
ADC-BE: Optimizing Worst-Case Bandwidth in
Broadcast Encryption with Boolean Functions

Yadi Zhong

Auburn University, Auburn AL 36849, USA
yadi@auburn.edu

Abstract. Recently, Dupin and Abelard proposed a broadcast encryption scheme
which outperforms the Complete Subtree-based and Subset Difference broadcast
encryption in terms of encryption cost and bandwidth requirement. However, Dupin
and Abelard acknowledge that the worst-case bound for bandwidth requirement
of Complete Subtree approach can be reached in their scheme as well. In this
paper, we answer the call to further reduce this bandwidth bottleneck. We first
provide concrete analysis to show how this worst-case upper-bound is reached from
concrete Boolean functions. Then we present two improved broadcast encryption
schemes to significantly reduce this worst-case bandwidth consumption for further
optimization of Dupin and Abelard’s technique. Our proposed approach ADC-BE,
composed of two algorithms, AD-BE and AC-BE, can significantly optimize this
worst-case complexity from n/2 down to 1 for a system of n users. This is efficient
especially for large number of users in the system. Our proposed schemes combines
the algebraic normal form, disjunctive normal form, and conjunctive normal form
to optimize a Boolean function to its minimized representation. In addition, our
approaches can be made secure against quantum adversaries and are therefore post-
quantum, where both algorithms AD-BE and AC-BE require minimal assumptions
based on existence of one-way function.

1 Introduction

Fiat and Naor [FN94] first introduced the concept of broadcast encryption in their seminal
work of 1993. A broadcaster encrypts a message for a set of users to decrypt it, called
authorized users, but revoked users should obtain no information about message m. It
has potentials in applications such as satellite TV services, where different services are
provided to various user groups due to their subscriptions and validity period across the
time domain. These user groups varies as time progresses, i.e., cancellation or change
of service. The revoked user list is non-static, but is dynamically updated with recently
added and/or removed customers. Broadcast encryption is a special case from cipher-
text policy attribute-based encryption (CP-ABE), where predicate is the authorized user
list. Over the year, additional properties for broadcast encryption has been considered.
Traitor-tracing [NNL01, CFN94, GQWW19] allows authorities to trace to the source (or
users) of any compromised cryptographic keys for copyright protections against any po-
tentially unauthorized distributions of contents such as DVDs. Decentralized broadcasting
mechanisms [CW24,KMW23], preventing single point of failure, has been analyzed exten-
sively in recent years. Broadcast encryption can be built from various assumptions, such
as Subset-Cover paradigm [NNL01,AI05,AL05,AK08], layered Subset Difference [HS02],
bilinear groups and pairings [BGW05,KMW23,CHTV22,MM24], learning-with-errors and
lattices [AY20,Wee24,Wee22], and k-Lin [Wee21,GLW23], etc.

Recently, Dupin and Abelard [DA24] proposed a broadcast encryption with sum-
product decomposition from Boolean functions. It optimizes number of encryptions needed
to broadcast a message m to authorized users only while simultaneously achieving full col-
lusion resistance against any set of revoke users. It relies on Boolean optimizations, e.g.,

2 Yadi Zhong

Quine-McCluskey algorithm and Petrick’s method, to derive the minimized Boolean func-
tion, which in turn affects number of encryptions in this broadcast encryption scheme. It
is built on minimal assumption with one-way function only. Dupin and Abelard’s proposal
of broadcast encryption from sum-product decomposition (Section 6.2 of [DA24]) outper-
forms subset difference-based broadcast encryption by Naor, Naor, and Lotspiech [NNL01]
in terms of encryption cost and bandwidth requirement.

1.1 Contributions

In this paper, we provide a theoretical analysis on the worst-case bandwidth complexity
of Dupin and Abelard [DA24], a Boolean function decomposition-based broadcast encryp-
tion with n users. We identify from the theoretical standpoint two hard functions which
Boolean optimizations cannot be performed. We then propose ADC-BE, composed of two
algorithms, AD-BE and AC-BE, to optimize this worst-case complexity from n/2 down
to 1. Our contributions of the paper as follows:

1. We first identifies two hard functions for any n Boolean variables, where both cannot
be simplified by postulates or theorems in Boolean algebra. Both function have the
most number of AND monomials in DNF representations (or OR clauses in CNFs).
We formalize them in Theorem 1 with proof.

2. We show that the worst-case bandwidth complexity of [DA24] is reached with r = n/2
revoked users whose authorized user list is either of the hard functions analyzed in The-
orem 1. This is due to broadcast encryption of [DA24] using the DNF representation
for minimized Boolean function. Same issue occurs for CNF representation as well.

3. We demonstrate how this worst-case complexity can be drastically reduced when in-
troducing combined representation from DNF or CNF with algebraic normal form.
We propose two approaches, AD-BE and AC-BE. Both proposed broadcast encryp-
tion scheme can significantly optimize this worst-case complexity from n/2 down to 1
for a system of n users.

1.2 Paper Organization

The paper is organized as follows. In Section 2 we provide preliminaries. Section 3 describes
our analysis of the worst-case complexity of broadcast encryption construction proposed
by Dupin and Abelard and provide hard functions where the bandwidth upper-bound is
reached. Our solutions with minimal assumptions to reduce this bandwidth bottleneck are
presented in Section 4. We conclude this paper in Section 5.

2 Preliminaries

Notations. We say a function ε : N → R is negligible in the parameter λ if ε(λ) =

o(1/p(λ)) for every positive polynomial p(·). We use e
$←− S to denote uniform sampling

of an element e from set S. The set of integers {a, . . . , 1} for a ∈ N is denoted as [a]. Vector
v[`] denotes all ` variables {v`, . . . , v1}. Concatenation of two binaries a, b is represented
as a||b. For any Boolean variable v, we use v−1 and v interchangeably to represent the
complement of v.

2.1 Assumptions

Definition 1 (One-Way Function (OWF)). A function f : {0, 1}∗ → {0, 1}∗ is a
one-way function if:

ADC-BE 3

1. (Easy to compute) There exists a polynomial-time algorithm MF computing f such
that Mf (x) = f(x) for all x.

2. (Hard to invert) For every probabilistic polynomial-time algorithm A, there is a neg-
ligible function negl(·) such that

Pr[InvertA,f (λ) = 1] ≤ negl(λ),

where InvertA,f (λ) is the probabilistic polynomial-time experiment to invert f for se-
curity parameter λ.

Assuming the existence of one-way functions, there exists pseudo-random generators,
pseudo-random function, and pseudo-random permutations [H̊as90, ILL89,NR97].

Definition 2 (Pseudorandom Generator (PRG)). Let G : {0, 1}∗ → {0, 1}∗ be a
deterministic algorithm, ` be a polynomial such that for any input s ∈ {0, 1}λ, G(s) ∈
{0, 1}`(λ). G is a pseudorandom generator if the following two conditions hold:

1. (Expansion) `(λ) > λ,
2. (Pseudorandomness) For any probabilistic polynomial-time distinguisher D, there ex-

ists a negligible function negl(·) such that, the distributions {G(s), s ← {0, 1}λ} and

{r, r $←− {0, 1}`(λ)} are indistinguishable,

|Pr[D(G(s)) = 1]− Pr[D(r) = 1]| ≤ negl(λ).

Definition 3 (Pseudorandom function (PRF)). An efficiently computable, keyed
function F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ with key-space K, domain X and range Y is
a pseudorandom function if for all PPT adversary A, there exists a negligible function
negl(·) such that∣∣∣Pr[k $←− K : AFk(·)(1λ) = 1]− Pr[f

$←− Func(X ,Y) : Af(·)(1λ) = 1]
∣∣∣ ≤ negl(λ).

With one-way function, one can build secure pseudorandom generators and psedoran-
dom functions, which is the assumption made in [DA24]. In this paper, we follow this
assumption of having the one-way function, and implication for psedorandom functions
for our proposed broadcast encryption schemes in Section 4.

2.2 Broadcast Encryption

We adopt the same notion of broadcast encryption as in Dupin and Abelard [DA24]. It
consists of four algorithms, Setup(·),KenGen(·),Enc(·),Dec(·), as the following:

– Setup(n, 1λ)→ mk: With security parameter of unary string 1λ, and number of users
n (or an upper-bound), the broadcaster generates master key mk.

– KenGen(u,mk)→ ku: The sender computes the key material ku for user u.
– Enc(m,AU ,mk)→ (h, c): With key mk, the sender encrypts message m where autho-

rized users in list AU can decrypt but not for the revoked users. It produces (h, c), a
tuple of ciphertext c and header h, containing instruction for decryption for AU .

– Dec(h, c, ku)→ m else ⊥: Receiver u utilizes header h to check if belonging to list AU
or not. If user u ∈ AU , it will be able to decrypt c to recover message m. Otherwise,
a revoked user cannot decrypt nor determine the original message m, and therefore
decryption algorithm terminates with ⊥.

It is worth noting that the list of authorized users AU can vary for one ciphertext
to another, accommodating various real-life scenarios, ı.e., subscription expires for some
member and/or new members join the program. Thus, organizer keeps track of the cur-
rent authorized users, and broadcasts ciphertext corresponding to this set of valid users.
Broadcast encryption can be implemented with either public key encryption, or symmetric
key encryption, which is the approach adopted by Dupin and Abelard [DA24].

4 Yadi Zhong

2.3 Boolean Function

Boolean function is the core for broadcast encryption construction by Dupin and Abelard.
We first describe its definition and properties, then proceeds with its various representation
forms.

Definition 4 (Boolean Function). A Boolean function of n Boolean variables x =
{xn, xn−1, . . . , x1} is a function f(x) : Fn2 → F2. The binary vector vf = {f(x)|x ∈ Fn2}
of length 2n is called value vector of f(x).

Note that a Boolean function can have don’t care values, represented as ∗. Depending
on the minimization technique targeting on desired reduction format (e.g., CNF, DNF),
it can be interpreted as either elements in F2. If a Boolean function includes don’t cares,
it is also reflected in its value vector vf .

Definition 5 (Support). The support of a Boolean function f(x) : Fn2 → F2 is the
support of its vf , sf = {x ∈ Fn2 |f(x) = 1}.
Definition 6 (Weight). The weight of a Boolean function f(x) is the weight of its value
vector, wt(f) = wt(vf).

Definition 7 (Balanced). A Boolean function f(x) is denoted as balanced if its weight
wt(f) = 2n−1. In other words, function f is uniformly distributed.

Although any Boolean function can be represented by its truth table, there are sev-
eral succinct ways to equivalently describe it. Algebraic normal form (ANF) considers a
Boolean function f as a multivariate polynomial,

f(x) =
∑
v∈Fn

2

evx
v,

where ev ∈ F2 and xv is the monomial in F2[xn, . . . , x1]/(x2n+xn, . . . , x
2
1+x1). Conjunctive

normal form (CNF) and disjunctive normal form (DNF), commonly used in very large scale
integration (VLSI) design and test, considers the logical OR and AND operations (together
with NOT operator) to represent a Boolean function. CNF expression, the ANDing of
summation (OR) of input literals, is generally written as

f(x) =
∧
Si∈S

 ∨
vj∈Si

x
vj
j

 ;

The DNF representation of Boolean function, on the other hand, combines AND product
terms through OR function,

f(x) =
∨
Si∈S

 ∧
vj∈Si

x
vj
j

 ,

where vj ∈ {−1,+1} with x+1
j = xj and x−1j denoting the complement of input xj ,

x−1j = xj . Literals in set Si is a subset of all n-bit input {x1, x2, . . . , xn}, depending on

Boolean optimizations. For CNF, AND clauses
(∧

vj∈Si
x
vj
j

)
are logically combined with

OR function. Conversely, OR clauses
(∨

vj∈Si
x
vj
j

)
are ANDed together to construct DNF

of Boolean function. Boolean function in DNF format is used in [DA24].
We would like to point out that the representation of a Boolean function f in ANF

is fixed, as coefficients av of ANF can be uniquely determined by av =
∑
x�v f(x) of

binary Möbius transform from its value vector vf . However, the representation may not
unique in CNF nor DNF constructions. This is due to the possibility of either incomplete
minimization under Boolean algebra, or multiple optimal solutions existe from algebraic
simplification methods.

ADC-BE 5

2.4 Quine-McCluskey Method

We briefly describes the core concept of minimizing Boolean functions of DNF format
with Quine-McCluskey method, where detailed descriptions can be found in [NTNCI95,
McC56]. The output from Quine-McCluskey has the minimal number of AND products in
the OR expression as well as minimal input literals in each AND function. This same ap-
proach can also be applied to determine the reduced Boolean expression in CNF represen-
tation as well, with additional transformation through DeMorgan’s theorems. In addition,
Quine-McCluskey algorithm supports minimization of incompletely specified functions,
where don’t cares are included in value vectors.

The overarching goal of Quine-McCluskey is to find the optimized Boolean expression
(or one of the optimized expression) of a two-level AND-OR circuit such that the number
of logic gates is minimal as well as the number of inputs of each gate. It is a tabular
approach to minimize any Boolean function through: (i) an ordered search over minterms
of a Boolean function to identify all its prime implicants; (ii) a minimal cover of prime
implicants is the solution to smallest (minimal) sum-of-products. This process can be
summarized in four steps:

1. On initial column, list all minterms (rows in truth table with output 1) and sort
it according to the number of input 1s. Two minterms are logically adjacent, and
therefore can be further combined together, if they differ in exactly one literal only.

2. Perform a search for groups of adjacent minterms and reduce them to (n−1)-variable
implicants with a dash on the eliminated variable. The (n − 1)-variable implicants
are recorded on the 2nd column. From these implicants of (n− 1) variables, combine
adjacent ones into (n− 2)-variable implicants and list in 3rd column, and so on. This
process is complete until no further implicants can be grouped, and it outputs prime
implicants.

3. List minterms (columns) and prime implicants (rows) with a prime implicant chart.
An entry is checked-off if the corresponding prime implicant covers a minterm.

4. Choose a minimum number of prime implicants to cover all minterms of the Boolean
function. Petrick’s method to derive minimal solution is often applied here [Pet56].

There are other techniques to optimize a Boolean function, especially in integrated cir-
cuit design, where efficiencies in power, performance, and area are critical factors leading
to the actual fabrication of chips. ESPRESSO algorithm [BHMSV84] is an alternative to
Quine-McCluskey method in finding the minimized Boolean expression. Both optimiza-
tions are based on the common postulates and theorems in Boolean algebra. Thus, we
omit the details for ESPRESSO in this paper.

3 Complexity Analysis of Dupin and Abelard [DA24]

In this section, we first describe broadcast encryption paper by Dupin and Abelard
[DA24]. We proceed to discuss its bandwidth complexity with additional definitions on
the degree of optimizations of Boolean functions. The worst-case bandwidth complexity
of their algorithm is then identified with induction proof.

3.1 Broadcast Encryption Scheme of Dupin and Abelard

Dupin and Abelard proposed a collusion-resistant broadcast encryption scheme requiring
only the existence of one-way function to build pseudorandom function F with Defini-
tion 3. It uses two symmetric encryption schemes E and Epayload, where Epayload can be
an authenticated encryption. Their corresponding encryption algorithms are D,Dpayload.
This broadcast encryption is also post-quantum secure when cryptosystems selected for

6 Yadi Zhong

F, E , Epayload during concrete instantiations are resistant against quantum attackers and
large-scale cryptanalytically-relevant quantum computers.

In this section, we consider n, a power of 2, as total number of users in the broadcast
system and l = log2(n). In practice, n may be selected to be the next power of 2 greater
than the current number of users when l is not an integer.

Setup. Emitter first generates master key kPRF from pseudorandom function F . As each
user can be uniquely identified with a l-bit binary, emitter generates 2l distinct labels,
{k0i }i∈[l], {k1i }i∈[l]. Dupin and Abelard uses straightforward concatenation of binary bits

to define labels kji = i||j, i ∈ [l], j ∈ {0, 1}.
As the example in [DA24], emitter has 6 labels, {k01, k01, k02, k02, k03, k13}, when n = 8, l =

3.

Key Generation. To add a user u to the broadcast system, authority provides a
set of keys ku ← FkPRF

(||i∈Skui
i) to it based on the binary representation of u =

u1||u2|| . . . ||ul−1||ul with ordered (lex) list S ⊂ [l].
User u = 5 = 1012 from n = 8 would receive the following key materials in ku:

FkPRF
(k11); FkPRF

(k02); FkPRF
(k13);

FkPRF
(k11||k02); FkPRF

(k11||k13); FkPRF
(k02||k13);

FkPRF
(k11||k02||k13); FkPRF

(∅).

Encrypt. Emitter first identifies the list of valid users before broadcasting message m.
To transmit a message m to the designated users only, broadcaster encrypts m with a
ephemeral key ke with Epayload(ke,m). Key ke is available to authorized users exclusively.
This list of authorized user AU ⊂ [n] is characterized as a Boolean function y,

y(u) =

{
1, if u ∈ AU
0, if u /∈ AU

With standard minimization techniques in Boolean algebra, i.e., Quine-McCluskey method,
central authority obtains the minimal DNF representation of function y. This optimal rep-
resentation of function y is encoded in header h. Ciphtertext c contains Epayload(ke,m)
and multiple encryptions of ephemeral key ke under valid key materials (see details below)
for authorized users AU . If message m is transmitted to its intended user z, the following
properties are guaranteed: (i) the evaluation of function y on input z is y(z) = 1; (ii)
header h includes at least one binary vector corresponding to the binary pattern of key
labels user z received from KenGen(·); (iii) ciphertext c has at least one encryption(s) of
ephemeral key ke that user z possesses its encryption key and thus able to later decrypt
ke, and then message m through ke. On the other hand, if user z is revoked, i.e., it does
not belong to list AU , then (i) function y on input z has output y(z) = 0 instead; (ii)
header h does not contain any binary patterns of key labels which user z received from
previous step KenGen(·); (iii) ciphertext c has no encryption of ephemeral key ke that
user z could decrypt; and (iv) therefore, it cannot obtain ke nor message m except with
negligible probability. Both h and c are sent to recipients.

Continuing the example as in previous step, suppose broadcaster would like to send
message m to users 1 = 0012, 2 = 0102, 5 = 1012, 7 = 1112 while users 0, 3, 4, 6 are revoked.
The optimal Boolean function y with logic 1 output for users 1, 2, 5, 7 but 0 output for
the rest is expressed as

y = u1u2u3 ∧ u1u3 ∧ u2u3.

For any AND product in y, it is encoded in the following manner with a 2l-bit binary,
where a l-bit binary for complemented input variables and another l-bit binary for input

ADC-BE 7

variables in their true forms. For example, AND gate of u1u2u3 is encoded as

u1u2u3 −→
u1,u3︷︸︸︷
101

u2︷︸︸︷
010

Header h is the encoding of y’s three AND products in binary format with an extra
l-bit to record the number of ANDs in y,

u1u2u3 ∧ u1u3 ∧ u2u3 −→ h =

3︷︸︸︷
011

u1u2u3︷ ︸︸ ︷
101 010

u1u3︷ ︸︸ ︷
000 101

u2u3︷ ︸︸ ︷
010 001 .

Ciphertext c is then computed as

c =

3 encryptions of ke︷ ︸︸ ︷
Ekh1

(ke)||Ekh2
(ke)||Ekh3

(ke) ||Epayload,ke(m)

Symmetric keys used for encrypting ephemeral key ke are kh1
= FkPRF

(k01||k12||k03), kh2
=

FkPRF
(k11||k13), kh3 = FkPRF

(k02||k13). Any user can check whether it has one or more,
or none of symmetric keys in their storage based on information from header h. Users
who are the intended recipient of message m should have at least one of the symmetric
keys obtained during KenGen(·). Therefore, a valid user from set {1, 2, 5, 7} is able to
successfully decrypt one (or at least one) of the 3 encryptions of ke and use it to further
obtain m from Epayload,ke(m). It can be verified that none of these symmetric keys are
from the key materials of any revoked users. Therefore, it achieves full collusion-resistant
against any number of revoke clients.

Decrypt. When recipient u receives {h,c}, he/she first confirms whether y(u) = 1 from
binary vectors in header h. If y(u) = 0 instead, user u does not belong to authorized user
list AU and proceeds to terminates the decryption process. Otherwise, recipient u finds
a symmetric key based of h from stored key materials of KenGen(·), where at least one
symmetric key must be in possession of such valid user. Suppose that receiver has khi

in the
stored key list, ephemeral key ke can be then recovered from decryption Dkhi

(Ekhi
(ke)).

Finally, message m is extracted from decryption with ek, Dpayload,ke(Epayload,ke(m)).

3.2 Worst-Case Bandwidth for Broadcast Encryption using Sum-Product
Decomposition

Dupin and Abelard’s proposal of broadcast encryption from sum-product decomposition
(Section 6.2 of [DA24]) outperforms subset difference-based broadcast encryption by Naor,
Naor, and Lotspiech [NNL01] in terms of bandwidth requirement. As Dupin and Abelard
pointed out, this bandwidth is dominated by the number of encryptions of ephemeral key
ke inside ciphertext c during Enc(·) step. The root cause belongs to number of AND clauses
within the minimal DNF expression of y, the Boolean function that encodes authorized
user list AU , which dictates ciphertext c length. We would like to point out that this
bandwidth is likewise affected by the length of header h, the other component from output
tuple of Enc(·) process, which also depends on number of AND clauses of y. Thus, we are
able to conclude that bandwidth complexity of [DA24] is solely reliant on the optimal
representation of Boolean function y. We summarize it in the following lemma.

Lemma 1. Bandwidth requirement of Enc(·) in Dupin and Abelard’s broadcast encryption
scheme is determined by number of products in Boolean function y, the binary encoding
of list AU . As y is the minimal expression of list AU , optimal bandwidth Enc(·) relies on
the optimal representation of Boolean functions.

8 Yadi Zhong

This sum-product decomposition approach is heavily dependent on the algebraic struc-
ture of DNF representation of Boolean functions for its minimization of y. To better un-
derstand the worst-case bandwidth of their scheme, we first discuss theoretical worst-case
scenarios in minimization of arbitrary Boolean expressions targeting DNF and CNF (for
proposed scheme in Section 4.2) formats, and introduce a few concepts to characterize
and compare any optimized function from its original expression.

For better analyzing minimal Boolean functions derived from various optimization
techniques, such as Quine-McCluskey and ESPRESSO algorithms, we define compression
ratio of any minimized expression with the following definitions.

Definition 8 (Compression Ratio (CRDNF)). The compression ratio cr1(f) of a sim-
plified Boolean function f is defined as the wt(vf) (number of outputs 1s in the truth table)
divided by total number of AND clauses in f in its minimized form.

Note that this value is cr1(f) ≥ 1 for any Boolean function f . It reaches cr1(f) = 1 when
its minimized expression is identical to the un-optimized format – the canonical sum-of-
products (CSOP) expression. This is equivalent to having wt(vf) number of AND clauses
in its minimal expression. We define the compression ratio cr1 = 2n for a Boolean function
of wt = 2n with n-bit input, which is a degenerated AND clause.

In addition, we extend this definition from optimal representation in DNF format to
CNF. This is relevant to our proposed algorithm of Section 4.2. Unlike DNF expressions,
CNF is distinguished by output 0s instead.

Definition 9 (Compression Ratio (CRCNF)). Compression ratio cr0(f) of a simpli-
fied Boolean function f is defined as the wt = wt(vf) (number of outputs 0s in the truth
table) divided by total number of OR clauses in f in its minimized form.

Again, this value is cr0(f) ≥ 1 for any Boolean function f . It is possible to have cr0(f) = 1
when its minimized CNF expression is identical to its corresponding un-optimized format
– the canonical product-of-sums (CPOS) expression. This is identical to having wt(vf)
number of OR clauses in its reduced expression. If a function has wt = 2n for n inputs,
we consider its compression ratio cr0 = 2n.

Although minimization techniques like Quine-McCluskey and ESPRESSO allows to
substantially reduce the number of AND, OR operations, they all are based on the postu-
lates and theorems of Boolean algebra. If no postulates nor theorems in Boolean algebra
can be applied to minimize a particular Boolean function h, then it reaches cr1(f) = 1 (or
cr0(f) = 1, respectively). This is where the most lengthy CSOP (or CPOS) expression of
Boolean function h is also its reduced form and its optimal solution.

Therefore, we are interested to examine the Boolean function subspace of n input
variables such that any functions inside this subspace has common property of its CSOP
(or CPOS) expression being the minimized solution. Then, one of the natural question to
ask is: What is the largest weight wtmax (or wtmax) of this Boolean function subspace
with cr1 = 1 (or cr0 = 1)? What are the characteristic of these Boolean functions with
largest weight wtmax (or wtmax)? We denote any Boolean function which satisfies cr1 = 1
(or cr0 = 1) with wtmax (or wtmax) as hard function in Boolean simplification, which
also is accounted for the worst-case bandwidth of [DA24]. This hard function with worst-
case compression ratio of cr1 = 1 (or cr0(f) = 1, respectively) and wtmax (or wtmax) is
illustrated in three examples below, and is subsequently proved with Theorem 1.

Example 1. For n = 2 Boolean variables {x2, x1}, let us consider Boolean function sub-
space with cr1 = 1. Any value vector vh of function h with a single logic 1 as output has
cr1 = 1. There are four of those functions, namely vh = {1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0},
or vh = {0, 0, 0, 1}. For weight wt = 2, Boolean functions f2, g2 of cr1 = 1 are defined with
the following truth tables:

ADC-BE 9

x2 0 0 1 1
x1 0 1 0 1

f2(x2, x1) 0 1 1 0
g2(x2, x1) 1 0 0 1

Under DNF format, f2 = x2x1 ∨ x2x1 and g2 = x2 x1 ∨ x2x1. Both functions f2, g2 are
already in the reduced form in DNF, where the number of AND clauses is identical to the
hamming weight. Thus, compression ratio cr for both functions is cr1(f2) = cr1(g2) = 1.

Other functions of wt = 2 all have cr1 > 1, whose value vectors are {1, 1, 0, 0},
{1, 0, 1, 0}, {0, 1, 0, 1}, and {0, 0, 1, 1}. There exists no Boolean function with wt = 3
with cr1 = 1. All possible functions with wt = 3 has to be either of these four value vec-
tors, {1, 1, 1, 0}, {1, 1, 0, 1}, {1, 0, 1, 1}, or {0, 1, 1, 1}. All four functions has the minimized
DNF structure of 2 AND clauses only, with cr1 = 3/2 > 1. In addition, Boolean function
of wt = 4 (constant 1 output) cannot be cr1 = 1 either. Therefore, this Boolean function
subspace with cr1 = 1 of n = 2 has functions f2 and g2 reaching wtmax = 2, and they are
the hard function for cr1 = 1.

The same can be applied to minimized CNF expressions with Boolean function sub-
space with cr0 = 1. Function h of cr0 = 1 with wt = 1 belongs to either vh = {1, 1, 1, 0},
{1, 1, 0, 1}, {1, 0, 1, 1}, or {0, 1, 1, 1}. For weight wt = 2, only Boolean functions f2, g2
have cr0 = 1 (as defined above) with optimal CNF expressions f2 = (x2 ∨ x1)(x2 ∨ x1),
g2 = (x2∨x1)(x2∨x1). Similarly, other functions of wt = 2 all have cr0 > 1. Any functions
with wt = 3, i.e., whose truth table is {1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, or {0, 0, 0, 1}, has
cr1 = 3/2 > 1; and function of wt = 4 has cr0 = 4 6= 1. Again, functions f2, g2 have
wtmax = 2 for Boolean function subspace with cr0 = 1, making them the hard functions
for cr0 = 1.

Example 2. For n = 3 Boolean variables {x3, x2, x1}, it can be shown that only two hard
functions f3, g3 achieving wtmax = 4 (and wtmax = 4, respectively) for Boolean function
subspace with cr1 = 1 (and cr0 = 1). Their truth tables are defined as follows:

x3 0 0 0 0 1 1 1 1
x2 0 0 1 1 0 0 1 1
x1 0 1 0 1 0 1 0 1

f3(x3, x2, x1) 0 1 1 0 1 0 0 1
g3(x3, x2, x1) 1 0 0 1 0 1 1 0

The corresponding DNF for f3, g3, which are also the minimized expressions, are{
f3 = x3 x2x1 ∨ x3x2x1 ∨ x3x2 x1 ∨ x3x2x1
g3 = x3 x2 x1 ∨ x3x2x1 ∨ x3x2x1 ∨ x3x2x1.

Similarly, the minimized CNF formulation is expressed as below.{
f3 = (x2 ∨ x1 ∨ x0)(x2 ∨ x1 ∨ x0)(x2 ∨ x1 ∨ x0)(x2 ∨ x1 ∨ x0)
g3 = (x2 ∨ x1 ∨ x0)(x2 ∨ x1 ∨ x0)(x2 ∨ x1 ∨ x0)(x2 ∨ x1 ∨ x0)

Further, one can demonstrate that any Boolean function with its weight wt > 4 (or wt > 4,
respectively) has compression ratio cr1 > 1 (cr0 > 1). This is due to the fact that at least
two minterms (or Maxterms with output 0 instead) are logically adjacent to each other
and can be reduced.

Example 3. For n = 4 Boolean variables {x4, x3, x2, x1}, we are focused on the Boolean
function subspaces with cr1 = 1 and cr0 = 1, the maximum weight wtmax and wtmax, and
hard functions in Boolean simplifications. The same analysis performed in Examples 1, 2
can be applied for n = 4. There exists only two hard functions f4, g4 in this domain, defined
by the following truth tables that satisfies wtmax = 8 (and wtmax = 8, respectively) for
Boolean function subspace of cr1 = 1 (and cr0 = 1).

10 Yadi Zhong

x4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
x3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
x2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
x1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

f4(x4, x3, x2, x1) 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
g4(x4, x3, x2, x1) 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1

For functions f4, g4, the minimized DNF expressions are
f4 = x3 x2 x1x0 ∨ x3 x2x1x0 ∨ x3x2x1 x0 ∨ x3x2x1x0 ∨ x3x2 x1 x0 ∨ x3x2x1x0∨

x3x2x1x0 ∨ x3x2x1x0
g4 = x3 x2 x1 x0 ∨ x3 x2x1x0 ∨ x3x2x1x0 ∨ x3x2x1x0 ∨ x3x2 x1x0 ∨ x3x2x1x0 ∨

x3x2x1 x0 ∨ x3x2x1x0

Correspondingly, minimized CNFs for Boolean functions f4, g4 are written below.
f4 = (x3 ∨ x2 ∨ x1 ∨ x0)(x3 ∨ x2 ∨ x1 ∨ x0)(x3 ∨ x2 ∨ x1 ∨ x0)(x3 ∨ x2 ∨ x1 ∨ x0)

(x3 ∨ x2 ∨ x1 ∨ x0)(x3 ∨ x2 ∨ x1 ∨ x0)(x3 ∨ x2 ∨ x1 ∨ x0)(x3 ∨ x2 ∨ x1 ∨ x0)
g4 = (x3 ∨ x2 ∨ x1 ∨ x0)(x3 ∨ x2 ∨ x1 ∨ x0)(x3 ∨ x2 ∨ x1 ∨ x0)(x3 ∨ x2 ∨ x1 ∨ x0)

(x3 ∨ x2 ∨ x1 ∨ x0)(x3 ∨ x2 ∨ x1 ∨ x0)(x3 ∨ x2 ∨ x1 ∨ x0)(x3 ∨ x2 ∨ x1 ∨ x0)

From the above three examples, we summarize these properties for Boolean functions
belonging to Boolean function subspaces of cr1 = 1 (and cr0 = 1) with worst-case com-
pression ratio and maximum weight wtmax (and wtmax) as a theorem.

Theorem 1. Given any n Boolean variables {xn, xn−1, . . . , x1}, there are only two hard
functions fn, gn with the following characteristics for Boolean functions with maximum
weight wtmax (and wtmax) from Boolean function subspaces with cr1 = 1 (and cr0 = 1):

1. Functions fn, gn have cr1 = 1 (and cr0 = 1) with weight wt = 2n/2, wt = 2n/2, and
are balanced.

2. Functions fn, gn are disjoint. No common AND clauses in DNF expressions, nor any
shared OR clauses in CNF expressions.

3. Functions fn, gn partition the 2n-bit value vector such that fn∧gn = 0 and fn∨gn = 1.
4. Functions fn, gn’s weight wt = 2n/2, wt = 2n/2 are the maximum weight wtmax (and

wtmax for cr1 = 1 (and cr0 = 1).

Proof. We prove Theorem 1 by proof of induction. As we distinguish the inductive step
with ` as an even or odd number, we have two initial conditions ` = 2 and ` = 3 in this
proof by induction.

– Initial step of ` = 2: With ` = 2 Boolean variables, there are 22
2

= 16 possible Boolean
functions. As we have detailed in Example 1, functions f2 = x2

−1x1 ∨ x2x1−1 and
g2 = x2

−1x1
−1 ∨ x2x1 (and f2 = (x2 ∨ x1)(x2

−1 ∨ x1−1), g2 = (x2 ∨ x1−1)(x2
−1 ∨ x1)

respectively in CNF) are hard functions. Both f2, g2 are balanced functions having cr1 =
1 (and cr0 = 1) with weights wt = 2`/2 = 2, and wt = 2`/2 = 2. Based on truth tables,
f2, g2 are disjoint, and they partition 2`-bit value vector such that f` ∧ g` = 0 and
fn ∨ gn = 1. Weights of f`, g`, wt = 2`/2 (and wt = 2`/2), are the maximum for cr1 = 1
(and cr0 = 1) of ` = 2 variables, since functions with wt > 2`/2 (and wt > 2`/2) have
cr1 > 1 (and cr0 > 1). Moreover, out of all 6 functions with wt = 2`/2 (and wt = 2`/2),
only f2, g2 has cr1 = 1 (and cr0 = 1). Therefore, f2, g2 are the only two hard functions
for ` = 2.
To facilitate discussions in inductive step, we abbreviate the DNF expressions for f2, g2

f2 =
∨
v∈S1

2

(∧
vj∈v x

vj
j

)
, with S1

2 = {[v = v2v1 = −1,+1], [v = +1,−1]} ,

g2 =
∨
v∈T 1

2

(∧
vj∈v x

vj
j

)
, with T 1

2 = {[v = −1,−1], [v = +1,+1]} .

ADC-BE 11

We can summarize sets S1
2 and T 1

2 in regard to it individual bits vi ∈ v with S1
2 ={∏

vi∈v vi = −1
}

, T 1
2 =

{∏
vi∈v vi = +1

}
. CNF formulations for f2, g2 are denoted as

f2 =
∧
v∈S0

2

(∨
vj∈v x

vj
j

)
, with S0

2 = {[+1,+1], [−1,−1]} ,

g2 =
∧
v∈T 0

2

(∨
vj∈v x

vj
j

)
, with T 0

2 = {[+1,−1], [−1,+1]} ,

where sets S0
2 and T 0

2 are equivalent to S0
2 =

{∏
vi∈v vi = +1

}
, T 0

2 =
{∏

vi∈v vi = −1
}

.

– Initial step of ` = 3: With ` = 3 Boolean variables, there are 22
3

= 64 possible Boolean
functions. As we have detailed in Example 2, functions f3 and g3 are hard functions,
whose DNF representations are shown below.{

f3 = x3
−1x2

−1x1 ∨ x3−1x2x1−1 ∨ x3x2−1x1−1 ∨ x3x2x1
g3 = x3

−1x2
−1x1

−1 ∨ x3−1x2x1 ∨ x3x2−1x1 ∨ x3x2x1−1,

CNF representations of f3 and g3 are{
f3 = (x2 ∨ x1 ∨ x0)(x2 ∨ x1−1 ∨ x0−1)(x2

−1 ∨ x1 ∨ x0−1)(x2
−1 ∨ x1−1 ∨ x0)

g3 = (x2 ∨ x1 ∨ x0−1)(x2 ∨ x1−1 ∨ x0)(x2
−1 ∨ x1 ∨ x0)(x2

−1 ∨ x1−1 ∨ x0−1).

Both f3, g3 are balanced functions having cr1 = 1 (and cr0 = 1) with weight wt =
2`/2 = 4, wt = 2`/2. Based on truth tables, f3, g3 are disjoint, and they partition
2`-bit value vector such that f` ∧ g` = 0 and fn ∨ gn = 1. Weights of f`, g`, wt = 2`/2
(and wt = 2`/2), are the maximum for cr1 = 1 (and cr0 = 1) of ` = 3 variables, since
functions with wt > 2`/2 (and wt > 2`/2) have cr1 > 1 (and cr0 > 1). In addition, of
all functions with wt = 2`/2 (and wt = 2`/2), only f3, g3 has cr1 = 1 (and cr0 = 1).
Therefore, f3, g3 are the only hard functions for ` = 3.
We follow the abbreviation of above for DNF formulations of f3, g3

f3 =
∨
v∈S1

3

(∧
vj∈v x

vj
j

)
, S1

3 = {[−1,−1,+1], [−1,+1,−1], [+1,−1,−1], [+1,+1,+1]} ,

g3 =
∨
v∈T 1

3

(∧
vj∈v x

vj
j

)
, T 1

3 = {[−1,−1,−1], [−1,+1,+1], [+1,−1,+1], [+1,+1,−1]} .

Both sets S1
3 and T 1

3 can be described succinctly as S1
3 =

{∏
vi∈v vi = +1

}
, T 1

3 ={∏
vi∈v vi = −1

}
. CNFs for f3, g3 are represented by

f3 =
∧
v∈S0

3

(∨
vj∈v x

vj
j

)
, S0

3 = {[+1,+1,+1], [+1,−1,−1], [−1,+1,−1], [−1,−1,+1]} ,

g3 =
∧
v∈T 0

3

(∨
vj∈v x

vj
j

)
, T 0

3 = {[+1,+1,−1], [+1,−1,+1], [−1,+1,+1], [−1,−1,−1]} .

Sets S0
3 and T 0

3 are identical to S1
3 and T 1

3 , respectively, S0
3 = S1

3 =
{∏

vi∈v vi = +1
}

,

T 0
3 = T 1

3 =
{∏

vi∈v vi = −1
}

.
– Inductive step of ` ≥ 2: Suppose we have functions f`, g`, the hard functions for `

Boolean variables, satisfying the above four properties. Our goal is to identify and
prove hard functions f`+1, g`+1 of (`+ 1) variables. We distinguish two cases and prove
them separately: (i) ` = 2i is even, or (ii) ` = 2i+ 1 is an odd integer instead.
(i) (` = 2i is even.) Hard functions f`, g` of ` Boolean variables are represented in DNF

as

f` =
∨
v∈S1

`

(∧
vj∈v x

vj
j

)
, with S1

` =
{∏

vi∈v vi = −1
}
,

g` =
∨
v∈T 1

`

(∧
vj∈v x

vj
j

)
, with T 1

` =
{∏

vi∈v vi = +1
}
.

CNF expressions for hard functions f`, g` are

f` =
∧
v∈S0

`

(∨
vj∈v x

vj
j

)
, with S0

` =
{∏

vi∈v vi = +1
}
,

g` =
∧
v∈T 0

`

(∨
vj∈v x

vj
j

)
, with T 0

` =
{∏

vi∈v vi = −1
}
.

12 Yadi Zhong

We first construct f`+1 and g`+1 of (` + 1) Boolean variables {v`+1, . . . , v1} from
hard functions f`, g` of ` variables {v`, . . . , v1}, then prove that f`+1 and g`+1 satisfy
all four properties and are the only hard functions. Integer ` + 1 = 2i + 1 is an odd
number, and we formulate f`+1 and g`+1 in DNF as

f`+1 =

 ∨
v∈S1

`

 ∧
vj∈v[`]

x
vj
j

∧
x−1`+1

∨ ∨
v∈T 1

`

 ∧
vj∈v[`]

x
vj
j

∧
x+1
`+1


=
[
f`
∧
x−1`+1

]∨[
g`
∧
x+1
`+1

]
=

∨
v∈S1

`+1

 ∧
vj∈v

x
vj
j

 , with S1
`+1 =

 ∏
vi∈v[`+1]

vi = +1

 ,

g`+1 =

 ∨
v∈S1

`

 ∧
vj∈v[`]

x
vj
j

∧
x+1
`+1

∨ ∨
v∈T 1

`

 ∧
vj∈v[`]

x
vj
j

∧
x−1`+1


=
[
f`
∧
x+1
`+1

]∨[
g`
∧
x−1`+1

]
=

∨
v∈T 1

`+1

 ∧
vj∈v

x
vj
j

 , with T 1
`+1 =

 ∏
vi∈v[`+1]

vi = −1

 .

From the above DNF constructions of f`+1 and g`+1, both functions does not have
any logically adjacent minterms, since at least 2 Boolean variables differ between
any two AND clauses in f`+1, and also for function g`+1. Therefore, both f`+1 and
g`+1 have cr1 = 1 with 2` AND monomials, weight wt = 2` = 2`+1/2, satisfying
Characteristic #1. Functions f`+1 and g`+1 are also disjoint, where no common AND
monomials (minterms) can be found, which is Characteristic #2. This Characteristic
#2 also implies f`+1 ∧ g`+1 = 0. As f`+1 and g`+1 are disjoint functions and each
having 2` monomials, the OR evaluation of f`+1 ∨ g`+1 consists of 2` + 2` = 2`+1

monomials, which is all possible AND monomials for (` + 1) Boolean variables,
which means that f`+1 ∨ g`+1 = 1. Having f`+1 ∧ g`+1 = 0 and f`+1 ∨ g`+1 = 1
fulfill the Characteristic #3. We examine Characteristic #4 by proof of contradiction.
Suppose in the Boolean function subspace of cr1 = 1 with (` + 1) variables has
the maximum weight wtmax > 2`, which means that weight wt = 2` of f`+1 and
g`+1 is not the largest in this subspace. Without loss of generality, let us consider
the maximum weight wtmax = 2` + 1, as any larger weight can be subsequently
build from the following argument. We denote this function of wtmax = 2` + 1 as
h1. Its weight means that there exist (2` + 1) AND monomials which are logically
nonadjacent and cannot be simplified. Thus, we can build it from either f`+1 or g`+1

by including an additional AND clause. If we build h1 from f`+1, we need to pick
one monomial from function g`+1, as the remaining monomials has to come from
g`+1 due to Characteristic #3. No matter which AND clause to choose from g`+1,
say v′[`+1] = {v′`, . . . , v′1} with

∏
vi∈v vi = −1, there exists a monomial from f`+1, say

v[`+1] = {v′`, . . . , vj , . . . , v′1} with vj 6= v′j and
∏
vi∈v vi = +1 such that they differ by

one input only. (There are a total of (`+1) monomials in f`+1 being logically adjacent
to any AND monomial in g`+1). This means that two AND clauses are logically
adjacent and therefore can be minimized with theorems in Boolean algebra having
cr1 > 1, a contradiction from Boolean function subspace of cr1 = 1. The identical
analysis can be perform to constructing h1 from g`+1 with one additional monomial

ADC-BE 13

from f`+1. However, no matter which monomial to pick from f`+1, it always is
logically adjacent with one (or more) AND clauses in g`+1, implying cr1 > 1. Again,
it is a contraction from cr1 = 1. Thus, no such function h1 exists and the maximum
weight is wtmax = 2`+1/2 for Boolean function subspace of cr1 = 1. Functions
f`+1 and g`+1 are the hard functions in DNF representation. Lastly, we verify that
functions f`+1 and g`+1 are the only hard functions of weight is wtmax = 2` with
cr1 = 1. Any functions h2 of wt = 2` other than f`+1, g`+1 can be composed of
replacing one or more AND monomials from f`+1 with monomials of g`+1 (and
vice-versa). Suppose such function h2 of wtmax = 2` with cr1 = 1 exists. Without
loss of generality, there exists at least one monomial, say v′[`+1] = {v′`, . . . , v′1} with∏
vi∈v vi = −1, included in h2 from g`+1, being logically adjacent with the existing

monomial(s) in f`+1, e.g., v[`+1] = {v′`, . . . , vj , . . . , v′1} with vj 6= v′j . We again have
a contradiction of cr1 > 1 6= 1. Therefore, Boolean functions f`+1 and g`+1 are the
only hard functions in DNF representation.

Boolean functions f`+1 and g`+1 can also be formulated in CNF as

f`+1 =

 ∧
v∈S1

`

 ∨
vj∈v[`]

x
vj
j

∨
x+1
`+1

∧ ∧
v∈T 1

`

 ∨
vj∈v[`]

x
vj
j

∨
x−1`+1


=
[
f`
∨
x+1
`+1

]∧[
g`
∨
x−1`+1

]
=

∧
v∈S0

`+1

 ∨
vj∈v

x
vj
j

 , with S0
`+1 =

 ∏
vi∈v[`+1]

vi = +1

 ,

g`+1 =

 ∧
v∈S1

`

 ∨
vj∈v[`]

x
vj
j

∨
x−1`+1

∧ ∨
v∈T 1

`

 ∨
vj∈v[`]

x
vj
j

∨
x+1
`+1


=
[
f`
∨
x−1`+1

]∧[
g`
∨
x+1
`+1

]
=

∧
v∈T 0

`+1

 ∨
vj∈v

x
vj
j

 , with T 0
`+1 =

 ∏
vi∈v[`+1]

vi = −1

 .

It can be verified that all Characteristics #1,2,3,4 are valid on f`+1 and g`+1 and
they are the only hard functions in CNF representation. This proof is identical to
proving the DNF formulations except we now have OR clauses instead AND mono-
mials, which we omit details here. Boolean functions f`+1 and g`+1 are the only hard
functions with maximum weight wtmax = 2`+1/2 from Boolean function subspaces
with cr1 = 1 and cr0 = 1.

(ii) (` = (2i+1) is odd.) The only hard functions f`, g` of ` Boolean variables are expressed
in DNF as

f` =
∨
v∈S1

`

(∧
vj∈v x

vj
j

)
, with S1

` =
{∏

vi∈v vi = +1
}
,

g` =
∨
v∈T 1

`

(∧
vj∈v x

vj
j

)
, with T 1

` =
{∏

vi∈v vi = −1
}
.

CNF formulations for hard functions f`, g` are

f` =
∧
v∈S0

`

(∨
vj∈v x

vj
j

)
, with S0

` =
{∏

vi∈v vi = +1
}
,

g` =
∧
v∈T 0

`

(∨
vj∈v x

vj
j

)
, with T 0

` =
{∏

vi∈v vi = −1
}

;

14 Yadi Zhong

Boolean functions f`+1 and g`+1 of (`+ 1) variables {v`+1, . . . , v1} can be built from
the above hard functions f`, g` of ` variables {v`, . . . , v1}. We construct their DNF
representations as follows,

f`+1 =

 ∨
v∈S1

`

 ∧
vj∈v[`]

x
vj
j

∧
x−1`+1

∨ ∨
v∈T 1

`

 ∧
vj∈v[`]

x
vj
j

∧
x+1
`+1


=
[
f`
∧
x−1`+1

]∨[
g`
∧
x+1
`+1

]
=

∨
v∈S1

`+1

 ∧
vj∈v

x
vj
j

 , with S1
`+1 =

 ∏
vi∈v[`+1]

vi = −1

 ,

g`+1 =

 ∨
v∈S1

`

 ∧
vj∈v[`]

x
vj
j

∧
x+1
`+1

∨ ∨
v∈T 1

`

 ∧
vj∈v[`]

x
vj
j

∧
x−1`+1


=
[
f`
∧
x+1
`+1

]∨[
g`
∧
x−1`+1

]
=

∨
v∈T 1

`+1

 ∧
vj∈v

x
vj
j

 , with T 1
`+1 =

 ∏
vi∈v[`+1]

vi = +1

 .

Both functions functions f`+1 and g`+1 have the corresponding DNF representations:

f`+1 =

 ∧
v∈S1

`

 ∨
vj∈v[`]

x
vj
j

∨
x+1
`+1

∧ ∧
v∈T 1

`

 ∨
vj∈v[`]

x
vj
j

∨
x−1`+1


=
[
f`
∨
x+1
`+1

]∧[
g`
∨
x−1`+1

]
=

∧
v∈S0

`+1

 ∨
vj∈v

x
vj
j

 , with S0
`+1 =

 ∏
vi∈v[`+1]

vi = +1

 ,

g`+1 =

 ∧
v∈S1

`

 ∨
vj∈v[`]

x
vj
j

∨
x−1`+1

∧ ∨
v∈T 1

`

 ∨
vj∈v[`]

x
vj
j

∨
x+1
`+1


=
[
f`
∨
x−1`+1

]∧[
g`
∨
x+1
`+1

]
=

∧
v∈T 0

`+1

 ∨
vj∈v

x
vj
j

 , with T 0
`+1 =

 ∏
vi∈v[`+1]

vi = −1

 .

The process of proving f`+1 and g`+1 of (`+ 1) = 2i + 2 as the only hard functions
with Characteristics #1,2,3,4 in both DNF and CNF formats can be borrowed from
the proof in step (i) of (`+ 1) = 2i+ 1. We omit the proof details here.

4 ADC-BE: Broadcast Encryption from Optimized Boolean
Functions with ANF, DNF, CNF

The full collusion-resistant broadcast encryption proposed by Dupin and Abelard [DA24]
achieves better encryption bandwidth requirement than Complete Subtree scheme, and

ADC-BE 15

also better than Subset Difference by Naor, Naor, and Lotspiech [NNL01] in practical
settings. On the other hand, the authors of [DA24] acknowledge that the worst-case band-
width complexity of Complete Subtree scheme is reached in their broadcast encryption
scheme and cited theorem of complexity O(r log(n/r)) of [NNL01] as a corollary (Section
6.1 of [DA24]).

From Theorem 1 of Section 3.2, we have shown that, for any n Boolean variables,
there are two hard functions fn and gn with wtmax = 2n/2 (and wtmax = 2n/2) and
cr1 = 1 (and cr0 = 1). Both such functions in regards to their DNF and CNF representa-
tions are already optimal and cannot be simplified. Due to their algebraic structure, hard
functions fn and gn cannot be minimized by postulates and theorems of Boolean algebra,
which are the foundations for any minimization techniques, e.g., Quine-McCluskey and
ESPRESSO, etc. These hard functions accounts for the worst-case broadcast bandwidth
of broadcast encryption scheme [DA24]. As Dupin and Abelard stated in [DA24], the
worst-case complexity of O(r log(n/r)) in bandwidth requirement can be reached by their
broadcast encryption scheme of sum-product decomposition. The hard functions proven
in Theorem 1 can be interpreted as the binary encoding of authorized user list AU of
r = 2l/2 = n/2 revoked users with worst-case bandwidth complexity of r log(n/r) = n/2
due to maximum weight of wtmax = 2l/2 = n/2. This upper-bound of r log(n/r) = n/2 is
indeed reached when n/2 revoked users and n/2 authorized users, respectively, forms the
hard functions fn and gn, or vice-versa.

To further reduce this worst-case bandwidth requirement of r log(n/r) = n/2 in [DA24],
we proposed new constructions for broadcast encryption, denoted as ADC-BE, where ADC
stands for ANF, DNF and CNF representations of Boolean functions. ADC-BE consists
of two broadcast encryption algorithms – AD-BE and AC-BE. We explain both broad-
cast encryption schemes in Sections 4.1, 4.2. Both AD-BE and AC-BE rely on the same
assumption as in [DA24], the existence of one-way function. We consider number of users
n in a broadcast encryption setting be the power of 2, n = 2l, as in Section 3.1. We
use the identical pseudorandom function F with Definition 3, two symmetric encryption
schemes E and Epayload by Dupin and Abelard (with decryption algorithms D,Dpayload),
where Epayload can be an authenticated encryption. If the selected symmetric encryption
schemes for implementation are secure and have sufficient security margin against Grover’s
attack for quantum adversaries, our proposed ADC-BE is also considered post-quantum
whenever F, E , Epayload are resistant against large-scale cryptanalytically-relevant quantum
computers.

4.1 AD-BE: Broadcast Encryption from Optimized Boolean Functions with
ANF, DNF

The hard functions fn, gn of n Boolean variables are the bandwidth bottleneck (r log(n/r) =
n/2) if either of them are the encoding of authorized user list AU . Regardless of DNF or
CNF representations, fn, gn cannot be minimized as any two AND monomials in DNF
expression (OR clauses in CNF, respectively) are logically nonadjacent. When n is odd,
DNFs for fn and gn are presented as the following.

fn =
∨
v∈S1

n

(∧
vj∈v x

vj
j

)
, with S1

n =
{∏

vi∈v vi = +1
}
,

gn =
∨
v∈T 1

n

(∧
vj∈v x

vj
j

)
, with T 1

n =
{∏

vi∈v vi = −1
}
.

DNFs for fn and gn under an even number n is defined below.

fn =
∨
v∈S1

n

(∧
vj∈v x

vj
j

)
, with S1

n =
{∏

vi∈v vi = −1
}
,

gn =
∨
v∈T 1

n

(∧
vj∈v x

vj
j

)
, with T 1

n =
{∏

vi∈v vi = +1
}
.

16 Yadi Zhong

Although fn, gn are hard functions with the most complex structures in DNF, they
have equivalent, and efficient representations in algebraic normal form (ANF). Monomials
xv in fn are from

{∏
vi∈v vi = +1

}
, which can be translated to ANF with fn =

∑
i∈[n] xi.

On the other hand, Monomials xv in gn satisfies
{∏

vi∈v vi = −1
}

, which is equivalent
to ANF of gn =

∑
i∈[n] xi + 1. Therefore, we include ANF representations of fn, gn to

improve broadcast encryption of [DA24]. Our proposed AD-BE includes the following
four algorithms.

Setup. Broadcaster first generates master key kPRF from pseudorandom function F with
security parameter 1λ. Since pseudorandom function F is a keyed function, key k is sam-

pled uniformly at random with source R, k
$←− R, which can be discarded in a secure

manner once generation of kPRF is complete. Each user is uniquely identified by a l-
bit binary. Broadcaster produces 2l + 2 distinct labels with identical 2l labels as before,
{k0i }i∈[l], {k1i }i∈[l], defined as concatenation of binary bits kji = i||j, i ∈ [l], j ∈ {0, 1}. Two
additional labels, af , ag are selected at random and distinct from {k0i }i∈[l], {k1i }i∈[l].

As for example in [DA24], emitter has 2l + 2 = 8 labels, {k01, k01, k02, k02, k03, k13, af , ag},
when n = 8, l = 3.

Key Generation. When user u join this broadcast system, emitter provides user u a set
of key materials, ku ← FkPRF

(||i∈Skui
i) based on of u = u1||u2|| . . . ||ul−1||ul with ordered

(lex) list S ⊂ [l]. User u is also provided with an additional key kaf ← FkPRF
(af) if∑

i∈[n] ui = 1. If not, it must be true that u satisfies
∑
i∈[n] ui + 1 = 1 and user has an

additional key of kag ← FkPRF
(ag) instead.

User u = 5 = 1012 from n = 8 would receive the following key materials in ku and kag :

FkPRF
(k11); FkPRF

(k02); FkPRF
(k13);

FkPRF
(k11||k02); FkPRF

(k11||k13); FkPRF
(k02||k13);

FkPRF
(k11||k02||k13); FkPRF

(∅). kag = FkPRF
(ag)

Encrypt. Emitter possesses a list of valid users before broadcasting a message m. Broad-
caster encrypts m with a ephemeral key ke with Epayload(ke,m). Key ke is available to
authorized users exclusively. This list of authorized user AU ⊂ [n] is represented by
Boolean function y,

y(u) =

{
1, if u ∈ AU
0, if u /∈ AU

Emitter first check when y contains fn or gn as its subset or not. If it does include fn (or
gn), emitter first transform y by updating the corresponding AND monomials in DNFs of
fn (or gn) as don’t-cares. Then, function y is reduced with standard minimization tech-
niques in Boolean algebra, i.e., Quine-McCluskey method to obtain the minimal DNF
representation of function y. Header h contains this optimal representation, along with
two 1-bit indicators for fn and gn. Ciphtertext c contains Epayload(ke,m) and multiple en-
cryptions of ephemeral key ke under valid key materials for authorized users AU , including
(possibly) an additional encryption of Ekaf

(ke) if fn ⊂ y or Ekag
(ke) if gn ⊂ y.

Decrypt. Decryption process is similar to Dupin and Abelard [DA24]. Recipient u also
examines 1-bit indicators for fn, gn. If either function fn, or gn is used, receiver checks
whether he/she has corresponding key kaf or kag . If receiver do possess such key, he/she
can also use it to obtain ephemeral key ke and decrypt message m.

For any intended user, it is guaranteed to correctly decrypt ephemeral key ke and
message m. On the other hand, if user z is revoked, then (i) function y on input z has

ADC-BE 17

output f(z) = 0 instead; (ii) header h does not contain any binary patterns of key labels
which user z received, nor does it contain the corresponding fn or gn if z has its relevant
key; (iii) ciphertext c has no encryption of ephemeral key ke that user z could decrypt; and
(iv) he/she cannot obtain ke nor message m except with negligible probability. Therefore,
this broadcast encryption scheme has full collusion resistance as none of the revoke user
possess any valid keys for decrypting ke.

4.2 AC-BE: Broadcast Encryption from Optimized Boolean Functions with
ANF, CNF

Hard functions fn, gn has the following CNFs for any positive integer n.

fn =
∧
v∈S0

n

(∨
vj∈v x

vj
j

)
, with S0

n =
{∏

vi∈v vi = +1
}
,

gn =
∧
v∈T 0

n

(∨
vj∈v x

vj
j

)
, with T 0

n =
{∏

vi∈v vi = −1
}

;

Although hard functions fn, gn has complex representations in CNF, their equivalent
representations in ANF is much straightforward, fn =

∑
i∈[n] xi and gn =

∑
i∈[n] xi + 1.

We include ANF representations of fn, gn as well as CNF representations to built AC-BE,
a complement of AD-BE, where output are focused on 0s instead. It contains the following
algorithms.

Setup. Setup procedure is identical to AD-BE. However, the 2l+2 labels, including af , ag,
are selected completely separate (and preferably from random) from those in AD-BE. AC-
BE and AD-BE do no share any labels of same value, preventing possible collusions from
revoked users.

Key Generation. Setup procedure is identical to AD-BE and we refer Section 4.1 for
details. User u also receives kaf if

∑
i∈[n] ui = 0; or kag if

∑
i∈[n] ui + 1 = 0. Please note

that the set of possible keys for AC-BE does not reuse any keys from AD-BE, where labels
from the previous step are different from AD-BE.

Encrypt. Encryption step differs from AD-BE by representing AU with CNF representa-
tion of Boolean function y with output 0 for authorized receiver and output 1 for revoked
ones.

y(u) =

{
0, if u ∈ AU
1, if u /∈ AU

Emitter then confirm if y contains the CNFs of fn or gn as its subset. If it does have fn
(or gn), emitter first transform y by updating the corresponding OR monomials in CNFs
of fn (or gn) as don’t-cares. Then, function y is reduced with standard minimization
techniques to a minimal CNF representation instead. Header h contains this optimal
CNF, along with two 1-bit indicators for fn and gn. Ciphtertext c contains Epayload(ke,m)
and multiple encryptions of ephemeral key ke under valid key materials for authorized
users AU , including (possibly) an additional encryption of Ekaf

(ke) if fn ⊂ y or Ekag
(ke)

if gn ⊂ y.

Decrypt. Decryption process is almost identical to AD-BE. Recipient u additionally
checks from indicators for fn, gn. If either function fn, or gn is used, receiver checks
whether he/she has corresponding key kaf or kag . If receiver do possess such key, he/she
can also use it to obtain ephemeral key ke and decrypt message m.

18 Yadi Zhong

Any intended recipient can decrypt ephemeral key ke and message m. Revoked user z,
however, has (i) evaluation of f(z) = 1 instead; (ii) none of binary patterns of key labels
which user z received is included in header h, which may contain the key (either kaf or kag)
that user z does not have; (iii) no encryption of ephemeral key ke that user z could decrypt;
and (iv) he/she cannot obtain ke nor message m except with negligible probability. In the
like manner, this broadcast encryption scheme has full collusion resistance as none of the
revoke user a single valid keys for decrypting ke.

4.3 Bandwidth Reduction in ADC-BE

The proposed ADC-BE allows significant reduction of bandwidth which could not be
achieved in [DA24] before. If fn is the Boolean function representing list AU , we achieve
a bandwidth of a single encryption of the ephemeral key compare to the previous n/2
encryptions of [DA24]. The identical reduction is true for gn, where also one encryption
of ephemeral key ke is sufficient in either proposed AD-BE, or AC-BE, in contrast to
the n/2 encryptions of [DA24]. In addition, if number of revoke users r are fewer than
n/2, any function y with fn (or gn) as its subset can include the encryption of ephemeral
key ke with the corresponding key kaf or kag to account for the n/2 monomials of DNF
for AD-BE, or OR clauses in CNF for AC-BE, and then solve the minimal expression of
y replacing these n/2 clauses as don’t cares. It should be noted that this optimization
approach can lead to less time for Boolean optimizations as fewer minterms (for DNF) or
Maxterms (CNF) are included. Thus, inclusion of fn and gn in ANF representations offers
further optimization of the encryption bandwidth for broadcast encryption schemes.

5 Conclusion

In this paper, we target the worst-case upper-bound in bandwidth requirement of the
recent work of Dupin and Abelard [DA24], which achieve full collision resistance for any
number of revoked r users from the complete set of n users. We first analyze the worst-
case complexity of Dupin and Abelard and identify the unique patterns in authorized
user list. Then, we provide a new insight to lower complexity cost in broadcast bandwidth
bottleneck with different representation of Boolean functions. In particular, the worst-case
complexity of broadcast encryption bandwidth can be drastically improved when applying
combined forms for Boolean functions while preserving the security guarantees in [DA24].
Our proposed approaches AD-BE and AC-BE can significantly optimize this worst-case
complexity from n/2 down to 1 for a system of n users. In addition, we provide equivalent
transformation of the broadcast encryption construction of disjunctive formal forms with
its conjunctive normal form counterpart.

Acknowledgements The author thanks God for this research idea and writing.

References

[AI05] Nuttapong Attrapadung and Hideki Imai. Graph-decomposition-based frameworks
for subset-cover broadcast encryption and efficient instantiations. In Bimal K. Roy,
editor, ASIACRYPT 2005, volume 3788 of LNCS, pages 100–120. Springer, Berlin,
Heidelberg, December 2005.

[AK08] Per Austrin and Gunnar Kreitz. Lower bounds for subset cover based broadcast
encryption. In Serge Vaudenay, editor, AFRICACRYPT 08, volume 5023 of LNCS,
pages 343–356. Springer, Berlin, Heidelberg, June 2008.

ADC-BE 19

[AL05] Sarang Aravamuthan and Sachin Lodha. An optimal subset cover for broadcast en-
cryption. In Subhamoy Maitra, C. E. Veni Madhavan, and Ramarathnam Venkate-
san, editors, INDOCRYPT 2005, volume 3797 of LNCS, pages 221–231. Springer,
Berlin, Heidelberg, December 2005.

[AY20] Shweta Agrawal and Shota Yamada. Optimal broadcast encryption from pairings
and LWE. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I,
volume 12105 of LNCS, pages 13–43. Springer, Cham, May 2020.

[BGW05] Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant broadcast encryp-
tion with short ciphertexts and private keys. In Victor Shoup, editor, CRYPTO 2005,
volume 3621 of LNCS, pages 258–275. Springer, Berlin, Heidelberg, August 2005.

[BHMSV84] Robert K Brayton, Gary D Hachtel, Curtis T McMullen, and Alberto L Sangiovanni-
Vincentelli. Logic minimization algorithms for vlsi synthesis. The Kluwer Interna-
tional Series in Engineering and Computer Science, 2, 1984.

[CFN94] Benny Chor, Amos Fiat, and Moni Naor. Tracing traitors. In Yvo Desmedt, editor,
CRYPTO’94, volume 839 of LNCS, pages 257–270. Springer, Berlin, Heidelberg,
August 1994.

[CHTV22] Arush Chhatrapati, Susan Hohenberger, James Trombo, and Satyanarayana
Vusirikala. A performance evaluation of pairing-based broadcast encryption sys-
tems. In Giuseppe Ateniese and Daniele Venturi, editors, ACNS 22International
Conference on Applied Cryptography and Network Security, volume 13269 of LNCS,
pages 24–44. Springer, Cham, June 2022.

[CW24] Jeffrey Champion and David J. Wu. Distributed broadcast encryption from lattices.
In TCC 2024, Part III, LNCS, pages 156–189. Springer, Cham, November 2024.

[DA24] Aurélien Dupin and Simon Abelard. Broadcast encryption using sum-product de-
composition of boolean functions. CiC, 1(1):18, 2024.

[FN94] Amos Fiat and Moni Naor. Broadcast encryption. In Douglas R. Stinson, editor,
CRYPTO’93, volume 773 of LNCS, pages 480–491. Springer, Berlin, Heidelberg,
August 1994.

[GLW23] Junqing Gong, Ji Luo, and Hoeteck Wee. Traitor tracing with N1/3-size ciphertexts
and O(1)-size keys from k-Lin. In Carmit Hazay and Martijn Stam, editors, EU-
ROCRYPT 2023, Part III, volume 14006 of LNCS, pages 637–668. Springer, Cham,
April 2023.

[GQWW19] Rishab Goyal, Willy Quach, Brent Waters, and Daniel Wichs. Broadcast and trace
with N ε ciphertext size from standard assumptions. In Alexandra Boldyreva and
Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages
826–855. Springer, Cham, August 2019.

[H̊as90] Johan H̊astad. Pseudo-random generators under uniform assumptions. In 22nd ACM
STOC, pages 395–404. ACM Press, May 1990.

[HS02] Dani Halevy and Adi Shamir. The LSD broadcast encryption scheme. In Moti
Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 47–60. Springer, Berlin,
Heidelberg, August 2002.

[ILL89] Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation
from one-way functions (extended abstracts). In 21st ACM STOC, pages 12–24.
ACM Press, May 1989.

[KMW23] Dimitris Kolonelos, Giulio Malavolta, and Hoeteck Wee. Distributed broadcast
encryption from bilinear groups. In Jian Guo and Ron Steinfeld, editors, ASI-
ACRYPT 2023, Part V, volume 14442 of LNCS, pages 407–441. Springer, Singapore,
December 2023.

[McC56] Edward J McCluskey. Minimization of boolean functions. The Bell System Technical
Journal, 35(6):1417–1444, 1956.

[MM24] Avishek Majumder and Sayantan Mukherjee. Reinventing BrED: A practical con-
struction: Formal treatment of broadcast encryption with dealership. CiC, 1(3):47,
2024.

[NNL01] Dalit Naor, Moni Naor, and Jeffery Lotspiech. Revocation and tracing schemes for
stateless receivers. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS,
pages 41–62. Springer, Berlin, Heidelberg, August 2001.

[NR97] Moni Naor and Omer Reingold. On the construction of pseudo-random permu-
tations: Luby-Rackoff revisited (extended abstract). In 29th ACM STOC, pages
189–199. ACM Press, May 1997.

20 Yadi Zhong

[NTNCI95] Victor P Nelson, H Troy Nagle, Bill D Carroll, and J David Irwin. Digital logic
circuit analysis and design. Englewood Cliffs: Prentice Hall, 1995.

[Pet56] Stanley R Petrick. A direct determination of the irredundant forms of a boolean
function from the set of prime implicants. Air Force Cambridge Res. Center Tech.
Report, pages 56–110, 1956.

[Wee21] Hoeteck Wee. Broadcast encryption with size N1/3 and more from k-lin. In Tal
Malkin and Chris Peikert, editors, CRYPTO 2021, Part IV, volume 12828 of LNCS,
pages 155–178, Virtual Event, August 2021. Springer, Cham.

[Wee22] Hoeteck Wee. Optimal broadcast encryption and CP-ABE from evasive lat-
tice assumptions. In Orr Dunkelman and Stefan Dziembowski, editors, EURO-
CRYPT 2022, Part II, volume 13276 of LNCS, pages 217–241. Springer, Cham,
May / June 2022.

[Wee24] Hoeteck Wee. Circuit ABE with poly(depth, λ)-sized ciphertexts and keys from
lattices. In Leonid Reyzin and Douglas Stebila, editors, CRYPTO 2024, Part III,
volume 14922 of LNCS, pages 178–209. Springer, Cham, August 2024.

