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Abstract

The scalability of modern decentralized blockchain systems is constrained by the require-
ment that the participating nodes execute the entire chains transactions without the ability to
delegate the verification workload across multiple actors trustlessly. This is further limited by
the need for sequential transaction execution and repeated block validation, where each node
must re-execute all transactions before accepting blocks, also leading to delayed broadcasting
in many architectures.

Consequently, throughput is limited by the capacity of individual nodes, significantly pre-
venting scalability.

In this paper, we introduce GIGA, a SNARK-based protocol that enables trustless parallel
execution of transactions, processing non-conflicting operations concurrently, while preserv-
ing security guarantees and state consistency. The protocol organizes transactions into non-
conflicting batches which are executed and proven in parallel, distributing execution across
multiple decentralized entities. These batch proofs are recursively aggregated into a single
succinct proof that validates the entire block.

As a result, the protocol both distributes the execution workload and removes redundant re-
execution from the network, significantly improving blockchain throughput while not affecting
decentralization.

Performance estimates demonstrate that, under the same system assumptions (e.g., con-
sensus, networking, and virtual machine architecture) and under high degrees of transaction
parallelism (i.e., when most transactions operate on disjoint parts of the state), our protocol
may achieve over a 10000x throughput improvement compared to popular blockchain archi-
tectures that use sequential execution models, and over a 500x improvement compared to
blockchain architectures employing intra-node parallelization schemes.

Furthermore, our protocol enables a significant increase in transaction computational com-
plexity, unlocking a wide range of use cases that were previously unfeasible on traditional
blockchain architectures due to the limited on-chain computational capacity.

Additionally, we propose a reward mechanism that ensures the economic sustainability of
the proving network, dynamically adjusting to computational demand while fostering compe-
tition among provers based on cost-efficiency and reliability.
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1 Introduction

Blockchain technology is revolutionary in providing secure, decentralized, and immutable trans-
action processing. However, scalability remains a critical challenge. Currently most popular
blockchains, such as Bitcoin and Ethereum, require nodes to execute and validate transactions
sequentially. Therefore, throughput is limited by the computational power of a single block pro-
ducer and the need to re-execute transactions on each validating node.

This paper presents a novel approach that leverages SNARKs to trustlessly execute transactions
in parallel while decoupling execution from block validation. By distributing transaction processing
across multiple nodes and creating cryptographic proofs of execution, our approach significantly
enhances throughput, reduces computational overhead for network participants, and accelerates
block propagation and validation. This method unlocks horizontal scalability, making blockchain
networks more efficient without compromising security or decentralization.

1.1 Problem Statement

Efficient transaction execution is a fundamental challenge in blockchain systems, particularly as
networks scale and transaction volume increases. The choice of ledger architecture significantly
impacts the ability to parallelize transaction execution. There are two predominant ledger models
in blockchain networks: UTXO-based and account-based. Each has distinct properties that affect
the feasibility of parallel execution.

In UTXO-based ledger systems, such as Bitcoin [1] and Cardano [2], transactions consume and
create unspent transaction outputs (UTXOs). This model inherently defines the precise state mod-
ifications that a transaction will perform, making the execution trace predictable. Consequently,
multiple transactions that do not reference the same UTXO can be processed in parallel, allowing
for higher throughput and efficiency in transaction processing. However, this approach makes ap-
plication development more complex and introduces significant limitations in the smart contracts
logic design. In addition to that, despite being theoretically parallelizable, existing UTXO-based
blockchains have yet to implement fully integrated decentralized parallel transaction processing.

Conversely, many blockchains, like Ethereum [3], Solana [4], Tron [5], etc., use an account-based
ledger system, where transactions modify a global shared state (e.g., by updating account balances
and smart contract state) without providing prior knowledge before the execution of the parts of
the state being involved. This model introduces a fundamental limitation: sequential execution is
required to ensure deterministic state transitions as it is impossible to predict in advance which
parts of the state a transaction will modify, introducing the risk of concurrent modifications and
unintended state conflicts.

Therefore, transactions within a block are processed one by one in the order determined by the
miner/validator preferences (priority is given to transactions with higher fees). Each transaction
modifies the global state (e.g., states of accounts), and these updates must be processed sequentially
(see Fig. 1). This approach ensures that all nodes in the network reach the same state after
processing a block. However, while this strategy ensures determinism and consistency in smart
contract execution, it introduces the following challenges.

1. Limited throughput. Since transactions are processed sequentially, the blockchain can only
handle a limited amount of on-chain computation per second. For example, the theoretical
maximum number of simple transfer transactions in Ethereum is ∼119 TPS (considering
maximum block gas limit, block time, and minimal gas usage per transaction, see [6]).
However, as real transactions are on average more complex, the TPS can decrease to ∼15-30
TPS.

2. Block propagation latency. Since every node must re-execute and validate all transactions
before broadcasting a block, network propagation is slowed down.

3. High transaction fees. Since computational throughput is limited by sequential execution
and multiple validations across nodes, demand increase leads to network congestion, causing
users to compete by paying higher gas fees.

4. Single-threaded execution. Modern processors have multiple cores that can execute
many transactions in parallel, but single-threaded execution underutilizes available hardware
possibilities.

Ethereum’s approach to addressing these scalability constraints is Layer 2 solutions (L2s), an
architectural design that allows offloading transaction execution from the main chain [7]. Each L2
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Figure 1: A process of the sequential transaction execution and the global state update

processes transactions independently, reducing the load on the main chain. While this increases
throughput to some extent, it does not solve the fundamental limitation of sequential execution
within each L2. Transactions must still be executed one by one, preventing even local paralleliza-
tion. Additionally, cross-L2 communication remains a major challenge, as transactions spanning
multiple L2s introduce latency, and complexity in achieving consensus and stateful modifications.

At a high level, current blockchain systems adhere to the following model:

1. Users submit transactions that are collected by the block producers into their mempools.

2. The block producer to compose a block, picks up a set of transactions from the mempool
and sequentially executes them updating the state accordingly.

3. Once the block is created, it is broadcasted to the network, where each node re-executes the
transactions, updates its local state, and then propagates the block further.

Within this model, the sequential execution of transactions is mandatory due to the lack of
prior knowledge about which parts of the blockchain state each transaction modifies. Without this
information, parallel execution opens the risk of state conflicts. For example, a transaction could
rely on some data that could have been modified by another transaction.

As a result, parallel execution of transactions is infeasible and consequently, the throughput is
constrained by:

• The computational capacity of the block producer and the average node.

• The redundancy of re-execution across nodes.

Additionally, this architecture introduces propagation delays, as the time to validate and broad-
cast a block depends on the computational complexity of the transactions it contains.

1.2 Related Work

The main techniques addressing scalability issues are L2s and sharding. Among the most known
L2 solutions are rollups [8, 9, 10, 11], state channels [12], and sidechains [13, 14, 15].

Rollups are L2s that execute transactions outside of the main blockchain and post minimal data
on the L1 chain. There are two primary types of rollups: optimistic rollups and zero-knowledge
(ZK) Rollups. Optimistic rollups assume that transactions are valid and only verify them if chal-
lenged. This approach reduces computational load but introduces potential security risks from
fraudulent transactions [8]. Also, optimistic rollups can have longer finality time due to the chal-
lenge period. ZK rollups utilize cryptographic proofs to ensure the validity of transactions before
they are submitted to the main chain, providing stronger security guarantees [9]. However, ZK
rollups require complex computations to generate proofs. Additionally, their implementation de-
mands advanced cryptographic expertise, further complicating the process [10]. Sometimes, rollups
dependance on the main chain for data availability can also become a bottleneck [11].

State channels mean creating direct or indirect off-chain communication channels between
nodes. Transactions between connected nodes are managed on L2, reporting on the main chain
only the one opening the channel and the one that closes it [7]. The most known example of this
approach is the Lightning Network in Bitcoin, involving the idea of payment channels that allow
for instant fee-less payments to be sent directly between two parties [12].

Sidechains are independent blockchains that operate in parallel to a main chain and communi-
cate via two-way pegs, enabling asset transfers across chains and supporting alternative consensus
mechanisms or features [13]. While this architecture offloads computation from the main chain, it
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often relies on fragile bridging mechanisms that can introduce vulnerabilities and serve as potential
attack vectors [14].

A notable approach addressing these issues is Zendoo [15], a sidechain framework that em-
ploys recursive SNARK proofs to verify the correctness of sidechain state transitions on the main
chain, eliminating the need for trusted intermediaries and improving security. However, sidechains
inherently introduce trade-offs: they typically rely on separate, often weaker consensus assump-
tions, and require explicit asset transfers between chains. This not only affects the overall security
guarantees but also complicates the user experience.

Sharding is a technique that divides the blockchain into smaller, manageable pieces called
shards. Each shard processes different transactions and smart contracts, allowing the network to
process multiple transactions in parallel. By distributing the load across multiple shards, the overall
transaction capacity of the network can be significantly increased [16]. Sharding can also reduce
the amount of data each node needs to process [17]. However, implementing sharding requires
significant architectural changes and increased complexity in protocol design [18]. Ensuring efficient
communication between shards can introduce latency and complicate transaction validation [19].
Shards may be more susceptible to attacks, especially if a shard is not sufficiently decentralized [20].

Although rollups, sidechains, and sharding present promising solutions for blockchain scala-
bility, each approach comes with its own set of challenges. Rollups face issues related to latency
and data availability, sidechains can introduce security risks and complexity, and sharding poses
significant implementation challenges and cross-shard communication difficulties. Thus, the prob-
lem of efficient and secure transaction parallelization remains as relevant as ever, and this paper
is dedicated to its solution.

Additionally, current blockchain architectures – constrained by their stateful execution model –
often require sequential verification even for stateless assertions, resulting in unnecessary perfor-
mance bottlenecks and limiting horizontal scalability. Research such as SNARKtor [21] highlights
the importance of enabling parallel verification of independent statements – such as zero-knowledge
proofs – within blockchain systems. It further demonstrates the potential of leveraging SNARKs
and recursive proof composition to eliminate redundant verifications across nodes.

Another notable approach leveraging recursive SNARKs is Mina Protocol [22], which maintains
a constant-sized blockchain by enabling succinct verification of the entire chain state. While Mina’s
main focus is on lightweight client verification, it does not primarily aim to address parallel trans-
action execution or scalable on-chain computation, which remain core challenges in decentralized
systems.

1.3 Preliminaries

In this section, we present high-level definitions of several cryptographic constructions used through-
out the paper. More formal descriptions, particularly of recursive SNARK composition, can be
found in the relevant literature. Here, we define only the basic notations necessary to describe the
proposed construction.

1.3.1 Cryptographic Primitives

Definition 1. Cryptographic Hash Function (CHF). We denote by H cryptographic hash
function [23], i.e. a hash function such that:

• It is pre-image resistant: given a hash value h it is computationally infeasible to find an input
a such that H(a) = h.

• It is second pre-image resistant: given a hash value h and an input a such that H(a) = a, it
is computationally infeasible to find b ̸= a such that H(b) = h.

• It is collision-resistant: it is computationally infeasible to find two different input strings a
and b for which H(a) = H(b).

Whenever we refer to a hash function, we suppose it is cryptographic.

Definition 2. Compact Sparse Merkle Tree (CSMT). The construction relies on the de-
scriptions presented in [24, 25].

A Compact Sparse Merkle Tree (CSMT) is an optimized variant of the Sparse Merkle Tree de-
signed to efficiently store and verify a large but sparsely populated key-value dataset. It eliminates
the need to store explicitly empty nodes by leveraging cryptographic hashing and path compression
techniques.

Key Components:
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1. Key-Value Pairs

• A key-value pair is a fundamental data structure where a unique identifier (key) is
associated with a piece of data (value).

• In a CSMT, each key uniquely determines the position of a leaf node, and the associated
value is stored in that leaf.

• Each leaf node stores a key-value pair, where the node is computed as H(H(k)|H(v)).

2. Leaf Node Position Determination

• The position of a leaf λ in a CSMT is determined directly from the hash of the key.

• Given a key k, a cryptographic hash function H is applied to obtain a fixed-length hash:
H(k).

• The hash output is interpreted as a binary string bλ, which determines the path from
the root to the leaf.

• When adding a leaf λ, the nodes starting from the root are traversed following the path
identified by bλ , until a leaf λ0 is found. If λ0 is the empty leaf, we substitute it with
λ. Otherwise, let idx be the first index for which bλ[idx] ̸= bλ0

[idx], then we place the
leaves λ, λ0 at height idx+1 (left/right according to bλ[idx] and bλ0

[idx]), and then we
recalculate their ancestor nodes.

• Removing a leaf λ can be easily thought of as a recursive process. Let λ0 be its sibling
leaf (by construction λ0 is non-empty).

(a) Remove λ.

(b) Place λ0 in the parent position.

(c) If sibling(λ0) == empty leaf (note that this condition does not hold for the root
because it has no siblings) then go to (b).

(d) Recalculate all the ancestors of λ0.

• Substituting a leaf λ with a new leaf λ0 (same key, different value) can be realized by
simply recalculating all the ancestors.

• An empty leaf is treated as a default constant while computing the upper node hash.

• The empty tree is initialized with two empty leaves.

3. Efficient Proofs (Inclusion & Exclusion)

• A CSMT enables efficient Merkle proofs:

– Inclusion proof: Proves that a key-value pair exists in the tree.

– Exclusion proof: Proves that a key is not present by demonstrating that its expected
path in the tree leads to a default hash (a placeholder for the empty leaf) or to a
leaf having a different key.

Definition 3. SNARK. A Succinct Non-Interactive Argument of Knowledge (SNARK) [21] is
a proving system consisting of a triplet of algorithms (Setup, Prove, Verify) that allows proving
the satisfiability of a set of inputs to an arithmetic constraint system. An arithmetic constraint
system C is a set of constraints for a specific computation. We indicate a satisfying assignment as
C(a,w), where a is a public input and w is a witness.

The algorithms (Setup, Prove, Verify) are defined such that

1. (pk, vk) ← Setup(C, 1λ) bootstraps a circuit for a constraint system C under the security
parameter λ. The bootstrapped circuit is specified by a pair of keys (pk, vk) which are a
proving key and a verification key correspondingly.

2. π ← Prove(pk, a, w) evaluates a proof π, which confirms that (a,w) is a satisfying assignment
for C.

3. true/false ← V erify(vk, a, π) verifies that π is a valid proof attesting to the satisfying
assignment (a,w) for the constraint system C.
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2 Parallel on-chain computation leveraging SNARKs

2.1 General Overview

We propose a novel protocol that enables on-chain parallel execution of transactions’ logic, signif-
icantly enhancing computational throughput.

One of the fundamental challenges in enabling parallel execution is ensuring that transactions
modifying the same accounts do not interfere with each other. If two transactions attempt to
modify (or if a transaction attempts to modify and another tries to read) the same account or stor-
age variable simultaneously, race conditions may arise, leading to non-deterministic state updates
making the blockchain inconsistent and unreliable. To address this, a mechanism is required to
enforce deterministic execution and maintain state integrity. Conversely, transactions that do not
interact with the same modified accounts can safely be processed in parallel. Solana, for example,
partially addresses this by requiring transactions to declare which parts of the state they read and
write, allowing the node to parallelize execution within its node [26].

However, this approach still maintains a fundamental limitation—each node or the Block Pro-
ducer must individually have the computational power to execute the entire chain’s throughput,
leading to a significant computational bottleneck.

Even with parallel execution within a single node, the model remains impractical as each node
must still need to process the complete transaction load. For instance, consider a scenario where
blockchain must support even a fraction of the transactional volume of Web2 systems. Each node
would be required to handle an overwhelming computational burden, making large-scale adoption
infeasible.

To overcome this limitation, our protocol allows execution to be delegated to independent
actors in a decentralized way, balancing computational load while ensuring trustless validation of
execution results. This effectively enables the creation of a decentralized multi-threaded virtual
machine (VM), where each execution thread is handled by independent actors in a trustless manner.
By distributing execution across multiple decentralized provers, the system prevents any single
node from becoming a computational bottleneck while maintaining the integrity and security of
the blockchain. Our solution to this problem involves grouping transactions into batches, where
each batch contains transactions that operate on a disjoint subset of the blockchain state. Within
each batch, transactions must be executed sequentially, but batches themselves can be processed in
parallel. The Block Producer forms the batches and assigns them to Batch Provers for execution.

However, a crucial question arises: how can the block producer trust the results provided by
batch provers? This is achieved through the use of SNARKs, which enable verifiable computation
without requiring trust in any single actor.

More specifically, each batch prover executes the transactions within its assigned batch se-
quentially, applying changes to the initial state, which is the same for all batches. An important
aspect is that batch provers not only execute transactions to produce state modifications but also
generate proofs of the state transitions resulting from the batch execution. These individual batch
proofs are then recursively aggregated, producing a block proof proving the validity of all state
modifications resulting from the execution of all transactions belonging to the block. The block
producer will compose the block by including the block proof alongside the corresponding state
modifications.

This approach not only eliminates the need for the Block Producer to execute transactions but
also removes the requirement for nodes to re-execute them during the gossiping process. Con-
sequently, the time required for block propagation is no longer dependent on the computational
complexity of the transactions, as block validation is reduced to the verification of the final block
proof.

Delving deeper into the batch-proving process, the protocol introduces an optimization to
maximize parallelization while minimizing the necessity for sequential proving. More specifically,
although transactions within a batch must be executed sequentially, the process of computing
proofs and generating the corresponding witness/execution trace for each transaction can be par-
allelized. Therefore, during the sequential execution phase, only a native execution is performed
to determine the initial and final values of the relevant state for each transaction. This data is
then used in the parallel proving phase, where execution traces and proofs for each transaction are
generated concurrently, significantly improving efficiency.

The proposed algorithm follows the process illustrated in Fig. 2. The Block Producer selects
transactions from the mempool and organizes them into non-conflicting batches, which are then
assigned to Batch Provers for execution.

The Batch Provers initially perform native execution, then generate a SNARK proof for each
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transaction using a zkVM [27], proving that its execution results in a transition from state Si to
state Si+1, limiting the state modifications only to the parts declared in the transaction. Subse-
quently, each Batch Prover recursively merges all its state transition proofs, generating a final proof
for its batch, proving the transition from state S0 to state Sn. The batch proof is then returned
to the Block Producer, who performs a recursive aggregation of all batch proofs to produce a final
proof for the entire block.

Figure 2: The general flow of the proposed protocol

This protocol significantly enhances blockchain throughput by combining transaction paral-
lelization with SNARKs, reducing the computational load on nodes and minimizing the time
required for block generation and validation. By eliminating redundant execution and leveraging
cryptographic proofs, the proposed system provides a scalable, efficient, and trustless approach to
blockchain transaction processing.

This approach allows each chain instance to scale on computational complexity while maintain-
ing synchronous interactions. Additionally, L2 solutions can also leverage this protocol to further
decentralize and optimize execution. While our model focuses on intra-chain scalability, L2 so-
lutions may still be used to partition the state and scale in that dimension, albeit at the cost of
asynchronous communication between participants.

2.2 Ledger Model

This section defines a formal ledger model of a blockchain system with SNARK-powered parallel
execution. Note that by ledger we mean a set of rules and protocols which define the structure of
transactions, a method to get strict ordering of them, and user accounts. The ledger model does
not address the consensus protocol of a blockchain system. The model is minimalistic in the sense
that it defines a simple ledger containing only the necessary concept elements. The real-world
ledger can then be elaborated upon from this model.

We introduce several definitions to formalize the model. The proposed blockchain uses an
account-based system, where accounts represent stateful entities that hold and modify data.
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2.2.1 Account Structure

Traditional blockchain systems lack the capability to execute non-conflicting transactions in par-
allel. As a result, the smart contract state is typically organized in a monolithic way, where
all state-related data is contained in a single set. This architecture severely limits transaction
parallelization, particularly when multiple transactions interact with the same smart contract.

In our model, transactions that interact with different accounts can be executed in parallel.
However, if smart contracts maintain a monolithic state structure, parallel execution is still re-
stricted for transactions modifying the same contract account. To overcome this, we adopt a
split-state model, where instead of the contract storing all the data in a monolithic state, some
portions of its data (substates) are stored within the accounts that are logically associated with
that data. This allows independent transactions, involving different users within the same contract,
to be processed concurrently, enhancing scalability while preserving consistency. For example:

• If a smart contract needs to maintain a global counter, it must store it within its own contract
substate.

• If the contract stores user-specific data, such as a balance, it should be stored in the user
account under a substate owned by the smart contract.

This design prevents the bottleneck of monolithic storage while allowing efficient parallel exe-
cution of transactions that operate on the same contract but affect different user accounts.

Definition 4. An account Ah is a readable and writable data structure uniquely identified by its
address, containing associated data:

Ah
def
= (addrh, substatesh).

where:

1. addrh is the unique identifier (address) of the account.

2. substatesh is a map of substates, each representing a portion of the account’s state, owned
(controlled) either by the account itself or by some external account.

Definition 5. Substate Model. Each account contains a list of substates, which segment the
account’s data into isolated sections. A substate Sh,i ∈ substatesh is defined as:

Sh,i
def
= (ownerh,i, fieldsh,i)

where:

• ownerh,i is the account address that owns (controls) the substate (can be the account itself
or another account);

• fieldsh,i is a list of fields representing values associated with the substate.

Each substate owner has exclusive permission to modify the fields within its owned substate.
This ensures strong access control and prevents unauthorized modifications by other accounts.

Each account contains a system-owned substate that specifies predefined fields like the balance
and other account-type-specific fields. Such a substate cannot be modified by any account.

2.2.2 Account Types

Accounts can be classified into two main categories (see Fig. 3):

1. User Accounts:

• The address addrh is derived from the user’s public key.

• The substates contain:

– A system-owned substate with predefined fields like balance and nonce.

– Additional substates owned by smart contracts.

2. Smart Contract Accounts:The addrh is determined at contract deployment.
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• The substates contain:

– A system-owned substate with predefined fields like code (smart contract code) and
balance.

– A contract-owned substate containing this contract-specific data.

– Additional substates owned by other smart contracts.

• Smart contracts can only modify their own substates (even if located on different ac-
counts), ensuring modular state isolation and scalable execution.

Figure 3: An example of accounts’ structure

As an example, in an Ethereum-like setting, an ERC20 smart contract stores token balances and
owning accounts in a mapping within the contract’s state. This structure creates a bottleneck for
parallel execution since all balance updates require modifying the same account storage structure.
To address this, our model organizes the state in a way that allows to store the ERC20-like balance
under the user’s account within a substate owned by the ERC20 contract. This approach allows
independent transactions acting on different user balances to be processed in parallel.

To ensure security and integrity, the zkVM enforces that smart contracts can only modify
substates they own. This ensures that a contract cannot arbitrarily alter sections of a user’s or
another contract’s account that belong to a different entity, preserving data integrity while allowing
parallel execution. This prevents unauthorized modification of state sections belonging to other
contracts or users.

2.2.3 Blockchain State

Definition 6. A blockchain state (or global state) is the map of account addresses and their
substates (addrh − > substatesh).

At any particular block height or execution moment t there is an associated Compact Sparse
Merkle tree St where the key-value pairs (k, v) are defined as follows:

k = H(A.addr | O.addr | field idx),

v = H(A.substates[O].fields[field idx]).

where
A is an Account,
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O is the Owner Account,
A.substates[O] returns a unique substate of A that is owned by O,
field idx ∈ [0, len(A.substates[O].fields)].

The primary advantage of utilizing a Compact Sparse Merkle Tree (CSMT) over a traditional
Merkle Tree lies in its ability to efficiently construct and verify membership or non-membership
proofs. Using a CSMT, it’s possible to efficiently prove that a specific key (does not) exist, given
the root. This property allows more efficient batch proof generation.

2.2.4 Transactions

Definition 7. A transaction Txi is a cryptographically signed instruction specifying the operations
to be executed by the network. A transaction is identified in the following way:

Txi
def
= (read, write, data, min gas, max gas, gas price),

where

• read is a list of accounts (parts of the state) that are read by Txi;

• write is a list of accounts (parts of the state) that are modified by Txi (i.e., one or more of
the fields of Ah.substates are changed);

• data contains the specific parameters of the transaction (e.g., what transfers or contract
calls it triggers, relevant signatures, etc.);

• min gas is a minimal gas that will be paid by the transaction (i.e., even if the actual execu-
tion consumes less than the min gas, the fee will be charged as if min gas is consumed);

• max gas is a maximal gas that can be consumed by the transaction (i.e., if the execution
has not been finished before reaching max gas, the transaction is aborted while the fee is
charged as if max gas is consumed);

• gas price is an amount of fees per unit of gas.

The actual fee for a transaction is calculated as:

fee(Txi) = max(min gas, used gas) · gas price

where used gas is the actual gas consumed by a transaction (used gas ≤ max gas).
As defined above, the protocol assumes that each transaction declares in advance the accounts

it will read and write. Special cases where read/write sets depend on state can be handled via a
two-step model, as described in Appendix A.

2.2.5 Blocks

Definition 8. A Block Bx is a data structure containing a list of transaction hashes, the cor-
responding state modifications resulting from the execution of the relevant ordered transactions,
and the new global state root after applying the modifications. The block also includes a SNARK
proof validating this information.

A block is defined as:

Bx
def
= (Mx, THx, Bx−1, Sx, πBlock

x )

where:

• Mx = {mx,0, mx,1, ..., mx,n} is the list of state modifications, where each modification
mx,i is a tuple: mx,i = (Ax,i, Ox,i, fx,i, vx,i) where:

– Ax,i is the modified account;

– Ox,i is the owner of the modified substate;

– fx,i is the field identifier within the substate;

– vx,i is a new value assigned to the field.

• THx = {H(Txx,0), H(Txx,1), ..., H(Txx,m)} is an ordered list of transaction hashes in-
cluded in the block;
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• Bx−1 is the previous block hash;

• Sx is the new global state root, resulting from applying Mx to Sx−1;

• πBlock
x is a SNARK proof that ensures that the transition from Sx−1 to Sx is valid given the

applied state modifications Mx and the related set of transactions hashes THx.

For a more formal and complete definition of the block proof πBlock
x , please refer to the proofs

section.

2.2.6 Actors

We identify the following actors participating in the protocol:

1. Users. Users (stakeholders) submit transactions to the network. Transactions are collected
in the corresponding mempool of each block producer.

2. Block Producers. Block Producers organize transactions into non-conflicting batches, pri-
oritize the most parallelizable solutions, and assign batches to Batch Provers for execution
and proving. After batch proving is completed, the Block Producer coordinates the batch
proofs merging process. The resulting proof and state changes are then included in the new
block, which is then appended to the blockchain.

3. Batch Provers. Batch Provers sequentially execute the transactions within their assigned
batches, applying changes to the designated parts of the state. In addition to executing
transactions, they generate cryptographic proofs verifying the correctness of each state tran-
sition. These individual transaction proofs are then aggregated into a single batch proof,
ensuring the integrity and validity of the batch execution.

2.3 Block Generation Flow

In this section, we describe the block generation process, detailing the roles of the key actors
involved and the steps taken to generate a block.

2.3.1 High-Level Flow

1. Transaction Selection and Batch Assignment: The Block Producer collects pending
transactions from its mempool and organizes them into independent batches, ensuring that
transactions in different batches are not in conflict. The Block Producer then assigns each
batch to a Batch Prover.

2. Batch Execution and Proving: Each assigned Batch Prover performs the following op-
erations:

• Executing the transactions in its batch.

• Generating execution proofs ensuring the correctness of the transaction state modifica-
tions.

• Merging the state modifications proofs resulting from the executed transactions, creating
a single batch proof.

3. Global State Transition Proofs: This phase ensures that each batch prover applies trans-
actions to a known global start state defined by the block producer.

4. Batch Proofs Aggregation: The Block Producer orchestrates the aggregation of batch
proofs from all Batch Provers.

5. Final Block Proof Generation: The aggregated proofs are combined into a single final
proof that validates the overall state transition of the blockchain for the given block.

6. Block Construction: The Block Producer constructs the block including:

• The list of transaction hashes.

• The state modifications.

• The new global state root.

• The final proof validating the block’s state transitions.

7. Block Propagation: The completed block is broadcasted to the network for validation and
extending the blockchain.
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2.3.2 Protocol Requirements for Predictable Block Creation Time

To ensure predictable execution and proving times, the protocol introduces a requirement in terms
of the Maximum Batch Proving Time: the longest allowable duration for a Batch Prover to com-
plete proving its batch in parallel.

This requirement is introduced in order to ensure that both transaction execution time and
proving time remain predictable and controllable by the Block Producer. Additionally, this pro-
vides the conditions that allow the Block Producer to make informed decisions when forming and
assigning batches, guaranteeing that provers are assigned workloads within their computational
capacity, ensuring smooth and reliable block production. For this to be possible, batch provers
must announce their computation capacity.

To formally define the individual constraints of each batch prover, we introduce the notions of
execution cycle and proving capacity.

Definition 9. Execution Cycle. A zkVM execution cycle (or simply cycle) is the minimal unit
of computation in a zkVM [28].

Since proving requires ensuring that each step is verifiable, operations that require one cycle in a
traditional CPU may require multiple cycles in zkVM, due to additional cryptographic constraints,
memory integrity checks, and circuit constraints.

Definition 10. Proving Capacity. A proving capacity is a minimal number of cycles a prover
can prove per unit of time.

We define the complexity of proving a particular transaction or batch in terms of the number
of required zkVM cycles.

Knowing the proving complexity of transactions and the proving capabilities of batch provers,
the block producer can efficiently adjust batch sizes and distribute the workload.

2.3.2.1 Relation Between Gas and Cycles
Each operation executed by the zkVM corresponds to a cycle and – depending on the type of
instruction - is associated with a specific gas cost ≥ 1. Most of the operations, such as ADD,
typically consume 1 unit of gas, while some operations – such as state access (e.g., STORE) –
may consume more. In some cases, a gas cost may also depend on the current state context. For
instance, updating an existing field in the state may require less gas than creating a new field.

This mapping between instructions and gas cost leads to an essential property:

cycles ≤ gas.

This implies that the total number of zkVM cycles is always less than or equal to the gas con-
sumed by the transaction. This allows gas parameters to be used as upper bounds to conservatively
estimate computational complexity before execution.

2.3.3 Transaction Selection and Batch Assignment

When it is the Block Producer’s turn to generate a new block, it selects transactions from the
mempool and organizes them into batches for proving. The selection process does not involve exe-
cuting transactions but instead ensures that the chosen transactions are valid and executable given
the available computational resources. It’s important to note that before accepting a transaction
into a mempool, the Block Producer only verifies that the sender has enough funds to cover the
maximum fees, ensuring it can be processed if included in a block. Transactions that do not meet
this requirement are immediately discarded.

Additionally, transactions that exceed the available proving capacity within the current block
may remain in the mempool and be considered for inclusion in subsequent blocks.

Block Producer’s strategy should take into account the goal of maximizing parallel execution
while ensuring that batch provers constraints are met. We expect the Block Producer to maximize
its profits, which typically aligns with forming the most parallelizable batches. However, certain
transactions may impose constraints that limit parallelization.

For example, consider a scenario where the mempool contains multiple independent transactions
except for one that writes all the accounts modified by the other transactions. If the Block Producer
includes this transaction, it must place all transactions into a single batch, potentially hitting
the maximum cycles per batch limit. This could force the Block Producer to exclude several
transactions from the block, leading to a loss of potential fees.

Given this, the Block Producer’s strategy for transaction selection must balance:
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• Maximizing fees from selected transactions, particularly focusing on declared min gas (as
these fees are guaranteed).

• Avoiding loss of parallelization, which could result in fewer transactions being included in
the block and a corresponding loss of profit.

• Underutilize selected Batch Provers capabilities which could result in unnecessary batch
proofs aggregation steps.

2.3.3.1 General Batch Formation Rules
As anticipated earlier, transaction batches (see Fig. 4) need to be organized in a way that prevents
conflicting state updates and ensures they remain manageable for the Batch Prover under the
protocol assumptions.

Figure 4: Creation of batches

Recall that each transaction specifies the following parameters: min gas,max gas, and gas price.
These allow the block producer to estimate the computational boundaries of a transaction. In par-
ticular:

• min cycles ≤ min gas;

• max cycles ≤ max gas.

This enables the block producer to conservatively estimate the computational cost of a trans-
action in terms of cycles and use it in the batch formation logic.

More formally, a Batch(b) is a data structure containing a set of possibly dependent transactions
that are executed sequentially because they may modify the same parts of the state:

Batch(b) =
{
Tx

(b)
0 , Tx

(b)
1 , ..., Tx(b)

m

}
.

Batch formation must adhere to the following rules:

• Transactions modifying the same accounts must be placed in the same batch to ensure se-
quential execution and prevent conflicts.

• Transactions that only read the same accounts can be placed in different batches, provided
that no batch writes to those accounts.

• If any transaction in a batch modifies an account, all transactions interacting with that
account must be placed in the same batch to maintain consistency and avoid state conflicts.

• Transactions that operate on separate accounts can be assigned to different batches, maxi-
mizing parallel execution.
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• A Batch Prover is never assigned transactions whose cumulative min cycles exceeds the
maximum cycles per batch that the batch prover can manage (declared on registration).

• Since the actual execution cycles required by each transaction can only be determined at
execution time, transactions whose cumulativemax cycles exceed the batch prover maximum
cycles may still be included in the batch. In such cases, when the Batch Prover executes
transactions sequentially, if it reaches the maximum allowed cycles per batch, halts the
execution and any remaining unprocessed transactions return to the mempool for future
selection.

• We expect Block Producers to prioritize transactions within each batch by sorting them in
descending order based on the productmin gas ∗ gas price . This ensures that higher-paying
transactions are executed first, maximizing block producer rewards.

While the above rules provide a logical structure for batch formation, the actual number of
batches that can be executed in parallel and their composition depends also on the number of
available Batch Provers, their declared capacity, and reliability in the past assignments (reputa-
tion).

2.3.4 Batch Execution and Proving

As previously described, the Block Producer assigns each Batch Prover a batch consisting of a
set of transactions that may access and modify the same accounts, requiring sequential execution
within the batch to maintain correctness. However, the proving is structured to parallelize the
proving across multiple processes to further improve efficiency.

Each Batch Prover declares the number of proving processes it supports when registering on-
chain. This determines how many transactions can be proven in parallel. Block Producers consider
this information when assigning batches, optimizing proving efficiency.

2.3.4.1 State Views
To improve efficiency in transaction execution and proving, transactions in the same batch operate
on a localized representation of the global blockchain state, called the State View. The State View
is a subset of the global blockchain state that includes all fields accessed by any transaction in the
batch. This approach enables a more efficient global state update in subsequent protocol phases.

Since transaction logic (e.g., smart contract execution) is both executed and proven within a
zkVM, the State View transitions are dynamic during execution, reflecting the evolving state of
the batch.

At a high level, the zkVM is responsible for:

• Proving the execution of the on-chain logic.

• Keeping track of the actual execution cycles.

• Stopping the execution with a proven specific exit code if the gas consumed exceeds the
maximum gas specified by the user transaction.

• Managing State View updates, ensuring that:

– When reading a field, the zkVM retrieves it from the State View and proves that it
belongs to the current verified State View.

– When writing a field, the zkVM enforces constraints to ensure only valid modifications
occur (e.g., a smart contract can only modify the substates he owns (irrelevant of the
substate containing account), cannot write to restricted fields belonging to other ac-
counts, cannot write to accounts not listed in the transaction write list) before updating
the State View accordingly.

The zkVM proof validates the transition between a Start State View commitment and an End
State View commitment, reflecting the accumulated modifications introduced by the transaction
logic.
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2.3.4.2 State View Initialization and Validation
A state view initialization involves the following.

• The initial State View contains all fields that will be read or written by any transaction in
the batch.

• The initial State View is proven to be derived from the global end state of the previous block.
This ensures that all fields included in the State View are cryptographically validated as part
of the previously committed blockchain state.

While logically the State View is initialized as described above, the actual process of construct-
ing it does not require re-executing all transactions, instead, the required fields can be loaded
efficiently at runtime during one single execution (we omit the details for the sake of brevity).

Here follows a more formal definition of the State View.

Definition 11. A state view SV
(b)
i , i ∈ [0,m + 1], is a narrowed view of the blockchain state

represented as a fixed-height Merkle tree (see Fig. 5). More specifically:

• The state view tree leaves are state key-value pairs (k, v) where the keys are equal between
all the state views. Such leaves are calculated as H(H(k)|H(v)).

• The unused state view tree leaves are set with ‘null’.

• The set of keys contained in the state views, are all (and only) the keys read or written by
at least one of the m transactions in the b-th batch.

• The values of the leaves of the state view SV
(b)
0 are initialized with the corresponding values

contained in the start global state S0.

• The leaves values of the state view SV
(b)
i , i ∈ [1,m] are computed by applying all the changes

resulting from the execution of the transaction Tx
(b)
i−1 to the state view SV

(b)
i−1.

• State views SV
(b)
0 and SV

(b)
m+1 are correspondingly the initial and final state view of the

batch Batch(b) (see Table 1).

Figure 5: An example of the state view representation
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Table 1: The connection between state views and transactions

State view Being start view for
tx#

Being end view for
tx#

SV
(b)
0 Tx

(b)
0

SV
(b)
1 Tx

(b)
1 Tx

(b)
0

SV
(b)
2 Tx

(b)
2 Tx

(b)
1

. . . . . . . . .

SV (b)
m Tx(b)

m Tx
(b)
m−1

SV
(b)
m+1 Tx(b)

m

Definition 12. A list of state views SV (b) consists of all the state views calculated in the b-th
batch:

SV (b) =
{
SV

(b)
0 ,SV

(b)
1 , ..., SV (b)

m

}
.

2.3.4.3 Parallelized Native Execution and Proving

Once the initial State View SV
(b)
0 is established, execution and proving proceed as follows:

1. Native Execution Phase

Since transactions within a batch may potentially conflict, their execution must be performed
sequentially to produce a consistent end state. In the given order, each Batch Prover process

executes all transactions sequentially up to its assigned index i, generating SV
(b)
i , which is the

start State View of the transaction with index i.The execution keeps track of the cumulative
gas and cycles processed, halting the execution in case the cycles exceed the batch prover
computational capabilities per batch. In addition to this, we want to highlight the following:

• This phase consists of a pure execution of the contract logic, without generating execu-
tion traces or performing any proving-related tasks.

• The goal of this step is to ensure that all proving processes share a consistent and
up-to-date view of state transitions.

2. Proving Phase

Once a proving process reaches its assigned transaction index i, it switches from execution
to proving:

• The proving process stops native execution and proceeds with the actual execution trace
generation and proof construction.

• This ensures that each transaction proof starts with a Start State View that is consistent
with the End State View of the previous transaction (except for the first transaction,
which starts with the initial State View).

At the end of the Proving Phase, each proving process will have:

• Generated a proof of execution for its assigned transaction.

• Produced adjacent State View commitments, ensuring seamless state continuity between
consecutive transaction proofs.

2.3.4.4 Proof Aggregation Enforcing State View Contiguity
Once all proving processes complete their execution and proof generation, the Batch Prover aggre-
gates individual transaction proofs, ensuring a seamless state transition across all transactions in
the batch.

• Each transaction proof validates a state transition from a Start State View to an End State
View.

• To maintain correctness, the End State View of one proof must match the Start State View
of the next proof in the sequence.
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• The proof aggregation process recursively combines proofs while preserving the integrity of
the state transitions.

At the end of this process, the Batch Prover produces a final aggregated proof, which:

1. Cryptographically validates that all transactions in the batch have been executed correctly.

2. Proves the transition from the initial State View to the final State View of the batch.

3. Ensures that all state modifications are contiguous and consistent within the batch.

In parallel, the Batch Prover also generates a proof of membership, verifying that the initial
State View was correctly derived from the global state at the end of the previous block.

By merging the proof of membership with the aggregated batch proof, we obtain a single proof
that attests:

• The transactions within the batch have produced the modifications reflected in the final State
View.

• These modifications were derived from a valid global state at the end of the previous block.

2.3.5 Global State Transition Proofs

Before proceeding with Batch Proof Aggregation, it is crucial to establish a well-defined Global
State Transition Proof sequence. This ensures that each Batch Prover is aware of its Global
Start State and can prove the correct transition of the Global State after applying its State View
Modifications.

2.3.5.1 Defining the Global Start State for Each Batch Prover
Once all Batch Proofs have been generated, the Block Producer must determine which proofs were
successfully created. In an ideal scenario, all assigned Batch Provers complete their proving process;
however, if a Batch Prover fails, the subsequent state transitions calculation and proving should
not consider the missing batch modifications. To address this, the Block Producer first gathers
information on the successfully generated Batch Proofs. Based on this, it determines the order
for applying the State View Modifications, ensuring a structured and predictable update sequence
for the Global State. While we describe this approach in a centralized form for succinctness and
readability, alternative mechanisms exist to enable a more decentralized and parallelized process,
reducing the computational load on a single entity while maintaining reliability.

With such a process, we achieve:

1. A clear sequence of state transitions is established, ensuring that each batch applies its
modifications in a predefined order.

2. Each Batch Prover can compute its Global Start State by applying the preceding batch
modifications.

2.3.5.2 Proving Global State Transitions for Each Batch
Once the Global Start State is updated by each Batch Prover, they must prove the transition from
it to their Global End State by applying the modifications contained in their State View.

Each Batch Prover performs the following steps:

1. Applies preceding batch State View Modifications, transitioning to its Global Start State.

2. Generates a proof that cryptographically validates the state transition to the Global End
State by applying its State View modifications.

3. Merges this proof with the existing Batch Proof, attesting that there were a set of transactions
that led to a set of modifications and transitioned the global state from a Global Start State
to a Global End State.

At the end of this phase, we obtain:

• A set of proofs that validate both transaction execution and global state transitions.

• A contiguous sequence of Global State transitions, allowing for efficient aggregation.
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2.3.6 Batch Proofs Aggregation

The goal of the Batch Proofs Aggregation phase is to merge all batch proofs into a single proof
that verifies the following:

1. The correctness of all state modifications introduced by the batch transactions.

2. The transition of the Global State Root from the previous block’s end state to the new Global
State Root after applying all batch modifications.

2.3.6.1 Recursive Proof Aggregation and Fault Tolerance
To maximize efficiency and ensure successful proof aggregation, the protocol assumes that the
recursive aggregation of batch proofs is performed by the Batch Provers themselves. The Block
Producer is responsible for assigning each level of proof merging to Batch Provers.

However, one major challenge in this process is ensuring that no aggregation step fails due to
a Batch Prover being faulty or failing to submit its proof in time. If even a single proof is missing
at any level, it increases the depth of the proof aggregation tree, potentially leading to a situation
where aggregation never converges.

To mitigate this issue, the protocol employs redundancy at each aggregation level:

• The Block Producer assigns multiple Batch Provers to perform the same merge operation at
each level.

• As aggregation progresses to higher levels, the system ensures that more Batch Provers are
available than the number of merges required, allowing for more redundancy.

• By introducing proving redundancy over the various levels of the proof aggregation tree, we
can mathematically guarantee that all proofs will be successfully aggregated within one or
two extra levels even in the presence of a high percentage of faulty Batch Provers.

A dedicated simulation presented below demonstrates that introducing the additional redun-
dancy ensures that aggregation completes reliably almost without increasing latency.

The table below provides an estimate of how many additional proofs aggregation layers are
needed to overcome the missing proofs due to a given percentage of faulty provers. It is important
to note that, during the aggregation phase, the same batch provers who generated the batch proofs
are also responsible for merging them, following the aggregation tree structure determined by the
block producer.

Definition 13. Number of provers and Faulty Prover Probability. We denote pf the
probability of a prover failing to provide a proof and np the number of available provers. In the
table below we assume np = 1024, pf = 1

3 .

Definition 14. Proof Redundancy Factor, probability of missing a proof, number of
merges, and number of missing proofs. Per each aggregation layer i, we define the following
values:

• nmergei the number of merges to be performed as nmerge0 = np
2 , nmergei =

nmergei−1

2 +
nmissi−1, where i > 0;

• rfi the proof redundancy factor as rfi =
np

nmergei
;

• pmissi the probability of missing a proof as pmissi = (pf)rfi ;

• nmissi the (worst possible) number of missed proofs as nmissi = nmergei · pmissi.

With this system in place, the Proof Aggregation process can now efficiently eliminate in-
termediate state transitions and create a single final proof of the state transitions for the entire
block.
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Table 2: The results of proofs aggregation simulation

i nmergei rf i pmissi nmissi
0 512 2 11,11111% 56,89
1 313 3 2,74832% 8,60
2 166 6 0,11166% 0,18
3 83 12 0,00013% 0,00
4 42 24 0,00000% 0,00
5 22 48 0,00000% 0,00
6 11 93 0,00000% 0,00
7 6 186 0,00000% 0,00
8 3 341 0,00000% 0,00
9 2 683 0,00000% 0,00
10 1 1024 0,00000% 0,00
11 1 2048 0,00000% 0,00

2.3.7 Final Block Proof Generation

The Final Block Proof is the top-level proof that validates that the execution of a set of transactions
led to a set of state modifications that resulted in a specific global state. It is formed by merging
three key proofs:

1. The Aggregated Batch Proof – Ensures that the transactions were correctly executed,
leading to valid state transitions.

2. The Proof of No Conflict – Guarantees that the transactions were correctly grouped into
non-conflicting batches, preventing state access collisions between transactions in different
batches (see below).

3. The Previous Block Final Proof – Ensures that the initial Global State of this block is
correctly derived from the final Global State of the previous block.

By merging these three proofs, the Final Block Proof provides a complete verification of the
block’s correctness. This results in the following properties:

• It guarantees that batch formation was correct and that no conflicting transactions were
included.

• It enforces a direct linkage to the previous block’s state, making the chain verifiable with a
single proof.

• Since each block’s proof recursively verifies the previous block’s proof, this method ensures
that the entire blockchain is succinctly provable from the genesis block to the latest block.

2.3.7.1 Proof of No Conflict
The Proof of No Conflict ensures that the batching of transactions was performed correctly, mean-
ing that no batches contain transactions declaring conflicting read or write sets. This proof does
not validate the actual execution of the transactions but ensures that the declared access patterns
do not lead to batch conflicts.

2.3.7.2 Ensuring Execution Consistency
As previously described the zkVM enforces that no transaction modified or accessed the state
outside of what was declared in its read-and-write set. This is a separate guarantee from the Proof
of No Conflict, but when combined with it, the following holds:

• The Proof of No Conflict guarantees that no declared state access patterns were in conflict
across batches.

• The ZKVM Proof of Execution guarantees that transactions strictly adhere to their declared
read/write sets.
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2.3.8 Block Construction

Once all necessary proofs have been generated and aggregated, the final step is constructing the
block.

Each block contains the following essential elements:

1. Final Block Proof. The cryptographic proof that validates the correctness of the block,
ensuring that the transactions led to the expected state modifications and that no conflicts
occurred.

2. Transaction Hashes List. A list of transaction hashes included in the block, allowing
anyone to verify whether a specific transaction was part of the block.

3. State Modifications. A structured list of all state modifications applied in the block. The
commitment to this list is verified with the Final Block Proof.

4. New Global State Root. The final Global State Root after applying all state modifications
from this block. This root is validated by the Final Block Proof, ensuring that the new state
correctly derives from the previous one.

The Genesis State is publicly known and immutable, so it does not need to be stored in every
block.

2.3.9 Block Propagation

After the Block Producer constructs the block, it is submitted to the network. It’s worth reit-
erating that block verification does not require transaction re-execution, eliminating redundant
computations across all participating nodes.

2.3.9.1 Block Verification Process
When a node receives a new block, it follows these steps to verify and propagate it:

1. Reconstructing the Commitment of State Modifications

• The node reconstructs the commitment of the state modifications based on the received
list of state changes.

• This commitment is then used as an input to verify the Final Block Proof.

2. Verifying the Final Block Proof

• The node verifies that the block proof verifies against the calculated commitment of the
state modifications and the provided transaction hashes commitment and global state
root provided with the block.

• Since the proof validates all state modifications, the node does not need to execute the
transactions.

3. Broadcasting the Block Before Applying State Updates

• Once the proof is successfully verified, the node can immediately propagate the block
to its peers.

• It is crucial to note that a node does not need to recompute the new Global State Root
before forwarding the block, as the proof already guarantees the correctness of the state
modifications.

4. Updating the Global State

• In parallel with broadcasting the block, the node applies the state modifications to its
global state, updating the Sparse Merkle Tree and calculating the Global State Root to
reflect the new block’s modifications.
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2.4 Proofs Specification

As seen earlier, creating a final block proof requires a set of SNARKs that recursively merge state
transition proofs, starting from individual transactions to batch proofs, and ultimately to the block
proof. This section presents high-level definitions of different types of SNARKs utilized throughout
the process. For the sake of brevity, the following proofs specification does not include the incentive
redistribution details.

Firstly, let’s summarize the types of SNARKs needed for a recursive process of creating a block
proof (see Table 3).

Fig. 6 represents an illustration of the interdependence of different types of SNARKs and
the process of their aggregation starting from generating proofs for individual transactions and
finishing with the creation of a final block proof.

Figure 6: A hierarchy of proofs

Now let’s consider each type of SNARK in detail. We start by introducing some generic
definitions that we will be using in this section.

Definition 15. State Transition System. A state transition system is defined by a set of all
possible states S, a set of all possible transitions T, and a transition function update(ti, si), where
si ∈ S and ti ∈ T , which returns a new state si+1 or ⊥ in case (ti, si) does not constitute a valid
input for the update function.

Speaking informally, we would like to define a set of SNARKs that attests to many iterative

state transitions. For example, if we have transactions (Tx
(b)
1 , Tx

(b)
2 , ..., Tx(b)

n ) that are applied

sequentially to state SV
(b)
0 to produce state SV (b)

n , we would like to have a succinct proof of the
following statement:

“there exists such (Tx
(b)
1 , ..., Tx(b)

n ) so that

update(Tx(b)
n , update(Tx

(b)
n−1, update(.... update(Tx

(b)
1 , SV

(b)
0 )))) = SV (b)

n ”.
By applying this approach to all transactions in the batch, we will be able to provide a succinct

proof of state transition resulting from the batch. Furthermore, the same techniques can be applied
to aggregate state transitions resulting from different batches.

At the lowest level, there is a SNARK that ensures the correctness of the state transitions caused
by the execution of a single transaction. Since we are targeting blockchains with smart contract
capabilities, such a proof can be generated using an underlying zkVM. The batch prover produces
this proof, which is then recursively aggregated. Note that the generation of the transaction proof
itself can be parallelized (e.g., in the zkVM context by assigning different proof segments to different

22



Table 3: The types of proofs and their purposes

Proof type Abbreviation Designation Description
Transaction
proof

Tx-Base πTxBase
i A base SNARK proving the validity

of transition between state views SV
(b)
i

and SV
(b)
i+1 after the execution of trans-

action Tx
(b)
i

Recursive
proof
for merging
transaction
proofs

Tx-Merge πTxMerge
i..j A recursive SNARK that merges two

other SNARKs (either Tx-Base or Tx-
Merge) proving the validity of tran-

sition between state views SV
(b)
i and

SV
(b)
j , i+ 1 < j

Membership
proof

Mem-Proof πMem
b A SNARK proving that all non-null

leaves in the state view SV
(b)
i of batch b

belong to some global state Sl

Batch proof Batch-Proof πBatch
b A SNARK proving the correctness of

transition from the initial local state
view SV

(b)
0 ⊂ Sl to the updated state

view SV (b)
mb

by applying transactions

from batch Batch(b)

Global State
Transition
Proof

Global-State-
Trans

πStateTrans
b A SNARK proving the correctness of

transition from an initial global state
Sl to a new global state Sl+1 by apply-
ing final state view SV (b)

mb
of the batch

Batch(b).
Final Batch
Proof

Final-Batch-
Proof

πFinalBatch
b The aggregation of a Batch proof and

a global state transition proof.This en-
forces both that the state view has been
updated correctly by the execution of
the batch transactions and that the new
intermediate global state has been tran-
sitioned with such changes.

Recursive
proof
for merging
final batch
proofs

Final-Batch-
Merge

πFinalBatchMerge
i.. j A SNARK that merges two other

SNARKs (either Final-Batch-Proof or
Final-Batch-Merge) proving correct ag-
gregation of state view changes of the
merged batches and the correct transi-
tion of intermediate global states

Proof of no
conflicts

No-Confl πNoConfl A SNARK proving that transactions
from different batches do not modify
and read the same accounts and that a
transaction of one batch does not read
an account modified by a transaction be-
longing to another batch

Block proof Block-Proof πBlock A SNARK proving the correctness of the
state transitions caused by the execu-
tion of all batches of transactions pro-
cessed in the block. The block proof
also verifies No-Confl proof enforcing
the absence of conflicts among transac-
tions from different batches.The block
proof also confirms the validity of a pre-
vious block proof, ensuring the validity
of all blockchain history.
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parallel provers), although a detailed exploration of this additional optimization lies beyond the
scope of this paper.

Definition 16. Recursive SNARKs for proving individual transactions. We define recur-
sive SNARKs composition for aggregation of state transitions resulting from transactions execution
as a tuple of SNARKs (Tx-Base, Tx-Merge) such that:

1. Tx-Base is a SNARK for a single transition proving that SV
(b)
i+1 = update(Tx

(b)
i , SV

(b)
i ). It

is defined by a triplet (Setup, Prove, Verify) such that:

• (pkTxBase, vkTxBase)← Setup(1λ) bootstraps Tx-Base circuit;

• πTxBase
i ← Prove(pkTxBase, (SV

(b)
i , SV

(b)
i+1, H(Tx

(b)
i )), (Tx

(b)
i )), evaluates a proof

πTxBase
i that confirms SV

(b)
i+1 = update(Tx

(b)
i , SV

(b)
i );

• true/false← V erify(vkTxBase, (SV
(b)
i , SV

(b)
i+1, htxi), π

TxBase
i ), where htxi = H(Tx

(b)
i ),

verifies that πTxBase
i is a valid proof attesting state view transition from SV

(b)
i to SV

(b)
i+1

after applying some valid transaction Tx
(b)
i such that htxi = H(Tx

(b)
i ).

2. Tx-Merge is a SNARK that merges two other SNARKs (either Tx-Base or Tx-Merge)

proving the validity of transition between states SV
(b)
i and SV

(b)
j (i + 1 < j). It is defined

by a triplet (Setup, Prove, Verify) such that:

• (pkTxMerge, vkTxMerge)← Setup(1λ) bootstraps Tx-Merge circuit;

• πTxMerge
i..j ← Prove(pkTxMerge, a, w), where

a = (SV
(b)
i , SV

(b)
j+1, htx(i..j)) is a public input,

w = (SV
(b)
k+1, htx(i..k), htx(k+1..j), π(i..k), π(k+1..j)) is a witness, such that πTxMerge

i..j con-
firms the following predicates:

– true← V erify(vk, (SV
(b)
i , SV

(b)
k+1, htx(i..k)), π(i..k)) where vk is either vkTxBase or

vkTxMergeAND

– true ← V erify(vk⋆, (SV
(b)
k+1, SV

(b)
j+1, htx(k+1..j)), π(k+1..j)) where vk⋆ is either

vkTxBase or vkTxMergeAND

– htx(i..j) = H(htx(i..k) | htx(k+1..j)).

Note that essentially Tx-Merge enforces not only the validity of two underlying proofs

but also their adjacency through an intermediate state view SV
(b)
k .

• true/false← V erify(vkTxMerge, (SV
(b)
i , SV

(b)
j+1, htx(i..j)), π

TxMerge
i..j ) verifies that πTxMerge

i..j

is a valid proof attesting state transition from SV
(b)
i to SV

(b)
j+1 by applying transactions

committed in htx(i..j).

After all individual transactions are proved with Tx-Base, they are recursively aggregated using
Tx-Merge into a single proof by pairwise merge (see Algorithm 1).

For example, there are 5 proofs: {πTxBase
0 , πTxBase

1 , πTxBase
2 , πTxBase

3 , πTxBase
4 }. The aggrega-

tion algorithm will work as follows:

{πTxBase
0 , πTxBase

1 , πTxBase
2 , πTxBase

3 , πTxBase
4 } → {πTxMerge

0..1 , πTxMerge
2..3 , πTxBase

4 } →

→ {πTxMerge
0..3 , πTxBase

4 } → {πTxMerge
0..4 }.

The corresponding proof tree is presented in Fig. 7.
Recall that batch provers operate with narrowed views of the system state called state views

SV
(b)
i (see Def. 11), which only contain accounts directly involved in the batch processing. The

narrowed views simplify the aggregation of transaction proofs. However, it is necessary to prove
that a narrowed state view is a part of the global system state. Proof of membership allows us to
do this.
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Algorithm 1 Recursive Aggregation

Input: proofs = {πTxBase
0 , πTxBase

1 , ..., πTxBase
m }.

Procedure: RecursiveMergeProof
if length(proofs) == 1 then

return proofs[0]
end if
mergedList ← EMPTY LIST
i ← 0
while i < length(proofs) - 1 do

mergedList.append(MergeProof(proofs[i], proofs[i + 1]))
i ← i + 2

end while
if length(proofs) MOD 2 == 1 then

mergedList.append(proofs[length(proofs) - 1])
end if
return RecursiveMergeProof(mergedList)

end Procedure:RecursiveMergeProof

Procedure: MergeProof(π(i..k),π(k+1..j))
//doing merging using Tx-Merge SNARK

πTxMerge
i..j ← Prove(pkTxMerge, a, w = (π(i..k), π(k+1..j), ...))

return πTxMerge
i..j

end Procedure:MergeProof

Figure 7: An example of proofs tree
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Definition 17. Proof of Membership (Mem-Proof ). A proof of membership is a SNARK

proving that all non-null leaves in the state view SV
(b)
i of batch b belong to some global state Sl,

except for marked leaves, which are proven not to be part of the global state. The Mem-Proof is
defined by a triplet (Setup, Prove, Verify) such that:

• (pkMem, vkMem)← Setup(1λ) bootstraps the Mem-Proof circuit;

• πMem
b ← Prove(pkMem, (SV

(b)
i , Sl), w), where w is a witness. Note that SV

(b)
i is a fixed-

height Merkle tree while Sl is a Compact Sparse Merkle Tree, which proves inclusion, given
that corresponding Merkle paths are provided as a witness.

• true/false← V erify(vkMem, (SV
(b)
i , Sl), πMem

b ) verifies that SV
(b)
i ⊂ Sl.

Definition 18. Batch proof (Batch-Proof ). A batch proof is a SNARK proving the correctness

of the transition from the initial local state SV
(b)
0 ⊂ S0 to the updated state SV (b)

m by applying

transactions (Tx
(b)
1 , Tx

(b)
2 , ..., Tx(b)

m ) from batch Batch(b).
The Batch-Proof is defined by a triplet (Setup, Prove, Verify) such that:

• (pkBatch, vkBatch)← Setup(1λ) bootstraps Batch-Proof circuit;

• πBatch
b ← Prove(pkBatch, a, w), where

a = (S0, SV
(b)
m+1, htx

(b)
0..m) is a public input,

w = (SV
(b)
0 , πMem

b , πTxMerge
0..m ) is a witness, such that πbatch

b confirms the following predi-
cates:

– true← V erify(vkMem, (SV
(b)
0 , S0), πMem

b ) AND

– true← V erify(vkTxMerge, (S0, SV
(b)
m+1, htx

(b)
0..m), πTxMerge

0..m ).

Note that essentially Batch-Proof recursively verifies previously computed merged transac-

tions proof πTxMerge
0..m for the whole batch and membership proof πMem

b , that proves SV
(b)
0 ⊂

S0. Note also that htx
(b)
0..m is essentially a Merkle tree root of all executed transactions in

the batch b.

• true/false← V erify(vkBatch, (S0, SV
(b)
m+1, htx

(b)
0..m), πbatch

b ) verifies that πbatch
b is a valid

proof attesting that SV
(b)
m+1 contains a set of pairs (key, values) whose values have been

modified from a starting set SV
(b)
0 applying a set transactions whose cumulative hash is

htx
(b)
0..m. Note that SV

(b)
m+1 is literally a modified part of S0.

Note that batch proofs enforce that the initial values of the state views are taken from a global
start state S0, which is identical for all batches and corresponds to the initial global state to which
the entire block is applied. This enables efficient parallelization, as the order of batches within the
block does not need to be considered while generating batch proofs. However, the batches must
ultimately be ordered before aggregation to preserve the sequential global state transition. For this
reason, once the batch proof generation stage is complete, the block producer selects the batches
to be included in the block, orders them, and determines the set of intermediate global states that
serve as the initial global states for each batch.

This is done in two steps: firstly a SNARK (Global State Transition Proof) is used to prove

the transition of the global state by applying some state view SV (b)
m and then a final batch proof

is created that merges the original batch proof with the global state transition proof essentially
enforcing that batch has been successfully applied to some intermediate global state.

Definition 19. Global State Transition (Global-State-Trans). The Global-State-Trans is
a SNARK proving the global state transitions caused by the state view modifications resulting
from the execution of the transactions of the batches. It proves the transition of a global state Sl

to Sl+1 by applying a batch state view SV (b)
m . The Global-State-Trans is defined by a triplet

(Setup, Prove, Verify) such that:

• (pkStateTrans, vkStateTrans)← Setup(1λ) bootstraps Global-State-Trans circuit;
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• πStateTrans
b ← Prove(pkStateTrans, a, w), where

a = (Sl, SV
(b)
m+1, Sl+1) is a public input,

w is a witness containing actual Merkle tree data needed to prove the transition.

Global-StateTrans ensures that the state transition Sl → Sl+1 has been correctly made by

adding/removing/substituting the leaves of SV
(b)
m+1 in Sl.

• true/false← V erify(vkStateTrans, (Sl, SV
(b)
m+1, Sl+1), π

StateTrans
b ) verifies that πStateTrans

b

is a valid proof attesting transition of the global state Sl. Note that SV
(b)
m+1 is literally a

modified part of Sl.

Definition 20. Final Batch Proof (Final-Batch-Proof). Final-Batch-Proof is a SNARK that
aggregates Batch-Proof and Global-State-Trans. It is defined by a triplet (Setup, Prove, Verify)
such that:

• (pkFinalBatch, vkFinalBatch)← Setup(1λ) bootstraps Final-Batch-Proof circuit;

• πFinalBatch
b ← Prove(pkFinalBatch, a, w), where

a = (S0, Sl, SV (b)
m , Sl+1, h) is a public input,

w = (πb
Batch, πb

StateTrans) is a witness,

such that πFinalBatch
b confirms the following predicates:

– true← V erify(vkBatch, (S0, SV (b)
m , h), πBatch

b ) AND

– true← V erify(vkStateTrans, (Sl, SV
(b)
m , Sl+1), πStateTrans

b ).

• true/false← V erify(vkFinalBatch, (S0, Sl, SV (b)
m , Sl+1, h), π

FinalBatch
b ) verifies that πFinalBatch

b

is a valid proof attesting transition of the global state Sl to Sl+1 by applying SV (b)
m .

It is important to understand that SV (b)
m is transitioned from SV

(b)
0 ⊂ S0, where S0 is an

initial state before applying the whole block. But since the batches are non-conflicting, it follows

that SV
(b)
0 ⊂ Sl, where Sl is an updated S0 after applying changes from other batches. Therefore,

we can apply SV (b)
m to Sl instead of S0.

Definition 21. Recursive SNARK for merging final batch proofs (Final-Batch-Merge).
Final-Batch-Merge is a SNARK that merges two other SNARKs (either Final-Batch-Proof or
Final-Batch-Merge) proving the correct aggregation of global state transitions and the underlying
state views of the merged batches.

In this step we recursively merge the Final-Batch-Proof of different batches into a single proof,
proving the state modifications and the global state transitions caused by the execution of all
batches. Note that the global state inputs of the merged proofs must be adjacent to each other
(the end state of the first proof corresponds to the start state of the second proof). The Final-
Batch-Merge will have as public inputs the start state Merkle root of the first proof and the end
state Merkle root of the second proof. Note that the state view trees are merged just by hashing
their Merkle root hashes together.

Final-Batch-Merge is defined by a triplet (Setup, Prove, Verify) such that:

• (pkFinBatchMerge, vkFinBatchMerge)← Setup(1λ) bootstraps Final-Batch-Merge circuit;

• πFinBatchMerge
i..j ← Prove(pkFinBatchMerge, a, w), where

a = (S0, Si , SV (i..j ), Sj+1 , htx(i..j)) is a public input,

w = (Sk+1 , SV (i..k), SV (k+1..j), htx(i..k), htx(k+1..j), πi..k, πk+1..j) is a witness, πi..k, πk+1..j ∈
{Final-Batch-Proof, Final-Batch-Merge}. SV (x..y) denotes the cumulative hash of the Merkle
roots of the batch state views, while htx(x..y) denotes the cumulative hash of the Merkle roots
of batches transaction trees. πFinBatchMerge

i..j confirms the following predicates:

– true ← V erify(vk, (S0, Si, SV
(i..k), Sk+1, htx

(i..k)), πi..k), where vk is either the veri-
fication key of the Final-Batch-Proof circuit (k = i) or the verification key of Final-
Batch-Merge circuit AND
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– true ← V erify(vk⋆, (S0, Sk+1, SV
(k+1..j), Sj+1, htx

(k+1..j)), πk+1..j) where vk⋆ is ei-
ther the verification key of the Final-Batch-ProofBatch-Upd circuit (j = k + 1) or the
verification key of Final-Batch-MergeBatch-Upd-Merge circuit AND

– SV (i..j) = H(SV
(i..k)|SV (k+1..j)) AND

– htx(i..j) = H(htx(i..k) |htx(k+1..j)).

Note that the final global state root of the left proof needs to be equal to the initial global
state root of the right proof.

• true/false← V erify(vkFinBatchMerge, (S0, Sl, SV (i..j), Sl+1, htx
(i..j)), πFinBatchMerge

i..j ) ver-

ifies that πFinBatchMerge
i..j is a valid proof attesting transition of the global state Sl to Sl+1

by applying the state views committed in SV (i..j).

We remark that Final-Batch-Merge does not guarantee there were no conflicting state updates
from different batches (e.g., a transaction in a batch modified an account field while another tx
from another batch used the original field value). In order to prove it, we introduce an additional
proof.

Definition 22. Proof of no conflicts (No-Confl). A proof of no conflicts is a SNARK proving
that transactions from different batches do not modify the same accounts and that a transaction
of one batch does not read an account modified by a transaction belonging to another batch.

The No-Confl is defined by a triplet (Setup, Prove, Verify) such that:

• (pkNoConfl, vkNoConfl)← Setup(1λ) bootstraps No-Confl circuit;

• πNoConfl ← Prove(pkNoConfl, htx(0..n), w), where

htx(0..n) is the cumulative Merkle root hash of all transactions from aggregated batches
Batch(0), ....., Batch(n),

w = (Tx
(0)
0 , ..., Tx(0)

m0
, Tx

(1)
0 , ..., Tx(n)

m1
, ..., Tx

(n)
0 , ..., Tx(n)

mn
) is a witness containing transactions

from all proved batches Batch(0), ....., Batch(n). Let written(Batch(i)) returns all accounts

modified by transactions from Batch(i) and read(Batch(i)) returns all accounts that were

read by transactions from Batch(i). Then, πNoConfl confirms the following predicates:

– written(Batch(i)) ∩ read(Batch(j)) = ⊘, for all i ̸= j, AND

– written(Batch(i)) ∩ written(Batch(j)) = ⊘, for all i ̸= j, AND

– htx(0..n) is an accumulated hash of all transactions.

• true ← V erify(vkNoConfl, htx(0..n), πNoConfl) verifies that πNoConfl is a valid proof at-
testing to the absence of conflicts among transactions in different batches.

The topmost proof in the aggregation hierarchy is the block proof, which is included in the
actual block propagated through the network. The block proof recursively merges the No-Confl
and Final-Batch-Merge proofs, ultimately proving the state transition caused by all transactions
across all batches included in the block. In addition, the block proof recursively verifies the previous
block proof, ensuring a continuous state transition from the previous block (and, ultimately, from
the genesis state Sgenesis). This enables the implementation of fully verifiable light clients.

However, since block proofs do not enforce consensus rules, blockchain nodes must still download
all blocks to verify consensus rules. Nevertheless, transaction re-execution, as well as verification
of previous block proofs, are not required, as verifying only the latest block proof from the top
block is sufficient to ensure correct state transition from the genesis block.

It is also possible to extend the statement of the block proof to enforce the consensus rules,
enabling a truly succinct blockchain where nodes no longer need to download the entire block
history. The details about consensus rules and how to enforce them in the block proof are beyond
the scope of this paper.

Definition 23. Block proof (Block-Proof ). A block proof is a SNARK that verifies the
execution of all transactions in the block BN , ensuring the transition from the previous state
SN−1 to the new global state SN and that transactions in different batches are not conflicting.
Additionally, it recursively verifies the previous block proof ensuring continuous state transition.

The Block-Proof is defined by a triplet (Setup, Prove, Verify) such that:
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• (pkBlock, vkBlock)← Setup(1λ) bootstraps Block-Proof SNARK;

• πblock
N ← Prove(pkBlock, a, w) where:

– a = (Sgenesis, SN−1, SN , SV
(0..n)
N , htx

(0..n)
N ), where SN−1 is the end state of the

previous block BN−1, SN is the new state after having applied the modifications of this

block1, SV
(0..n)
N1 are the modifications caused by the transactions included in this block,

htx
(0..n)
N is a cumulative hash of transactions.

– w = (πblock
N−1 , SN−2, SV

(0..n′)
N−1 , htx

(0..n′)
N−1 , πNoConfl

N , πFinBatchMerge
N ), where πFinBatchMerge

N

denotes the top-most Final-Batch-Merge of the block.

– The statements confirmed by the proof are the following:

∗ IF SN−1 ̸= Sgenesis then

True← V erify(vkblock, (Sgenesis, SN−2, SN−1, SV
(0..n′)
N−1 , htx

(0..n′)
N−1 ), πBlock

N−1 )

∗ True← V erify(vkNoConfl, htx
(0..n)
N , πNoConfl

N )

∗ True←
V erify(vkFinBatchMerge, (SN−1, SN−1 , SV

(0..n)
N , SN , htx

(0..n)
N ), πFinBatchMerge

N )

• true/false ← V erify(vkBlock, (Sgenesis, SN−1, SN , SV
(0..n)
N , htx

(0..n)
N ), πBlock

N ) verifies
that πblock

N is a valid proof attesting to the valid state transition from Sgenesis to SN .

3 Incentives

Incentives play a crucial role in the functioning and security of decentralized blockchain networks.
They encourage participants to contribute services to the ecosystem in a proper way, maintain
the network, and ensure its integrity. Besides that, economic measures provide protection against
specific types of attacks, like DoS attempts with transaction flood.

3.1 Incentives Source

In our protocol, the incentives for rewarding all participants rely on two distinct sources: block
rewards and transaction fees.

1. Block Rewards. More specifically, block rewards consist of newly minted coins that the
Block Producer receives for each block produced. This paper does not define the consensus
protocol, the method for selecting block producers and determining the exact amount of
minted coins per block will be discussed in a separate document.

2. Transaction Fees. Transaction fees are set by users and are intended to incentivize block
producers for the inclusion of transactions into blocks (typically they will also cover the
costs associated with processing and proving the transactions in a block). In addition to
that, transaction fees can also be used to prioritize the transaction processing in case of
scarcity of available computational resources. As we can see in the block production flow,
transaction processing and proving involve both the block producer and batch provers. It’s
worth reminding that the batch prover will have to natively execute and then prove the
transactions. Given that the effort for executing and proving the transactions is correlated
to the consumed gas, transaction fees will typically reflect such correlation. Considering
this relation, Batch Provers going to be compensated through transaction fees, while minted
coins are going to be used for block producers. Following this approach, high level, the
transaction fees collected from the transactions in a block are going to be distributed between
the following actors:

• Batch Provers participating in the proof generation and aggregation process.

• the Block Producer for orchestrating the batch proof generation and aggregation.

1It’s a little abuse of notation, since it is the block index, conversely to what we did in definitions 15 and 16,
where the index denoted as an intermediate state.
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3.2 Proving Market and Incentives Structure

The incentive structure is intended to balance fair proving costs while fostering a competitive
proving market.

• Economic Competition Among Batch Provers: The transaction fees paid by users are
allocated first to pay Batch Provers for their proving work, and the remaining share of fees
is retained by the Block Producer. This means that Block Producers are incentivized to
select less expensive batch provers in order to minimize proving costs, leading to a natural
competition where Batch Provers must offer fair prices to remain competitive.

• Reliability vs. Profit Strategy: While low-cost proving increases Block Producer profit
margins, relying on unreliable Batch Provers could lead to failed proofs, reducing network
throughput and ultimately impacting the Block Producer’s earnings. To balance this, we
propose Block Producers maintaining a subjective reliability index for each Batch Prover,
considering past performance in delivering proofs on time.

• Disincentives for Non-Responsive Provers: Batch Provers who fail to submit their
assigned proofs in time receive no reward for that batch, and also get decreased chances to
be selected by the block producer for proof generation in the next blocks.

3.2.1 Batch Prover Selection

When selecting Batch Provers for transaction proving, we propose Block Producers to follow a
strategy based on multiple factors:

• Cost Efficiency: The Block Producer prioritizes the selection of Batch Provers that offer
the lowest proving cost while still satisfying the computational requirements of the batch.

• Computational Capacity: Only Batch Provers that can meet the necessary execution
demands for a given batch are considered.

• Reliability Index: Each Block Producer independently tracks a reliability score for every
Batch Prover based on past performance. This index reflects historical consistency and
accuracy in proof generation.

• Batch Prover Deposit Amount: During registration, each batch prover provides a locked
deposit on the blockchain.

3.2.2 New Batch Provers Without a Reliability Score

To establish a competitive proving market, new participants must have the opportunity to join the
batch prover network and be selected, even if they do not yet have a well-established reliability
score. However, without proper management, this may open DoS attack opportunities, where
malicious actors could register multiple batch prover identities, advertise artificially low proving
costs, and fail to provide the required proofs when selected. Unchecked, such behavior could
significantly degrade network throughput.

Two strategies are used to mitigate the risk:

• Controlled Allocation to New Provers: we propose the Block producers to limit the percentage
of batches assigned to batch provers with little or no reliability score. This restriction ensures
that any potential damage caused by unverified actors remains contained within a predefined
portion of the network’s throughput.

• Deposit Requirement with Withdrawal Delay: New batch provers must pay a registration fee
and provide a self-set deposit. The registration fee is meant as an anti-spam measure. The
deposit remains locked until the prover deregisters, and its withdrawal is subject to a fixed
delay.

3.2.3 Deposit Requirement

The deposit requirement, combined with a withdrawal delay is meant to discourage attacks trying
to limit the chain throughput.

Let’s take as an example an attacker strategy that tries to limit the throughput by not providing
expected proofs when selected. While reputation alone would eventually prevent such provers from
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being selected again by block producers, the attacker could easily register new clone identities and
continue disrupting the network. The deposit requirement is meant to make such an attack costly,
requiring upfront financial commitment. Since the attacker must fund multiple identities, the
financial burden grows with the scale of the attack.

Additionally, since block producers eventually stop selecting failing provers, attackers will not
be able to reuse their identities, and de-registering them will trigger the withdrawal delay. This
delay prevents attackers from immediately reclaiming and liquidating their stake, increasing their
financial risk.

3.3 On-Chain Registration

A participant who wants to become a Batch Prover must register on-chain by submitting a regis-
tration transaction providing the following information:

• Computational Capacity: The batch prover specifies its processing power in terms of the
maximum number of cycles the batch prover is able to process within the batch time.

• Fee Rate: The cost per gas that the prover requires as compensation.

• Deposit: The self-set deposit amount that will boost his possibility of being selected by
a block producer when compared with batch provers with the same fee rate and reliability
score.

Here is a more formal definition of a registration transaction:

Txreg def
= (pub key, computational capacity, price per gas, deposit),

where

• computational capacity – the number of transaction proofs the Batch Prover can make in
parallel;

• price per gas – the price per unit of gas;

• deposit – the self-set registration deposit.

3.4 Incentive Distribution for Block Producers and Batch Provers

The reward distribution system for Batch Provers is an important aspect of the protocol’s incen-
tives. Since Batch Provers are selected by the Block Producer and contribute to the generation
of batch proofs - which are later aggregated into the Final Block Proof - a robust mechanism is
required to track, verify, and withdraw earned rewards.

In our approach, rewards are tracked and enforced directly on-chain, eliminating the need for
off-chain calculations or manual withdrawals.

3.4.1 Reward Calculation for Batch Provers

To reliably track rewards, the Batch Proof takes into account the total number of cycles and the
total user fees paid for all transactions within the batch. More specifically the reward process
follows these steps:

1. Tracking Execution Cycles and Fees

• The Batch Prover keeps track of and enforces the total cycles and gas executed within
the batch.

• The Batch Prover also tracks the total user fees paid by the transactions within the
batch.

2. Reward Computation for the Batch Prover

• The Batch Prover calculates its reward based on its pre-registered price per gas

• Since the price per gas is stored on-chain, the Batch Proof enforces that the reward
calculation adheres to the Batch Prover’s registered value.
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3. Ensuring Fee Sufficiency for Batch Prover Payments

• The final batch proof must validate that the total reward claimed by the Batch Prover
does not exceed the total fees paid by users in that batch

4. State Transition for Batch Prover Rewards

• The Batch Prover balance is updated within the state view as part of the proof.

• The final batch proof enforces that the balance increase is exactly equal to the computed
Batch Prover reward.

• The final Batch Proof includes this balance update as a state transition, ensuring that
rewards are applied directly within the protocol.

• The Proof of No Conflict also ensures that the accounts associated with Batch Provers
are not read or written by other batches, preventing any interference with their reward
allocation.

5. Including Remaining Fees for Block Producer Allocation

• The Final Batch Proof also includes a public input that corresponds to the difference be-
tween the total fees paid by the user and the batch prover reward. This value represents
the remaining fees that are allocated to the Block Producer.

3.5 Aggregation of Fees and Block Producer Rewards

During Batch Proof Aggregation, the remaining fees from each batch are summed, ensuring that
the Final Block Proof correctly accounts for all rewards and fee distributions.

1. Summing Remaining Fees During Aggregation

• The difference between user fees and Batch Prover rewards is summed across all batches.

• This allows the Final Block Proof to contain a single cumulative value representing all
remaining fees to be allocated to the Block Producer.

2. Applying the Block Producer’s Reward in the Final Block Proof

• When generating the Final Block Proof, the remaining fees are applied as a balance in-
crease for the Block Producer, transitioning the global state and proving its correctness.

• The Block Reward, as defined by a consensus protocol, is also applied to the Block
Producer’s balance.

• The Final Block Proof validates both the earned fees and the Block Reward, ensuring
that the Block Producer receives its full incentive in a provable manner.

With this mechanism, both Batch Provers and Block Producers receive their incentives directly
through state transitions.

4 Performance Estimation Comparison

In this section, we compare the performance of our protocol against two alternative blockchain
architectures. Rather than using transactions per second (TPS) – a metric that can be highly
misleading due to the wide variability in transaction complexity – we focus on computational
throughput, the number of computation cycles executed per unit of time. This provides a more
meaningful and fair comparison, especially when evaluating support for more complex applications
beyond simple token transfers.

The two baseline blockchain architectures we consider are:

1. Sequential Execution Model – A traditional blockchain where transactions are executed
sequentially and each node independently re-executes all transactions for validation.

2. Intra-Node Multithreaded Execution Model – A model where transactions declare
the state segments they access, allowing parallel execution within a single node (similar to
Solana). However, each node must still perform full transaction execution for validation.
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To ensure a consistent comparison, we assume that all three systems execute smart contracts
compiled to RISC-V. For native execution, we reference the execution frequency reported in the
RISC Zero datasheet. For our protocol, we also account for the proving frequency of the RISC
Zero zkVM using an NVIDIA RTX 3090 Ti GPU.

Additionally, we include the time needed for wrapping and aggregating proofs: wrapping is
performed with Risclonky2 [29], our custom implementation that wraps RISC Zero zkVM proofs
into Plonky2 Goldibear proofs [30]; aggregation is performed using Plonky2 Goldibear over the
BabyBear field, also assuming GPU acceleration (we estimate a conservative 7x acceleration factor
compared to the CPU only version).

The comparison focuses on two critical phases:

1. Block Generation Time – the time required to create a block.

2. Block Propagation Time – the time needed to distribute blocks across the network, as-
suming a fixed number of hops.

Our protocol benefits from parallelized proving, which allows the block construction time to
grow only logarithmically with the number of transactions (assuming high parallelizability). In
this model, proving time is affected by the depth of the aggregation tree but has not a linear
relation with the global transactions complexity. Importantly, block propagation is also unaffected
by transaction complexity, as block validity can be verified succinctly using a single proof.

By contrast, in the sequential model, both block generation and propagation times grow linearly
with the total transaction computational load. In the intra-node multithreaded model, although
execution is parallelized, scalability remains bounded by the hardware limitations of a single node,
capping throughput gains.

The table below presents a comparative analysis under varying parameters such as transaction
complexity and conflict ratio. A detailed breakdown of the formulas used for throughput estimation
follows. Network assumptions (e.g. hop count, bandwidth) are kept constant across all models to
ensure a consistent and unbiased evaluation.

4.1 Performance Estimation and Comparison

Our simulation assumes the same RISC-V-based virtual machine across all three models to ensure
consistency.

Execution and proving frequencies are based on the official RISC Zero datasheet: a VM exe-
cution frequency of 27MHz and a zkVM proving frequency of 850kHz, measured on an NVIDIA
RTX 3090 Ti.

For network conditions, we assume a topology with an average of 5 hops and a link speed of
1Gbps.

This setup provides an apples-to-apples comparison across architectures in terms of achievable
throughput under varying computational demands.

We assume a 20x boost for the intra-node multithreaded model.
In the following table, we show the estimated comparison results computed by the script in

appendix B.

Table 4: The simulation results

Cycles
per tx

Tx
per
batch

Num
batches

GIGA
(cycles/
ms)

Standard1

(cycles/
ms)

Standard
Par2

(cycles/
ms)

GIGA
over
Standard,
Speedup
Ratio

GIGA
over Stan-
dard Par,
Speedup
Ratio

500000 20 5000 16407737 5399 107979 3039 152
1000000 20 5000 24962877 5399 107989 4623 231
800000 64 16000 61204335 5399 107986 11336 567

1 Standard = Sequential execution model
2 Standard par = Intra-Node Multithreaded Execution Model
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5 Conclusion

This paper introduces a novel blockchain architecture designed to address the critical scalability
limitations of existing decentralized systems. By enabling decentralized parallel transaction execu-
tion and succinct validation through SNARKs, our protocol decouples execution from verification,
thereby unlocking a new paradigm of horizontal scalability.

A key innovation of this model is the ability to leverage SNARKs to parallelize and delegate
the on-chain computation to decentralized and untrusted actors ensuring that the results remain
fully verifiable and trustless, preserving the security guarantees of traditional blockchains while
vastly improving throughput.

To support decentralized execution, the protocol introduces a proving market, where batch
provers compete based on cost, capacity, and reliability. This market-based mechanism ensures an
economically sustainable proving network that dynamically adapts to computational demand.

Unlike most traditional chains, where block validation requires full transaction re-execution, our
approach allows nodes to verify a block by simply checking a single succinct proof. This eliminates
redundant computation across the network and significantly reduces block propagation time.

Performance estimates show that this protocol outperforms both sequential execution models
and intra-node parallelization schemes. In fully parallelizable scenarios, block generation time
increases only logarithmically with the number of transactions and remains agnostic to transaction
complexity, in contrast to linear growth limitations existing in current systems.
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Appendix A Handling Dynamic Read/Write Sets

A crucial aspect of the protocol design is that transactions must specify which accounts they will
read and write in advance. This allows the block producer to efficiently determine conflicting
transactions without executing them. However, in some cases, execution depends on on-chain
state data, meaning that the list of accounts accessed by a transaction might change dynamically.

In most cases, the accounts read and written by a transaction can be determined in advance.
However, in some scenarios where on-chain logic depends on state data to define the involved
accounts, a more structured approach is required. A possible solution is a two-step transaction
model. The first transaction finalizes the list of involved accounts by writing them explicitly into
the state, enabling a second transaction to proceed with execution while knowing exactly which
accounts will be accessed. An example of this would be a lottery system where winners are first
determined and recorded in the contract state before they proceed to withdraw their funds.

In other cases, such as with proxy smart contracts, it is uncommon for the destination account
to change dynamically while the transaction is pending. In these scenarios, it is more efficient
to construct the transaction based on the assumption that the involved accounts will remain
unchanged, improving efficiency.

Appendix B Performance Estimation Python Script

1 from math import c e i l , l og2
2 from f r a c t i o n s import Fract ion
3 from p r e t t y t ab l e import PrettyTable
4

5

6 # Network Parameters
7 network speed = 128 ∗ 2∗∗10 # Network speed ( in B/ms) cor re spond ing to 1 Gb/s
8 num hops = 5 # network hops
9

10

11 # Common Parameters
12 VM exec freq = 27000 # VM execut ion f requency ( in kHz)
13 ZKVM prove freq = 850 # ZKVM proving f requency ( in kHz)
14 HASH SIZE BYTE = 32
15

16

17 # Sequent i a l Execution Model
18 def s tandard cha in throughput ( b l o c k t o t a l c y c l e s , t x p e r b l o ck ) :
19 t x s i z e = 500 # Transact ion s i z e in bytes
20 exec t ime = Fract ion ( b l o c k t o t a l c y c l e s , VM exec freq )
21 exec t ime ac ro s s ne twork = exec t ime ∗ num hops
22 ne twork de l i v e ry t ime = Fract ion ( t x s i z e ∗ t x p e r b l o ck ∗ num hops , network speed

)
23 t o t a l b l o c k t ime = exec t ime ac ro s s ne twork + ne twork de l i v e ry t ime
24

25 return Fract ion ( b l o c k t o t a l c y c l e s , t o t a l b l o c k t ime )
26

27

28 # Int ra−Node Mult i threaded Execution Model
29 def s tandard cha in par throughput ( b l o c k t o t a l c y c l e s , t x p e r b l o ck ) :
30 n o d e p a r a l l e l f a c t o r = 20 # Int ra−Node p a r a l l e l i z a t i o n f a c t o r f o r t r an sa c t i on

execut ion
31 return s tandard cha in throughput ( b l o c k t o t a l c y c l e s , t x p e r b l o ck ) ∗

n o d e p a r a l l e l f a c t o r
32

33 def g igacha in throughput ( c y c l e s p e r t x , tx per batch , num batches ) :
34 # GIGA Basic Parameters
35 agg t ime = 50 # Aggregation time (ms)
36 wrap prove t ime = 100 # Wrap o f ZKVM proo f time (ms)
37 hash prov ing t ime = 0 . 00625 # Sing l e permutation proving time (ms)
38 avg state mod tx = 3 # Average number o f s t a t e mod i f i c a t i on s per

t r an sa c t i on
39 nat i v e ha sh exec t ime = 0 . 0005 # Native hash execut ion time (ms)
40 avg CSMT height = 32 # Average he ight o f a l e a f in the CSMT rep r e s en t i ng

the g l oba l s t a t e
41 s v he i gh t = 12 # State view he ight
42 num thr eads pa ra l l e l = 64 # Pa r a l l e l i z a t i o n f a c t o r f o r in t e rmed ia t e CSMT update

c a l c u l a t i o n
43

44
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45 # GIGA Derived Parameters
46 # Total proving c y c l e s f o r a batch
47 ba t ch p rov i ng cy c l e s = tx pe r ba tch ∗ c y c l e s p e r t x
48

49 # Total proving c y c l e s f o r the block
50 b l o c k p r ov i n g c y c l e s = ba t ch p rov i ng cy c l e s ∗ num batches
51

52 # Average s t a t e view non−empty l e av e s
53 avg sv nonempty leaves = avg state mod tx ∗ tx pe r ba tch
54

55 # Batch aggregat i on t r e e he ight ( log2 ( num batches ) )
56 ba t ch agg t r e e h e i gh t = c e i l ( l og2 ( num batches ) )
57 # Number o f hashes to prove f o r batch s t a t e t r a n s i t i o n s
58 num ha sh e s t o p r ov e s t a t e t r an s i t i on = avg sv nonempty leaves ∗ (2 ∗

avg CSMT height + s v he i gh t )
59

60 # Block s i z e (number o f new ( key , va lue ) pa i r s in the CSMT)
61 b l o c k s i z e = num batches ∗ avg sv nonempty leaves ∗ 2 ∗ HASH SIZE BYTE
62

63 # Phase 1 : Batch Proof
64

65 # Native execut ion time ( p r o o f c y c l e s p e r t x / VM exec freq )
66 na t i v e ex e c t ime = ba t ch p rov i ng cy c l e s / VM exec freq
67

68 # Inc l u s i o n proo f time (2 ∗ s t a t e v i ew he i gh t + avg s ta te nonempty l eaves ∗
avg CSMT height )

69 i n c l u s i o n p r o o f t im e = ( (2 ∗∗ s v he i gh t ) + ( avg sv nonempty leaves ∗
avg CSMT height ) ) ∗ hash prov ing t ime

70

71

72 # Transact ion proo f time ( p r o o f c y c l e s p e r t x / ZKVM prove freq )
73 t x p roo f t ime = c y c l e s p e r t x / ZKVM prove freq
74

75 # Time to merge t r an s a c t i on s in the batch ( log2 ( tx pe r ba tch ) ∗ agg t ime )
76 merge tx t ime = l og2 ( tx pe r ba tch ) ∗ agg t ime
77

78 # Batch proo f time
79 batch proo f t ime = max( i n c l u s i o n p r o o f t ime , na t i v e ex e c t ime + t x p roo f t ime +

wrap prove t ime + merge tx t ime ) + agg t ime
80

81

82 # Phase 2 : Ca l cu la te Al l Inte rmed iate State Trans i t i on s
83

84 # Number o f hashes to execute f o r in t e rmed ia t e CSMT updates
85 num hashes update CSMT = avg sv nonempty leaves ∗ avg CSMT height ∗ num batches
86

87 # Time f o r nat ive in t e rmed ia t e s t a t e update
88 native CSMT update time = ( num hashes update CSMT ∗ nat i v e ha sh exec t ime ) /

num thr ead s pa ra l l e l
89

90

91 # Phase 3 : Prove Intermed iate State Trans i t i on s
92

93 # Time to prove in t e rmed ia t e s t a t e t r a n s i t i o n s ( p a r a l l e l e d )
94 p r o v e b a t c h s t a t e t r a n s i t i o n s t ime = num ha sh e s t o p r ov e s t a t e t r an s i t i on ∗

hash prov ing t ime
95

96 # Phase 4 : Merge Batch State Trans i t i on s p roo f s with Batch Proofs
97 # This i s j u s t agg t ime
98

99 # Phase 5 : Aggregate Fina l Batch Proofs
100

101 # Time to aggregate f i n a l batch proo f s ( log2 ( num batches ) ∗ aggregat i on time )
102 agg r ega t e ba t che s t ime = agg t ime ∗ ba t ch agg t r e e h e i gh t
103

104 # Phase 6 : Block Proof
105

106 # Block proo f time ( aggregat i on o f merge batch proof , no−c o n f l i c t proof , o ld
block proo f )

107 t o t a l b l o c k p r o o f t im e = batch proo f t ime + native CSMT update time +
p r o v e b a t c h s t a t e t r a n s i t i o n s t ime + agg t ime + agg r ega t e ba t che s t ime + 2 ∗
agg t ime

108

109 # Phase 7 : Va l idat i on and d e l i v e r y ac r o s s a l l nodes :
110 b l o c k va l i d a t i o n t ime = ( avg sv nonempty leaves ∗ num batches ∗

nat i v e ha sh exec t ime ∗ num hops / num thr ead s pa ra l l e l ) +
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native CSMT update time
111 b l o c k d e l i v e r y t ime = b l o c k s i z e ∗ num hops / network speed
112 t o t a l b l o c k t ime = t o t a l b l o c k p r o o f t im e + b l o c k va l i d a t i o n t ime +

b l o c k d e l i v e r y t ime
113 network throughput cyc l e s = b l o c k p r ov i n g c y c l e s / t o t a l b l o c k t ime
114 return network throughput cyc l e s
115

116

117 def pr in t throughput s ( s c e n a r i o s ) :
118

119 t ab l e = PrettyTable ( )
120 t ab l e . f i e l d names = [ ”Cycles per tx” , ”Tx per batch” , ”Num batches ” , ”GIGA (

cy c l e s/ms) ” , ”Standard ( c y c l e s/ms) ” , ”Standard Par ( c y c l e s/ms) ” , ”GIGA over
Standard” , ”GIGA over Standard Par” ]

121

122 for i , s c ena r i o in enumerate( s c ena r i o s , s t a r t=1) :
123 c y c l e s p e r t x = s c ena r i o [ ” c y c l e s p e r t x ” ]
124 tx pe r ba tch = s c ena r i o [ ” tx pe r ba tch ” ]
125 num batches = s c ena r i o [ ”num batches” ]
126

127 g i ga cha in cyc l e s ms = g igacha in throughput ( c y c l e s p e r t x , tx per batch ,
num batches )

128 s t andard cha in cyc l e s ms = s tandard cha in throughput ( c y c l e s p e r t x ∗ tx pe r ba tch
∗ num batches , tx pe r ba tch ∗ num batches )

129 s t anda rd cha in cyc l e s pa r ms = s tandard cha in par throughput ( c y c l e s p e r t x ∗
tx pe r ba tch ∗ num batches , tx pe r ba tch ∗ num batches )

130

131 t ab l e . add row ( [
132 c y c l e s p e r t x ,
133 tx per batch ,
134 num batches ,
135 round( g i g a cha in cyc l e s ms ) ,
136 round( s t andard cha in cyc l e s ms ) ,
137 round( s t anda rd cha in cyc l e s pa r ms ) ,
138 round( g i g a cha in cyc l e s ms / s t andard cha in cyc l e s ms ) ,
139 round( g i g a cha in cyc l e s ms / s t anda rd cha in cyc l e s pa r ms )
140 ] )
141

142 print ( t ab l e )
143

144 # Calcu la te cha ins throughputs
145 pr in t throughput s ( [ { ” c y c l e s p e r t x ” : 500000 , ” tx pe r ba tch ” : 20 , ”num batches” :

5000} ,
146 {” c y c l e s p e r t x ” : 1000000 , ” tx pe r ba tch ” : 20 , ”num batches” : 5000} ,
147 {” c y c l e s p e r t x ” : 800000 , ” tx pe r ba tch ” : 64 , ”num batches” : 16000} ] )
148
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