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Abstract

Private information retrieval (PIR) allows to privately read a chosen bit from an N -bit
database x with o(N) bits of communication. Lin, Mook, and Wichs (STOC 2023) showed that
by preprocessing x into an encoded database x̂, it suffices to access only polylog(N) bits of x̂
per query. This requires |x̂| ≥ N · polylog(N), and prohibitively large server circuit size.

We consider an alternative preprocessing model (Boyle et al. and Canetti et al., TCC 2017),
where the encoding x̂ depends on a client’s short secret key. In this secret-key PIR (sk-PIR)
model we construct a protocol with O(Nε) communication, for any constant ε > 0, from the
Learning Parity with Noise assumption in a parameter regime not known to imply public-key
encryption. This is evidence against public-key encryption being necessary for sk-PIR.

Under a new conjecture related to the hardness of learning a hidden linear subspace of Fn
2

with noise, we construct sk-PIR with similar communication and encoding size |x̂| = (1+ ε) ·N
in which the server is implemented by a Boolean circuit of size (4 + ε) · N . This is the first
candidate PIR scheme with such a circuit complexity.
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1 Introduction

Private information retrieval (PIR) is a fundamental building block for sublinear-communication
cryptography. It was introduced by Chor, Goldreich, Kushilevitz and Sudan in the multi-server
setting [CGKS95] and by Kushilevitz and Ostrovsky [KO97] in the single-server case.

A PIR protocol allows a client to read the i-th bit from a database x ∈ {0, 1}N while compu-
tationally hiding i from the server storing x. By this we mean that any poly(N)-time server has
only an N−ω(1) advantage in distinguishing between two distinct client queries i, i′.

Our focus is on single-server 2-round PIR, which involves a single question by the client fol-
lowed by an answer from the server. Crucially, such a PIR protocol should only use o(N) bits of
communication, ruling out the trivial solution of downloading the entire database.

1.1 PIR with preprocessing

In the standard PIR model, the server must read every bit of the database; if xi is not read, the
server knows that xi was not queried by the client. Motivated by the goal of PIR with sublinear
server computation in the RAM model, Beimel, Ishai and Malkin [BIM00] proposed a relaxed model
of PIR in which the server can store an encoding x̂ of the database x.

This encoding is computed once, in an offline preprocessing phase, and stored on an otherwise-
stateless server. Then, in the online phase, a stateless client can make an arbitrary number of PIR
queries to the database, where to answer each query the server only needs to read o(N) bits from
x̂ and communicate o(N) bits. Such a protocol is referred to as doubly efficient PIR.

A recent breakthrough work of Lin, Mook and Wichs (LMW) [LMW23] realized the strongest
flavor of doubly efficient PIR, where x̂ is a public (and deterministic) encoding of x, under the
standard Ring-LWE assumption [LPR10]. While settling the crude asymptotic question of doubly
efficient PIR, the LMW protocol is still impractical. This is due in part to a large polylogarithmic
storage overhead. Furthermore, when considering the alternative cost metric of server circuit size,
the LMW protocol has an even bigger overhead than PIR protocols in the plain model.

1.2 Secret-Key PIR

The first evidence for the feasibility of single-server doubly efficient PIR was actually given in a
different preprocessing model, in earlier works by Boyle, Ishai, Pass and Wootters [BIPW17] and
Canetti, Holmgren and Richelson [CHR17]. Their main result was a candidate construction of a
PIR protocol with secret-key preprocessing (sk-PIR), in which the encoding x̂ is generated from x
using a short secret key which is known to the client but not to the server.

The sk-PIR protocols from [BIPW17, CHR17] encode the database using a secretly permuted
Reed-Muller (RM) code, and can achieve polylog(N) communication and server computation in
the RAM model. Security relies on an ad-hoc and “highly structured” assumption. In spite of
subsequent analysis [BHW19, BW21, BHMW21], this assumption is still quite poorly understood.

We take a step back and consider the bare sk-PIR model, requiring only sublinear communica-
tion without insisting on the standard notion of double efficiency. We ask the following questions:

• Feasibility. In which “cryptographic world” does secret-key PIR live?

• Efficiency. What is the circuit complexity of sk-PIR, namely the minimal size of a Boolean
circuit required to compute the server’s answer from x̂ and the client’s question?

In the context of feasibility, standard PIR protocols, as well as PIR with public preprocessing,
imply 2-round oblivious transfer [DMO00] which in turn implies public-key encryption (PKE). They
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also imply collision-resistant hashing (CRH) [IKO05]. For sk-PIR, it is only known that one-way
functions are necessary [BIPW17]. Are PKE or CRH also necessary?

With respect to efficiency, in all existing PIR protocols, including ones based on strong as-
sumptions or even purely heuristic ones, the server’s circuit size is at least N · polylog(N). Such
protocols have a polylogarithmic computational overhead (in the Boolean circuit model) compared
to the insecure baseline of computing the selection function that maps (x, i) to xi. This should be
contrasted with the related primitives of oblivious transfer [IKOS08, BCG+23] and CRH [AHI+17],
for which constant computational overhead was achieved under plausible assumptions.

1.3 Our Results

Our starting point is a natural attempt for modifying the sk-PIR blueprint from [BIPW17, CHR17].
Suppose that instead of using a secretly permuted RM code, which is a specific distribution over
locally decodable codes, the client encodes the database using a random linear code. What are the
feasibility and efficiency consequences?

It turns out that this simple idea, in conjunction with noisy queries by the client, yields sur-
prisingly powerful consequences:

• Secret-key PIR with O(N ε) communication, for any constant ε > 0, from the Learning Parity
with Noise (LPN) assumption in a parameter regime not known to imply PKE or CRH, giving
evidence against proving PKE is necessary for attaining sk-PIR.

• Secret-key PIR with similar communication and encoding size |x̂| = (1 + ε) · N in which
the server is implemented by a Boolean circuit of size (4 + ε) ·N , assuming a new Learning
Subspace with Noise (LSN) conjecture on learning hidden linear subspaces of Fn

2 with noise.

The new class of “Learning Subspace with Noise” assumptions considers the pseudorandomness
of noisy samples from a secret linear code. Our LSN assumptions can be viewed as less structured
variants of the assumption underlying the previous sk-PIR from [BIPW17, CHR17]. They are also
closely related to the problem of learning mixtures of uniform distributions over linear subspaces,
studied by Chen, De, and Vijayaraghavan [CDV21]. The study of these LSN assumptions is of
independent theoretical interest.

The strongest version of our second result gives a PIR scheme with far better circuit complexity
than all alternative approaches we are aware of. This requires assuming hardness of what we call
the split-LSN problem, a more structured variant of our basic LSN assumption.

Our LSN-based constructions have several other useful features. They can support slightly sub-
linear server computation even with a very small storage overhead, which does not seem possible via
the lattice-based approach from [LMW23]. They also seem attractive for practical implementation,
offering concrete efficiency advantages over competing approaches. Finally, they can be applied be-
yond the designated-client setting by either using general-purpose obfuscation techniques or, more
realistically, by distributing the role of the client between two or more parties (say, the client and
the server) using secure multiparty computation. The latter distributed variant of sk-PIR may
be almost as good as the public variant for applications that inherently require a non-collusion
assumption, which is commonly the case in threshold cryptography.

In the coming subsections we provide more details on each of the above results, as well as on
the underlying new assumptions and various optimizations that we employ.
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1.4 Secret-Key PIR from Learning Parity with Noise

On the feasibility front, we show that using a secret random linear code enables sk-PIR from the
standard Learning Parity with Noise (LPN) assumption [BFKL94] in a parameter regime not known
to imply PKE or CRH, let alone PIR. Recall that LPN asserts the pseudorandomness of a noisy
random codeword in a (public) random k-dimensional linear code over F2 (see Definition 3.4).

Theorem 1.1 (sk-PIR from LPN, Informal). For every γ > 0 and ε > 0, LPN with noise rate
1/kγ implies sk-PIR with communication O(N ε) and storage |x̂| = poly(N). Furthermore, for
sufficiently large γ = γ(ε) < 1, the storage can be improved to O(N1+ε).

For γ < 1/2, constructing PKE from LPN with noise rate 1/kγ is a major open problem. In
light of this, Theorem 1.1 can be viewed as a strong barrier to proving that sk-PIR implies PKE,
suggesting that it may live in an intermediate world between “Minicrypt” and “Cryptomania.”
Even for 1/2 < γ < 1, where LPN with noise rate 1/kγ is known to imply PKE [Ale03], it is not
known to imply CRH, let alone PIR in the plain model.1

1.5 Better Efficiency via Learning Subspace with Noise

In the following, we let F denote a finite field. While we state our assumptions for a general F, all
of our protocols can use F = F2. One may therefore restrict the attention to this case.

An LSN problem concerns the task of distinguishing between polynomially many random code-
words ci sampled from a secret random linear code C ⊆ Fn and uniformly random vectors, when
the random codewords are subject to noise. The LSN instances are parameterized by the dimension
k := k(λ) ≥ λ of the random code and its block length n := n(λ) > k. Here and elsewhere, λ is
a cryptographic security parameter; by Xλ ≈c Yλ we mean that any poly(λ)-time algorithm has a
λ−ω(1) advantage in distinguishing between Xλ and Yλ.

We will consider two types of noise: mixture noise, replacing each ci with probability µ := µ(λ)
by a sample from a different distribution (a uniform vector in Fn by default), or planting noise,
hiding ci in a random low-dimensional linear or affine space containing it. We start with our default
version of LSN that uses a simple mixture noise.

Definition 1.1 (Basic LSN). The learning subspace with noise assumption (k, n, µ)-LSN asserts
that for a uniformly random secret rank-k matrix C ∈ Fk×n and any polynomial number of samples
m := m(λ), it holds that:

(c1 + e1, . . . , cm + em) ≈c (u1, . . . ,um) ,

where ci = a⊺iC for ai ← Fk, ei is uniformly random in Fn with probability µ and ei = 0 ∈ Fn

otherwise, and ui ← Fn.

For n = k + 1, the search version of the LSN assumption over F2 was shown to be equivalent
to the standard LPN assumption with noise rate µ/2 [CDV21]. We observe that this also holds for
the decision version, and obtain several other useful results on LSN and its relation with LPN.

Theorem 1.2 (LSN facts, Informal). The following holds for (k, n, µ)-LSN over F2.

1. LSN distinguisher. If µ < 1− (k/n)d, there is an nO(d)-time LSN distinguisher.

1LPN with noise rate log2 k/k implies CRH [BLVW19, YZW+19]. LPN with an even lower noise rate of
log1+β k/k, where 0 < β < 1, is known to imply (plain-model) PIR with slightly sublinear communication of

N/2Θ(log1−β N) [AMR25]. Obtaining fully sublinear PIR from any flavor of LPN is open.
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2. LSN implies LPN. For constant code rate ρ = k/n and η = 1 − µ = o(1), (k, n, µ)-LSN
implies LPN with code dimension k, code length k · (1 + Ω(η)), and noise rate η.

3. LPN implies “sparse-noise” LSN. LPN with noise rate ε implies a variant of LSN with
the following noise pattern: Let I be a random set of k linearly independent columns of C.
Then, for each sampled codeword ci, we flip each bit outside I with ε probability.

See Section 2 for proof overview. The distinguisher from part (1) will guide our parameter
choice for LSN. Part (3) serves as a basis for the LPN-based construction of Theorem 1.1, which
follows as a special case of an sk-PIR construction based on LSN with general noise.

We put forward the following conjecture.

Conjecture 1.1 (LSN conjecture). For every 0 < ρ < 1, the (k, n, µ)-LSN assumption holds when
k ≥ ρn and µ ≥ 1− o(1).

Under the LSN conjecture, we can make the storage nearly optimal, or alternatively get a weak
notion of “doubly efficient” PIR.

Theorem 1.3 (Low-storage or sublinear-computation sk-PIR from LSN, Informal). Suppose Con-
jecture 1.1 holds. Then, for every ε > 0, there is sk-PIR with communication O(N ε) and storage
|x̂| = (1+ε) ·N . Alternatively, with N1+ε storage, the server only reads N/polylog(N) bits from x̂.

While the latter can be viewed as a very weak form of doubly efficient sk-PIR, it is still sur-
prising that this can be achieved using random linear codes. Indeed, the database encoding in
any doubly efficient sk-PIR protocol must support (smooth) local decoding with sublinear query
complexity [BIPW17]. This is achieved here via concatenation with the Hadamard code, in the
spirit of a technique used in [BIM00] to realize multi-server PIR with similar server efficiency.

1.6 Minimizing Server Complexity via Splitting

Motivated by the goal of minimizing the computational complexity of PIR in the Boolean circuit
model, we consider a “split” variant of LSN that plants each codeword ci in a low-dimensional
affine space2 ci + Vi, where Vi is a product of s linear spaces of dimension n/s. This can be viewed
as splitting the coordinates of ci into s blocks, and hiding each block in an affine space.

Definition 1.2 (Split-LSN). The split learning subspace with noise assumption (k, n, r, s)-SLSN
asserts that for a uniformly random secret rank-k matrix C ∈ Fk×n and any polynomial number of
samples m := m(λ), it holds that:

((Vi,1, ci,1 + ei,1), . . . , (Vi,s, ci,s + ei,s))i∈[m] ≈c ((Vi,1,ui,1), . . . , (Vi,s,ui,s))i∈[m],

where ci = a⊺iC for ai ← Fk, (ci,1, . . . , ci,s) is a partitioning of ci into blocks of length n/s, and for
any i, j, ui,j ← Fn/s and ei,j = d⊺

i,jVi,j for Vi,j ← F(r−1)×(n/s) and di,j ← Fr−1.

With s = 1, split-LSN is (at least) as secure as a “regular” variant of LSN with noise rate
µ = 1−1/r in which each chunk of r samples contains exactly one codeword and r−1 noise vectors.
A similar regular variant of LPN has been extensively studied in the literature; see [AG11, LWYY24]
and references therein. However, such a regular variant of LSN would require r to be super-constant,

2One could alternatively plant each block in a random linear space containing it; however, this would require a
slightly more complicated version of the split-LSN assumption that allows for shifting before planting.
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which conflicts with our efficiency goals. Splitting allows us to have noise with super-constant
entropy while keeping r constant by accumulating the entropy across blocks.

With s ≫ n/k, split-LSN may be loosely viewed as a less structured (and seemingly more
conservative) variant of the assumption underlying the sk-PIR protocol proposed in [BIPW17,
CHR17] and further analyzed in [BHW19, BW21, BHMW21]. In this protocol, the secret code C is
a (dual) RM code, obtained by applying a random secret permutation to the coordinates of a fixed
RM code. Each sample is obtained by picking a random low-weight codeword of C and revealing
only its support set, namely the locations of the nonzero entries but not their values. (This set
includes a random subset of points on a permuted low-degree curve.) Since the codeword has low
weight, each of the s parts includes only one nonzero symbol with substantial probability, thus we
can restrict the LSN samples to such instances. Revealing only the location of the nonzero symbol
can be viewed as hiding it in a 1-dimensional linear space. While this is by no means a formal
security reduction, future insights on split-LSN seem likely to imply insights on the permuted RM
assumption and vice versa.

The split-LSN assumption over F2 with r = 2 will help us minimize the circuit complexity of
the server. For this choice of parameters, hiding each block ci,j in an affine space of dimension r−1

simply means that we reveal a pair of vectors containing ci,j and a random “distractor” ri,j ∈ Fn/s
2

in a random order. We conjecture that it suffices for the splitting parameter s to be such that the
length of each block is sufficiently smaller than the code dimension k, and have empirical evidence
supporting this conjecture with respect to a class of algebraic attacks.

Conjecture 1.2 (Split-LSN conjecture). For every δ > 0 and 0 < ρ < 1, the (k, n, 2, s)-SLSN
assumption holds when k ≥ ρn and s ≥ (n/k) · nδ.

Compared to basic LSN with constant code rate 0 < ρ < 1 and noise rate µ = 1 − n−δ, the
above split-LSN conjecture seems more aggressive in that the noise is more structured, but more
conservative in that low-degree distinguishers seem less effective. In particular, while part (1)
of Theorem 1.2 implies a quasi-polynomial time distinguisher for LSN with these parameters, we
are not aware of such a distinguisher for the split-LSN variant. See Section 4.2 for discussion.

Under the split-LSN conjecture, we can bring the Boolean circuit size of the server (over the
B2 basis, consisting of gates g : {0, 1}2 → {0, 1}) to roughly 4N , which is optimal up to a small
multiplicative constant.

Theorem 1.4 (Server-efficient sk-PIR from split-LSN, Informal). Suppose Conjecture 1.2 holds
over F = F2. Then, for every ε > 0, there is sk-PIR with communication O(N ε) and storage
(1 + ε) ·N , where the server can be implemented by a Boolean circuit of size (4 + ε) ·N .

An alternative candidate for sk-PIR with linear circuit complexity can be based on the permuted
Reed-Muller code protocol from [BIPW17, CHR17]. With a careful choice of parameters, this
protocol can be instantiated with |x̂| = O(N), where the server reads O(N ε) bits from x̂, for any
ε > 0. Combining this with a recent construction of linear-size circuits for multiselection [HR24],
the server can be implemented by a Boolean circuit of size O(N), but with a very large hidden
constant. Here the constant is close to optimal and the assumption is less structured.

We are not aware of any other (single-server) PIR schemes that have linear circuit complexity. In
all lattice-based PIR schemes, both theoretical (e.g., [LMW23]) and applied (e.g., [HHC+23]), the
server circuit complexity is at least N · polylog(N). Number-theoretic PIR schemes (e.g., [KO97])
have an even higher computational cost.

Under a variant of Conjecture 1.2, with rate ρ = o(1) where hardness of split-LSN is assumed
also to hold for quasi-polynomial algorithms, the result from Theorem 1.4 can be improved to
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sk-PIR with No(1) communication, where the server has probe complexity o(N) and otherwise
the same storage and circuit size. Such a protocol is “doubly efficient” in a weak sense similar
to Theorem 1.3, and has the advantage of small storage size. It is not clear how to apply the
lattice-based approach from [LMW23] to achieve sublinear server computation in this regime.

Concrete efficiency. To give a sense of potential practical utility: In the above sk-PIR protocol,
the amortized server work for processing 64 bits of the database involves one XOR operations of
64-bit strings. For comparison, a typical instantiation of the SimplePIR protocol [HHC+23] (which
uses public preprocessing) requires 8 multiplications and 8 additions over Z232 . Thus, the number of
bit operations performed by our sk-PIR protocol is smaller by roughly 2 orders of magnitude. This
advantage is not expected to fully materialize on standard CPU hardware, due to the cost of memory
access and native support of Z232 operations. However, we believe that, with a suitable architecture,
our approach can lead to a significant practical speedup compared to existing single-server PIR
protocols. This may further motivate future analysis of split-LSN and related assumptions.

1.7 Minimizing Client Complexity

Our focus so far was on communication and server computation of sk-PIR, ignoring the client
computation. In all of our protocols that have O(N ε) communication, the client can be implemented
in (slightly) sublinear time Õ(N1−ε). We can further reduce the client’s runtime by using two
different approaches:

• By composing a simple variant of our protocols that has O(N1/2) communication with a
standard PIR protocol that has O(N ε) communication and client computation, we inherit
the server complexity of our protocols and the client complexity of the standard protocol.
The existence of such standard PIR protocols is arguably a mild assumption in the context of
our efficiency goals, where we are willing to make new assumptions to derive new conclusions.

• Based on LPN alone, and building on recent techniques from [BN25, VZ25], we can simulta-
neously obtain O(N1/3+ε) communication and client computation.

1.8 Related Work

Alternative models. There is a large body of works studying alternative models for PIR with
preprocessing, including Oblivious RAM (ORAM) [GO96] and other PIR models [CK20, ZLTS23].
In all of these alternative models, the server and/or the client need to maintain and update a
database-dependent state. In contrast, in sk-PIR both the client and the server are stateless: The
client only needs to store a short (and database-independent) key, and the server only needs to
store the encoded database. The statelessness feature natively supports concurrent executions of
sk-PIR on the same encoded database, e.g., by multiple devices owned by the same organization
or multiple secure computation protocols emulating the same (designated) client.

Another (related) difference is that in contrast to sk-PIR, which is known to imply one-way
functions [BIPW17], most of the alternative models admit information-theoretic solutions with
sublinear communication complexity [Ajt10, DMN11, ISW24].

Finally, sk-PIR can be compared to searchable symmetric encryption (SSE) [SWP00], for which
one-way functions are sufficient. However, in all known SSE solutions, multiple queries inherently
leak the access pattern. Our results show that LPN-style assumptions are sufficient to eliminate
this leakage, albeit with a much higher server computation cost in the RAM model.
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Assumptions for doubly-efficient sk-PIR. While our main focus in this work is on minimizing
the communication and the circuit size of the server, some of our constructions also achieve slightly
sublinear runtime in the RAM or cell-probe model. For this (standard) notion of doubly-efficient
sk-PIR, recent work by Lin, Mook, and Wichs [LMW25] shows that a black-box use of standard
cryptographic primitives or generic models does not suffice, unless a black-box use of a one-way
function is also sufficient. The same work also provides partial evidence against the latter. Our
relevant protocols do not circumvent these impossibilities, as they are based on concrete assumptions
(similarly to concrete assumptions used in prior related works [BIPW17, CHR17, LMW23]). The
results of [LMW25] suggest that a more generic approach may be impossible.

The computational overhead of cryptography. This work is partially motivated by the
goal of minimizing the computational overhead of sk-PIR in the Boolean circuit model, namely
the asymptotic ratio between the size of a secure implementation and an insecure implementa-
tion. For a variety of other cryptographic primitives, including pseudorandom generators, oblivious
transfer and zero-knowledge proofs, this question has been the topic of a large body of work;
see [IKOS08, AM13, dCHI+22, RR22, FLY22, BCG+23] and references therein. Most relevant
to the current work, fully homomorphic encryption can be realized with polylogarithmic compu-
tational overhead under standard lattice assumptions [GHS12], but realizing it with a constant
overhead is a challenging open problem. The problem is open even for the easier task of single-
server PIR in the plain model, where no (provable or heuristic) candidate construction is known. In
contrast, for the related tasks of oblivious transfer [IKOS08] or collision-resistant hashing [AHI+17],
constant-overhead constructions can be based on plausible assumptions.

2 Technical Overview

We start by describing a simple variant of our main protocol where the client’s query is long but
the answer is short, and where security relies on the basic LSN assumption.

Retrieving the i-th entry of x ∈ FN can be viewed as applying the linear function x 7→ w⊺
i x

where wi is the i-th unit vector in FN . To avoid disclosing wi, the client could use a random
systematic linear code D : FN → FM to encode x, where D is determined by the client’s secret key,
and have the server only store the encoding x̂ = D(x).

The client may now retrieve xi by sending q = c+wi ∈ FM , where c is a random vector in the
dual code C = D⊥. Indeed, it holds that q⊺x̂ = c⊺D(x) +w⊺

iD(x) = 0 + xi.
While this approach is sufficient to make each individual query q random, it still reveals to

the server joint information about multiple queries. For instance, if the client reads a sequence
of identical indices (i1, . . . , im), the corresponding queries (q1, . . . ,qm) will always span a linear
subspace of dimension ≤M −N +1, whereas for random indices ij they will typically span the full
space FM when m > N . To eliminate this leakage, the client adds noise to each qi in a way that
still enables decoding of xi. Different types of noise correspond to different flavors of LSN.

A remaining issue is that the server may obtain additional information about the queries from
the encoded database. To address this, we let the client hide D(x) by using a secret random mask
r ← FM , and undo the masking when obtaining the answer. An sk-PIR scheme as above with
simple mixture noise is described in Fig. 1. The scheme inherits the error probability µ from the
noise, which can be eliminated either by repetition, by using a suitable erasure code, or by switching
to planting noise as in split-LSN. Finally, the client’s secret state can be compressed to a short
secret key by using psuedorandomness.
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Client Secret Key:

• A uniformly random systematic linear code D : FN → FM , defining a dual code C ⊆ FM

• A uniformly random mask r← FM .

Database Encoding:

C → S : on input database x ∈ FN , upload x̂ = D(x) + r ∈ FM .

Query:

C → S : on input i ∈ [N ], send q = v +wi ∈ FM , where{
v← C is a random vector in the dual code, w.p. 1− µ

v← FM is a uniformly random vector, w.p. µ

S → C : send a = q⊺x̂ ∈ F

C : use r ∈ FM to compute xi = a+ q⊺r ∈ F

Figure 1: Noisy sk-PIR protocol with short answers.

2.1 Balancing Communication

A first step towards realizing efficient sk-PIR protocols based on the above outline follows a generic
balancing technique, commonly used in PIR protocols [CGKS95, KO97].3

Balancing views the database as a collection of smaller databases, arranged as the rows of a√
N ×

√
N matrix, and applies the protocol over each of the rows to retrieve an entire column that

contains the client’s requested database bit. In applying this to the protocol from Fig. 1, the client
uses the same random code D to encode all rows in the database matrix. This allows using the
same query across all rows. On the other hand, it is important that the client use independently
sampled random masks to hide the different database rows, essentially masking the database matrix

by a uniformly random mask R ← F
√
N×

√
N . (The security of the protocol completely breaks if

the client uses the same mask for all rows.) Since the client’s query is generated now for a
√
N -size

database, this reduces the question length at the expense of a longer answer from the server, which
contains one field element for each of the

√
N elements in the retrieved column. As a result, we

obtain a protocol where communication grows with
√
N .

2.2 Further Reducing Communication via Folding

In standard PIR, the balancing technique can be further pushed to convert any protocol where the
server’s answer is particularly small (e.g. when the protocol has “download rate 1”) into a protocol
where communication depends on N only polylogarithmically [KO97, IP07].

The idea at a high level is again very simple. Recall that in the balanced protocol from above,
the client obtains the server responses corresponding to a column of elements, namely a “column
of responses”. We view this column as a new database, where the entries are server responses, and
let the client apply a new PIR query over the column to retrieve a single response. Assuming the
server responses in the base PIR are sufficiently short, say consist of a single bit, the answers in the
new “folded” protocol consist of a single bit as well. Thus, we may recursively fold the protocol

3While balancing works generically in standard PIR, it is not the case in sk-PIR. The reason is that security in
sk-PIR does not generally extend to the the setting where multiple databases are encoded under the same secret key
(in which case a client query can be re-used across multiple databases). Balancing is possible in our case since our
base protocol can be made to satisfy this property.
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over and over again, until we essentially perform PIR queries over very small databases (potentially
of constant size) that come from a “hierarchy of folded databases” of logarithmic depth.

The generic outline from [IP07] fails when applied to our setting. The reason is that sk-PIR
assumes the database is encoded using the client’s secret-key. The column over which we want
to recurse consists of arbitrary server responses to sk-PIR queries corresponding to different rows
of the original database. Generally, these responses do not presume the structure of an encoded
database and it is not clear how to make them so without first communicating them to the client.

The linearity of the database encoding in our base protocol helps us get around this difficulty.
We observe that if we carry out the above outline with our base scheme, it is possible to encode
the original database columns in a way that results a column of server responses that looks like an
encoding of a new database!

Recall that, in our base protocol, we encode the database using a random linear code D and
the client receives a linear combination of codeword locations. In the above balancing, then, this
corresponds to applying D over each of the rows in the database and sending the client a linear
combination of the columns of the matrix (since we use the same query for all rows). We propose
to additionally apply another random code D′ over the columns of the database, in which case the
client will receive a linear combination of codewords in D′. Due to linearity, such a response is
itself a codeword in D′ – namely an encoded database.

This allows to apply another PIR query over the obtained column. The idea can be carried out
recursively to reduce communication further on. By folding the database any constant number of
times, we obtain communication of N ε for any arbitrarily small constant ε > 0. We can even apply
the folding ω(1) times to obtain communication No(1). In such a case, however, the databases at
the base of the recursion will be of size No(1) and, since we think of the database size as the security
parameter, we rely on the quasi-polynomial hardness of the underlying LSN problem for security.

Applying linear codes along different dimensions of high-dimensional data corresponds essen-
tially to applying a tensor code. Thus, the folded protocol may be more easily viewed as a version
of our base protocol where we apply a random linear tensor code to our data and the queries are
tensors of corresponding codewords from the dual code. The order of the tensor corresponds to the
depth of the recursion. Thus, the higher the order, the lower the communication of the scheme.

Standard balancing can be further applied over a folded protocol, that is, by applying the
folding over each row of a matrix database, to obtain a slightly better communication and client
computation (we elaborate further on client complexity below).

2.3 Analysis of LSN

We now outline the proofs of the three LSN-related facts stated in Theorem 1.2.

LSN distinguisher via a tensored-rank attack. We show that, if µ < 1− (k/n)d, there is an
nO(d)-time LSN distinguisher. The distinguisher is a simpler variant of an algorithm from [CDV21]
for the search version of LSN. The basic observation is that if µ < 1−k/n, then with n−1 samples
we expect to observe linearly dependent samples from C in the pseudorandom experiment but
not in the random experiment. By taking the d-tensor of each sample, the relative dimension is
decreased from k/n to (k/n)d without changing the noise rate. Thus, the same rank attack will
succeed when µ < 1 − (k/n)d. The runtime, however, needs to scale polynomially with nd, the
d-tensor dimension. See Proposition 4.2 for details.

LSN implies LPN via syndrome decoding. By combining the duality between LPN and
syndrome decoding with a known search-to-decision reduction for LPN [AIK07], we can conclude
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that if LPN fails, then we have an efficient syndrome decoder that recovers with overwhelming
probability a random sparse error vector from its syndrome. This syndrome decoder can be used
in the LSN experiment to recover the first (sparse) linear dependence between samples from the
hidden code C with inverse-polynomial success probability, which suffices for breaking LSN with
inverse-polynomial advantage. Note that unlike the previous (unconditional) distinguisher, which
uses a much larger number of samples than required by an unbounded distinguisher, the LPN-based
distinguisher has an almost minimal sample complexity. See Proposition 4.1 for details.

LPN implies “sparse-noise” LSN. Recall that the sparse-noise variant of LPN modifies the
noise distribution of basic LSN in the following way. Instead of replacing a sampled codeword
ci ∈ C by a random vector with probability µ, sparse-noise LSN applies independent ε-Bernoulli
noise to a subset of the coordinates of ci. More concretely, the code C is chosen jointly with a
random set I ⊆ [n] of k linearly independent coordinates, and each coordinate outside I is flipped
with ε probability. Using a systematic generator matrix of C that contains the identity matrix in
coordinates I, the above sampling experiment is equivalent to a matrix variant of LPN in which
the secret vector is replaced by a secret matrix. This matrix LPN variant is in turn equivalent to
standard LPN with the same noise rate [Döt14]. See Proposition 4.3 for more details.

2.4 Replacing LSN by LPN

Our LPN-based protocols are obtained by instantiating our general LSN-based template with the
sparse-noise variant of LSN discussed above. This can be done efficiently when k is close to n, say
n = k+k1/3. In this parameter regime, if we pick the LPN noise rate to be ε = k−η for η > 1/3, the
sparse-noise LSN experiment with the same noise probability will keep the codeword ci unchanged
except with vanishing probability. Whenever ci is unchanged, the client can successfully decode the
retrieved item. Note that because the database encoding uses the dual code, the storage overhead
with the above parameters is cubic. With n = k+k9/10 and η > 9/10 (a stronger LPN assumption),
the storage is O(N10/9).

2.5 Minimizing Server Circuit Complexity

Our split-LSN Conjecture (Conjecture 1.2) is specifically tailored for minimizing the server com-
putation in the Boolean circuit model. Recall that in the corresponding LSN experiment, each
sampled codeword ci ∈ Fn

2 is split into s blocks, and each block is shuffled with a random distractor

in Fn/s
2 . Considering the base protocol for simplicity, the server multiplies each n/s columns of

the database matrix X by the two corresponding blocks. The client, who knows the location of
the correct block, can decode the correct matrix-vector product. The overall server computation
consists of twice the cost of computing matrix-vector product over F2 in the clear. Choosing the
parameters so that X has ≈ N entries, the total circuit size is ≈ 4N .

2.6 Minimizing Client Computation

With the techniques discussed so far, we are able to obtain sk-PIR protocols with small communi-
cation and, under split-LSN, a particularly efficient server. The client computation in our protocols
consists of two main components:

1. First, to generate a query, the client must sample a uniformly random codeword from a dual
code C ⊂ Fn of dimension k (or few such codewords in the folded protocol). In general, this
takes time O(nk) = O(n2). In the folded protocol, the length of the LSN code at every level
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of the folding (or along every dimension of the tensor code) is M1/t, where M is the length
of an encoded database row and t is the number of folding operations (or the order of the
tensor). Therefore, query generation takes O(M2/t).

2. Second, upon receiving the server’s response, the client must “uncompute” the mask r ∈ FM

by multiplying it with the query vector (see Fig. 1). (Note the client needs to do this only for
the row including the target coordinate.) The runtime complexity of such a multiplication is
M , which is O(N1−ε) in a balanced protocol with communication O(N ε) (note communication
of a balanced protocol, folded or not, is at least the number of rows in the database, i.e. N/M).

To summarize the above, the client complexity in a balanced (unfolded) base protocol is dom-
inated by query generation, which takes time quadratic in a database row, therefore linear in the
size of the database. In the folded protocols where t > 1, query generation is reduced to O(N ε)
and the bottleneck in client computation becomes in dealing with the mask, which takes a slightly
sublinear time of O(N1−ε). We take two different approaches to reduce client runtime even further.

Composing with PIR. The first approach is quite generic, and “folds” the sk-PIR with standard
PIR where the client can be very efficient. More concretely, the sk-PIR is used to transform the
database of size N to a database of slightly sublinear size N1−ε: Arrange the database in N1−ε rows
of size N ε each and apply a sk-PIR query over each of the rows to obtain a sublinear-size column
of responses. Then, PIR is used over the sublinear-size column to retrieve the target element.
This outline gives communication O(N ε) already when instantiating it with the simple base sk-
PIR protocol. Further, as long as the server complexity in the PIR over a sublinear-size database
is sublinear, we inherit the server efficiency from the sk-PIR. The client now generates an sk-PIR
query for a small N ε-size database and a PIR query over the larger N1−ε-size database, which takes
time Nγ for arbitrarily small γ > 0 in known PIR protocols under many standard assumptions
(e.g. DDH, QRA and LWE) [KO97, OS07].

LPN-based Optimizations. While composing with PIR reduces the client runtime to be an
arbitrarily small polynomial, it requires assuming the existence of PIR with efficient client, which
is not known to be attainable based on LPN. To obtain an sk-PIR with efficient client based on LPN
alone, we instead rely on different techniques taken from the literature of LPN-based cryptography.

First, we invoke a tool developed in two recent works [BN25, VZ25] to reduce the complexity
of uncomputing the mask. These works show, based on LPN, how to sample a pseudorandom
“trapdoored matrix” M together with a trapdoor, such that computing a matrix-vector multipli-
cation v 7→Mv takes almost linear time given the trapdoor. Looking at Fig. 1, it is not clear how
this can help given that uncomputing the mask requires computing the inner product between the
query vector q and a uniformly random mask vector r. We recall, however, that when we fold the
protocol, say twice, the query vector is not just any arbitrary vector, but rather a tensor product
of two vectors with square-root the length, i.e. q = q1⊗q2. Hence, by arranging the mask r into a
square matrix R, the product q⊺r may be written as q⊺

1Rq2 = q⊺
1(Rq2). Consequently, the client

may generate R as a trapdoored matrix, which lets him compute Rq2 in time almost linear in the
length of q2 and, therefore, the product q⊺r in time square-root that of the naive implementation.

We do not know how to use trapdoored matrices to obtain greater saving in client runtime when
we fold the protocol further: when q is, for instance, a 3-fold tensor, then a trapdoored matrix
gives a more efficient inner product along one dimension out of three, making the relative runtime
saving worse (≈ n2/3 when the size of an encoded database row is n). In any case, when applying
the above optimization to a balanced 2-folded protocol, where the database has N1/3 rows, each
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encoded by a 2-fold tensor code of dimension N1/3×N1/3, we obtain a protocol where uncomputing
the mask takes time only O(N1/3+ε). (Recall such a protocol has O(N1/3+ε) communication.)

It remains to show how to make query generation efficient as well: recall query generation in a 2-
folded protocol naively takes time O(M2/t) = O(M), where M is the length of an encoded database
row and is O(N2/3+ε) in our case. Since generating a codeword from the dual code corresponds
to multiplying the generator matrix of the code with a random vector, we could potentially use
trapdoored matrices here as well. There is, however, a more direct way: instead of using a uniformly
random code, we use a random code where encoding can be done in almost linear time, without
compromising the security of the protocol.

We exploit the fact that LPN remains as hard when replacing the random LPN secret with
a secret that is sampled so that every coordinate is Bernoulli [ACPS09]. We observe that when
basing sparse-noise LSN on this modified variant of LPN (see Theorem 1.2), we obtain a sparse-
noise LSN where the hidden code is not a uniformly random code, but rather a random code with
a sparse generator matrix, i.e. a matrix with low Hamming weight. We can set the parameters
such that the generator matrix is sufficiently sparse to give encoding time almost linear, concretely
O(N1/3+ε) in the above instance of the protocol. Overall, we obtain an LPN-based protocol where
both communication and client runtime are O(N1/3+ε).

3 Preliminaries

Linear algebra. Throughout this paper, we use F to denote a general finite field, but refer to
F = F2 by default. While our definitions, conjectures and constructions are meaningful over general
fields, we will only need to apply them over F2. We denote by Rankr(Fn×m) the set of n×mmatrices
over F of rank r and by Span(M) the row-span of a matrix M over the underlying field F.

Representing linear and affine spaces. For a linear k-dimensional subspace V ⊂ Fn, we will
denote by ⟨V ⟩ a random matrix V ∈ Fn×k that spans V by its rows, i.e. Span(V) = V . Note that
⟨V ⟩ can be efficiently sampled given any basis for V . For a product space V = V1 × . . . × Vs we
let ⟨V ⟩ = (⟨V1⟩, . . . , ⟨Vs⟩). Finally, for an affine subspace A = v + V , we will denote by ⟨A⟩ the
randomized representation (a, ⟨V ⟩) ∈ Fn×(k+1) for a uniformly random a← A. Note that ⟨v + V ⟩
hides the representative v.

Probability. We let Un denote the uniform distribution over {0, 1}n and use x ← X to denote
a uniformly random choice of x from a set X. We write X ≡ Y to indicate that X and Y are
identically distributed. We denote by Ber(µ) a Bernoulli random variable which takes the value 1
with probability µ and 0 with probability 1− µ. More generally, for a finite field F, the Bernoulli
variable BerF(µ) takes the value 0 with probability 1 − µ and is otherwise uniformly random in
F \ {0}. The subscript F will be omitted when it is clear from the context. A probability sequence
δ := δ(λ) is negligible if δ(λ) = λ−ω(1) and noticeable if it is not negligible.

3.1 Standard Cryptographic Notions

We use λ to denote a computational security parameter and require by default security against
non-uniform poly(λ)-time adversaries.

Definition 3.1 (Computational Indistinguishability). We say that a pair of distribution ensembles
{Xλ}λ∈N and {Yλ}λ∈N are computationally indistinguishable, and write X ≈c Y , if for every non-
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uniform poly(λ)-time distinguisher A there is a negligible δ such that for every λ ∈ N

Pr[D(Xλ) = 1)− Pr[D(Yλ) = 1] ≤ δ(λ).

We say that a distribution is pseudorandom if it is computationally indistinguishable from the
uniform distribution over its domain.

Definition 3.2 (Pseudorandom Function). A function F (sk, x) is called a pseudorandom function
(PRF) if it satisfies the following.

1. Syntax: F is polynomial-time computable; moreover for any λ ∈ N, key sk ∈ {0, 1}λ and
input x ∈ {0, 1}λ, we have F (sk, x) ∈ {0, 1}λ.

2. Pseudorandomness: For any non-uniform polynomial-time algorithm A that has access to
an oracle, the advantage

Adv(λ) =
∣∣∣Pr[AF (sk,·)

λ = 1]− Pr[AR(·)
λ = 1]

∣∣∣
is negligible, where sk is uniform in {0, 1}λ, R : {0, 1}λ → {0, 1}λ is a truly random function,
and Aλ can only query its oracle on inputs of length λ.

A PRF as above is implied by any one-way function, and implies a PRF with arbitrary poly-
nomial input and output lengths [Gol01]. One-way functions are implied by all of the assumptions
we consider in this paper.

3.2 Secret-key Private Information Retrieval

The following definition of secret-key PIR (sk-PIR) is adapted from [BIPW17, CHR17]. Informally,
an sk-PIR protocol is a variant of standard (single-server) PIR in which the client has a secret key
which is used to encode the database. More concretely, in an offline preprocessing phase, the client

randomly encodes the database x ∈ {0, 1}N into an encoded database x̂ ∈ {0, 1}N̂ using a secret
key sk and stores x̂ on a remote server. In each invocation of the online phase, the client can use
sk to retrieve a bit xi by exchanging o(N) bits with the server, without revealing i to the server.

Definition 3.3 (Secret-key PIR). A secret-key private information retrieval protocol (or sk-PIR
for short) is a tuple of PPT algorithms skPIR = (G,E,Q,A,D) with the following syntax:

• G(1λ, 1N ): The key generation algorithm takes a security parameter λ and database size N
and outputs a secret key sk. We assume, w.l.o.g., that sk contains λ and N .

• E(sk, x): The database encoding algorithm takes a secret key sk and a database x ∈ {0, 1}N

and outputs a database encoding x̂ ∈ {0, 1}N̂ .

• Q(sk, i): The query algorithm takes a secret key sk and an index i ∈ [N ], and outputs a
PIR-query que ∈ {0, 1}q and auxiliary information aux ∈ {0, 1}∗.

• A(x̂, que): The answer algorithm takes a database encoding x̂ ∈ {0, 1}N̂ and a PIR-query que,
and returns a PIR-answer ans ∈ {0, 1}a.

• D(sk, i, ans, aux): The decoding algorithm takes a secret key sk, an i ∈ [N ], a PIR-answer
ans ∈ {0, 1}a and auxiliary information aux ∈ {0, 1}∗, and outputs a bit y ∈ {0, 1}.
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We may assume that A and D are deterministic. We refer to N̂ as the database encoding size or
server storage, to q as the query length and to a as the answer length.

Correctness. For any λ,N ∈ N, sk ∈ G(1λ, 1N ), x ∈ {0, 1}N , x̂ ∈ E(sk, x), i ∈ [N ], and
(que, aux)← Q(sk, i), we have D(sk, i,A(x̂, que), aux) = xi.

Security. Let m := m(λ) be a query bound. We say that skPIR is m-query secure if for any
non-uniform polynomial-time algorithm A that makes at most m(λ) queries to its oracle and any
polynomial N = N(λ), there exists a negligible function δ such that for any λ ∈ N and x ∈ {0, 1}N ,
it holds that ∣∣∣Pr[AQ(sk,·)(1λ, x̂)=1]− Pr[AQ′(sk,·)(1λ, x̂)=1]

∣∣∣ ≤ δ(λ),

where sk ← G(1λ, 1N ), x̂ ← E(sk, x) and Q′(sk, ·) is an oracle that ignores its input and outputs
Q(sk, 1) (with fresh randomness). We say that skPIR is secure if it is m-query secure for any
polynomial query bound m(λ).

Note that the above definition only considers a single encoded database. However, it generically
implies (via a standard PRF domain separation technique) a stronger notion where the same secret
key can support an arbitrary number of encoded databases. Furthermore, while the definition
does not require the database x to be hidden from the server, this requirement can be enforced
generically via the use of symmetric encryption; our solutions already satisfy this stronger security
requirement with no additional overhead.

Complexity metrics. We will be interested in different complexity metrics of sk-PIR, including
server storage |x̂|, communication complexity, and computational complexity of the server and the
client. A major competitive advantage of our protocols compared to all prior single-server PIR pro-
tocols is minimizing the circuit size of the server. For the latter we consider the standard measure
of counting gates in a circuit implementing A(x̂, que) over the B2 basis, namely where a gate can
compute any function g : {0, 1}2 → {0, 1}. Finally, similarly to prior works on PIR with preprocess-
ing, we will also consider the cell probe complexity of the server, namely the number of bits from x̂
that A(x̂, que) needs to read. Some of our construcctions will achieve slightly sublinear cell-probe
complexity, thus realizing a weak notion of “doubly efficient PIR” with secret-key preprocessing.

3.3 Learning Parity with Noise

We define the learning parity with noise problem (LPN) [BFKL94] over a general field F. LPN is
parameterized by a dimension parameter k := k(λ), a noise rate ε := ε(λ) ∈ (0, 1) and a number
of samples given to the adversary which we denote by m := m(λ). When F is not specified, it is
assumed that F = F2 by default, in which case BerF(ε) is a standard Bernoulli variable.

Definition 3.4 (LPN). The (decisional) learning parity with noise assumption (k, ε)-LPN over F
asserts that for any polynomial m := m(λ) we have:

(ai,a
⊺
i s+ ri)i∈[m] ≈c (ai, ui)i∈[m] ,

where s← Fk and, for any i, ai ← Fk, ri ← BerF(ε), and ui ← F. We consider three noise regimes:

• In high-noise LPN we assume that (k, ε)-LPN holds with ε = 1/kγ for some 0 < γ < 1/2.

• In mid-noise LPN we assume that (k, ε)-LPN holds with ε = 1/kγ for every γ < 1.
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• In low-noise LPN we assume that (k, ε)-LPN holds with ε = logc(k)/k for some c > 1.

We denote by (k, ε,m)-LPN a restricted variant of LPN where indistinguishability holds only
with m := m(λ) samples.

While mid-noise (and hence low-noise) LPN implies public-key encryption [Ale03], showing such
an implication for high-noise LPN is a major open problem. Low-noise LPN over F2 with noise
ε = log2 k/k implies collision-resistant hash functions [BLVW19, YZW+19]. This is open for mid-
noise (or high-noise) LPN. LPN with an even lower noise of log1+β k/k, where 0 < β < 1, is known

to imply (plain-model) PIR with slightly sublinear communication of N/2Θ(log1−β N) [AMR25].
Obtaining fully sublinear PIR from any flavor of LPN is open.

4 Learning Subspace with Noise

In this section we discuss different flavors of the learning subspace with noise (LSN) assumption we
introduce and use in this work.

4.1 The Basic LSN Assumption

We start by discussing the basic LSN variant from Definition 1.1. Recall that for a dimension
parameter k := k(λ) and noise rate parameter µ = µ(λ), the (k, n, µ)-LSN problem is to distinguish
between the following two experiments. In the pseudorandom experiment, we are given a polynomial
m := m(λ) number of samples from a secret k-dimensional random linear code C ⊆ Fn, where each
sample ci is replaced by a uniformly random vector ui ∈ Fn with probability µ. In the random
experiment, we are just given m random vectors ui ∈ Fn.

The search version of the above problem, namely recovering C from the noisy samples, can
be viewed as an instance of the extensively studied problem of learning mixtures of simple distri-
butions [Vid03, FSO06, RSS14, CM19]. A mixture of two distributions D0 and D1 samples an
element from D0 with certain probability µ and an element from D1 with probability 1 − µ. The
general task of learning mixtures is to learn information about the distributions D0 and D1 given
samples from their mixture. LSN specifically considers the decision problem of distinguishing a
mixture of D0 and D1 from the uniform distribution over their domain, where D0 is the uniform
distribution over Fn and D1 is the uniform distribution over a random dimension-k subspace C.
More concretely, LSN is a decision variant of the problem of learning mixtures of subspaces over a
finite field, which was previously studied by Chen, De, and Vijayaraghavan [CDV21].

The main relevant results from [CDV21] are that: (1) the search version of LSN (hence also the
decision version) can be solved in time nO(log(1/(1−µ))/(1−ρ)) where ρ = k/n, and (2) over F2, the
search version of the (k, k + 1, µ)-LSN assumption is equivalent to the (k, µ/2)-LPN assumption.

In the following sections we present the following results about (decision) LSN:

• In Section 4.1.1 we extend the parameter regime in which LSN implies LPN, showing how to
break LSN with a minimal number of samples using an LPN oracle.

• In Section 4.1.2 we present the “tensored rank” distinguisher for LSN, which is a simplified
version of the algorithm for the search problem from [CDV21].

4.1.1 LSN implies LPN

In the following we complement the “LSN implies LPN” result from [CDV21, Proposition 21],
which holds for n = k+1, by a similar implication that holds for a more general parameter regime.
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Here we consider F = F2 by default, though the proof extends to any F such that |F| ≤ poly(λ)
(for which LPN is known to have a search-to-decision reduction).

Proposition 4.1 (LSN implies LPN). The (k, n, µ)-LSN assumption over F with n > k+3 log(k/(1−
µ)) and µ > 0.78 implies the (k′, ε,m)-LPN assumption over F with k′(λ) = k/(1 − µ) − n,
ε = (1− 1/|F|)(1− µ) and m(λ) = k/(1− µ) = k′ + n.

We prove the above implication via a connection between the hardness of LPN and the hardness
of syndrome decoding for linear codes (aka dual-LPN ) (see, e.g., [BCG+19, Section 3.3]). We need
a strong version of the statement “hardness of syndrome decoding implies LPN,” which we derive
by amplifying a search-to-decision reduction from [AIK07].

Lemma 4.1 (From Syndrome Decoding to LPN). Let k := k(λ) > λ and m := m(λ) be polynomials
such that m > (1 + δ)k for some constant δ > 0, and let ε(λ) > 0. Assume that for every non-
uniform poly(λ)-time algorithm A, there is a noticeable δ such that for every λ ∈ N

Pr[A(H,y) = e] ≤ 1− δ(λ),

where H← F(m−k)×m and y = He for e ∈ Fm sampled from Berm(ε) conditioned on its Hamming
weight is ε ·m. Then, the (k, ε,m)-LPN assumption holds.

We defer the proof of Lemma 4.1 to Appendix B and proceed to prove Proposition 4.1. The
high level idea is that if LPN fails, then we have an efficient syndrome decoder that succeeds with
overwhelming probability to recover a random sparse error vector from its syndrome. We can use
this decoder in the LSN experiment to recover the first (sparse) linear dependence between samples
from the hidden code C with inverse-polynomial success probability, which suffices for breaking
(decision) LSN with inverse-polynomial advantage. We proceed with the formal details.

Proof. It suffices to show that LSN implies the condition of Lemma 4.1. Assume, towards con-
tradiction, the existence of an algorithm A that finds e given (H,He) ∈ F(m−k′)×m × Fm−k′ with
probability 1−δ for a negligible δ. We build a distinguisher against (k, n, µ)-LSN given 3(m+1)+1

samples over Fn, which we denote by v
(j)
1 , . . . ,v

(j)
m+1 for j ∈ {1, 2, 3} and v∗. The distinguisher per-

forms the following experiment three times, with (v1, . . . ,vm+1) := (v
(j)
1 , . . . ,v

(j)
m+1) for j ∈ {1, 2, 3}:

arrange the first m samples v1, . . . ,vm in the columns of a matrix H ∈ Fn×m (note m − k′ = n)
and send the pair (H,vm+1) to A to receive an output e ∈ Fm with Hamming weight k.

Let C(j) denote the span of {vi | ei ̸= 0} in each of the experiments. The distinguisher returns
1 if and only if C = Span(C(1) ∪ C(2) ∪ C(3)) has rank k and v∗ ∈ C.

If the distinguisher is given the uniform distribution and, in particular, v∗ is uniformly random,
then the probability that it is in any fixed rank-k subspace is at most |F|k−n = O

(
(1− µ)3/k3

)
.

Assume the distinguisher is given LSN samples corresponding to a random hidden subspace
C ⊂ Fn of dimension k. We first analyze each execution of the (sub-)experiment separately.

Recall the samples distribute by vi ← C with probability 1 − µ and vi ← Fn with probability
µ. Let S = {i | vi ∈ C}. We denote by E the event where the following three conditions
are met: |S| = k, rank({vi | i ∈ S}) = k and vm+1 ∈ C. Notice that the size of S is a
variable that follows the Binomial distribution with expectation (1 − µ)m = k. It holds that
Pr[|S| = k] =

(
m
k

)
2−kH(1−µ) ≥ 1/k. The probability that k uniform samples from a k-dimensional

subspace C are linearly independent is
∏k−1

i=0 (1−|F|i−k) ≥ 0.28. Lastly, v′
m+1 ∈ C with probability

at least 1− µ by definition. Overall, E occurs with probability at least Ω((1− µ)/k). Conditioned
on E, we may rearrange the sampling of (C,v1, . . . ,vm+1) as follows:
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1. Sample b← Berm(1− µ) conditioned on |b| = k and let S = {i | bi = 1}.

2. Start with C = {0}.

3. For i = 1, . . . ,m:

– If i /∈ S, sample vi ← Fn.

– If i ∈ S, sample vi ← Fn \ C and add it to C, i.e. C = Span(C ∪ vi).

4. Sample vm+1 ← C.

We may further rewrite the sampling of vm+1 as:

4. Sample vm+1 =
∑

i∈S βi · vi for βi ← F.

Since the probability that a uniformly random vector over Fn is in a k-dimensional subspace is
|F|k−n = 2−Ω(k), the above experiment is statistically close to an experiment where the vectors
v1, . . . ,vm are sampled uniformly at random. Let E′ denote the condition that there are exactly
1 − 1/|F| non-zero βi’s. Once again, we have Pr[E′] = Ω(1/m) = Ω((1 − µ)/k) and, therefore,
Pr[E′, E] = Ω((1 − µ)2/k2). Conditioned on E and E′, (v1, . . . ,vm+1) is statistically close to
the distribution (H,y) from the lemma with ε = (1 − µ)(1 − 1/|F|), and, upon feeding them
as input to A, we obtain e such that

∑
i eivi = vm+1 by assumption. Further, e corresponds

to ei = βi · bi since, by a simple union bound, this is the only solution with probability all but(
m
k

)
|F|k−m ≤ 2m(H(µ)−µ), which is negligible in m when µ > 0.78 (where H(µ) − µ = Ω(1)).

Therefore, e reveals a random subspace of C of dimension (1 − 1/|F|)k conditioned on E and E′.
Since this occurs with probability all but negligible in the experiment conditioned on these events,
it does also in the original experiment (since E and E′ both have inverse-polynomial probability).
Hence, when E and E′ occur, the distinguisher obtains three random subspaces of C of rank
(1− 1/|F|)k each, which cover C entirely with probability all but negligible (this is the probability
that 3(1− 1/|F|)k ≥ 1.5k vectors from C have rank k).

Overall, we obtain a distinguishing advantage of Ω((1−µ)2/k2− (1−µ)3/k3), which is inverse-
polynomial.

4.1.2 A Tensored-Rank Distinguisher for LSN

The previous “LSN implies LPN” claim should be interpreted as saying that LSN is at least as
strong of an assumption as LPN. However, it does not show that LSN is strictly stronger. In
particular, it does not rule out the possibility that (k, n, µ)-LSN holds with constant code rate
0 < k/n < 1 and noise rate 0 < µ < 1, for which the corresponding LPN parameters are considered
to be conservative.

In the following we show a simplified version of the learning algorithm from [CDV21] that
leverages a larger number of samples than the LPN-based attack to break the (decision) LSN
assumption with any positive constant noise rate µ.4 In light of this algorithm, we must require
1− µ to be sub-constant in Conjecture 1.1.

Proposition 4.2 (Rank attack against LSN with low noise rate). For any constant d ∈ N, field F,
polynomials k, n and noise rate µ < 1− (k/n)d, there is a polynomial-time distinguisher that breaks
(k, n, µ)-LSN in nO(d) time using m = O(nd) samples.

4Notably, our algorithm has smaller sample complexity compared to the learning algorithm from [CDV21]. While
their algorithm requires O(nd) samples for d = Ω(log(1/(1−µ))/1−ρ), ours needs only d = O(log(1/(1−µ))/ log(1/ρ).
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Proof. Let q = |F|. The distinguisher is given m = 1 + (4qn)d log q samples v1, . . . ,vm ∈ Fn which
are either uniformly random or come from a random rank-k subspace generated by C ← Fk×n,
mixed with noise. The distinguisher computes the d-fold tensor product of each sample v̂i =
vi ⊗ · · · ⊗ vi and arranges all of the obtained vectors in the rows of a m × nd matrix V. The
distinguisher then outputs 1 if and only if rank(V) = nd.

If the vi are LSN samples of the form vi = a⊺iC + ei for random ai ← Fk and ei that is non-
zero with probability µ, then, in expectation, there are (1 − µ)m > 2kd noiseless samples where
vi = a⊺iC. Since the noise in the samples is i.i.d., we may derive by Chernoff that there are at least
3
2k

d noiseless samples with probability at least e−Ω(kd). Assuming this is the case, there exist at
least 3

2k
d rows in V that come from the subspace spanned by the d-fold tensor product C⊗· · ·⊗C,

which has rank only kd. Hence, the rank of V cannot be full.
On the other hand, we argue that if the samples vi are uniform, then the rank of V is full with

probability at least 1− 1/e. To see this, notice that the existence of a linear combination w ∈ Fnd

satisfying Vw = 0 implies the existence of a degree-d polynomial over n variables that vanishes on
all v1, . . . ,vm. Indeed, letting Pw denote the polynomial with coefficients defined by w, it holds
that (vi ⊗ · · · ⊗ vi)

⊺w = Pw(vi). It is sufficient to bound, then, the probability that m uniformly
random assignments to n variables over F are all roots of some degree-d polynomial.

A known fact (see, e.g. [KLP68]) is that an n-variate degree-d polynomial over F has at most
qn − qn−d roots. (The simple case where F = GF(2) is implied by the distance analysis of binary
Reed-Muller codes). Thus, the probability that (4qn)d uniform assignments are all roots of a given

polynomial is at most (1−1/qd)m = e−m/qd = e−1−(4n)d log q. The number of all such polynomials is

bounded by q(
n

n+d) ≤ q((en/d)+1)d < e(4n)
d log q. Hence, the probability that there exists a polynomial

that vanishes on all vi is less than 1/e by union bound.

4.2 Split-LSN

Our most efficient sk-PIR constructions rely on the split-LSN conjecture (Conjecture 1.2), which we
put forward in this work. One source of belief in this conjecture comes from the analogy with the
assumption used in previous works on sk-PIR [BIPW17, CHR17] (see Section 1.6), which seems to
be more structured. Here we provide an additional heuristic justification by considering a natural
class of algebraic distinguishers that capture the previous attack on basic LSN.

The tensored rank attack of Proposition 4.2 can be seen as finding a code-dependent nonzero
degree-d polynomial that vanishes (with high probability) on all samples from the pseudorandom
experiment but not on samples from the random experiment. This abstraction also captures the
algorithm of Arora and Ge [AG11] for LPN with structured noise. To consider this attack in
the context of split-LSN, define for each split-LSN sample v ∈ Fℓ the generalized d-tensor v≤d

that includes the values of all products of at most d entries of v. (For the parameters of our
split-LSN conjecture, we have ℓ = 2n.) Now, suppose that for the secret code C ⊂ Fn there is
a nonzero polynomial pC of (total) degree ≤ d that vanishes on all split-LSN samples vi ∈ Fℓ

in the pseudorandom experiment. Such a polynomial will distinguish these samples from random
samples in Fℓ. Moreover, the existence of such a polynomial implies that all tensored samples
v≤d
i in the pseudorandom experiment satisfy the same linear dependency, which in turn implies

a rank deficiency of the d-tesnored sample matrix. In the converse direction, a rank deficiency in
the d-tensored samples implies the existence of such a code-dependent nonzero polynomial pC of
degree≤ d that vanishes on the pseudorandom samples.

We do not have a rigorous analysis of the minimal degree distribution of pC corresponding to our
split-LSN conjecture. However, we have run preliminary experiments suggesting that indeed this
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degree grows even when just moderately increasing the splitting parameter s beyond the inverse-rate
n/k. We leave a more thorough analysis of our LSN-related conjectures to future work.

4.3 A Unified LSN Framework

Our general template for constructing secret-key PIR protocols can be instantiated using different
flavors of the LSN assumption that yield different efficiency features. To present and analyze these
different variants in a unified way, we formulate a generalized variant of LSN that captures all of
the LSN flavors we will use as special cases.

More concretely, the useful LSN flavors include standard LSN (Definition 1.1) split-LSN (Def-
inition 1.2) and a new notion of sparse-noise LSN (see Definition 4.3 below) that will serve as a
convenient step towards our LPN-based results.

All these LSN flavors assert the indistinguishability between random codewords ci sampled from
a secret k-dimensional code C ⊂ Fn and uniformly random samples from Fn, where the samples are
hidden using some kind of noise. Syntactically, in the above assumptions the noisy version of ci is
either a vector in Fn (for standard and sparse-linear LSN) or alternatively it is an affine subspace
of Fn (for regular LSN and split-LSN). To capture both cases by the same definition, we consider
the noise to always be an affine subspace Ei ⊂ Fn which is added to ci in the usual sense. Namely,
ci + Ei is an affine space of the same dimension as Ei. The noise spaces Ei will be independently
generated by a sampler E , where E is generated jointly with the code C. Finally, we will also allow
sampling the code C from a general distribution over k-dimensional linear codes; jumping ahead,
this will be useful for reducing the client’s runtime. We further allow the random code and the
noise sampler E to be correlated, and therefore consider a joint distribution D over C and E .

In the following definition, we denote by k := k(λ) and n := n(λ) the dimension and length of
the secret code, both polynomial. We will let D := D(1λ, 1k, 1n) denote a sampling algorithm that
jointly samples a code C and and noise distribution E , whose output is an affine space.

Definition 4.1 (General LSN). An LSN sampler is a PPT algorithm D(1λ, 1k, 1n) that outputs a
pair (C, E) with the following syntax: C ⊂ Fn is a k-dimensional linear code and E is a probabilistic
circuit sampling a description ⟨E⟩ of an affine subspace E ⊂ Fn. For dimension parameters k :=
k(λ) and n := n(λ), the (k, n,D)-LSN assumption asserts that for secret (C, E)← D(1λ, 1k(λ), 1n(λ))
and for any polynomial number of samples m := m(λ) we have:

(⟨ci + Ei⟩)i∈[m] ≈c (⟨ui + Ei⟩)i∈[m],

where for each i we take independent samples ci ← C, ui ← Fn and Ei ← E.

We now derive the LSN variants from Definitions 1.1 and 1.2 as well as a new sparse-noise LSN
variant as instances of general LSN.

Definition 4.2 (LSN Variants). We define the following (k, n,D)-LSN instances, where D outputs
a uniformly random k-dimensional code C ⊂ Fn and E as defined below.

• In the standard LSN assumption (k, n, µ)-LSN, E is sampled independently of C as follows:

– with probability µ, E outputs E = {r} for a uniformly random r← Fn,

– with probability 1− µ, E deterministically outputs E = {0n}.

• In the sparse-noise LSN assumption (k, n, ε)-snLSN, E is defined by a uniformly random set
of coordinates I ⊂ [n] of size k subject to the constraint CI = Fk. E outputs E = {r} where
ri = 0 for i ∈ I and ri ← Ber(ε) otherwise.
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• In the split-LSN assumption (k, n, r, s)-SLSN, E always samples uniform (r − 1)-dimensional
linear subspaces E1, . . . , Es ⊂ Fn/s and outputs E = E1 × · · · × Es.

The security and complexity features of our sk-PIR protocols will be inherited by the features
of the underlying LSN assumption.

4.4 LPN Implies Sparse-Noise LSN

Our LPN-based protocols will be derived as instances of our general LSN-based framework, using
the sparse-noise LSN variant. In this section we show that this variant of LSN is implied by
standard LPN with corresponding parameters.

Recall that in sparse-noise LSN, the noise is not uniformly random with probability µ and zero
otherwise, as it is the case for standard LSN (Definition 1.1). Instead, we pick a random set of
k linearly independent columns of a generating matrix of C and flip each other coordinate with
probability µ. For convenience, we give a self-contained definition below.

Definition 4.3 (Sparse-noise LSN). The sparse-noise LSN assumption (k, n, ε)-snLSN states that
for a uniformly random secret rank-k matrix C ∈ Fk×n and any polynomial number of samples
m := m(λ), it holds that:

(ci + (0k, ri)
⊺ ·Π)i∈[m]

c
≈ (ui)i∈[m],

where ci = a⊺iC for ai ∈ Fk, Π is a uniformly random permutation matrix conditioned on C ·Π−1 =
(R,U) for some R ∈ Rankk(Fk×k), ri ← Bern−k(ε) and ui ← Fn.

We remark the following regarding sparse-noise LSN:

(i) With probability (1 − ε)n−k, we have ri = 0n−k. Thus, one may think of sparse-noise LSN
as a generalization of LSN with noise rate µ = 1 − (1 − ε)n−k ≈ 1 − eε(k−n), which is
approximately ε(n−k) in the vanishing regime. For instance, sparse-noise LSN with ε = 1/kγ

and n = k + o(kγ) for some 0 < γ < 1/2, which can be based on high-noise LPN, induces
LSN noise rate µ = o(1).

(ii) An alternative way to view the joint distribution overC and Π, which also provides an efficient
sampling procedure, is to sample a uniformly random permutation matrix Π and to define C
as R(I,S) ·Π, where I is the k× k identity, S← Fk×(n−k) is uniform and R← Rankk(Fk×k).
In fact, from this angle, it is easy to see the reduction from LPN since a⊺iC + (0k, ri)

⊺Π
distributes just like (a⊺i (I,S) + (0k, ri)

⊺) · Π = (a⊺i ,a
⊺
iS + r⊺i ) · Π when ai is uniform. We

provide more details in the proof of Proposition 4.3.

(iii) Consequently to the above remark, we may consider a less conservative version of sparse-noise
LSN which still reduces from LPN, where the noise has the simpler form of (0k, ri) (without
permutation) yet the code C is a random systematic code (recall that any code is systematic
up to permuting the columns).

(iv) In the case of k = n− 1, sparse-noise LSN is equivalent to LSN with uniform noise (and half
the noise rate), hence our reduction (Proposition 4.3) is a generalization of the connection
made in [CDV21] for the search variants of the problems. We formalize this consequence in
Corollary 4.1.

We now state our reduction from LPN to sparse-noise LSN.

20



Proposition 4.3 (LPN implies snLSN). The (k, ε)-LPN assumption implies the (k, n, ε)-snLSN
assumption for any field F, polynomials n(λ) > k(λ) ≥ λ, and noise rate ε(λ).

A special case of Proposition 4.3, where n = k + 1, implies a decision version of the reduction
shown in [CDV21, Proposition 20]. (While the formal statement in [CDV21] refers to a reduction
between the search versions, their proof shows that the LPN and LSN distributions are equivalent
in this regime, hence implying a reduction between the decision versions of the problems as well.
In fact, our proof can be seen as a generalization of their proof.)

Corollary 4.1. For F = F2, the (k, ε)-LPN assumption implies the (k, k + 1, 2ε)-LSN assumption
for any polynomial k(λ) and noise rate ε(λ).

Proof. The corollary follows from the observation that (k, k + 1, ε)-snLSN is equivalent to (k, k +
1, 2ε)-LSN. To see this, notice that a sparse-noise LSN sample wi = a⊺iC + (0k, ri)

⊺ · Π, where
ri ← Ber(ε), distributes just like a (standard) LSN sample vi = a⊺iC + di · r⊺i for di ← Ber(2ε)
and ri ← Fn

2 : Conditioned on di = 1, which occurs with probability 2ε, vi is a uniformly random
vector, which is in C = Span(C) with probability half. Conditioned on di = 0, vi is always in C.
Overall, vi is uniform in C with probability ε and is uniform in C = Fn

2 \C with probability 1− ε.
This corresponds exactly to the distribution of wi: when ri = 0, wi is uniform in C and, otherwise,
it is uniform in C + (0k, 1)⊺Π, which is equal to C since (0k, 1)⊺Π /∈ C because the first k columns
in CΠ−1 form a full rank matrix.

Towards proving Proposition 4.3, we define a standard generalization of LPN (considered, e.g.
in [DP12] and more explicitly in [Döt14]) where the oracle outputs n := n(λ) samples corresponding
to the same vector ai and i.i.d. secret and noise vectors.

Definition 4.4 (Matrix LPN). The (decisional) (k, n, ε)-Matrix-LPN assumption over F states that
the for any polynomial m := m(λ) the following holds:

(ai,a
⊺
iS+ ri)i∈[m]

c
≈ (ai,bi)i∈[m] ,

where S← Fk×n and, for any i, ai ← Fk and bi ← Fn are uniform, and ri ∈ Fn is a vector of i.i.d.
elements where every coordinate is 0 with probability 1 − ε and a uniformly random field element
with probability ε.

The following reduction from LPN to its matrix version is a special case of [Döt14, Lemma
3.4], which is proved via a standard hybrid argument. For completeness, we include a proof in
Appendix A.

Lemma 4.2 (From LPN to Matrix-LPN). (k, ε)-LPN implies (k, n, ε)-Matrix-LPN, for any field F,
polynomials n(λ) > k(λ) ≥ λ, and noise rate ε(λ).

We now proceed to prove the reduction from LPN to sparse-noise LSN (Proposition 4.3) using
Matrix-LPN as an intermediate problem.

Proof. Let t = n−k. Due to Lemma 4.2, it is sufficient to show a reduction from (k, t, ε)-Matrix-LPN.
Assuming an adversary A that breaks (k, n, ε)-snLSN, we build an adversary B that breaks (k, t, ε)-
Matrix-LPN as follows: B(1λ) takes as input m matrix-LPN samples (ai,bi) ∈ Fk × Ft. It samples
a uniformly random permutation matrix Π ∈ Fn×n, and returns the output of A on the m samples
di = (ai,bi)

⊺ ·Π.
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# in
Thm. 5.1

Conjecture Communication
Server

Storage
Boolean

circuit size
Probes

1 High-noise LPN N
2
3+ε N

4
3+ε - -

Mid-noise LPN N
1
2+ε N1+ε - -

2 LSN (Conj. 1.1) N
1
2+ε (1 + ε)N - -

N
1
2+ε N1+ε - ω(1) ·N/ logN

3 Split-LSN (Conj. 1.2) N
1
2+ε (1 + ε)N (4 + ε)N (3/4 + ε)N

Table 1: Instantiations of our base protocol from Figure 2 under different LPN (Definition 3.4) and
LSN assumptions. Here, we consider N to be also a security parameter, namely we require that
any poly(N)-time adversary has advantage at most negl(N). See Theorem 5.1 for more details.

Clearly, when the samples given to B are uniformly random, so are the samples given to A.
Otherwise, when the samples are of the form (ai,a

⊺
iS+ r⊺i ), we may rewrite

di = (ai,bi)
⊺ ·Π = a⊺i (I,S) ·Π+ (0k, ri)

⊺ ·Π.

When ai ← Fk
2 and S ← Fk×t are uniform, a⊺i (I,S) distributes identically to a⊺iR(I,S) for a

uniformly random full-rank matrix R, which in turn can be written as a⊺i (R,RS) and is therefore
equivalent to a⊺i (R,U) for a uniformly random U← Fk×t. Letting C = (R,U) ·Π, it holds

di ≡ a⊺iC+ (0k, ri)
⊺ ·Π.

To complete the proof it suffices then to show that C and Π are distributed according to the
distribution in Definition 4.3, namely a uniformly random rank-k matrix and a permutation matrix
such that the first k columns in C · Π−1 are full-rank. To that end, notice that C is a full-rank
matrix if and only if it contains k columns that form a full-rank square matrix. Thus, one way to
sample a uniformly random full-rank k × n matrix C is by sampling a uniformly random full-rank
k × k sub-matrix R, and then to sample k uniformly random locations for the columns of R in C.
Then, the rest of the columns are sampled uniformly at random. By inspection, this corresponds
exactly to C = (R,U) ·Π from above.

5 Base Protocol

We present our base sk-PIR protocol in Fig. 2. The protocol may be instantiated based on any
LSN assumption satisfying the template laid in Definition 4.1.

Lemma 5.1 (Base Protocol Security). The sk-PIR protocol from Fig. 2 is secure under (k, n,D)-LSN.

Proof. Consider a hybrid protocol where the outputs of the PRF are replaced by uniformly random
outputs and, consequently, C is a uniformly random code and R is a uniformly random matrix.
Under the security of the PRF, this is as secure as the original protocol. In the hybrid protocol,
the database encoding is uniformly random in the eyes of the adversary (namely the algorithm
A trying to break the sk-PIR, see Definition 3.3) since it is masked with a uniformly random R.
Hence, we may simulate the adversary’s view only given the queries, which consist of polynomially
many samples of the form Qi = ⟨Span((vi + ci) +Ei)⟩ where vi are arbitrary vectors and ci +Ei
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Parameters:

• Functions N0 := N0(N) and N1 := N1(N) such that N0N1 = N .
// We view a database x ∈ {0, 1}N as X ∈ FN0×N1

2 and i ∈ [N ] as (i0, i1) ∈ [N0]× [N1].

• Code dimension k := k(λ) ≥ λ.

• A pseudorandom function PRF : {0, 1}λ × {0, 1}λ → {0, 1}λ.

The Protocol:

• G(1λ, 1N ): Output a uniform PRF key sk← {0, 1}λ.
• E(sk, X): Use the outputs of PRF(sk, ·) to determine the randomness in the following:

1. Sample (C, E)← D(1λ, 1k, 1n) for n = k +N1.

– Let G ∈ FN1×n
2 be a generator matrix of D = C⊥.

– For any j ∈ [N1], let vj ∈ Fn
2 be a vector for which Gvj ∈ FN1

2 is the jth unit vector.

2. Sample a uniformly random mask R← FN0×n
2

Output the following database encoding:

X̂ = XG+R ∈ FN0×n
2

• Q(sk, (i0, i1)): Sample a uniform c← C and ⟨E⟩ ← E . Let Q = ⟨Span(c+ vi1 + E)⟩ ∈ Fr×n
2 and output

que = Q, aux = (Q,d),

where d ∈ Fr
2 is the vector satisfying Q⊺d = c+ vi1 if it exists or ⊥ if it does not exist.

• A(X̂, que): Output ans = X̂Q⊺ ∈ FN0×r
2

• D(sk, (i0, i1), ans, aux): Output yi0 ∈ F2 for y = (ans−RQ⊺) · d ∈ FN0
2 or ⊥ if aux =⊥.

Figure 2: Our Base sk-PIR Protocol under D-LSN.

are (k, n,D)-LSN samples and, therefore, are jointly pseudorandom under the corresponding LSN
assumption. Since Qi is a function of (vi + ci) + Ei, security under LSN follows by

( ⟨(vi + ci) +Ei⟩ )i∈[m] ≡ ( ⟨vi + (ci +Ei)⟩ )i∈[m]
c
≈ ( ⟨vi + ri +Ei⟩ )i∈[m] ≡ ( ⟨ri +Ei⟩ )i∈[m] (1)

where ri is uniformly random.

Using the split-LSN variant, where the noise rate µ is zero, the base protocol has perfect
correctness and the server can be implemented by a linear-size circuit. When using the noisy
variants, we obtain a noisy sk-PIR. Crucially, this is an “erasure noise,” since the output is always
correct unless the client outputs ⊥, which occurs with ≤ µ probability. As discussed in Section 2,
the noise can be eliminated either via repetition or, for minimizing the server overhead, by applying
an erasure code to each column of X.

We now formally derive our different instantiations of the base protocol.

Theorem 5.1 (Base sk-PIR from LSN Assumptions). The following holds for any constant ε > 0
and any λ̃ = ω(log λ):

1. Under (k, 1/kγ)-LPN, for any 0 < γ′ < γ there exists an sk-PIR protocol with storage
O(N2/(1+γ′)) + poly(λ) and communication N1/(1+γ′) + poly(λ).

2. Under the LSN conjecture (Conj. 1.1), there exists an sk-PIR protocol with storage (1+ε)N+
poly(λ) and communication λ̃

√
N + poly(λ).

Alternatively, for any ℓ = ω(1), the probe complexity of the server can be improved to N ·
ℓ/ logN + poly(λ), at the expense of server storage O(N1+ε) + poly(λ).
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3. Under the split-LSN conjecture (Conj. 1.2), there exists an sk-PIR protocol with storage (1+

ε)N + poly(λ) and communication O(N
1
2
+ε) + poly(λ), where the server has Boolean circuit

size (4 + ε)N + poly(λ).

The probe complexity of the server is (3/4 + ε) · N , and can be improved to O(N/ logN) at
the expense of server storage and Boolean circuit size O(N1+ε) + poly(λ).

Proof. We begin by showing the correctness of the base protocol, assuming the noise rate of the
underlying LSN assumption is µ = 0 (as in the split-LSN based instance). That is, 0n ∈ E with
probability 1 and there always exists d such that Q⊺d = c + vi1 since c + vi1 ∈ c + vi1 + E ⊆
Span(Q). Correctness immediately follows by

y = (ans−RQ⊺)d = (X̂Q⊺ −RQ⊺)d = XGQ⊺d = XG(c+ vi1) = XGvi1 ,

which is the ith1 column in X by the definition of vi1 .
All sk-PIR protocols in Theorem 5.1 follow the same general recipe of instantiating the protocol

from Fig. 2.
Denote by ρ = k/n the rate in the assumed (k, n,D)-LSN. We choose security parameter

λ′ ≥ λ for the LSN assumption (to give as input to D) that satisfies n(λ′) − k(λ′) ≥ N1 by
k := k(λ′) = ⌈ρN1/(1− ρ)⌉ and n := n(λ′) = ⌊N1/(1− ρ)⌋. (If N1 is not large enough to allow
such a choice, we set security parameter λ for the LSN and obtain a protocol with complexity
polynomial in λ.)

By inspection, the protocol has storage N̂ = N0n = N/(1 − ρ) and communication q + rN0,
where q is the description size of ⟨v + E⟩ and r is the rank of Span(⟨v + E⟩). Security of the
protocol follows by Lemma 5.1.

By choosing N0 = N1 =
√
N , the above already implies the first split-LSN-based instance in 3

in the theorem, where µ = 0, ρ is any positive constant, r = O(nδ) for arbitrarily small δ > 0,
and q = O(n). The boolean circuit size of the server is (4 + ε)N since the computation for every
database row consists of computing 2s inner products between (n/s)-length vectors, which can be
performed with a circuit of size 4n. In the cell probe model, the server looks at (3/4+ε)N database
bits in average: a bit is accessed when at least one of the two random vectors multiplied with the
corresponding database chunk has 1 at the bit’s location, and this occurs with probability 3/4.

When the LSN noise rate is µ > 0, a simple strategy to correct errors is repetition. We let the
client send λ̃ = ω(log λ/ log(1/µ)) i.i.d. queries to the server instead of a single one, and the server

replies to all of the queries. Correctness now holds except with probability µλ̃ = λ−ω(1). Negligible
noise error can be turned into zero with negligible cost in security: whenever a query is noisy, the
client makes a “plaintext query” (note the client in our protocol can tell whether a query is noisy
before sending it, independently of the server’s response). This gives the instance in 1 and the first
in 2. The former is based on the reduction from LPN to sparse-noise LSN in Proposition 4.3 – recall
the parameter ε of sparse-noise LSN (see Definition 4.3) corresponds to noise rate µ ≈ ε(n − k)
(see the discussion in (i) for more details). With ε = 1/kγ , we choose n = k + kγ

′
for γ′ < γ, to

obtain µ = o(1) and λ̃ = ω(log λ), and N0 = N1/(1+γ′) and N1 = Nγ′/(1+γ′). For the LSN-based
instance we choose N0 = N1 =

√
N . We have ρ to be an arbitrarily small positive constant and

µ = 1 − o(1). Correcting the noise requires λ̃ = ω(log λ/ log(1/µ)) repetitions, which can still be
made any ω(log λ) by a sufficiently small choice of µ.

To obtain the alternative instances in 2 and 3 with sublinear probe complexity, we observe
that server computation consists of merely computing linear functions over the database and use
a generic pre-processing technique for such computation. In the LSN-based instance, the server
computes a parity function over the rows of the database and, in the split-LSN instance, it computes
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parity functions over (n/s)-length blocks of the rows. We hereby focus on the former, but the pre-
processing works similarly for the latter when applied on the blocks individually.

Given an encoded database row x̂ ∈ Fn, the server additionally applies the following pre-
processing. Divide x̂ into B = n/ε log n blocks x̂1, . . . , x̂B of length L = ε log n each. (W.l.o.g. we
assume n is a power of 2.) For every j ∈ [B], instead of storing x̂j , the server stores the evaluation
of all possible parity functions over x̂j . That is, for every q ∈ FL

2 , he stores yj(q) = q⊺x̂j ∈ F2. This
results in B · 2L = O((n/ log n) · nε) field elements in total. When answering a query Q, the server
divides each row q in Q into B functions q1, . . . ,qB ∈ FL, and computes the sum

∑
j yj(qj) = x̂q⊺.

The size of this sum is at most B = O(n/ log n), therefore, the probe complexity of one evaluation
is O(n/ log n). The probe complexity of evaluating over N0 rows is then O(N̂/ log N̂).

While the above directly gives us a split-LSN-based sk-PIR with sublinear probe complexity, we
need to be careful with the LSN-instance. Recall, to correct errors we let the server apply ω(log λ)
queries to each row, whereas pre-processing is able to save us only a factor of O(logN) = O(log λ).
Instead, we use a protocol where errors are handled by error-correction codes.

We let the client encode each of the database columns using, say, a Reed-Solomon code with
dimension λ̃ and length ℓλ̃ over a field F of size 2N0/λ̃, where ℓ = 1/(1−µ)+ δ for a constant δ > 0.
Recall such a code can correct up to (ℓ− 1)λ̃ erasures. The client divides each column into λ̃ field
elements (each represented by a block of N0/λ̃ bits) and encodes the column to obtain an encoded
column that is ℓ times larger. The protocol is then invoked with the new larger database. To
retrieve an element, the client sends λ̃ i.i.d. queries, and each is used over N0/λ̃ rows corresponding
to one field element. Overall, the server replies with ℓN0 answers from which the client recovers ℓN0

bits representing ℓλ̃ field elements that make a noisy codeword, which he can correct by erasure
decoding. By Chernoff, the probability that more than (ℓ − 1)λ̃ = (µ/(1 − µ) + δ)λ̃ > (µ + δ)λ̃

erasures occur is e−Ω(λ̃), which is negligible in λ.

6 Improving Communication via Folding

Our folded sk-PIR protocol is presented in Fig. 3. It can be seen as a generalization of the the base
protocol where the database is encoded using the tensor product of t ≥ 1 random codes. (The base
scheme is the special case with t = 1.)

Note that a client query in the folded protocol consists of t i.i.d. base-protocol queries. Hence,
we may argue security along similar lines.

Lemma 6.1 (Folded Protocol Security). The sk-PIR from Fig. 3 is secure under (k, n,D)-LSN.

Proof. Once again, using the security of the PRF, we first switch to a hybrid protocol where the
PRF is replaced by a uniformly random function. In the hybrid protocol, the codes C1, . . . , Ct are
uniformly random and so is the mask R. Since the database encoding is now uniform given the
client queries (the queries are independent in R), we consider an equally hard experiment where the
adversary is not given any database encoding but only client queries of the form (Q1, . . . ,Qt). By
a standard hybrid argument involving t hybrids, we replace the distribution of Qj = ⟨Span(cj +
vij + Ej)⟩, for j = 1, . . . , t, by a distribution Q′

j = ⟨Span(rj + Ej)⟩ for a uniformly random rj .
The hybrids are computationally indistinguishable under the given LSN assumption due to Eq. (1).
The last hybrid does not reveal any information about the vectors vij and, therefore, about the
client’s inputs. Hence the proof is complete.

We instantiate the folded protocol using LPN and LSN assumptions in the following theorem,
and summarize the results in Table 2. Communication in the folded protocol can be made an
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Parameters:

• Functions t := t(N), N0 := N0(N) and N1 := N1(N) such that N0N
t
1 = N .

// We view a database x ∈ {0, 1}N as X ∈ FN0×N1×···×N1
2 and i ∈ [N ] as (i0, i1, . . . , it) ∈ [N0]× [N1]

t.

• Code dimension k := k(λ).

• A pseudorandom function PRF : {0, 1}λ × {0, 1}λ → {0, 1}λ.

The Protocol:

• G(1λ, 1N ): Output a uniform PRF key sk← {0, 1}λ.

• E(sk, X ∈ FM×Nt
0): Use the outputs of PRF(sk, ·) as randomness in the following:

1. For any j = 1, . . . , t, sample (Cj , Ej)← D(1λ, 1k, 1n) for n = k +N1.

– Let Gj ∈ FN1×n
2 be a generator matrix of Dj = C⊥

j .

– For any i ∈ [N1], let vj,i ∈ Fn
2 be a vector for which Gjvj,i ∈ FN1

2 is the ith unit vector.

2. Sample a uniformly random mask R← FN0×n×···×n
2 .

Output the following database encoding

X̂ = X(G1 ⊗ · · · ⊗Gt) +R ∈ FN0×n×···×n,

• Q(sk, (i0, . . . , it)): For j = 1, . . . , t, sample cj ← Cj and Ej ← Ej . Let Qj = ⟨Span(cj +vij +Ej)⟩ ∈ Fr×n

and output

que = (Q1, . . . ,Qt) aux = ((Q1, . . . ,Qt), (d1, . . . ,dt)),

where dj ∈ Fr
2 is the vector satisfying Q⊺

jdj = cj + vj,ij if exists or ⊥ if it does not exist.

• A(X̂, que): Output ans = X̂(Q1 ⊗ · · · ⊗Qt)
⊺ ∈ FN0×r×···×r

2 .

• D(sk, (i0, . . . , it), ans, aux): Output the ith0 bit of y = (ans−R(Q1 ⊗ · · · ⊗Qt)
⊺)(d1 ⊗ · · · ⊗ dt) ∈ FN0 or ⊥.

Figure 3: Our Folded sk-PIR Protocol under D-LSN.

arbitrarily small polynomial in N by choosing the folding parameter t to be a sufficiently large
constant. Folding with t = ω(1) can give an even smaller communication of No(1), and in one
instance even sublinear probe complexity, under quasi-polynomial hardness. (When t = ω(1), the
LSN dimension becomes proportional to N1/t = No(1), which requires quasi-polynomial hardness
when N is considered to be poly(λ).) The folded protocol too offers a trade-off between server
storage and computation via pre-processing, which is even better than in the base protocol.

Theorem 6.1 (Folded sk-PIR from LSN Assumptions). The following holds for any constant t ≥ 1,
any ε > 0 and any λ̃ = ω(log λ):

1. Under the (k, 1/kγ)-LPN assumption, for any 0 < γ′ < γ, there exists sk-PIR with storage
O(N (t+1)/(γ′t+1)) + poly(λ) and communication O(N1/(γ′t+1)).

2. Under the LSN conjecture (Conj. 1.1), there exists sk-PIR with storage (1 + ε)N + poly(λ)
and communication O(λ̃N1/(t+1) + poly(λ)).

Alternatively, for any ℓ = ω(1), the probe complexity of the server can be improved to N ·
ℓ/ logtN + poly(λ), at the expense of server storage O(N1+ε) + poly(λ).

3. Under the split-LSN conjecture (Conj. 1.2), there exists sk-PIR with storage (1+ε)N+poly(λ)
and communication O(N1/(t+1)+ε) + poly(λ), where the server has Boolean circuit size (4 +
ε)N + poly(λ).

The probe complexity of the server is (3/4+ ε)tN and can be improved to O(N/ logtN) at the
expense of server storage and Boolean circuit size O(N1+ε).
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# in
Thm. 6.1

Conjecture Communication
Server

Storage
Boolean

circuit size
Probes

1 High-noise LPN Nε N2+ε - -

Mid-noise LPN Nε N1+ε - -

2 LSN (Conj. 1.1) Nε (1 + ε)N - -

Nε N1+ε - ω(1) ·N/ log1/ε N

3 Split-LSN (Conj. 1.2) Nε (1 + ε)N (4 + ε)N εN

Rem. 6.1 Quasi-poly Split-LSN No(1) (1 + ε)N (4 + ε)N o(N)

Table 2: Instantiations of our folded protocol from Figure 3 under different LPN (Definition 3.4)
and LSN assumptions.We consider N to be also a security parameter, namely we require that any
poly(N)-time adversary has advantage at most negl(N). We refer the reader to Theorem 6.1 for
precise details.

We hereby state the instantiation under quasi-polynomial split-LSN, which achieves sublinear
probe complexity with small storage.

Remark 6.1 (sk-PIR under quasi-polynomial split-LSN). By instantiating the protocol from Item 3
in Theorem 6.1 with a super-constant t = ω(1), we obtain sk-PIR under the quasi-polynomial
hardness of split-LSN (with ρ = o(1) and otherwise parameters similar to Conjecture 1.2) with the
same server storage and circuit size, communication No(1)+poly(λ) and probe complexity of o(N).

Using a generic compiler by Boyle et al. [BIPW17], all of the protocols above can be converted
to standard (public-key) PIR with trusted setup by additionally assuming the existence of virtual
black-box (VBB) obfuscation. In a model with trusted setup, it is assumed that the database
encoding is generated by a trusted party, together with a public key that is made available to any
client. Alternatively, trust can be eliminated by assuming a common-reference string (CRS) and
universal samplers [HJK+16]. In a nutshell, the construction (implicit in [BIPW17, Theorem 5.1])
encodes the database under an sk-PIR protocol, and uses VBB to obfuscate two programs: (i) A
“query program” that, on input client query i ∈ [N ] and randomness, generates an sk-PIR query
corresponding to i. (ii) A “decoding program” which, on input an sk-PIR query and its response
from the server, decodes the query and outputs the underlying database bit value. In addition,
to prevent trivial attacks, symmetric-key cryptography (e.g. MACs) is used to enforce that an
input to the decoding program was generated using the query program and a given i. Given these
programs as the public key, the protocol is straight-forward: the client uses the query program to
query the database and decodes the server’s response using the decoding program.

Remark 6.2. All statements of Theorem 6.1 and Remark 6.1 hold with respect to public-key PIR
with trusted setup in the ideal obfuscation model.

We proceed to prove Theorem 6.1.

Proof. Let us first prove correctness. The client is able to retrieve the requested element whenever
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dj exists for all j. This is because, in such a case,

y = (ans−R(Q1 ⊗ · · · ⊗Qt)
⊺)(d1 ⊗ · · · ⊗ dt)

= (X̂ −R)(Q1 ⊗ · · · ⊗Qt)
⊺(d1 ⊗ · · · ⊗ dt)

= X(G1 ⊗ · · · ⊗Gt)(Q
⊺
1d1 ⊗ · · · ⊗Q⊺

tdt)

= X(G1(c1 + v1,i1)⊗ · · · ⊗Gt(ct + vt,it))

= X(G1v1,i1 ⊗ · · · ⊗Gtvt,it)

= Xi1,...,it .

where Xi1,...,it denotes the FN0
2 -column consisting of all bits in X at coordinates of the form

(∗, i1, . . . , it) and the last equality follows from the choice of the vj,ij ’s. The requested bit is
then in the ith0 location of this column.

Denote ρ = k/n. We choose security parameter λ′ ≥ λ for the LSN assumption (to give as input
to D) that satisfies n(λ′)− k(λ′) ≥ N1 by k := k(λ′) = ⌈ρN1/(1− ρ)⌉ and n := n(λ′) = N1/(1− ρ).
(If N1 is not large enough to allow such a choice, we set security parameter λ for the LSN and
obtain is protocol with complexity polynomial in λ). The database encoding in the folded protocol
has size N̂ = N/(1− ρ)t and communication tq +N0r

t, where r and q are the rank and, resp., the
description size of an LSN sample ⟨c+ E⟩.

By choosing N0 = N1 = N1/(t+1), we derive the split-LSN based instance of the protocol (3),
where the noise rate is µ = 0 (all dj always exist), the rate ρ is such that 1/(1 − ρ)t < 1 + ε, the
rank is r = 2s = O(N δ) for arbitrarily small δ > 0 and the description size is q = O(N1/(t+1)). We
defer the analysis of probe complexity and Boolean circuit size to the end of this proof.

For the LPN-based instance, with LPN noise ε = 1/kγ , we again set n = k+ kγ
′
for γ′ < γ and

get µ = o(1). We choose N0 = N1/(1+γ′t) and N1 = Nγ′/(1+γ′t) to balance communication. For
the LSN-based instance, we set N0 = N1 = N1/(t+1), ρ > 0 to be sufficiently small as above and
µ = 1 − o(1). In these noisy instantiations with µ > 0, all dj exist with probability (1 − µ)t and,
therefore, we have a noisy query with probability 1 − (1 − µ)t. Similarly to the base protocol, we
apply either repetition or erasure-correction to each of the N t

1 database columns before we encode
it under the sk-PIR. The details, including choice of parameters, are identical to our noise-handling
strategy for the base scheme, which we fully describe in the proof of Theorem 5.1, up to substituting
the noise rate with (1− µ)t.

The alternative protocols with sublinear probe complexity are obtained by the same pre-
processing technique that we applied to the base protocol (see the proof of Theorem 5.1). Here,
however, an even smaller probe complexity of O(N/ logtN) is enabled by the fact that the server
applies low-rank linear functions over the database rows, i.e. inner-products with vectors of the
form (q1 ⊗ · · · ⊗ qt) ∈ Fnt

. Consequently, when dividing each row in the database into Bt blocks
of length Lt each, where L = ε log n and B = n/L, the number of all possible linear functions that
the server may evaluate over each block is at most |F|tL = O(nεt) (instead of all 2L

t
). The probe

complexity for a single row is then Bt = O(nt/ logt n).
To see why the probe complexity of the server in the split-LSN based protocol is (3/4 + ε)tN ,

note that a location in the database is probed if it appears with a non-zero coefficient in the linear
function that the server performs over the database. The linear function is a t-fold tensor of smaller
functions, each applied along one of the dimensions in the tensor representation of the database. For
a location to be probed, then, it must appear in all of the t linear functions (otherwise its coefficient
in the tensor is zero). For a location to appear in one of the linear functions it must appear in
at least one of the two vectors that are used to hide the query codeword over the corresponding
(n/s)-bit chunk (recall Definition 1.2). This occurs with probability 1 − (1/2)2 = 3/4 for each
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location in any of the t dimensions. Hence, a location is probed with probability (3/4)t and there
are N/(1− ρ)t locations.

Lastly, we analyze the Boolean circuit size of the server. To answer a query, the server evaluates
(X̂i, (Q1⊗· · ·⊗Qt)) 7→ X̂i(Q1⊗· · ·⊗Qt)

⊺ for each of the N0 database rows X̂i ∈ Fn×···×n
2 . Consider

the following circuit that evaluates such a function by “folding” the tensor X̂i one dimension at
a time: First, it computes X̂i(Q1 ⊗ I ⊗ · · · ⊗ I)⊺ to obtain an output X̂1

i ∈ Fr×n×···×n
2 of length

rnt−1. This can be implemented by nt−1 copies of the circuit computing x 7→ xQ⊺
1 over inputs x of

length n (applied over the “lines” in X̂i parallel to the first axis). This shrinks the first dimension
of X̂i from length n to length r. Next, the circuit computes X̂1

i (I ⊗ Q2 ⊗ I ⊗ · · · ⊗ I)⊺ which

corresponds to r · nt−2 copies of the circuit computing x 7→ xQ⊺
2 over x of length n, to obtain X̂2

i

of length r2nt−2. The computation completes after t such iterations, resulting in an answer of size
rt. Overall, letting S denote circuit size of the computation x 7→ xQ⊺

j , the Boolean circuit size for

computing the answer for one row of the database is bounded by
∑t

j=1 n
t−jrj−1S = (1+o(1))nt−1S

and (1 + o(1))N0n
t−1S for all rows in total. In the split-LSN-based instance where S = 4n this is

(1 + o(1))4nN0 < (4 + ε)N .

7 Improving Client Runtime

The client in the folded protocols from Theorem 6.1 can always be implemented with (per-query)
online time sublinear in N . Specifically, in any instantiation of the theorem with t > 1, where
communication is O(N ε), the client runs in time Õ(N1−ε) (here and in the following, Õ() hides
polylogaritymic factors, and we ignore additive poly(λ) terms). To generate a query, the client
samples t uniformly random codewords, each from an N1 × n generator matrix, taking time

O(tN1n) = O(N (2+ε)/(t+1)). (Recall that n is O(N
1/γ
1 ) under LPN for γ < 1 and is O(N1) in

the other LSN-based protocols.) To decode an answer from the server, the client uncomputes the
effect of the mask R by performing an inner product over inputs of length nt = O(N t/(t+1)).

In this section, we demonstrate how to reduce even further the client runtime in our protocols
via two different strategies. As a result, we get the following:

• Using LPN-based optimization techniques, we reduce the client runtime in the LPN-based
folded protocol. We obtain an sk-PIR with communication and client runtime bothO(N1/3+ε).

• We use standard PIR to generically bootstrap the client in all of our protocols. We obtain
sk-PIR under LSN or split-LSN with communication and client runtime O(N ε), by addition-
ally assuming the existence of standard PIR with small communication and efficient client.
Importantly, the server circuit size, probe complexity, and storage in these protocols are pre-
served by the transformation, as long as they are all O(N1+ε′) in the PIR protocol, for an
arbitrarily small ε′ > 0. Such PIR protocols are known under most standard assumptions
known to imply public-key cryptography, including DDH, QRA and LWE.

7.1 Cubic-Root Client Runtime under LPN

Consider the LPN-based folded protocol with t = 3. By the discussion above, each of the client’s
operations: generating codewords for the query and uncomputing the mask for decoding, take time
O(N2/3+ε). We reduce the complexity of each of these operations to O(N1/3+ε).

To make the query generation efficient, we rely on a sparse-noise LSN variant (see Definition 4.3)
where the hidden code has a sparse generator matrix rather than uniform. Note generating a
codeword from such a matrix is much more efficient compared to a random code. We show that
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this variant is still implied by LPN via a reduction similar to Proposition 4.3. Our reduction is, in
fact, from an LPN variant where the secret is sparse – it is sampled from the error distribution.
This variant is known to be implied by standard LPN [ACPS09].

Lemma 7.1 (LPN with Sparse Secrets [ACPS09]). The (k, ε)-LPN over F implies that for any
polynomial m := m(λ),

(ai,a
⊺
i s+ ri)i∈[m] ≈c (ai, ui)i∈[m],

where s← BerkF(ε) and, for any i, ai ← Fk, ri ← BerF(ε) and ui ← F.

Based on the above, we obtain the following reduction from LPN to sparse-noise LSN where
the hidden code has a sparse generator matrix.

Lemma 7.2 (LSN with Sparse Generator Matrix from LPN). The (k, ε)-LPN assumption implies
the (k, n,D)-LSN assumption where D(1λ, 1k, 1n) samples (C, E) as follows:

– C is the row-span of the generator matrix (I,S) ∈ Fk×n where S← Ber(ε)k×(n−k).

– E is a fixed sampler that outputs E = {r} where rj = 0 for j = 1, . . . , k and rj ← Ber(ε) for
j = k + 1, . . . , n.

Proof. By Lemma 7.1, it suffices to show the implication under an LPN variant where the bits
in the secret s are sampled from the error distribution Ber(ε). By a hybrid argument identical
to that in the proof of Lemma 4.2 (see Appendix A), such LPN implies its matrix analog which
asserts that, for any polynomial t := t(λ), polynomially many samples of the form ai,a

⊺
iS+ ei are

pseudorandom, where S ← Ber(ε)k×t and, for any i, ai ← Fk, and ei ← Bern(ε). The proof is
complete since such samples for t = n − k are equivalent to samples from the LSN in the lemma:
They can be rewritten as ai(I,S) + ri, where ri ← E .

To optimize the time complexity of uncomputing the mask, we rely on a tool developed by two
recent works [BN25, VZ25]. These works show that, under LPN, one can sample a pseudorandom
n× n matrix and, using a trapdoor, to multiply any vector by the matrix in time almost linear in
n.

Lemma 7.3 (Trapdoored Matrices, implicit in [BN25, VZ25]). Assuming (k, 1/kγ)-LPN holds for
any γ > 0, there exists, for any ε > 0 and polynomial n := n(λ), an efficient sampler that samples a
pseudorandom matrix M ∈ Fn×n such that, given the randomness used to sample M, matrix-vector
multiplication Mv takes time O(n1+ε) for any v.

We note that the above statement is slightly different than the statements in the original works
(Theorem 1 in [BN25] and 3.1 in [VZ25]), where multiplication is given a trapdoor. It is by
inspection, though, that the trapdoor can be re-computed from the randomness in time less than
what it takes to compute the multiplication.

The above allows the client to sample the mask over each database row as a pseudorandom
trapdoored matrix, rather than a uniform one, while preserving security and reducing decoding
time.

By combining the above two modifications to the LPN-based folded protocol, we obtain the
following sk-PIR.

Corollary 7.1. Assuming (k, 1/kγ)-LPN holds for any γ > 0, there exists, for any ε > 0, an

sk-PIR protocol with storage N1+ε +poly(λ) and communication N
1
3
+ε +poly(λ), where the client

runs in time N
1
3
+ε + poly(λ) per query.
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Proof. The protocol is obtained by optimizing client runtime in the LPN-based folded sk-PIR from
Theorem 6.1 (instance 1) with t = 2, using Lemmas 7.2 and 7.3.

First, by Lemma 7.2, we may replace the sparse-noise LSN sampler, which underlies the protocol
from Theorem 6.1, by its variant with sparse generator from the lemma, without affecting the
security of the protocol. Specifically, in the database encoding, the client generates a generator
matrix Hj ∈ Fk×n for the code Cq

j (which is parity-check for Gj) as follows: Using the PRF, it
samples the locations where Hj contains 1 in the non-systematic part (denoted S in Lemma 7.2),

which are k1−γn = O(N
1
3
+ε) in total. When generating a query, given the PRF values, the client

can sample a uniformly random codeword in the span of Hj in time O(N
1
3
+ε).

Second, we replace every row in the mask R ∈ FN0×(n×n) sampled by the client to be sampled
as a trapdoored n×n matrix by the sampler from Lemma 7.3. Security still follows under LPN by
the psuedorandomness of the mask. In the decoding, to uncompute the mask for the ith0 answer bit
(which is the only one interesting to the client), the client computes Ri0(Q1 ⊗Q2)

⊺ = Q1Ri0Q
⊺
2,

where Ri0 ∈ Fn×n is the mask at row i0 and Q1,Q2 ∈ Fr×n. This involves r vector multiplications

with Ri0 and additional r inner-products of length n, giving time complexity O(rn1+ε) = O(N
1
3
+ε).

7.2 Composing with Standard PIR

Lastly, we use plain-model PIR as a tool to bootstrap any of our small-communication protocols
from Theorem 6.1 to have client runtime of N ε. In fact, it is sufficient to apply the bootstrapping
over the base protocol (recall it is a special case of Theorem 6.1).

Proposition 7.1. Assume the existence of a (plain model) PIR protocol with communication N ε,
for arbitrarily small ε > 0, and storage, probe complexity and server Boolean circuit size all at
most N1+ε. Then, the conclusions of Theorem 6.1 hold with protocols that have client runtime
complexity of at most N ε per query.

Proof. The instantiations are obtained by “folding” the base protocol from Fig. 2 with the given
PIR. More concretely, starting with the base protocol, we choose N0 = N1−ε and N1 = N ε. The
client sends its query que with respect to an N ε size database and, additionally, a (standard) PIR
query que′ corresponding to a location i0 ∈ [N1]. The server applies que over all rows, obtaining a
column of N1 “sk-PIR answers”. It then applies que′ over the column to obtain a “PIR answer”,
which it sends to the client.

Acknowledgements. We thank Martin Albrecht, Fabrice Benhamouda, Anindya De, Itai Dinur,
Shai Halevi, Swastik Kopparty, Hugo Krawczyk, Tal Rabin, and Jean-Pierre Tillich for helpful
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[Döt14] Nico Döttling. Cryptography based on the Hardness of Decoding. PhD thesis, Karlsruhe
Institute of Technology, 2014. 10, 21

[DP12] Ivan Damgrard and Sunoo Park. How practical is public-key encryption based on LPN
and ring-LPN? Cryptology ePrint Archive, Paper 2012/699, 2012. 21

[FLY22] Zhiyuan Fan, Jiatu Li, and Tianqi Yang. The exact complexity of pseudorandom
functions and the black-box natural proof barrier for bootstrapping results in compu-
tational complexity. In STOC ’22, pages 962–975, 2022. 7

[FSO06] Jon Feldman, Rocco A. Servedio, and Ryan O’Donnell. Pac learning axis-aligned
mixtures of gaussians with no separation assumption. In Gábor Lugosi and Hans Ulrich
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A Proof of Lemma 4.2

Lemma 4.2 (From LPN to Matrix-LPN). (k, ε)-LPN implies (k, n, ε)-Matrix-LPN, for any field F,
polynomials n(λ) > k(λ) ≥ λ, and noise rate ε(λ).

Proof. We define n hybrid distributions as follows. For j = 0, . . . , n, the distribution Dj consists of
(ai, bi,1, . . . , bi,n) for i ∈ [m] such that: for j′ ≤ j, bi,j′ = a⊺i sj′+ri,j′ ·ui,j′ where sj′ is the j′-th row of
a uniformly random matrix S ← Fk×n, ai ← Fk, ri,j′ ← Ber(ε) and ui,j′ ← F \ {0}, and, for j′ > j,
bi,j′ ← F. If an adversary A is able to distinguish between a matrix-LPN samples (ai,a

⊺
iS+ri)i∈[m]

and a uniformly random samples (ai,bi)i∈[m] then he is able to distinguish between Dj and Dj−1

for some j. We use such an adversary to break LPN given m samples via the following reduction.
For every LPN sample (ai, bi) it takes as input, the reduction generates j − 1 bits bi,1, . . . , bi,j−1

by bi,j′ = a⊺si,j′ + ri,j′ · ui,j′ , where sj′ ← Fk, ri,j′ ← Ber(ε) and ui,j′ ← F, and samples uniform
bi,j+1, . . . , bi,n ← F. The reduction adds (ai, bi,1, . . . , bi,j−1, bi, bi,j+1, . . . , bi,n) to the input of A.

The reduction runs A with the input consisting of the m samples produced as above. When
(ai, bi) is a uniform sample, then the corresponding sample given to the adversary is from the
distribution Dj and, if it is an LPN sample, namely bi = a⊺i s+ ri · ui, then the sample given to A
follows the distribution Dj−1.

B Proof of Lemma 4.1

Lemma 4.1 (From Syndrome Decoding to LPN). Let k := k(λ) > λ and m := m(λ) be polynomials
such that m > (1 + δ)k for some constant δ > 0, and let ε(λ) > 0. Assume that for every non-
uniform poly(λ)-time algorithm A, there is a noticeable δ such that for every λ ∈ N

Pr[A(H,y) = e] ≤ 1− δ(λ),

where H← F(m−k)×m and y = He for e ∈ Fm sampled from Berm(ε) conditioned on its Hamming
weight is ε ·m. Then, the (k, ε,m)-LPN assumption holds.

Proof. Assume towards contradiction that LPN with the specified parameters does not hold. Then,
there exists a distinguisher D that, on inputs A← Fk×m and v ∈ Fm can distinguish between the
case where v = As+ e for s← Fk and e← Berm(ε), and the case where v is uniform.

First, we convert the LPN distinguisher to an algorithm A that solves the search version of
LPN with probability all but negligible. In search-LPN, A is given an LPN sample (A,As + e)
and its goal is to output the secret s ∈ Fk. To that end, we recall the search-to-decision reduction
from [AIK07] which is based on the Goldreich-Levin theorem for predicting hardcore bits [GL89].
First, let us demonstrate how on input (A,v = As+e), we can use D to compute a Goldreich-Levin
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hardcore bit r⊺s, for a uniformly random r← Fk: (1) Sample uniformly random z← Fm. (2) Send
(A′,v) to D, where A′ = A− zr⊺, and return its output.

The hardcore-bit is computed correctly with probability 1/2 + poly(λ) since it holds that v =
A′s + zr⊺s + e. Therefore, if r⊺s = 0, then v = A′s + e and, otherwise v is uniformly random.
Since D can distinguish between these two cases with advantage 1/poly(λ) by assumption, we guess
the hardcore predicate with the same advantage. Due the Goldreich-Levin theorem [GL89], such
a guesser can be turned into an extractor of s that succeeds to compute s in polynomial time
with inverse-polynomial probability over the choice of his randomness. Hence, by repeating the
extractor sufficiently many times with i.i.d. random coins, we obtain a solver A for search-LPN
that reaches success probability 1− δ(λ), for a negligible δ(λ).

Next, we convert the LPN solver A to an algorithm A′ that solves “dual-LPN”, or syndrome
decoding, where, given (H,He), for uniformly randomH← F(m−k)×m and e← Berm(ε), the task is
to compute e. Given (H,w), our dual-LPN solver A′ samples a uniformly random A ∈ Fm×k such
that HA = 0 (note that a uniformly random H of these dimensions is full-rank with probability
all but negligible since k > λ) and a uniformly random v ∈ Fm satisfying Hv = w. He then sends
(A,v) to the LPN solver and gets back s. Given s, A′ outputs e = v −As.

When H is uniform, then so is A. Given w = He, v is sampled from the space of all vectors
in the coset ker(H) + e. Since A is full rank with overwhelming probability (since m > (1 + δ)k),
the kernel is spanned by A and the coset from which v is sampled uniformly is precisely the set
{As+ e | s ∈ Fk}. Hence, A′ returns the correct e with probability all but negligible.

The last remaining step is to convert the instance (H,He), where e← Berm(ε), to an instance
where e is sampled conditioned on its Hamming weight is exactly ε ·m. For that, we note that the
probability for e ← Berm(ε) to have exactly its average weight is

(
m
εm

)
εεm(1 − ε)(1−ε)m ≥ 1/εm,

which is at least inverse-polynomial. Hence, if A′ finds e with probability all but negligible when
e is sampled from the unconditional distribution of Bernoullis, then it does so when e is sampled
conditionally as above.
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