.2 GB 107.4+52.2 ms 0.1 GB

600 148.1+90.2 ms 0.9 GB 0.0+4.6 ms 0.1 GB 441.2+315.2 ms 1.2 GB 9.7+9.2 ms 0.0 GB 832.4+676.1 ms 1.6 GB 38.2+19.9 ms 0.0 GB 136.9+80.5 ms 1.4 GB 167.6+63.7 ms 0.1 GB

700 164.2+105.6 ms 0.9 GB 0.0+3.3 ms 0.0 GB 571.1+362.4 ms 1.3 GB 7.9+15.9 ms 0.0 GB 1.1+0.8 s 1.6 GB 23.0+35.0 ms 0.0 GB 201.9+109.2 ms 1.5 GB 164.8+81.4 ms 0.2 GB

800 147.7+115.2 ms 1.0 GB 0.4+2.0 ms 0.0 GB 601.1+412.5 ms 1.4 GB 7.6+16.8 ms 0.0 GB 1.2+0.9 s 1.8 GB 35.4+35.0 ms 0.0 GB 248.6+144.7 ms 1.6 GB 86.0+106.2 ms 0.0 GB

900 207.7+125.6 ms 1.0 GB 0.0+3.3 ms 0.0 GB 775.2+468.8 ms 1.3 GB 0.0+9.4 ms 0.1 GB 1.5+1.0 s 1.8 GB 31.2+33.6 ms 0.0 GB 312.9+184.2 ms 2.0 GB 98.2+133.5 ms 0.2 GB

1000 228.4+139.4 ms 0.8 GB 2.5+3.4 ms 0.1 GB 863.7+570.3 ms 1.4 GB 11.9+27.6 ms 0.0 GB 1.5+1.1 s 1.8 GB 94.5+46.2 ms 0.1 GB 378.3+225.2 ms 2.2 GB 113.7+157.9 ms 0.4 GB

2000 341.1+245.0 ms 1.1 GB 48.1+10.2 ms 0.0 GB 1.6+1.3 s 1.8 GB 63.6+29.6 ms 0.2 GB 3.2+2.5 s 3.3 GB 147.6+89.3 ms 0.1 GB 1.5+0.9 s 6.1 GB 319.3+647.1 ms 1.5 GB

3000 571.9+392.0 ms 1.3 GB 25.3+18.1 ms 0.0 GB 2.7+2.1 s 2.6 GB 85.5+33.0 ms 0.2 GB 5.0+4.1 s 4.5 GB 192.3+135.6 ms 0.3 GB 3.3+2.0 s 12.8 GB 0.6+1.5 s 3.5 GB

4000 779.8+532.3 ms 1.4 GB 12.3+16.5 ms 0.1 GB 3.4+2.7 s 3.4 GB 125.3+93.1 ms 0.1 GB 6.6+5.4 s 5.9 GB 262.2+165.5 ms 0.1 GB 5.8+3.5 s 21.7 GB 1.0+2.6 s 5.9 GB

5000 1.1+0.8 s 1.6 GB 0.0+16.3 ms 0.1 GB 4.4+3.7 s 4.2 GB 144.2+105.0 ms 0.2 GB 8.8+7.2 s 7.5 GB 339.4+202.5 ms 0.2 GB 9.1+5.5 s 34.7 GB 1.5+4.1 s 9.6 GB

6000 1.4+0.9 s 1.7 GB 51.7+11.2 ms 0.1 GB 5.3+4.4 s 5.1 GB 222.4+127.7 ms 0.2 GB 10.7+8.7 s 9.3 GB 400.3+238.3 ms 0.3 GB 12.9+7.9 s 48.8 GB 2.5+6.1 s 14.6 GB

7000 1.4+1.1 s 1.9 GB 49.7+38.4 ms 0.1 GB 6.2+5.2 s 5.7 GB 253.7+137.1 ms 0.2 GB 12.4+10.3 s 10.4 GB 473.6+249.8 ms 0.3 GB 17.5+10.8 s 67.6 GB 3.1+8.3 s 19.1 GB

8000 1.6+1.2 s 1.8 GB 50.6+38.6 ms 0.1 GB 7.1+5.8 s 6.4 GB 276.4+177.3 ms 0.2 GB 14.1+11.7 s 11.7 GB 606.4+270.1 ms 0.4 GB 23.0+14.0 s 84.5 GB 3.7+10.9 s 24.3 GB

9000 1.9+1.4 s 2.3 GB 50.2+46.0 ms 0.0 GB 8.6+7.0 s 7.5 GB 315.0+204.1 ms 0.2 GB 17.2+14.0 s 14.2 GB 629.5+301.2 ms 0.4 GB

10000 2.2+1.6 s 2.2 GB 28.4+49.0 ms 0.2 GB 9.6+7.9 s 8.2 GB 312.3+196.9 ms 0.2 GB 19.4+15.7 s 15.4 GB 942.1+320.0 ms 0.5 GB

20000 4.4+3.5 s 4.2 GB 162.2+92.9 ms 0.1 GB 20.7+16.8 s 16.5 GB 760.6+335.9 ms 0.4 GB 43.6+33.7 s 32.0 GB 1.8+0.8 s 0.9 GB

30000 6.4+5.3 s 5.9 GB 278.1+158.2 ms 0.2 GB 31.8+25.5 s 24.5 GB 1.1+0.6 s 0.7 GB 71.9+53.0 s 48.5 GB 2.7+1.3 s 1.5 GB

40000 9.3+7.7 s 8.0 GB 271.9+195.4 ms 0.2 GB 46.6+36.6 s 35.7 GB 1.5+1.1 s 1.0 GB 1.7+1.3 min 70.4 GB 3.4+1.8 s 2.1 GB

50000 11.5+9.5 s 10.1 GB 405.4+213.6 ms 0.3 GB 62.2+46.3 s 44.4 GB 2.1+1.2 s 1.2 GB 2.3+1.6 min 86.9 GB 4.9+1.0 s 2.1 GB

60000 13.8+11.3 s 11.8 GB 442.4+266.1 ms 0.3 GB

70000 17.3+14.4 s 14.3 GB 516.3+227.0 ms 0.4 GB

80000 19.6+16.4 s 16.2 GB 639.3+300.6 ms 0.3 GB

90000 22.5+18.3 s 18.4 GB 759.8+292.2 ms 0.5 GB

100000 25.0+20.1 s 20.8 GB 814.7+635.8 ms 0.5 GB

200000 58.1+44.5 s 43.2 GB 1.9+1.0 s 1.1 GB

300000 98.4+72.6 s 65.4 GB 2.9+1.8 s 1.5 GB

400000 2.3+1.6 min 89.4 GB 4.4+3.3 s 1.9 GB

500000 2.9+2.1 min 111.1 GB 5.0+3.0 s 2.4 GB

22

Table 8: Run times and maximal observed memory allocation for our and prior [6] protocols for 𝜋𝐷M with different sparsity, in a

WAN setting. Run times are split into preprocessing + online.

ours (|E | = 10|V|) ours (|E | = 50|V|) ours (|E | = 100|V|) prior [6] (arbitrary |E |)
one-time cost cost per iteration one-time cost cost per iteration one-time cost cost per iteration one-time cost cost per iteration

|V| run time memory run time memory run time memory run time memory run time memory run time memory run time memory run time memory

100 0.9+2.1 s 0.7 GB 62.9+153.8 ms 0.1 GB 0.9+2.4 s 0.9 GB 45.0+177.8 ms 0.0 GB 1.3+2.7 s 0.9 GB 0.0+144.0 ms 0.0 GB 259.9+102.0 ms 0.9 GB 109.0+202.1 ms 0.0 GB

200 1.3+2.4 s 0.9 GB 45.9+154.9 ms 0.0 GB 1.3+2.9 s 0.9 GB 217.8+161.1 ms 0.0 GB 2.2+3.4 s 1.1 GB 80.4+160.7 ms 0.0 GB 281.4+115.1 ms 0.9 GB 311.2+336.0 ms 0.1 GB

300 0.9+2.7 s 0.9 GB 35.8+150.6 ms 0.0 GB 2.0+3.4 s 1.0 GB 64.2+186.4 ms 0.0 GB 2.9+4.7 s 1.2 GB 153.2+184.4 ms 0.0 GB 282.3+127.2 ms 0.9 GB 439.0+433.2 ms 0.1 GB

400 1.0+2.9 s 1.0 GB 54.7+161.4 ms 0.0 GB 2.3+3.7 s 1.1 GB 87.9+170.0 ms 0.0 GB 3.6+5.4 s 1.3 GB 170.8+200.5 ms 0.0 GB 317.1+140.4 ms 1.0 GB 515.4+637.2 ms 0.2 GB

500 0.8+2.9 s 0.9 GB 36.8+170.0 ms 0.0 GB 2.6+4.5 s 1.2 GB 130.1+171.1 ms 0.0 GB 4.3+7.9 s 1.3 GB 196.4+232.4 ms 0.0 GB 339.6+143.1 ms 1.2 GB 636.6+852.2 ms 0.2 GB

600 1.1+3.1 s 0.9 GB 103.0+190.9 ms 0.0 GB 3.1+5.1 s 1.2 GB 160.4+191.6 ms 0.0 GB 5.2+9.1 s 1.5 GB 232.1+283.9 ms 0.1 GB 398.6+202.6 ms 1.3 GB 0.5+1.1 s 0.1 GB

700 1.3+3.3 s 0.9 GB 0.0+129.4 ms 0.1 GB 3.6+5.5 s 1.2 GB 115.5+190.8 ms 0.0 GB 6.0+9.8 s 1.7 GB 299.1+295.5 ms 0.0 GB 416.1+216.8 ms 1.5 GB 0.6+1.2 s 0.2 GB

800 1.3+3.3 s 1.0 GB 207.0+188.8 ms 0.0 GB 3.9+5.8 s 1.4 GB 178.6+198.8 ms 0.0 GB 6.7+11.0 s 1.8 GB 280.8+315.8 ms 0.0 GB 501.8+230.6 ms 1.7 GB 0.7+1.5 s 0.3 GB

900 1.6+3.4 s 1.0 GB 45.6+158.2 ms 0.0 GB 4.2+6.2 s 1.4 GB 207.9+213.4 ms 0.0 GB 7.4+11.6 s 1.8 GB 349.3+341.2 ms 0.1 GB 553.3+273.5 ms 2.0 GB 0.7+1.9 s 0.3 GB

1000 1.7+3.4 s 1.0 GB 134.3+164.4 ms 0.0 GB 4.6+8.6 s 1.4 GB 226.4+287.3 ms 0.0 GB 8.1+14.6 s 2.0 GB 472.0+521.8 ms 0.0 GB 687.2+314.3 ms 2.2 GB 0.8+2.1 s 0.4 GB

2000 2.6+4.4 s 1.1 GB 175.2+174.0 ms 0.0 GB 8.8+15.9 s 2.1 GB 437.7+492.6 ms 0.0 GB 16.2+28.7 s 3.3 GB 832.9+882.5 ms 0.1 GB 2.0+0.9 s 6.1 GB 1.9+7.4 s 1.4 GB

3000 3.7+6.1 s 1.3 GB 148.1+182.6 ms 0.0 GB 13.5+24.0 s 2.8 GB 625.4+657.4 ms 0.0 GB 25.9+45.1 s 4.7 GB 1.2+1.2 s 0.1 GB 4.3+2.0 s 12.9 GB 3.4+15.9 s 3.5 GB

4000 4.6+7.0 s 1.5 GB 207.2+204.5 ms 0.0 GB 17.9+31.1 s 3.4 GB 711.2+916.7 ms 0.1 GB 33.9+58.9 s 6.0 GB 1.6+1.6 s 0.2 GB 7.5+3.8 s 21.6 GB 5.5+27.3 s 5.8 GB

5000 5.9+11.0 s 1.7 GB 200.9+279.3 ms 0.0 GB 23.3+40.8 s 4.3 GB 1.1+1.0 s 0.1 GB 45.3+78.0 s 7.7 GB 2.0+1.9 s 0.2 GB 11.5+5.1 s 34.8 GB 8.6+43.4 s 9.1 GB

6000 6.9+11.8 s 1.8 GB 228.7+290.8 ms 0.0 GB 27.8+48.5 s 5.1 GB 1.3+1.2 s 0.2 GB 54.1+93.0 s 9.3 GB 2.5+2.2 s 0.2 GB 16.6+8.3 s 48.8 GB 12.0+61.8 s 14.0 GB

7000 7.9+13.4 s 1.9 GB 338.6+317.6 ms 0.1 GB 32.4+56.0 s 5.7 GB 1.4+1.3 s 0.1 GB 1.0+1.8 min 10.4 GB 2.9+2.6 s 0.3 GB 22.3+11.1 s 67.6 GB 16.5+84.1 s 18.3 GB

8000 8.9+14.4 s 2.1 GB 348.1+340.2 ms 0.0 GB 36.7+63.4 s 6.3 GB 1.6+1.6 s 0.2 GB 1.2+2.0 min 11.5 GB 3.2+3.1 s 0.5 GB 29.0+14.8 s 84.5 GB 0.4+1.8 min 23.4 GB

9000 10.3+16.3 s 2.3 GB 353.1+348.5 ms 0.0 GB 44.2+75.7 s 7.5 GB 1.8+1.7 s 0.2 GB 1.4+2.5 min 14.1 GB 3.8+3.2 s 0.4 GB

10000 11.4+20.1 s 2.5 GB 493.6+532.5 ms 0.0 GB 48.9+83.8 s 8.1 GB 2.0+1.9 s 0.2 GB 1.6+2.7 min 15.3 GB 4.1+3.7 s 0.4 GB

20000 22.9+39.4 s 4.2 GB 873.7+854.0 ms 0.1 GB 1.7+2.9 min 16.3 GB 4.1+3.7 s 0.4 GB 3.4+5.7 min 31.4 GB 8.4+7.0 s 0.9 GB

30000 34.0+58.0 s 6.0 GB 1.3+1.2 s 0.1 GB 2.6+4.3 min 24.0 GB 6.3+5.4 s 0.7 GB 5.2+8.6 min 47.3 GB 12.7+10.8 s 1.4 GB

40000 47.7+80.5 s 8.0 GB 1.8+1.6 s 0.2 GB 3.7+6.1 min 34.8 GB 8.7+7.3 s 0.9 GB 7.5+12.1 min 68.9 GB 16.7+14.4 s 1.8 GB

50000 59.3+99.4 s 10.1 GB 2.2+2.0 s 0.3 GB 4.6+7.6 min 43.0 GB 10.5+9.3 s 1.2 GB 9.4+15.2 min 84.9 GB 21.6+17.1 s 2.3 GB

Table 9: Run times and maximal observed memory allocation for our and prior [6] protocols for 𝜋𝐷K with different sparsity, in a

LAN setting. Run times are split into preprocessing + online.

ours (|E | = 10|V|) ours (|E | = 50|V|) ours (|E | = 100|V|) prior [6] (arbitrary |E |)
one-time cost cost per iteration one-time cost cost per iteration one-time cost cost per iteration one-time cost cost per iteration

|V| run time memory run time memory run time memory run time memory run time memory run time memory run time memory run time memory

100 30.3+67.7 ms 0.9 GB 12.8+4.8 ms 0.0 GB 99.4+109.2 ms 0.9 GB 3.1+3.8 ms 0.0 GB 245.9+170.7 ms 1.0 GB 4.8+1.4 ms 0.0 GB 18.5+8.1 ms 0.9 GB 9.3+1.8 ms 0.0 GB

200 86.9+87.6 ms 0.9 GB 11.4+4.4 ms 0.0 GB 283.0+186.6 ms 1.0 GB 0.0+0.7 ms 0.0 GB 457.0+315.7 ms 1.1 GB 0.0+7.2 ms 0.1 GB 53.9+28.5 ms 0.8 GB 27.0+11.7 ms 0.2 GB

300 114.1+116.7 ms 0.8 GB 0.0+0.0 ms 0.1 GB 388.3+269.0 ms 1.0 GB 0.2+8.5 ms 0.0 GB 780.6+524.6 ms 1.3 GB 19.7+6.4 ms 0.0 GB 153.2+71.3 ms 1.0 GB 40.5+8.5 ms 0.1 GB

400 153.7+128.8 ms 1.0 GB 2.3+2.1 ms 0.0 GB 550.3+346.2 ms 1.0 GB 0.0+3.6 ms 0.1 GB 951.1+683.3 ms 1.5 GB 71.5+11.0 ms 0.0 GB 185.3+108.6 ms 0.9 GB 120.5+47.9 ms 0.4 GB

500 174.4+132.8 ms 1.0 GB 0.0+7.1 ms 0.0 GB 643.9+441.8 ms 1.2 GB 37.1+3.4 ms 0.0 GB 1,289.7+913.4 ms 1.7 GB 0.0+10.1 ms 0.0 GB 353.5+166.8 ms 1.4 GB 0.0+32.0 ms 0.1 GB

600 212.1+167.4 ms 1.0 GB 3.5+4.5 ms 0.0 GB 816.5+574.7 ms 1.4 GB 39.8+0.3 ms 0.0 GB 1,551.3+1,149.1 ms 1.9 GB 53.9+25.4 ms 0.0 GB 356.0+231.7 ms 1.4 GB 61.1+54.2 ms 0.3 GB

700 251.7+184.5 ms 1.0 GB 6.4+0.9 ms 0.0 GB 914.1+657.4 ms 1.4 GB 65.2+8.3 ms 0.1 GB 1.8+1.4 s 2.1 GB 49.9+13.7 ms 0.0 GB 452.4+314.3 ms 1.8 GB 69.1+77.8 ms 0.2 GB

800 225.1+199.7 ms 1.0 GB 24.5+5.7 ms 0.0 GB 1,078.6+735.9 ms 1.6 GB 49.2+18.7 ms 0.0 GB 2.1+1.6 s 2.2 GB 60.1+22.2 ms 0.0 GB 527.2+410.4 ms 2.1 GB 113.0+80.5 ms 0.2 GB

900 304.3+207.3 ms 1.0 GB 12.6+6.8 ms 0.0 GB 1,174.9+850.1 ms 1.6 GB 75.2+4.1 ms 0.0 GB 2.3+1.7 s 2.1 GB 61.0+33.0 ms 0.1 GB 709.6+512.9 ms 2.5 GB 113.0+119.8 ms 0.2 GB

1000 340.1+232.7 ms 1.0 GB 4.9+4.9 ms 0.0 GB 1,324.7+1,011.6 ms 1.5 GB 62.7+10.6 ms 0.1 GB 2.6+1.9 s 2.6 GB 32.4+52.7 ms 0.0 GB 841.2+624.6 ms 2.8 GB 157.3+147.8 ms 0.3 GB

2000 643.1+442.4 ms 1.3 GB 6.1+8.2 ms 0.0 GB 2.7+2.1 s 2.7 GB 107.4+39.3 ms 0.0 GB 5.3+4.2 s 4.5 GB 90.2+96.8 ms 0.0 GB 3.3+2.6 s 8.2 GB 646.9+617.2 ms 1.4 GB

3000 1,001.7+704.1 ms 1.5 GB 15.4+13.5 ms 0.0 GB 4.3+3.4 s 3.8 GB 100.6+58.3 ms 0.1 GB 8.3+6.8 s 6.7 GB 242.6+126.0 ms 0.1 GB 7.2+5.8 s 18.2 GB 1.5+1.4 s 3.4 GB

4000 1,353.5+937.3 ms 1.7 GB 19.3+7.3 ms 0.0 GB 5.6+4.5 s 4.7 GB 139.2+72.9 ms 0.1 GB 11.1+9.0 s 8.4 GB 254.4+161.4 ms 0.2 GB 12.6+9.9 s 30.4 GB 2.8+2.8 s 5.7 GB

5000 1.7+1.3 s 1.9 GB 57.2+13.8 ms 0.1 GB 7.4+6.0 s 5.9 GB 139.6+116.9 ms 0.1 GB 14.7+12.0 s 10.9 GB 357.0+266.7 ms 0.2 GB 19.6+15.6 s 48.7 GB 4.0+4.0 s 9.1 GB

6000 2.0+1.5 s 2.2 GB 68.1+27.1 ms 0.1 GB 8.9+7.3 s 7.1 GB 181.2+93.5 ms 0.2 GB 17.9+14.6 s 13.6 GB 422.8+186.5 ms 0.2 GB 28.1+22.5 s 71.5 GB 5.5+5.9 s 13.6 GB

7000 2.4+1.8 s 2.5 GB 21.5+14.5 ms 0.0 GB 10.3+8.5 s 8.1 GB 276.1+141.2 ms 0.1 GB 21.0+16.8 s 15.2 GB 525.3+251.6 ms 0.3 GB 37.9+30.4 s 95.2 GB 7.6+8.5 s 17.5 GB

8000 2.7+2.0 s 2.6 GB 29.3+41.1 ms 0.1 GB 11.9+9.7 s 8.9 GB 251.5+169.0 ms 0.2 GB 24.3+19.1 s 17.2 GB 458.9+424.1 ms 0.3 GB

9000 3.1+2.3 s 3.1 GB 61.8+35.2 ms −0.0 GB 14.0+11.6 s 10.5 GB 338.8+173.6 ms 0.2 GB 28.7+22.8 s 20.4 GB 711.7+386.9 ms 0.4 GB

10000 3.5+2.6 s 3.2 GB 73.5+46.3 ms −0.0 GB 15.6+12.8 s 11.6 GB 371.5+224.3 ms 0.2 GB 32.4+25.5 s 22.6 GB 639.4+443.0 ms 0.5 GB

20000 7.1+5.8 s 5.8 GB 160.0+59.0 ms 0.1 GB 34.7+27.0 s 24.4 GB 930.8+397.0 ms 0.4 GB 74.3+54.9 s 48.4 GB 1.4+0.9 s 0.9 GB

30000 10.6+8.8 s 8.3 GB 212.1+97.9 ms 0.1 GB 53.9+41.1 s 35.5 GB 1.1+0.4 s 0.8 GB 2.0+1.4 min 70.0 GB 2.9+1.5 s 1.6 GB

40000 14.9+12.4 s 11.2 GB 328.6+152.4 ms 0.2 GB 80.7+58.6 s 50.9 GB 1.8+1.0 s 0.9 GB 3.0+2.0 min 99.9 GB 3.5+2.0 s 1.8 GB

Table 10: Run times and maximal observed memory allocation for our and prior [6] protocols for 𝜋𝐷R with different sparsity, in

a LAN setting. Run times are split into preprocessing + online.

ours (|E | = 10|V|) ours (|E | = 50|V|) ours (|E | = 100|V|) prior [6] (arbitrary |E |)
one-time cost cost per iteration one-time cost cost per iteration one-time cost cost per iteration one-time cost cost per iteration

|V| run time memory run time memory run time memory run time memory run time memory run time memory run time memory run time memory

100 105.3+72.9 ms 1.0 GB 49.2+34.0 ms 0.0 GB 175.2+159.5 ms 0.8 GB 218.9+149.4 ms 0.3 GB 361.8+266.7 ms 1.2 GB 453.3+295.3 ms 0.5 GB 26.7+14.4 ms 0.9 GB 239.1+170.2 ms 0.4 GB

200 232.3+158.0 ms 1.1 GB 200.3+123.6 ms 0.1 GB 586.8+473.8 ms 1.8 GB 843.9+585.0 ms 0.9 GB 1.1+0.9 s 2.4 GB 1.6+1.2 s 1.9 GB 166.3+63.5 ms 1.0 GB 1.2+1.3 s 2.8 GB

300 341.1+327.6 ms 1.3 GB 499.0+290.2 ms 0.5 GB 1.2+1.0 s 2.7 GB 1.9+1.3 s 1.9 GB 2.1+1.8 s 4.5 GB 3.6+2.7 s 4.0 GB 278.9+132.4 ms 0.9 GB 4.4+4.3 s 10.4 GB

400 593.4+553.8 ms 1.8 GB 813.7+485.7 ms 0.8 GB 1.9+1.7 s 4.0 GB 3.2+2.3 s 3.7 GB 3.4+3.1 s 7.3 GB 6.5+4.7 s 7.2 GB 426.2+234.8 ms 1.2 GB 10.3+10.1 s 24.3 GB

500 906.9+783.3 ms 2.2 GB 1.2+0.8 s 1.2 GB 2.7+2.7 s 5.8 GB 5.1+3.7 s 5.7 GB 5.0+5.4 s 10.7 GB 10.2+7.3 s 11.5 GB 572.5+324.9 ms 1.6 GB 19.8+19.7 s 47.8 GB

600 1.3+1.2 s 2.8 GB 1.7+1.1 s 1.8 GB 3.9+3.9 s 8.2 GB 7.3+5.3 s 8.2 GB 7.2+7.7 s 15.2 GB 14.7+10.9 s 16.3 GB 769.0+471.4 ms 1.6 GB 34.1+33.8 s 84.5 GB

700 1.7+1.5 s 3.5 GB 2.2+1.4 s 2.3 GB 5.1+4.7 s 10.9 GB 1,0.0+7.1 s 11.2 GB 9.7+10.9 s 20.4 GB 20.1+14.6 s 22.6 GB

800 2.2+1.9 s 4.4 GB 2.8+1.9 s 3.1 GB 6.7+6.6 s 13.5 GB 13.2+9.2 s 14.6 GB 12.5+13.8 s 25.5 GB 28.3+19.5 s 29.1 GB

900 2.7+2.5 s 5.1 GB 3.6+2.4 s 4.0 GB 8.4+8.6 s 17.2 GB 16.6+11.6 s 18.8 GB 15.7+18.0 s 32.6 GB 35.5+24.8 s 37.4 GB

23

	Abstract
	1 Introduction
	1.1 Our contributions
	1.2 Organization

	2 Preliminaries
	2.1 Graph Theory
	2.2 Centrality Measures
	2.3 Setting
	2.4 Secure Multiparty Computation (MPC)
	2.5 Graphiti

	3 Vertex-Centric Computation of Centrality
	3.1 Multilayer Truncated Katz Score pi3
	3.2 Truncated Katz Score pi2
	3.3 Reach Score pi1

	4 Secure Framework for Message-Passing
	4.1 Input Sharing Phase
	4.2 Evaluation Phase
	4.3 Output Phase

	5 Discussion of Our Improvements
	6 Experimental Evaluation
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Protocol Building Blocks
	A.1 Shuffling
	A.2 Applying Permutations
	A.3 Switching Between Permutations
	A.4 Sorting
	A.5 Clipping
	A.6 Deduplication

	B Full Protocol Details
	B.1 Vertex-Centric Approach for Realizing pi1
	B.2 Full Secure Protocols for pi3, pi2, pi1
	B.3 Communication Complexity Analysis
	B.4 Preventing Information Leakage from Input Dimensions

	C Additional Evaluation Results

