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Abstract. Well-trained deep neural networks (DNN), including large
language models (LLM), are valuable intellectual property assets. To de-
fend against model extraction attacks, one of the major ideas proposed
in a large body of previous research is obfuscation: splitting the original
DNN and storing the components separately. However, systematically
analyzing the methods’ security against various attacks and optimizing
the efficiency of defenses are still challenging. In this paper, We propose a
taxonomy of model-based extraction attacks, which enables us to identify
vulnerabilities of several existing obfuscation methods. We also propose
an extremely efficient model obfuscation method called O2Splitter using
trusted execution environment (TEE). The secrets we store in TEE have
O(1)-size, i.e., independent of model size. Although O2Splitter relies on a
pseudo-random function to provide a quantifiable guarantee for protec-
tion and noise compression, it does not need any complicated training
or filtering of the weights. Our comprehensive experiments show that
O2Splitter can mitigate norm-clipping and fine-tuning attacks. Even for
small noise (ϵ = 50), the accuracy of the obfuscated model is close to
random guess, and the tested attacks cannot extract a model with com-
parable accuracy. In addition, the empirical results also shed light on
discovering the relation between DP parameters in obfuscation and the
risks of concrete extraction attacks.

Keywords: machine learning model security · model obfuscation · trusted ex-
ecution environment · intellectual property protection

1 Introduction

Deep neural networks (DNN) and large language models (LLM) are everywhere,
from cloud services [1,38] to on-device natural language processing such as Alexa
[51]. Meanwhile, privacy and security concerns about these models have attracted
growing attention from academia and industry [4, 32,44].
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Model extraction, when successful, allows an adversary to reconstruct a copy
of the original model with comparable accuracy. The copy usually reflects the real
model architecture and may possess parameters of similar distribution, which
make model extraction a stepping stone for more devastating attacks [14,26,32],
leading to user privacy leakage [45] or unethical business competition [44]. Model
extraction attacks can be categorized into four classes [32]: App-based, device-
based, communication-based and model-based attacks. Decompiling application
files may directly leak the model [44,53], and being able to dump the memory of
a device is essential for a successful device-based attack. Unprotected messages
and execution environments also leak information about the model structure and
parameters [27].

While App-based, device-based and communication-based attacks are ex-
tremely software- and hardware-specific, model-based extraction attack is a gen-
eral threat and inherent for any public model service. A model-based attacker
A may have datasets similarly distributed as the training dataset [28] or collect
input-output pairs by querying the model service [34].

To mitigate model-based extraction attacks, the idea of splitting the origi-
nal model and storing the components in separate execution environments has
constantly inspired previous research [21, 43, 52, 59, 60]. The process of splitting
the original model to generate the components is called obfuscation and the
components exposed to potential attackers are called obfuscated models.

Among these proposals, recent solutions using generic Trusted Execution
Environment (TEE) [39] are attractive for their efficiency and ubiquity [21,59].

In principle, a generic TEE-based obfuscation against model-based attacks
should have the following properties: (1) Security of the model: This may in-
clude effectiveness: the obfuscated model should have an accuracy close to ran-
dom guess and cannot be trained efficiently, and indistinguishability : if not all
the weights are obfuscated, it should be hard for an adversary to distinguish
the obfuscated weights from normal ones; (2) Efficiency in storage and execu-
tion: the storage in the TEE should be sub-linear in the model size, and the
obfuscation process should avoid training whenever possible; (3) Flexibility : the
obfuscation and recovery should be configurable for various models and security
requirements.

Unfortunately, when addressing (1), existing work often oversimplifies or un-
derestimates the capabilities of the attackers. For example, the concrete distribu-
tion of obfuscated weights is ignored in [49, 59] when discussing about pruning
or fine-tuning attacks. In contrast, we show in Section 5.4 that analyzing the
obfuscated weight distribution can lead to efficient model extraction.

In this paper, we make the following contributions.

1. We propose a fine-grained taxonomy of extraction attacks against obfusca-
tion according to the attacker’s capability and resources, including access
to model functionality, knowledge about model architecture, and dataset(s).
With the proposed taxonomy, we systematically examine the existing TEE-
based obfuscations. One of our key findings is that besides architecture
knowledge, the distribution of obfuscated weights greatly impact the effi-
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ciency of model-extraction attacks. Based on our taxonomy, we provide a
framework of existing model-based extraction attacks, and propose a new
fine-tuning attack that is effective against the most recent obfuscation meth-
ods, such as [49,59], confirming our findings.

2. We propose an optimized opfuscation splitting method called O2Splitter.

Fig. 1 provides an overview of O2Splitter. Besides being effective, O2Splitter
only needs O(1)-size storage for the secrets in the TEE, i.e., independent
of model size, and it has quantifiable guarantee for model information leak-
age. O2Splitter does not need any training or filtering to select the weights or
masks (noises). In addition, O2Splitter can be configured flexibly for different
models and noise levels.

3. We evaluate and compare O2Splitter with current obfuscation methods in
terms of its ability to obfuscate DNN/LLM and its resilience against class
C0 and C1 defined in the taxonomy. Our experiments show that O2Splitter
has improved resilience against advanced extraction attacks. In addition, the
results shed more light on the relation between DP parameters in obfuscation
and the risk level of concrete extraction attacks.

Fig. 1. The pipeline of O2Splitter. (a) Obfuscation:M is obfuscated by O2Splitter, then
split into two parts, i.e., the obfuscated model M∗ and model secrets. (b) Inference:
attacker A can try to learn a model M′ from M∗ with a dataset D′, which has a
similar distribution to the original training dataset D.

Outline. The taxonomy of model-based attacks is presented in Section 2, to-
gether with an analysis of existing defenses. The construction of O2Splitter is pre-
sented in Section 3. The implementation and comprehensive evaluation against
various attacks are in Sections 4 and 5. We conclude the paper and discuss
possible future work in Section 6.

2 Related Work and Attack Taxonomy

2.1 Related Work, the Defenses

In this paper, we consider only practical obfuscation for large models, so solutions
with huge communication or computation overheads, such as those using multi-
party computation [17] or fully homomorphic encryption [20], are out of scope.
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Practical obfuscation methods can rely on designated secure hardwares such
as TEE [10, 30, 49]. Optimization algorithms, e.g., search algorithms or compli-
cated training, have also been introduced into obfuscation for efficiency-security
trade-offs [21,43,52,60].

An overview of existing practical obfuscation proposals is in Table 1. When
examining each method, we focus on (i) the type of original models, (ii) the major
idea in the obfuscation method, (iii) how the obfuscated weights are distributed,
and (iv) whether the security analysis in the paper considers an attacker with
datasets related to the training dataset(s). Spintronic-Based [30] is only valid
for Binary Deep Neural Network (BDNN), HardwareObfuscation [10], Progres-
sive Neural Architecture Search (ProgressiveNAS) [21] and DeepObfuscation [52]
are considering Deep Convolutional Neural Network (DCNN), CoreLocker [49],
NNSplitter [59], AdvTraining [43] and Obfunas [60] are more generally looking
into Deep Neural Network (DNN). Key-based and training/learning are common
tools in obfuscation, and the obfuscated weight distributions are usually not well
addressed in these works.

Table 1. Overview of the defenses: original model, obfuscation method, and weight
distribution of the obfuscated model. Data: whether this research assumes that the
attacker has knowledge of the training dataset.

Defense Solutions Original Model Obfuscation Obf. Weight Dist. a Data

Spintronic-Based [30] BDNN Key-based
Weight values
are 0 or 1

HardwareObfuscation [10] DCNN Key-based Not mentioned

ProgressiveNAS [21] DCNN RL-based Not mentioned

DeepObfuscation [52] DCNN Structural Design Not mentioned

CoreLocker [49] DNN
Access Key
Extraction

Sub-Gaussian
distributions

NNSplitter [59] DNN RL-based
Weight distribution

is similar to
original model

AdvTraining [43] DNN Adversarial Training Not mentioned

Obfunas [60] DNN NAS-based Not mentioned

a Obfuscation Weight Distribution
: ”Yes”; : ”No”;

2.2 Taxonomy of Extraction Attacks against Obfuscation

We define extraction attacks as a post-exposure attack, i.e., the attack starts
when the obfuscated model has been leaked to the attacker. To classify the
attacks, we consider three types of resources that an attacker can have: (1) black-
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box queries to the complete model, (2) knowledge about the training dataset,
and (3) knowledge about the model architecture.

Considering whether (1) is available allows us to first classify the attacks into
two groups: passive and active. Then, inside each group, we consider the mildest
(with no knowledge) and strongest versions of attacks (with all knowledge).
Therefore, we define four classes of extraction attacks against obfuscation or-
dered by the attacker’s resources (low to high). The more resources an attacker
has, the easier the extraction is and the more accurate the result can be.

C0. (Obfuscated Model Only) A only has access to an obfuscated model. A has
neither knowledge about the model architecture nor the training dataset.

C1. (Passive with Dataset) A has access to an obfuscated model and has knowl-
edge about the architecture and training dataset. The adversarial knowledge
ranges from basic information about the data format to a usable dataset with
a distribution close to the original dataset.

C2. (Active Type I) In addition to the obfuscated model, A can query the com-
plete model in a black-box way, but A does not know the exact model ar-
chitecture. Note that the query already leaks knowledge about the original
dataset.

C3. (Active Type II) A has all the resources available, as in C2, and complete
knowledge about the model architecture.

We consider the major inference attack paradigms and their variants: Ad-
versarial Query (QR), Norm Clipping (NC) [54], Model Pruning (MP) [24],
and Fine-tuning (FT) attacks [2]. Table 2 summarizes our classification. Each
representative work may use more than one major attack.

Table 2. The Model-based Attack Taxonomy.

Attack Class Attacks Represent. Work

C0 (Obfuscated Model Only) NC, MP Fine Pruning [24]

C1 (Passive with Dataset) NC, MP, FT FT in [2]

C2 (Active Type I) QR, FT

Reverse Blackbox [33]
Hyperparameters [48]

KnockoffNets [34]
ML-Stealer [23]

MAZE [15]
CloudLeak [57]

C3 (Active Type II) QR, FT
SimulatorAttack [28]

Activethief [35]

C3-class attackers are the most resourceful. For example, if highly accurate
pre-trained models and different categories of training data are at hand, Simula-
torAttack [28] can extract the victim model weights with remarkable accuracy. A
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common mitigation is to limit the number of queries that A3 can make, as there
can be frequency-based or distribution-based monitoring for abnormal queries.
Activethief [35] used unannotated public data and made their attack follow a
natural distribution that a query distribution-based monitoring approach cannot
detect.

A C2 attacker A2 can first extract as much information about the model
architecture as possible and then turn to a C3 strategy. For instance, A2 can
employ Reverse Blackbox [33] and Hyperparameters [48] to collect the activation
types, optimization algorithms, and model hyperparameters via queries, and
then A2 can use SimulatorAttack [28] (classified asC3) for the weights. However,
the accumulated error can be much larger than a direct C3 attack. In contrast, if
A2 needs only the functionality of the original model, it can use KnockoffNets [34]
to obtain the functionality without much knowledge of the model family or
training data.

Without querying the victim model, extracting the weights or functionality
becomes much more challenging for C1 attackers. Attackers of the C1 class can
still use FT or re-train the obfuscated model to extract the functionality. For
example, DNNWatermarking [2] provides detailed descriptions of different ways
to fine-tune or re-train a model on a small representative dataset. As pointed
out in [26], the complexity of the dataset used to train the victim model and
the dataset used for the model-extraction attack can greatly affect the attack’s
accuracy.

A C0 attacker A0 only has an obfuscated model. A0 may first filter out the
noisy weights to keep as much usable part of the obfuscated model as possible.
However, the filtering cannot be guaranteed. For example, if the obfuscated
model is a ciphertext generated with an IND-CCA secure encryption scheme
[16], then it only tells A1 about the size of the victim model. Methods like
AdvParams [54] use techniques like ℓ1 weight pruning to partly recover model
performance. Other methods like Fine-Pruning [24] try to clip the weights of
extreme values potentially generated by obfuscation. Unfortunately, these are
some of the most rudimentary attacks that suffer from poor model recovery
performance against many state-of-the-art defense techniques.

Defending against C3 and C2 attacks is a continuous arms race, and authen-
tication, rate-limiting, and query/sample filtering are the mainstream guards
[35, 46, 55]. On the other hand, immunity to C1 and C0 attacks should be the
security bottom line of effective model protection.

With this taxonomy, we can systematically check the security of existing
TEE-based obfuscation against these attacks, give a more precise evaluation
and propose optimization.

Table 3 shows the resilience of the existing solutions against different classes
of attackers. Although training-based parameter search benefits obfuscation ef-
ficiency, the result is not guaranteed to be resilient against C1 attacks (See
our attack experiment in Section 5). Moreover, we show in later sections that
obfuscating the model without training is also possible (See Table 4).
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Table 3. Defenses against different attack classes.

Defense Solutions C0 C1 C2 C3 a

[10, 30,43,49,52,59,60]

[21]

This Work

a Symbols refer to demonstrated defense against : all attacks; : some attacks;
: no attacks;

Table 4. Efficiency comparisons with related work.

Method W.o. Learn.a Const. Storageb Obf. Compl.c

[10, 30,49,59] O(N)

[21, 43,52,60] O(N)

This work O(N)

a Without Learning
b Constant Storage
c Obfuscation Complexity

: ”Yes”; : ”No”; N : the number of model parameters.

3 Construction of O2Splitter

3.1 Threat Model

We consider a C1 attacker A that is defined in Section 2.2 and runs in proba-
bilistic polynomial time (PPT) with the following resources:

R0. A has obtained the obfuscated modelM∗;
R1. A has knowledge about the original training dataset D. For simplicity, we

assume that A knows some D′ that relates to D, but the number of samples
and classes can be quite different.

This threat model is practical since most industrial models, as mentioned in
[49, 59], are variants of public research and adapted for or fine-tuned with a
private dataset D. In this case, A can use the public datasets as D′.

3.2 Tools for Efficient Obfuscation.

DP-like Obfuscation. Since the adversary has access to the obfuscated model,
we consider the obfuscated weights as published data. Thus, we can have quan-
tifiable indistinguishability by following the differential privacy paradigm (DP).
An effective DP mechanism guarantees the hardness to distinguish one value
from another after processing, and this hardness is quantifiable.
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Definition 1 (Differential Privacy, DP [6,29]) We say that a mechanism
M() on data space W has (ϵ, δ) differential privacy if

∀W,W ′ ∈ W : Pr[M(W ) = y] ≤ eϵ Pr[M(W ′) = y] + δ (1)

Definition 2 (ℓ2 Local Sensitivity) For f : W → R ⊂ R, the ℓ2 local sensi-
tivity ∆f,2 of f() is defined as

∆f,2 = max
W,W ′

(||f(W )− f(W ′)||2). (2)

The term ϵ is called the privacy budget, and δ the failing probability, i.e., the
probability that the difference caused by x ̸= x′ goes beyond the factor eϵ.

If w has dimension one, the ℓ1-sensitivity has the same value as ℓ2-sensitivity,
i.e., ∆f,1 = ∆f,2 in this case.

Definition 3 (Gaussian Mechanism for DP [6]) If a function f(W ) of an
input W ∈ W is to be released, the Gaussian release mechanism is defined as

G(W ) := f(W ) +N (0, σ2I) = f(W ) + σN (0, I). (3)

Fixing ϵ and δ, we can derive the standard deviation σ for the Gaussian

mechanism from ∆f,2 as σ =
∆f,2

ϵ

√
2 log 1.25

δ [6]. Here, f() is the identity func-

tion f(W ) = W . Each weight wi ∈W will then be obfuscated by a random noise

mi
$← σN (0, I), where

$← means sampling from.

3.3 Overview and Noise Compression

In O2Splitter, critical obfuscation secrets are derived from a trained model M.
The derived secrets are used to generate and scale the noises. An obfuscated
modelM∗ is computed from the noises andM. After authentication, an autho-
rized user can instruct the TEE to recover M from M∗ and the secrets. This
procedure is illustrated in Figure 1. Details follow.

Noise Compression. Although the Gaussian mechanism can provide excellent
protection, storing each individual noise for obfuscation is infeasible regarding
the scale of contemporary ML models. Thus, we need to securely ”compress”
the presentation of noises. Given a uniform random seed si, we can re-write the
sampling as a deterministic procedure, i.e.,

mi = σN (0, I; si). (4)

Now, the challenge is reduced to computing and reproducing each si, and
the tool is a pseudo-random function.

Definition 4 (Pseudo-random Function, PRF [16]) A pseudo-random func-
tion (PRF) is a pair of two algorithms (FKGen,PRF), where FKGen and PRF are
described below.
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– FKGen(1λ)
$→ K. The non-deterministic key generation algorithm FKGen()

takes the security parameter 1λ as the input and outputs the secret key K.
– PRF(K, x) = y. The deterministic evaluation algorithm PRF() takes the se-

cret key K and a value x in the domain as the input and outputs an image
y.

3.4 O2Splitter and its Theoretical Security.

By using a cryptographic PRF defined above, we can define an invariant between
weight wi and the obfuscated w∗

i as follows:

w∗
i = wi + σN (0, I;PRF(K, IDi)), (5)

where K is the PRF key chosen uniformly at random, and IDi is the index of Wi.
For security and privacy, we require that K never be used for different models
and IDi be unique for each wi.

As long as K is unknown to adversary A, it remains intractable for A to
distinguish PRF outputs from real random values or predict the next output [58],
i.e., each si output by the PRF is computationally close to a real random si.
Moreover, PRF always outputs the same si given the same K and IDi. Thus,
we only have to store K and σ securely in the trusted environment for weight
recovery, i.e., O(1) secure storage.

Details of the assembled O2Splitter can be found in Algorithm 1, where a
complete index is the concatenation of the model index, layer index, and weight
index. The weight recovery is straightforward: use K and σ to compute each mi,
and compute wi = w∗

i −mi. O
2Splitter security is summarized in Theorem 1.

Theorem 1 The obfuscation algorithm defined as Algorithm 1 has (ϵ, δ+2·δPRF)
differential privacy against any efficient C1-class adversary, where C1 is defined
in Section 2, and δPRF is the advantage of any efficient adversary against PRF.

The proof can be found in Appendix A

Comparison with Encryption. Using noise for obfuscation is a more generic
approach and covers the case of encryption. For example, suppose that we instan-
tiate PRF with AES and use XOR instead of scaling and addition in Algorithm
1. In that case, O2Splitter essentially performs encryption with semantic security
(AES-CTR [22], assuming unique IDi), leading to ϵ = 0 and negligible δ for PPT
attackers.

O2Splitter is more efficient and flexible than simple encryption. Existing
blockciphers, such as ASCON [5] and AES [7], have an output block length
of 64 or 128 bits, whereas a typical weight in DNN has only 8 to 16 bits. If each
individual weight is encrypted with a single block to generate the obfuscated
modelM∗, a space about 4-16 times as big as the original model size is needed
byM∗ on disk or in RAM. If multiple weights are encrypted within one block,
the bookkeeping introduces extra overhead, and the configuration can be very
model-specific.
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Algorithm 1 O2Splitter weight obfuscation with noise compression

1: Input: M, Params = (ϵ, δ, λ)
2: Output: M∗, K, σ
3: Algorithm Starts:

4: K
$← FKGen(1λ)

5: Compute ∆f,2 for all the weights

6: Compute σ =
∆f,2

ϵ

√
2 log 1.25

δ

7: for each layer j do
8: for each wi on layer j do
9: Let IDi be the complete index of wi

10: si = PRF(K, IDi)
11: Generate noise mi = σN (0, I; si)
12: w∗

i = wi +mi

13: end for
14: end for
15: returnM∗ = {w∗

i }, K, σ

Moreover, extra expertise is required to balance security and efficiency in
simple encryption-based solutions in practice. The security level of block ciphers
are configured by the key length, which should be at least 128-bit [3]. One may
attempt to sacrifice key lengths for efficiency; for example, use a 64-bit key
instead of 128-bit one. However, a black-box call of block cipher may require
the short key to be padded to 128-bit so that each round function inside a block
cipher is computed as before. Thus, this attempt gives no efficiency improvement,
and reducing the number of rounds can have unforeseeable consequences [11] 4.

In contrast, O2Splitter can be easily configured with different (ϵ, δ, λ) values,
which always guarantee quantifiable privacy and security.

Quantifying Resilience against Attacks. Unlike solutions using only DP,
TEE-based obfuscation does not inherently suffer from DP-specific attacks such
as [12], because the obfuscated model does not work alone and does not to have
any utility. Therefore, the ϵ parameter in O2Splitter can be configured to 0 for
the highest privacy guarantee in terms of DP.

On the other hand, we consider mapping (ϵ, δ, λ) to risks of specific extrac-
tion attacks in a theoretically sound way as an open problem. Although previous
work such as noise calibration [19] and [31] has attempted to map noise scale to
risks of membership inference attacks targeting the training dataset, to the best
of our knowledge, there is no generic and theoretically sound way of mapping
DP parameters or noise scale to the success probability of any model extrac-
tion attack. Thus, we empirically address this mapping in Sections 5.3 and 5.4,
shedding more light on the discovery of the underlying relation.

4 The distinguisher in [11] can tell a ciphertext generated by 4-round 128-bit-key AES
from random bit-strings within O(233.3)-time.
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4 Experiments

This section provides details of the O2Splitter implementation, the datasets and
the baseline models for benchmarking and comparing with current obfuscation
methods.

4.1 Implementation Setup

Datasets. We evaluate and compare the effectiveness of O2Splitter on the
CIFAR-10 [18], which contains 50k training images and 10k test images of di-
mension 32 × 32 and includes 10 classes, and CIFAR-100 [18], which includes
around 60k images equally distributed across 100 classes. We also use Google’s
Speech Commands [50] and PolyAI’s MINDS-14 [9] datasets.

The Speech Commands consists of 65000 one-second audio clips of 32 dif-
ferent short words for the task of Limited-Vocabulary Speech Recognition. The
MINDS-14 spans 14 languages and covers 14 different intents obtained from the
e-banking domain with the task of Intent Classification.

Furthermore, to evaluate the obfuscation of LLMs, we choose the models for
the reading comprehension tasks, and use the SQuAD dataset (Stanford Ques-
tion Answering Dataset) [37], which consists of over 100,000 question-answer
pairs based on more than 500 Wikipedia articles.

Baseline Models. As O2Splitter is a model-independent technique, we consider
DNNs such as VGG-11 [42], MobileNet-v2 [40], and ResNet18 [13] trained on
the CIFAR-10 dataset. We also consider Transformer-based models like XLSR-
Wav2Vec2 5 and Audio Spectrogram Transformer (AST) 6, which are trained on
the MINDS-14 and Speech Commands datasets, respectively. We use and modify
the pre-trained weights but do not alter the model’s overall structure to show
the model-independent nature of the O2Splitter.

We also use O2Splitter to obfuscate Large Language Models. More specifically,
we choose two language models: RobERTa [25] (encoder-only) and GPT-2 [36]
(decoder-only) fine-tuned on SQuAD (Stanford Question Answering Dataset)
for question-answering tasks.

Metrics. For the evaluation of obfuscated models on classification tasks, the
percentage of correct classes predicted by the models, also denoted as top-1 ac-
curacy, is considered. For the generative tasks on language models like question-
answering, we use exact match, which calculates the percentage of predictions
that match the ground-truth answers.

5 https://huggingface.co/anton-l/xtreme s xlsr 300m minds14
6 https://huggingface.co/MIT/ast-finetuned-speech-commands-v2
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4.2 Implementation Details

LLM Fine-tuning. Since models like RoBERTa and GPT-2 have been pre-
trained for generalized masked-language modeling tasks, we fine-tune both mod-
els on domain-specific task like question-answering. We utilize the transformer
library of Huggingface to obtain the pre-trained models of RoBERTa 7 and GPT-
2 8 to fine-tune these models on the SQuAD dataset over three epochs. We adopt
a linear learning rate scheduler with an initial value of 2e − 5. We collect the
optimal models during fine-tuning. Then, we execute obfuscation and attacks on
the same models.

Compared Work. Within existing methods for obfuscation, we select two rep-
resentative solutions. (1) NNSplitter: We choose NNSplitter because it is cur-
rently one of the most effective methods utilizing reinforcement learning to ob-
fuscate neural networks with minimal weight changes. It also demonstrated some
resilience against certain adversarial attacks. However, the current NNSplitter
methodology only works on the classification tasks, so we only compare the
results of NNSplitter on DNNs designed for classification. (2) CoreLocker: We
choose CoreLocker as it is the most recent paper on obfuscation (2024) with
simple yet effective method for weight obfuscation that is compatible with differ-
ent model architectures. Unlike NNSplitter, CoreLocker has also demonstrated
resilience against language models like BERT. Therefore, we compare the re-
sults of model O2Splitter and CoreLocker on classification models, and LLMs for
question-answering task.

5 Results

This section provides a quantitative analysis to evaluate the practical results
of applying O2Splitter to commonly used DNNs. Besides optimized storage, the
performance evaluation is focused on the remaining properties: effectiveness and
flexibility. Moreover, we demonstrate that O2Splitter has resilience against an
adversarial attack, to which NNSplitter [59] and CoreLocker [49], the state-of-
the-art, are vulnerable.

5.1 Basic Effectiveness

Table 5 demonstrates that the accuracy obtained from an O2Splitter-obfuscated
model is close to that of random guesses for all datasets. More specifically, for
the CIFAR-10 dataset, which has 10 classes, the top-1 accuracy for all of the
obfuscated models is close to 10%. For CIFAR-100, which contains 100 classes,
the top-1 accuracy of the obfuscated models is close to 1%. For audio datasets
like the Speech Commands dataset, which contains 32 classes, the top-1 accuracy

7 https://huggingface.co/FacebookAI/roberta-base
8 https://huggingface.co/openai-community/gpt2-medium
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Table 5. O2Splitter was applied to multiple datasets with different DNNs for diverse
classification and question-answering tasks.

Dataset #Classes Model
Baseline
Acc. (%)

Std.
Dev. (σ)9

Obfu.
Acc. (%)

Restored
Acc. (%)

CIFAR-10 10 VGG-11 92.39 0.03 10.14 92.39
ResNet-18 93.07 0.05 9.54 93.07

MobileNet-v2 93.91 0.04 10.00 93.91

CIFAR-100 100 VGG-11 68.77 0.05 1.01 68.77
ResNet-18 71.91 0.08 0.94 71.91

MobileNet-v2 75.45 0.06 0.91 75.45

Speech Commands 32 AST 98.11 0.22 2.63 98.11

MINDS-14 14 XLSR-Wav2Vec2 93.30 1.44 6.29 93.29

SQuAD - GPT-2 67.63 3.77 0.39 67.63
- RoBERTa 85.04 0.23 0.23 85.04

Table 6. Obfuscation Accuracy (%) for different ϵ values for δ = 2−32 in VGG-11,
AST, and XLSR-Wav2Vec2.

Method Obfu. Acc. (%)
ϵ = 0.1 ϵ = 1 ϵ = 10 ϵ = 50 ϵ = 100 ϵ = 200 ϵ = 500 ϵ = 1000

VGG-11 9.99 10.00 10.55 10.14 30.95 80.45 91.45 92.03
AST 3.69 3.53 3.61 2.63 1.71 3.08 96.79 97.18
XLSR 6.80 6.24 6.71 6.29 6.78 7.27 7.63 64.73

of the obfuscated AST model is just 2.63%, which is close to the random guessing
accuracy. Other similar results can also be observed for the MINDS-14 dataset,
highlighting the basic effectiveness of the O2Splitter.

Unlike classification tasks, in question-answering, there is a near-zero prob-
ability to randomly guess a correct answer, especially for a large answer space,
so the obfuscated model’s accuracy should drop to random guess probability,
and our experiments confirm this for O2Splitter. For the question-answering task
for language models, the exact match accuracy for the obfuscated GPT-2 model
drops to 0.39%, and for the obfuscated RoBERTa model, 0.23%. The extremely
low accuracy highlights the basic effectiveness of obfuscating the LLMs with
O2Splitter.

5.2 Flexibility

Table 6 illustrates the obfuscated top-1 accuracy of VGG-11, AST, and XLSR-
Wav2Vec2 models on CIFAR-10, Speech Commands, and MINDS-14 datasets
for different ϵ values. The strength of the noise drops when the ϵ value increases.
O2Splitter reduces the model accuracy significantly after obfuscation. Adjusting
of the amount of noise, i.e., adjusted ϵ, the model accuracy changes correspond-
ingly. The large range of ϵ selections all degrade model accuracy to random
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Fig. 2. Comparison of applying 2(a) clipping attacks and 2(b) pruning attacks on
different methods of obfuscated VGG-11 models evaluated on the CIFAR-10 dataset.

guesses for all three models. The number of parameters and the magnitude of
deviation in each layer of the neural network, which depend inversely on ϵ, are the
primary causes of the variance in performance of various models as ϵ increases.
While VGG-11 recovers its accuracy for smaller values of ϵ, AST and XLSR are
large parameter models with different weight distributions and hence, addition
of noise with small deviations can significantly impact the model performance.

5.3 Resilience against C0-class Attacks

The access to obfuscated model weights provides C0-class attackers with the
possibility to investigate and filter out outliers, which can be an effective way
to extract a functionally comparable model. Model Pruning (MP) and Norm
Clipping (NC) are the most famous types of attacks on obfuscated weights, but
many recent methods [49, 54] only focus on a limited subset of these attacks.
Hence, we aim to analyze the strongest C0-class attacks on existing obfuscation
methods and compare the results of these attacks with O2Splitter.

Norm Clipping (NC) Attack. The NC attack was proposed in [56, 59]. As
the obfuscation method relies on the abrupt magnitude change of some weights
to cause a drop in model performance, NC can clip the (possibly) obfuscated
weights to particular intervals. More specifically, for the set of weights W ∗ of an
obfuscated modelM∗, the clipping interval I can be defined as:

I = [c ∗min {W ∗}, c ∗max {W ∗}], (6)

where c is a coefficient in the range [0, 1], used to determine the range of values
to be clipped.

We compare the recovered accuracy using different clipping intervals to assess
the C0-attack resilience of the O2Splitter with that of the existing methods. The
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experiments are conducted on obfuscated VGG-11 models, and top-1 accuracy
is evaluated on the CIFAR-10 dataset. Figure 2(a) illustrates the result of NC
attacks with different incremental values of c in the range [0, 1]. The results
demonstrate that NNSplitter is exceptionally prone to clipping attacks, reaching
a maximum top-1 accuracy of more than 50%. This can be explained by the
obfuscation strategy of NNSplitter, which pushes the weights of the VGG-11
model to extreme values (See Figure 3(b)). Thus, clipping the extreme values
back to smaller intervals helps increase the accuracy of the obfuscated model.
CoreLocker and O2Splitter exhibit resilience against clipping attacks, showing no
noticeable increase in top-1 accuracy.

Model Pruning (MP) Attack. The MP attack is another effective method to
recover model accuracy by pruning the obfuscated parameters. It has been noted
that MP attack works especially well against noise-based obfuscation algorithms
[49, 54]. Recent methods like CoreLocker have demonstrated resilience against
pruning ratios up to 40% of the total weights.

The experiment setup is similar to NC attack, and obfuscated VGG-11 mod-
els are evaluated on CIFAR-10 dataset. Figure 2(b) shows the result of applying
the pruning attack with different ratios to the obfuscated models using differ-
ent techniques. It can observed that all the methods are completely robust to
the pruning attacks irrespective of the pruning percentage. This provides evi-
dence of the O2Splitter being robust against clipping attacks as it systematically
obfuscates all the weights of the neural networks.

5.4 Resilience against C1-class Attacks.

Current models are trained on large-scale datasets from a variety of sources,
which might be partially collected by attackers to launch C1-class fine-tuning
attacks against the obfuscated models to approximate the original functional-
ity. This is one of the most effective ways to use the knowledge still left in an
obfuscated model. The type of fine-tuning attack used is determined by the
computational power that an attacker has: it may have considerable resources
to fine-tune the whole neural network, or it can only work with limited resources
to fine-tune only the last few layers of the models. This difference is critical in
the context of LLMs, which require extensive GPU resources to be trained. This
section demonstrates four existing fine-tuning methods and presents a detailed
analysis of usage of specific fine-tuning attacks against the discussed obfuscation
methods. Furthermore, we also propose a Selective Fine-tuning (SFT) Attack, to
provide an effective way to attack recent obfuscation methods like [59] to extract
a model with comparable accuracy.

Existing Fine-tuning Attacks. Most of the current literature on model ob-
fuscation like [49,59] does not provide the exact description of the strategy that
a fine-tuning attack uses. To address these inconsistencies, inspired by [2], we
propose four different types of fine-tuning attacks:
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– Fine-Tune All Layers (FTAL): Unfreeze the weights of all layers of the
model and back-propagate through the entire network while training on the
attacker’s dataset.

– Fine-Tune Last Layer (FTLL): Unfreeze the weights of the last layer
only, allowing backpropagation to update only the weights of the last layer.

– Re-train Last Layer (RTLL): Initialize the parameters of the last layer
with weights using Kaiming initialization, and allow backpropagation over
the last layer only while fine-tuning. Many attackers might prefer this method
in case of limited computing budget.

– Re-train + Fine-Tune (RTFL): Initialize the parameters of the last layer
with Kaiming initialized weights, but unfreeze the parameters of all the layers
to allow backpropagation over the entire network. This strategy exploits the
fact that some obfuscation methods only store the weights of the last layer
of the model in the TEE to lower costs and increase execution efficiency.
Although the attacker does not have the weights of the last layer, they can
randomly initialize the last layer, use the rest of the obfuscated model as it
is, and perform fine-tuning on their own datasets.

We evaluate the resilience of O2Splitter and compare the results of these at-
tacks on the victim-obfuscated models obtained via NNSplitter and CoreLocker
on the CIFAR-10 dataset. More specifically, for the case of CoreLocker, as there
are no current public implementations, we follow the steps provided in the pa-
per to implement CoreLocker with ℓ1-norm as the extraction indicator and use
an extraction ratio of 0.1 in our experiments (indicating the ratio of weights
extracted from the neural network).

The results of the four fine-tuning procedures for classification are illustrated
in Table 7. Overall, O2Splitter demonstrates greater resilience to all fine-tuning
attacks than CoreLocker and NNSplitter. Specifically, FTAL shows poor top-1
accuracy with limited fine-tuning data (1%) but achieves the highest accuracy
with larger datasets (10%) due to more comprehensive learning. However, ob-
taining large datasets may be challenging for attackers. FTLL often outperforms
FTAL with smaller fine-tuning datasets due to the effectiveness of fine-tuning
only the last layer with limited data. Both CoreLocker and NNSplitter are vul-
nerable to FTLL with less data. RTLL performs well on NNSplitter but poorly
on CoreLocker, with no significant top-1 accuracy increase on O2Splitter.

RTFL assumes that the final layer’s weights are stored securely. This at-
tack achieves good top-1 accuracy with limited data on CoreLocker but fails
to recover accuracy on NNSplitter and O2Splitter. With larger datasets, FTAL
and RTFL significantly increase the top-1 accuracy of the obfuscated O2Splitter
model. CoreLocker is particularly susceptible to whole-network fine-tuning at-
tacks, while NNSplitter is more vulnerable to last-layer fine-tuning attacks. Our
study demonstrates that O2Splitter exhibits robust defense against these fine-
tuning procedures.

The results of obfuscation and fine-tuning attacks for LLMs on question-
answering tasks are compared in Table 8. An important advantage of O2Splitter
over CoreLocker is its lower exact match accuracy on the SQuAD evaluation
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Table 7. Comparison of different fine-tuning attack methods on obfuscated VGG-11
models evaluated on CIFAR-10 (ϵ = 50, δ = 2−32).

Method Data Obf. Acc. (%) Fine-tune Acc. (%)
FTAL FTLL RTLL RTFL SFT

CoreLocker 1% 23.74 45.21 79.82 44.64 78.51 84.53
NNSplitter 1% 16.81 20.87 91.09 91.12 23.37 91.41
O2Splitter 1% 10.14 11.02 15.42 11.00 11.51 13.27

CoreLocker 5% 23.74 68.50 80.25 78.96 82.95 88.23
NNSplitter 5% 16.81 80.25 90.86 91.03 83.95 91.80
O2Splitter 5% 10.14 28.35 19.30 15.59 16.52 12.93

CoreLocker 10% 23.74 84.74 80.35 80.19 82.88 88.79
NNSplitter 10% 16.81 86.51 90.96 90.83 86.69 90.62
O2Splitter 10% 10.14 48.53 19.91 18.52 44.22 12.59

Table 8. Comparison of different fine-tuning attack methods on obfuscated RoBERTa
models evaluated on the question-answering dataset SQuAD (ϵ = 50, δ = 2−32).

Method Data (%) Obf. Acc. (%) Fine-tune Acc. (%)
FTAL FTLL RTLL RTFL SFT

CoreLocker 1% 2.75 0.82 5.57 3.21 0.55 0.78
O2Splitter 1% 0.23 0.46 0.33 0.27 0.49 0.45

CoreLocker 5% 2.75 0.72 5.98 5.62 0.47 0.77
O2Splitter 5% 0.23 0.50 0.39 0.33 0.47 0.52

CoreLocker 10% 2.75 0.84 6.72 6.42 0.96 0.85
O2Splitter 10% 0.23 0.52 0.39 0.27 0.49 0.53

data. Both CoreLocker and O2Splitter demonstrate resilience against fine-tuning
attacks. FTLL and RTLL are the most effective attacks against CoreLocker,
achieving an accuracy of 6.72% on the 10% data split. In contrast, whole-model
fine-tuning works better on O2Splitter, with FTAL achieving only 0.52% accuracy
on the 10% data split. Overall, while both methods are robust against fine-tuning
attacks, O2Splitter exhibits greater resilience compared to CoreLocker.

Selective Fine-tuning attack (SFT). Besides these fine-tuning attacks, we
also propose a modified fine-tuning attack to compare the resilience of NNSplit-
ter and O2Splitter. Attackers may attempt to recover an equivalent model by
fine-tuning the obfuscated models on a similar but much smaller dataset D′.
Identification of obfuscated weights is easy in NNSplitter, as it clips the obfus-
cated weights between constant maximum and minimum values while perform-
ing gradient updates, as observed in Figure 3. As most of the obfuscated weights
(> 90%) lie on these common maximum and minimum values, it becomes ex-
tremely easy to identify the obfuscated weights and perform fine-tuning on these
particular weights. The SFT Attack utilizes the approximate common maxima
and minima (cmin, cmax) obtained from the obfuscated neural network from
NNSplitter to fine-tune a small subset of the weights on the smaller dataset D′.
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The adversary marks the set of ”obfuscated” weights W ∗ as the ones lying either
in the upper selection region U = [cmax − µ1, cmax + µ2] or the lower selection
region L = [cmin − ℓ1, cmin + ℓ2]. All the obfuscated weights are unfreezed, while
the rest of the weights are frozen to prevent any gradient updates. Subsequently,
the adversary fine-tunes the obfuscated modelM∗ on D′ by optimizing the ob-
fuscated weights to minimize the loss function L. Specifically, the weight update
is defined as:

w′ = w − η
∂L
∂w
⊙Mw, (7)

where Mw describes the mask obtained from W ∗. The intuition behind the
selective gradient update is to preserve the pre-trained model weights, ensuring
faster convergence and lesser computation.

We evaluate and compare the results of this attack on the victim obfuscated
models obtained via NNSplitter, CoreLocker, and O2Splitter on the CIFAR-10
dataset, and only compare CoreLocker and O2Splitter on the SQuAD dataset
for LLMs as previously mentioned. For CoreLocker, as mentioned before, we
follow the steps provided in the paper to implement CoreLocker with ℓ1-norm
as the extraction indicator and use an extraction ratio of 0.1 in our experiments.
Furthermore, we perform an SFT attack on CoreLocker with U = L = [0.0, 0.0],
basically indicating that only weights of 0 values are extracted.

The results of the SFT attack are shown in Table 7. More specifically, the
VGG-11 model fine-tuned on the NNSplitter obfuscated models using just 1% of
the CIFAR-10 dataset is able to attain a top-1 accuracy close to the baseline ac-
curacy (91.41%). In contrast, the recovered model from the O2Splitter-obfuscated
model (VGG-11) only reaches an accuracy of 12.59% when fine-tuned on 10% of
the size of CIFAR-10. The reason for the success of this attack on NNSplitter is
that most of its obfuscated weights are concentrated around two common values,
i.e., cmax and cmin, making the identification easy. Similarly, the SFT attack also
reaches a top-1 accuracy of 84.53% on just 1% when fine-tuned on the model
obfuscated via CoreLocker. SFT shows a much better increase in top-1 accuracy
compared to existing fine-tuning methods like FTAL and FTLL on lesser data
availability, with the exception of O2Splitter

The obfuscation accuracy and the results of the SFT attack on the LLMs
are shown in Table 8. In general, it can be observed that both CoreLocker and
O2Splitter are resilient against SFT attacks, with O2Splitter being slightly more
resilient. For CoreLocker, the fine-tuning accuracy using SFT reaches 0.85%
on the 10% data split, while for O2Splitter, it only reaches 0.53% on the same
split. This provides empirical evidence for the O2Splitter being flexible and robust
against all the mentionedC1-class fine-tuning attacks on models for classification
and generative tasks.

Limited Label Fine-tuning Attack. To assess the case where attackers work
with fewer or different labels, we perform a fine-tuning attack (RTLL) on the
last layer of obfuscated models, using 5% of CIFAR-10 training data with 1) 2
classes and 2) 5 classes, and evaluate on testing data limited to the same classes.
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Fig. 3. Comparison of weight distributions of original VGG-11 (3(a)), Obfuscated
VGG-11 model via NNSplitter (3(b)) and Obfuscated VGG-11 model via O2Splitter
(3(c)). All models are trained on the CIFAR-10 dataset.
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Table 9. Comparison of fine-tuning attack (RTLL) on limited-label availability setting
with 2 and 5 class datasets. (ϵ = 50, δ = 2−32).

Method #Classes Obf. Acc. (%) Fine-tune Acc. (%) ↓
CoreLocker 2 45.23 50.95
NNSplitter 2 51.88 80.10
O2Splitter 2 46.62 47.85

CoreLocker 5 20.22 81.28
NNSplitter 5 23.08 93.54
O2Splitter 5 20.00 21.80

Table 9 summarizes the results of the attack in the limited-label setting. Both
CoreLocker and NNSplitter show vulnerability to fine-tuning attacks, regaining
performance on a subset of original labels. Notably, NNSplitter achieves 80.10%
accuracy when fine-tuned on a 2-class dataset, while CoreLocker recovers 81.28%
accuracy, and NNSplitter achieves 93.54% on the 5-class testing data. In contrast,
the O2Splitter remains robust, limiting the attacker to 21.80% accuracy on the
5-class test dataset. This robustness arises from the obfuscation of ”all” weights
in O2Splitter, whereas CoreLocker and NNSplitter partially obfuscate weights,
preserving the feature representation in the obfuscated models.

5.5 Potential Vulnerabilities and Mitigation

Risk of Misconfiguration. A common pitfall is to use the same {IDi} in O2Splitter
for different versions of one original model. Since the PRF key is a long-term
secret that does not change, the same {IDi} leads to the same noises. In the
worst case of this misconfiguration, where one version of the original model is
also leaked, attacker A can compute the noises and recover every other version.
Effective mitigation is to use a unique model identifier for each model type and
version and include them in each IDi, which makes it intractable to find repetition
in PRF outputs and noises. Rotation of the PRF key can also help.

Vulnerabilities against Other Attacks. Since we assume that the model is recov-
ered completely in the memory for services, A may corrupt the working memory
and find out the original model. Effective mitigation includes memory isola-
tion [8, 41] and sandboxing [47], which are orthogonal to obfuscation methods.

6 Conclusion and Future Work

In comparison with state-of-the-art methods, O2Splitter shows high effectiveness
and strong resilience against C1-attacks in the experiments. In the future, we
seek for a combination of the O2Splitter with model architectural obfuscation.
We would also like to investigate the possible ways to upgrade O2Splitter so that
it can have resilience against C2 and C3 attackers. In addition, formalizing the
relation between O2Splitter-parameters (or noise scale) and the risk of concrete
extraction attacks, in theory, is also interesting.
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A Proof of Theorem 1

Proof. (sketch) If a random function F is used instead of PRF, the DP-guarantee
is exactly (ϵ, δ), where δ is the failing probability of the mechanism. A DP-
adversary A may perform differently in the real-random case and in the PRF-
case. This A can be used to construct a PRF distinguisher B: B simulates the
DP-game [6] for A using its own oracle in the PRF-security game [16], and B
simply outputs what A outputs. But for any efficient B, the probability of B’s
performance change is upper-bounded by the security guarantee of PRF, i.e.,
δPRF. Due to the symmetry of DP, the advantage change of A is bounded by two
times the advantage of B, i.e, the failing probability against A is bounded by
δ + 2 · δPRF. ⊓⊔
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