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Abstract. In Hamming Quasi-Cyclic (HQC), one of the finalists in the
NIST competition for the standardization of post-quantum cryptogra-
phy, decryption relies on decoding a noisy codeword through a public
error-correcting code. The noise vector has a special form that depends
on the secret key (a pair of sparse polynomials). However, the decoder,
which is currently employed in HQC, is agnostic to the secret key, operat-
ing under the assumption that the error arises from a Binary Symmetric
Channel (BSC). In this paper, we demonstrate that this special noise
structure can instead be leveraged to develop more powerful decoding
strategies.
We first study the problem from a coding-theoretic perspective. The
current code design, which admits a non-zero decryption failure rate, is
close to optimal in the setting of a decoder that is agnostic to the error
structure. We show that there are code-decoder pairs with a considerably
shorter code length that can guarantee unique decoding by taking the
error structure into account. This result is non-constructive, i.e., we do
not provide an explicit code construction and it remains open whether ef-
ficient decoding is possible. Nevertheless, it highlights the potential that
can be tapped by taking the error structure into account. We then argue
that, in practice, the matter of decoding in HQC can be related to solv-
ing an instance of the noisy syndrome decoding problem, in which the
parity-check matrix is constituted by the polynomials in the secret key.
We show that, using decoders for Low-Density Parity-Check (LDPC) and
Moderate-Density Parity-Check (MDPC) codes, one can significantly re-
duce the entity of the noise and, de facto, also the Decoding Failure Rate
(DFR) of the HQC decoder.
This preliminary study leaves some open questions and problems. While
it shows that decoding in HQC can be improved, the modeling of the
DFR gets more complicated: even for the basic decoder we propose in
this paper, we have not been able to devise a reliable DFR model. This is
likely due to the fact that the decoder structure resembles the iterative
nature of LDPC/MDPC decoders, for which devising a reliable DFR
estimation is a well-known difficult problem.
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1 Introduction

In code-based encryption schemes, the public key is usually a disguised repre-
sentation of a secret error-correcting codeC equipped with an efficient decod-
ing algorithm. Recovering the structure ofC shall be computationally infeasi-
ble: this is one of the security assumptions (the other being the hardness of
decoding arbitrary linear codes). For instance, LEDAcrypt, BIKE, and Clas-
sic McEliece, some code-based cryptosystems participating in the NIST com-
petition for the standardization of post-quantum cryptography [10], follow this
paradigm: LEDAcrypt [5] relies on Low-Density Parity-Check (LDPC) codes,
BIKE [4] exploits a special family of LDPC codes known as Moderate-Density
Parity-Check (MDPC) codes, while Classic McEliece [2] employs binary Goppa
codes.

HQC [9], another alternate in the NIST competition, departs from such a
paradigm: no secret error-correcting code is required. Instead, a publicly known
codeC , equipped with an efficient decoder Dec, is employed. The possibility
to perform efficient decoding is based on the fact that the legitimate receiver,
using the secret key, can perform some efficient manipulations of the ciphertext
(essentially, a couple of polynomial multiplications and sums) resulting in c “

t ` z, with t PC and
z “ x ¨ rp2q ` y ¨ rp1q ` e. (1)

All terms in the previous formula are sparse polynomials in the ring F2rXs{pXn´

1q; hence z is sparse as well. In particular, x and y constitute the secret key while
rp1q, rp2q and e are ephemeral and are chosen uniformly at random by the sender.
Decoding c through the public codeC allows to correct z.

The error z is modeled through a Binary Symmetric Channel (BSC); the
codeC is chosen accordingly, and, in principle, any error-correcting codeC can
be used. In all four rounds of the NIST competition, the authors of HQC have
selectedC as the tensor product between two error-correcting codes. This results
in a good trade-off between computational efficiency, error-correction capability
and the possibility to derive a solid and reliable Decoding Failure Rate (DFR)
modeling. We remark that the availability of such a model is crucial, as IND-
CCA2 security can only be achieved if the DFR is negligible in the security
parameter.

1.1 Our Contribution

The decoder employed in HQC is agnostic to the secret key, i.e., it never explicitly
takes advantage of the particular structure (1) of the error vector z. However,
the secret-key polynomials x and y are part of how z is computed: as we show in
this paper, this information can be employed to devise more powerful decoding
strategies.

Coding-Theory Perspective First, with coding theory arguments, we show
that taking the structure of z and the knowledge of x and y into account enables
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shorter code lengths. To this end, we first revisit fundamental bounds on the
required code length that are implied by modeling errors as caused by a BSC.
These bounds show that the code construction used in the round-4 version of
HQC achieves a shorter length than would be possible if correct decryption has
to be guaranteed. On the other hand, an arbitrary code-decoder pair cannot do
considerably better than the current choice, that is, as long as the code design
and the decoding algorithm follow the assumption that errors are caused by a
BSC.

The situation changes when we consider the exact structure of z and make
the decoder aware of x and y. Using an argument similar to the classical Gilbert-
Varshamov (GV) bound, we show that codes able to guarantee correct decryption
exist with significantly shorter lengths than under the BSC model. As is typical
for GV-like arguments, this result is not constructive, i.e., we do not provide an
explicit code construction or an efficient decoding algorithm.

The Relation with Noisy-Syndrome Decoding WhenC is a tensor product
code, the problem of recovering rp1q and rp2q can be formulated as a noisy syn-
drome decoding problem [6]. Indeed, decoding the inner code yields an estimate
pz for z. We view pz as a noisy syndrome, as it can be expressed as

pz “
`

Rotpxq||Rotpyq
˘

loooooooooomoooooooooon

H

rJ ` ∆z “ HrJ ` ∆z,

where Rotpxq and Rotpyq are the circulant matrices whose first rows are x and
y, respectively, while r is the length-2n vector formed by the coefficients of the
unkwnown polynomials rp1q and rp2q. The product HrJ is a syndrome affected
by the noise contained in ∆z. The amount of noise depends on the quality of
decoding: the lower the number of decoding errors, the smaller the weight of ∆z.

Since x and y are sparse polynomials, H is sparse as well. Then, H can be
interpreted as the parity-check matrix of a Low-Density Parity-Check (LDPC)
or Moderate-Density Parity-Check (MDPC) code, and r can be estimated using
decoders for such codes. Note that these algorithms, such as the Bit Flipping
decoder, naturally tolerate a syndrome affected by a moderate amount of noise.

Let prp1q and prp2q be the obtained estimates: they can be used to reduce the
noise affecting c, as one can update c as

pc “ c ´ x ¨ prp2q ´ y ¨ prp1q

“ t ` z ´ x ¨ prp2q ´ y ¨ prp1q

“ t ` x ¨
`

rp2q ´ prp2q
˘

loooooomoooooon

∆rp2q

`y ¨
`

rp1q ´ prp1q
˘

loooooomoooooon

∆rp1q

`e “ t ` x ¨ ∆rp2q ` y ¨ ∆rp1q ` e
loooooooooooooomoooooooooooooon

z˚

.

The better the estimates prp1q and prp2q, the lower the weights of ∆rp1q and ∆rp2q

and, consequently, the lower the weight of z˚. In particular, if the weights of
∆rp1q and ∆rp2q are lower than the weights of rp1q and rp2q, then with high
probability the noise affecting t is reduced.
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Fig. 1: DFR vs ciphertext plus public key sizes. The DFR has been estimated
using numerical simulations by varying the lengths of the component codes. The
ciphertext has length « 2n, while the public key has length « n.

In this paper, we consider a straightforward decoding strategy, which can be
seen as a single iteration of the Bit Flipping (BF) decoder. We show (both the-
oretically as well as through numerical simulations) that, even with this simple
algorithm, one can obtain pretty good estimates prp1q and prp2q.

Reducing the DFR After the initial filtering step, one can proceed by applying
the standard decoder ofC on pc. This is already sufficient to improve decoding
significantly so that shorter codes can be used to achieve the desired DFR: this
reduces both the ciphertext and public key size. In Figure 1 we show an example
of the resulting gains, considering the choices forC which have been used by
HQC in the NIST competition: the product of a BCH and a Repetition code
(which we indicate as BCH b REP), and the product of a Reed-Solomon and a
Duplicated Reed-Muller code (which we indicate as RS b DRM).

Limitations and Open Questions This work leaves some open questions.
First, many different techniques exist to estimate rp1q and rp2q as, in principle,
any LDPC/MDPC decoder may be used to decode the noisy syndrome. Each
of these techniques comes with different trade-offs: defining the best strategy to
exploit knowledge of x and y is beyond the scope of this paper.

Secondly, and more importantly, one of the key advantages of HQC is the
possibility to derive a reliable and closed-form formula for the DFR. While more
involved decoders may improve error-correction capability and overall perfor-
mance, they also come with a more complex DFR analysis. For instance, even
for the simple decoder we present in this paper, we have not been able to derive
a reliable theoretical model for the DFR. This is due to some technical caveats
that arise when iterative decoders (such as the one we propose in this paper) are
considered. In our view, this is the most important open question: can we design
a decoder with a lower DFR while also allowing for a reliable DFR prediction?
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1.2 Paper Organization

The paper is organized as follows. In Section 2, we establish the notation used
throughout the paper and recall the main properties of HQC. In Section 3,
we provide coding-theoretic arguments that support the possibility of improving
performance. Section 4 describes how HQC decoding relates to a noisy syndrome
decoding problem and analyzes the use of the BF decoder in such a context. The
impact on the DFR of HQC is discussed in Section 5, while Section 6 ends the
paper with some concluding remarks.

2 Notation and Background

We use standard notations for finite fields: for q a prime power, Fq denotes a finite
field with q elements while FqrXs is the ring of polynomials with coefficients in
Fq. For the majority of the paper, we work with the binary finite field F2. For an
integer n, we denote R :“ F2rXs{pXn ´ 1q. We frequently view the elements of
R as length-n vectors over F2, relying on the following canonical representation:

n
ÿ

i“1

aiX
i´1 “ a P R ðñ pa1, a2, ¨ ¨ ¨ , anq “ a P Fn

2 .

For a polynomial a P R, we indicate by wtpaq its Hamming weight, i.e., the
number of non-zero coefficients. By support of a polynomial, which we indicate
as Supppaq, we refer to the set of indices i for which ai ‰ 0; notice that wtpaq “

|Supppaq|. Given two polynomials a and b, we indicate the j-th coefficient of their
product as pa ¨ bqj . For w P N, w ď n, we define Rw “ ta P R | wtpaq “ wu.

Probability Distributions Given a set A, we write a
$

ÐÝ A when a is drawn
uniformly at random from A. We use Bn,ρ to indicate the Bernoulli distribution
over Fn

2 with parameter ρ, i.e., the distribution that returns vectors of length n
and such that any entry is 1 with probability ρ and 0 with probability 1 ´ ρ. If
a P Fn

2 is distributed according to Bn,ρ, we write a „ Bn,ρ.

2.1 Background on Coding Theory

A linear codeC Ď Fn
q with length n and dimension k is a linear subspace of Fn

q

containing qk vectors, called codewords. A compact representation for a code is
a generator matrix, that is, a matrix G P Fkˆn

2 with rank k, whose row span
yieldsC , that is,C “

␣

mG | m P Fk
q

(

. The minimum distance of a code is the
minimum Hamming distance between two distinct codewords and, for linear
codes, corresponds to the minimum weight of a non-zero codeword.

We sayC is an error-correcting code whenever it can be equipped with an
efficient algorithm Dec that, on input some c “ mG` e, returns mG with high
probability when e has sufficiently low weight. When the decoder does not return
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mG, we encounter a decoding failure.3 The probability (over the channel’s and
decoder’s randomness) that a decoding failure event occurs is called the Decoding
Failure Rate (DFR).

Tensor Product Codes Let q1 and q2 be two (possibly equal) prime powers.
Given two codesC 1 Ď Fn1

q1 andC 2 Ď Fn2
q2 with dimensions k1 and k2, we denote

byC “C 1 bC 2 their tensor product. Sometimes,C 1 is called outer code and
C 2 inner code. Let Enc1 : Fk1

q1 ÞÑC 1 and Enc2 : Fk2
q2 ÞÑC 2 be the encoding

functions forC 1 andC 2. Analogously, we denote by Dec1 and Dec2 their decoding
algorithms. Finally, we denote by EncFq1

,Fq2
a function that, on input a vector

in Fn1
q1 , returns a sequence with values over Fq2 and length n1

1; we require that
n1
1 is a multiple of k2. 4 The inverse function is indicated as DecFq1 ,Fq2

. If the
two finite fields are the same, the function EncFq1 ,Fq2

is simply the identity (and
so is its inverse). Thus, we also have n1

1 “ n1 hence k2 must divide n1.
We now show how encoding of a message m P Fk1

q works. First, m is encoded
into a codeword ofC 1. Then, we apply EncFq1

,Fq2
to obtain a a string of length

n1
1 and values over Fq2 . This is divided into n1

1{k2 chunks: each has length k2 and
is encoded into a codeword ofC 2. The resulting codeword has length n1

1n2{k2.
See Figure 2 for a graphical representation of the encoding procedure.

Decoding a tensor product code is done by first decoding the n1
1

k2
code-

words ofC 2 and then decoding their concatenation throughC 1. Namely, let
c “

`

cp1q|| ¨ ¨ ¨ ||cpn1
1{k2q

˘

be a received word, with each cpiq having length n2

(here, we use || to indicate the concatenation of two row vectors). Then, decod-
ing of c is done by first decoding each cpiq and mapping the result back to Fq1

through DecFq1 ,Fq2
; all these words are concatenated and the obtained word is

decoded throughC 1. Compactly, this process is described as

Dec1
´

DecFq1 ,Fq2

´

Dec2
`

cp1q
˘

¯
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
¨ ¨ ¨

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
DecFq1 ,Fq2

´

Dec2
`

cpn1
1{k2q

˘

¯¯

.

2.2 HQC in a Nutshell

Figure 3 summarizes the main operations in HQC. Given the scope of this paper,
we omit all the operations that are not relevant from a coding-theory perspective
(but, obviously, are relevant from a cryptographic perspective!), such as the use
of seeds and the IND-CCA2 conversion; for full details, we refer the interested
reader to [9].

In our description, the encoding and decoding processes of the public codeC
are indicated as Enc and Dec, respectively. The outer code is generically defined
over a finite field of size q, while the inner code is always binary.

3 Generically, decoding failures happen when the decoder either halts on a vector that
is not a codeword or on a codeword different from the transmitted one.

4 For instance, if q1 “ 2ℓ and q2 “ 2, a codeword ofC 1 can be represented as a binary
string of length ℓ ¨ n1.
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Enc1

EncFq1 ,Fq2

Enc2

Enc2

n1

k2

k2

n1
1

k1

n2 n2

Encoding algorithm forC “C 1 bC 2

Fig. 2: Example of the encoding procedure for a tensor code obtained from two
component codes defined over two fields Fq1 and Fq2 such that q1 “ q22 . The
function EncFq1 ,Fq2

maps a symbol from Fq1 into two symbols of Fq2 . Code pa-
rameters are k1 “ 2, n1 “ 3, n1

1 “ 2 ¨ n1 “ 6, k2 “ 3 and n2 “ 6. The resulting
code has dimension k “ k1 “ 2 and n “

n1
1

k2
¨ n2 “ 12.

Due to the special structure of the ciphertext and public key, one has c “ t`z,
where t PC and

z “ x ¨ rp2q ` y ¨ rp1q ` e. (2)

Since all the polynomials in the above equation are sparse, z has low weight.
This allows for efficiently correcting errors through the decoding algorithm Dec.

Choice ofC The practical performance of the scheme heavily depends on the
choice ofC . Indeed, one should choose a family of error-correcting codes that
yields a good trade-off between error-correction capability, compactness, and
computational efficiency. First, notice that both the public key size and the
ciphertext size are linear in n.5 Hence, one would desire n to be as small as
possible; however, this value cannot be too small as we must guarantee that,
with sufficiently large probability, Dec corrects (efficiently) the errors in z.

5 The public key size is n ` λ bits, with λ denoting the security level, because h can
be compressed by the seed with which it has been generated. The ciphertext size,
instead, corresponds to 2n` 2λ. The term 2λ is the overhead due to the IND-CCA2
conversion.
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Key generation:
1. sample h

$
ÐÝ R;

2. sample x,y
$

ÐÝ Rw ˆ Rw;
3. set sk :“ px,yq and pk :“ th , s “ x ` h ¨ yu.

Encryption: on input m P Fk
q and pk :“ th, su, do:

1. sample rp1q, rp2q $
ÐÝ Rwr ˆ Rwr , e $

ÐÝ Rwe ;
2. set u “ rp1q

` h ¨ rp2q;
3. compute t “ Encpmq;
4. set v “ t ` e ` s ¨ rp2q;
5. the ciphertext is tu,vu.

Decryption: on input pu,vq P R2 and sk :“ px,yq, do:
1. compute c “ v ` y ¨ u;
2. run Decpcq.

Fig. 3: Description of HQC.

To guarantee IND-CCA2 security, the DFR must be negligible in the secu-
rity parameter, i.e., less than 2´λ. This leads to another requirement: devising
a theoretical, closed-form formula for the DFR must be feasible. For this rea-
son, the decoding process cannot be too involved: as it is well known, devising
reliable models for the DFR is extremely complicated, and only a few decoding
algorithms (namely, the simplest ones) allow for it.

Taking this into account, the authors of HQC chose to use tensor product
codes, as they allow for a simple DFR modeling and, at the same time, offer
a good error-correction capability. While the design of HQC has essentially re-
mained the same throughout the years, its parameters and the choice ofC have
changed. Two choices forC have been considered so far:

– Version BCH b Rep from first round:
- Outer code: BCH code defined over F2

- Inner code: Repetition code defined over F2

– Version RS b DRM from second round:
- Outer code: Reed-Solomon code defined over F28

- Inner code: Duplicated Reed-Muller code defined over F2

3 Coding-Theoretic Analysis

This section highlights from a coding-theoretic perspective the improvements
that are possible due to the knowledge of the error structure at the decoder (in
particular due to knowing x,y). To this end, we first revisit decoding agnostic to
the secret key and its limitations. Then, we derive a suitable generalization of the
Gilbert-Varshamov (GV) bound tailored to the particular setting we encounter
in HQC. For simplicity, throughout this section, we assume that the used code
is of the same length as the vectors in R.
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3.1 Approximating HQC Errors via a Binary Symmetric Channel

The HQC error being of the form z “ x ¨ rp2q ` y ¨ rp1q ` e implies that

wtpzq ď 2 ¨ wr ¨ w ` we :“ wmax.

Besides the maximum weight of z, the probability that a single coordinate of z
is non-zero over the choice of rp1q, rp2q, e can be computed as

Pr rzi “ 1s “ 2ρ1
w,wr

p1 ´ ρw,wr
q

´

1 ´
we

n

¯

`
`

p1 ´ ρw,wr
q2 ` ρ2w,wr

˘ we

n
:“ ρz

where ρw,wr
“

`

n
w

˘´1ř

ℓ odd

`

wr

ℓ

˘`

n´wr

w´ℓ

˘

[3]. For completeness, the proof is in-
cluded in Appendix A for completeness. Deriving further statements beyond the
maximum weight and the error probability of a single coordinate is involved.
Therefore, the following heuristic is used to derive an analytical expression for
the DFR.

Heuristic 1 (Binomial Approximation [3]) Under the simplifying assump-
tion that the coordinates of z are independent random variables, the probability
of z is modeled as

Pr rzs “

#

N ¨ ρ
wtpzq
z ¨ p1 ´ ρzqn´wtpzq if wtpzq ď mintwmax, nu,

0 else,

with normalization factor N “ Pr rwtpzq ą wmax | Bn,ρz
s
´1. In particular, the

weight wtpzq follows a truncated binomial distribution.

Heuristic 1 implies that HQC can operate without DFR only at the cost of
a severe rate restriction. The following lemma emphasizes this.

Lemma 1 (DFR = 0 under Heuristic 1).
Under Heuristic 1, any code-decoder pair that can guarantee correct decryption
satisfies a code size of

|C | ď
2n

řwmax

i“0

`

n
i

˘ .

Proof. To guarantee correct decoding under Heuristic 1,C needs to be able
to correct all patterns of weight at most wmax. The classical Hamming bound
implies |C | ď 2n{

řwmax

i“0

`

n
i

˘

. [\

Note that the cryptographic setting determines the code dimension of the
public code; for example, in the round-4 version of HQC, k “ λ is picked. In
this setting, Lemma 1 can be understood as a lower bound on the required code
length, which, in turn, determines the sizes of the public key and ciphertext.

In practice, reduced sizes can be achieved by tolerating a non-zero DFR.
IND-CCA2 security can be guaranteed for a DFR of at most 2´λ. The following
theorem, inspired by [7], gives a lower bound on the DFR for a given code size
and dimension. Note that a related bound has been developed in [1].
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Lemma 2 (Elias sphere-packing bound under Heuristic 1).
LetC be an arbitrary linear code of length n and dimension k. Denote as ρz the
error probability of the BSC as in Heuristic 1. Let t P rns be minimal such that
řt

i“0

`

n
i

˘

ą 2n´k. Then, any decoder forC encounters at least a DFR of

wmax
ÿ

i“t`1

ˆ

n

i

˙

ρizp1 ´ ρzqn´i.

Proof. Denote as DC Ă Fn
2 the decoding region of the linear codeC , i.e., t “

Encpt ` zq for all z P DC and all t PC . Note that |DC | “ 2n´k. Then, since
Pr rz1s ą Pr rz2s for wtpz1q ă wtpz2q,

ϵ “ Pr rz R DC s ě Pr rz R BC s ,

where BC is a Hamming ball with |BC | ě |DC |. [\

Again, by fixing k “ λ and a sufficiently low DFR, Lemma 2 can be un-
derstood as a lower bound on the required code length. The following example
illustrates how the bounds compare with the code construction used in HQC.

Example 1. The concatenation of the Reed-Muller code and the Reed-Solomon
code employed in round 4 by HQC uses n “ 17996 for a security level of λ “

128 bit. The code dimension is k “ λ, and the achieved DFR is at most 2´λ.
Lemma 2 implies that the minimum code length for achieving the required DFR
is at least n “ 13438. Achieving guaranteed correctness of the decoding would
require at least n “ 21822 according to Lemma 1.

Example 1 shows that the current HQC parameters are already close to
optimal, assuming that HQC errors follow Heuristic 1. This does not hold once
we replace the binomial approximation with the actual structure of the HQC
errors, as we will see in the following.

3.2 Beyond the BSC: Leveraging the Error Structure, x, and y

Let us denote the set of all possible error patterns given x,y as

Ex,y “

!

z “ x ¨ rp2q ` y ¨ rp1q ` e | wtprp1qq “ wr,wtpr
p2qq “ wr,wtpeq “ wr

)

.

Then, the set of all possible error patterns for arbitrary x,y is given by

E “
ď

x,y: wtpxq“wtpyq“w

Ex,y.

There is a well-known condition for characterizing whether a code can uniquely
correct all patterns in E ; see, e.g., [8].
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Lemma 3 (Generalized GV bound).
A linear codeC can correct all patterns in E uniquely if and only ifC X∆E “ t0u,
where ∆E denotes the difference set of E, i.e., ∆E :“ tz ´ z1 | z, z1 P Eu. As a
consequence, there exists a code of cardinality

|C | ď
2n

|∆E|

that can correct all errors in E.

Note that Lemma 3 generalizes the standard Hamming-metric Gilbert-Varshamov
bound to arbitrary error patterns. We obtain the following lemma for our par-
ticular set consisting of HQC errors.

Lemma 4 (GV-like bound with error structure).
Let E be the set containing all possible HQC error patterns generated with pa-
rameters w and wr. Then, |∆E| ď

`

n
w

˘4` n
wr

˘6 which implies that there exists a
codeC of dimension

k ě n ´ 4w log2pn¨e
w q ´ 6wr log2pn¨e

wr
q

that can correct arbitrary HQC errors, i.e., guarantee correct decryption.

Proof. ∆E contains vectors of the form

x ¨ rp2q ` y ¨ rp1q ` e ` x1 ¨ rp2q1
` y1 ¨ rp1q1

` e1

with wtpxq “ wtpx1q “ wtpyq “ wtpy1q “ w, wtprp1qq “ wtprp1q1
q “ wtprp2qq “

wtprp2q1
qwtpeq “ wtpe1q “ wr. The number of elements is upper-bounded by the

number of choices for the components. This argument implies

|E| ď

ˆ

n

w

˙4ˆ
n

wr

˙6

.

Using the relation
`

a
b

˘

ď
`

n¨e
k

˘k, the result follows via Lemma 3. [\

Lemma 4 considers the particular structure of HQC errors but neglects that
the decoder can use the knowledge of x,y. In the following, we analyze the
impact of this additional information. To this end, let us first consider the case
that the codeC is only supposed to work for a particular choice of x,y. Then,
C X∆Ex,y “ t0u is sufficient. For HQC, the public code is fixed and independent
of the choice of the private key. Hence, the instantiation ofC is supposed to
work for all possible choices of x,y. Nevertheless, as the following lemma shows,
knowing x,y is valuable information for the decoder.

Lemma 5. A codeC with a decoder knowing x,y can correct arbitrary HQC
errors if and only ifC X ∆E˚ “ t0u, where

∆E˚ :“
ď

x,y:wtpxq“wtpyq“w

∆Ex,y.
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Proof. We require thatC X ∆Ex,y “ t0u for all x and y. This is equivalent to
ď

x,y:wtpxq“wtpyq“w

pC X ∆Ex,yq “C X
ď

x,y:wtpxq“wtpyq“w

∆Ex,y “ t0u. [\

The restriction onC due to Lemma 5 is less strict than the restriction implied
by ignoring x,y, i.e., ∆E˚ Ď ∆E . To see this, observe that ∆E˚ contains all
vectors of the shape

rp2q1
¨ x ` rp1q1

¨ y ` e

with wtpxq “ wtpyq “ w and wtprp1q1
q “ wtprp2q1

q “ wtpe1q P t0, 2, . . . , 2wru.
This corresponds to the special case of x “ x1 and y “ y1 for the elements of
∆E which are of the form

rp2q ¨ x ` rp1q ¨ y ` e ` rp2q1
¨ x1 ` rp1q1

¨ y1 ` e1.

Theorem 1 (GV-like bound with error structure and x,y).
Let the decoder know x,y. Then, there exists a codeC Ă Fn

2 of dimension

k ě n ´ 2w log2pn¨e
w q ´ 6wr log2p n¨e

2wr
q ´ log2pwrq

that can correct arbitrary HQC errors, i.e., guarantee correct decryption.

Proof. According to Lemma 5, we requireC X∆E˚ “ t0u. To bound the number
of elements in ∆E˚, observe that

|∆E˚| “

∣∣∣∣∣∣
ď

x,y:wtpxq“wtpyq“w

∆Ex,y

∣∣∣∣∣∣ ď

ˆ

n

w

˙2

|∆Ex,y| ď

ˆ

n

w

˙2
˜

2wr
ÿ

i“0

ˆ

n

i

˙

¸3

ď

´n ¨ e

w

¯2w

wr

ˆ

n ¨ e

2wr

˙6wr

,

where we have used
`

a
b

˘

ď
`

a¨e
b

˘b. The statement follows due to Lemma 3. [\

The approach to estimating the sizes of ∆E and ∆E˚ in Lemma 4 and in Theo-
rem 1 is imprecise in general since it ignores the possibility of collisions. There-
fore, we expect that these bounds can be tightened.

Nevertheless, Theorem 1 already shows the potential of considering the error
structure. This becomes clear from Table 1, which gives an overview of the
bounds described in this section. The used error model, the implied decoding
algorithm, and the resulting DFR are compared. Further, we compare the lower
bounds on minimum required lengths under Heuristic 1 with the code lengths
that are achievable by considering the error structure. For simplicity, w, wr,
and we were fixed to the choice of HQC in round 4. Note that higher n would
require increasing these parameters, while a smaller code length might allow
reducing them. Even when this effect is disregarded, it can already be observed
that shorter code lengths are enabled by incorporating the error structure. This
observation becomes more pronounced for higher security levels but is already
significant for λ “ 128. The following example elaborates on this finding.
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Table 1: Overview of the bounds described in this section and comparison with
the current HQC instantiation of round 4. Required and achievable code lengths
for code dimension k “ λ.

HQC [9] Lem. 1 Lem. 2 Lem. 4 Thm. 1

error model BSC-like BSC-like BSC-like structured structured
decoder multistage ML unique unique unique ` x,y

DFR 2´λ 2´λ 0 0 0

used n LB on required n UB on achievable n
NIST 1 17 669 13 438 21 882 5417 3800
NIST 3 35 851 27 913 49 403 8243 5782
NIST 5 57 637 45 150 83 767 10 804 7576

Example 2. Again, we consider the HQC parameters of round 4 that achieve
NIST-I security, i.e., λ « 128 bit. That is, n “ 17669, wr “ 75, w “ 66 and
the code concatenation has a dimension of k “ 128. However, the current code-
decoder design does not factor in the particular structure of the error vectors.
In doing so, Lemma 4 guarantees that a code of length n ď 5417 exists that
can guarantee correct decoding. By taking x and y into account, Theorem 1 can
reduce the upper bound on the required length to n ď 3800.

The described improvement would increase the bandwidth efficiency of HQC
considerably. Note, however, that the result is non-constructive: The proposed
GV-like bounds do not provide an explicit code construction. Further, whether
a computationally efficient decoder exists that accounts for the error structure
remains open. We approach this second question in the following section.

4 Exploiting x and y to Reconstruct rp1q and rp2q

In this section, we describe how, exploiting knowledge of x and y, one can
estimate coefficients of rp1q and rp2q. We first present the general idea, then
analyze it for the case ofC 2 being a repetition code because this makes the
analysis easier. Indeed, in this case, we can get a rather tight theoretical estimate
for the probability distribution of the number of correctly guessed coefficients.

4.1 Decoding as a Noisy Syndrome Decoding Problem

The idea is that, on input c “ t ` z, with t PC , one can use decoding through
the inner codeC 2 to get an estimate of the error term z. From this estimate,
one can then guess coefficients of rp1q and rp2q. These guesses are later used to
remove some of the noise in c. Indeed, let prp1q P R and prp2q P R denote the
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estimates for rp1q and rp2q, respectively. Then, one can update c as

pc “ c ´ x ¨ prp2q ´ y ¨ prp1q

“ t ` x ¨ prp2q ´ y ¨ prp1q

“ t ` x ¨
`

rp2q ´ prp2q
˘

loooooomoooooon

∆rp2q

`y ¨
`

rp1q ´ prp1q
˘

loooooomoooooon

∆rp1q

`e

looooooooooooooooooooooomooooooooooooooooooooooon

z˚

“ t ` z˚.

Notice that, if the estimates prp1q and prp2q are accurate, then ∆rp1q and ∆rp2q will
have a low Hamming weight, perhaps considerably lower than wr (remember
that wr is the weight of rp1q and rp2q). If this happens, then the weight of z˚ is
with a high probability smaller than that of z: Consequently, the decoding of pc
is more probable to succeed than the decoding of the original c.

Estimating rp1q and rp2q Let us write t “
`

tp1q||tp2q|| ¨ ¨ ¨ ||tpn{n2q
˘

with each
tpiq being a codeword ofC 2, thus, of length n2. Analogously, we write z “
`

zp1q||zp2q|| ¨ ¨ ¨ ||zpn{n2q
˘

where, again, each zpiq has length n2. Then, we can write
c “

`

cp1q||cp2q|| ¨ ¨ ¨ ||cpn{n2q
˘

, with cpiq “ tpiq ` zpiq.
Notice that since z has low weight, each zpiq has low weight with high prob-

ability. Thus, with high probability decoding of cpiq returns tpiq. Even when
decoding fails, the output of the decoder is expected to be a codeword close to
tpiq (since the weight of zpiq is generically low). We resume this reasoning by
indicating rtpiq “ Dec

`

cpiq
˘

where, again, rtpiq “ tpiq holds with large probability.
Then, we get a presumably good estimate of z by computing

pz “ c ´
`

rtp1q||rtp2q|| ¨ ¨ ¨ ||rtpn{n2q
˘

“
`

tp1q||tp2q|| ¨ ¨ ¨ ||tpn{n2q
˘

´
`

rtp1q||rtp2q|| ¨ ¨ ¨ ||rtpn{n2q
˘

` z “ ∆t ` z.

Remember that z “ x ¨ rp2q ` y ¨ rp1q ` e, hence

pz “ x ¨ rp2q ` y ¨ rp1q ` e ` ∆t.

Since e has low weight by design and ∆t is expected to have moderately low
weight because of the above reasoning, the vector pz can be seen as a noisy version
of the vector

`

x ¨ rp2q||y ¨ rp1q
˘

.
Let r P F2n

2 be the vector formed by the coefficients of rp2q followed by those
of rp1q. Moreover, let H “

`

Rotpxq||Rotpyq
˘

, where Rotpxq and Rotpyq are the
circulant matrices whose first rows are x and y, respectively. Then, we have

pz “ HrJ ` ∆z.

The problem can be formulated as follows: on input a sparse parity-check matrix
H P Fnˆ2n

2 and a noisy syndrome pz, find a vector r P F2n
2 with weight 2wr such

that wtppz ´ HrJq is minimum. This is precisely a Noisy Syndrome Decoding
instance [6].
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Input: noisy codeword c P Fn
2 , threshold T P N, secret key px,yq P R2

w,
parity-check matrix H “

`

Rotpxq||Rotpyq
˘

P Fnˆ2n
2

Output: noisy codeword pc P Fn
2

{˚ Estimate error vector by decodingC 2 ˚{

1) compute t “ Dec2pcq

2) set pz “ c ´ t

{˚ Guess coefficients of rp2q
˚{

3) Set prp2q
“ p0, ¨ ¨ ¨ , 0q;

4) for i “ 1, ¨ ¨ ¨ , n, do:
5) set bi “ pz ‹ hi;{{ i-th counter
6) if bi ě T , set pr

p2q

i “ 1;

{˚ Guess coefficients of rp1q
˚{

7) Set prp1q
“ p0, ¨ ¨ ¨ , 0q

8) for i “ n ` 1, ¨ ¨ ¨ , 2n, do:
9) set bi “ pz ‹ hi;{{ i-th counter

10) if bi ě T , set pr
p1q

i “ 1;

{˚ Update noisy codeword ˚{

11) compute pc “ c ´ x ¨ prp2q
´ y ¨ prp1q.

Fig. 4: BF decoder to estimate coefficients of rp1q and rp2q.

Any solver for this problem can then be used to retrieve rp1q and rp2q. In the
following, we consider a straightforward and efficient algorithm that allows us
to guess a relatively large number of coefficients in rp1q and rp2q.

Using Bit Flipping Figure 4 describes the algorithm we consider. In the al-
gorithm, we denote by hi the i-th column of H and by ‹ the integer product
between two vectors defined over F2.

The algorithm is a translation of the basic BF decoder for LDPC codes.
For every i, the algorithm computes the counter pz ‹ hi and guesses a non-zero
coefficient in r if the corresponding counter is high enough. Notice that the
decoder output corresponds to the updated version of c.

4.2 The Case of Repetition Codes

We show that, when the inner code is a repetition code, one can theoretically
estimate the probability distribution of wtp∆rp1qq and wtp∆rp2qq. In particular,
we assume the distribution is identical for both polynomials. First, we need the
following technical propositions, with their proofs in the appendix.

Proposition 1 (Probability to wrongly guess a 1-coefficient).
Let i P t1, 2u and j P t1, ¨ ¨ ¨ , nu such that r

piq
j “ 1. Let the inner code be a
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repetition code of odd length n2 and error-correction capability t “ tn2´1
2 u. We

denote the probability that prpiq
j “ 0 as τ1Ñ0 and estimate

τ1Ñ0 “

T´1
ÿ

ℓ“0

ˆ

w

ℓ

˙

pρ ℓp1 ´ pρqw´ℓ,

with T the BF threshold and

pρ “ p1 ´ rρq

t´1
ÿ

ℓ“0

ˆ

n2 ´ 1

ℓ

˙

ρℓzp1 ´ ρzqn2´1´ℓ ` rρ
n2´1
ÿ

ℓ“t

ˆ

n2 ´ 1

ℓ

˙

ρℓzp1 ´ ρzqn2´1´ℓ,

where

rρ “ rρw,wr´1

´

1 ´ ρw,wr

´

1 ´
we

n

¯

´ p1 ´ ρw,wr q
we

n

¯

` p1 ´ rρw,wr´1q

´

ρw,wr

´

1 ´
we

n

¯

` p1 ´ ρw,wr q
we

n

¯

,

rρw,wr´1 “
ÿ

ℓPr1;mintw´1,wr´1us

ℓ odd

`

w´1
ℓ

˘`

n´w
wr´1´ℓ

˘

`

n´1
wr´1

˘ .

Proposition 2 (Probability to wrongly guess a 0-coefficient).
Let i P t1, 2u and j P t1, ¨ ¨ ¨ , nu such that r

piq
j “ 0. Let the inner code be a

repetition code of odd length n and error-correction capability t “ tn´1
2 u. We

denote the probability that prpiq
j “ 1 as τ0Ñ1 and estimate

τ0Ñ1 “

w
ÿ

ℓ“T

ˆ

w

ℓ

˙

pρ ℓp1 ´ pρqw´ℓ,

with T the BF threshold and

pρ “ rρ
t´1
ÿ

ℓ“0

ˆ

n2 ´ 1

ℓ

˙

ρℓzp1 ´ ρzqn2´1´ℓ ` p1 ´ rρq

n2´1
ÿ

ℓ“t

ˆ

n2 ´ 1

ℓ

˙

ρℓzp1 ´ ρzqn2´1´ℓ,

where

rρ “ rρw,wr

´

1 ´ ρw,wr

´

1 ´
we

n

¯

´ p1 ´ ρw,wr q
we

n

¯

` p1 ´ rρw,wr q

´

ρw,wr

´

1 ´
we

n

¯

` p1 ´ ρw,wr q
we

n

¯

,

rρw,wr
“

ÿ

ℓPr1;mintw´1,wrus

ℓ odd

`

w´1
ℓ

˘`

n´w
wr´ℓ

˘

`

n´1
wr

˘ .

Using the above results, we can derive the weight distribution for each ∆rpiq.
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Proposition 3 (Weight distribution of ∆rpiq).
The probability that ∆rpiq has weight wpiq

r can be estimated as

Pr
”

wtp∆rpiqq “ wpiq
r

ı

“

mintwr,w
piq
r u

ÿ

j“0

Pr rN1 “ jsPr
”

N0 “ wpiq
r ´ j

ı

,

where N0 and N1 denote number of wrongly guessed 0-coefficients and 1-coefficients,
which follow the distribution

Pr rN0 “ js “

ˆ

n ´ wr

j

˙

pτ0Ñ1qjp1 ´ τ0Ñ1qn´wr´j ,

Pr rN1 “ js “

ˆ

wr

j

˙

pτ1Ñ0qjp1 ´ τ1Ñ0qwr´j .

Proof. Whenever a one-coefficient of rp2q is guessed correctly, the weight of ∆rp2q

decreases by 1, while a wrong estimate does not change the weight of ∆rp2q in
comparison with rp2q. Analogously, guessing a zero-coefficient correctly does not
change the weight, while a wrong guess increases the weight by 1. Let N0 denote
the number of wrongly guessed 0-coefficients and N1 the number of wrongly
guessed 1-coefficients. Then, the weight of ∆rp2q is N0 ` N1, and

Pr
”

wtp∆rpiqq “ wpiq
r

ı

“

mintwr,w
piq
r u

ÿ

j“0

Pr
”

N1 “ j,N0 “ wpiq
r ´ j

ı

.

To conclude the proof, it is enough to assume that coefficients are guessed in-
dependently so that both N0 and N1 are the sums of Bernoulli variables with
parameters τ0Ñ1 and τ1Ñ0.

Empirical validation The above formulas are somewhat convoluted: many
parameters are employed, and evaluating their interplay is difficult. Further,
Proposition 3 models the coefficients of ∆rpiq as independent, which is not valid
in general, as the inner decoding operates on multiple symbols of c jointly. We
can comment on the effectiveness of the proposed approach using numerical
simulations; to this end, consider Figure 5.

As we can see, the approximation as independent random variables works
well in practice. Further, there are values of T for which both τ1Ñ0 and τ0Ñ1

are low. That is, the probability of getting a wrong estimate for a coefficient is
low, regardless of its value. This guarantees that both prp1q and prp2q are close to
rp1q and rp2q, which, in turn, implies that the weights of ∆rp1q and ∆rp2q are
decreased with high probability.

Notice also that if T is too low, then too many 0s are estimated as 1s, and
the weight of ∆rp1q and ∆rp2q may even be larger than that of rp1q and rp2q.
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Fig. 5: Comparison of numerical and theoretical estimates for HQC version
BCHbREP. Round-1 parameters of HQC offering 128 bits of security were used,
i.e., n1 “ 766, n2 “ 31, w “ 67, and wr “ we “ 77. Figure 5a shows the values
of τ1Ñ0 and τ0Ñ1, Figure 5b reports the distribution of the weight of ∆rp1q and
∆rp2q. The numerical estimates have been obtained averaging over 103 trials.

5 Reducing the DFR with a Structure-Aware Decoder

We now show that the technique from the previous section improves HQC decod-
ing: for the same code length n, our decoder has a lower DFR than the original
HQC decoder.

The algorithm, summarized in Figure 6, can be viewed as a conventional HQC
decoder, enhanced by an initial noise-reducing stage performed according to the
algorithm in Figure 4. The final decoding step requires decoding the inner codes a
second time, which gives the proposed algorithm an iterative nature. The results
of the second inner decoding correlate with the results of the initial decoding:
inner blocks that failed in the initial phase are more likely to fail again in the final
decoding step. As a consequence of these dependencies, we were not able to derive
a reliable DFR model. While the analysis of the proposed decoder is complex,
its running time remains efficient, as the following proposition demonstrates.

Proposition 4 (Complexity of proposed decoder). The computational
complexity of the proposed decoder is in

O pTinner ` Touter ` nw ` wwrq ,

where Tinner and Touter denote the running times of the inner and outer decoders.

Proof. The initial inner decoding has cost Tinner. In the noisy syndrome decoding
step, each counter is computed using Opwq operations since w coefficients are
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Input: noisy codeword c P Fn
2 , secret key x,y

Output: decrypted message m

{˚ Estimate error vector by decodingC 2 ˚{

1) set pz “ c ´ Dec2pcq;

{˚ Estimate prp1q, prp2q
˚{

2) derive prp1q, prp2q as in Figure 4;

{˚ Update noisy codeword ˚{

3) compute pc “ c ´ x ¨ prp2q
´ y ¨ prp1q;

{˚ standard HQC decoder ˚{

4) decode m “ Decppcq.

Fig. 6: Proposed error structure-aware decoder for HQC.

summed. Therefore, the estimation of prp1q,prp2q takes time Opnwq. For a properly
chosen threshold T , the weights of the polynomials prpiq do not exceed wr. Hence,
xprp2q ` yprp1q requires Opwwrq operations leveraging the sparse nature of the
polynomials. The final HQC decoding procedure has cost Tinner ` Touter. [\

Remark 1. The proposition considers a non constant time implementation of the
decoder. Still, we expect that a constant time implementation does not lead to a
significant penalty: indeed, any of the strategies employed for BF decoders can
probably be employed for our decoder as well.

Proposition 4 shows that the increase in complexity due to the additional noise
filtering step is rather limited due to the sparsity of the involved polynomi-
als. Nevertheless, a considerable improvement in decoding performance can be
achieved as can be observed empirically, see Figure 7.

In Figure 7a, we focus on the concatenation of BCH and repetition code. The
DFR of the decoder is simulated for several threshold values T while varying the
inner code length n2. It can be observed that the optimal threshold value for
this setup is T “ 38, which results in a DFR that is 109 times lower than the
one of the original decoder when n2 “ 21.

In Figure 7b, the concatenation of Reed-Muller and Reed-Solomon code is
considered. Since the length of the inner RM code is not flexible, we vary the
outer length n1 instead. Here, the optimal threshold is identified as T “ 39.
Although the improvement is not as substantial as for the concatenation of BCH
and repetition code, it is still evident that the DFR of the proposed decoding
algorithm is significantly lower than that of the original decoder.
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Fig. 7: Simulation of the DFR of the original HQC decoder and the proposed
one, as a function of either n1 or n2. Figure 7a considers the BCH b REP version
with n1 “ 766, tBCH “ 57, w “ 67, wr “ 77; Figure 7b considers the RS b DRM
version with nRM “ 128 (original length RM code), mult “ 3 (multiplication
factor RM code), w “ 66, wr “ we “ 75.

6 Conclusion

In this work, we have taken an initial step towards replacing the BSC model
currently used in HQC with a channel model that accounts for the specific error
structure tied to the secret key.

First, we analyzed the potential improvements in code length that can be
achieved. The derived GV-like bounds show that significantly shorter codes than
those currently used in HQC can guarantee correct decoding. This stands in
contrast to the limited room for improvements under the BSC model. However,
while our study reveals a promising direction for more effective code-decoder
pairs, it is non-constructive.

Second, we proposed a new error structure-aware decoder. This decoder is
a modification of the standard multistage decoder of HQC, incorporating an
additional filtering stage. The filtering step leverages the secret key to estimate
coefficients of the unknown polynomials that form the error vector. As a result,
the weight of errors to be corrected can be reduced, potentially leading to a lower
DFR. We have developed a preliminary analysis of the behavior of the proposed
decoder. However, precisely modeling the DFR remains a challenge due to the
iterative nature of the algorithm.
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A Proofs of Propositions 1 and 2

We require two preliminary results, which we give and prove here.

Proposition 5. For two polynomials a P Rwa and b
$

ÐÝ Rwb
, an arbitrary

coefficient (say, the first one) in the product a ¨ b is set with probability

ρwa,wb
“

ÿ

ℓPr1;mintwa,wbus

ℓ odd

`

wa

ℓ

˘`

n´wa

wb´ℓ

˘

`

n
wb

˘ .

Proof. According to the rules of polynomial multiplication, we have:

cℓ “
ÿ

i,j
i`j”ℓ mod n

ai ¨ bj , for ℓ P t0, 1, . . . , n ´ 1u.

We have cℓ “ 1 only if, in the above equation, the number of terms ai ¨ bj equal
to 1 is odd. The probability to have exactly ℓ terms ai ¨ bj which are equal to 1

is
pwa

ℓ qpn´wa
wb´ℓq

p n
wb

q
. [\

Proposition 6. Let x,y P Rw, rp1q $
ÐÝ Rwr

, rp2q $
ÐÝ Rwr

, and e
$

ÐÝ Rwe
. An

arbitrary coefficient of the polynomial z “ x ¨rp2q `y ¨rp1q `e follows a Bernoulli
distribution with parameter

ρz “ 4ρ2w,wr
ρe ´ 2ρ2w,wr

´ 4ρw,wr
ρe ` 2ρw,wr

` ρe.

Under the assumption that the coefficients behave as independent random vari-
ables, the weight of z follows a binomial distribution.

Proof. According to Proposition 5, the i-th coefficient of both products px “

x ¨ rp2q and py “ y ¨ rp1q is Bernoulli distributed with parameter ρ
w,w

p2q
r

and
ρ
w,w

p1q
r

. Then, the i-th coefficient of z will be set with probability

Pr rpxi “ 1s ¨ Pr rpyi “ 0s ¨ Pr rei “ 0s ` Pr rpxi “ 0s ¨ Pr rpyi “ 1s ¨ Pr rei “ 0s

` Pr rpxi “ 0s ¨ Pr rpyi “ 0s ¨ Pr rei “ 1s ` Pr rpxi “ 1s ¨ Pr rpyi “ 1s ¨ Pr rei “ 1s .

Substituting the probabilities with the associated Bernoulli parameters, we get

ρz “ p1 ´ ρw,wr
qp1 ´ ρw,wr

qρe`p1 ´ ρw,wr
qρw,wr

p1 ´ ρeq

` ρw,wr
p1 ´ ρw,wr

qp1 ´ ρeq ` ρw,wr
ρw,wr

ρe.

After some manipulations, we obtain the expression for ρz. [\

We now proceed to prove Proposition 1; the proof for Proposition 2 is carried
out in the same way and is hence omitted.
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A.1 Proof of Proposition 1

For i P suppprp2qq, we derive the probability distribution of the counter value.
We express rp2q as

rp2q “ p0, ¨ ¨ ¨ , 0, 1, 0, ¨ ¨ ¨ , 0q
loooooooooooomoooooooooooon

1 in position j,
0 elsewhere

`rrp2q,

where rrp2q is equal to rp2q apart from the coefficient in position j, which is 0

(instead of 1). Observe that wtprrp2qq “ wr ´ 1. The counter associated to r
p2q

j

is obtained by summing the coefficients of the estimated error vector pz in the
positions indexed by supppxq ` j “ ts ` j mod n | s P supppxqu. For each
ℓ P supppxq ` j, we have:

zℓ “ 1 ` px ¨ rrp2qqℓ ` py ¨ rp1q ` eqℓ
loooooooooooooooomoooooooooooooooon

rzℓ

“ 1 ` rzℓ,

where zℓ is the ℓ-th coefficient of rz “ x ¨rrp2q `y ¨ rp1q `e. With arguments analo-
gous to those in Proposition 6, we see that py ¨ rp1q `eqj is Bernoulli distributed
with parameter

ρw,wr

´

1 ´
we

n

¯

` p1 ´ ρw,wr
q
we

n
.

Also px ¨ rrp2qqj can be considered as Bernoulli distributed; in particular, the
probability that its ℓ-th coefficient is 1 corresponds to

rρw,wr´1 “
ÿ

ℓPr1;mintw´1,wr´1us

ℓ odd

`

w´1
ℓ

˘`

n´1´w
wr´1´ℓ

˘

`

n´1
wr´1

˘ .

Notice that this probability slightly differs from the one in Proposition 5. This
is because we are considering only w ´ 1 coefficients of x and n ´ 1 coordinates
for rrp2q (as one is set to 0).

Putting everything together, we get that rzj is equal to 1 with probability

rρ “ rρw,wr´1
looomooon

Prrpx¨rrp2qqℓ“1s

´

1 ´ ρw,wr

´

1 ´
we

n

¯

´ p1 ´ ρw,wr
q
we

n

¯

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

Prrpy¨rp1q`eqℓ“0s

` p1 ´ rρw,wr´1q
looooooomooooooon

Prrpx¨rp2qqℓ“0s

´

ρw,wr

´

1 ´
we

n

¯

` p1 ´ ρw,wr
q
we

n

¯

looooooooooooooooooooooomooooooooooooooooooooooon

Prrpy¨rp1q`eqℓ“1s

Let Kinpℓq indicate the event that the inner code codeword in which the ℓ-th
coordinate is contained is wrongly decoded. The complementary event (i.e., a
decoding success) is indicated as sKinpℓq. Then, we have

Pr rpzℓ “ 1s “ Pr
“

sKinpℓq | rzℓ “ 0
‰

¨ Pr rrzℓ “ 0s ` Pr rKinpℓq | rzℓ “ 1sPr rrzℓ “ 1s .
(3)
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Indeed, the first term (i.e., Pr
“

sKinpℓq | rzℓ “ 0
‰

¨Pr rrzℓ “ 0s) is the probability that
zℓ “ 1 and decoding is successful, so zℓ is correctly estimated. Analogously, the
second term (i.e., Pr rKinpℓq | rzℓ “ 1sPr rrzℓ “ 1s) corresponds to the probability
that zℓ “ 0 but there is a decoding failure, so zℓ is wrongly estimated.

Let suppinpℓq denote the set of indices that correspond to the same inner
codeword as position ℓ. Then, pzℓ “ zℓ “ 1 if and only if the remaining n2 ´ 1
positions allow correct decoding of position ℓ, despite position ℓ being erroneous.
This happens whenever the number of set coefficients in suppinpℓqztℓu is not
greater than t ´ 1, where t “ tn2´1

2 u denotes the error-correction capability
of the inner repetition code. The DFR analysis of HQC assumes independence
between the coefficients of the error z [3]. Similarly, we assume that the positions
in suppinpℓqztℓu are independently Bernoulli distributed with parameter ρz as in
Proposition 6. Then, the required probabilities can be calculated as

Pr
“

sKinpℓq | rzℓ “ 0
‰

“

t´1
ÿ

k“0

ˆ

n2 ´ 1

k

˙

ρkzp1 ´ ρzqn2´1´k.

With analogous reasoning, we obtain

Pr rKinpjq | rzj “ 1s “

n2´1
ÿ

k“t

ˆ

n2 ´ 1

k

˙

ρkzp1 ´ ρzqni´1´k.

Then, writing pρ “ Pr rpzℓ “ 1s, we obtain (3) as

pρ “ p1 ´ rρq

t´1
ÿ

k“0

ˆ

ni ´ 1

k

˙

ρkzp1 ´ ρzqn2´1´k ` rρ
n2´1
ÿ

k“t

ˆ

n2 ´ 1

k

˙

ρkzp1 ´ ρzqn2´1´k.

(4)
We model

ř

jPsuppx`i pzj as a sum of independent random variables. Conse-
quently,

ř

jPsuppx`i pzj follows the binomial distribution with w trials and success
probability pρ and we obtain

τ1Ñ0 “

T´1
ÿ

ℓ“0

ˆ

w

ℓ

˙

pρ ℓp1 ´ pρqw´ℓ.
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