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Abstract. Asynchronous Complete Secret Sharing (ACSS) is a founda-
tional module for asynchronous networks, playing a critical role in cryp-
tography. It is essential for Asynchronous Secure Multi-Party Computa-
tion (AMPC) and, with termination, is widely applied in Validated Asyn-
chronous Byzantine Agreement (VABA) and Asynchronous Distributed
Key Generation (ADKG) to support secure distributed systems.
Currently, there are relatively few statistical secure ACSS protocols that
can guarantee termination, and their communication complexity is rel-
atively high. To reduce communication complexity, we propose a new
multi-receiver signature scheme, ARICP, which supports linear opera-
tions on signatures. Leveraging the ARICP scheme and the properties of
symmetric polynomials, we propose an ACSS protocol that ensures ter-
mination and optimal resilience (t < n/3) with O(n2κ) bits per sharing.
Compared with the best-known result of ACSS protocols that guaran-
tee termination [CP23], the amortized communication complexity of our
protocol is reduced by a factor of O(n).

Keywords: Asynchronous Complete Secret Sharing, · Termination ·
Optimal Resilience.

1 Introduction

Secret sharing (SS) is a foundational cryptographic technique that allows a secret
to be divided into multiple shares and distributed among several parties. The
original secret can only be reconstructed when a sufficient number of these shares
are combined correctly. Within this framework, Verifiable Secret Sharing (VSS)
[CGM+85, GHV22, CD24] extends the functionality of secret sharing, allowing
parties to verify the validity of their shares even in the case of a potentially ma-
licious dealer. Complete Secret Sharing (CSS) further enhances verifiable secret
sharing by ensuring completeness.

Prior research on secret sharing, such as [AKP20, KKK08, FGG+06], has
largely focused on synchronous settings, assuming fixed message delivery times.
However, this approach fails to account for real-world network delays, which
are unpredictable and unbounded. To bridge this gap, Asynchronous Complete
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Secret Sharing (ACSS) protocols have been developed. ACSS accommodates
variable delays, ensuring secure and reliable secret sharing in asynchronous net-
works.

ACSS is known to be the main module used in the design of asynchronous
secure multiparty computation (AMPC) [GLS24]. Furthermore, ACSS protocols
with termination have a wide range of applications, such as Validated Asyn-
chronous Byzantine Agreement (VABA) and Asynchronous Distributed Key
Generation (ADKG). Both VABA and ADKG are crucial for building secure
distributed systems, especially ADKG, which is an important tool for sup-
porting various distributed applications [CFG+23, SLM+23, GLL+22, CPS20,
GJM+21, KMS20].

Current research on statistical ACSS protocols with termination is limited,
with most focusing on protocols that only guarantee output. Moreover, protocols
with termination tend to have high complexity. Under statistical security, the
best-known result [CP23] with both termination and output has an amortized
communication complexity of O(n3κ) bits, while the best-known result [JLS24]
with output but no termination achieves O(nκ) bits. A significant gap in commu-
nication complexity remains between protocols with and without termination.
Addressing this gap is of paramount importance, as it remains an open problem
that invites further exploration and innovative solutions.

1.1 Contributions

Our main contribution is an ACSS protocol with termination and optimal re-
silience t < n/3 that has a communication complexity of O(n2κ)-bit for sharing
N degree-t Shamir shares, where κ is the size of a field element. Our protocol has
lower communication complexity, which partially addresses the problem of the
significant communication complexity gap between protocols with and without
termination.

• ACSS protocols that guarantee termination are widely applicable in various
scenarios, including AMPC, VABA, and ADKG. However, currently, there
are relatively few statistical secure ACSS protocols that can guarantee termi-
nation. We propose an ACSS protocol that guarantees termination and has
broad application prospects.

• We propose a new multi-receiver signature scheme, ARICP, which supports
linear operations on signatures. Unlike the AICP scheme for a single receiver
in [CP23], our ARICP scheme uses random shares to enable multiple rev-
elations without exposing the underlying signature. This holds independent
significance. It not only safeguards the secrecy of the signature but also broad-
ens its applicability to a wider range of scenarios. This advancement is crucial
as it significantly enhances the efficiency of the ACSS protocol.

• To guarantee termination, we use the ARICP scheme and the properties of
symmetric polynomials. This allows honest parties to reconstruct the polyno-
mial in the protocol without requiring assistance from the dealer or continuous
online presence during the reconstruction phase.
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• Compared with ACSS protocols that only guarantee output, ACSS protocols
that guarantee termination typically have higher communication complexity.
Compared with [CP23], which also guarantees termination, our protocol re-
duces the amortized communication complexity by a factor of O(n), thereby
significantly narrowing the gap in communication complexity between ACSS
protocols with and without termination.

We summarize some works under statistical security settings in the asyn-
chronous setting, as shown in Table 1. Where N denotes the number of secrets,
n is the number of parties, κ is the size of a field element, and t is the number
of corrupted parties.The amortized communication complexity is the communi-
cation complexity divided by the number of secrets.

Table 1: Works under statistical security settings.

Work Optimal
Resilience

Communication
Complexity

Amortized
communication
complexity (N >> 1)

Guarantee
Termination

[JLS24] t < n/3 O(Nnκ+ n12κ2) bits O(nκ) bits No
[CP23] t < n/3 O(Nn3κ+n4κ2+n5) bits O(n3κ) bits Yes
this work t < n/3 O(Nn2κ+n4κ2+n4logn)

bits
O(n2κ) bits Yes

1.2 Related Works

In other security settings, the problem of designing communication-efficient ACSS
protocols has also been extensively studied.

In the perfect security setting, it is known that t < n/4 is necessary, as
demonstrated in the work [BCG93]. Subsequent research, such as [SR00, BH07,
CHP13, PCR15, CP17], has progressively improved the communication efficiency
of perfect ACSS in this setting. Among these, the best-known result [CP17] has
achieved a linear communication complexity of O(nκ) bits per sharing.

In the computational security setting targeting t < n/3 corrupt parties, the
work [AJM+23] relies on discrete logarithm assumption and pairings to achieve
an ACSS protocol with linear communication complexity. Additionally, the work
[AVY24] eliminates the need for a trusted setup, attempting to use the discrete
logarithm assumption and the random oracle (RO) model to achieve an amor-
tized communication complexity of O(nκ) bits. These works have not only made
progress in communication efficiency but also successfully implemented ACSS
protocols with termination.

2 Preliminaries

2.1 Notations

First, we introduce the basic notations.
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For two integers i ≤ j, the set [i, j] represents the sequence {i, i+ 1, . . . , j}.
Similarly, for any integer n ∈ [N ], the set [N ] denotes {1, 2, . . . , N}. The security
parameter is represented by κ. The symbol F denotes a finite field, specifically
|F| = 2Θ(κ).

We assume that n is a polynomial function of κ, i.e., n = poly(κ). Addition-
ally, negl(κ) represents a negligible function of κ, meaning it is smaller than any
poly(κ)/2κ for sufficiently large κ. All polynomials discussed are defined over a
field F. A polynomial of degree d is expressed as f(x) = β0 + β1x+ · · ·+ βdx

d,
with each coefficient βi being an element of F. A bivariate polynomial of degree
(c, d) is given by F (x, y) =

∑c
i=0

∑d
j=0 ri,jx

iyj , where each coefficient ri,j is also
an element of F.

2.2 Definitions

In this section, we briefly introduce the basic definitions involved in this paper.

Definition 1. (Shamir Secret Sharing[Bla79,Sha79]) A degree-t (or 2t) Shamir
sharing is a method of distributing a secret value s among n parties in such a
way that any t+1 (or 2t+1) of them can reconstruct the original secret, but no
fewer can. This is achieved by using a polynomial f(x) of degree at most t (or 2t)
over a finite field F, where the secret value s is the evaluation of the polynomial
at a specific point α0, and each party Pi holds a share si, which is the evaluation
of the polynomial at another distinct point αi, where i ∈ [n].

Definition 2. (Packed Secret Sharing[FY92]) A degree-t packed secret shar-
ing is a method of distributing d+1 secret value s = (s0, . . . , sd) among n parties
in such a way that any t+1 of them can reconstruct the original secrets, but no
fewer can. This is achieved by using a polynomial f(x) of degree at most t over a
finite field F, where the secret value sj = f(α−j) for each j ∈ [d] and s0 = f(α0)
, and each party Pi holds a share f(αi), i ∈ [n].

The definitions of AVSS and ACSS will be provided in Appendix A.

Definition 3. (Symmetric Polynomial[BS17, CTM+05]) A symmetric poly-
nomial is a special type of multivariate polynomial. If a polynomial P (x1, . . . , xn)
in n variables remains unchanged under any permutation of its variables, then
it is called a symmetric polynomial. Specifically, for any permutation σ of n
elements, the following holds: P (xσ(1), . . . , xσ(n)) = P (x1, . . . , xn).

2.3 The Security Model

In our work, we follow the security model in [JLS24, CP23].

The UC Framework. We utilize the UC framework, introduced by Canetti
[Can01], to define the security standards for our protocols. These standards are
based on the contrast between the real and ideal world models [Can00]. To put
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it simply, we consider a protocol secure if its execution in the real world can be
simulated in the ideal world.

The above provides a high-level description of the UC framework. The com-
plete formal details will be provided in Appendix A.1.

2.4 Agreement Primitives

We need an A-Cast protocol to support message broadcasting in asynchronous
networks. According to [Bra84], broadcasting an `-bit message requires O(n2`)
bits of communication.

Additional definitions of the consistency primitives underlying the protocol
have been provided in Appendix A.

3 Technical Overview

In this section, we provide a high-level overview of the main techniques used in
the construction of ACSS.

We utilize the AICP scheme introduced in [CP23] to propose a multi-receiver
linear signature scheme ARICP. Using this ARICP scheme and the properties
of symmetric polynomials, the ACSS protocol we construct can achieve termi-
nation.

3.1 Overview of AICP

In this part, we briefly introduce the AICP scheme and discuss how to construct
an ACSS protocol using this scheme.

Overview of Asynchronous Information-Checking Protocol (AICP).
The AICP concept, first introduced in [PCR09], operates as a signature protocol
among a sender Sd, an intermediary I, and a receiver R. It allows Sd to send and
authenticate a message to I, who forwards it to R. Upon receiving the message
and its signature, R can verify its origin as Sd. Importantly, the amortized
communication complexity of AICP is O(1) bits per message bit, matching the
cost of direct transmission.

We encode the message sent by Sd to a vector s ∈ FL. At a high level, the
previous AICP [PCR09] is achieved by the following three steps.

• Step 1: The sender Sd samples a random polynomial f(x) of degree-
L+ tκ, where the highest L coefficients form the vector s. For each party Pi,
Sd randomly selects κ elements αi1, . . . , αiκ from field F and computes their
corresponding verification points (αi1, f(αi1)), . . . , (αiκ, f(αiκ)) on f(x). Then,
Sd sends f(x) to I and distributes the verification points to each party.

The polynomial f(x) together with the verification points can be considered
as a signature on the vector s. However, the verification points sent by certain
party (verifier) may not be consistent with the polynomial, so I needs to check
for consistency to determine whether to accept the polynomial of the sender Sd.
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• Step 2: After each verifier receives verification points from the sender Sd,
he randomly divides into two sets of the same size and sends one of the sets of
points to the intermediary I. When the intermediary I receives a polynomial
f(x) from the sender Sd, I waits to receive the sets of verification points
from each verifier. I accepts the polynomial from Sd if the set of verification
points of at least 2t+ 1 different verifiers is on f(x).

Since each verifier’s points are randomly divided into two parts of the same
quantity, if one part is correct, then the other part will be correct as well with
a high probability.

• Step 3: When I accepts f(x), I sends f(x) to the receiver R. Each
verifier sends R of the remaining set of verification points. If at least one of
the verification points sent by at least t+ 1 verifiers is on the f(x) received
from I, then R accepts f(x).

When R accepts f(x), R assumes that the f(x) received from I is indeed
from the sender Sd. I can fudges the polynomial f(x) only if I guesses correctly
at some verification point by some honest verifier. However, the field F is large
enough that the probability of I guessing correctly is negligible.

From AICP Towards AVSS. In [CP23], an AVSS protocol is constructed
using the AICP scheme. The basic steps of the entire protocol are as follows:

• Step 1: The Dealer D first encodes the secret share [s]t into a bivariate
polynomial F (x, y) of degree-(t, t) with randomness, such that the secret s is
stored in F (α0, α0). The goal is for each party Pi to learn fi(x) = F (x, αi)
and gi(y) = F (αi, y). First, D distributes column polynomial to each party.
Then, each party Pi signs the values of the column polynomial and publicly
broadcasts the issuance of signatures to D by broadcasting SCi message.

When the setM, consisting of n−t parties, has each party send a signature to
the dealerD, all parties move to the next phase. To ensure all parties agree on the
setM, the dealer D must broadcast this set. The column polynomials of the first
t+1 honest parties in the setM fully determine a bivariate polynomial F (x, y).
When D is honest, this bivariate polynomial matches the one D possesses.

• Step 2: D sends row polynomial fj(x) to each Pj , j ∈ [n]. In addition, for
each Pi ∈M,D acts as an intermediary for the AICP and sends the signature
gi(αj) = fj(αi) to Pj . Each Pj needs to verify that fj(αi) does come from
sender Pi for all Pi ∈ M. If true, Pj accepts fj(x) and broadcasts OKPj .
The sharing phase ends when 2t + 1 parties accept their row polynomial.
The existence of the signature guarantees that the t-th polynomial fj(x)
assigned by D to Pj is indeed the j-th row polynomial, lying on the bivariate
polynomial submitted by D.

Let W represent the set of parties that have accepted their row polynomials.
Owing to the inherent properties of the AICP, for each honest party Pi ∈ M
and each honest party Pj ∈ W, the condition gi(αj) = fj(αi) holds true.
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• Step 3: To enable a party Pk to reconstruct the bivariate polynomial
F (x, y), each party Pj ∈ W sends their row polynomial fj(x) along with
the signatures from the parties in the set M. Provided that the signatures
from the parties in the setM are verified as legitimate, Pk will accept fj(x).
Given thatW encompasses at least t+1 honest parties, Pk will consequently
accumulate no fewer than t + 1 row polynomials, thereby facilitating the
reconstruction of the entire bivariate polynomial F (x, y).

The AVSS protocol requires communication of at least O(n2κ) bits.

From AVSS Towards ACSS. However, in such a AVSS protocol, there is a
possibility that a certain honest party may not obtain their share. To achieve
completeness, it is necessary to execute n instances of the AVSS protocol. Thus,
the protocol’s total communication complexity is at least O(n3κ) bits. In this
ACSS protocol, honest parties are allowed to terminate the construction after
getting their shares.

Asynchronous Packed Information-Checking Protocol (APICP) scheme in
[JLS24] extends the AICP scheme to enable checking linear combinations of
signatures and revealing valid signatures multiple times to different receivers.
However, relying solely on the APICP scheme, a malicious dealer may withhold
signature polynomials from some honest parties, failing to meet completeness.
Therefore, [JLS24] uses the authentication tag from [BFO12] to remove dealer
D from the completion phase. However, this keeps all honest parties online to
generate tags for those still reconstructing, thereby failing to satisfy termination.

3.2 Our ACSS Protocol

We propose an ARICP scheme, which can be regarded as a signature scheme
for multiple receivers and with linear signatures, and using this scheme and
the properties of symmetric polynomials, we construct an ACSS protocol with
termination and lower communication complexity.

Asynchronous Random Information-Checking Protocol (ARICP). The
key improvement from AICP to APICP is the ability to allow multiple receivers
to receive signatures from the same sender. This step greatly assists honest par-
ties in determining the same bivariate polynomials, thus avoiding the need to
execute n instances as in [CP23], effectively reducing communication complex-
ity. However, since there are multiple receivers involved, it is necessary to ensure
that the sender’s signature does not reveal the sender’s column polynomials.
In [JLS24], although the additional authentication tag technique can make the
protocol satisfy completeness, it requires each party to generate authentication
tags online for other parties, thus the protocol does not guarantee termination.
In this work, we use random polynomials as mask to protect the sender’s column
polynomial, enabling multiple receivers to receive the sender’s signature. Even
if the adversary corrupts t parties, they cannot know the sender’s true column
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polynomial. When reconstructing the row and column polynomials, the proper-
ties of symmetric polynomials generated by random polynomials can ensure that
the protocol guarantees both completeness and termination.

At a high level, our ARICP scheme proceeds through the following steps:

• Step 1: Each party receives the column polynomials, random row and
random column polynomials from D as messages that need to be signed,
and stores them into three high-degree polynomials respectively, selects some
random points from the polynomials to send to each party (verifier), and
sends the three high-degree polynomials {H(j)(y)}j∈[3] to I. Meanwhile, each
verifier randomly divides points into n + 1 sets of the same size and sends
the (n+ 1)-th set of points to I.

• Step 2: When I receives the high-degree polynomials from the sender
Sd, then verifies whether the polynomials sent by Sd are consistent with
the points from each verifier.When at least 2t + 1 verifiers’ points pass the
verification, the intermediary I computes the sum of the first polynomial
and the second polynomial, and the sum of the second polynomial and the
third polynomial to generate two signature polynomials. Then, the signature
polynomials are revealed to the receiver R. Moreover, each verifier computes
the remaining verification points in the same manner and sends a new set of
verification points to R.

• Step 3: When R receives the signature polynomials sent by I, then ver-
ifies whether the polynomials sent by I are consistent with the points from
each verifier. If at least one of the verification points sent by at least t + 1
verifiers pass the verification, then R accepts the signature polynomials.

In this ARICP signature scheme, the signature polynomials that I reveals
to R masks the column polynomials of Sd. Moreover, in multiple reveals, the
intermediary I cannot tamper with the signature polynomial since R receives
verification points from the verifier, i.e., if I sends signature polynomials that are
not consistent with the polynomials relation of Sd, then R will not accept them.
Finally, for the same sender Sd, each receiver R receives the same signature
polynomials.

Towards ACSS. The ACSS protocol with termination that we want should
satisfy the following three conditions:
1. When the dealer is honest, the protocol must guarantee that all the hon-

est parties will eventually receive their shares of the degree-t Shamir secret
sharing.

2. When the dealer is corrupted, either all honest parties eventually get a valid
degree-t Shamir secret sharing or no honest party gets his share.

3. Regardless of whether the dealer is corrupted or honest, when one honest
party completes the sharing, all honest parties will also complete the sharing,
i.e., there is no need for the honest party to be online all the time, and the
honest party can go offline when he gets his share.
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After D sends the column polynomials, random row and random column
polynomials to each party, the protocol proceeds with the following steps:

• Step 1: While performing the signature scheme, we design each party to
verify whether the random row and column polynomials sent by the dealers
are on the same bivariate polynomial. Thus, each party needs to send a share
of random row and column polynomials to each party. Therefore, honest
parties can verify whether the random row and column polynomials they
receive are on the same bivariate polynomials by consistency checking. For
this, D needs to construct V, {Vj}j∈[n],M sets, where each set size is denoted
at least 2t+1. The random row and column polynomials of the 2t+1 parties
in the setM are on the same bivariate polynomial, and D considers that the
column polynomials received by the parties in the setM are all correct and
valid.

• Step 2: So far, because of the ARICP scheme, it is realized that for the
same sender Sd , each receiver R receives the same signature polynomials.
There are at least t + 1 honest parties in the set M. All honest parties re-
construct two polynomials P,Q in terms of the signature polynomials of the
parties in the set M. Each polynomial Q is the sum of the random bivari-
ate polynomials and the bivariate polynomials with the secret in it. Each
polynomial P is a polynomial denoting a symmetric polynomial representing
the sum of a random column polynomial and a random row polynomial. In
reconstructing the row polynomials, each party checks whether the column
polynomial messages sent by the party in the set M and the random col-
umn polynomial messages received earlier are on each polynomial Q. If so,
the party accepts the column polynomial messages from that party. After
accepting the column polynomial messages and the random column polyno-
mial messages from at least t + 1 parties, the party can reconstruct its own
row polynomials and random row polynomials.

• Step 3: In reconstructing the column polynomials, since there are at least
t+1 honest parties in the setM, each party computes its own random column
polynomials, using each symmetric polynomial P . Interpolation is started
upon receipt of row and random row messages from 2t + 1 parties, and it
is verified whether the random column polynomials formed by interpolation
is the same as the one previously computed. If so, the party accepts the
row, random row messages from those 2t + 1 parties. After accepting the
row polynomial messages and random row polynomial messages from at least
2t+1 parties, each party can reconstruct its own row polynomials and random
row polynomials.

When the dealer is honest, the corrupted parties only know the sum of the
random row and random column polynomials of the honest parties but not the
specific polynomials, the honest parties can verify whether the messages sent by
the corrupted parties are valid or not. When dealer is corrupted, by the ARICP
scheme and the set M, all honest parties get the bivariate polynomials P,Q.
Because it is a definite value, it is difficult for the adversary to go to forge it, so
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all the honest parties can distinguish whether the messages sent by the corrupted
party are valid or not.

Throughout the protocol, when the dealer is honest, all honest parties end
up getting their share of degree-t Shamir secret sharing. When the dealer is
corrupted, either all honest parties end up getting a valid degree-t Shamir secret
sharing, or no honest party gets his share. In addition, when reconstructing row
and column polynomials, on the one hand, each honest party can complete the
reconstruction without the dealer’s assistance. On the other hand, once they have
sent the necessary messages for reconstruction, they can go offline. Therefore,
the ACSS protocol we construct guarantees completeness and termination.

4 The Asynchronous Random Information-Checking
Protocol (ARICP)

In this section, we present the construction of ARICP. Our constructed ARICP
satisfies the linear homomorphism property and multiple revelation.

4.1 The Functionality of ARICP

We present the functionality of ARICP in Fig. 1. ARICP has two phases, the
initialization phase and the revealing phase. Where the revelation phase can be
called at most n times. Before each invocation of the revelation phase, we assume
that all parties agree to the (Request,ARICP, R) request. This will be guaranteed
by our ACSS protocol.

Functionality FARICP

For fixed sender Sd and intermediary I :

Initialization Phase: Init(n, (s(1), s(2), s(3)))

• The trusted party receives the identities of corrupted parties C ⊂ P.
• Upon receiving (Sd, I, n,ARICP, (s(1), s(2), s(3))) from Sd , the trusted party

sends a request-based delayed output (s(1), s(2), s(3)) to I and set count =
n.

Revelation Phase: Rev(R, (s(1), s(2), s(3)))

• Each time the trusted party receives a request (Request,ARICP, R), the
trusted party does the following things and replace count by count − 1,
until count = 1.
a) If I ∈ C,the trusted party waits to receive the instruction from S.

– If S sends Ignore, the trusted party does nothing.
– If S sends Proceed, if Sd ∈ C, the trusted party waits to receive s′, s′

from S and sends a request-based delayed output s′, s′ to the receiver
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R. Otherwise, the trusted party sends a request-based delayed output
(s, s) = (s(1) + s(2), s(2) + s(3)) to the receiver R.

b) If I /∈ C, the trusted party sends a request-based delayed output (s, s) =
(s(1) + s(2), s(2) + s(3)) to the receiver R.

• If R is honest, R outputs the result received from the trusted party. Cor-
rupted parties may output anything they want.

Fig. 1: Ideal functionality for ARICP

4.2 The Instantiation of ARICP

The protocol ΠARICP consists of two sub-protocols ΠInit and ΠRev. Each of the
two sub-protocols is related to the initialization phase and the revelation phase.

Protocol ΠInit

Protocol Init(Sd, I, n, 3, L, κ)
Parameter: The sender Sd, intermediary I, revelation times n, 3 secret
vectors, length of secret vector L and security parameter κ.
1. Sd receives his input (s(1), s(2), s(3)) from the environment.
2. For each verifier Pi ∈ P, Sd selects (n+1)κ random elements in F, denoted

by αi1, . . . , αi(n+1)κ,where i ∈ [n].
3. Sd selects a random degree-(L+ t(n+1)κ) polynomial H(m)(y) whose the
L highest coefficients are elements in s(m), where m ∈ [3].

4. Sd sends H(1)(y), H(2)(y), H(3)(y) to I and verification points zij =

(αij , H
(1)(αij), H

(2)(αij), H
(3)(αij)) to each verifier Pi for j ∈ [(n+ 1)κ].

5. Each verifier Pi randomly divides zij into n+ 1 disjoints sets, where each
set is of size κ, denoted by Zi1, . . . , Zi(n+1).

6. Each verifier Pi sends Zin+1 to I.
7. Upon receiving H(1)(y), H(2)(y), H(3)(y) from Sd, I checks whether these

polynomials are all of degree-(L+ t(n+1)κ). If true, I does the following:
a) Upon receiving Zin+1 from Pi and |Zin+1| = κ, I checks

whether the verification points in Zin+1 are all consistent with
H(1)(y), H(2)(y), H(3)(y).

b) If for at least 2t + 1 verifiers, the above condition is satisfied, then I
accepts the signature H(1)(y), H(2)(y), H(3)(y).

Fig. 2: The protocol of the ΠInit
ΠInit is shown in Fig. 2. In this protocol, the sender Sd stores the vec-

tors s(1), s(2), s(3) in three randomly sampled high-degree polynomials, which is
equivalent to a signature. Then, Sd randomly samples verification points on these
polynomials and distributes them to all parties, which are equivalent to verifiers.
At the same time, Sd sends polynomials to the intermediary I. Upon receiving



12 Y.Cai et al.

verification points from Sd, each verifier selects a set of verification points with
set size κ and sends this set to the intermediary I. When I receives these poly-
nomials (signatures), I verifies whether there are at least 2t+ 1 verifiers whose
sets of verification points are on these polynomials. If true, I accepts these poly-
nomials, which is equivalent to I accepting the vectors over these polynomials.
The communication complexity of this protocol is O(Lκ+ n2κ2) bits.

Protocol ΠRev

Protocol Rev(I,R, count, n, L, κ)
Parameter: The intermediary I, receiver R, counter count, revelation times
n, secret vector length L and security parameter κ.
1. If I accepts the signature H(1)(y), H(2)(y), H(3)(y) from Sd, he sends this
H(y) = H(1)(y) +H(2)(y), H(y) = H(2)(y) +H(3)(y) to R.

2. Each verifier Pi sends Z̃icount = {(αij , H(1)(αij) + H(2)(αij), H
(2)(αij) +

H(3)(αij))}zij∈Zicount to R, so |Z̃icount| = κ.
3. R dose the following:

a) Upon receiving Z̃icount from Pi and |Z̃icount| = κ, R checks whether
there exists at least one point (αij , βij,1, βij,2) ∈ Z̃icount satisfiedH(αij) =

βij,1 and H(αij) = βij,2.
b) If for at least t + 1 verifiers, the above condition is satisfied, then R

accepts the signatureH(y), H(y). Let s, s respectively be the L highest
coefficients of H(y), H(y), R outputs s, s.

Fig. 3: The protocol of the ΠRev
ΠRev is shown in Fig. 3. In this protocol, the intermediary I sends the sum

of the first polynomial and the second polynomial, and the sum of the second
polynomial and the third polynomial to the receiver R. Each verifier processes
the verification points in the same additive manner and sends κ verification
points to the receiver R. R then checks if the points of at least t + 1 verifiers
satisfy the requirement that there exists at least one verification point on the
polynomials. If true, R accepts the polynomial received from I. This is equivalent
to R believes that the polynomials received from I are from the sender Sd. The
protocol is executed at most n times in each ARICP instance. It is equivalent
to each receiver R receives the same signature polynomials from I for the same
sender Sd. The communication complexity of this protocol is O(Lκ+n2κ2) bits.

Protocol ΠARICP

Parameter: The sender Sd, intermediary I, counter count, revelation times
n, secret vector length L and security parameter κ.

Initialization Phase: Init(n)

• All parties participate in ΠInit.
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• All parties initialize a counter count = n.

Revelation Phase: Rev(R)

• All parties participate in ΠRev with inputs R, and replace count by count−
1.

Fig. 4: The protocol of the ΠARICP
ΠARICP is shown in Fig. 4. Its communication complexity is O(Lnκ+ n3κ2)

bits. we will give a detailed complexity analysis in Appendix B.

Theorem 1. The protocol ΠARICP realizes FARICP with statistically security and
O(Lnκ+ n3κ2)-bit communication.

We prove the theorem in Appendix B.

5 The Asynchronous Secret Sharing Protocol (ACSS)

In this section, we give our ACSS protocol ΠACSS with termination and its
communication complexity.

5.1 The Functionality of ACSS

In this part, We give the functionality of ACSS in Fig. 5. The Dealer is al-
lowed to send degree-t sharing polynomials q(1)(x), . . . , q(N)(x) to FACSS. If the
polynomials are valid, FACSS will distribute the shares to the honest parties.

Functionality FACSS

Public Input: (α0, α1, . . . , αn), N.
Upon receiving (Dealer,ACSS, q(1)(·), q(2)(·), . . . , q(N)(·)) from D ∈ P, the
trusted party does the following:
1. If all the polynomials q(1)(·), q(2)(·), . . . , q(N)(·) are degree-
t, the trusted party sends an request-based delayed output
q(1)(αi), q

(2)(αi), . . . , q
(N)(αi) to each party Pi ∈ P.

2. If any of the q(1)(·), q(2)(·), . . . , q(N)(·) is not a degree-t polynomial, the
trusted party does nothing.

Fig. 5: Ideal functionality for ACSS

5.2 The Instantiation of ACSS with termination

The ACSS protocol ΠACSS consists of three sub-protocols ΠSh,ΠVer and ΠComp.
Each of these three sub-protocols is related to Sharing Phase, Verification Phase
and Completion Phase.
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Protocol ΠSh

Parameter: All parties agree on distinct public elements
α−t, . . . , α−1, α0, α1, . . . , αn in field F, L′ polynomial. Let FARICP(Sd, I)
denote FARICP with sender Sd and intermediary I, and let L denote the
vector length in FARICP.
Initialization: Let L′ = L/n, be the number of polynomials packed in a
single vector. Let N = (t+ 1)L′, be the number of input polynomials. Let n
will be the number of revelations in FARICP.

Sharing Phase

Distributing column polynomials and random polynomials: Upon
receiving the input q(1)(·), . . . , q(N)(·) from environment, for each k ∈ [N ],
the dealer D compute dk/(t+ 1)e = `, r ≡ k − 1 (mod t+ 1), so ` ∈ [L′] and
r ∈ [0, t]. Dealer does the following:
For each ` ∈ [L′]:
1. D selects a random degree-(t, 2t) bivariate polynomial F (`)(x, y), s.t.
F (`)(x, α−r) = q(`)(x) for each r ∈ [0, t].

2. D selects a random degree-(t, 2t) bivariate polynomial R(`)(x, y) and
R(`)(x, y) 6= F (`)(x, y).

3. For i ∈ [n], D sends the column polynomials g(`)i (y) = F (`)(αi, y), random
column polynomials z(`)i (y) = F (`)(αi, y) and random row polynomials
w

(`)
i (x) = F (`)(x, αi) to each Pi ∈ P.

Signing the polynomials and distributing share of random polyno-
mials: Each Pi ∈ P does the following:
For each ` ∈ [L′]:
1. Wait to receive {g(`)i , z

(`)
i (y), w`i (x)}`∈[L′] from D.

2. If {g(`)i , z
(`)
i (y)}`∈[L′] are all of degree-2t and {w(`)

i (x)} are all of degree-t,
Pi broadcasts OKi.

3. Send z(`)i (αj), w
(`)
i (αj) to Pj , each j ∈ [n].

4. Set sign(`)i,1 = (g
(`)
i (α1), . . . , g

(`)
i (αn)), sign

(`)
i,2 = (z

(`)
i (α1), . . . , z

(`)
i (αn))and

sign
(`)
i,3 = (w

(`)
i (α1), . . . , w

(`)
i (αn)). Then the vector sign∗i,m =

(sign
(1)
i,m, . . . , sign

(L′)
i,m ) for each m ∈ [3] is a vector of size n · L′ = L.

5. Send (Init,ARICP, n, (sign∗i,1, sign
∗
i,2, sign

∗
i,3)) to FARICP(Pi, D).

6. Upon receiving z
(`)
j (αi), w

(`)
j (αi) from Pj , check whether z

(`)
j (αi) =

w
(`)
i (αj) and w

(`)
j (αi) = z

(`)
i (αj), if both true, Pi broadcasts iAMj.

Preparing the Vj sets and V set: D does the following:
For each ` ∈ [L′]:
1. Initialize sets Vj ,V to ∅, each j ∈ [n].
2. Upon receiving iAMj from Pi, include Pi to Vj and broadcast Vj when
|Vj | ≥ 2t+ 1.

3. Upon |Vj | ≥ 2t+ 1, include Pj to V and broadcast V when |V| ≥ 2t+ 1.
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Identifying the column polynomials and random polynomials:D does
the following:
For each ` ∈ [L′]:
1. Initialize setM to ∅, each j ∈ [n].
2. If |M| < 2t+ 1, include Pi into the setM when:

a) Received OKi from Pi and Pi ∈ V.
b) Upon receiving (Pi,ARICP, (sign∗i,1, sign

∗
i,2, sign

∗
i,3)) from

FARICP(Pi, D), respectively verify sign
(`)
i,1(y) = F (`)(αi, y),

sign
(`)
i,2(y) = R(`)(αi, y) and sign

(`)
i,3(y) = R(`)(y, αi) are true.

3. BroadcastM when |M| = 2t+ 1.
Verify the set M: Each parties moves to the next phase if the following
conditions are met:
For each ` ∈ [L′]:
1. Received the setM from D and |M| = 2t+ 1.
2. Received OKh from all Ph ∈M.
3. Received V from D, |V| ≥ 2t+ 1 andM⊆ V.
4. Received Vj from all Pj ∈ V and iAMj from all Pi ∈ Vj , each |Vj | ≥ 2t+1.

Fig. 6: The protocol of the ΠSh
The Sharing Phase ΠSh is shown in Fig. 6. During this phase, the dealer D

first encodes t + 1 degree-t polynomials into each degree-(t, 2t) bivariate poly-
nomial F (x, y). Then, D randomly selects degree-(t, 2t) bivariate polynomials
R(x, y) and each R(x, y) is not equal to F (x, y). D distributes degree-2t column
polynomials of bivariate polynomials F (x, y), degree-2t random column poly-
nomials and degree-t random row polynomials of random bivariate polynomials
R(x, y) to all parties. Each party’s secret share is g(α−t), . . . , g(α0), where g is
his own column polynomial. Each party Pi uses the column polynomials, random
column polynomials and random row polynomials received from D to execute
FARICP, generate signatures and send them to FARICP(Pi, D). At the same time,
each party sends corresponding share of the random row polynomials and ran-
dom column polynomials to each of the other parties. If the share of random row
and column polynomials received by each party Pi from party Pj matches the
random column and row polynomials received by itself from D, then Pi broad-
casts iAMj (i.e., Pi accepts the random information from Pj). If a party receives
polynomials sent by D and the random row and random column polynomials
of that party are on the same bivariate polynomial, then D includes that party
to the set M. When the size of the set M reaches 2t + 1, D broadcasts the
set M. All parties receive the set M set and go to verify it. Disregarding the
communication complexity of ΠARICP, the communication complexity of ΠSh is
O(Lnκ+ n4 log n) bits.

The Verification Phase ΠVer is shown in Fig. 7. In this phase, when party
Pi receives polynomials from D, two bivariate polynomials can be obtained by
using the two signature polynomials revealed by the parties in revelation phase
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in the set M. Each Pi can verify that the sum of the column polynomials and
random column polynomials, and the sum of the random column polynomials
and random row polynomials that he receives from D correspond to the two
bivariate polynomials. Disregarding the communication complexity of ΠARICP,
the communication complexity of ΠVer is 0 bit.

Protocol ΠVer

Verification Phase
For each Pi ∈ P:
1. Upon receiving {g(`)i , z

(`)
i (y), w`i (x)}`∈[L′] from D, {g(`)i , z

(`)
i (y)}`∈[L′] are

all of degree-2t and {w(`)
i (x)} are all of degree-t.

2. Each party sends (Request, Pi,ARICP) from FARICP(Ph, D), for all Ph ∈
M.

3. Upon receiving sign∗h, sign
∗
h from FARICP(Ph, D), for all Ph ∈ M, Pi ac-

cepts the sum of g(`)i (y)`∈[L′], z
(`)(y) and w(`)(y) if the following hold for

each ` ∈ [L′].
a) For each Ph ∈ M, respectively parse sign∗h, sign

∗
h into

sign
(`)
h (y), sign

(`)
h (y), each sign

(`)
h (y), sign

(`)
h (y) is a degree-2t poly-

nomial.
b) There exists a degree-(t, 2t) polynomial Q(`)(x, y) and degree-(2t, 2t)

symmetric polynomial P (`)(x, y) s.t. Q(`)(αh, y) = sign
(`)
h (y) and

P (`)(αh, y) = sign
(`)
h (y) for all Ph ∈M.

c) Check whether Q(`)(αi, y) = g
(`)
i (y) + z

(`)
i (y) and P (`)(αi, y) =

z
(`)
i (y) + w

(`)
i (y)

Fig. 7: The protocol of the ΠVer
The Completion Phase ΠComp is shown in Fig. 8. In this phase, each party

Pi first sends shares of its own column polynomials to the corresponding parties.
Then, Pi uses the sum of the column polynomials and the random column poly-
nomials to verify whether the column polynomial message sent by the parties in
the set M satisfies the sum. If so, Pi accepts the column polynomial message.
Since the setM consists of at least t+1 honest parties, when D is honest, there
are two bivariate polynomials determined by the signature polynomials of the
parties in the set M that necessarily correspond to the polynomials chosen by
D. When D is corrupted, there are two bivariate polynomials determined by the
two signature polynomials of the first t+1 honest parties in the setM. The sum
relation is fixed, and in the Sharing Phase, Pi has received the share of random
column polynomials from the other parties, and the other parties must have to
send correct and fixed column polynomial messages for Pi to accept them. After
Pi accepts at least t+1 column polynomial messages from the parties in the set
M, he can interpolate to get his row polynomials. Of course, at the same time
he can also interpolate to get his random row polynomials.
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Protocol ΠComp

Completion Phase
Reconstructing row polynomials:
For each Pi ∈ P, ` ∈ [L′] do:
1. Each Pi sends g

(`)
i (αj) to Pj , j ∈ [n].

2. Upon Pi receiving g
(`)
j (αi) from Pj , Pi does the following:

a) Check whether Pj ∈M.
b) Check whether g(`)j (αi) + z

(`)
j (αi) = Q(`)(αj , αi), where z

(`)
j (αi) re-

ceived from Pj during the Sharing Phase.
c) If both the above conditions are satisfied, Pi gets his row polynomials

f
(`)
i (x) and random row polynomials w(`)

i (x).
Reconstructing column polynomials:
For each Pi ∈ P, ` ∈ [L′] do:
1. Upon each Pi reconstructing f

(`)
i (x) and w

(`)
i (x), Pi sends f

(`)
i (αj) and

w
(`)
i (αj) to Pj , j ∈ [n].

2. Computing z̃(`)i (y) = P (`)(αi, y)− w(`)
i (y).

3. Upon receiving 2t + 1 different Pj ’s f
(`)
j (αi) and w

(`)
j (αi), Pi does the

following:
a) Simultaneously interpolate two degree-2t polynomials g

(`)
i (y) and

z
(`)
i (y).

b) Check whether z(`)i (y) = z̃
(`)
i (y), if true then accepts g(`)i (y) and

z
(`)
i (y), else return a).

4. Upon accepting z(`)i (y), Pi outputs {g(`)i (αr)}`∈[L′],r∈[−t,0]

Fig. 8: The protocol of the ΠComp
Then, Pi sends its own share of row polynomials and random row polynomi-

als to the corresponding parties and uses the bivariate symmetric polynomials
(the sum of the random row polynomials and the random column polynomials)
obtained in the previous phases to compute the random column polynomials
that it ought to get. When Pi receives row and random row messages from 2t+1
different parties, he goes to interpolate to compute his own column polynomials
and random column polynomials. If the random column polynomials obtained
by interpolation at this moment are equal to the random column polynomials
that Pi is expected to compute itself, then Pi accepts these column polynomials
and random column polynomials. Otherwise, Pi continues with interpolation cal-
culations. Because the sum of the column polynomials and the random column
polynomials is deterministic and valid, when Pi reconstructs the correct random
column polynomials, he will surely get the correct column polynomials at the
same time. Finally, all honest parties can get the corresponding row and column
polynomials with each row and column polynomial on the same bivariate poly-
nomial. In addition, after each honest party sends messages and reconstructs its
own row and column polynomials, it does not need to help other honest parties
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online to reconstruct the polynomials. The communication complexity of the
protocol ΠComp is O(Lκ) bits.

Based on the above construction, we obtain the following theorem.

Theorem 2. Let κ denote the security parameter. For a finite field F of size
2Θ(κ), N degree-t Shamir sharings, a static malicious adversary and t < n/3
corrupted parties, there exists a protocol ΠACSS UC-securely realizes FACSS in
the FARICP-hybrid model with statistical security. The protocol requires a com-
munication of O(Nn2κ+ n4κ2 + n4 log n) bits.

The security proof of this theorem will be given in Appendix C.2, and the
detailed complexity analysis of our ΠACSS will be provided in Appendix C.3.
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A Additional Definitions and Security Model Details

Here, we first provide the formal definitions of AVSS and ACSS.

Definition 4. (Asynchronous Verifiable Secret Sharing (AVSS)
[BCG93, Can96]). Let (Sh,Rec) be a pair of protocols in which a dealer D ∈ P
shares a secret s ∈ F using Sh. We say that (Sh,Rec) is a t-resilient AVSS
scheme with n parties if the following hold for every possible At:
• Termination:

a) If D is honest then each honest party will eventually terminate the protocol
Sh.

b) If some honest party has terminated the protocol Sh, then irrespective of
the behavior of D, each honest party will eventually terminate Sh.

c) If all honest parties have terminated Sh and all honest parties invoke the
protocol Rec, then each honest party will eventually terminate Rec.

• Correctness:
a) If D is honest then each honest party upon completing the protocol Rec,

outputs the shared secret s.
b) If D is corrupted and some honest party has terminated Sh, then there

exists a fixed s ∈ F, such that each honest party upon completing Rec,
will output s, irrespective of the behavior of the corrupted parties. This
property is also known as the strong commitment property and we often
say that D is committed to s.

• Secrecy: If D is honest then the adversary’s view during the protocol Sh
reveals no information about s in the information theoretic sense. In other
words, the adversary’s view is identically distributed for all different values of
s.

Definition 5. (Asynchronous Complete Secret Sharing (ACSS)) In the
ACSS protocol, it specifically adheres to the Completeness Property as outlined
in the following:
• Completeness[PCR09]: If any honest party successfully completes Sh, there
must exist a degree-t polynomial P such that P (0) equals the initial secret s,
and each honest party will ultimately obtain their respective share si, which is
precisely the value of the polynomial P evaluated at i, i.e., si = P (i). Notably,
when the dealer is also honest, this s is the very secret that the dealer initially
intended to share.

We give the formal definitions of agreement primitives here.
A-cast is an asynchronous broadcast protocol that allows a designated sender

to transmit a message to all parties. If the sender is honest, all honest parties
will eventually receive the message. If the sender is corrupted, any honest party
that terminates with a message ensures that all other honest parties will also
terminate with the same message, albeit with some delay. Bracha’s implemen-
tation of A-cast is efficient and works well even when the sender’s behavior is
unpredictable.We state the formal functionality of A-Cast [Bra84] in Fig. 9. From
[Bra84], broadcasting an `-bit message requires O(n2`)-bit communication.
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Functionality FACast

Upon receiving (sender,ACast,m) from Pj ∈ P, the trusted party sends an
request-based delayed output (Pj ,ACast,m) to each Pi ∈ P.

Fig. 9: Ideal functionality for ACast

A.1 Additional Descriptions of the UC Security Model

Here, we provide the complete formal details of the UC Security Model.

Real World vs. Ideal World. In the context of secure multiparty computa-
tion, the ideal world and real world are two contrasting models used to define
and evaluate the security of protocols.

In the ideal world, a trusted party or ideal functionality F performs compu-
tations on behalf of n dummy parties. The environment Z interacts with these
parties and an ideal adversary S, who cannot observe or delay communications
between honest parties and F . The ideal functionality models the desired be-
havior of the computation, receiving inputs only from the parties and S, and
providing outputs to them. The adversary can instruct the functionality to de-
lay output delivery to honest parties by ignoring their requests, but this delay
is limited to a polynomial number of times, ensuring eventual delivery. This
model simplifies the analysis by assuming a trusted entity can perform secure
computations without the risks of an actual adversary.

In contrast, the real world involves a set of n parties (P1, . . . , Pn), an ad-
versary A, and an environment Z. The environment provides inputs to honest
parties, receives their outputs, and communicates with the adversary. The adver-
sary is fully malicious, capable of corrupting up to t parties (where t < n/3), and
controlling their behavior completely. Parties and the adversary are modeled as
interactive Turing machines, with the protocol proceeding through a sequence of
activations. Parties can perform local computations, output, or send messages,
while the adversary can send messages on behalf of corrupted parties. They have
access to a network of point-to-point (P2P) asynchronous and secure channels,
with the adversary deciding the arrival time of messages. The protocol is con-
sidered secure if it can simulate the ideal world’s outputs in this adversarial
environment, despite the presence of a malicious adversary and without relying
on a trusted party.

The security of a protocol is thus proven by demonstrating that the real-
world execution, even in the presence of a malicious adversary and without a
trusted party, can emulate the secure and efficient computation that would occur
in the ideal world with a trusted entity.

Perfect Security vs. Statistical Security. We assert that a protocol Π
achieves t-security with respect to functionality F if, for every adversary A, there
exists a simulator S within the ideal model that ensures the following: regardless
of the adversary’s control over up to t parties and for any given environment Z,
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it satisfies that the output distributions of the real-world execution and the
ideal-world execution are consistent. We refer to a protocol Π as statistically
t-securely realizing function F if, for any adversary A, there is a simulator S
within the ideal model such that for any adversary managing up to t parties and
any environment Z, it satisfies that the output distributions of the real-world
execution and the ideal-world execution are statistically consistent.(i.e., the total
variation distance between the two distributions is no more than ε = negl(κ)).

The Hybrid Model. In the G-hybrid model, a protocol operates similarly to
the real world, with the exception that participants have the ability to utilize
an ideal functionality G for a particular task. Throughout the execution of the
protocol, interactions with G are conducted as they would be in an ideal setting.
The UC framework ensures that the ideal functionality within a hybrid model
can be substituted by a protocol that securely realizes G in the UC model. This
guarantee is provided by the composition theorem detailed in [Can01, Can20].

Theorem 3. ([Can01, Can20]) Let Π be a protocol that UC-securely realizes a
functionality F in the G hybrid model and let ρ be a protocol that UC-securely
realizes G. Moreover, let Πρ denote the protocol that is obtained from Π by re-
placing every ideal call to G with the protocol ρ. Then protocol Πρ UC-securely
realizes F in the model where the parties do not have access to the ideal func-
tionality G.

Hybrid Arguments. Hybrid arguments are a method of demonstrating that
the outputs of a protocol executed in the real world and simulated in the ideal
world are the same or very close to each other. This approach smoothly transi-
tions from the real-world execution to the ideal-world simulation by constructing
a series of step-by-step transition scenarios (i.e., "Hybrids"). If there is no sig-
nificant difference between the outputs of two neighboring blends at each step
of the transition, then we can assume that the outputs of the real world and
the ideal world are the same, even if there are some minor differences, which are
statistically negligible. In short, the mixing argument demonstrates the similar-
ity between the real world and the ideal world by comparing a series of realistic
situations that are getting closer and closer to the ideal situation.

B Security Proof of The Asynchronous Random
Information-Checking Protocol

Proof. We prove the security of the ARICP protocol by constructing an ideal
adversary S that interacts with the environment Z and ideal functionalities.
S simulates honest parties and runs the real-world adversary A. In the proof,
S communicates with A on behalf of honest parties and ideal functionalities.
Messages between S and Z are forwarded to A and vice versa. When an honest
party needs to send a message, S informs A, which provides the arrival time to
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help S delay outputs in the ideal world. For each request-based delayed output
that needs to be sent to an honest party, we let S delay the output in default
until we say S allows the functionality to send the output. We will show that
the output in the ideal world is identically distributed to that in the real world
by using hybrid arguments.

Construction of the ideal adversary S is as follows. If we say that S delivers
a message, S just tells A that the message has been delivered. S may not be
able to know the context of the message.

When Sd and I are honest:

Simulator S

1. For each corrupted verifier Pi, S randomly samples (n + 1)κ verifi-
cation points z = (α, β1, β2, β3) from F4 and sends these verification
points to Pi on behalf of Sd. Each verification point is corresponding to
(α,H(1)(α), H(2)(α), H(3)(α)), where H(1)(·), H(2)(·), H(3)(·) are the poly-
nomials generated by Sd. S aborts the simulation if the t(n+1)κ verifica-
tion points are the same.

2. For each verifier Pi, if Pi is corrupted, S waits to receive a verification set
Zin+1 from Pi and checks that each point in the verification set is on all
verification points sent by S on behalf of Sd to the corrupted parties. If
Pi is honest, when I receives the verification set of Pi, S considers that I
receives a correct verification set.

3. When I receives at least 2t + 1 correct verification sets, I initializes a
counter count = n, then S allows FARICP to send output to I.

4. For each revelation, if count > 0, S does the following and replaces count
by count− 1.
• If R is honest:

a) For each verifier Pi, if Pi is corrupted, S waits to receive a verifi-
cation set Z̃icount from Pi, then S follows the protocol to check the
verification set from Pi on behalf of R. If Pi is honest, when R re-
ceives the verification set of Pi, S considers that R receives a correct
verification set.

b) Upon receiving t+1 correct verification sets, S allows FARICP to send
the output to R.

• If R is corrupted:
a) S waits to receive s, s from FARICP, when the polynomialsH(y), H(y)

is first revealed, S samples two random degree-L+(n+1)tκ polyno-
mials H(y), H(y) whose L highest coefficients form s, s and all the
(n+ 1)tκ new points are correspond to the polynomials.

b) S reveals H(y), H(y). For each honest verifier Pi, S samples κ ran-
dom elements αi1, . . . , αiκ in F and sends {(αij , H(αij), H(αij))}j∈[κ]
to R on behalf of Pi

Fig. 10: Simulator for the FARICP when both Sd and I are honest
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Hybrid arguments:
Hyb0: In this hybrid, S receives the inputs of honest parties and runs the

protocol honestly. This corresponds to the real-world scenario.
Hyb1: In this hybrid, S first randomly selects (n+1)κ verification points for

each corrupted party, then samples two polynomials H(y), H(y) based on the
(n+ 1)tκ verification points and secret vectors s(1), s(2), s(3). Because the poly-
nomials H(y), H(y) are of degree-L+(n+1)tκ and each {s(m)}m∈[3] in FL, these
verification points are (n + 1)tκ + 1 -wise independent. i.e. For each corrupted
party, the (n + 1)tκ verification points is still indistinguishable from random.
Thus, it is equivalent to changing only the order in which verification points are
prepared for the corrupted party, but not the distribution of verification points.
Therefore, the output distributions of Hyb1 and Hyb0 are consistent.

Hyb2: In this hybrid, S aborts the simulation if the t(n + 1)κ verification
points are the same. Notice that the probability that each two verification points
are the same is 1/|F| and the corrupted parties have (n + 1)tκ points, so the
probability that the verification points are all the same is

ε1 <
1

|F|
· [(n+ 1)tκ]

[(n+ 1)tκ− 1]
<

(n+ 1)2t2κ2

2κ
,

which is negligible in κ. Therefore, the output distributions of Hyb2 and Hyb1

are statistically consistent.
Hyb3: In this hybrid, S doesn’t check the verification points sent by himself

on behalf of I to the honest verifier Pi. Instead, S considers that when I receives
a verification set from Pi then I accepts it. Because Sd and Pi are honest, Pi
always sends a correct verification set and I will always accept it. Therefore, the
output distributions of Hyb3 and Hyb2 are consistent.

Hyb4: In this hybrid, changing the way S checks the verification points of
each corrupted verifier Pi. S checks the verification points are whether on the
verification points sent by Sd to corrupted verifier Pi. The output distribution
changes only if the verification points sent to I by the corrupted verifier Pi are
not among the points sent to verifier Pi by Sd but the verification set is still ac-
cepted by I. Since corrupted parties only have (n+1)tκ verification points, each
{Hm(·)}m∈[3] is random for corrupted parties. So at any element α′ different from
the first element of the (n+1)tκ verification points, (H(1)(α′), H(2)(α′), H(3)(α′))
is uniformly random in F3. Thus, the probability of each corrupted verifier Pi
sends κ fake points (α′, β′1, β′2, β′3) and I accepts them inHyb2 is at most κ/|F3|.
There are at most tκ verification points sent by corrupted parties, so the prob-
ability that the output distribution changes is at most

ε2 <
tκ

23κ
,

which is negligible in κ. Therefore, the output distributions of Hyb4 and Hyb3

are statistically consistent.
Hyb5: In this hybrid, for each revelation, if R is corrupted, S doesn’t sample

{H(m)(y)}m∈[3] at first, but at the first revelation, S randomly samples two
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degree-L+ (n+ 1)tκ polynomials H(y), H(y) whose L highest coefficients form
s, s and all the t(n+1)κ new points of corrupted parties are on the polynomials.
Since {H(m)(y)}m∈[3] is random for R, and thus H(y), H(y) is also random for
R until the first revelation of H(y), H(y). Therefore, the output distributions of
Hyb5 and Hyb4 are consistent.

Hyb6: In this hybrid, for each honest verifier Pi, S doesn’t prepare (n +
1)κ verification points for Pi, but samples κ random elements αi1, . . . , αiκ in
F, and sends {(αij , H(αij), h(α

i
j))}j∈[κ] to R. Since each verification element α

of Pi is randomly selected and each point (α,H(α), H(α)) sent by Pi to R
must also correspond to H(y), H(y) sent by I to R, it does not change the
output distribution. Therefore, the output distributions of Hyb6 and Hyb5 are
consistent.

Hyb7: In this hybrid, for each revelation, if R is honest, S changes the way it
checks points for honest verifiers. S considers that when R receives a verification
set from each honest verifier then R accepts it. Since Sd and I are honest, each
honest verifier also always sends R the correct verification points, and R will
always accept them. Therefore, the output distributions of Hyb7 and Hyb6 are
consistent.

Hyb8: In this hybrid, changing the way R gets s, s. When R receives t + 1
correct verification sets, S sends proceed and (s, s) to FARICP and lets R receive
(s, s) from FARICP. The only difference between Hyb7 and Hyb8 is whether R
receives (s, s) from S or FARICP, but this does not change the output distribution.
Therefore, the output distributions of Hyb8 and Hyb7 are consistent.

Note that Hyb8 is the ideal-world scenario, ΠARICP statistically-securely
computes FARICP.

When Sd and I are corrupted:

Simulator S

1. For each honest verifier Pi, S waits to receive (n + 1)κ verification point
on behalf of Pi. Then S randomly divides them into n + 1 disjoint sets.
Each set is of size κ, denoted by Zi1, . . . , Zin+1. Then S sends Zin+1 to I on
behalf of Pi.

2. S sets s(1) = s(2) = s(3) = 0 and sends (Init,ARICP, (s(1), s(2), s(3))) to
FARICP on behalf of Sd. Here 0 is the zero vector in FL.

3. S initializes a counter count = n.
4. For each revelation, if count > 0, S does the following and replaces count

by count− 1:
• If verifier Pi is honest:

a). S waits to receive H(y), H(y) from I.
b). For each verifier Pi, if Pi is corrupted, S waits to receive a verifi-

cation set Z̃icount from Pi. If Pi is honest, S uses Zicount to compute
Z̃icount. In both cases, S checks whether at least one point in Z̃icount
is consistent with H(y), H(y). If true, S considers that R receives a
correct verification set.
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c). Upon receiving t+1 correct verification sets, let s, s be the L highest
coefficients of H(y), H(y), S sends Proceed and s, s to FARICP and
allows FARICP sends the output to R. When R receives 2t+1 incorrect
verification sets, he sends Ignore to FARICP.

• If R is corrupted: For each honest verifier Pi, S sends Z̃icount to R on
behalf of Pi.

Fig. 11: Simulator for the FARICP when both Sd and I are corrupted
Hybrid arguments:
Hyb0: In this hybrid, S receives the inputs of honest parties and runs the

protocol honestly. This corresponds to the real-world scenario.
Hyb1: In this hybrid, changing the way R gets s, s. When R receives t + 1

correct verification sets, S sends proceed and (s, s) to FARICP and lets R receive
(s, s) from FARICP. The only difference between Hyb0 and Hyb1 is whether R
receives (s, s) from S or FARICP, but this does not change the output distribution.
Therefore, the output distributions of Hyb1 and Hyb0 are consistent.

Note that Hyb1 is the ideal-world scenario, ΠARICP statistically-securely
computes FARICP.

When Sd is honest and I is corrupted:

Simulator S

1. S waits to receive s(1), s(2), s(3) from FARICP. S selects three random degree-
L+ (n+ 1)tκ polynomials H(1)(y), H(2)(y), H(3)(y) whose L highest coef-
ficients form s(1), s(2), s(3).

2. For each corrupted verifier Pi, S randomly samples (n + 1)κ verification
elements. S sends (n+1)κ verification points (α,H(1)(α), H(2)(α), H(3)(α))
to Pi on behalf of Sd.

3. S sends {H(m)(y)}m∈[3] to I on behalf of Sd. For each honest verifier Pi,
S selects κ random elements in F and sends κ verification points Zin+1 =

{(αij , H(1)(αij), H
(2)(αij), H

(3)(αij))}j∈[κ] to I on behalf of Pi.
4. S initializes a counter count = n.
5. For each revelation, if count > 0, S does the following and replaces count

by count− 1:
• If verifier Pi is honest:

a) S receives H ′(y), H ′(y) from I.
b) Let s, s be the L highest coefficients of H(y), H(y), S checks whether

H ′(y) = H(1)(y) +H(2)(y) and H ′(y) = H(2)(y) +H(3)(y). If true,
S sends Proceed and s, s to FARICP. Otherwise, S sends Ignore to
FARICP.

c) If H ′(y) = H(1)(y) + H(2)(y) and H ′(y) = H(2)(y) + H(3)(y) are
true. For each corrupted verifier Pi, S follows the protocol to check
the verification set Z̃icount from Pi on behalf of R. For each honest
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verifier Pi, when R receives the verification set of Pi, S considers
that R receives a correct verification set.

d) Upon receiving t+1 correct verification sets, S allows FARICP to send
the output to R.

• If R is corrupted: For each honest verifier Pi, S samples κ random ele-
ments αi1, . . . , αiκ in F and sends {(αij , H(αij), H(αij))}j∈[κ] to R on behalf
of Pi

Fig. 12: Simulator for the FARICP when Sd is honest and I is corrupted
Hybrid arguments:
Hyb0: In this hybrid, S receives the inputs of honest parties and runs the

protocol honestly. This corresponds to the real-world scenario.
Hyb1: In this hybrid, S changes the way it gets s(1), s(2), s(3). Instead of using

inputs from the honest parties, S waits to receive s(1), s(2), s(3) from FARICP.
The only difference between Hyb1 and Hyb0 is how S gets s(1), s(2), s(3), which
doesn’t change the output distribution. Therefore, the output distributions of
Hyb1 and Hyb0 are consistent.

Hyb2: In this hybrid, for each honest verifier Pi, S doesn’t sample (n+ 1)κ
random elements at first. Instead, when each Pi needs to send Zin+1 or Z̃icount, S
will randomly sample κ elements in F to compute Z̃icount. Thus, it is equivalent
to changing only the order in which random elements are generated for honest
parties, but not the output distribution. Therefore, the output distributions of
Hyb2 and Hyb1 are consistent.

Hyb3: In this hybrid, for each honest R, S adds an addition condition to
check whether H ′(y) = H(1)(y)+H(2)(y) and H ′(y) = H(2)(y)+H(3)(y), where
H ′(y), H ′(y) is received from I. If the condition is satisfied, S sends Proceed and
s, s to FARICP. Otherwise, S sends Ignore to FARICP. The only difference between
Hyb1 and Hyb0 is when H ′(y) 6= H(1)(y) + H(2)(y) or H ′(y) 6= H(2)(y) +
H(3)(y), but S can still receive at least t+1 correct verification sets, that means
S accepts H ′(y), H ′(y) sent by I. i.e. At this time, there exists at least one
verification point in honest verifier Pi’s Z̃icount is corresponding to H ′(y), H ′(y).
For each honest verifier, during each revelation, which is equivalent to I correctly
guessing one of the κ random elements selected by S. The probability that
happens is

ε3 = Pr[S accepts H ′(y), H ′(y) | H ′(y) 6= H(1)(y) +H(2)(y) or H ′(y) 6=

H(2)(y) +H(3)(y)] <
κ

F
· κ− 1

F− 1
· · · 1

F− κ+ 1
=

κ−1∏
j=0

κ− j
F− j

≤ (
κ

2κ
)κ,

which is negligible in κ. Now consider that for all honest parties and for the
maximum number of revelations, the probability that the H ′(y), H ′(y) forged
by I is accepted by S is (2t + 1)n · ε3, which is still negligible. Therefore, the
output distributions of Hyb3 and Hyb2 are statistically consistent.
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Hyb4: In this hybrid, for each revelation, if R is honest, for each honest
verifier Pi, S doesn’t check the verification set of Pi. S considers that when R
receives a verification set from each honest verifier then R accepts it. Since Sd
and Pi are honest, H ′(y) = H(1)(y) +H(2)(y) and H ′(y) = H(2)(y) +H(3)(y),
Pi always sends a correct verification set, so R always accepts it. Therefore, the
output distributions of Hyb4 and Hyb3 are consistent.

Hyb5: In this hybrid, changing the way R gets s, s. When R receives t + 1
correct verification sets, the condition H ′(y) = H(1)(y) +H(2)(y) and H ′(y) =
H(2)(y) +H(3)(y) is satisfied, S lets R receive (s, s) from FARICP. At this time,
(s, s) computed from S is equal to (s, s) output from FARICP. Therefore, the
output distributions of Hyb5 and Hyb4 are consistent.

Note that Hyb5 is the ideal-world scenario, ΠARICP statistically-securely
computes FARICP.

When Sd is corrupted and I is honest:

Simulator S

1. For each honest verifier Pi, S waits to receive (n+ 1)κ verification points
from Sd. When Pi receives (n+1)κ verification points, S randomly divides
them into n+1 disjoint sets on behalf of Pi. Each set is of size κ, denoted
by Zi1, . . . , Zin+1.

2. S receives H(1)(y), H(2)(y), H(3)(y) from Sd on behalf of I, and does the
following:
a) S checks {H(m)(y)}m∈[3] are all of degree-L + (n + 1)tκ. If true,
S lets s(1), s(2), s(3) be the vector of the L highest coefficients of
H(1)(y), H(2)(y), H(3)(y). Otherwise, S aborts the simulation.

b) For each verifier Pi:
– If Pi is honest, S utilizes the set Zin+1 divided by itself, and when it

is satisfied that all points in Zin+1 and at least nκ+ 1 of the points
receives by Pi from I correspond to {H(m)(y)}m∈[3], S considers that
I receives a correct verification set.

– If Pi is corrupted, S waits to receive a verification set from Pi. When
all the points in the verification set correspond to {H(m)(y)}m∈[3],
S considers that I received a correct verification set.

c) When I receives 2t+ 1 correct verification sets, S initializes a counter
count = n and sends (Init,ARICP, (s(1), s(2), s(3))) to FARICP. Then, S
allows FARICP sends the output to I. Otherwise, S doesn’t continue.

3. S computes H(y) = H(1)(y) + H(2)(y), H(y) = H(2)(y) + H(3)(y). For
each revelation, if count > 0, S does the following and replaces count by
count− 1:
• If R is honest:

a) For each corrupted verifier Pi, S waits to receive a verification set
Z̃icount from Pi. For each honest verifier Pi, S uses Z̃icount created by
himself. In both cases, S follows the protocol to check the verification
set from Pi on behalf of R.
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b) Upon receiving t+1 correct verification sets, S lets s, s be the L high-
est coefficients of H(y), H(y) and allows FARICP to send the output
s, s to R.

• If R is corrupted: S sends H(y), H(y) to R on behalf of I. For each
honest verifier Pi, S sends Z̃icountto R on behalf of Pi.

Fig. 13: Simulator for the FARICP when Sd is corrupted and I is honest
Hybrid arguments:

Hyb0: In this hybrid, S receives the inputs of honest parties and runs the
protocol honestly. This corresponds to the real-world scenario.

Hyb1: In this hybrid, changing the way I receives s(1), s(2), s(3). When I
receives 2t + 1 correct verification sets, S sends (Init,ARICP, (s(1), s(2), s(3)))
to FARICP. Then, I will receive s(1), s(2), s(3) from FARICP rather than being
computed by himself. However, this does not change the output distribution.
Therefore, the output distributions of Hyb1 and Hyb0 are consistent.

Hyb2: In this hybrid, S adds an addition condition to check the verification
points of honest verifiers. S needs to check at least nκ+1 of the points received
by Pi from I correspond to {H(m)(y)}m∈[3]. If true, S considers that Zin+1 is a
correct verification set. The output distribution only changes if Pi receives fewer
than nκ+1 correct points from Sd but Pi still provides a correct verification set
Zin+1 to I. The probability is

ε4 ≤
κ−1∏
j=0

nκ− j
(n+ 1)κ− j

≤ (1− 1

n+ 1
)κ,

since 0 < (1 − 1
n+1 ) < 1, the probability ε4 is negligible in κ. Since S needs to

receive at least t+1 honest Pi’s correct Z̃icount, so the probability that the output
distribution changes is at most (t+1)ε4, which is still negligible in κ. Therefore,
the output distributions of Hyb2 and Hyb1 are statistically consistent.

Note that Hyb2 is the ideal-world scenario, ΠARICP statistically-securely
computes FARICP.

Then we compute the communication complexity of our protocol. ΠARICP
takes 3 vectors as inputs and each vector is of size L, n is an input parameter.
All parties execute the Initialization Phase only once, while the Revelation Phase
can be executed for at most n times.

During the Initialization Phase: Sd sends 3 degree-(L+t(n+1)κ) polynomials
to I, which requiresO(Lκ+n(n+1)κ2)-bit communication. Sd also sends (n+1)κ
evaluation points to each verifier, resulting in a communication of O((n+1)nκ2).
Each verifier sends a set of size κ to I, resulting in a communication of O(nκ2)
bits. Therefore, the total communication cost is O(Lκ + n2κ2) bits during the
Initialization Phase.

During the Revelation Phase: Each time sending two degree-(L+ t(n+1)κ)
polynomial from I to R requires communication of O(Lκ + n(n + 1)κ2) bits.
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Each verifier sends a set of κ field elements to I, resulting in a communication
of O(nκ2) bits. Therefore, the total communication cost is O(Lκ + n2κ2) bits
during the Revelation Phase. Since the Revelation Phase can be executed for at
most T times, the total communication cost is O(nLκ+ n3κ2) bits.

Therefore, ΠARICP requires communication of O(nLκ+ n3κ2) bits.

C Proof of The main Theorem about Our ACSS Protocol

C.1 Construction of ΠACSS

In this section, we present our construction of ΠACSS as follows.

Protocol ΠACSS

All parties execute ΠSh, ΠVer and ΠComp in order.

Fig. 14: The protocol of the ΠACSS

C.2 Security Proof

Proof. We prove the Theorem 2 by constructing an ideal adversary S. S needs
to interact with the environment Z and with the ideal functionalities. S con-
structs virtual real-world honest parties and runs the real-world adversary A.
For simplicity, we just let S communicate with A on behalf of honest parties
and the ideal functionality of sub-protocols in our proof. In order to simulate
the communication with Z, every message that S receives from Z is sent to A,
and likewise, every message sent from A sends to Z is forwarded by S. Each
time an honest party needs to send a message to another honest party, S will
tell A that a message has been delivered such that A can tell S the arrival time
of this message to help S instruct the functionalities to delay the outputs in
the ideal world. For each request-based delayed output that needs to be sent to
an honest party, we let S delay the output in default until we say S allows the
functionality to send the output. We will show that the output in the ideal world
is identically distributed to that in the real world by using hybrid arguments.
Construction of the ideal adversary S is as follows.

When D is honest:

Simulator S

Sharing Phase

1. For each corrupted Pj , S receives q(1)(αj), . . . , q(N)(αj) from FACSS.
2. For each corrupted Pj , r ∈ [0, t] and ` ∈ [L′], S selects a random degree-2t

column polynomial g(`)j (y), s.t. g(`)j (α−r) = q(k)(αj).
3. For each corrupted Pj and ` ∈ [L′], S selects a random degree-2t polyno-

mial z(`)j (y) and z(`)j (y) 6= g
(`)
j (y). If not, S aborts the simulation.
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4. For each corrupted Pi and ` ∈ [L′], S respectively selects two ran-
dom degree-t polynomials f (`)i (x), w

(`)
i (x), s.t. f (`)i (αj) = g

(`)
j (αi) and

w
(`)
i (αj) = z

(`)
j (αi) for each corrupted party Pj on behalf of D.

5. For each corrupted Pj and ` ∈ [L′], S sends z(`)j (y), g
(`)
j (y), w

(`)
j (x) to Pj

on behalf of D.
6. S initializes sets Vi,V to ∅, each j ∈ [n]. For each Pi ∈ P and ` ∈ [L′]:

• If Pi is honest:
a) When Pi receives z

(`)
i (y), g

(`)
i (y), w

(`)
i (x) from D, S broadcasts OKi

on behalf of Pi.
b) S sends {z(`)i (αj), w

(`)
i (αj)}`∈[L′] to Pj on behalf of Pi, each j ∈ [n].

c) S waits to receives z(`)j (αi), w
(`)
j (αi) from Pj on behalf of Pi. If Pj is

honest, S broadcasts iAMj on behalf of Pi. Else, S on behalf of Pi
checks whether the points sent by Pj to Pi are points with share αi
in the polynomials z(`)j (y), g

(`)
j (y) distributed to Pj by S on behalf

of D. If so, S broadcasts iAMj on behalf of Pi.
d) S delivers an initialization request to FARICP(Pi, D) on behalf of Pi

and emulates FARICP to send the output to Pi.
e) S follows the protocol to construct Vj , V andM sets.

• If Pi is corrupted:
a) S sends {z(`)j (αi), w

(`)
j (αi)}`∈[L′] to Pi on behalf of each honest Pj .

b) S emulates FARICP(Pi, D) to receive
(Init,ARICP, n, (sign∗i,1, sign

∗
i,2,sign∗i,3)) from Pi. Then, S fol-

lows the protocol to check(sign∗i,1, sign∗i,2, sign∗i,3) of Pi on behalf
of D. If so, S emulates FARICP(Pi, D) to send the output to D and
follows the protocol to construct Vj , V andM sets.

7. S broadcasts the setM on behalf of D when |M| = 2t+ 1.
8. For each honest Pj , S waits until Pj receives the setM, {OKi}Pi∈M, V,
{Vj}Pj∈V and then starts the next phase of the simulation.

Fig. 15: Part-(1/3) of the simulator for the FACSS when D is honest

Simulator S

Verification Phase

• For each honest Pi:
1. For each honest Ph ∈M, S emulates FARICP(Ph, D) to send the output

to the receiver Pi. For each corrupted Ph ∈ M, S faithfully emulates
FARICP(Ph, D).
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2. When Pi receives the output from FARICP(Ph, D) for all Ph ∈ M,
S considers that Pi accepts the sum of {g(`)i (y), z

(`)
i (y)}`∈[L′] and

{z(`)i (y), w
(`)
i (x)}`∈[L′], then starts the simulation of Pi in the next phase.

• For each corrupted Pi: For all Ph ∈M, S faithfully emulates FARICP(Ph, D).

Fig. 16: Part-(2/3) of the simulator for the FACSS when D is honest

Simulator S

Completion Phase

Reconstructing row polynomials:
For each Pi ∈ P:

• If Pi is honest:
1. S on behalf of the Pi follows the protocol to send {g(`)i (αj)}`∈[L′] to Pj ,
j ∈ [n].

2. S waits to receive each Pj ’s {g(`)j (αi)}`∈[L′].
a) If Pj is honest and Pj ∈ M, When Pi receives {g(`)j (αi)}`∈[L′] from

Pj , S considers that Pi accepts Pj ’s {g(`)j (αi)}`∈[L′].
b) If Pj is corrupted and Pj ∈ M, S on behalf of Pi checks whether

these points {g(`)j (αi)}`∈[L′] are points whose share is αi on the poly-
nomials {g(`)j (y)}`∈[L′] sent to corrupted Pj by S on behalf of D. If
true, S considers that Pi accepts Pj ’s {g(`)j (αi)}`∈[L′].

3. When Pi accepts t+1 different Pj ’s {g(`)j (αi)}`∈[L′], S considers that Pi
gets his {f (`)i (x), w

(`)
i (x)}`∈[L′].

• If Pi is corrupted: S follows the protocol to send {g(`)j (αi)}`∈[L′] to Pi on
behalf of each honest Pj .

Reconstructing column polynomials:
For each Pi ∈ P:

• If Pi is honest:
1. When Pi reconstructs {f (`)i (x)}`∈[L′] and {w

(`)
i (x)}`∈[L′], S on behalf of

Pi follows the protocol to send {f (`)i (αj), w
(`)
i (αj)}`∈[L′] to Pj , j ∈ [n].

2. S waits to receive each Pj ’s {f (`)j (αi), w
(`)
j (αi)}`∈[L′] to Pj .

a) If Pj is honest, When P[i] receives {f
(`)
j (αi), w

(`)
j (αi)}`∈[L′] from Pj ,

S considers that Pi accepts Pj ’s {f (`)j (αi), w
(`)
j (αi)}`∈[L′].

b) If Pj is corrupted, S on behalf of Pi checks whether these points
{f (`)j (αi), w

(`)
j (αi)}`∈[L′] are points whose share is αi on the polyno-
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mials {f (`)j (x), w
(`)
i (x)}`∈[L′] prepared for corrupted Pj by S. If true,

S considers that Pi accepts Pj ’s {f (`)j (αi), w
(`)
j (αi)}`∈[L′].

3. When Pi accepts 2t+1 different Pj ’s {f (`)j (αi), w
(`)
j (αi)}`∈[L′], S consid-

ers that Pi gets his {g(`)i (y), z
(`)
i (y)}`∈[L′]. Then, S allows FACSS to send

the output to Pi.
• If Pi is corrupted: S follows the protocol to send {f (`)j (αi), w

(`)
j (αi)}`∈[L′]

to Pi on behalf of each honest Pj .

Fig. 17: Part-(3/3) of the simulator for the FACSS when D is honest
Hybrid arguments:
Hyb0: In this hybrid, S receives the inputs of honest parties and runs the

protocol honestly. This corresponds to the real-world scenario.
Hyb1: In this hybrid, during the Sharing Phase, for each corrupted

Pj , S changes the order of generation of the bivariate polynomials
{F (`)(x, y), R(`)(x, y)}`∈[L′] respectively. First, S samples the column polynomi-
als, random column polynomials, row polynomials and random row polynomials
of the corrupted parties separately, and then samples {F (`)(x, y), R(`)(x, y)}`∈[L′]
based on the inputs ofD and the polynomials of the corrupted parties separately.
Since only the order of generation of the two bivariate polynomials is changed,
but not the output distribution. Therefore, the output distributions of Hyb1

and Hyb0 are consistent.
Hyb2: In this hybrid, during the Sharing Phase, S aborts the simulation

if g(`)i (y) = z
(`)
i (y) for each ` ∈ [L′] i.e. F (`)(x, y) = R(`)(x, y). Note that the

probability that g(`)i (y) = z
(`)
i (y) for each ` ∈ [l′], corrupted Pi is 2L′|F|

|F|2t =

L′

22tκ−κ−1 . There are at most t corrupted parties, so the probability that the
output distribution changes is at most

ε1 =
tL′

22tκ−κ−1
,

which is negligible in κ. Therefore, the output distributions of Hyb2 and Hyb1

are statistically consistent.
Hyb3: In this hybrid, during the Sharing Phase, S doesn’t check the de-

gree of the polynomials {g(`)i (y), z
(`)
i (y), w

(`)
i (x)}`∈[L′] sent to each honest Pi by

himself on behalf f D. Instead, S considers that when Pi receives polynomials
{g(`)i (y), z

(`)
i (y), w

(`)
i (x)}`∈[L′] from D then Pi broadcasts OKi. Since D and Pi

are honest, D always sends correct {g(`)i (y), z
(`)
i (y), w

(`)
i (x)}`∈[L′] to Pi and Pi

will always broadcast OKi. Therefore, the output distributions of Hyb3 and
Hyb2 are consistent.

Hyb4: In this hybrid, during the Sharing Phase, if Pi is honest, S changes
the way Pi checks the {z(`)j (αi), w

(`)
j (αi)}`∈[L′] sent by the honest Pj . Instead, S

considers that when Pi receives {z(`)j (αi), w
(`)
j (αi)}`∈[L′] from Pj then broadcasts
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iAMj. Since D, Pi and Pj are honest, Pj always sends correct random points to
Pi and Pi will always accepts them. Therefore, the output distributions of Hyb4

and Hyb3 are consistent.
Hyb5: In this hybrid, during the Sharing Phase, if Pi is honest, S changes

the way Pi checks the {z(`)j (αi), w
(`)
j (αi)}`∈[L′] sent by the corrupted Pj . Instead,

if these points {z(`)j (αi), w
(`)
j (αi)}`∈[L′] sent by Pj to Pi are points with share

αi on polynomials {z(`)j (y), w
(`)
j (x)}`∈[L′] sent by S on behalf of D to Pj , then

S considers that Pi accepts the points sent by Pj . Since D and Pi are honest,
Pi always has correct {z(`)i (αj), w

(`)
i (αj)}`∈[L′] i.e. {w

(`)
j (αi), z

(`)
j (αi)}`∈[L′]. This

step is actually equivalent to the check in the protocol. Therefore, the output
distributions of Hyb5 and Hyb4 are consistent.

Hyb6: In this hybrid, during the Sharing Phase, S doesn’t
check the (sign∗i,1, sign

∗
i,2,sign∗i,3) generated by the polynomials

{g(`)i (y), z
(`)
i (y), w

(`)
i (x)}`∈[L′] sent by himself on behalf of D to each hon-

est Pi. Instead, S considers that when D receives (sign∗i,1, sign
∗
i,2,sign∗i,3) from

each honest Pi then D accepts them. Since D and Pi are honest, Pi always sends
correct (sign∗i,1, sign∗i,2,sign∗i,3) and D will always accepts them. Therefore, the
output distributions of Hyb6 and Hyb5 are consistent.

Hyb7: In this hybrid, during the Verification Phase, for each hon-
est Pi, S changes the way Pi checks the output of FARICP(Ph, D) for all
Ph ∈ M. S considers that when Pi receives the output of FARICP(Ph, D)

for all Ph ∈ M then Pi accepts the sum of {g(`)i (y), z
(`)
i (y)}`∈[L′] and

{z(`)i (y), w
(`)
i (x)}`∈[L′] sent by D. Since D and Pi are honest, Pi always receives

correct {g(`)i (y), z
(`)
i (y), w

(`)
i (x)}`∈[L′] and Pi will always accepts them. There-

fore, the output distributions of Hyb7 and Hyb6 are consistent.
Hyb8: In this hybrid, during the Completion Phase, when reconstruct

the row polynomials, for each honest Pi, S changes the way Pi checks the
{g(`)j (αi)}`∈[L′] sent by each honest Pj and Pj ∈ M. Instead, S consid-
ers that when Pi receives {g(`)j (αi)}`∈[L′] from Pj then accepts them. Since
D and Pi honest, Pi always receives correct {g(`)j (αi)}`∈[L′] (correspond to
P (`)(x, y), Q(`)(x, y)) from honest Pj ∈ M, Pi will always accepts them. There-
fore, the output distributions of Hyb8 and Hyb7 are consistent.

Hyb9: In this hybrid, during the Completion Phase, when reconstruct
the row polynomials, for each honest Pi, S changes the way Pi checks the
{g(`)j (αi)}`∈[L′] sent by each corrupted Pj and Pj ∈ M. Instead, if these
points {g(`)j (αi)}`∈[L′] sent by Pj to Pi are points with share αi on poly-
nomials {g(`)j (y)}`∈[L′] sent by S on behalf of D to each corrupted Pj ,
then S considers that Pi accepts the points sent by Pj . Since polynomials
{P (`)(x, y), Q(`)(x, y)}`∈[L′] are correct, this step is actually equivalent to the
check in the protocol. Therefore, the output distributions of Hyb9 and Hyb8

are consistent.
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Hyb10: In this hybrid, during the Completion Phase, when reconstruct
the column polynomials, for each honest Pi, S changes the way Pi checks the
{f (`)j (αi), w

(`)
j (αi)}`∈[L′] sent by each honest Pj . Instead, S considers that when

Pi receives {f (`)j (αi), w
(`)
j (αi)}`∈[L′] from each honest Pj then accepts them.

Since D and Pj honest, Pi always receives correct {f (`)j (αi), w
(`)
j (αi)}`∈[L′] (cor-

respond to P (`)(x, y), Q(`)(x, y)) from each honest Pj , Pi will always accepts
them. Therefore, the output distributions of Hyb10 and Hyb9 are consistent.

Hyb11: In this hybrid, during the Completion Phase, when reconstruct
the column polynomials, for each honest Pi, S changes the way Pi checks
the {f (`)j (αi), w

(`)
j (αi)}`∈[L′] sent by each corrupted Pj . Instead, if these points

{f (`)j (αi), w
(`)
j (αi)}`∈[L′] sent by each corrupted Pj to Pi are points with share

αi on polynomials {f (`)j (x), w
(`)
j (x)}`∈[L′] prepared by S on behalf of D to each

corrupted Pj , then S considers that Pi accepts the points sent by Pj . Since poly-
nomials {P (`)(x, y), Q(`)(x, y)}`∈[L′] are correct, this step is actually equivalent
to the check in the protocol. Therefore, the output distributions of Hyb11 and
Hyb10 are consistent.

Note that Hyb11 is the ideal-world scenario, ΠACSS statistically-securely
computes FACSS when D is honest.

When D is corrupted:

Simulator S

Sharing Phase

1. For each Pi ∈ P:
• If Pi is honest:

a) When Pi receives {z(`)i (y), g
(`)
i (y), w

(`)
i (x)}`∈[L′] from D, S broad-

casts OKi on behalf of Pi if these polynomials are of degree-2t, 2t, t.
b) S sends {z(`)i (αj), w

(`)
i (αj)}`∈[L′] to Pj on behalf of Pi, each j ∈ [n].

c) S follows the protocol to compute (sign∗i,1, sign
∗
i,2, sign

∗
i,3) of Pi on

behalf of Pi.
d) S sends (Init,ARICP, n, (sign∗i,1, sign

∗
i,2,sign∗i,3)) to FARICP(Pi, D) on

behalf of Pi.
e) S faithfully emulates FARICP(Pi, D).

• If Pi is corrupted:
a) S sends {z(`)j (αi), w

(`)
j (αi)}`∈[L′] to Pi on behalf of each honest Pj .

b) S faithfully emulates FARICP(Pi, D).
2. For each honest Pj , when Pj receives M, V and {Vj}Pj∈V , S follows the

protocol to check these sets. If proceeds then starts the next phase of the
simulation.

3. Let H be the first t + 1 honest parties in the set M. For each ` ∈
[L′], S reconstructs a degree-(t, 2t) bivariate polynomial Q(`)(x, y) and a
degree-(2t, 2t) symmetric bivariate polynomial P (`)(x, y) s.t. Q(`)(αi, y) =
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sign
(`)
i,1(y) + sign

(`)
i,2(y) and P (`)(αi, y) = sign

(`)
i,2(y) + sign

(`)
i,3(y) for each

Pi ∈ H.
4. For each ` ∈ [L′], S computes each corrupted Pj ’s ˆsign

(`)

j (y) = Q(`)(αj , y)

and ˆsign
(`)

j (y) = P (`)(αj , y).

Fig. 18: Part-(1/3) of the simulator for the FACSS when D is corrupted

Simulator S

Verification Phase

• For each honest Pi:
1. When Pi receives {g(`)i (y), z

(`)
i (y), w

(`)
i (x)}`∈[L′] and these polynomi-

als are of degree-2t, 2t, t. Then, S follows the protocol to compute
{sign(`)i (y), sign

(`)
i (y)}`∈[L′] on behalf of Pi.

2. For each honest Ph ∈M, S faithfully emulates FARICP(Pi, D).
3. S does the following:

a) For each ` ∈ [L′], S checks whether sign(`)i (y) = Q(`)(αi, y).
b) For each ` ∈ [L′], S checks whether sign(`)i (y) = P (`)(αi, y).
c) If both the above checks pass, S accepts {sign(`)i (y), sign

(`)
i (y)}`∈[L′]

on behalf of Pi. Otherwise, S rejects these polynomials.
• For each corrupted Pi: For all Ph ∈M, S faithfully emulates FARICP(Ph, D).

Fig. 19: Part-(2/3) of the simulator for the FACSS when D is corrupted

Simulator S

Completion Phase

Reconstructing row polynomials:
For each Pi ∈ P:

• If Pi is honest:
1. S on behalf of the Pi follows the protocol to send {g(`)i (αj)}`∈[L′] to Pj ,
j ∈ [n].

2. S waits to receive each Pj ∈M’s {g(`)j (αi)}`∈[L′].
a) If Pj ∈ H, When Pi receives {g(`)j (αi)}`∈[L′] from Pj , S considers

that Pi accepts Pj ’s {g(`)j (αi)}`∈[L′].
b) If Pj /∈ H and Pj is corrupted, for each ` ∈ [L′], S on behalf of Pi

checks whether g(`)j (αi) + z
(`)
j (αi) = ˆsign

(`)

j (αi).
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3. When Pi accepts t+1 different Pj ’s {g(`)j (αi)}`∈[L′], S considers that Pi
gets his {f (`)i (x), w

(`)
i (x)}`∈[L′].

• If Pi is corrupted: S follows the protocol to send {g(`)j (αi)}`∈[L′] to Pi on
behalf of each honest Pj .

Reconstructing column polynomials:
For each Pi ∈ P:

• If Pi is honest:
1. When Pi reconstructs {f (`)i (x)}`∈[L′] and {w

(`)
i (x)}`∈[L′], S on behalf of

Pi follows the protocol to send {f (`)i (αj), w
(`)
i (αj)}`∈[L′] to Pj , j ∈ [n].

2. For each ` ∈ [L′], S computes z̃`i (y) = P (`)(αi, y)− w(`)
i (y) on behalf of

Pi.
3. S waits to receive each Pj ’s {f (`)j (αi), w

(`)
j (αi)}`∈[L′] to Pj .

a) If Pj is honest, When Pi receives {f (`)j (αi), w
(`)
j (αi)}`∈[L′] from Pj ,

S considers that Pi accepts Pj ’s {f (`)j (αi), w
(`)
j (αi)}`∈[L′].

b) If Pj is corrupted, for each ` ∈ [L′], S follows the protocol to checks
whether f (`)j (αi) + w

(`)
j (αi) = Q(`)(αi, αj).

4. When 2t + 1 different Pj ’s {f (`)j (αi), w
(`)
j (αi)}`∈[L′] passes the check, S

interpolates {g(`)i (y), z
(`)
i (y)}`∈[L′]. If z

(`)
i (y) = z̃`i (y) for each ` ∈ [L′], S

considers that Pi accepts the {g(`)i (y), zi(`)(y)}`∈[L′].
• If Pi is corrupted: S follows the protocol to send {f (`)j (αi), w

(`)
j (αi)}`∈[L′]

to Pi on behalf of each honest Pj .

Fig. 20: Part-(3/3) of the simulator for the FACSS when D is corrupted
Hybrid arguments:
Hyb0: In this hybrid, S receives the inputs of honest parties and runs the

protocol honestly. This corresponds to the real-world scenario.
Hyb1: In this hybrid, during the Sharing Phase, S does the additional thing

as following: Let H be the first t + 1 honest parties in the set M, for each
` ∈ [L′], S reconstructs a degree-(t, 2t) bivariate polynomial Q(`)(x, y) and a
degree-(2t, 2t) symmetric polynomial P (`)(x, y) s.t. Q(`)(αi, y) = sign

(`)
i,1(y) +

sign
(`)
i,2(y) and P

(`)(αi, y) = sign
(`)
i,2(y) + sign

(`)
i,3(y) for each Pi ∈ H. Since |H| =

t+1, S can reconstruct a degree-(t, 2t) bivariate polynomial Q(`)(x, y) and for a
degree-(2t, 2t) symmetric bivariate polynomial, S can also reconstruct P (`)(x, y).
Since S does not do anything with these polynomials, it does not change the
output distribution. Therefore, the output distributions of Hyb1 and Hyb0 are
consistent.

Hyb2: In this hybrid, during the Completion Phase, When reconstructs the
row polynomials, for each honest Pi, if Pj ∈ H, S doesn’t check {g(`)j (αi)}`∈[L′]
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from Pj . S considers that when Pi receives {g(`)j (αi)}`∈[L′] from Pj then Pi

accepts them. Since Pj ∈ H is honest, Pj always sends points {g(`)j (αi)}`∈[L′]
that correspond to the polynomial {Q(`)(x, y), P (`)(x, y)}`∈[L′] and H ⊂ M, Pi
will always accepts Pj ’s {g(`)j (αi)}`∈[L′]. Therefore, the output distributions of
Hyb2 and Hyb1 are consistent.

Hyb3: In this hybrid, during the Completion Phase, when reconstructs
the row polynomials, for each honest Pi, S changes the way Pi checks the
{g(`)j (αi)}`∈[L′] sent by each corrupted Pj and Pj ∈M. Instead, S uses the pre-

computed { ˆsign
(`)

j (y)}`∈[L′] to check the whether g(`)j (αi)+z
(`)
j (αi) = ˆsign

(`)

j (αi)

for each ` ∈ [L′]. Since polynomials {P (`)(x, y), Q(`)(x, y)}`∈[L′] are correct, this
step is actually equivalent to the check in the protocol. Therefore, the output
distributions of Hyb3 and Hyb2 are consistent.

Hyb4: In this hybrid, during the Completion Phase, when reconstructs
the column polynomials, for each honest Pi, S changes the way Pi checks
the {f (`)j (αi), w

(`)
j (αi)}`∈[L′] sent by each honest Pj . Instead, S considers that

when Pi receives {f (`)j (αi), w
(`)
j (αi)}`∈[L′] from each honest Pj then accepts

them. Since When Pi reconstructed {f (`)j (x), w
(`)
j (x)}`∈[L′] and Pj honest, Pi

always receives each honest Pj ’s {f (`)j (αi), w
(`)
j (αi)}`∈[L′] that correspond to

P (`)(x, y), Q(`)(x, y)), Pi will always accepts them. Therefore, the output dis-
tributions of Hyb4 and Hyb3 are consistent.

Note thatHyb4 is the ideal-world scenario,ΠACSS statistically-securely com-
putes FACSS when D is corrupted.

C.3 Analysis of the Communication Complexity

Let’s summarize the parameters in our ΠACSS system. D categorizes his N input
polynomials into L′ groups. Within each group, every t + 1 polynomials are
combined to be represented by a single bivariate polynomial. Therefore, N =
(t+ 1)L′. The FARICP function will accept 3 vectors as input, where each vector
has a length of L = L′ · n.

During the Sharing Phase: Since there are L′ groups here with n parties.
For each group, D dispatches a column polynomial of degree-2t to each Pi ∈ P.
So, the total communication is O(L′n2κ) bits across all parties. Subsequently,
each Pi ∈ P broadcasts OKi and iAMj messages (with each OKi and iAMj
requiring O(log n) bits for encoding). Since each Pi ∈ P broadcasts iAMj at
most n times, the total communication of the broadcast is O(n4 log n) bits.
Ultimately, D broadcasts three sets V, {Vj}j∈[n] and M. Each set consumes
O(n4 log n) bits. Here we ignore the communication of FARICP, so the Sharing
Phase requires O(L′n2κ + n4 log n) bits communication. Since L′n = L, so the
communication overhead is O(Lnκ+ n4 log n) bits.

During the verification Phase: If FARICP is not taken into account, there is
no need for any communication here, so the communication overhead is 0 bit.
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During the Completion Phase: Each Pi ∈ P needs to sends g`i (αj), w`i (αj)
and f `i (αj) to each Pj , resulting in a total communication of O(L′nκ) bits. Since
L′n = L, so the communication overhead is O(Lκ) bits.

In the end, we consider the communication cost of ARICP. For each Ph ∈M,
according to Theorem 2, the communication of realizing each FARICP(Ph, D) is
O((n+1)(Lκ+n2κ2)) bits. Therefore, the total communication cost is O(n2Lκ+
n4κ2) bits.

Therefore, the protocol ΠACSS requires communication of O(n4κ2 + n2Lκ+
n4 log n) bits. Since (L = nL′ = O(N)), the protocol ΠACSS requires communi-
cation of O(Nn2κ+ n4κ2 + n4 log n) bits.


