
Low-Latency Bootstrapping for CKKS using Roots of Unity

Jean-Sébastien Coron and Robin Köstler

University of Luxembourg

Abstract. We introduce a new bootstrapping equation for the CKKS homomorphic encryption
scheme of approximate numbers. The original bootstrapping approach for CKKS consists in homo-
morphically evaluating a polynomial that approximates the modular reduction modulo q. In contrast,
our new bootstrapping equation directly embeds the additive group modulo q into the complex roots
of unity, which can be evaluated natively in the CKKS scheme. Due to its reduced multiplicative
depth, our new bootstrapping equation achieves a 7x latency improvement for a single slot compared
to the original CKKS bootstrapping, though it scales less efficiently when applied to a larger number
of slots.

1 Introduction

Fully Homomorphic Encryption. Homomorphic encryption (HE) enables to perform oper-
ations on encrypted data without knowing the decryption key. Fully homomorphic encryption
(FHE) extends this capability, enabling the evaluation of arbitrary circuits on encrypted data.
FHE has a wide range of applications, including secure cloud computing, multi-party computation,
and secure machine learning.

Since Gentry’s invention of FHE in 2009 [Gen09], numerous homomorphic encryption schemes
have been developed, leading to significant improvements in FHE performance. Gentry’s key
innovation was the introduction of bootstrapping, a ciphertext refreshing procedure based on
homomorphically evaluating the decryption circuit. Building on this breakthrough, schemes such
as BGV [BGV11] and BFV [Bra12,FV12] further enhanced FHE by basing their security on the
hardness of the ring learning with errors (RLWE) problem [SSTX09,LPR10]. These schemes can
achieve high computational throughput by utilizing Single Instruction, Multiple Data (SIMD)
operations [GHS12a,SV14].

The FHEW scheme, introduced in [DM15], reduced the time for bootstrapping a single-bit
encryption to under one second, building on the approach from [AP14] and the matrix-based
scheme of [GSW13]. This was further improved in [CGGI16] with the torus-FHE (TFHE) scheme,
achieving a bootstrapping time of less than 0.1 second.

The CKKS scheme. In [CKKS17], the authors presented a construction for homomorphic
encryption supporting approximate arithmetic, based on the RLWE problem. The core idea
involves adding noise to the plaintext to ensure security, with this noise being treated as part of
the error inherent in approximate computations. Given a ciphertext ct, for a secret key sk, the
decryption equation ⟨ct, sk⟩ (mod q) outputs an approximation m+ e of the original message m,
for a small error e. The authors introduced a rescaling procedure to control the magnitude of
plaintexts, enabling the construction of a leveled homomorphic encryption scheme, where the
ciphertext modulus grows linearly with the depth of the evaluated circuit. Through rescaling, the
scheme can emulate fixed-point addition and multiplication on encrypted messages. Additionally,
they described a packing method that allows the encryption of up to N/2 complex numbers in a
single ciphertext to perform SIMD operations.

CKKS bootstrapping. In [CHK+18a], the authors introduced a novel ciphertext refreshing
procedure for CKKS, extending the leveled homomorphic encryption scheme to fully homomorphic
encryption based on Gentry’s bootstrapping technique. Specifically, the initial leveled scheme
from [CKKS17] can only evaluate circuits of a fixed depth, as each homomorphic multiplication
reduces the ciphertext modulus until it becomes too small to support further computation.

Fig. 1. Approximating modular reduction via a scaled sine function.

As illustrated in Figure 1, CKKS bootstrapping relies on approximating the modular reduction
modulo q using a scaled sine function. Since the sine function is 2π-periodic, the decryption
function can be expressed as:

[⟨ct, sk⟩]q ≈
q

2π
· sin

(
2π

q
· ⟨ct, sk⟩

)
.

which is periodic modulo q and closely approximates ⟨ct, sk⟩ near 0. Given that m ≪ q, the
polynomial approximation only has to be good for small values modulo q. The bootstrapping
procedure homomorphically evaluates this polynomial approximation, producing a refreshed
ciphertext that encrypts the same message but under a larger modulus, thereby enabling further
computation. The error resulting from bootstrapping is kept sufficiently small to preserve plaintext
precision.

The authors also demonstrated how to refresh packed ciphertexts containing n slots with
O(n) complexity. In particular, they use a linear transformation that moves the polynomial
coefficients into the plaintext slots via the coefficient-to-slot (CoeffToSlot) procedure, and reverses
the latter using the slot-to-coefficient (SlotToCoeff) operation. The complexity of these operations
was further reduced to O(log n) in [CHH18,CCS19]. We recall the original CKKS bootstrapping
procedure in more details in Appendix C, first for a single slot, and then for multiple slots, using
the CoeffToSlot and SlotToCoeff operations.

Our new bootstrapping algorithm. Our main contribution is a new bootstrapping algorithm
for CKKS. It consists in embedding the additive group Zq into the complex roots of unity, using
the homomorphism:

f : Zq −→ C, x 7−→ exp(2iπ · x/q).

Considering for simplicity an LWE ciphertext c, we can compute the decryption equation
m = ⟨s, c⟩ =

∑N−1
k=0 skck (mod q) over this multiplicative group, using sk ∈ {0, 1} as a selector:

exp(2iπ · ⟨s, c⟩/q) =
N−1∏
k=0

exp(2iπ · cksk/q) =
N−1∏
k=0

(1 + (exp(2iπ · ck/q)− 1) · sk) .

2

Moreover, considering a messagem ∈ Z such thatm = [⟨c, s⟩]q ≪ q, we can use the approximation
exp(x) ≃ 1 + x for small x, which yields:

1 +m · 2iπ
q
≃

N−1∏
k=0

(1 + (exp(2iπ · ck/q)− 1) · sk) (1)

We claim that this provides a new bootstrapping equation for CKKS, as it can be homomor-
phically evaluated to provide a refreshed ciphertext. Specifically, it suffices to encrypt each sk,
and following (1), homomorphically multiply it by exp(2iπ · ck/q)− 1. The full product is then
computed homomorphically using CKKS multiplications. Eventually, by extracting the imaginary
part and applying appropriate scaling, we obtain a new ciphertext encrypting the same m ∈ Z,
but under a larger modulus q · p than the original modulus q, enabling further computation.

This bootstrapping equation differs significantly from the original CKKS bootstrapping
algorithm, as we avoid using a polynomial approximation of the sine function. Instead, the
modular reduction modulo q is achieved by directly embedding the ciphertext coefficients ck ∈ Z
into the complex circle group, where computations are performed using CKKS’ homomorphic
operations. Notably, when bootstrapping multiple slots, the coefficient-to-slot procedure from the
CKKS bootstrapping is dispensable, as the ciphertext is already embedded within the complex
slots. However, the slot-to-coefficient (STC) operation is still needed to revert to the coefficient
representation.

Our approach shares similarities with the blind rotation algorithms used in FHEW/TFHE
bootstrapping [DM15,CGGI16], where the additive group Zq is embedded into the set Y i of
roots of unity of XN + 1, for N = k · q and Y = X2k. In both cases, the computation involves a
chain of products with factors selected homomorphically over the encrypted bits of the secret key.
However, unlike FHEW/TFHE bootstrapping which can bootstrap only a single small precision
message (from Boolean to 5-bit integers), our bootstrapping equation can bootstrap multiple
large precision messages in parallel. This is possible because CKKS allows embedding N/2 copies
of the additive group Zq into the N/2 complex slots of a single ciphertext.

The goal of this paper is therefore to explore this new bootstrapping approach, prove a
corresponding bootstrapping theorem, and introduce several optimizations that make it practical.
Finally, we present concrete parameter sets and benchmark results, comparing the performance
of our bootstrapping method with that of the original CKKS bootstrapping.

First optimization: packing the secret-key bits. We introduce a first optimization for
the homomorphic evaluation of our bootstrapping equation (1), where the N secret-key bits
si are packed into the N/2 slots of CKKS ciphertexts, requiring only two CKKS ciphertexts.
The product is then computed using a product operator (corresponding to the standard field
norm, see Sec. 3.5), reducing the number of operations from O(N) to O(logN). Additionally,
the bootstrapping key size is reduced from N ciphertexts to just two. This packing method is
particularly efficient for bootstrapping, as CKKS natively supports complex numbers in the slots,
enabling an efficient embedding of Zq into the complex roots of unity.

Second optimization: sparse block secret-key. We introduce a second optimization, where
the secret key is structured into h blocks, each of size B = N/h, with exactly one non-zero bit per
block. This technique was previously explored in the context of TFHE bootstrapping [LMSS23].
Leveraging this structure, we can rewrite the bootstrapping equation (1) using partial sums over

3

each block instead of products. For a packed ciphertext, these sums are efficiently computed using
the trace operator, while the remaining products are still handled by the product operator. To
apply the trace operator, we re-index the secret-key coordinates such that each block corresponds
to a congruence class of indices, over which the trace operator computes the sum. Since most
homomorphic multiplications are replaced by additions, this approach reduces the multiplicative
depth from log2N + 1 to log2 h+ 1. Additionally, the number of homomorphic multiplications
decreases from O(logN) to O(log h), further improving efficiency. We formally describe in Section
4.4 our bootstrapping algorithm for a single slot by combining the two previous optimizations.

Bootstrapping any number of slots. Finally, we extend our bootstrapping algorithm from a
single slot to multiple slots, leveraging the Single Instruction Multiple Data (SIMD) capabilities
of CKKS. We first generalize the approach to n slots for n ≤ B/2, where B is the block size in the
secret key. To achieve this, we treat each coefficient of the polynomial message as the decryption
of an independent LWE ciphertext. The key bits and the corresponding embeddings of the LWE
ciphertext coefficients are then packed into the N/2 slots of 2n CKKS ciphertexts. As before,
the sum is computed in two steps: first, by summing across 2n distinct ciphertexts, and then
by applying the trace operator to the result. Finally, the product is again evaluated using the
product operator. For ciphertexts with up to n ≤ N/2 slots, we apply the above bootstrapping
procedure sequentially over ciphertexts containing B/2 slots.

Asymptotically, our method has a complexity of O(n + logN) homomorphic operations,
whereas the original CKKS bootstrapping scales as O(log n+ logN). Consequently, the original
CKKS bootstrapping is more efficient for large n. However, for a small number of slots, our
approach is significantly more efficient in practice due to its lower multiplicative depth. Addition-
ally, our bootstrapping method is highly parallelizable; with n processors, it achieves the same
O(logN) complexity as the original CKKS bootstrapping.

Concrete parameters and implementation. We provide concrete parameter sets for both
the original CKKS bootstrapping and our new bootstrapping, ensuring the same level of security.
To determine secure parameters, we use the standard Lattice Estimator [APS15], taking into
account the best-known attacks, including the hybrid lattice attack that exploits the sparse
key distribution. Additionally, we derive explicit formulas for the number of homomorphic
multiplications required in both bootstrapping schemes. These formulas demonstrate that for a
small number of slots (n ≤ 16), our bootstrapping is significantly more efficient.

We also present timing results from an implementation of both bootstrapping methods. Our
implementation is written in Python using the SageMath library, which calls the C++ NTL
library for polynomial arithmetic, with only a small portion of the runtime spent in the SageMath
wrapper. Our benchmarks confirm the theoretical formulas for homomorphic operation counts.
In practice, thanks to its lower multiplicative depth, our bootstrapping achieves a 7× speedup
for a small number of slots.

Related work. A significant portion of CKKS ’ runtime is attributed to its linear transfor-
mations, specifically SlotToCoeff and CoeffToSlot, which perform homomorphic encoding and
decoding. These transformations can be executed using matrix multiplication, requiring O(n)
homomorphic operations [CHK+18a]. This was later optimized to O(log n) by employing a
homomorphic Discrete Fourier Transform (DFT) [CHH18,CCS19]. In this paper, we utilize the
O(log n) algorithm.

4

Efficient implementations of CKKS often use a residue number system (RNS), which involves
decomposing the ciphertext modulus into several smaller moduli. This allows operations to be
performed on native 64-bit word-sized integers, providing significant computational advantages.
The first RNS-CKKS scheme was introduced in [CHK+18b], achieving an order of magnitude
improvement in efficiency, by adapting the double-CRT representation in the BGV scheme
[GHS12b]. Further optimizations were described [KPP22], and the most recent advancements
were presented in [CCKK24]. Another optimization involves GPU-accelerated implementations,
as described in [SYL+23] and [JKA+21]. Additionally, the authors of [CCKS23] proposed a new
technique for performing a ciphertext multiplication that consumes fewer bits of the ciphertext
modulus. All these optimizations are fully compatible with our new bootstrapping algorithm.

The CKKS approximation of the modular reduction function, specifically the EvalMod algo-
rithm, has been optimized in [KPK+23] and [LLK+22] to consume fewer bits of the ciphertext
modulus. The approximation of the sine function has been improved in [LLL+21] and [JM22],
improving the bootstrapping precision.

In [KDE+21], the authors introduced a new bootstrapping approach for BGV, BFV and CKKS,
based on the blind rotation technique used in FHEW/TFHE bootstrapping. For CKKS, their
approach enables high-precision bootstrapping with a relatively small ring dimension of N = 213.
Since FHEW/TFHE can only bootstrap a single slot, the ciphertext is split according to the
number of slots. Then, each part is bootstrapped independently, and the results are recombined
into a single ciphertext. However, this approach requires O(N) homomorphic operations for
a single slot, which could render it impractical for CKKS. The authors do not provide timing
results for their implementation.

In [BCC+22], the authors introduced a method for achieving high-precision bootstrapping
by combining multiple low-precision bootstrapping steps. As a result, it is possible to keep
the same parameters (in particular, the same modulus size) for bootstrapping while achieving
higher precision, albeit with the trade-off of requiring more iterations. Finally, it was recently
shown that CKKS can be used in a black-box manner to perform computations on binary
data [DMPS24]. This was further improved in [BCKS24] with a CKKS bootstrapping algorithm
designed specifically for ciphertexts encoding binary data.

2 Preliminaries

Basic notations. For a real number r, we denote by ⌊r⌉ the nearest integer to r, rounding
upwards. We denote vectors in bold, and ⟨a, b⟩ denotes the scalar product of the vectors a and
b. For an integer q, we use Z ∩ (−q/2, q/2] as a representative of Zq, and use [z]q or z mod q
to denote the central reduction of the integer z modulo q into that interval. For a finite set S,
we denote by v ← S the sampling of v uniformly at random from S. By v ← D we also denote
sampling v from a distribution D. We utilize the same notations for sampling coefficients of
vectors/polynomials independently and identically from a set/distribution. For an integer κ > 0,
we let v ← χκ be sampled from the centered binomial distribution χκ. It is defined as outputting
v :=

∑κ
j=1(ai − bi), where a, b← {0, 1}κ. In this case, it holds that |v| ≤ κ. We denote by λ the

security parameter; all known attacks should take Ω(2λ) bit operations.

Cyclotomic rings. For a power-of-two N , we set R := Z[X]/(XN +1) as the 2N -th cyclotomic
ring. We also write Rq := Zq[X]/(XN + 1) for the residue ring of R modulo q. As previously,
coefficients of elements of Rq are represented as integers in (−q/2, q/2]. We represent an arbitrary

5

element of the cyclotomic ring S = R[X]/(XN + 1) as a polynomial a(X) =
∑N−1

j=0 ajX
j of

degree strictly less than N , and identify it with its coefficient vector (a0, . . . , aN−1) ∈ RN . We
consider the norms ∥a∥∞ = maxi∈{0,...,N−1} |ai| and ∥a∥1 =

∑N−1
i=0 |ai| on the coefficient vector

of a.

3 The CKKS scheme

3.1 Basic RLWE-based encryption

In [CKKS17], the authors described a fully homomorphic encryption scheme designed for ap-
proximate arithmetic. Given ciphertexts encrypting m1 and m2, the scheme enables secure
computations of encrypted approximate values of m1 + m2 and m1 · m2, with a predefined
level of precision. We recall the concrete instantiation based on the BGV scheme [BGV11],
using the multiplication from [GHS12b] based on raising the ciphertext modulus. Note that the
CKKS scheme differs from BGV in the sense that the plaintext space is the polynomial ring
R = Z[X]/(XN + 1), instead of Zt[X]/(XN + 1) for a small t.

Let q be an integer and let s be a secret key with small components in R. A CKKS ciphertext
ct = (c0, c1) for a plaintext m ∈ R satisfies:

⟨ct, sk⟩ = c0 + c1 · s = m+ e (mod (q,XN + 1))

for some small error e ∈ R. This implies that during decryption, the message m is not recovered
exactly, as the low-order bits of the coefficients of m(X) are masked by the error e(X). Such
an error e is inserted to guarantee the security of the hardness assumption of the ring learning
with error (RLWE) problem. During homomorphic operations, the coefficients of the plaintext
polynomial m(X) should remain sufficiently small compared to the ciphertext modulus q.

Definition 1 (RLWE). For an integer q, a ring dimension N and distributions Ds and De, the
decisional RLWE problem consists, for s ← Ds, in distinguishing polynomially many samples
(a, a · s+ e) ∈ R2

q from uniform in R2
q, where a← Rq and e← De.

We now formally describe the scheme, following [CHK+18a], beginning with the construction
of a leveled homomorphic encryption scheme for approximate arithmetic. The plaintext space
is R = Z[X]/(XN + 1), while the ciphertext space is R2

q . The scheme defines various layers of

moduli, i.e. qℓ = q0 ·∆ℓ for 1 ≤ ℓ ≤ L and a base ∆. For the error sampling, for simplicity we
use the centered binomial distribution χκ with parameter κ, rather than a discrete Gaussian
distribution. For h ∈ N, we let HW(h) be the set of ternary vectors in {0,±1}N whose Hamming
weight is exactly h. For a real 0 ≤ ρ ≤ 1, let ZO(ρ) denote the distribution that outputs a vector
in {0,±1}N , where each entry is sampled independently, with probability ρ/2 for both −1 and 1,
and probability 1− ρ for 0.

• KeyGen(1λ):

- For a base ∆, a base modulus q0 and an integer L, let qℓ = q0 ·∆ℓ for ℓ = 1, . . . , L. Given
the security parameter λ, choose a power-of-two N , an integer P , and an integer κ > 0
for an RLWE problem that achieves a security level of λ-bits, for a modulus P · qL and a
ring degree N .

- Sample s ← HW(h), a ← RqL and e ← χκ. Set the secret key as sk ← (1, s) and the
public key as pk← (b, a) ∈ R2

qL
where b = −as+ e (mod qL).

6

• KSGensk(s
′): for s′ ∈ R, sample a ← RP ·qL and e′ ← χκ. Return the switching key as

swk← (b′, a′) ∈ RP ·qL where b′ = −a′s+ e′ + Ps′ (mod P · qL).
- Set the evaluation key as evk← KSGensk(s

2).

• Encpk(m): for m ∈ R, sample v ← ZO(1/2) and e0, e1 ← χκ. Output ct = v ·pk+(m+ e0, e1)
(mod qL).

• Decsk(ct): for ct = (c0, c1) ∈ R2
qℓ
, output m = c0 + c1 · s (mod qℓ).

We now define the homomorphic operations Add(ct1, ct2) and Multevk(ct1, ct2). We also define
the simpler external multiplication ExtMult, which multiplies a ciphertext by a plaintext v ∈ R.

• Add(ct1, ct2): for ct1, ct2 ∈ R2
qℓ
, output ctadd = ct1 + ct2 (mod qℓ).

• Multevk(ct1, ct2): for ct1 = (b1, a1), ct2 = (b2, a2) ∈ R2
qℓ
, let (d0, d1, d2) = (b1b2, a1b2 +

a2b1, a1a2) (mod qℓ). Output ctmult ← (d0, d1) + ⌊P−1 · d2 · evk⌉ (mod qℓ).

• ExtMult(ct, v): for ct = (b, a) ∈ R2
qℓ

and v ∈ R, output ctextmult = (b · v, a · v) (mod qℓ).

The rescaling procedure below transforms an encryption of m modulo q into an encryption of
m/∆, while also scaling its inherent noise e to around e/∆. As will be seen in Section 3.2, the
composition of homomorphic multiplication and rescaling enables to mimic fixed-point arithmetic,
while managing the error growth.

• RSℓ→ℓ′(ct): for a ciphertext ct ∈ R2
qℓ

at level ℓ, output ct′ =
⌊
∆ℓ′−ℓ · ct

⌉
(mod qℓ′). We omit

the subscript ℓ→ ℓ′ when ℓ′ = ℓ− 1.

In [CKKS17], the authors state some lemmata for estimating the noise, although their noise
estimation is only heuristic. Our lemmata below are with rigorous proofs, though with larger
upper bounds; we refer to Appendix A for the proofs.

Lemma 1. Let ct← Encpk(m) be an encryption of m ∈ R. Then ⟨ct, sk⟩ = m+ eclean (mod qL)
for some clean encryption error eclean ∈ R satisfying ∥eclean∥∞ ≤ Bclean := 3Nκ.

Lemma 2. Let ct′ ← RSℓ→ℓ′(ct) for a ciphertext ct ∈ R2
qℓ
. Then ⟨ct′, sk⟩ = ⌊⟨ct, sk⟩ · qℓ′/qℓ⌉+ers

(mod qℓ′) for some rescaling error ers ∈ R satisfying ∥ers∥∞ ≤ Brs := 2N .

Lemma 3. Let ctmult ← Multevk(ct1, ct2) for two ciphertexts ct1, ct2 ∈ R2
qℓ
. If P ≥ Nqℓκ, then

⟨ctmult, sk⟩ = ⟨ct1, sk⟩ ·⟨ct2, sk⟩+emult (mod qℓ) for some emult satisfying ∥emult∥∞ ≤ Bmult := 2N .

Writing ⟨ct1, sk⟩ = m1 + e1 (mod qℓ) and ⟨ct2, sk⟩ = m2 + e2 (mod qℓ), the previous lemma
shows that only the high-order bits of m1m2 can be recovered, as we get ⟨ctmult, sk⟩ = (m1 +
e1) · (m2 + e2) + emult = m1m2 + e⋆ (mod qℓ), and the low-order bits of m1m2 are masked by
the quite large error e⋆ = e1m2 + e2m1 + e1e2 + emult. Applying Lemma 2, one can then perform
a modulus switching to rescale the product, which then gives:

⟨ct′mult, sk⟩ = ⌊m1m2/∆⌉+ e′mult (mod qℓ−1).

Therefore, one obtains an encryption of the scaled product ⌊m1m2/∆⌉.

7

3.2 Encrypting single real numbers

For simplicity, we first recall the CKKS encryption of single real numbers. We then recall the
encryption of N/2 complex numbers in parallel in Section 3.3.

Specifically, the CKKS scheme can encrypt a real value x ∈ R with a specified precision,
by rounding to an integer after scaling. This enables to define (approximate) homomorphic
operations directly over R. More precisely, to encode a real value x ∈ R with precision ∆, we use

Ecd(x) = ⌊x ·∆⌉. (2)

Therefore, to encrypt x ∈ R, we first encode x into m = Ecd(x), and then encrypt m into
ct = Encpk(m), which gives ⟨ct, sk⟩ = Ecd(x) + e (mod qL). Since Ecd(x) ∈ Z, we are using only
a single coefficient of the plaintext space R = Z[X]/(XN + 1). Formally, we define the following
encryption procedure for real numbers, and the homomorphic multiplication of two ciphertexts
of real numbers.

• EncRpk(x): for x ∈ R, return ct← Encpk(Ecd(x)).

• MultRevk(ct1, ct2): return RS(Multevk(ct1, ct2))

• ExtMultR(ct, v): return RS(ExtMult(ct, v))

Thanks to the rescaling by a factor ∆, given as input two ciphertexts ct1, ct2 encrypting
x1, x2 ∈ R under a modulus qℓ, we can obtain a new ciphertext ct = MultRevk(ct1, ct2) encrypting
Ecd(x1) · Ecd(x2)/∆ ≃ Ecd(x1 · x2), therefore an encryption of the product x1 · x2 ∈ R. However,
the new encryption is under a smaller modulus qℓ−1 = qℓ/∆. This is captured in the following
lemma; see Fig. 2 for an illustration.

Lemma 4. Let ctmultR ← MultRevk(ct1, ct2) for two ciphertexts ct1, ct2 ∈ R2
qℓ

such that ⟨cti, sk⟩ =
Ecd(xi) + ei (mod qℓ) for i = 1, 2, for xi ∈ R with |xi| ≤ ν < N , and ∥ei∥∞ ≤ E, where E2 ≤ ∆.
Then ⟨ctmult, sk⟩ = Ecd(x1 · x2) + emultR (mod qℓ−1) for some emultR satisfying ∥emultR∥∞ ≤
2νE + 8N .

e1q

Ecd(x1)

e2q

Ecd(x2)
× e⋆q

Ecd(x1) · Ecd(x2)

e′q/∆

Ecd(x1 · x2)

Fig. 2. Homomorphic multiplication of real numbers in CKKS: given two encryptions of x1, x2 ∈ R,
we obtain an encryption of x1 · x2 ∈ R, albeit for a smaller modulus q/∆.

3.3 Packing method for parallel encryption of complex numbers

In [CKKS17,CHK+18a], the authors described a packing method to encrypt multiple messages
in a single ciphertext. Through a ring isomorphism, the set S = R[X]/(XN +1) can be identified
with the complex coordinate space CN/2. This enables to encrypt N/2 complex numbers is a
single ciphertext, and perform parallel operations in a SIMD manner.

8

More precisely, the authors considered a variant of the Fourier transform

DFT : R[X]/(XN + 1)→ CN/2, p 7→
(
p
(
ζ5

0
)
, p
(
ζ5

1
)
, . . . , p

(
ζ5

N/2−1
))

where ζ is a primitive (2N)-th root of unity. We denote by iDFT : CN/2 → S the inverse
transform. The DFT function is a ring isomorphism from the ring S (the coefficients space) to
the ring of complex vectors in CN/2 (the slots space). Its purpose is therefore to map polynomial
addition/multiplication in the ring S to component-wise addition/multiplication in CN/2.

Encoding. For RLWE-type schemes, we must encode our N/2 complex values into polynomials
with integer coefficients in the plaintext ring R = Z[X]/(XN + 1), instead of R[X]/(XN + 1).
Therefore, the encoding map Ecd : CN/2 → R uses an integer approximation of iDFT, with a
scaling factor ∆:

∀z ∈ CN/2 : Ecd(z) = ⌊∆ · iDFT(z)⌉

and the corresponding decoding map Dcd : R → CN/2 is defined as ∀p ∈ R : Dcd(p) = 1
∆ ·DFT(p).

We denote by × the scaled multiplication over R, i.e. p1 × p2 = ⌊p1 · p2/∆⌉ for any p1, p2 ∈ R.
We then have the approximate homomorphic properties:

Ecd(z1 + z2) ≃ Ecd(z1) + Ecd(z2)

Ecd(z1 ⊙ z2) ≃ Ecd(z1)× Ecd(z2)

where the vectors z1 and z2 are added and multiplied component-wise. Therefore, to perform
parallel addition/multiplication on N/2 complex values, we can first encode them as a polynomial
p(X) using Ecd, and then perform ring addition / multiplication in R. Eventually, we can decode
the polynomial into N/2 complex values using Dcd; see Fig. 3 for an illustration.

z = (z1, · · · , zN/2) m(X) = Ecd(z) c = Enc(m)

Component-wise Polynomial Homomorphic
add. and mult. add. and mult. add. and mult.

Slots space = CN/2 Coefficient space = R Ciphertext space = Rq

Encode Encrypt

Fig. 3. Packing method for CKKS.

Sparse packing. For efficiency reasons, it can be advantageous to encode fewer than N/2
components. We consider a power-of-two n dividing N/2. The sub-ring R[XN/(2n)]/(XN + 1) ≃
R[Y]/(Y 2n + 1) is isomorphic to Cn. In particular, if p ∈ R[XN/(2n)]/(XN + 1), then DFT(p)
contains N/(2n) repetitions of the same n components. We can therefore extend the encoding
map Ecd to encode vectors of n complex values instead of N/2, as follows:

∀z ∈ Cn : Ecd(z) = ⌊∆ · iDFT(z, , z︸ ︷︷ ︸
N/(2n) rep.

)⌉ ∈ Z[XN/(2n)]/(XN + 1). (3)

In particular, for n = 1, we have Ecd(z) = ⌊∆ · Re(z)⌉ + XN/2 · ⌊∆ · Im(z)⌉ for any z ∈ C.
Therefore, the encoding map Ecd defined in (3) is a generalization of the encoding function
defined in (2) for encoding x ∈ R.

9

Message packing into a ciphertext. Thanks to this generalized encoding function for any
z ∈ Cn, we can extend the encryption procedure EncRpk(x) from Section 3.2 to any z ∈ Cn, for
any power-of-two 1 ≤ n ≤ N/2:

• EncRpk(z): for z ∈ Cn, return ct← Encpk(Ecd(z)).

To perform a homomorphic multiplication, we employ the same rescaled multiplication
procedure MultRevk(ct1, ct2) as in the previous section. Given ciphertexts ct1 ← EncRpk(z1) and
ct2 ← EncRpk(z2), when applying Add(ct1, ct2) and MultRevk(ct1, ct2), the vectors z1, z2 ∈ Cn

are homomorphically added and multiplied component-wise; see Figure 3 for an illustration.

3.4 Rotation and conjugation of the slots

As demonstrated in [CKKS17], rotation and conjugation of slots can be performed homomorphi-
cally by applying an automorphism Ψ to both components of a ciphertext. However, Ψ is also
applied to the secret key, meaning the new ciphertext only decrypts correctly with the modified
key s′ = Ψ(s). Therefore, a key-switching procedure is required to revert to the original key s.

Key switching. The goal of key switching is to convert a ciphertext under a secret key
sk′ = (1, s′) into a ciphertext for the same message with respect to another secret key sk = (1, s).
The switching key is generated by the procedure swk← KSGensk(s

′). Formally, the key switching
proceeds as follows:

• KSswk(ct): for ct = (c0, c1), return ct′ ← (c0, 0) + ⌊P−1 · c1 · swk⌉ (mod qℓ).

The noise growth from key switching is captured in the following lemma.

Lemma 5 (Key switching). Let ct = (c0, c1) ∈ R2
qℓ

be a ciphertext with respect to a secret
key sk′ = (1, s′) and let swk ← KSGensk(s

′). If P ≥ Nqℓκ, then ct′ ← KSswk(ct) satisfies
⟨ct′, sk⟩ = ⟨ct, sk′⟩+ eks (mod qℓ) for some eks ∈ R with ∥eks∥∞ ≤ 2N.

Rotation. For S = R[X]/(XN + 1), the automorphism Ψr : S → S, given m(X) ∈ S, returns
m(X5r) (mod XN + 1). It induces a rotation by r positions to the left on the vector of encoded
values. Namely for any m(X) ∈ S, letting DFT(m) = (zj)0≤j<N/2, we get:

DFT(Ψr(m)(X)) = (Ψr(m)(ζ5
j
))0≤j<N/2 = (m((ζ5

j
)5

r
))0≤j<N/2

= (m(ζ5
r+j

))0≤j<N/2 = (zr+j mod N/2)0≤j<N/2.

Conjugation. We also consider the automorphism conj : S → S defined as conj(m)(X) =
m(X−1) (mod XN + 1). It enables to compute the conjugate of the values encoded into a
polynomial, namely, we have that DFT(conj(m)) = DFT(m). We also denote by Im2 : S → S the
operator

Im2(m) = −XN/2 · (m− conj(m)).

Since −∆ · XN/2 = Ecd(1/i), given any z ∈ CN/2, we have DFT(Im2(iDFT(z))) = 2 · Im(z).
Therefore, the Im2 operator enables to extract the imaginary part of the slots, up to a factor 2.
Similarly, we define the Re2 operator with Re2(m) = conj(m)+m, so that DFT(Re2(iDFT(z))) =
2 · Re(z).

10

Homomorphic rotation/conjugation of the slots. We summarize below the procedures for
homomorphic rotation/conjugation of the slots for a ciphertext ct = (c0, c1):

• GenRotsk(r): generate the rotation key rkr ← KSGensk(Ψr(s)).

• Rot(ct, r): return KSrkr((Ψr(c0), Ψr(c1))).

• GenConjsk: generate the conjugation key ck← KSGensk(conj(s)).

• Conj(ct): return KSck((conj(c0), conj(c1))).

• Im2(ct): return the ciphertext ExtMult(Conj(ct)− ct, XN/2).

3.5 The trace and product operators

Summing the slots. We recall how to homomorphically compute partial or full summation of
the slots. The sum of all slots could be simply obtained by repeatedly rotating the slots by one
position and then accumulating the result by summing. However, this would require N/2 − 1
rotations for N/2 slots, which would be impractical. In the following, we recall the technique
from [CHK+18a, Alg. 2], which uses only O(logN) homomorphic operations. Summing all slots
is algebraically known as the field trace operator [CDKS20].

Formally, for a power-of-two integer a dividing N/2, using the Ψr automorphism from the
previous section, we define the operator TrN/2→a as

TrN/2→a = (id+ Ψa) ◦ (id+ Ψ2a) ◦ (id+ Ψ4a) ◦ · · · ◦ (id+ ΨN/4).

We show in Appendix B.1 that the TrN/2→a operator computes partial sums of the slots sharing
the same index modulo a:

TrN/2→a(iDFT(z0, . . . , zN/2−1)) = iDFT(t, , t︸ ︷︷ ︸
N/(2a) rep.

)

for t = (tk)0≤k<a, with tk = zk + zk+a + · · ·+ zk+(N/(2a)−1)·a. Therefore, the TrN/2→a operator
outputs an encoding of the a slots t0, . . . , ta−1, which are repeated N/(2a) times to get N/2 slots.
The TrN/2→a operator can be homomorphically evaluated, requiring log2(N/(2a)) automorphisms
and key switchings, while consuming no multiplicative levels; see Appendix B.1.

Multiplying the slots. Similarly to the trace operator, we can define the product operator to
compute the partial or full product of all slots, simply by replacing sums by scaled products in
the definition. For powers-of-two b < a ≤ N/2, we define the Pra→b operator as

Pra→b := (id× Ψb) ◦ (id× Ψ2b) ◦ (id× Ψ4b) ◦ · · · ◦ (id× Ψa/2)

where as in Section 3.3 we denote by × the scaled multiplication over R, with p1×p2 = ⌊p1 ·p2/∆⌉
for any p1, p2 ∈ R. Letting z ∈ Ca, the Pra→b operator computes partial products of the slots
sharing the same index modulo b:

Pra→b(Ecd(z)) ≃ Ecd(t)

where t = (tk)0≤k<b, with tk = zk · zk+b · · · zk+(a/b−1)·b for 0 ≤ k < b. The Pra→b operator
can be homomorphically evaluated using log2(a/b) automorphisms and multiplications; thus, it
consumes log2(a/b) levels; see Appendix B.2. Note that the product operator Pra→b corresponds
to the standard field norm of Q(ζa) over Q(ζb), where ζk denotes a primitive k-th root of unity.

11

3.6 From slots back to polynomial coefficients

Our bootstrapping algorithm for multiple slots requires putting the slots back to the coefficients
of a polynomial; this is the SlotToCoeff operation. The original CKKS bootstrapping requires
both CoeffToSlot and SlotToCoeff operations [CHK+18a], while our technique only requires
SlotToCoeff, so we only describe the latter; the two operations are the inverse of each other.

Formally, SlotToCoeffn takes as input a polynomial v(X) encoding n slots t = (t0, . . . , tn−1) ∈
Rn:

v(X) = Ecd(t0, . . . , tn−1) ∈ Z[XN/(2n)]/(XN + 1)

and outputs a polynomial m(X) ∈ Z[XN/n]/(XN + 1) whose n coefficients are the tj ’s, scaled by
a factor ∆ ∈ Z:

m(X) = SlotToCoeffn(v) =
n−1∑
j=0

⌊∆ · tj⌉ ·Xj·N/n (4)

Since SlotToCoeff is a linear map, it can be homomorphically evaluated as a matrix-vector
multiplication, requiring O(n) homomorphic operations [CHK+18a]. However, the homomorphic
Discrete Fourier Transform (DFT), which is the primary computation within SlotToCoeff, can
be performed more efficiently with only O(log n) homomorphic operations [CHH18,CCS19]. In
this case, the polynomial coefficients in (4) are recovered in a bit-reversed order. In this paper,
we employ the fast DFT-based algorithm [CHH18,CCS19] with complexity O(log n). To further
reduce its multiplicative depth from log2 n, we use a radix-4 variant, resulting in a lower depth
of ℓCtS = ℓStC = ⌊(log2 n)/2⌋+ 1. We refer to Appendix D for a detailed description.

4 New bootstrapping equation for CKKS: single slot

We now introduce our new bootstrapping algorithm, which is quite different from the original
CKKS bootstrapping recalled in the previous section. For simplicity, we first consider a CKKS
ciphertext ct encrypting a single slot, that is ⟨ct, sk⟩ = m+ e (mod q) for m ∈ Z and e ∈ R. We
will describe the bootstrapping of n ≥ 2 slots in parallel in Section 5.

An RLWE-format ciphertext can easily be viewed as (multiple) LWE-format ciphertexts.
Therefore, we first convert ct = (b, a) into an LWE ciphertext c ∈ ZN

q for the same m ∈ Z, i.e. we
set c = (a0 + b0,−aN−1,−aN−2, . . . ,−a1) and s = (s0, . . . , sN−1), assuming that s0 = 1. LWE
decryption now comprises computing the dot product ⟨c, s⟩ = m+ e0 (mod q) for e0 ∈ Z. Unlike
the original CKKS bootstrapping, which uses sparse ternary secrets, we first assume that s is a
random binary vector, not necessarily constrained to a low Hamming weight.

4.1 Our new bootstrapping equation

Our new bootstrapping equation consists in embedding the additive group Zq into the multi-
plicative circle group of complex numbers, using the homomorphism:

f : Zq → C, x 7−→ exp(2iπ · x/q).

We can therefore compute the decryption equation m = ⟨s, c⟩ =
∑N−1

k=0 skck (mod q) over the
multiplicative circle group in C:

exp(2iπ ·m/q) =

N−1∏
k=0

exp(2iπ · cksk/q)

12

Moreover, since sk ∈ {0, 1} works as a selector, we can write:

exp(2iπ ·m/q) =

N−1∏
k=0

(1 + (exp(2iπ · ck/q)− 1) · sk) . (5)

By isolating the imaginary part and assuming m≪ q, we obtain:

2π ·m
q
≃ sin

(
2π ·m

q

)
= Im

(
N−1∏
k=0

(1 + (exp(2iπ · ck/q)− 1) · sk)

)
. (6)

We want to obtain an encryption of m ∈ Z, which corresponds to an encoding of m/∆ ∈ R.
Therefore, we scale the above equation by a factor q/(2π∆), and we use the approximation:

q

2π∆
· sin

(
2πm

q

)
=

q

2π∆
·
(
2πm

q
+O

(
m3

q3

))
=

m

∆
+O

(
m3

q2∆

)
. (7)

Eventually, we obtain from (6):

m

∆
≃ q

2π∆
· Im

(
N−1∏
k=0

(1 + (exp(2iπ · ck/q)− 1) · sk)

)
. (8)

From (7), the above approximation requires m = O(q2/3), the same condition as in the original
CKKS bootstrapping.

Bootstrapping. We claim that (8) provides a new bootstrapping equation for CKKS, as it can
be homomorphically evaluated to provide a new ciphertext for the same m ∈ Z, but under a
larger modulus q · p than the original modulus q. For this, we stress that in the above equation,
we consider all variables over R, and since exp(2iπ · ck/q) ∈ C, we treat its real and imaginary
part separately. Each complex multiplication decomposes into 4 multiplications and 2 additions
over R. Since a complex addition also decomposes into two real additions, we can work entirely
over R. Similarly, we view the final scaling as a multiplication by q/(2π∆) ∈ R, and the final
output m/∆ ∈ R.

Correspondingly, for the homomorphic evaluation of (8), we consider all ciphertexts as
encryptions of real numbers, using the encryption function EncR(x) for x ∈ R introduced in
Section 3.2. Consequently, all homomorphic operations are performed on encryptions of reals.
Eventually, since m/∆ ∈ R is encoded as m = Ecd(m/∆) ∈ Z, the encryption of m/∆ will
correspond to an encryption of the original plaintext m ∈ Z, but under a larger modulus q · p.

Therefore, for bootstrapping, we assume that we are given encryptions Sk ← EncRpk(sk)
of each bit sk ∈ {0, 1} of the secret key s. Here, although sk ∈ {0, 1}, we again view sk ∈ R.
Then, by homomorphic multiplications (using ExtMultR) and homomorphic additions, we obtain
encryptions of 1 + (exp(2iπ · ck/q)− 1) · sk for each 0 ≤ k < N , while still encrypting the
real/imaginary parts separately. The product of the N terms can then be homomorphically
computed with a tree of multiplicative depth log2N , such that, according to (5), we obtain an
encryption of exp(2iπ ·m/q). Eventually, we only keep the encryption of its imaginary part and
scale by q/(2π∆). According to (8), this provides an encryption of the real m/∆, or equivalently,
an encryption of the integer m = Ecd(m/∆).

13

The circuit corresponding to (8) has a total multiplicative depth of ℓ = log2(N) + 2. Thus,
starting with a modulus Q = q · p · ∆ℓ for the encryptions Sk, after ℓ rescalings, we end up
with an encryption of m under the modulus q · p > q. This achieves bootstrapping since there
remains a level for a single homomorphic multiplication. For this last level, we can use a smaller
scaling factor p ≃ q2/3, because the plaintext message m must be encoded under the condition
m = O(q2/3) for (7). On the other hand, we must use a scaling factor ∆ = O(q) for the main
bootstrapping evaluation. We prove the following bootstrapping theorem summarizing the above
in Appendix E.

Theorem 1 (Bootstrapping). Given a ciphertext ct such that ∥[⟨ct, sk⟩]q∥∞ < q2/3 and
⟨ct, sk⟩ = m + e (mod q) for m ∈ Z and e ∈ R, the above evaluation procedure with ∆ ≥
max(4N2κq, (20N3κ)2) outputs a new ciphertext ct′ such that ⟨ct′, sk⟩ = m+e(0)+ebt (mod p·q),
where e(0) is the constant coefficient of e, and ∥ebt∥ ≤ Bbt with Bbt := 10N .

As opposed to the original CKKS bootstrapping, our new bootstrapping equation (8) does
not require a small Hamming weight secret key; however, we describe an optimization based on
such a secret key in Section 4.3.

4.2 First optimization: packing the secret-key bits

For a ring degree N , the above bootstrapping algorithm requires O(N) homomorphic operations,
which would be impractical. Recall that the CKKS scheme provides a packing method where
N/2 plaintext slots can be packed into a single ciphertext. These N/2 slots can then be added
and multiplied independently, by performing homomorphic operations on ciphertexts (see Fig.
3 in Section 3.3). Therefore, the first natural optimization consists of packing the N secret
key bits sk from (8) into the N/2 slots of two CKKS ciphertexts, instead of encrypting each
bit separately. Similarly, we pack the terms exp(2iπ · ck/q)− 1 into two polynomial encodings.
The products (exp(2iπ · ck/q)− 1) · sk are then computed independently and in parallel in the
slots, thus requiring only two homomorphic external multiplications (ExtMultR). Moreover, the
bootstrapping key size is also reduced from N to only 2 ciphertexts.

Another advantage of the packing method is that CKKS supports complex numbers in the
slots natively, so we do not need to encrypt the real/imaginary parts separately anymore. To
compute the product in (8), we can apply the PrN/2→1 operator from Section 3.5 homomorphically
to compute the product of the N/2 slots in each ciphertext. As a consequence, in the entire
procedure, the multiplicative depth remains ℓ = log2(N)+2, but now the number of homomorphic
multiplications is reduced to O(logN) instead O(N). We will describe this optimization more
formally in Section 4.4, when combined with the following second optimization.

4.3 Second optimization: using the trace operator

In order to be competitive with the original CKKS bootstrapping, we describe a second opti-
mization that decreases the multiplicative depth from O(logN) to O(log h), with h ≪ N , by
replacing most homomorphic multiplications by additions, which further improves efficiency.

For this, we still consider a binary secret key s but with a small Hamming weight h, where h
is a power-of-two, moreover with a special block structure (as in e.g. [LMSS23]). We assume that
the coefficient vector s ∈ {0, 1}N can be split into h blocks, each of size B = N/h, where each
block contains a single 1. Formally, we write s = (sb·B+j)0≤b<h, 0≤j<B where in the b-th block,
sb·B+j = 0 for all j ∈ {0, . . . , B − 1} \ {j⋆b }, and sb·B+j⋆b

= 1 for some 0 ≤ j⋆b < B.

14

As previously, we consider an LWE ciphertext c ∈ ZN
q derived from the original RLWE

ciphertext, with decryption equation:

m ≃ ⟨s, c⟩ =
N−1∑
k=0

skck =

h−1∑
b=0

B−1∑
j=0

sb·B+j · cb·B+j (mod q)

and as previously we embed the above equation into the multiplicative circle group of complex
numbers:

exp(2iπ · ⟨s, c⟩/q) =
h−1∏
b=0

B−1∏
j=0

exp(2iπ · sb·B+j · cb·B+j/q).

Since within a given block there is only a single sb·B+j equal to 1 and the others are zero, we can
replace the products within a block by a sum:

exp(2iπ · ⟨s, c⟩/q) =
h−1∏
b=0

B−1∑
j=0

sb·B+j · exp(2iπ · cb·B+j/q).

As previously, this enables to derive the following bootstrapping equation:

m

∆
≃ q

2π∆
· Im

h−1∏
b=0

B−1∑
j=0

sb·B+j · exp(2iπ · cb·B+j/q)

We can remove the last multiplication by q/(2π∆) by scaling by a factor δ ∈ R such that
δh = q/(2π∆). This yields our final bootstrapping equation in the single slot case:

m

∆
≃ Im

h−1∏
b=0

B−1∑
j=0

sb·B+j · exp(2iπ · cb·B+j/q) · δ

 . (9)

The advantage of the above equation is that it has a smaller multiplicative depth than (8), since
we are computing the product of h factors only instead of N . More precisely, the multiplicative
depth is now ℓ = log2(h) + 1 instead of ℓ = log2(N) + 2. By lowering the multiplicative depth,
we can decrease the size of the largest modulus Q = q · p ·∆ℓ. After bootstrapping, the refreshed
ciphertext is encrypted under the larger modulus p · q rather than the initial modulus q, enabling
a single additional homomorphic multiplication between two bootstrapped ciphertexts. Similar
to the original CKKS bootstrapping, further homomorphic operations after bootstrapping can
be supported by choosing a larger Q.

4.4 Our bootstrapping algorithm for a single component

We now formally describe our bootstrapping algorithm for a single slot by combining the two
previous optimizations. We consider the sparse block secret key s as in Section 4.3, split into
h blocks, each of size B = N/h. In order to combine the two optimizations, we must rewrite
equation (9) to support packed slots. Recall that we must encode N secret-key bits, but a
polynomial over the plaintext space Z[X]/(XN + 1) can only encode N/2 slots, so we need two
polynomial encodings. To speed up computation, we split each block of the secret key in two
halves. The first halves of each block will be placed in the first polynomial encoding, and the
second halves in the second encoding; see Figure 4 for an illustration.

15

sb·B+j

sb·B+j+B
2

×

×

exp(2iπcb·B+j/q) · δ

exp(2iπcb·B+j+B
2
/q) · δ

=

=

· · ·

· · ·
+

· · ·

exp(2iπ · cb·B+j⋆b
/q)

0 ≤ j < B/2

TrN/2→h

Fig. 4. Illustration of the computation within the half-blocks of size B/2. After the application
of the TrN/2→h operator, all B/2 slots contain the same value exp(2iπ · cb·B+j⋆b

), where j⋆b is the
index for which sb·B+j⋆b

= 1. Note that each polynomial encoding contains h such half-blocks, for
a total of h ·B/2 = N/2 slots.

After the external multiplications by the encoding of the exp(2iπ · cb·B+j/q) values, we
compute the sum in (9) by first adding the two polynomial encodings, while the rest of the sum’s
evaluation within each block is handled by the TrN/2→h operator applied to a single encoding.

However, we must be careful with the indexing of the slots when applying the TrN/2→h

operator. As illustrated in Appendix B.1, TrN/2→h computes the partial sums of slots sharing the
same index modulo h. This implies that we cannot encode the elements of the blocks contiguously
in the slots, but only separated modulo h. Therefore, we utilize a “reversed” indexing, in which
we put the j-th element of the b-th block at index j · h + b for all 0 ≤ j < B/2 for the first
half, and similarly at index (j − B/2) · h + b for all B/2 ≤ j < B for the second half. More
precisely, we denote by s̃0ι and s̃1ι the corresponding slots, for 0 ≤ ι < N/2. According to the above
indexing, we let s̃0j·h+b = sb·B+j for 0 ≤ j < B/2 (first block halves), and s̃1(j−B/2)·h+b = sb·B+j

for B/2 < j < B (second block halves), for all 0 ≤ b < h. In total, the N secret-key bits sk are
encoded into the two polynomials:

S0(X) = Ecd((s̃0ι)0≤ι<N/2), S1(X) = Ecd((s̃1ι)0≤ι<N/2).

We encode the ciphertext’s components following the same indexing. More precisely, we define
the slots (e0ι)0≤ι<N/2 and (e1ι)0≤ι<N/2, with e0j·h+b = exp(2iπ · cb·B+j/q) · δ for 0 ≤ j < B/2, and

e1(j−B/2)·h+b = exp(2iπ · cb·B+j/q) · δ for B/2 ≤ j < B, for all 0 ≤ b < h. This yields the following
polynomial encodings:

E0(X) = Ecd((e0ι)0≤ι<N/2), E1(X) = Ecd((e1ι)0≤ι<N/2).

Under this indexing, the bootstrapping equation (9) can be rewritten as:

m

∆
≃ Im

h−1∏
b=0

B/2−1∑
j=0

(
s̃0j·h+b · e0j·h+b + s̃1j·h+b · e1j·h+b

) . (10)

With this new indexing now compatible with the TrN/2→h operator, we can perform the same
operation homomorphically on polynomials. Specifically, we use TrN/2→h to compute the sums

16

over each half-block and Prh→1 to calculate the product of the h factors, after which the N/2
slots contain the same value. Finally, we extract the imaginary part using the Im2 operator (see
Section 3.4). Eventually, from (10), we obtain m/∆ in all N/2 slots, which corresponds to an
encoding of m = Ecd(m/∆) ∈ Z. In total, we arrive at our bootstrapping equation for polynomial
encodings:

m ≃ Im2
(
Prh→1

(
TrN/2→h (S0(X)× E0(X) + S1(X)× E1(X))

))
. (11)

Note that we must use a scaling factor δ ∈ R such that δh = q/(4π∆) instead of δh = q/(2π∆),
because of the factor 2 in the Im2 operator.

Bootstrapping. As before, we claim that Equation (11) provides a decryption equation that is
compatible with bootstrapping. Namely, all the previous polynomial operations can be applied
homomorphically to ciphertexts.

More precisely, let cs denote the bootstrapping key consisting of CKKS encryptions cs0, cs1
of S0(X) and S1(X), modulo the largest modulus Q. The products Si(X) × Ei(X) are then
performed homomorphically on ciphertexts using ExtMultR(csi, Ei), including rescaling. Similarly,
the operators TrN/2→h, Prh→1 and Im2 are applied homomorphically on ciphertexts, as explained
in sections 3.4 and 3.5. Eventually, we obtain an encryption of m/∆ ∈ R over all slots, and
equivalently an encryption of m = Ecd(m/∆) ∈ Z. This corresponds to a new CKKS ciphertext
ct′ such that ⟨ct′, sk⟩ = m+ e (mod pq), for a new modulus pq > q. For this, it suffices to set the
largest modulus Q := q · p ·∆ℓ, where ℓ = log2(h) + 1 is the multiplicative depth. We provide a
pseudo-code description of this bootstrapping algorithm in Appendix F.

The main advantage of the packing approach is that the total number of homomorphic
operations is now O(logN) instead of O(N), which makes our bootstrapping equation practi-
cal. We will consider the bootstrapping of n ≥ 2 slots in parallel in Section 5, and concrete
implementation results in Section 6.

4.5 Security analysis of block binary secret key

Our scheme uses a block binary secret key, divided into h blocks, each of size B = N/h, with
exactly one ’1’ in each block. This distribution differs slightly from that used in the original
CKKS bootstrapping, which employs a ternary secret key with Hamming weight h, but without
the regular block structure. To ensure security against the best-known attacks, we provide a
specific security analysis for this modified distribution and present corresponding parameter sets
in Section 6. We follow the analysis from [LMSS23], which uses the same distribution in the
context of TFHE.

We first consider the hybrid dual attack on LWE with a sparse secret [Alb17]. This attack,
which combines a dual lattice attack with exhaustive search, is used in the Lattice Estimator
[APS15] to estimate the security of LWE. In the first phase, the secret key s is partitioned as
s = (s0, s1). Using lattice reduction, the LWE problem is reduced to a single LWE instance with
a smaller dimension. The secret key s0 can then be recovered using combinatorial techniques
such as exhaustive search or a meet-in-the-middle algorithm.

For the second, combinatorial phase, the authors of [LMSS23] considered two possible
approaches. The original method involves guessing the positions of the zeros in the secret key.
However, for the block binary distribution, the lattice dimension can be reduced by the block size
B = N/h by guessing the position of a ’1’ among B possible cases. While the latter approach
seemed potentially more efficient, the authors provide an analysis showing that the original

17

approach of guessing the zero positions is, in fact, more efficient. Consequently, the block binary
structure seems to offer no advantage for an attacker. Thus, the hybrid dual attack, as modeled
in the Lattice Estimator, remains the best attack. Since, for convenience, we assume s0 = 1, we
must adjust the ring dimension to N ′ = N · (1− 1/h) and the Hamming weight to h′ = h− 1 in
the estimator.

The authors of [LMSS23] also considered the recently improved meet-in-the-middle attack
algorithm from May [May21]. It is based on recursively splitting the secret vector s, which
requires at least S0.25 time, where S is the size of the key space. In our case, the search space
is S = (N/h)h−1. Therefore, the complexity of May’s attack is at least S = (N/h)0.25(h−1). As
in [CHK+18a], we will take h = 64 in the concrete parameters. In that case, for N ≥ 215, the
complexity is at least 2141 operations.

Finally, we observe that the complexity of our bootstrapping algorithm grows only as O(log h)
homomorphic multiplications, making it relatively insensitive to increases in h. Even if the attacks
exploiting the sparsity of the secret key were to improve significantly, increasing h would not
result in a substantial performance penalty. For example, based on the operation count in Section
6, augmenting h from 64 to 128 would only increase the number of homomorphic operations
in our bootstrapping by about 7%. Conversely, the complexity of May’s attack would escalate
from 2141 to 2254. This originates from the double-exponential gap between the complexity of
our bootstrapping and that of May’s attack.

We conclude that, as in the TFHE case, the use of block binary secrets in CKKS does not
affect the hardness of RLWE in the usual parameter setup.

5 Bootstrapping for multiple slots

In the previous section, we have described our new CKKS bootstrapping algorithm for a single
slot only. That is, we considered a CKKS ciphertext ct such that ⟨ct, sk⟩ = m+ e (mod q), for a
message m ∈ Z. In this section, we generalize our bootstrapping equation (9) to handle multiple
slots in parallel.

5.1 Bootstrapping equation for multiple slots

For a power-of two n ≥ 2, we consider the plaintext space Pn = Z[XN/n]/(XN+1) ≃ Z[Y]/(Y n+1)
for Y = XN/n. Therefore, the plaintext space contains only n coefficients. We consider a ciphertext
ct = (c0, c1) encrypting a message m ∈ Pn.

Our first step is to extract the n corresponding LWE ciphertexts. For this, we consider the
decryption equation ⟨ct, sk⟩ = c0 + s · c1 = m+ e (mod q), where

m(X) =

n−1∑
a=0

maX
aN/n ∈ Pn,

and e ∈ Z[X]/(XN+1). For ease of notation, in the decryption equation, we include the coefficients
of XaN/n in the error e(X) directly in m(X). By the linearity of polynomial multiplication, we can
rewrite the decryption equation as a vector-matrix multiplication, keeping only the coefficients in
XaN/n for 0 ≤ a < n. By setting s(X) =

∑N−1
i=0 siX

i, the decryption equation can be written as:

n−1∑
a=0

maX
aN/n + e = c0 + c1 ·

N−1∑
i=0

siX
i = c0 +

N−1∑
i=0

si · c1 ·Xi (mod q).

18

Therefore, we consider the vector c0 ∈ Zn
q of coefficients of powers of XN/n of c0(X), and the

matrix C1 ∈ ZN×n
q whose i-th row contains the n coefficients of powers of XN/n of c1(X) ·Xi, for

0 ≤ i < N . Using this notation, we arrive at the equivalent decryption equation m = c0 + s ·C1

(mod q). Assuming that s0 = 1, we can add the row vector c0 to the first row of C1 and obtain
the decryption equation for m ∈ Zn, s ∈ ZN and C ∈ ZN×n

q :

m = s ·C (mod q) (12)

We call C the decryption matrix, and by C ← DecMat(ct) we denote the above algorithm
extracting C ∈ ZN×n

q from the ciphertext ct.
As in Section 4.3, we consider a binary secret key s with a small power-of-two Hamming

weight h, such that when written as a coefficient vector s ∈ {0, 1}N , it can be separated into h
blocks, each of size B = N/h, where there is exactly a single 1 in each block. From (12), for each
component ma of m ∈ Zn, we can write ma = ⟨s,Ca⟩ (mod q) for the corresponding column
vector Ca of C. Therefore, each ma is decrypted as an independent LWE ciphertext given by
the column vector Ca. This implies that Equation (9) generalizes to the following bootstrapping
equation for each of the ma for 0 ≤ a < n:

ma

∆
≃ Im

h−1∏
b=0

B−1∑
j=0

sb·B+j · exp(2iπ · Cb·B+j,a/q) · δ

 . (13)

In the next section, we show how to perform this computation efficiently in parallel using all
available N/2 slots of polynomials in Z[X]/(XN +1), and then homomorphically over ciphertexts
to achieve bootstrapping.

5.2 Bootstrapping algorithm

Our approach for evaluating (13) homomorphically is essentially the same as in Section 4.4. The
difference is that we must compute (13) for the n components ma in parallel instead of a single
one. Since each polynomial encoding provides a maximum of N/2 slots, we only have N/(2n)
slots per component ma at our disposal in each polynomial encoding. Recall that the binary
secret key s is split into h blocks of size B = N/h, each containing a single 1. With only N/(2n)
slots at our disposal and h blocks, we will consider sub-blocks of size N/(2n)/h = B/(2n). In
other words, we split each block of B components into 2n sub-blocks with B/(2n) components
each, and we encode each of the 2n sub-blocks in a separate polynomial.

As illustrated in Figure 5, we first compute the products sb·B+j · exp(2iπ ·Cb·B+j,a/q) · δ from
(13) in parallel over each sub-block of size B/(2n), for each of the 2n sub-blocks. To compute the
sum in (13), we first compute the sum of the 2n corresponding encodings, such that we end up
with a single sub-block with B/(2n) components. Then we can apply the trace operator to finish
the computation of the sum of each block. After the application of the trace operator, each of the
B/(2n) slots contains the same value exp(2iπ · Cb·B+j⋆b ,a

/q) · δ. This computation is performed
in parallel for each of the h blocks and for each of the n components ma of the plaintext. In
total, this corresponds to h · n independent slots; therefore, we must use the TrN/2→hn operator.
Eventually we apply the Prhn→n operator to compute the final product of the h elements, for
each of the n components of the message in parallel.

As previously, we must use an indexing of the slots that is compatible with the TrN/2→hn

operator, which computes partial sums of the slots sharing the same index modulo hn (see

19

sb·B+k

...

sb·B+k+(2n−1) B
2n

×

×

exp(2iπ · Cb·B+k,a/q)

...

exp(2iπ · Cb·B+k+·,a/q)

=

=

· · ·

· · ·

+
...

+

· · ·

exp(2iπ · Cb·B+j⋆b ,a
/q)

0 ≤ k < B/(2n)

TrN/2→hn

2n

Fig. 5. Illustration of the computation within a given block. After application of the TrN/2→hn

operator, all B/(2n) slots contain the same value exp(2iπ · Cb·B+j⋆b ,a
/q), where j⋆b is the index

for which sb·B+j⋆b
= 1.

Appendix B.1 for an illustration). This implies that we must not encode the block’s elements
contiguously in the slots, but separated modulo nh. Therefore, we use a “reversed” indexing
as in Section 4.4. In this reversed indexing, the index 0 ≤ j < B in (13) is decomposed as
j = u ·B/(2n) + k for 0 ≤ u < 2n and 0 ≤ k < B/(2n). Consequently, for an index 0 ≤ u < 2n,
we consider the slots (s̃uι)0≤ι<N/2, such that for all 0 ≤ k < B/(2n), 0 ≤ b < h and 0 ≤ a < n,
we have:

s̃uk·hn+b·n+a = sb·B+u·B/(2n)+k.

We use the same reversed indexing for the ciphertext components, with the slots (euι)0≤ι<N/2,
such that for all 0 ≤ k < B/(2n), 0 ≤ b < h and 0 ≤ a < n, we have:

euk·hn+b·n+a = exp(2iπ · Cb·B+u·B/(2n)+k,a/q) · δ.

Under this new indexing, we may rewrite the bootstrapping equation (13) as:

ma

∆
≃ Im

h−1∏
b=0

B/(2n)−1∑
k=0

2n−1∑
u=0

s̃uk·hn+b·n+a · euk·hn+b·n+a

Since the indexing is now compatible with the TrN/2→hn operator, we can transfer the

above equation to polynomial notation. Namely, we consider for an index 0 ≤ u < 2n the
polynomials Su(X) = Ecd((s̃uι)0≤ι<N/2) and Eu(X) = Ecd((euι)0≤ι<N/2), and we obtain the
equivalent equation:

Ecd

((ma

∆

)
0≤a<n

)
≃ Im2

(
Prhn→n

(
TrN/2→hn

(
2n−1∑
u=0

Su(X)× Eu(X)

)))
.

Note that in the above equation, we only have the decrypted values ma/∆ in the slots, so we
need to move the ma’s to the coefficient space, using the same SlotToCoeff procedure as in the

20

original CKKS bootstrapping procedure (see Section 3.6). This eventually gives us the decrypting
equation:

n−1∑
a=0

maX
aN/n ≃ StC

(
Im2

(
Prhn→n

(
TrN/2→hn

(
2n−1∑
u=0

Su(X)× Eu(X)

))))
.

Finally, since SlotToCoeff is based on a homomorphic DFT computation to achieve O(log n)
complexity, the coefficients ma are, in fact, recovered in bit-reversed order. To recover the ma

coefficients with the normal order, we must therefore encode the slots in the polynomials Su(X)
and Eu(X) with bit-reversed order.

Bootstrapping. As previously, we claim that this equation is compatible with bootstrapping,
since it can be homomorphically evaluated over ciphertexts, such that eventually, we obtain a
refreshed ciphertext of the same plaintext m(X) =

∑n−1
a=0 maX

aN/n, but under a larger modulus
q · p.

As in the single slot case, the bootstrapping key consists of CKKS encryptions of the poly-
nomials Su(X) for 0 ≤ u < 2n; see Alg. 1 below. The products Su(X)× Eu(X) are evaluated
homomorphically on ciphertexts using the ExtMultR procedure.1 Similarly, the operators TrN/2→hn,
Prhn→1 and Im2 are applied homomorphically on ciphertexts; see Alg. 2 below.

The multiplicative depth is now ℓ = log2 h+ 1 + ℓStC, where ℓStC is the depth of SlotToCoeff
(see Appendix D). Therefore, we set the big modulus Q = ∆ℓ · q · p. The total number of
homomorphic operations is O(n+ logN).

Algorithm 1 Bootstrapping key generation, multiple slots
Input: A length N secret key s with Hamming weight h, and B = N/h
Output: A bootstrapping key cs = (csu)0≤u<2n

1: for all 0 ≤ u < 2n do
2: for all 0 ≤ k < B/(2n) and 0 ≤ b < h and 0 ≤ a < n do
3: s̃uk·hn+b·n+a = sb·B+u·B/(2n)+k

4: Su(X)← Ecd((s̃uι)0≤ι<N/2)
5: csu ← Encpk(Su(X))

6: return (csu)0≤u<2n

Algorithm 2 Bootstrapping, for at most B/2 slots

Input: A modulus q, a bootstrapping key (csu)0≤u<2n, an RLWE ciphertext ct containing n ≤ B/2 slots, where
B = N/h, and δ = (q/(4π∆))1/h

Output: A refreshed ciphertext ct′ modulo p · q.
1: C← DecMat(ct)
2: acc← (0, 0)
3: for u = 0 to 2n− 1 do
4: for all 0 ≤ k < B/(2n) and 0 ≤ b < h and 0 ≤ a < n do
5: euk·hn+b·n+a = exp(2iπ ·Cb·B+u·B/(2n)+k,a/q) · δ
6: Eu(X)← Ecd((euι)0≤ι<N/2)
7: Tu ← ExtMultR(csu, Eu)
8: acc← Add(acc, Tu)

9: return SlotToCoeff(Im2(Prhn→n(TrN/2→hn(acc))))

1 As an optimization, we may compute the rescaling operation inside the ExtMultR procedure only after computing
the sum over 0 ≤ u < 2n. This way, we only rescale once compared to 2n rescalings.

21

Bootstrapping up to N slots. The previous bootstrapping algorithm is limited to bootstrap-
ping up to n ≤ nmax = B/2 = N/(2h) components. However, it can be easily extended to support
more slots, specifically n′ ≤ N , by shifting the coefficients of the input ciphertext and applying
the previous bootstrapping procedure as a black box for each group of nmax coefficients. We refer
to Appendix G for the details. The number of homomorphic operations remains O(n+ logN)
for n slots, while the depth remains unchanged. Note that our bootstrapping method is highly
parallelizable; with n processors, it achieves the same O(logN) complexity as the original CKKS
bootstrapping.

6 Implementation and performance comparison

In this section, we implement both the original CKKS bootstrapping and our new bootstrapping,
and we compare the performances of the two algorithms.

6.1 Fixing the parameters

We use the standard Lattice Estimator [APS15] to fix the parameters for security against the best
known attacks, including the hybrid lattice attack taking advantage of the sparse key distribution
(see Section 4.5).

In Table 1 we summarize the maximal size of the largest modulus Q = qL in the ladder, as
a function of log2N , for λ = 100 bits of security. We account for the fact that the switching
keys evk, rkr, and ck are all encrypted modulo P ·Q, with P = Q. Consequently, the effective
largest modulus is Q2. For both bootstrapping algorithms and as in [CHK+18a], we take a fixed
Hamming weight h = 64. Moreover, for both bootstrapping, we leave a single multiplicative
level after bootstrapping, but this can be easily adjusted as needed. More precisely, we start
with a ciphertext modulo the smallest modulus q, and after bootstrapping we obtain a refreshed
ciphertext modulo p · q.

log2 N 12 13 14 15 16 17

Maximal log2 Q 60 122 247 501 1012 2045

Table 1. Maximal modulus size log2Q, as a function of log2N , for λ = 100 bits of security. The
effective modulus is Q2.

CKKS bootstrapping parameters. To fix the parameters for the original CKKS bootstrapping,
we follow a similar approach as in [CHK+18a]. For a bit size nq = log2 q, since we must have
∥m∥∞ ≤ q2/3, we use np = ⌊nq · 2/3⌉ bits of precision for the coefficients of m, and we let p = 2np .
We use q as the lowest modulus and Q = q · p ·∆ℓ as the largest modulus, where ℓ = d+ r+2ℓStC
represents the bootstrapping depth. For CoeffToSlot and SlotToCoeff, we use a homomorphic
DFT evaluation with radix r = 22, which has depth ℓCtS = ℓStC = 1 + ⌊(log2 n)/2⌋, except for
n = 1 where ℓCtS = ℓStC = 0. We note that a smaller depth can be obtained by increasing the
radix, at the cost of more homomorphic operations; for example, [CHH18] uses a depth of 3 or 4.
In Appendix D.8, we analyze the impact of increasing the radix on the running time.

After bootstrapping, the refreshed ciphertext is defined modulo q · p. This means that
during bootstrapping, we use ∆ as the rescaling factor, and eventually, for a single homomorphic

22

multiplication of refreshed ciphertexts, we use a smaller p as the rescaling factor. We fix∆ = q·2d+r.
We provide the corresponding parameters in Table 2, grouped into two sets, for 11 bits and 24
bits of precision respectively, each varying over a number of slots n ≤ 210.

Parameter log2 N log2 p log2 q log2 ∆ d r n ℓ log2 Q precision

Set-I 16 18 27 43 7 9
1 16 733

11 bits
210 28 1249

Set-II 17 31 46 63 7 10
1 17 1148

24 bits
210 29 1904

Table 2. Parameter sets for the original CKKS bootstrapping, for 100 bits of security.

New bootstrapping parameters. We follow a similar approach as for the original CKKS
bootstrapping. We also use np = ⌊nq · 2/3⌉ bits of precision for the coefficients of m, and we let
p = 2np . We also use q as the lowest modulus, and Q = q · p ·∆ℓ as the largest modulus, where
ℓ = log2 h+ 1 + ℓStC is the depth of our bootstrapping. We fix ∆ = q · 210. Again, the refreshed
ciphertext after bootstrapping is defined modulo q · p. For comparability, in Table 3, we provide
two similar sets of parameters, taking again 11 bits and 24 bits of precision, for a maximum of
n = 64 slots. Note that we can bootstrap more slots as explained in Appendix G.

Parameter log2 N log2 p log2 q log2 ∆ n ℓ log2 Q precision

Set-I 15 17 25 35
1 7 287

11 bits
64 11 427

Set-II 16 31 46 56
1 7 469

24 bits
64 11 693

Table 3. Parameter sets for our new bootstrapping algorithm, for 100 bits of security.

By comparing tables 2 and 3, we observe that due to its lower multiplicative depth ℓ, our
new bootstrapping can use a smaller modulus Q and therefore a smaller ring dimension N .

6.2 Counting operations

We first theoretically compare the number of homomorphic operations required in both boot-
strappings. We obtain the following costs, expressed in the equivalent number of ciphertext
multiplications (see Appendix H for the details):

TCKKS =
1

2
log2N + d+ r +

13

4
log2 n− 2a

Tnew =
1

2
log2(N/2) + log2 h+

n+ 1

2
+

11

8
log2 n− a

where a = 7/8 for even log2 n, and a = 1 for odd log2 n. The main difference is that for n slots,
the original CKKS bootstrapping scales as O(log n), whereas our new bootstrapping scales as
O(n) only. We summarize the asymptotic complexities of CKKS bootstrapping approaches in
Table 4, expressed in the number of homomorphic operations.

In Table 5, we provide a comparison of the original CKKS bootstrapping and our new
bootstrapping for the Set-I parameters. Thanks to its smaller depth, our new bootstrapping

23

Complexity

Original CKKS bootstrapping [CHK+18a] O(logn+ logN)

Blind rotation bootstrapping [KDE+21] O(n ·N)

Our new bootstrapping O(n+ logN)

Table 4. Complexities of different bootstrapping approaches for CKKS, expressed in number of
ciphertext multiplications, for a ring dimension N and n slots.

can profit from a smaller ring dimension and a smaller modulus Q. To account for the smaller
N = 215 (instead of N = 216), we halve the number of equivalent ciphertext multiplications
for our bootstrapping when calculating the number of operations in Table 5, to reflect the
quasi-linear complexity of polynomial multiplication. Note that in Table 5, we do not account for
the smaller modulus size for Q in our bootstrapping, even though this factor will further improve
the concrete running time in our favor (see Table 6).

n 1 2 4 8 16 32 64 128 256 512 1024

CKKS 23 26 29 32 36 39 42 45 49 52 55

New bootstrapping 7 8 9 11 14 18 27 54 108 216 432

Table 5. Number of ciphertext multiplications (rounded up to the next integer) for Set-I
parameters, with N = 216, d = 7, r = 9 for CKKS, and N = 215, h = 64 and nmax = 64 for our
bootstrapping.

We observe that for few slots (n ≤ 16), our bootstrapping is significantly more efficient.
Additionally, it scales relatively well for small values of n; for instance, the number of operations
for n = 16 is only double that for n = 1. The crossover point occurs at n = 128 slots, beyond
which our approach scales linearly with n, whereas CKKS grows more slowly as O(log n).

6.3 Running time comparison

We present an implementation on an Intel Core i7 (2.6 GHz) using the parameters from Tables
2 and 3, which ensure 100-bit security. Our implementation is built on the SageMath library
in Python. While most FHE libraries are written in C++ for efficiency, we found the Sage-
Math/Python framework to be more flexible for a proof-of-concept implementation, while still
offering reasonable performance. The computational cost is primarily dominated by polynomial
multiplications, which are handled by the NTL C++ library within SageMath.

However, our implementation does not leverage RNS arithmetic, which was introduced for
CKKS in [CHK+18b] and can provide an order-of-magnitude improvement in efficiency. This
optimization is fully compatible with our new bootstrapping algorithm, and we would expect the
same performance ratio between the original CKKS bootstrapping and our new bootstrapping.

The timing results are presented in Table 6. We see that due to its smaller multiplicative
depth, our bootstrapping is between 7 and 8 times faster than CKKS bootstrapping for a single
slot (n = 1). As illustrated in Figure 6, the crossover point lies around n = 128 slots for the
Set-I parameters, and around n = 256 for the Set-II parameters, after which the original CKKS
bootstrapping scales as O(log n), whereas our new bootstrapping scales as O(n), thus it becomes
unpractical for n > 1024.

24

Number of slots 1 2 4 8 16 32 64 128 256 512 1024

Set-I
CKKS boot. 29 s 35 s 43 s 55 s 68 s 81 s 95 s 110 s 129 s 147 s 160 s

New boot. 4 s 5 s 7 s 11 s 16 s 26 s 45 s 93 s 189 s 377 s 752 s

Set-II
CKKS boot. 113 s 131 s 163 s 205 s 236 s 280 s 338 s 382 s 436 s 492 s 565 s

New boot. 14 s 17 s 22 s 31 s 43 s 68 s 113 s 225 s 452 s 909 s 1814 s

Table 6. Running time comparison of the original CKKS bootstrapping and our new bootstrap-
ping, for a variable number of slots n.

Fig. 6. Comparison of the running times of CKKS bootstrapping and our new bootstrapping, for
Set-I parameters (left), and for Set-II parameters (right).

7 Conclusion

In this paper, we presented an alternative bootstrapping algorithm for the CKKS scheme,
based on embedding the additive group modulo q into the circle group of complex numbers,
which can be evaluated natively in CKKS. Due to its lower multiplicative depth, our new
bootstrapping algorithm can operate with a smaller ring dimension N , resulting in significant
efficiency improvements for few slots n. However, unlike the original CKKS bootstrapping, which
scales as O(log n), our method scales as O(n), making it less efficient for large n.

This new bootstrapping approach could be particularly useful in scenarios where circuit
evaluation requires a dynamic number of slots, offering an alternative to scheme-switching
methods. Given that bootstrapping is a fundamental algorithm, we believe it is valuable to
explore new techniques that offer different mathematical foundations and performance trade-offs.

References

Alb17. Martin R. Albrecht. On dual lattice attacks against small-secret LWE and parameter choices in
HElib and SEAL. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology
- EUROCRYPT 2017 - 36th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Paris, France, April 30 - May 4, 2017, Proceedings, Part II, volume 10211
of Lecture Notes in Computer Science, pages 103–129, 2017.

AP14. Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with polynomial error. In Juan A. Garay
and Rosario Gennaro, editors, Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I, volume 8616 of Lecture
Notes in Computer Science, pages 297–314. Springer, 2014.

25

APS15. Martin Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of learning with errors.
Journal of Mathematical Cryptology, 9, 10 2015.

BCC+22. Youngjin Bae, Jung Hee Cheon, Wonhee Cho, Jaehyung Kim, and Taekyung Kim. META-BTS:
Bootstrapping precision beyond the limit. In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’22, page 223–234, New York, NY, USA, 2022.
Association for Computing Machinery.

BCKS24. Youngjin Bae, Jung Hee Cheon, Jaehyung Kim, and Damien Stehlé. Bootstrapping bits with CKKS.
In Marc Joye and Gregor Leander, editors, Advances in Cryptology - EUROCRYPT 2024 - 43rd
Annual International Conference on the Theory and Applications of Cryptographic Techniques, Zurich,
Switzerland, May 26-30, 2024, Proceedings, Part II, volume 14652 of Lecture Notes in Computer
Science, pages 94–123. Springer, 2024.

BGV11. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully homomorphic encryption without
bootstrapping. Electron. Colloquium Comput. Complex., page 111, 2011.

Bra12. Zvika Brakerski. Fully homomorphic encryption without modulus switching from classical GapSVP.
In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology - CRYPTO 2012 - 32nd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings, volume
7417 of Lecture Notes in Computer Science, pages 868–886. Springer, 2012.

CCKK24. Jung Hee Cheon, Hyeongmin Choe, Minsik Kang, and Jaehyung Kim. Grafting: Complementing RNS
in CKKS. Cryptology ePrint Archive, Paper 2024/1014, 2024.

CCKS23. Jung Hee Cheon, Wonhee Cho, Jaehyung Kim, and Damien Stehlé. Homomorphic multiple precision
multiplication for CKKS and reduced modulus consumption. In Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’23, page 696–710, New York, NY, USA,
2023. Association for Computing Machinery.

CCS19. Hao Chen, Ilaria Chillotti, and Yongsoo Song. Improved bootstrapping for approximate homomorphic
encryption. In Yuval Ishai and Vincent Rijmen, editors, Advances in Cryptology - EUROCRYPT 2019
- 38th Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Darmstadt, Germany, May 19-23, 2019, Proceedings, Part II, volume 11477 of Lecture Notes in
Computer Science, pages 34–54. Springer, 2019. https://eprint.iacr.org/2018/1043.pdf.

CDKS20. Hao Chen, Wei Dai, Miran Kim, and Yongsoo Song. Efficient homomorphic conversion between (ring)
LWE ciphertexts. Cryptology ePrint Archive, Paper 2020/015, 2020. https://eprint.iacr.org/

2020/015.
CGGI16. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Faster fully homomorphic

encryption: Bootstrapping in less than 0.1 seconds. In Jung Hee Cheon and Tsuyoshi Takagi, editors,
Advances in Cryptology - ASIACRYPT 2016 - 22nd International Conference on the Theory and
Application of Cryptology and Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings,
Part I, volume 10031 of Lecture Notes in Computer Science, pages 3–33, 2016.

CHH18. Jung Hee Cheon, Kyoohyung Han, and Minki Hhan. Faster homomorphic discrete fourier transforms
and improved FHE bootstrapping. Cryptology ePrint Archive, Paper 2018/1073, 2018.

CHK+18a. Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song. Bootstrapping
for approximate homomorphic encryption. In Jesper Buus Nielsen and Vincent Rijmen, editors,
Advances in Cryptology - EUROCRYPT 2018 - 37th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings,
Part I, volume 10820 of Lecture Notes in Computer Science, pages 360–384. Springer, 2018.

CHK+18b. Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song. A full RNS variant
of approximate homomorphic encryption. In Carlos Cid and Michael J. Jacobson Jr., editors, Selected
Areas in Cryptography - SAC 2018 - 25th International Conference, Calgary, AB, Canada, August
15-17, 2018, Revised Selected Papers, volume 11349 of Lecture Notes in Computer Science, pages
347–368. Springer, 2018.

CKKS17. Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. Homomorphic encryption for
arithmetic of approximate numbers. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in
Cryptology - ASIACRYPT 2017 - 23rd International Conference on the Theory and Applications of
Cryptology and Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part I,
volume 10624 of Lecture Notes in Computer Science, pages 409–437. Springer, 2017.

DM15. Léo Ducas and Daniele Micciancio. FHEW: bootstrapping homomorphic encryption in less than a
second. In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology - EUROCRYPT 2015
- 34th Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, volume 9056 of Lecture Notes in Computer
Science, pages 617–640. Springer, 2015.

26

https://eprint.iacr.org/2020/015
https://eprint.iacr.org/2020/015

DMPS24. Nir Drucker, Guy Moshkowich, Tomer Pelleg, and Hayim Shaul. BLEACH: cleaning errors in discrete
computations over CKKS. J. Cryptol., 37(1):3, 2024.

FV12. Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryption. IACR
Cryptol. ePrint Arch., page 144, 2012.

Gen09. Craig Gentry. Fully homomorphic encryption using ideal lattices. volume 9, pages 169–178, 05 2009.
GHS12a. Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption with polylog overhead,

2012.
GHS12b. Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of the AES circuit. In

Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA,
USA, August 19-23, 2012. Proceedings, volume 7417 of Lecture Notes in Computer Science, pages
850–867. Springer, 2012.

GSW13. Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In Advances in Cryptology - CRYPTO
2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings,
Part I, pages 75–92, 2013.

JKA+21. Wonkyung Jung, Sangpyo Kim, Jung Ho Ahn, Jung Cheon, and Younho Lee. Over 100x faster
bootstrapping in fully homomorphic encryption through memory-centric optimization with GPUs.
IACR Transactions on Cryptographic Hardware and Embedded Systems, 2021:114–148, 08 2021.

JM22. Charanjit S. Jutla and Nathan Manohar. Sine series approximation of the mod function for bootstrap-
ping of approximate he. In Orr Dunkelman and Stefan Dziembowski, editors, Advances in Cryptology –
EUROCRYPT 2022, pages 491–520, Cham, 2022. Springer International Publishing.

KDE+21. Andrey Kim, Maxim Deryabin, Jieun Eom, Rakyong Choi, Yongwoo Lee, Whan Ghang, and Donghoon
Yoo. General bootstrapping approach for RLWE-based homomorphic encryption. Cryptology ePrint
Archive, Paper 2021/691, 2021. https://eprint.iacr.org/2021/691.

KPK+23. Seonghak Kim, Minji Park, Jaehyung Kim, Taekyung Kim, and Chohong Min. EvalRound algorithm in
CKKS bootstrapping. In Advances in Cryptology – ASIACRYPT 2022: 28th International Conference
on the Theory and Application of Cryptology and Information Security, Taipei, Taiwan, December 5–9,
2022, Proceedings, Part II, page 161–187, Berlin, Heidelberg, 2023. Springer-Verlag.

KPP22. Andrey Kim, Antonis Papadimitriou, and Yuriy Polyakov. Approximate homomorphic encryption
with reduced approximation error. In Topics in Cryptology – CT-RSA 2022: Cryptographers’ Track
at the RSA Conference 2022, Virtual Event, March 1–2, 2022, Proceedings, page 120–144, Berlin,
Heidelberg, 2022. Springer-Verlag.

LLK+22. Yongwoo Lee, Joon-Woo Lee, Young-Sik Kim, Yongjune Kim, Jong-Seon No, and HyungChul Kang.
High-precision bootstrapping for approximate homomorphic encryption by error variance minimization.
In Orr Dunkelman and Stefan Dziembowski, editors, Advances in Cryptology – EUROCRYPT 2022,
pages 551–580, Cham, 2022. Springer International Publishing.

LLL+21. Joon-Woo Lee, Eunsang Lee, Yongwoo Lee, Young-Sik Kim, and Jong-Seon No. High-precision boot-
strapping of RNS-CKKS homomorphic encryption using optimal minimax polynomial approximation
and inverse sine function. In Advances in Cryptology – EUROCRYPT 2021: 40th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, October
17–21, 2021, Proceedings, Part I, page 618–647, Berlin, Heidelberg, 2021. Springer-Verlag.

LMSS23. Changmin Lee, Seonhong Min, Jinyeong Seo, and Yongsoo Song. Faster TFHE bootstrapping with
block binary keys. In Joseph K. Liu, Yang Xiang, Surya Nepal, and Gene Tsudik, editors, Proceedings
of the 2023 ACM Asia Conference on Computer and Communications Security, ASIA CCS 2023,
Melbourne, VIC, Australia, July 10-14, 2023, pages 2–13. ACM, 2023.

LPR10. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors
over rings. In Henri Gilbert, editor, Advances in Cryptology - EUROCRYPT 2010, 29th Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Monaco /
French Riviera, May 30 - June 3, 2010. Proceedings, volume 6110 of Lecture Notes in Computer
Science, pages 1–23. Springer, 2010.

May21. Alexander May. How to meet ternary LWE keys. In Tal Malkin and Chris Peikert, editors, Advances
in Cryptology - CRYPTO 2021 - 41st Annual International Cryptology Conference, CRYPTO 2021,
Virtual Event, August 16-20, 2021, Proceedings, Part II, volume 12826 of Lecture Notes in Computer
Science, pages 701–731. Springer, 2021.

SSTX09. Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Efficient public key encryption
based on ideal lattices. In Mitsuru Matsui, editor, Advances in Cryptology - ASIACRYPT 2009,
15th International Conference on the Theory and Application of Cryptology and Information Security,
Tokyo, Japan, December 6-10, 2009. Proceedings, volume 5912 of Lecture Notes in Computer Science,
pages 617–635. Springer, 2009.

27

https://eprint.iacr.org/2021/691

SV14. N. P. Smart and F. Vercauteren. Fully homomorphic SIMD operations. Designs, Codes and Cryptog-
raphy, 71(1):57–81, Apr 2014.

SYL+23. S. Shen, H. Yang, Y. Liu, Z. Liu, and Y. Zhao. CARM: CUDA-accelerated RNS multiplication in
word-wise homomorphic encryption schemes for internet of things. IEEE Transactions on Computers,
72(07):1999–2010, jul 2023.

A Proof of lemmas 1, 2, 3, 4 and 5

For the following proofs, we will use two facts. For real numbers r1, r2 ∈ R, it holds that
∥⌊r1 ± r2⌉∥∞ ≤ ∥⌊r1⌉ ± ⌊r2⌉∥∞ + 1. Moreover, for r ∈ R[X]/(XN + 1) and s ∈ Z[X]/(XN + 1)
with hamming weight h and ∥s∥∞ = 1, we have that ∥s · ⌊r(X)⌉ − ⌊s · r(X)⌉∥∞ ≤ h ≤ N , which
can be seen by applying the real number case to polynomial multiplication.

A.1 Proof of Lemma 1

Let pk = (−a′s + e′, a′) be the public key and ct be the ciphertext, i.e. ct = Encpk(m) =
v · pk+ (m+ e0, e1) = ((−a′s+ e′)v +m+ e0, a

′v + e1), which gives

⟨ct, sk⟩ = (−a′s+ e′)v +m+ e0 + s(a′v + e1) (mod qL)

= m+ e0 + e′v + se1 (mod qL).

Writing ⟨ct, sk⟩ = m+ eclean (mod qL), we get for a signed binary secret key:

∥eclean∥∞ ≤ ∥e0∥∞ +
∥∥e′ · v∥∥∞ + ∥s · e1∥∞ ≤ κ+N · κ · 1 +N · 1 · κ ≤ 3Nκ.

A.2 Proof of Lemma 2

Let γ = qℓ/qℓ′ . We write ct = (b, a), which gives ct′ = (⌊b/γ⌉ , ⌊a/γ⌉). We have ⟨ct, sk⟩ =
b+ s · a+ ξ · qℓ for some ξ ∈ Z, which gives:

⟨ct, sk⟩/γ = b/γ + s · a/γ + ξ · qℓ′ ,

and therefore we obtain:

⌊⟨ct, sk⟩/γ⌉ = ⌊b/γ⌉+ s · ⌊a/γ⌉ − ers (mod qℓ′)

= ⟨ct′, sk⟩ − ers (mod qℓ′),

where ers = ⌊b/γ⌉ − b/γ + s · (⌊a/γ⌉ − a/γ) + ⟨ct, sk⟩/γ − ⌊⟨ct, sk⟩/γ⌉. This implies ∥ers∥∞ ≤
∥s∥1 + 1 ≤ 2N , with ⟨ct′, sk⟩ = ⌊⟨ct, sk⟩ · qℓ′/qℓ⌉+ ers (mod qℓ′) as required.

A.3 Proof of Lemma 3

We use as an input an evaluation key evk = (b′, a′) = (−a′s+ e′ + Ps2, a′) with ∥e′∥∞ ≤ κ and
ciphertexts cti satisfying ⟨cti, sk⟩ = bi + s · ai (mod qℓ) for i ∈ {1, 2}. We have:

⟨ct1, sk⟩ · ⟨ct2, sk⟩ = b1b2 + s(b1a2 + b2a1) + s2a1a2 (mod qℓ).

Letting (d0, d1, d2) := (b1b2, b1a2 + b2a1, a1a2), we rewrite the above as:

⟨ct1, sk⟩ · ⟨ct2, sk⟩ = d0 + sd1 + s2d2 (mod qℓ).

28

We consider d2 over Z[X]/(XN + 1), with ∥d2∥∞ ≤ qℓ. By definition, ctmult = (d0, d1) +⌊
P−1d2 · evk

⌉
, where we evaluate d2 · evk modulo PqL and then divide the latter by P over

the reals. This implies, using qℓ|qL and some γ1, γ2 ∈ Z:

d2 · evk = d2 · (−a′s+ e′ + Ps2, a′) + PqL(γ1, γ2) over Z, and⌊
P−1d2 · evk

⌉
=
(⌊
P−1d2(−a′s+ e′)

⌉
+ d2s

2,
⌊
P−1a′d2

⌉)
(mod qℓ).

The above now gives:

⟨ctmult, sk⟩ = d0 + d1s+
⌊
P−1d2(−a′s+ e′)

⌉
+ d2s

2 + s
⌊
P−1a′d2

⌉
(mod qℓ)

= ⟨ct1, sk⟩ · ⟨ct2, sk⟩+ emult (mod qℓ),

and now we can estimate the size of emult as follows:

∥emult∥∞ =
∥∥⌊P−1d2(−a′s+ e′)

⌉
+ s

⌊
P−1d2a

′⌉∥∥
∞

≤
∥∥⌊P−1d2(−a′s+ e′)

⌉
+
⌊
s · P−1d2a

′⌉∥∥
∞ + ∥s∥1

≤
∥∥− ⌊sP−1d2a

′⌉+ ⌊P−1d2e
′⌉+ ⌊sP−1d2a

′⌉∥∥
∞ + ∥s∥1 + 1

≤ P−1 ·Nqℓκ+N + 2.

Finally, if P ≥ Nqℓκ, then ∥emult∥∞ ≤ 2N .

A.4 Proof of Lemma 4

Letting ctmult ← Multpk(ct1, ct2), we obtain by applying Lemma 3:

⟨ctmult, sk⟩ = ⟨ct1, sk⟩ · ⟨ct2, sk⟩+ emult (mod qℓ)

= (Ecd(x1) + e1)(Ecd(x2) + e2) + emult (mod qℓ)

= Ecd(x1)Ecd(x2) + em + emult (mod qℓ),

for em = e1e2+Ecd(x1)e2+Ecd(x2)e1, and ∥emult∥∞ ≤ 2N . Letting ctmultR ← RS(ctmult), applying
Lemma 2, and using qℓ/qℓ−1 = ∆, we get:

⟨ctmultR, sk⟩ = ⌊⟨ctmult, sk⟩/∆⌉+ ers (mod qℓ−1)

= ⌊(Ecd(x1)Ecd(x2) + em + emult)/∆⌉+ ers (mod qℓ−1),

where ∥ers∥∞ ≤ 2N . By writing Ecd(x1)Ecd(x2)/∆ = Ecd(x1x2) + eecd, we now reformulate the
above as:

⟨ctmultR, sk⟩ = Ecd(x1x2) + ⌊eecd + (em + emult)/∆⌉+ ers (mod qℓ−1)

= Ecd(x1x2) + emultR (mod qℓ−1)

Therefore, we have:

∥emultR∥∞ ≤ |eecd|+
∥em∥∞

∆
+
∥emult∥∞

∆
+ ∥ers∥∞ + 1.

29

We first bound the error eecd:

eecd =
1

∆
· (Ecd(x1)Ecd(x2)−∆ · Ecd(x1x2)) =

1

∆
· (⌊∆x1⌉ ⌊∆x2⌉ −∆ ⌊∆x1x2⌉)

=
1

∆
· ((∆x1 + ε1)(∆x2 + ε2)−∆(∆x1x2 + ε12))

=
1

∆
(∆x1ε2 +∆x2ε1 + ε1ε2 −∆ε12)

for some |ε1|, |ε2|, |ε12| ≤ 1/2. Using |xi| ≤ ν, this implies

|eecd| ≤ ν + 1.

Recall that em = e1e2 + Ecd(x1)e2 + Ecd(x2)e1. Using Ecd(xi) ∈ Z and |Ecd(xi)| = | ⌊xi ·∆⌉ | ≤
∆ν + 1, this gives:

∥em∥∞ ≤ NE2 + 2E · (∆ν + 1) ≤ 2NE2 + 2νE∆.

Now, for emultR, we have:

∥emultR∥∞ ≤ ν + 1 +
2NE2

∆
+ 2νE +

2N

∆
+ 2N + 1.

Assuming E2 ≤ ∆ and ν < N , we eventually get:

∥emultR∥∞ ≤ 2νE + 8N.

A.5 Proof of Lemma 5

The proof is similar to the proof of Lemma 3. We input the key-switching key swk = (b′, a′),
for which b′ = −a′s + e′ + Ps′ (mod PqL). Let ct = (b, a) be the input ciphertext under
sk′ = (1, s′). We consider a over Z[X]/(XN +1) with ∥a∥∞ ≤ qℓ. The output ciphertext is defined
as ct′ = (b, 0) +

⌊
P−1a · swk

⌉
(mod qℓ), where we evaluate a · swk modulo PqL and then divide

by P over the reals. As in the proof of Lemma 3, this gives:⌊
P−1a · swk

⌉
=
(⌊
P−1a(−a′s+ e′)

⌉
+ as′,

⌊
P−1a′a

⌉)
(mod qℓ).

The decryption equation of ct′ now indeed satisfies:

⟨ct′, sk⟩ = b+
⌊
P−1a(−a′s+ e′)

⌉
+ as′ + s ·

⌊
P−1a′a

⌉
(mod qℓ)

= ⟨ct, sk′⟩+
⌊
P−1a(−a′s+ e′)

⌉
+ s ·

⌊
P−1a′a

⌉
(mod qℓ)

= ⟨ct, sk′⟩+ eks (mod qℓ).

Finally, we estimate the size of eks as follows:

∥eks∥∞ =
∥∥⌊P−1a(−a′s+ e′)

⌉
+ s ·

⌊
P−1a′a

⌉∥∥
∞

≤
∥∥⌊P−1a(−a′s+ e′)

⌉
+
⌊
sP−1a′a

⌉∥∥
∞ + ∥s∥1

≤
∥∥− ⌊P−1aa′s

⌉
+
⌊
P−1ae′

⌉
+
⌊
sP−1a′a

⌉∥∥
∞ + ∥s∥1 + 1

≤ N + 2 +
∥∥P−1a · e′

∥∥
∞ ≤ N + 2 + P−1 ·Nqℓκ ≤ N + 3 ≤ 2N.

30

B The trace and product operators

B.1 The trace operator

For a power-of-two a, we define the operator TrN/2→a as:

TrN/2→a = (id+ Ψa) ◦ (id+ Ψ2a) ◦ (id+ Ψ4a) ◦ · · · ◦ (id+ ΨN/4).

One can show recursively that the TrN/2→a operator computes partial sums of the slots sharing

the same index modulo a, namely for any z ∈ CN/2:

TrN/2→a(iDFT(z0, . . . , zN/2−1)) = iDFT(t, , t︸ ︷︷ ︸
N/(2a) rep.

)

where t = (tk)0≤k<a, with tk = zk + zk+a + · · ·+ zk+(N/(2a)−1)·a. Therefore, the TrN/2→a operator
outputs an encoding of the a slots t0, . . . , ta−1, which are repeated N/(2a) times to get N/2 slots;
see Fig. 7 for an illustration.

TrN/2→a a

N/2

Fig. 7. Illustration of the TrN/2→a operator with N/2 = 32 slots and a = 4. Each slot in the
output polynomial is the sum of all input slots with the same index modulo a. Therefore, the
output polynomial contains identical blocks of a slots each.

Namely, the operator TrN/2→N/4 = id + ΨN/4 computes the sum of pairs of slots sharing
the same index modulo N/4. Assuming the property for TrN/2→a and using TrN/2→a/2 =
(id + Ψa/2) ◦ TrN/2→a, the operator TrN/2→a/2 computes the sum of slots with the same index
modulo a/2.

As described in Alg. 3 below, the TrN/2→a operator can be homomorphically evaluated,
requiring log2(N/(2a)) automorphisms and key switchings, while consuming no multiplicative
levels.

Algorithm 3 Homomorphic trace operator
Input: A ciphertext ct, a power-of-two parameter a
Output: Computes TrN/2→a(ct)

1: r = N/4
2: while r ≥ a do
3: ct = Add(ct,Rot(ct, r))
4: r = r/2

5: return ct

31

B.2 The product operator

Algorithm 4 Homomorphic product operator
Input: A ciphertext ct, two power-of-two parameters a > b
Output: Computes Pra→b(ct)

1: r = a/2
2: while r ≥ b do
3: ct = MultRevk(ct,Rot(ct, r))
4: r = r/2

5: return ct

C The original CKKS bootstrapping procedure

Bootstrapping a single coefficient. We recall the original CKKS bootstrapping approach
[CHK+18a]. For simplicity, we first consider the bootstrapping of a single coefficient, that is a
CKKS ciphertext ct encrypting a message m ∈ Z, with ⟨ct, sk⟩ = m+ e (mod q), where q is the
smallest modulus in the ladder.

We first perform a modulus lifting to a larger modulus Q, which gives:

⟨ct, sk⟩ = qI +m+ e (mod Q)

for some I ∈ Z[X]/(XN + 1). The goal of bootstrapping is to get rid of the qI term. Using the
TrN/2→1 operator and also Re2 = id + conj, we have Re2(TrN/2→1(qI +m)) = qN · Ĩ + N ·m
where Ĩ ∈ Z. Therefore, by applying these operators homomorphically, we can obtain a new
ciphertext ct′ such that

⟨ct′, sk⟩ = qN · Ĩ +Nm+ e′ (mod Q)

for a small error e′, so we must remove the term qN · Ĩ, where now Ĩ ∈ Z instead of I ∈
Z[X]/(XN + 1).

Such a ciphertext ct′ corresponds to an encoding of x = (qN · Ĩ +Nm)/∆ ∈ R. Eventually,
we want to obtain an encryption of m, which corresponds to an encoding of m/∆ ∈ R. Therefore,
we homomorphically evaluate on ct′ a polynomial P (t) such that m/∆ ≃ P (x). This yields the
condition m/∆ ≃ P ((qN · Ĩ +Nm)/∆), which must hold for any small Ĩ ∈ Z. We expect the
integer Ĩ to be small because the secret key sk has a small Hamming weight.

For P (t), we can therefore use a polynomial approximation of a periodic function with period
qN/∆, with the appropriate scaling factor:

P (t) ≃ q

2π∆
sin

(
2π∆ · t
qN

)
.

One could use a Taylor series approximation of the sine function, but the required degree would
be too large. Instead, we work over the complex numbers and first consider a degree-d Taylor
series approximation of the complex exponential function, with a scaling factor 2r as input:

Q(t) =

d∑
k=0

1

k!

(
2iπ∆ · t
qN2r

)k

≃ exp

(
2iπ∆ · t
qN2r

)
.

Due to the scaling factor 2r, much fewer coefficients are needed in the Taylor series approximation.
Note that Q(t) is a polynomial with complex coefficients, so when homomorphically evaluating

32

Q(t) on ct′, we consider the encryptions of the real part and the imaginary part separately.
Finally, we can write

P (t) =
q

2π∆
· Im

(
Q(t)2

r)
, (14)

which we evaluate homomorphically by performing r successive squarings. Eventually, we only
keep the encryption of the imaginary part and apply the scaling factor. Finally, we obtain a new
ciphertext ct′′ such that

⟨ct′′, sk⟩ ≃ Ecd(P (x)) ≃ Ecd(m/∆) (mod q′)

= m+ e′′ (mod q′)

for a small error e′′. Therefore, we have obtained a new encryption of m for the modulus q′. The
previous evaluation procedure has a multiplicative depth of ℓ = d+r+1. Therefore, starting from
the largest modulus Q = q · p ·∆ℓ, after ℓ rescalings, we end up with a modulus q′ = q · p. This
enables to perform one more homomorphic multiplication on ct′, thereby achieving bootstrapping.
We can reduce the depth to ℓ = d+ r by using a scaling factor δ in Q(t) such that δ2

r
= q/(2π∆).

Moreover, the depth required to evaluate a polynomial of degree d can be reduced to O(log d)
at the expense of additional multiplications [CKKS17]. For our parameters, where d = 7 is
relatively small, this approach slightly reduces the largest modulus Q. However, in practice, we
did not observe a significant improvement in running time.

Bootstrapping multiple components. The bootstrapping of multiple components proceeds
similarly, which we describe briefly below. For a power-of-two n with 2 ≤ n ≤ N/2, we consider
the plaintext space Z[XN/n]/(XN + 1) ≃ Z[Y]/(Y n + 1) for Y = XN/n; therefore, the plaintext
space has n non-trivial coefficients. Thus, we start from a ciphertext ct with ⟨ct, sk⟩ = m + e
(mod q) for m ∈ Z[XN/n]/(XN + 1).

1. Modulus raising: As previously, we consider the same ct modulo a larger modulus Q, which
gives ⟨ct, sk⟩ = qI + m + e (mod Q) for a small I ∈ Z[X]/(XN + 1), where m(X) =∑n−1

i=0 mi ·Xi·N/n.

2. Error packing: We homomorphically apply the TrN/2→n/2 operator, which yields a new

ciphertext ct1, for which ⟨ct1, sk⟩ = qĨ ·N/n+m·N/n+e (mod Q), where Ĩ ∈ Z[XN/n]/(XN+
1).

3. Coefficients to slots: We use the CoeffToSlot procedure recalled previously to homomorphically
compute a new ciphertext ct2, such that ⟨ct2, sk⟩ = Ecd(m0 + qĨ0, . . . ,mn−1 + qĨn−1) + e2
(mod Q2).

4. Approximate modular reduction: The polynomial approximation of the reduction function
modulo q gets independently applied on each of the n slots, which then yields a new ciphertext
ct3, for which ⟨ct3, sk⟩ = Ecd(m0, . . . ,mn−1) + e3 (mod Q3).

5. Slots to coefficients: We use the SlotToCoeff procedure recalled previously to homomorphically
compute a new ciphertext ct4, such that ⟨ct4, sk⟩ = m(X) + e4 (mod q · p), for a modulus
q · p, which is larger than the initial modulus q.

Since the complexity of CoeffToSlot and SlotToCoeff is O(log n) for n slots (using the ho-
momorphic Fast Fourier Transform; see Appendix D), the complexity of the original CKKS
bootstrapping for n slots is also O(log n).

33

D Fast DFTs and the SlotToCoeff operation

D.1 The DFT and iDFT isomorphisms

Recall that the M -th cyclotomic polynomial is defined as:

ΦM (x) =
∏

1≤j≤M

gcd(j,M)=1

(
x− e2Iπj/M

)

For a power-of-two M , we have ΦM (x) = xN + 1 where N = M/2. For a power-of-two N , the
integer 5 has order N/2 modulo 2N , and generates Z∗

2N together with the integer {−1}. Let
ζ = eIπ/N be a primitive 2N -th root of unity. Then letting ζj := ζ5

j
for 0 ≤ j < N/2, the set

{ζj , ζj : 0 ≤ j < N/2} forms the set of the primitive 2N -th roots of unity.

The variant of the Fourier transform DFTN over SN considered in [CKKS17] is defined as

DFTN : SN → CN/2

p 7→
(
p
(
ζ5

0
)
, p
(
ζ5

1
)
, . . . , p

(
ζ5

N/2−1
))

.

We denote by iDFTN : CN/2 → SN the inverse transform.

The DFTN function is a ring homomorphism from the ring SN (the coefficients space) to the
ring of complex vectors in CN/2 (the slots space). Its purpose is therefore to map polynomial
addition and multiplication in the ring SN to component-wise addition and multiplication in
CN/2.

D.2 DFT and iDFT on sub-rings

We consider any divisor n of N with 1 ≤ n ≤ N/2, and a polynomial p in the subring
R[XN/n]/(XN + 1). We can write p(X) = p̃(Y) ∈ R[Y]/(Y n + 1) where Y = XN/n. Then

DFTN (p) =
(
p(ζ5

i
)
)
0≤i<N/2

=
(
p̃(ζ5

i·N/n)
)
0≤i<N/2

Since 5 has order n/2 modulo 2n, DFTN (p) is periodic with period n/2, with N/n repetitions of
the same pattern:

DFTN (p) = (DFTn(p̃), . . . ,DFTn(p̃)︸ ︷︷ ︸
N/n rep.

).

Conversely, for any z ∈ Cn/2, we have:

iDFTN

(
(z, . . . ,z︸ ︷︷ ︸
N/n rep.

)
)
= iDFTn(z)(X

N/n)

D.3 Computing DFT and iDFT

Let m(X) =
N−1∑
i=0

miX
i ∈ R[X]/(XN + 1) and let m = (m0, . . . ,mN−1) ∈ RN be the vector

of its coefficients. Letting ζ = eIπ/N and ζj := ζ5
j
for 0 ≤ j < N/2 with ζ = eIπ/N , we have

34

z = DFTN (m) = U ·m ∈ CN/2 where

U =

1 ζ0 . . . ζN−1
0

...
...

. . .
...

1 ζN/2−1 . . . ζ
N−1
N/2−1

is the (N/2)×N Vandermonde matrix generated by {ζj : 0 ≤ j < N/2}. The decoding algorithm
DFT is therefore a linear transformation from RN to CN/2, given by the matrix U .

We consider the full Vandermonde matrix CRT generated by the set {ζj , ζj : 0 ≤ j < N/2},
which gives CRT = (U ;U), and (z, z) = (Um;Um) = CRT ·m. We can then compute m =

CRT−1(z, z), where CRT−1 = 1
NCRT

T
. This enables to write the coefficients m of the polynomial

m(X) = iDFTN (z) as the linear transformation from CN/2 to RN :

m =
1

N

(
U

T · z + UT · z
)

D.4 Fast computation of the DFT and bit-reversed order

The drawback of the technique from the previous section to compute the DFT is that its complexity
is O(N2) operations. In this section, we recall the fast computation of the DFT function, with
complexity O(N logN).

We work in the ring S = R[X]/(XN + 1). Using XN + 1 = (XN/2 − I)(XN/2 + I), we have
the isomorphism:

Φ : R[X]/(XN + 1) ≃ C[X]/(XN/2 − I)

a 7→ (a′ = a mod (XN/2 − I)).

The coefficients a′j ∈ C of a′ can be computed as a′j = aj + I · aj+N/2. Conversely, we have
aj = (a′j + ā′j)/2 and aj+N/2 = (a′j − ā′j)/(2I). Therefore, the real part of the complex coefficients
of a′ originates from the first N/2 coefficients of a ∈ S, while the imaginary part comes from the
last N/2 coefficients of a.

We now consider the ring C[X]/(XN/2 − I). We use ζ = eIπ/N . Using ζN/4 = eIπ/4 and
ζ5N/4 = e5Iπ/4 = −ζN/4, we can further split the ring as follows:

C[X]/(XN/2 − I) ≃ C[X]/(XN/4 − ζN/4·(50 mod 8))× C[X]/(XN/4 − ζN/4·(51 mod 8)).

We can generalize this approach as follows. Fix any integer k ≥ 1 such that 2k < N . For
any 0 ≤ j < 2k−1, consider the root ζN/2k·5j . It has two square roots ζN/2k+1·5j and −ζN/2k+1·5j .
Moreover, we have 52

k−1
= 1 + 2k+1 (mod 2k+2). This gives, for any 0 ≤ j < 2k−1:

5j+2k−1
= 5j · (1 + 2k+1) = 5j + 2k+1 (mod 2k+2).

This enables to write the two square roots as ζN/2k+1·5j and ζN/2k+1·5j+2k−1

, which yields the
isomorphism for 0 ≤ j < 2k−1:

C[X]/(XN/2k − ζN/2k·5j) ≃ C[X]/
(
XN/2k+1 − ζN/2k+1·5j

)
× C[X]/

(
XN/2k+1 − ζN/2k+1·5j+2k−1

)
.

35

For the corresponding isomorphism with u = ζN/2k+1·5j

Φk(a) =
(
a′ = a mod (XN/2k+1 − u), a′′ = a mod (XN/2k+1

+ u)
)
,

The coefficients of a′ and a′′ can be computed efficiently via

a′i = ai + u · ai+m

a′′i = ai − u · ai+m

for 0 ≤ i < m, for m = N/2k+1. This is known as the Cooley-Tukey butterfly.

We can then apply this technique recursively. After step k for 1 ≤ k ≤ log2(N/2), we arrive
at the isomorphism:

C[X]/(XN/2 − I) ≃
2k−1∏
i=0

C[X]/
(
XN/2k+1 − ζN/2k+1·5brk(i)

)
.

where brk(i) is the bit-reversal of the k-bit integer i. It has the properties brk(2i) = brk−1(i) and
brk(2i+ 1) = 2k−1 + brk−1(i).

Eventually, for N = 2ℓ, we obtain the evaluation of the input polynomial at the roots

ζ5
brℓ−1(i)

for 0 ≤ i < N/2, therefore in bit-reversed order. Recall that we have defined DFTN (p)

as
(
p(ζ5

i
)
)
0≤i<N/2

. Let Brk denote the function taking as input a sequence of 2k integers and

outputting it in bit-reversed order. With this notation, the above procedure yields a sequence

(vi)0≤i<N/2 =
(
p(ζ5

brℓ−1(i)

)
)
0≤i<N/2

= Brℓ−1(DFTN (p)). In total, we obtain the following fast

DFTN algorithm, from normal order (no) to bit-reversed order (bo).

Algorithm 5 Fast computation of DFTN , no→ bo

Input: A polynomial p(X) ∈ R[X]/(XN + 1), with p(X) =
∑N−1

j=0 pjX
j , ζ = exp(Iπ/N) and N = 2ℓ.

Output: A sequence (vi)0≤i<N/2 = Brℓ−1(DFTN (p)) =
(
p(ζ5

brℓ−1(i)

)
)
0≤i<N/2

.

1: (vj)0≤j<N/2 = (pj + I · pj+N/2)0≤j<N/2

2: for k = 1 to ℓ− 1 do
3: for j = 0 to 2k−1 − 1 do

4: u = ζ5
brk−1(j)·N/2k+1

5: for i = 0 to N/2k+1 − 1 do
6: a, b← vj·N/2k+i, vj·N/2k+i+N/2k+1

7: vj·N/2k+i = a+ u · b
8: vj·N/2k+i+N/2k+1 = a− u · b
9: return (vi)0≤i<N/2

We describe the corresponding iDFT algorithm, that computes the same operations in reverse
order.

36

Algorithm 6 Fast computation of iDFTN , bo→ no

Input: A sequence (vi)0≤i<N/2, ζ = exp(Iπ/N) and N = 2ℓ.
Output: A polynomial p(x) ∈ R[X]/(XN + 1), such that (vi)0≤i<N/2 = Brℓ−1(DFTN (p))

1: for k = ℓ− 1 downto 1 do
2: for j = 0 to 2k−1 − 1 do

3: u = ζ5
brk−1(j)·N/2k+1

4: for i = 0 to N/2k+1 − 1 do
5: a, b← vj·N/2k+i, vj·N/2k+i+N/2k+1

6: vj·N/2k+i = (a+ b)/2

7: vj·N/2k+i+N/2k+1 = u−1 · (a− b)/2

8: return p(x) =
N/2−1∑
i=0

Re(vi)x
i + Im(vi)x

i+N/2

In Algorithm 7, we describe the same DFTN algorithm as in Alg. 5, but with the input
coefficients of the polynomial in bit-reversed order, and the output coefficients in normal order. In
fact, we use a modified bit-reversed indexing, in which the first and second half of the coefficients
are encoded separately in bit-reversed order. This will later facilitate the homomorphic evaluation
of the algorithm.

Due to this modified bit-reversed encoding, Line 1 of Alg. 5 remains the same. At Line 3, we
can equivalently run j′ from 0 to 2k−1 − 1, and let j = brk−1(j

′). At lines 6, 7, 8, we have

brℓ−1(j ·N/2k + i) = brℓ−k−1(i) · 2k + brk−1(j)

brℓ−1(j ·N/2k + i+N/2k+1) = brℓ−k−1(i) · 2k + 2k−1 + brk−1(j)

This gives the following algorithm.

Algorithm 7 Fast computation of DFTN , bo′ → no

Input: A sequence (pi)0≤i<N/2 ∈ RN/2, ζ = exp(Iπ/N) and N = 2ℓ.

Output: A sequence (vi)0≤i<N/2 = DFT(p) =
(
p(ζ5

i

)
)
0≤i<N/2

, where p(X) =
N/2−1∑
j=0

pbrℓ−1(j)X
j +

N/2−1∑
j=0

pN/2+brℓ−1(j)X
N/2+j .

1: (vj)0≤j<N/2 = (pj + I · pj+N/2)0≤j<N/2

2: for k = 1 to ℓ− 1 do
3: for j = 0 to 2k−1 − 1 do

4: u = ζ5
j ·N/2k+1

5: for i = 0 to N/2k+1 − 1 do
6: a, b← vi·2k+j , vi·2k+2k−1+j

7: vi·2k+j = a+ u · b
8: vi·2k+2k−1+j = a− u · b
9: return (vi)0≤i<N/2

D.5 Definition of the SlotToCoeff function

For convenience, we define the SlotToCoeffN operation over the cyclotomic ring SN , but the
procedure will indeed be the same over the integer ring R = Z[X]/(XN + 1). The SlotToCoeffN

function takes as input a polynomial v(X) encoding N/2 slots t = (t0, . . . , tN/2−1) ∈ RN/2, that

is v(X) = iDFTN (t). It outputs a polynomial m(X) ∈ R[X2]/(XN + 1), whose N/2 coefficients

37

are the tj ’s:

m(X) = SlotToCoeffN (v) =

N/2−1∑
j=0

tj ·X2j .

We can therefore write m(X) = m̃(X2) for m̃(Y) =
∑N/2−1

j=0 tj ·Y j , and we let α = DFTN/2(m̃) ∈
CN/4. This implies DFTN (m) = (α,α) ∈ CN/2.

We generalize the DFT function to take as input the coefficient vector of a polynomial, instead
of the polynomial itself, with the same output. Therefore, since α = DFTN/2(m̃) and by definition

m̃(Y) =
∑n−1

j=0 tj · Y j , we can write α = DFTN/2(t). In total, we can summarize the above in a
commutative diagram:

Coefficient space Slot space

v(X) t

m(X) (α,α)

DFTN

SlotToCoeff DFTN/2

DFTN

From the above commutative diagram, the goal is therefore to compute the function RN/2 → CN/2,
t→ (DFTN/2(t),DFTN/2(t)) over the slot space, homomorphically over the coefficient space.

D.6 The SlotToCoeff algorithm

In fact, we cannot compute α = DFTN/2(t) directly with a fast O(logN) algorithm. Either the
input or the output must be indexed in bit-reversed order. We will use the function DFTN/2,bo′→no

computed by Alg. 7, whose input is bit-reversed and whose output is in normal order, which gives
DFTN/2,bo′→no(t

′) = DFTN/2(t) where t′ = Br′(t). We therefore have the updated commutative
diagram:

Coefficient space Slot space

v(X) Br′(t)

m(X) (α,α)

DFTN

SlotToCoeff DFT′
N

DFTN

where we define the function DFT′
N (t) = (DFTN/2,bo′→no(t),DFTN/2,bo′→no(t)). The goal is

therefore to evaluate the function DFT′
N (t′) homomorphically over the coefficient space.

Algorithm 8 Fast computation of DFT′
N

Input: A sequence (pi)0≤i<N/2 ∈ RN/2, ζ = exp(Iπ/N) and N = 2ℓ.
Output: A sequence (vi)0≤i<N/2 = DFT′(p)

1: (vj)0≤j<N/2 = (w,w), where w = (pj + I · pj+N/4)0≤j<N/4

2: for k = 1 to ℓ− 2 do
3: for j = 0 to 2k−1 − 1 do

4: u = ζ5
j ·N/2k+1

5: for i = 0 to N/2k+1 − 1 do
6: a, b← vi·2k+j , vi·2k+2k−1+j

7: vi·2k+j = a+ u · b
8: vi·2k+2k−1+j = a− u · b
9: return (vi)0≤i<N/2

38

To perform the homomorphic evaluation of the previous algorithm, we first rewrite the
operations in vector form. For a vector v = (vi)0≤i<N/2, we write

Rotr(r) = (vr+j mod N/2)0≤j<N/2 = (vr, . . . , vN/2−1, v0, . . . , vr−1)

the rotation of v by r positions to the left. For a vector a, we denote by an the repetition n
times of a.

For the first line, we can write:

v = p⊙ ((1)N/4, (I)N/4) + RotN/4(p)⊙ ((I)N/4, (1)N/4)

We can rewrite the first butterfly equation as:

vi·2k+j ← vi·2k+j + ζ5
j ·N/2k+1 · (Rot2k−1(v))i·2k+j

Similarly, we can rewrite the second butterfly equation as:

vi·2k+2k−1+j ← (Rot−2k−1(v))i·2k+2k−1+j − ζ5
j ·N/2k+1 · vi·2k+2k−1+j

We can therefore write:

v ← v ⊙ ω0 + Rot2k−1(v)⊙ ω1 + Rot−2k−1(v)⊙ ω2

where

ω0 =

(
(1)2

k−1
,
(
−ζ5j ·N/2k+1

)
0≤j<2k−1

)N/2k+1

ω1 =

((
ζ5

j ·N/2k+1
)
0≤j<2k−1

, (0)2
k−1

)N/2k+1

ω2 =
(
(0)2

k−1
, (1)2

k−1
)N/2k+1

Finally, we can now define the SlotToCoeff algorithm, which is a homomorphic evaluation of
the previous algorithm (Alg. 8).

Algorithm 9 SlotToCoeff

Input: A polynomial v = iDFTN (Br′(t)) for t ∈ RN/2, ζ = exp(Iπ/N) and N = 2ℓ.

Output: A polynomial m(X) = SlotToCoeffN (v) ≃
N/2−1∑
j=0

tj ·X2j

1: v ← v × Ecd((1)N/4, (I)N/4)) + ΨN/4(v)× Ecd((I)N/4, (1)N/4)
2: for k = 1 to ℓ− 2 do

3: w0 =

(
(1)2

k−1

,
(
−ζ5

j ·N/2k+1
)
0≤j<2k−1

)
∈ C2k

4: W0 = Ecd(w0)

5: w1 =

((
ζ5

j ·N/2k+1
)
0≤j<2k−1

, (0)2
k−1

)
∈ C2k

6: W1 = Ecd(w1)

7: w2 =
(
(0)2

k−1

, (1)2
k−1

)
∈ C2k

8: W2 = Ecd(w2)
9: v ← v ×W0 + Ψ2k−1(v)×W1 + Ψ−2k−1(v)×W2

10: return v

The above SlotToCoeff algorithm is essentially the same as in [CHH18], although in the
latter it is described via a matrix approach. It has multiplicative depth log2(N/2), and requires
2 log2(N/2)− 1 homomorphic rotations and 3 log2(N/2)− 1 external multiplications. Note that
the polynomials W0, W1, and W2 are independent of the input and can thus be precomputed.

39

D.7 SlotToCoeff for n slots

We have the updated commutative diagram:

Coefficient space Coefficient space Slot space

Z[XN/(2n)]/(XN + 1) Z[Y]/(Y 2n + 1) Cn

v(X) ṽ(Y) Br′(t)

m(X) m̃(Y) (α,α)

SlotToCoeffN,n

DFT2n

SlotToCoeff2n DFT′
2n

DFT2n

Algorithm 10 SlotToCoeffN,n

Input: A polynomial v = iDFTN (Br′(t)N/(2n)) for t ∈ Rn, ζ = exp(Iπ/(2n)) and n = 2ℓ.

Output: A polynomial m(X) = SlotToCoeffN,n(v) ≃
n−1∑
j=0

tj ·Xj·N/n

1: v ← v × Ecd((1)n/2, (I)n/2)) + Ψn/2(v)× Ecd((I)n/2, (1)n/2)
2: for k = 1 to ℓ− 1 do

3: w0 =

(
(1)2

k−1

,
(
−ζ5

j ·n/2k
)
0≤j<2k−1

)
∈ C2k

4: W0 = Ecd(w0)

5: w1 =

((
ζ5

j ·n/2k
)
0≤j<2k−1

, (0)2
k−1

)
∈ C2k

6: W1 = Ecd(w1)

7: w2 =
(
(0)2

k−1

, (1)2
k−1

)
∈ C2k

8: W2 = Ecd(w2)
9: v ← v ×W0 + Ψ2k−1(v)×W1 + Ψ−2k−1(v)×W2

10: return v

D.8 Radix implementation

As in [CHH18], we can reduce the multiplicative depth by using radices. For a power-of-two radix
r, [CHH18] shows that the homomorphic linear transform requires roughly 2r logr n homomorphic
rotations and 3r logr n external multiplications. The advantage of the radix-based approach is
that it yields a smaller multiplicative depth of around logr n compared to the initial depth of
log2 n. However, since the complexity increases as the radix does, the radix variant can be seen
as a trade-off, which becomes disadvantageous for a too large r. As also described in [CHH18],
without affecting the depth, the number of homomorphic rotations can be even further reduced
to O(

√
r logr n) by using a baby-step giant-step approach.

In practice, the authors of [CHH18] suggest to use r = 25 for a full slots implementation of
CKKS, i.e. with common parameters n = N/2 and N = 215 or N = 216. They show that the
running times for radices ranging from 21 to 24 are quite similar. However, for few slots n, we
can use a smaller radix since a radix r is only of avail if r ≤

√
n. For our implementation, we

chose to use a radix r = 22, which yields a depth of 1 + ⌊(log2 n)/2⌋.

Practical experiments. Table 7 presents a running time comparison of our new bootstrapping
for different radix values with n = 64 slots. While increasing the radix reduces the size of the
largest modulus Q, the optimal radix value for n = 64 is found to be r = 4.

40

Parameter r ℓ log2 Q time

Set-I

2 13 497 47 s

4 11 427 45 s

8 10 392 55 s

Table 7. Running time of our new bootstrapping for Set-I parameters and n = 64, for various
radix values r.

E Proof of Theorem 1

We start with fresh encryptions of the secret-key bits sk. By Lemma 1, their initial noise size
is bounded by E = 3Nκ. By Lemma 4, since we perform external products with encodings of
real values of absolute value less than ν = 1, the size of the noise of each product is at most
2νE + 8N ≤ 14Nκ.

For the product tree, we must consider the error obtained when computing the product of the
encryptions of two complex values, whose real and imaginary part are encrypted separately. Given
the plaintexts z1 = x1 + i · y1 and z2 = x2 + i · y2, we have z1z2 = x1x2 − y1y2 + i · (x1y2 + x2y1).
Therefore, for x = x1x2 − y1y2, we must compute the homomorphic difference:

ctx ← MultRevk(ctx1 , ctx2)−MultRevk(cty1 , cty2),

and similarly for cty for y = x1y2 + x2y1. Since all plaintext values x1, y1, x2, y2 are bounded by
1 in absolute value, the errors in MultR(ctx1 , ctx2) and MultR(cty1 , cty2) are upper bounded by
2E + 8N , where E is an upper bound of the errors in ctx1 , ctx2 , cty1 and cty2 . Therefore, the
error magnitudes of ctx and cty are both upper-bounded by 4E + 16N .

We now consider the product tree of depth ℓ = log2N . For 0 ≤ i ≤ ℓ, we can upper-bound
the noise of the current ciphertext at level i by uiNκ, where u0 = 14, and the recursive relation
ui+1 = 4ui + 16 holds. One can show that ui ≤ 20 · 22i − 6 by a recursive approach. For i = ℓ,
the error size after all multiplications is thus upper-bounded by 20 · 22ℓNκ = 20N3κ. We must
therefore assume that ∆ ≥ (20N3κ)2 since we require ∆ ≥ E2 in each multiplication.

After the final scaling by q/(2π∆), and by applying Lemma 4 again, the noise size becomes
20N3κ · q/(2π∆) + 8N . Therefore, for ∆ ≥ 4N3κq, the size of the noise is at most 9N . This
implies that by writing m = ⟨ct, sk⟩(0) = ⟨s, c⟩ ∈ Z, our final ciphertext ct′ satisfies:

⟨ct′, sk⟩ = Ecd(F (m)) + e′ (mod p · q),

for some e′ with ∥e′∥∞ ≤ 9N and

F (m) =
q

2π∆
sin

(
2iπm

q

)
.

Given the condition |m| < q2/3, we obtain by bounding the residual term in the Taylor expansion:∣∣∣F (m)− m

∆

∣∣∣ ≤ q

2π∆
· 1
3!
·
(
2π|m|

q

)3

≤ 7|m|3

q2∆
≤ 7

∆
.

This implies |Ecd(F (m))−m| ≤ ∆ · |F (m)−m/∆|+ 1 ≤ 8. We can eventually write:

⟨ct′, sk⟩ = ⟨ct, sk⟩(0) + ebt (mod p · q),

where ∥ebt∥∞ ≤ 10N as claimed.

41

F Algorithms for the single slot bootstrapping

Algorithm 11 Bootstrapping key generation, single slot
Input: A length N secret key s with Hamming weight h and B = N/h
Output: A bootstrapping key cs = (cs0, cs1)

1: for all 0 ≤ j < B/2 and 0 ≤ b < h do
2: s̃0j·h+b = sb·B+j

3: s̃1j·h+b = sb·B+B/2+j

4: S0(X), S1(X)←− Ecd((s̃0ι)0≤ι<N/2),Ecd((s̃
1
ι)0≤ι<N/2)

5: return cs = (Encpk(S0(X)),Encpk(S1(X)))

Algorithm 12 Bootstrapping, single slot

Input: A modulus q, a bootstrapping key cs, an RLWE ciphertext ct = (b, a), and δ = (q/(4π∆))1/h

Output: A refreshed ciphertext ct′

1: c = (a0 + b0,−aN−1,−aN−2, . . . ,−a1)
2: for all 0 ≤ j < B/2 and 0 ≤ b < h do
3: e0j·h+b = exp(2iπ · cb·B+j/q) · δ
4: e1j·h+b = exp(2iπ · cb·B+B/2+j/q) · δ
5: E0, E1 ←− Ecd((eiι)0≤ι<N/2),Ecd((e

1
ι)0≤ι<N/2)

6: T0, T1 ←− ExtMultR(cs0, E0),ExtMultR(cs1, E1)
7: return ct′ = Im2(Prh→1(TrN/2→h(T0 + T1)))

G Bootstrapping algorithm for more than B/2 slots

The bootstrapping algorithm from Section 5.2 is limited to bootstrapping up to n ≤ nmax = B/2 =
N/(2h) components. However, it can be easily extended to support more slots, specifically n′ ≤ N ,
by shifting the coefficients of the input ciphertext and applying the previous bootstrapping
procedure as a black box for each group of nmax coefficients.

More precisely, the previous bootstrapping algorithm (Alg. 2) inputs a ciphertext ct for
the plaintext polynomial m(X) =

∑N−1
i=0 mi · Xi, and outputs a refreshed ciphertext for the

polynomial m′(X) =
∑n−1

i=0 mi·N/n ·Xi·N/n. In other words, only the n coefficients mi of m(X)
such that i ≡ 0 (mod N/n) are kept and bootstrapped, while the others are lost, because of the
initial C ← DecMat(ct) procedure which only considers the coefficients of Xi·N/n in m(X).

To bootstrap n′ > n coefficients, we can therefore proceed by repeatedly shifting the coefficients
of the input plaintext (homomorphically on the input ciphertext), by a shifting polynomial
X−j·N/n′

. We obtain a bootstrapped ciphertext, which we shift back by Xj·N/n′
. We then

compute the sum for all 0 ≤ j < n′/n of all such ciphertexts. At the end, we obtain a refreshed
ciphertext for all the n′ components. We describe the concrete algorithm below. The number of
homomorphic operations becomes O(n′ + (n′/n) · logN), where n = nmax = B/2 and n′ ≤ N/2,
which gives n′/n ≤ h. Assuming h = O(1), the complexity remains O(n′ + logN), while the
depth remains unchanged.

42

Algorithm 13 Bootstrapping, more than B/2 slots

Input: A modulus q, a bootstrapping key (CSu)0≤u<2n, an RLWE ciphertext ct = (b, a) containing n′ ≥ n slots
Output: A refreshed ciphertext ct′

1: acc← (0, 0)
2: for j = 0 to n′/n− 1 do

3: cts ← ExtMult(ct, X−j·N/n′
)

4: ct′s ← Bootstrap(q, cs, cts)

5: acc← Add(acc,ExtMult(ct′s, X
j·N/n′

))

6: return acc

H Number of operations

For simplicity, we consider only the operations involving polynomial multiplications, since
they dominate the asymptotic running time. A ciphertext multiplication requires 6 polynomial
multiplications, including 2 multiplications modulo Q2 instead of modulo Q, which roughly take
twice in running time; therefore, an equivalent of 8 polynomial multiplications. An external
product requires 2 multiplications only. A key switching requires 2 multiplications modulo Q2,
so an equivalent of 4 polynomial multiplications. We summarize the relative costs in Table 8.

Operation MultR ExtMultR KS Rot Im2

Relative cost 1 1
4

1
2

1
2

1
2

Table 8. Relative cost of each operation, compared to a ciphertext multiplication MultRevk.

Using a radix-4 implementation, the CoeffToSlot and SlotToCoeff operations both require
(7 log2 n)/2 − 2 external multiplications (ExtMultR) for even log2 n, and (7 log2 n)/2 − 3/2 for
odd log2 n. They also both require 2 log2 n− 1 rotations (Rot). Therefore, the total complexity
relative to a ciphertext multiplication is 15(log2 n)/8 − a, where a = 7/8 for even log2 n, and
a = 1 for odd log2 n.

CKKS bootstrapping. As recalled in Section 1, the original CKKS bootstrapping comprises the
following operation. The error packing applies the TrN/2→n/2 operator (for n > 2) and therefore
requires log2(N/n) rotations; this is also true for n = 1. The polynomial evaluation requires d+ r
ciphertext multiplications. Including CoeffToSlot and SlotToCoeff, the total complexity of the
CKKS bootstrapping in terms of ciphertext multiplications is therefore, for n ≥ 2:

TCKKS =
1

2
· log2(N/n) + d+ r + 15 · (log2 n)/4− 2a

=
1

2
log2N + d+ r +

13

4
log2 n− 2a.

For n = 1, we have TCKKS = (log2N)/2 + d+ r.

Our new bootstrapping. Our new bootstrapping performs 2n external multiplications. The
TrN/2→hn operator requires log2(N/(2nh)) rotations, and the Prhn→n operator requires log2 h
rotations and ciphertext multiplications. The Im2 operator executes a single rotation. Therefore,

43

the total complexity including SlotToCoeff is:

Tnew =
2n

4
+

1

2
log2(N/(2nh)) +

1

2
log2 h+ log2 h+

1

2
+ 15 · (log2 n)/8− a

=
1

2
log2(N/2) + log2 h+

n+ 1

2
+

11

8
log2 n− a.

44

	Low-Latency Bootstrapping for CKKS using Roots of Unity

