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Abstract. Electronic voting schemes typically ensure ballot privacy by
assuming that the decryption key is distributed among tallying author-
ities, preventing any single authority from decrypting a voter’s ballot.
However, this assumption may fail in a fully dishonest environment where
all tallying authorities collude to break ballot privacy.
In this work, we introduce the notion of anamorphic voting, which en-
ables voters to convey their true voting intention to an auditor while
casting an (apparently) regular ballot. We present new cryptographic
techniques demonstrating that several existing voting schemes can sup-
port anamorphic voting.

1 Introduction

According to the Democracy Index published by the Economist Group [28] in
2024, 59 countries are classified as authoritarian regimes. To remain in power,
such regimes need to demonstrate overwhelming support for the ruling party,
often designing voting systems to ensure that the dictator decisively wins the
election. Therefore, elections in these countries often lack transparency, raising
concerns about the secrecy and integrity of the ballots.

An authoritarian regime that (falsely) seeks to address such concerns could
still implement a voting scheme that is proven to be secure, while violating its
trust assumptions. For example, ballot privacy is clearly compromised in most
voting systems if an attacker controls all the election decryption keys and has
access to the datasets containing the ballots cast at the voting phase. The absence
of vote privacy intimidates voters, preventing them from freely expressing their
true preferences. However, is it still possible for voters to communicate their real
voting intentions without being detected by the authoritarian regime?

In this work, we introduce anamorphic voting, exploring how participants
in an election might communicate covertly even when an authoritarian regime
controls all communication channels and implements an existing voting scheme
without satisfying the necessary trust assumptions. Anamorphic voting is in-
spired by the recent concept of anamorphic encryption [25] in the context of
electronic voting. While anamorphic encryption studies whether a single well-
established public-key cryptosystem supports covert communication under strin-
gent dictator conditions, anamorphic voting examines whether a combination of
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cryptographic primitives within a voting scheme can enable covert communica-
tion even in the presence of dishonest authorities.

We introduce the term ballot freedom to capture the most useful application
of anamorphic voting. Ballot freedom is the ability of a voter to freely commu-
nicate their true voting intention to an auditor without the knowledge of the
authoritarian regime.

At first glance, ballot freedom seems similar to receipt-freeness or coercion-
resistance (by replacing the terms "auditor" with "tallier" and "coercer" with
"authoritarian regime"). However, there are at least two key differences. First,
receipt-freeness and coercion-resistance are properties that can be enforced by
designing a new voting scheme, while ballot freedom is a property achieved
through the combination of cryptographic primitives in an existing voting scheme.
Second, receipt-free and coercion-resistant voting schemes need to assume the
existence of anonymous and/or private channels at some point [9]. This very
assumption is ruled out in the context of anamorphic voting, as authoritarian
regimes often control all communication channels.

In this paper, we introduce the first constructions for anamorphic voting
by investigating combinations of the most common cryptographic primitives in
voting schemes. We show that anamorphic voting is possible in the Estonian
Internet Voting System (IVXV) [22], CHVote [19], Helios [1] and Belenios [10]
voting schemes. Additionally, we demonstrate that different levels of ballot free-
dom can be achieved depending on the available datasets. To the best of our
knowledge, our constructions are the first to demonstrate anamorphism within
the context of a combination of cryptographic primitives. Thus, these construc-
tions may also prove useful in domain beyond voting.

2 Anamorphic Voting

We provide a primer of anamorphic encryption, from which we informally in-
troduce anamorphic voting and ballot freedom, leaving a formal treatment for
future work. We then discuss how to make CHVote [19] anamorphic, achieving
ballot freedom using different cryptographic primitives.

2.1 From Anamorphic Encryption to Anamorphic Voting

Anamorphic encryption [25] enables entities to encrypt hidden messages evading
the censorship imposed by a dictator within a well-established public-key cryp-
tosystem. In its stronger formulation, the dictator owns the receiver’s secret key
(no receiver privacy) and can force the sender to send ciphertexts over a chan-
nel controlled by the dictator (no sender freedom), although sender and receiver
might have previously exchanged keys over private channels.

In strongly secure anamorphic encryption, the dictator forces the sender to
encrypt a message fm using a forced public key fpk for which the dictator knows
the corresponding private key fsk. The sender can evade censorship by generat-
ing randomness for the encryption using a coin-toss faking algorithm fRandom,
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which takes as input fm, fpk, a double public key dpk (with the corresponding
double private key dsk known only by the receiver) and a hidden message dm,
and generates an anamorphic ciphertext that gives fm when decrypted with
fsk, and dm when decrypted with dsk by the receiver.

In anamorphic voting, we extend the concept of anamorphic encryption to
support the multiple cryptographic primitives that constitute a voting scheme,
that is, we split anamorphic encryptions across multiple components, such as
multiple ciphertexts, ciphertext and signature, or ciphertext and proof of knowl-
edge. This approach allows entities to encrypt hidden messages, evading the cen-
sorship imposed by dishonest authorities within a well-established voting scheme.

Anamorphic voting is agnostic about the participants. It can apply to sce-
narios where, for instance, a voter wants to communicate with another voter or
an honest authority with another honest authority. To address the specific case
of voters conveying their true vote intentions to an auditor despite the presence
of dishonest authority, we introduce the concept of ballot freedom.

Ballot freedom assumes the following strong threat model:

– The auditor double public key dpk is known to everyone, including voters
and authority.

– The authority executes the voting scheme according to its prescribed speci-
fications, including setup parameters.

– The authority knows at least the election decrypting key and may hold
additional keys based on the roles in the voting scheme.

– The authority has access to all data generated within the voting scheme.
– The voter can only communicate through channels controlled by the author-

ity (i.e. no anonymous, private, or untappable channels exist).

A notable distinction from anamorphic encryption is that ballot freedom does
not assume the existence of private channels.

2.2 A Running Example: CHVote

CHVote [19] has been one of the two major e-voting system proposals in Switzer-
land. The system is universally verifiable, which means that independent verifiers
can confirm the correctness of the election results. Verification ensures that only
votes cast by eligible voters are included, that no voter casts more than one vote,
and that every valid vote is tallied as recorded.

The election process in CHVote involves several key parties: Election Admin-
istrator, Election Authority, Printing Authority, Voter, and Verifier. CHVote is
designed to support various election formats, including multiple elections and
multiple answers. For simplicity, we focus on the case where voters cast a vote
for a single candidate among n possible candidates. It relies on several crypto-
graphic primitives, including ElGamal encryption [15], Schnorr signatures, and
Schnorr identification proofs [26].

CHVote can be divided in three phases as follows:
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Preparation Phase. The election administrator defines the election parame-
ters, such as the number of candidates n, and works with the election authorities
to generate a public encryption key pk. Each authority prepares partial verifica-
tion codes for each voting option, which are hashed and combined into a single
verification code vc. The printing authority collectively generates and prints el-
igibility, confirmation, and validity data on the voter’s election card.

Vote Casting Phase. To cast a vote, the voter provides their choice m to
the voting client, which generates a ballot α = (x̂, b, pk). Here, x̂ is the voter’s
public credential derived from their private credential x, and b = (b1, b2) =
Enc(pk,m; r) = (gr,m · pkr) is an Oblivious Transfer (OT) query constructed
using ElGamal encryption. The ballot also includes a non-interactive zero knowl-
edge proof (NIZKP). The authorities, acting as OT senders, respond to this
query, enabling the voting client to derive verification codes for the chosen candi-
date. Additionally, the ballot contains a Schnorr-like identification proof linking
the public credential x̂ and the encrypted vote. Let H be a secure hash function,
and let ĝ be the generator of Zp̂, where q̂ | p̂− 1, the NIZKP, consisting of three
combined proofs, is generated as follows:

– pick w1
$←− Zq̂, w2

$←− Zp, w3
$←− Zq

– compute t1 = ĝw1 mod p̂, t2 = w2 · pkw3 mod p, t3 = gw3 mod p
– compute s = H(α, t1, t2, t3)
– compute rv1 = w1− s ·x mod q̂, rv2 = w2 ·m−s, rv3 = w3− s · r mod q
– return π = (rv, s) = ((rv1 , rv2 , rv3), s)

To verify the proofs, one computes t′1 = x̂s · ĝrv1 , t′2 = bs2 · rv2 · pkrv3 , and
t′3 = bs1 · grv3 , and then checks if s = H(α, t′1, t

′
2, t

′
3).

Tally Phase. After the election, authorities anonymize the ballots via a ver-
ifiable mixnet and collectively decrypt them using private key shares. The ad-
ministrator finalizes the decryption and publishes the results, which independent
verifiers validate for correctness and integrity. Several data sets, including en-
crypted votes and their proofs, are published for auditing purposes, as detailed
in Table 7.2 of [19].

2.3 Ballot Freedom in CHVote

CHVote achieves ballot freedom thanks to an anamorphic construction that com-
bines ElGamal and the Schnorr-like identification proof as follows.

Construction 1 (combining ElGamal ans Schnorr). The voter chooses
a random w1

$←− Zq̂ and then computes the ElGamal randomness as r :=

Ĥ(dpkw1 · gdm), where Ĥ is a hash function that maps group elements into
the randomness space, dpk = ĝdsk is the auditor double public key, and dm is
the double (short) message or private vote chosen by the voter. Then, the voter
computes the NIZKP and the ElGamal ciphertext ct := Enc(pk,m; r) accord-
ingly to the CHVote protocol specifications outlined above.
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Given the public available proof π = ((rv1 , rv2 , rv3), s) and ballot b = (b1, b2) =
(gr,m · pkr), the auditor can retrieve the double message dm using the proce-
dure dDecS(dsk, (b, (rv1 , s), x̂)) as detailed in Algorithm 1. This works because
b1 = gt = gĤ(tdsk1 ·gdm) = gĤ(ĝw1·dsk·gdm) = gĤ(dpkw1 ·gdm) = gr. Note that the au-
thority knows all keys, including dpk, except dsk. The construction establishes a
level of robustness, ensuring that the auditor, and only the auditor, can retrieve
and understand if the encrypted message contains or not a double message.

This particular construction requires that the voter private credential x is not
known to the authority. If so, given the ballot signature (rv, s) the authority can
compute w1 := s·x+rv1 and check whether b1 = gĤ(dpkw1 ·gdm). To avoid this, the
voter can instead link the randomness in the ElGamal encryption to the proof
of knowledge of that very randomness, namely, rv3 . The voter chooses a random
w3

$←− Zq and computes r = Ĥ(dpkw3 · gdm). The proof π = ((rv1 , rv2 , rv3), s)
is generated as before, and the auditor retrieves the double message dm using
dDecS(dsk, (b, (rv3 , s),b1)).

Algorithm 1 dDecS(dsk, (b, (rv1 , s), x̂)) // (Schnorr)
1: b := {b1, b2}
2: t1 := x̂s · ĝrv1
3: for i ∈ M do
4: t := Ĥ(tdsk1 · gi)
5: if b1 = gt then
6: return i
7: end if
8: end for
9: return ⊥

3 More Anamorphic Constructions

We provide a few more generic anamorphic constructions that can be used to
achieve ballot freedom in other voting schemes.

Common to all the constructions are the forced message fm ∈ M, the at-
tacker key pair (fpk, fsk)← EKeyGen(), the receiver double key pair (dpk, dsk)←
EKeyGen(), the double message dm ∈M, and a hash function Ĥ that maps group
elements into the randomness space. EKeyGen() is the ElGamal key generation
function that outputs a pair of keys (sk, pk = gsk) where sk

$←− Zp.
Also here the attacker knows all keys except dsk and all constructions es-

tablish robustness, ensuring that decrypting anamorphic ciphertexts with the
correct double key results in a valid message, otherwise an explicit abort signal
is returned.

Construction 2 (combining two ElGamal ciphertexts). The sender chooses
a random r1

$←− Zq and computes ct1 = Enc(fpk, fm; r1). Given another forced
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Algorithm 2 dDec(dsk, (ct1, ct2)) (ElGamal)
1: ct1 := (c11, c12)
2: ct2 := (c21, c22)
3: t := cdsk11

4: for i ∈ M do
5: k := Ĥ(t · gi)
6: if c21 = gk then
7: return i
8: end if
9: end for

10: return ⊥

Algorithm 3 fRandom(dpk, dm) // (ℓ-bit message)
1: dm := b1∥b2∥ · · · ∥bℓ ∈ {0, 1}ℓ
2: for i ∈ [ℓ+ 1] do
3: if i = 1 then
4: ri

$←− Zq

5: else
6: ri := Ĥ(dpkri−1 · gbi−1)
7: end if
8: end for
9: R← {ri}i∈[ℓ+1]

10: return R

message fm′ ∈ M, the sender computes r2 ← Ĥ(gdm · dpkr1) and cipher-
text ct2 = Enc(fpk, fm′; r2), and sends (ct1, ct2). The receiver retrieves dm
using the decryption function outlined in Algorithm 2. This works because
c21 = gk = gĤ(gdm·cdsk11 ) = gĤ(gdm·dpkr1 ) = gr2 . Note that if dm ∈ M \ {0},
r2 can be computed as r2 ← Ĥ(dm · dpkr1) and the receiver can avoid the
exponentiations in step 5 in Algorithm 2.

Since the receiver must compute modular exponentiations to retrieve the
message, the double message space is expected to be small, which is generally
acceptable in voting, as the message space for the candidates is typically small.

Construction 3 (combining ℓ+1 ElGamal ciphertexts). Alternatively, the
sender can anamorphically send an l-bit long double message dm by casting ℓ+1
ciphertexts. The sender selects the set of randomness R := {ri}i∈[1,ℓ+1] using
the fake randomness generator as described in Algorithm 3, which is a simplified
version of the sender-anamorphic extension for hybrid PKE with special KEM
from [29]. Differently from [29], our fake randomness generator does not require
key encapsulation. Algorithm 3 takes in dpk and dm, and outputs R to be used
in the ElGamal encryptions. In fact, it creates a link between the randomness
used in the encryptions. This is only noticeable by the receiver owning the double
secret key dsk. The receiver can decrypt dm using Algorithm 4.

Construction 4 (combining ElGamal and DSA). The last construction
consider the DSA signature scheme, which we briefly discuss as follows.



Anamorphic Voting: Ballot Freedom Against Dishonest Authorities 7

Algorithm 4 dDecB(dsk,CT) // ℓ-bit message)
1: CT := {(ci1, ci2)}i∈[1,ℓ+1]

2: for i ∈ [2, ℓ+ 1] do
3: bi := {ci1, ci2}
4: t0i := Ĥ(cdsk1i−1)

5: t1i := Ĥ(cdsk1i−1 · g)
6: if c1i = gt

0
i then

7: b′i−1 := 0

8: else if c1i = gt
1
i then

9: b′i−1 := 1
10: else
11: return ⊥
12: end if
13: end for
14: return b′1∥b′2∥ · · · ∥b′ℓ

DSA Signature. The DSA signature consists of three algorithms as:

– DKeyGen(1λ): on input of a security parameter 1λ, outputs a pair of keys
(vsk, vpk = gvsk) where vsk

$←− Zq, with (p, q, g) satisfying q | (p− 1) and g
being a generator of the subgroup of order q in Z∗

p.
– DSign(vsk,m;w): which, given a signing key vsk, a message m ∈ M, and

randomness w
$←− Zq, and a hash function H, outputs a signature (rv, s)

where rv = (gw mod p) mod q, and s = w−1(H(m) + vsk · rv) mod q.
– DVerify(vpk,m, σ = (rv, s)): given a verification key vpk, a message m, and

a signature σ, outputs ⊤ (valid) if r, s ∈ Zq \ {0}, v = H(m)s−1 mod q,
u1 = gv mod p, u2 = vpk(rv mod q) mod p, and (u1 · u2 mod p) mod q =
rv. Otherwise, it outputs ⊥.

Algorithm 5 dDecDSA(dsk, ct, (rv, s)) (DSA)
1: ct := {c1, c2}
2: for i ∈ M do
3: t := Ĥ(cdsk1 · gi)
4: if rv = gt then
5: return i
6: end if
7: end for
8: return ⊥

The sender chooses a random r
$←− Zq and computes ct := Enc(fpk, fm; r).

Given a (forced) message sm, the sender computes w := Ĥ(gdm ·dpkr), generates
a DSA signature (rv, s) := DSign(vsk, sm;w) and sends (ct, (rv, s)). The receiver
retrieves dm using the decryption function outlined in Algorithm 5. This works
because rv = gt = gĤ(gdm·cdsk1 ) = gĤ(gdm·dpkr) = gw.
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All the constructions above are very efficient. For Construction 1, 2, and
4, the sender (voting device) just needs an extra exponentiation to send an
anamorphic ciphertext. All the burden is on the receiver (auditor), who needs
to perform a linear number of exponentiations in the size of the double message.
Therefore, the double message space for this constructions is expected to be
small, like a vote preference. For Construction 3, the sender needs to perform
2× ℓ extra exponentiations per bit-message. For example, to send a 32-bit long
double message, the sender needs to perform only 64 extra exponentiations.
However, it is different if we consider the burden on the voter rather than the
voting device. In this case, it mainly depends on the specificities of the voting
system, its implementation, and its user interface.

4 The Estonian Internet Voting System

The Estonian Internet Voting System, IVXV [22], allows voters to cast their
vote online. To sign and encrypt a ballot, it uses a digital signature scheme
and a homomorphic public-key encryption scheme, which is instantiated with
ElGamal. Proof of shuffle and proof of correct decryption are also employed.

4.1 Protocol Description

IVXV is based essentially on the following participants: the election organizer,
the registration service, the voter, the vote collector, the ballot box processor
(IBBP), the mixing service, and the data auditor. The protocol can be divided
into five distinct stages: initialization, voting, post-voting, tallying, and auditing.

Initialization. Before voting begins, the election organizer sets up and con-
figures the IVXV system. In particular, this process includes generating cryp-
tographic keys that will later be used to encrypt and decrypt votes as follows.
On input of the security parameter 1λ, electoral roll V, and candidate list C,
the election organizer computes (pkET , skET )

$←− EKeyGen(1λ). Moreover, each
voter v has access to their signing key pair spkv, sskv, which were generated by
governmental service by computing (spkv, sskv)

$←− DKeyGen(1λ). In the IVXV
implementation, the signature scheme is RSA-SHA256 (for authentication with
ID card or digital ID) or ECDSA-SHA256 (for authentication with mobile ID).
Here, we consider only the latter.

Voting. An eligible voter v ∈ V encrypts their choice cv ∈ C using the election’s
public encryption key pkET and a randomly generated value rv resulting in
ballot b = Enc(pkET , cv, rv). The voter then signs the ballot b using their private
signing key sskv and a random value rsv. This creates votev = Sign(sskv, b, rsv).
The voter submits their identifier v, a certificate proving their voting eligibility,
and votev to the vote collector (VC) .

Upon receipt, VC processes the submission and responds with a unique iden-
tifier vid, used for (individual) verification of the vote. Note that a voter can cast
multiple votes. The set DV C contains all cast votes during this phase, stored
without removal.
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Post-voting. After the voting phase concludes, IBBP checks the eligibility of
each vote and cross-references the registration confirmations, which are stored
in DRS , with the data from DV C to ensure consistency. Once this verification is
complete, the IBBP compiles a new list of ballots, retaining only the most recent
valid vote for each voter and removing those who also cast paper ballots. Then,
the IBBP anonymizes the ballots by stripping any voter-identifying information
(e.g. signatures) producing B1. Optionally, the set B1 can be mixed, producing
an output set B2 along with a proof of correct operation Pmix ensuring secure
shuffling and re-encryption.

Tallying. The election organizer decrypts each choice c′ and computes the
voting result. Additionally, it provides a proof of correct decryption Pdec along
with the plaintext.

Auditing. Different levels of auditing can be performed. Universal verifiability
can be achieved by a complete audit, in which the auditor has access to all data
sets DV C , DRS , B1, B2, Pmix, Pdec. As outlined in [22], a complete audit might
leak a lot of information, such as whether a voter re-voted. This increases the risk
of coercion, though the dictator already breaks ballot privacy, possibly allowing
a complete audit. As an alternative, the auditor can perform a partial audit, in
which only the data sets B1, B2, Pmix, Pdec are available.

4.2 Ballot Freedom in IVXV

We now explore how ballot freedom can be achieved in the IVXV system across
three different scenarios as follows.

Case 1: complete audit with revoting. In this scenario, the auditor has
access to all data sets, including DV C containing encrypted votes and their
signatures. Revoting allows the voter to cast multiple votes, which the auditor
can detect. Ballot freedom can be achieved using the constructions that combine
ElGamal ciphertexts outlined in Section 3. According to Construction 2, the
voter casts two ballots to communicate a message within a small message space.
According to Construction 3, the voter casts ℓ + 1 ballots to communicate an
ℓ-bit-long double message. The auditor can identify all ballots cast by the same
voter by examining the signatures.

Case 2: complete audit without revoting. In this scenario, the voter casts
only one vote. If the auditor has access to DV C , the voter can link the randomness
in the encryption and the randomness in the DSA signature using Construction
4. Interestingly, the IVXV architecture document suggests that the P-384 curve
can be used for ElGamal encryption, which is the same curve commonly used
in ECDSA. Therefore, they likely share the same parameters, including order
and generator. Even if the parameters differ, the hash function in Construction
4 can maps elements between the groups. A practical challenge arises if the
signature service is provided by an app that might not allow the voter to choose
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the randomness. Therefore, the voter would need to a modified version of the
app that supports customized randomness input.

Case 3: partial audit. In this scenario, the auditor has access to anonymized
ballots in B1, therefore the previous approaches cannot straightforwardly signal
the voter’s real intention. However, if voters reveal their randomness to other
voters, they could still signal their true vote intentions by using Construction
2 or Construction 3. The latter construction is more challenging because voters
must reveal their randomness in sequence to form a link between them. In both
cases, the decryption algorithms dDec and dDecB require the auditor to check all
other ballots in B1 for randomness links. Despite these challenges, ballot freedom
remains feasible even in the partial audit scenario.

5 Helios

Helios [1] builds on Benaloh’s Simple Verifiable Voting [4], separating ballot
preparation and casting. Ballots can be prepared and viewed without authenti-
cation, while authentication is required only for casting, ensuring auditability by
allowing anyone to verify the system’s integrity. In this paper, we focus on Helios
2.0 [2], which, compared to the first protocol, replaces mixnet-based tallying with
homomorphic tallying. In addition, voters now provide a NIZKP to demonstrate
the validity of their encrypted votes without revealing their content.

The election process in Helios 2.0 is as follows, where the cryptographic
descriptions are taken from [12]:

Ballot Casting. The voter selects their choice m ∈ {min, . . . ,max} and forms
the vote as v = gm. Then, the voter encrypts v under the trustees’ public key pk
using ElGamal encryption yielding ct = (c1, c2) = Enc(pk, v; r) = (gr, gm · pkr),
and generates a NIZKP showing that ct is a valid encryption for a message m.
The proof is generated as follows.

– For all invalid plaintexts i ∈ {mmin, . . . ,mm−1,mm+1, . . . ,mmax}: randomly
generate a challenge si ∈ Z∗

q and a response ri ∈ Z∗
q . Compute the witnesses

c1i = gri/c1
si and c2i = pkri(c2/g

i)si .
– For the valid plaintext m: select a random nonce w ∈ Z∗

q . Compute the
witnesses c1m = gw and c2m = pkw. Derive the challenge sm using the hash
function H:

sm = H(c1mmin
, c2mmin

, . . . , c1mmax
, c2mmax

)−
∑
i ̸=m

ci mod q.

Compute the response rm = w+r·sm . The proof for the vote is π = (rm, sm)

Before casting, the voter has the option to audit the ballot to confirm it
accurately represents their intended vote. During this process, the randomness
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used in creating the ballot is revealed, allowing independent verification of its
correctness.

Once satisfied, the voter submits their ballot to the election authority. The
election authority authenticates the voter, verifies their eligibility, and checks the
validity of the NIZKP. A valid ballot is published on the bulletin board along
with the voter’s identity.

After submission, the voter can verify that their ballot appears on the bulletin
board. Observers can confirm that the proofs attached to each ballot are valid,
ensuring all published ballots represent legitimate votes.

Tallying. After the voting period ends, the election authority homomorphically
combines all the encrypted ballots to produce an encrypted tally. The encrypted
tally is published on the bulletin board.

Each trustee publishes a partial decryption of the encrypted tally. Alongside
the partial decryption, trustees include a signature of knowledge to prove its
correctness. These proofs are publicly available for verification. The election
authority decrypts the final tally and publishes the election result.

5.1 Ballot Freedom in Helios

Case 1: audit with revoting. In Helios, the voter can cast multiple ballots,
all of which are published on a public bulletin board. Once they authenticate
a ballot, that ballot is displayed on the bulletin board as their final choice,
while all previously cast ballots are archived. Since the bulletin board data is
auditable by anyone at any time, the voter can achieve ballot freedom by us-
ing any constructions that combine ElGamal ciphertexts. In Construction 2, the
voter casts two ballots, whereas in Construction 3, the voter casts ℓ + 1 bal-
lots. Note that the voter must be able to freely select the randomness r in the
encryption Enc(pk, v; r).

Case 2: audit without revoting. The voter can also use Construction 1 by
using the ElGamal ciphertext and its corresponding proof. The voter selects
w ∈ Z∗

q and computes the ElGamal randomness as r = Ĥ(dpkr ·gdm). The voter
generates the proof π = (rm, sm), and when the auditor retrieves ct = (c1, c2)
and its corresponding proof π from the bulletin board, they can decrypt the
double message dm using dDecS(dsk, (ct, (rm, sm)), c1).

6 Belenios

Belenios [10] is an electronic voting system built upon Helios [1] that offers vote
privacy and verifiability. Similar to Helios, it uses ElGamal and there is a public
bulletin board that contains the accepted ballots and the result of the voting.
Schnorr signatures are used to sign an encrypted ballot to avoid ballot stuffing.
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6.1 Protocol Description

Due to space limitations, we refer the reader to the original paper [10] for a
detailed description of the protocol. Here we provide a brief overview of the pro-
tocol that is instrumental to assess ballot freedom. We briefly recall the Schnorr
signature scheme as follows.

Schnorr Signature. The Schnorr signature consists of three algorithms as:

– SKeyGen(1λ): on input of a security parameter 1λ, outputs a pair of keys
(vsk, vpk = gvsk) where vsk

$←− Zq, with (p, q, g) satisfying q | (p− 1) and g
being a generator of the subgroup of order q in Z∗

p.
– SSign(vsk,m;w): given a signing key vsk, a message m ∈M, and randomness

w
$←− Zq, and a hash function H, outputs a signature (rv, s) where s =

H(m|gw) mod q and rv = w − vsk · s mod q

– SVerify(vpk,m, σ = (rv, s)): given a verification key vpk, a message m, and
a signature σ, outputs ⊤ if s = H(m|A) where A = vpksgrv . Otherwise, it
outputs ⊥.
Note that a variant of the Schnorr signature can be used to prove the knowl-
edge of a discrete logarithm. For example, to prove knowledge of the random-
ness r used to generate an ElGamal ciphertext ct = (c1, c2) = (gr,m · pkr),
set vsk = r and vpk = c1.

For each voter id, a unique signing key skid ∈ Zq is generated. Then, the voter
V encrypts the vote preference v as ct = Enc(pk, v; r) and generate a signature
s = SSign(vsk, ct;w), where vsk is their signing key. The voter computes a hash
h = hash(b) to serve as a tracking number. The server appends b to the election
data D. At any point, V can verify that h is included in the list of pretty ballots
(PB), which consists of the hashes of the final ballots submitted by voters. If the
election includes non-homomorphic ciphertexts, the trustees shuffle the ballots.
The server homomorphically combines the ciphertexts and sends the result to
the trustees to compute the final election outcome.

An auditor can perform verifications during the voting phase and after the
tally. During the voting phase, an auditor can retrieve the public board to verify
its consistency. They check that for each ballot b, the proofs and signature of b
are valid. After the tally, the auditor retrieves the public data D, including the
list of ballots (B), shuffles (Σ), partial decryptions (∆), and the result (res).
They verify the consistency of B, ensure it matches previously monitored data,
compute B̂ = last(B) (the list of only the latest ballots for each voter), and
confirm that the proofs in Σ, ∆, and the result res are valid with respect to B̂.

6.2 Ballot Freedom in Belenios

In Belenios, the revoting policy allows voters to cast multiple ballots, with only
the last ballot being considered for the tally. If all ballots are publicly available for
auditing during the voting phase, a voter can use Construction 2 or Construction
3 as introduced in Section 3 to achieve ballot freedom.
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If only the last ballots cast by each voter are available to the auditor, the
voter can use Construction 1 to achieve ballot freedom. In doing so, the voter
links the randomness in the ElGamal encryption to the Schnorr signature of
the ballot. Similar to the case of ballot freedom in CHVote, this construction
requires that the voter signing key skid is unknown to a dishonest authority. If
the authority knows the key, given the ballot signature (rv, s), it can compute
w := s · skid+ rv and check whether the first element of the ElGamal encryption
of the vote ct := (c1, c2) is c1 = gĤ(dpkw·gdm). In this case, the voter can instead
link the randomness in the ElGamal encryption to the proof of knowledge of
that very randomness. The proof is generated as per the Schnorr signature by
substituting skid with the ElGamal randomness r and vpk with c1.

7 Related Work

Dishonest authorities can compromise the security of voting systems in various
ways. Bernhard et al. [7] showed that weak Fiat-Shamir heuristics lead to secu-
rity breaches in Helios when malicious trustees are present. Similarly, Cortier et
al. [11] demonstrated that an attacker who corrupts both the voting server and
trustees can break verifiability in Belenios if a variant of Fiat-Shamir heuristic is
used. Haines et al. [20] showed that having honest trustees is sometimes insuffi-
cient to guarantee ballot privacy. Moreover, ensuring trustworthy trustees is not
a trivial task. Benaloh et al. [5] examined the practical challenges that trustees
face in preserving the privacy of votes.

There is a long stream of research on covert and subliminal channels in voting
[16, 23, 3] but they all focus on the maliciousness of the channel rather than the
ability of the voter to communicate their true intention.

Coercion, in general, requires that trust assumptions be carefully vetted.
Finogina et al. [17] demonstrated that in coercion-resistant voting, a coercer
can utilize new cryptographic tools to prevent voters from evading coercion.
Tally-hiding [24, 13] and cleansing-hiding [14] voting schemes typically rely on
MPC to mitigate coercion even in the presence of dishonest trustees. All the
schemes outlined above assume at least one honest trustee and/or a private or
anonymous channel. Budurushi et al. [8] proposed a voting scheme in which the
attacker controls all channels but not all tally servers. Similarly, Caveat coercitor
[18] does not require a private channel but assumes the existence of at least one
honest trustee. Solutions involving DRE machines without tallying servers have
been proposed [27, 21]. These schemes assume a private voting booth and that
the machines do not reveal the voter’s choice. The novel aspect of our work is
to demonstrate that a voter can still achieve privacy in communicating with
an auditor using an existing voting scheme, even when the attacker controls all
communication channels and election keys.
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8 Discussion and Future Work

In this work, we introduced the concept of anamorphic voting, which studies
whether a combination of cryptographic primitives in a voting scheme can be
used to send covert messages in the presence of dishonest authorities. We demon-
strated that IVXV, CHVote, Belenios, and Helios each enable voters to freely
communicate their true voting intention to an auditor without the knowledge of
dishonest authorities, a property we refer to as ballot freedom.

Anamorphic voting is in its infancy, and several future research directions can
be explored. One is to investigate ballot freedom in voting schemes recently im-
plemented in real-world elections, such as ElectionGuard [6], or in schemes that
rely on cryptographic primitives not covered in this work, such as commitment
schemes and lattice-based cryptography. Another direction involves formalizing
the concept of ballot freedom to enable proofs of whether a given voting scheme
achieves of fails to achieve ballot freedom. Formalization can also help clarify
the relationship between ballot freedom and other security properties, such as
receipt-freeness. Intuitively, ballot freedom appears to be orthogonal to receipt-
freeness: if a voting scheme supports anamorphic voting, a coerced voter could
reveal their ballot to the coercer (auditor) as proof! However, our constructions
might provide a form of coercion evidence such as in [18] but in a cleaner way.

Our constructions can be viewed as a form of strong anamorphic encryp-
tion instantiated across multiple cryptosystems. Exploring this independently of
voting is worthwhile, as it may also prove useful for other secure applications.
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