Scalable Non-Fungible Tokens on Bitcoin

Jordi Herrera-Joancomarti!, Cristina Pérez-Sola!, and Toni Mateos?
! Dept. d’Enginyeria de la Informacié i les Comunicacions,
Universitat Autonoma de Barcelona,
CYBERCAT - Center for Cybersecurity Research of Catalonia,
08193 Bellaterra, Catalonia, Spain
{jordi.herrera, cristina.perez}@uab.cat
2 Freeverse.io & LAOS Network Research
toni@laosfoundation.io

Abstract. This paper presents a protocol for scaling the creation, management, and trading of
non-fungible tokens (NFTs) on Bitcoin by extending bridgeless minting patterns previously used
on other blockchains. The protocol leverages on-chain Bitcoin data to handle all aspects of token
ownership, including trading, while integrating a secondary consensus system for minting and
optionally modifying token metadata. To minimize its on-chain footprint, the protocol utilizes
the OP_RETURN mechanism for ownership records, while complementary NFT-related actions
are stored on the LAOS blockchain. All data remains permanently on-chain, with no reliance on
bridges or third-party operators.

Keywords: Bitcoin - NFT - Bridgeless Minting - LAOS.

1 Introduction

Bitcoin’s blockchain [12] is the most secure and resilient decentralized ledger deployed to date, operating
continuously since its inception in 2009. While primarily serving as a peer-to-peer digital currency,
Bitcoin’s robust infrastructure can also function as a decentralized record-keeping system, extending
its utility beyond simple payments.

Efforts to enhance Bitcoin’s programmability have led to the development of off-chain solutions
([15], [4], [11], [2], [9], [10]), which typically anchor partial or compressed snapshots of transactional
data directly to Bitcoin’s blockchain while keeping the bulk of data off-chain. However, the overall
security of these solutions is severely compromised by the specifics of how this on-off-chain interplay
is designed.

Meanwhile, alternative approaches, like Inscriptions [17], Runes [18], and BRC-20 tokens [21], store
all relevant data directly on-chain, ensuring full transparency and decentralization. However, these
methods face inherent limitations in scalability and cost due to Bitcoin’s block size constraints and
the increased demand for block space.

The protocol presented in this paper follows an always-on-chain approach, providing a scalable
solution for the creation, management, and trading of non-fungible tokens (NFTs) on Bitcoin, signif-
icantly improving upon Inscriptions. Instead of inscribing NF'Ts on individual satoshis, it utilizes an
OP_RETURN mechanism similar to that of Runes. The protocol optimizes data storage on Bitcoin
by keeping on it only the information that adds more value to the network, namely, the data required
to fully determine and transfer ownership of each token on-chain. Leveraging the Bridgeless Minting
pattern ([1], [14]) previously used on other blockchains, the protocol stores the bulk of the data, partic-
ularly asset metadata, on-chain within a separate consensus system, the LAOS Network, an Ethereum
Virtual Machine (EVM)-compatible blockchain that operates as a parachain on Polkadot [24]. As a
result, its security is directly ensured by one of the most robust consensus systems, providing strong
guarantees for Data Availability (DA) and the prevention of invalid transactions, as all transactions
are explicitly verified by Polkadot’s relay chain.

LAOS’s EVM compatibility adds programmability to NFT metadata management without inter-
fering with Bitcoin’s role in handling ownership. This allows NFT creators and users to define the
logic that best suits their application. For example, they can choose to keep all metadata on-chain, set

2 J. Herrera-Joancomarti, C. Pérez-Sola, T. Mateos

up collections with a fixed supply, or establish rules governing who can mint and when. Additionally,
they can enforce metadata immutability or implement smart contracts to enable controlled updates.
The latter is particularly relevant, as it allows a single NF'T registered on Bitcoin to undergo metadata
modifications (e.g., reflecting its owner’s in-game usage) in a structured and traceable manner, with
all updates recorded as part of DA on LAOS.

Regarding Bitcoin’s role in ownership management, collection creation is fully permissionless, and
trading requires explicit Bitcoin signatures from rightful owners, with P2PKH, P2WPKH and P2TR
being supported schemes. Additionally, bulk transfers of a potentially large number of NFTs, even
across multiple collections, are supported. This includes the atomic inclusion of both NFT transfers
and Bitcoin payments, ensuring trustless execution of sales and purchases. Throughout the paper, we
shall refer to the presented protocol as BRC721 (Bridgeless or Bitcoin ERC721), due to its similarities
to the well established ERC721 standard for NFTs across EVM chains.

The main contribution of this work is thus the design of the BRC721 protocol, that enables se-
cure and scalable NFT management on Bitcoin while minimizing on-chain footprint. Unlike existing
solutions, our approach maintains full on-chain ownership while offloading metadata management to
a separate but verifiable consensus system. Additionally, we provide a description of the protocol’s
architecture and detailed specification, along with a thorough analysis of its security properties.

The rest of the paper is organized as follows. Section 2 presents the state of the art of Bitcoin
protocols beyond payments. Section 3 describes the overall protocol, with the concrete architecture
detailed in Section 4. The protocol specification is presented in Section 5, followed by its security
analysis in Section 6. Finally, Section 7 summarizes its potential impact and novelty.

2 State of the art

Bitcoin [12], originally designed as a decentralized monetary system, has evolved into a foundational
layer for various protocols that enable asset deployment and management. Protocols such as Colored
Coins [3], Omni Layer [22], Counterparty [5], Open Assets [19], RGB [16], Ordinals [17], BRC-20 [21],
Taro [10] and Runes [18], among others, highlight the versatility of Bitcoin’s infrastructure. Each of
these protocols extends the functionality of Bitcoin to support use cases such as tokenization, as-
set management, and digital artifacts, leveraging the blockchain’s robust security and immutability.
Despite their differences in implementation, they all share a reliance on Bitcoin’s existing key infras-
tructure, particularly the keys associated with UTXOs (Unspent Transaction Outputs), which are
integral to asset control and wallet compatibility.

By associating assets with the keys that control UTXOs, these systems integrate seamlessly with
Bitcoin wallets, simplifying user adoption. Wallets that manage standard Bitcoin transactions can
be extended to support these protocols with minimal modifications, allowing users to handle assets
like tokens or NFT's alongside their regular Bitcoin holdings. This reliance on Bitcoin’s cryptographic
architecture ensures that these protocols remain decentralized, secure, and interoperable, making them
a natural extension of Bitcoin’s capabilities.

The protocols listed above vary significantly in how they embed and manage information on the
Bitcoin blockchain. Early systems such as Colored Coins, Omni Layer, Open Assets and Counterparty,
and even some new proposals such as Runes, rely on the OP_RETURN field to embed metadata directly
into Bitcoin transactions. In contrast, newer protocols like RGB, Taro Protocol, and BRC-20 utilize
Bitcoin’s advanced features, such as Taproot, to store cryptographic commitments within Merkle tree
leaves. A different approach is taken by Ordinals since the data is stored in the witness field of the
inputs.

Each of those described methods to store information on the Bitcoin blockchain have distinct
benefits and drawbacks. OP_RETURN is simple and widely supported, allowing protocols to store
small amounts of data (up to 80 bytes) directly in Bitcoin transactions. This approach allows for
easy implementation and clearly separates data from spendable outputs. However, OP_RETURN has
limitations in scalability, as it consumes block space and sacrifices privacy, with all data fully exposed
on the blockchain. In contrast, Taproot leaves, used in modern protocols, perform better in terms
of scalability and privacy. By storing cryptographic commitments within Merkle tree leaves, Taproot

Scalable Non-Fungible Tokens on Bitcoin 3

minimizes the on-chain data footprint and supports advanced features like selective data disclosure and
complex scripting. However, implementing Taproot-based solutions requires greater technical expertise,
since it adds new levels of complexity by relying on off-chain data mechanisms. Table 1 summarizes
the benefits and drawbacks of each approach.

Feature OP_RETURN Taproot Leaves

Data Capacity Limited (80 bytes max) Efficient (cryptographic commitments)
Privacy Low (data is fully exposed) High (selective disclosure)
Flexibility Limited (basic metadata storage)| High (complex contracts, multi-asset)
Ease of Use Simple, widely supported Complex, requires advanced tools

Table 1. Comparison of OP_RETURN and Taproot Leaves for Storing Information

Although our goal to develop a lightweight non-fungible token over Bitcoin could be achieved using
both approaches, and including information in taproot leaves seems to have more benefits, we have
an extra goal of having full data availability on-chain. Such property discards using taproot leaves to
store information since only commitments can be stored in taproot leaves and the information itself has
to be stored off-chain. For that reason, we use the OP_RETURN approach to store the information
in the Bitcoin blockchain, minimizing the information footprint of our proposal in that particular
blockchain, for ownership purposes, and complementing the data with the information stored in the
LAOS blockchain, for storing other specific actions on the NFTs.

2.1 The LAOS blockchain

The LAOS Network [1,14] is a Layer-1 blockchain built as a Parachain on Polkadot, with its core value
proposition being the ability to offload certain types of transactions from other blockchains without
bridges.

This paper focuses on a specific application called Bridgeless Minting, which enables the minting
and evolution of Non-Fungible Tokens (NFTs) to be offloaded from a source consensus system to
the LAOS Network. At the same time, all aspects related to the ownership of these NFTs, including
trading, lending, and DeF1i, remain fully on-chain within the source consensus system.

Since September 2024, the LAOS Network has been utilized to scale the minting and evolution of
NFTs from major EVM-compatible chains, including Ethereum and Polygon.

Bridgeless Minting introduces a clear separation of roles for applications like video gaming or Real
World Assets (RWA). Developers of these applications can mint at a larger scale without congesting
Ethereum or incurring native gas fees by offloading to a purpose-built consensus system that leverages
Polkadot’s underutilized bandwidth. Meanwhile, end users, such as gamers or RWA traders, can con-
tinue trading as usual on Ethereum, avoiding the need for bridges or wrapped assets and remaining
where liquidity resides.

Bridgeless Minting utilizes the concept of Universal Location (UL), introduced in the third revision
of the Cross-Consensus Message Format (XCMv3) within the Polkadot network [25,26]. Earlier versions
of XCM have been used within Polkadot for years, enabling its sovereign Parachains to reference
various resources from other Parachains. This has facilitated secure cross-chain transfers and even
remote execution. The third revision extends part of this functionality to generic consensus systems,
not limited to those within Polkadot.

As detailed in the LAOS Whitepaper [1], Bridgeless Minting establishes a fully permissionless
pattern in which all data remains permanently available on-chain, eliminating the need to rely on
external parties for Data Availability. The source blockchain manages the on-chain ownership of unique
(non-fungible) NFTs, or slots, which point via Universal Location (UL) to specific locations on the
LAOS consensus system.

On EVM-compatible networks, where this pattern has been implemented so far, the ownership
logic on the source EVM chain typically follows standardized patterns, particularly those defined by
the ERC721 standard [8] and its corresponding interface.

4 J. Herrera-Joancomarti, C. Pérez-Sola, T. Mateos

This paper extends this pattern to Bitcoin. Since the core Bitcoin protocol lacks support for smart
contract logic, the extension builds on previous work with off-chain solutions, choosing an approach
based on OP_RETURN as the most suitable, as discussed above.

3 Bridgeless Minting on Bitcoin

To extend LAOS token management to Bitcoin, we need to define how Bitcoin addresses may take
control of LAOS token ownership. As discussed in Section 2.1, LAOS is an EVM-compatible network,
where public addresses are 160-bit identifiers. This applies to both smart contract addresses and
Externally Owned Addresses (EOAs), the latter being derived cryptographically from corresponding
private keys.

Token registration on Bitcoin requires an initial reference to a smart contract on LAOS, to register
a collection. This step is then followed by subsquent token registrations, which require the usage of an
address mapping between public key hashes on Bitcoin and EVM addresses. The first step is detailed
in Section 3.1, while the address mapping is covered in Section 5.1.

The remainder of this section provides a detailed explanation of the process.

3.1 Bitcoin collection registration

A collection on LAOS is a smart contract, associated with an EVM address LAOScollectionAddress,
which implements the minimal functionality of minting non-fungible tokens (NFTs). Additionally, it
may support token updates, though this is optional. The logic and permissions governing these op-
erations are not constrained by the protocol presented here and can be tailored to fit any business
requirements. For instance, a simple implementation could involve a smart contract that mints a pre-
defined set of NFT's, with all its data on-chain, while ensuring that no further minting or modifications
can be performed by any address.

Once a collection is created on LAQOS, it can be registered in the Bitcoin blockchain. The idea
is to map a LAOScollectionAddress with a BitcoinCollectionID. The register collection action is
performed through a Bitcoin transaction (referred to as a register collection transaction type).
Anyone can create such a transaction, even if he is not the owner of the corresponding collection
on LAOS. It is an out-off-band mechanism that determines which is the ’proper’ map between a
LAOScollectionAddress an a BitcoinCollectionID. In fact, multiple maps can be posted in the
Bitcoin blockchain that assign different BitcoinCollectionID to the same LAOScollectionAddress.
Implicitly in the collection registration, a token pre-mint is performed. BRC721 tokens are designed
in such a way that they are already pre-minted to a specific 160 bit address. Every collection has, by
default, 296 tokens that are pre-minted to addresses identified by 160 bits. The token identifier encodes
such relation and it is defined as the bitwise concatenation of the h160Address with an arbitrary 96
bits integer, the slotNumber:

TokenID = uint256(uint96 slotNumber || uint160 hi60Address) (1)

The BitcoinCollectionID is implicitly defined as blockHeight:txIndex. Therefore, the identifier is
established when the transaction is confirmed (and thus has a position inside a block).

3.2 Mint tokens on LAOS

BRCT721 tokens are minted on smart contracts governing collections on LAOS. As pointed out in
Section 3.1, the collection smart contract contains the authorization logic to mint tokens in such a
collection. Obviously, minting tokens for a collection can only be performed once the collection is
created on LAOS.

In the minting process, BRC721 tokens associated with the same h160Address are differenciated
by selecting different values for slotNumber, and hence, generating unique token identifiers TokenID
by using the mapping in Equation 1.

Scalable Non-Fungible Tokens on Bitcoin 5

Tokens outside the context of their collection smart contract must be referred to by the pair
(LAOScollectionAddress, tokenID).

3.3 Token ownership registration in Bitcoin

In a standard flow, BRC721 tokens are first minted on LAOS and then registered on Bitcoin. In the
first step, any entity with minting permissions for the relevant LAOS collection, whether an EOA or
a smart contract (e.g., a multisig), chooses the h160Address of each token as its initial owner. When
minting multiple tokens for the same initial owner, different slotNumber values shall be used.

Once a token is minted on LAOS, it can be registered on Bitcoin by its initial owner. Specifi-
cally, only the owner of the Bitcoin address (as determined by the mapping detailed in Section 5.1)
corresponding to the h160Address encoded in the tokenID can register the token on Bitcoin.

Registering on Bitcoin a BRC721 token that has not yet been minted, or may never be, results
in UTXOs containing null Bitcoin NFTs, i.e., NFTs without metadata, rendering them likely useless.
This is analogous to ERC721 tokens on Ethereum that reference external URIs that cannot be accessed
or fetched. However, unlike Ethereum, where unreachable metadata can lead to permanent loss of asset
information, LAOS is a public, permissionless consensus system, ensuring that if a token was originally
minted on-chain, its data, including the minting event, content, and timestamp, is fully traceable and
verifiable.

Ownership registration in Bitcoin is performed through a token ownership registration trans-
action type. To ensure that only the owner of the h160Address defined in the tokenID can perform
such registration, the token ownership registration transaction type includes an input that unlocks the
output associated with the h160Address. Outputs of such a transaction determine the new owner of
the registered token. From that moment on, ownership of the token is encoded in a UTXO (whoever
can spend the UTXO will be the new owner, and will thus have the ability to further transfer the
tokens to other outputs).

Such registration mechanism allows registering the owner of a single token or multiple tokens at
once. Notice that token ownership registration implies transferring the token from the h160Address
to a new UTXO, that can encode arbitrary conditions for being unlocked. Of course, such new UTXO
could also be controlled by the original owner, ensuring that the effective ownership does not change
in this initial registration, although this is not required. For example, a new UTXO might not be
controlled by the registering account if an NFT is sent to someone while being registered, optionally
including a payment in the same transaction. Furthermore, notice that after the token ownership
registration, the semantics of tokenID codification continue encoding the original owner (TokenID =
uint256 (uint96 slotNumber || uint160 h160Address)), but this h160Address is no longer the
owner of such token.

Once a BRC721 token ownership registration has taken place in Bitcoin, we can refer to a LAOS
NFT Bitcoin output. A LAOS NFT Bitcoin unspent output, UTXOy, is a Bitcoin output that holds
a LAOS NFT (or a group of them). We can also refer to the UTXOp, set, the subset of all Bitcoin
UTXO that owns LAOS NFTs.

3.4 Token ownership transfer in Bitcoin

Once a BRC721 token has been registered on the Bitcoin blockchain, it can be transferred between
Bitcoin UTXOs. Such transfer can be implicit or explicit. On one hand, in an implicit transfer,
a UTXOy is spent in a transaction and all the NFTs owned by such UTXO are moved to another
one. On the other hand, the explicit token ownership transfer is performed using a Bitcoin mix
transaction type. In such a transaction, more granularity is provided and multiple tokens of a single
UTXO or different ones can be repacked into other UTXOs. The outputs of such a transaction will
determine the new owners of the tokens. Token ownership transfer does not necessarily imply economic
exchange between the sender and receiver of the token, although it is possible. In fact, the explicit
transfer is intended to package multiple tokens in a specific Bitcoin UTXO, so the new package can be
traded in full at a later time. The implicit transfer is the preferred option for token sales.

6 J. Herrera-Joancomarti, C. Pérez-Sola, T. Mateos

3.5 Token sale in Bitcoin

In a BRC721 token sale, the ownership of one or multiple NFTs is transferred in exchange for Bitcoins.
There is no special transaction type to perform a sale, as it can be performed through an implicit token
ownership transfer. In fact, the token sale is performed by an off-chain protocol that crafts a proper
transaction that executes such an implicit token ownership transfer. The off-chain protocol between
the seller and the buyer creates a Bitcoin transaction where both ownership transfer and economic
exchange are atomic in the sense that both are executed or none of them takes place.

3.6 Rebase

For tokens belonging to collections that have been marked as rebaseable (during their registration in
the Bitcoin network), their owners are allowed to change their LAOScollectionAddress. Without this
transaction type, the roles of NFT collection creators/maintainers and NFT owners remain entirely
separate. Collection creators/maintainers retain the right to mint and, if allowed by their smart contract
logic, modify NFTs, whereas owners can trade, lend, and perform other ownership-related operations.

Rebase transactions allow NFT owners on Bitcoin to determine the content of their NFTs and define
the logic governing its modification. A simple paradigmatic example is the blockchain equivalent of
the one-million-pizel image, which gained viral popularity in the early days of the internet. Bridgeless
Minting enables the creator of such a canvas to mint one NFT for each of the 1M pixels on Bitcoin.
Through rebase transactions, users who acquire these pixels on Bitcoin can modify their appearance
permissionlessly by updating the color metadata on the LAOS Network.

This approach extends to various use cases, including implementations of decentralized naming
systems, such as the Sats Domain Protocol [13], which is designed to allow domain names to evolve
while remaining owned by their holders.

4 Architecture

Our architecture is based on a well-defined syntax that specifies the various actions supported by the
protocol. For each specific action, the corresponding syntax is encoded in the OP_RETURN field of a
Bitcoin transaction. This encoding allows actions such as collection registration, ownership registration,
transfers or other operations to be recorded immutably on the Bitcoin blockchain. By leveraging the
OP_RETURN field, we follow a sustainable approach that in the blockchain ecosystem is translated
to a minimalistic storage model, in which we reduce as much as possible the information included in
the blockchain, in this case the Bitcoin blockchain. Furthermore, this sustainable approach ensures
that the information included in the Bitcoin blockchain does not interfere with the standard use of the
blockchain. To that end, we only include information in OP_RETURN outputs, which are never stored
in the UTXO set. Furthermore, every action involves only a single OP_RETURN, even if multiple
tokens are managed.

At the core of this architecture lies the indexer, a pivotal component responsible for monitoring
the blockchains and ensuring the seamless operation of the protocol (Figure 1). The indexer consists of
three main modules. The Bitcoin and LAOS modules are responsible for interacting with and tracking
relevant transactions and events from their respective blockchains; each operates independently and is
fully decoupled from the other. Sitting atop them, the Indexer Logic module, which can be designed to
be stateless if desired, handles queries that require merging information from both tracking modules.

4.1 The Bitcoin Module

The indexer’s Bitcoin module scans Bitcoin transactions to identify those containing the specific
syntax defined by the protocol, embedded in the OP_RETURN field. Once identified, it decodes the
syntax to determine the actions that need to be executed, such as collection registration, ownership
registration, or token transfers. This process ensures the protocol’s rules are followed, and token-related
operations are accurately interpreted and tracked. By acting as the operational backbone, the indexer

Scalable Non-Fungible Tokens on Bitcoin 7

g
-3

User Marketplace
/A
P!

o
i

¢

Indexer

[J
==
=== Indexer
- ’: logic
M

N

A

;
b

Indexer's Indexer's

Bitcoin
module

module

__>1

c-

Bitcoin LAOS
blockchain blockchain

Fig. 1. High-level architecture of an indexer designed to operate within the protocol. The LAOS and Bitcoin
modules interact directly with their respective blockchain nodes, parsing relevant data and maintaining an
off-chain state. The Logic module communicates with these modules to provide third parties with queries that
require merging information from both chains.

transforms raw blockchain transaction data into actionable insights, enabling the efficient management
of token activities.

One of the indexer’s primary tasks is to maintain an accurate history of token-related transactions.
It tracks operations by parsing transaction outputs and decoding protocol-encoded data, such as to-
ken identifiers or destination addresses. This ensures that the entire transaction history of a token is
reconstructed and token ownership is consistently updated. The indexer aggregates and reconciles all
token-related activities, enabling it to maintain up-to-date information on the current ownership of
BRCT721 tokens linked to Bitcoin addresses. This functionality allows users to view token ownership de-
tails, and transaction histories without performing resource-intensive blockchain rescanning. Moreover,
the indexer facilitates seamless integration with wallets by presenting this information in an efficient
and accessible format, bridging the gap between raw blockchain data and user-friendly interfaces.

It’s important to note that the indexer’s Bitcoin module does not interact with the LAOS blockchain
nor any other external information sources (different from the Bitcoin blockchain). Therefore, the
module parses and stores all transactions identified as belonging to the protocol, regardless of the
specific semantics associated to them. For instance, a transaction that registers a collection in Bitcoin
before the corresponding LAOS collection has been created or different transactions that register the
same LAOScollectionAddress in Bitcoin will also be tracked by the module. Then, the behavior
of the indexer in each conflicting situation is the responsibility of the Logic module, which can be
configured by the user? and external sources of verification can be added to the process. This ensures
that configuration changes can be made without re-scanning the whole Bitcoin blockchain, a costly
procedure.

Beyond its tracking and decoding capabilities, the indexer plays a critical role in optimizing queries
and improving the protocol’s usability. By maintaining a comprehensive and continuously updated
database of token data, it eliminates the need for individual users or nodes to repeatedly scan the
blockchain, significantly enhancing efficiency. The presence of multiple independent indexers further
ensures decentralization and redundancy, avoiding single points of failure while aligning with Bitcoin’s
trustless and decentralized principles. Additionally, the indexer connects external systems, such as
wallets and token management platforms, ensuring that all token-related activities are synchronized

3 An example of this situation is given in Section 5.2.

8 J. Herrera-Joancomarti, C. Pérez-Sola, T. Mateos

and managed according to the protocol’s rules. By centralizing the interpretation and dissemination
of blockchain data, the indexer is indispensable for enabling seamless integration, robust token man-
agement, and efficient operation across the ecosystem.

4.2 The LAOS Module

Most of the features described for the Bitcoin module also apply to the indexer’s LAOS module.
Like the Bitcoin module, it operates in a fully decoupled manner and optimizes queries to enhance the
protocol’s usability.

There are, however, two key differences. First, it does not need to track token ownership transfers;
instead, it only monitors the minting of tokens and, if permitted by the specific smart contract logic
of a collection, modifications to their content. Since all BRC721 token transfers and other ownership-
related transactions are fully governed on-chain on Bitcoin, smart contracts on LAOS that adhere to
the protocol outlined in this paper must not implement transfer, lending, or similar functionalities.
Even if they do, the LAOS module (and the indexer Logic module) would entirely disregard them.

Second, since LAOS is an EVM-programmable blockchain, the indexer does not rely on any off-
the-shelf parsing protocols. All necessary data tracking is achieved through on-chain transactions that
explicitly adhere to the Ethereum Virtual Machine specification [23].

4.3 The Logic Module

The Logic module is responsible for merging information from both the Bitcoin and LAOS modules
and serving it to applications, users, or developers utilizing the protocol presented here.

While a detailed proposal for the Logic module’s behavior is outlined in the following sections, we
first provide a high-level example to illustrate its functionality.

One example is a marketplace that wants to display all assets minted within a specific Bitcoin
collection. Given a query with a BitcoinCollectionID, the Logic module first queries the Bitcoin
module to verify whether that collection exists on Bitcoin. If the Bitcoin module confirms its existence,
it returns the associated LAOScollectionAddress. The Logic module then queries the LAOS module to
retrieve all NFTs minted under that LAOScollectionAddress, which responds with the corresponding
TokenId values and metadata.

If the marketplace also wants to display the current owners of these NFTs, the Logic module
proceeds by querying the Bitcoin module for the ownership status of each TokenId. It receives responses
for a subset of them: those that have been either registered or traded following the protocol described
below. For any TokenId that is not part of this subset, the Logic module returns the initial owner,
which can be derived directly from the TokenId using the address mapping detailed in Section 5.1.

All complexity surrounding blockchain reorgs and data parsing lies beyond the Logic module. In
fact, it can be implemented in a stateless manner if desired, simply providing query responses based
on the latest canonical chains as defined by the Bitcoin and LAOS consensus protocols.

5 Protocol specification

5.1 Address mapping and encoding

When dealing with EVM compatible addresses, the 160 bits identifier assigned to a BRC721 token,
as defined in Equation 1, can be directly identified with an EVM address, so the bijection function
between an EVM compatible address and the LAOS asset identifier can be defined by the identity func-
tion. However, Bitcoin addresses have a different structure than EVM addresses, so a correspondence
between BRC721 token identifiers and Bitcoin addresses needs to be defined. The address mapping
is defined in this section (as well as the associated means of proving ownership) and later used in
Section 5 to fully specify the protocol.

Scalable Non-Fungible Tokens on Bitcoin 9

In the Bitcoin network, ownership of a BRC721 token is assigned to a 160-bit Bitcoin scriptPubKey
hash (referred to as h160Address). Owner authentication is mainly performed using digital signatures,
though other verification methods may also be used.

Specifically, to prove ownership of a Bitcoin h160Address h, the prover needs to spend a UTXO such
that h = H160(scriptPubKey). In the Bitcoin context, H160 corresponds to applying the RIPEMD-
160 hash function to the result of applying the SHA256 function to the input, that is, H160(z) =
RIPEMD-160(SHA-256(x)).

Ownership can thus be proven by spending any UTXO. Typically, spending a UTXO requires
providing a digital signature that validates against the public key encoded in the UTXO. This signature
may be either ECDSA or Schnorr, and be included in the transaction’s inputs (scriptSig) or witness
field, depending on the script type.

For instance, in a P2TR output, the scriptPubKey in the output contains the taproot public key,
preceded by the opcode OP_1, which signals SegWit version 1. Spending such an output proves owner-
ship of the h160Address h = H160(0P-1 <PK>). Using P2TR enables multiple ownership verification
alternatives. The standard approach is a key path spend, where ownership is proven by providing a
Schnorr signature specified in the witness field:

witness: <8>
scriptSig: (empty)

scriptPubKey: OP_1 <PK>
(0x5120{32-byte-public-keyl})

Alternatively, a script path spend allows ownership to be demonstrated using a custom locking script
encoded within the tweaked public key. These custom scripts may also involve Schnorr signatures, but
can also enforce any arbitrary validation rules expressible in Bitcoin Script.

Bitcoin encodes output scripts in the form of Bitcoin addresses. While any valid Bitcoin address
can be decoded into an h160Address, reconstructing a Bitcoin address from an h160Address requires
knowledge of the original scriptPubKey (since hash functions are one-way). Given the scriptPubKey,
the corresponding Bitcoin address can be derived based on the specific script type.

5.2 Bitcoin Module specification and syntax

This section details the exact syntax for each defined action of the protocol, as well as the operations
performed by the Bitcoin Module on Bitcoin transactions that contain protocol-related information.

Register a collection. Registering a collection on Bitcoin is carried out through a register col-
lection transaction type. Since collection registration on Bitcoin is permissionless, there are no
restrictions on the inputs of a register collection transaction.

The Outputp is an OP_RETURN that encodes the registration as follows:

— OP_15

— SERIALIZATION OF:
e REGISTER_COLLECTION_FLAG
e LAOScollectionAddress
e rebaseable (bool)

where REGISTER_COLLECTION _FLAG = O signals that the syntax adheres to that of a register collection
transaction.

When processing such a transaction, the Bitcoin Module must execute the following steps. If any
verification step fails, the Bitcoin Module must discard the entire transaction:

1. Discard all transaction inputs.

10 J. Herrera-Joancomarti, C. Pérez-Sola, T. Mateos

2. Discard all transaction outputs except Outputy.

. Verify the OP_RETURN syntax of Outputg.

4. Assign a BitcoinCollectionID to the newly created collection, determined by the transaction
ID of the register collection transaction. This assignment occurs once the transaction has been
confirmed in the blockchain, using:

w

BitcoinCollectionID = BlockID:TxIndex. (2)

5. Store the pair (BitcoinCollectionID, LAOScollectionAddress), establishing the link between
the newly created collection and its corresponding LAOS collection.

Let us reiterate that the Bitcoin Module operates independently of whether a smart contract exists
on LAOS at LAOScollectionAddress. While the standard flow generally involves creating a collection
on LAOS before registering it on Bitcoin, the Logic Module is responsible for merging information
from both blockchains.

Token Ownership Registration. BRC721 token ownership registration is carried out through a
token ownership registration transaction type. The purpose of this transaction is to register one
or more NFTs within a series of m UTXOs, ensuring that each NFT is owned by the lock script of its
respective UTXO and can potentially be traded.

This transaction must include at least one input and at least m + 1 outputs:
TX = { Inputy } {Outputg, Outputy, ---, Output,, }

All inputs beyond Inputq and all outputs beyond the first m + 1 are discarded by the protocol.

The first input must spend an output whose h160Address corresponds to the last 160 bits of a
TokenID (see Section 5.1 for details).

Outputy contains an OP_RETURN that encodes the BitcoinCollectionID and specifies which
of the 2% tokens associated with that address are registered in this transaction. Once a register
collection transaction is accepted, every h160Address becomes the initial owner of 20 tokens within
that collection, with each TokenId uniquely determined by the pair (slot number, h160Address) as
per Equation (1).* Thus, the initial owner of a set of tokens can fully specify which tokens to register
on Bitcoin by simply providing a set of slot numbers.

We introduce the concept of a slot range, S, which represents a list of consecutive slots encoded by
the first and last slot indices. It is defined as S = (a;, «j), where 0 < a; < o < 2% If a slot contains
only a single element, it can be represented using a single index, S = «.

The OP_RETURN contains:

— OP_15
— SERIALIZATION OF:
e REGISTER_OWNERSHIP_FLAG
e BitcoinCollectionID
o 1: (51,"' ,Sz)
[
[]

m: Sy, Si)
where REGISTER_OWNERSHIP FLAG = 1 signals that the syntax adheres to that of a register ownership

transaction.

Besides this OP_RETURN, the ownership registration transaction must include at least m addi-
tional outputs, at TxIndex = {1,...,m}, each receiving ownership of the corresponding slot ranges
defined in the OP_RETURN, while preserving the same order.

When processing such a transaction, the Bitcoin Module must execute the following steps. If any
verification step fails, the Bitcoin Module must discard the entire transaction:

4 Determining which subset of these tokens is actually minted on the LAOS chain falls outside the scope of
the Bitcoin Module.

Scalable Non-Fungible Tokens on Bitcoin 11

—_

Verify the OP_RETURN syntax of Outputy.

2. Verify that a collection with the specified BitcoinCollectionID has been previously created on
Bitcoin.

3. Verify that the total number of outputs in the transaction, including the OP_RETURN, is at least
m+ 1.

4. Discard all inputs except Inputg and all outputs beyond the first m + 1. The h160Address of the

UTXO spent by the first input is used as the last 160 bits of all TokenID values registered in this

transaction.

Verify that transaction is valid (including that the script is successfully validated).

6. Verify that none of the tokens included in the & slot ranges specified in the OP_RETURN have been
registered before on the Bitcoin blockchain for the given h160Address and BitcoinCollectionID.

7. Assign NFT ownership of all tokens with TokenId formed via equation (1), using the input
h160Address and each slot specified in Outputg, to the corresponding {Outputy, ---, Output,,}.

8. Assign (implicitly or explicitly) a sorting order to the NFTs within each output, following the
natural consecutive ordering inherited from the slot range specification on each UTXO.

9. Add {Output;, ---, Output,,} to the UTXOy, set of all unspent LAOS NFT Bitcoin outputs.

ot

Token Ownership Transfer.

Implicit: BRCT721 token ownership transfer can be performed implicitly by simply spending a UTXO
in the UTXOy, set. If a transaction includes an input that spends a UTXO, the Bitcoin Module must
transfer NF'T ownership to an output of the same transaction as follows:

— Inputs that do not contain NFTs are discarded.

— Outputs that are pure OP_RETURN are discarded.

— NFTs are moved sequentially from the remaining inputs to the remaining outputs.

— If there are more remaining outputs than remaining inputs containing NFTs, the excess outputs
are discarded.

— If there are fewer remaining outputs than remaining inputs containing NFTs, the last remaining
output will receive all unassigned NFTs from the remaining inputs.

If the only outputs in the transaction are OP_RETURN, the ownership of the NFTs included in the
inputs is burned, effectively assigning them to the null h160Address. Any future attempt to register
or transfer ownership of burned tokens will therefore fail.

Ezxplicit: Mix Transaction BRC721 token ownership transfer can also be explicitly performed through
a mix transaction, which allows for more granular control over the transfer process compared to an
implicit transfer. This type of transaction must contain a set of n inputs (for n > 1) from the UTXO,
set and at least m + 1 outputs (for m > 1).

TX = { Inputg, Inputy, --- , Input,_; } {Outputp, Output;, ---, Output,, }

All inputs and outputs with indices greater than n—1 and m+ 1, correspondingly, are discarded, being
n and m values specified in the OP_RETURN.

Output contains an OP_RETURN that encodes the rules for how the mix will be performed in the
transfer. Specifically, the mix must define a mapping between each NFT in the n inputs, Inputg,--- ,
Input,_1, and each of the m outputs, Outputy,---, Output,,.

Notably, different inputs may contain NFTs registered under different BitcoinCollectionIDs.
Likewise, as will become evident when defining the mix transaction, even a single UTXO in the UTXOy,
set can hold NFTs belonging to multiple BitcoinCollectionIDs.

A straightforward method to define the mix mapping, while avoiding unnecessary complexity, is
to assign a consecutive index to each NFT in the inputs. Within a single input, all NFTs inherit a
natural ordering, either from their initial registration in a collection transaction, which establishes a
defined sequence as described earlier, or from a previous mix transaction, which, as will be shown, also
preserves a structured ordering.

The sorting across inputs follows a straightforward process:

12

J. Herrera-Joancomarti, C. Pérez-Sola, T. Mateos
The first NFT in Input, is assigned index i = 0.
The first NFT in Input; is assigned index ¢ = Ny, where Ny represents the number of NFTs in

Inputg.

The last NFT in Input,_; is assigned index i = IN,, — 1, where N,, denotes the total number of
NFTs across all inputs.

The specification of the mix transaction follows a pattern similar to that of the ownership registra-

tion but uses index ranges, I = (i,7), with 0 <14 < j < N, instead of slot ranges. A special symbol,
1, is reserved for the complementary index range, defined as all indices ¢ with 0 < i < N,, that are not
explicitly referenced by any index range in the OP_RETURN of this transaction. This complementary
index range I must be present as exactly one of the full set of index ranges.” Enforcing the inclusion
of this set prevents ambiguities regarding input NFTs that are not explicitly referenced. A common
(though not mandatory) convention is to assign the last transaction output, Qutput,,, as the collector

for

all NFTs that are not explicitly specified.
The OP_RETURN must contain:

OP_15
SERIALIZATION OF:
e MIX FLAG
o 1. (I, -, L)
[
e m—1:(I,---,1I;)
o m: I

where MIX_FLAG = 2 signals that the syntax adheres to that of a mix transaction.

When processing such a transaction, the Bitcoin Module must execute the following steps. If any

verification step fails, the Bitcoin Module must discard the entire transaction:

© 00 O UL = W N -

—
o

= =
N —

13.

14.
15.
16.
17.

. Verify the OP_RETURN syntax of Outputy.

. Verify that m > 1.

. Verify that all inputs belong to the current UTXOy, set.

. Verify that I is present as exactly one of the index ranges in Outputy.

. Verify that the total number of outputs is at least m + 1.

. Discard all outputs beyond the first m + 1.

. Compute N,, as the total number of NFTs contained across all inputs.

. Compute Nt as the largest index appearing in the index ranges specified in the OP_RETURN.

. Verify that N, > Np > 0.

. Assign each NFT ownership to the corresponding output UTXO according to the index range map

specified in Outputg.

. Verify that there is no overlapping between all index ranges specified in the OP_RETURN.
. Assign any NFTs in the inputs that are not explicitly mapped by the index ranges to the output

containing I. This includes cases where the index ranges do not form a contiguous set, as well as
NFTs with index ¢ > Np in cases where NV,, exceeds Nr.

Establish (implicitly or explicitly) a sorting order for NFTs within each output, following the
natural consecutive ordering inherited from the specification of index ranges on each UTXO.
Add {Outputy, ---, Output,,_1} to the UTXOy set of all unspent LAOS NFT Bitcoin outputs.
If T # 0, add {Output,,} to the UTXOy, set of all unspent LAOS NFT Bitcoin outputs.

Assign each NFT ownership to the corresponding UTXOy .

Update the UTXOy, set.

Only the rightful on-chain owner(s) of the NFTs on the Bitcoin network can execute this mix

transaction, as the corresponding unlock scripts must be provided for each input.

® Note that inclusion is mandatory even if, for a given transaction, I is the empty set.

Scalable Non-Fungible Tokens on Bitcoin 13

Token Trading. BRC721 token trading is performed through an implicit token ownership transfer,
following a protocol in which the buyer and seller collaboratively construct a Bitcoin transaction that
implicitly transfers one or multiple UTXOs from the UTXO/, set containing the corresponding tokens.
From the perspective of all modules within the Indexer, a token trading transaction is indistinguishable
from an implicit token ownership transfer, requiring no additional specification. The involved parties
are responsible for correctly structuring the inputs and outputs to facilitate the transfer of NFTs for
Bitcoin.

Rebase. The final transaction type supported by the protocol is the Rebase Transaction, which enables
the creation of unique, non-fungible tokens whose content can be modified by their owners at any time.

For a Bitcoin collection to support rebase transactions, it must explicitly declare this capability in
its initial Register Collection Transaction, as outlined in Section 5.2. If the rebaseable boolean is set
to false, all rebase transactions directed at that collection must be disregarded.

The rebase transaction is nearly identical to the mix transaction, with a minor difference in the
OP_RETURN syntax at Outputg. As in the mix transaction, it must include a set of n inputs (for
n > 1) from the UTXOy, set and at least m + 1 outputs (for m > 1).

TX = { Inputg, Inputy, --- , Input,_; } {Outputy, Output;, ---, Output,, }

All inputs and outputs with indices greater than n — 1 and m + 1, respectively, are discarded, being n
and m values specified in the OP_RETURN.

The syntax of the OP_RETURN must contain:

- OP_15
— SERIALIZATION OF:
REBASE_FLAG

o NewLAOScollectionAddress
L] 12 (Il,"‘ 711)

e ...

o m: (I, -+, Iy)

where REBASE_FLAG = 3 signals that the syntax adheres to that of a mix transaction.

As in the mix transaction, index ranges specify the mapping between all NFTs in the input trans-
actions and the outputs {Outputy, Outputy, - - -, Output,, }. Additionally, it defines the new LAOS
collection address associated with the NFTs in all outputs.

When processing such a transaction, the Bitcoin Module must execute the following steps. If any
verification step fails, the Bitcoin Module must discard the entire transaction:

1. Verify that all NFTs in the inputs belong to one and only one BitcoinCollectionID.
2. The following steps are performed exactly as in the mix transaction:
(a) Apply the same verifications, incorporating NewLAOScollectionAddress in the syntax check.
(b) Assign NFT ownership to the corresponding output UTXO.
(c) Establish a sorting order for NFTs within each output.
(d) Add {Outputy, ---, Output,,} tothe UTXO/ set of all unspent LAOS NFT Bitcoin outputs.
3. Additionally, maintain the relationship between all output NFTs and NewLAOScollectionAddress.

The typical usage of this pattern will become clearer in Section 5.4, where the Indexer Logic Module
is specified.

5.3 LAOS Module specification

The LAOS Module is relatively straightforward, as it primarily follows the standard behavior of in-
dexers on EVM-compatible chains. Its role is to track a set of smart contracts on the LAOS Network
and monitor the events they emit when minting and evolving assets.

14 J. Herrera-Joancomarti, C. Pérez-Sola, T. Mateos

Since NFT ownership is fully managed on-chain within Bitcoin, the LAOS Module does not need
to track any transactions related to ownership—such as trading, even if the relevant smart contracts
on LAOS were to include such functionality.

A simple specification that leverages protocol-level methods within the LAOS Network for greater
efficiency is as follows. First, recall that a BRC721 token on LAOS is uniquely defined by the smart con-
tract that minted it and its identifier within that contract, i.e., by the pair {LAOScollectionAddress,
TokenID}.

The LAOS Module must:

— Track all collections created by the Collection Factory precompiled smart contract on LAOS. Upon
the creation of a new collection, add its collection address to the LAOScollectionAddress set.

— Track all minting events emitted by smart contracts within the LAOScollectionAddress set. Upon
each new mint, add the newly minted token to LAOSTokens, including its TokenID and metadata.

— Track all modifications to the metadata of tokens within the LAOSTokens set, as performed within
the smart-contract on their respective LAOScollectionAddress.

Note that collection creators can choose to deploy smart contracts that enforce metadata immutabil-
ity, preventing any modifications to token content after minting.

Finally, note that the LAOS Module operates entirely independently from the Bitcoin Module.

5.4 Logic Module specification

The Logic Module is responsible for merging information from the Bitcoin and LAOS modules to serve
it to applications adhering to the protocol. This module can be bypassed if desired; users, developers,
and applications can directly query information from Bitcoin, for instance, without requiring this layer.
However, the Logic Module is designed to integrate information in a structured manner, facilitating
the use of the protocol.

The Logic Module is specified only for queries regarding collections created on-chain in Bitcoin,
identified by their corresponding BitcoinCollectionID, although responses may depend on additional
information fetched from the LAOS Module. In all cases, responses will always be based on the leading
blockchain branches at query time, as is standard in any blockchain system.

Similarly, the module is only specified for queries about BRC721 tokens associated with Bitcoin
collections, which are identified by the pair BitcoinCollectionID, TokenID.

The module must:

Consider that a collection exists (or is fully set up) only if both of the following conditions are met:
e The collection has been registered on-chain in Bitcoin and, hence, it already has an associated
BitcoinCollectionID and LAOScollectionAddress.
e The associated LAOScollectionAddress has been tracked by the LAOS Module and, hence,
is part of the LAOScollectionAddress set.
— Consider that a BRC721 token exists, identified by BitcoinCollectionID, TokenID, only if both
of the following conditions are met:
e The BitcoinCollectionID exists, as per the previous condition.
e A token is on the LAOSTokens set of the LAOS Module with the same TokenID minted on the
LAOScollectionAddress associated to BitcoinCollectionID.
— Consider that the owner of a BRC721 token, which is a purely Bitcoin-native concept, is as follows:
e If the token does not exist according to the previous conditions, ownership is not specified.
e If the token is included in a UTXO within the UTXOy, set, its owner is the owner of that
UTXO.
e If the token is not included in the UTXOy set, its owner is the initial owner, that is, the
h160Address, which can be derived from the TokenID using Equation (1).
The content/metadata of a BRC721 token should only be returned if the token exists according to
the previous requirements, as follows:

Scalable Non-Fungible Tokens on Bitcoin 15

e If rebaseable = false, then the content is as defined by the pair {LAOScollectionAddress,
TokenID} on LAOS, where LAOScollectionAddress is the address associated with the pro-
vided BitcoinCollectionID.

e The above condition is modified only if all of the following are met:

* rebaseable = true, as specified in the collection registration transaction for the provided
BitcoinCollectionID.
* The token is registered in a UTXO with an associated NewLAOScollectionAddress via a
rebase transaction.
* A TokenID exists in the LAOS smart contract at NewLAOScollectionAddress.
In this case, the content is defined by the pair {NewLAOScollectionAddress, TokenID} on
LAOS.

6 Security analysis

This section provides a security analysis of the protocol, outlining the adversarial model and explaining
how the protocol mitigates various adversarial strategies.

6.1 Adversarial model

This section outlines the threat model, focusing on describing the goals and capabilities of potential
adversaries of the bridgeless minting protocol.

Our adversary model considers the following objectives for the attacker of the system:

O1 Claim ownership of non-owned tokens.

02 Force the transfer of non-owned tokens to a third party (or burn them).

03 Perform a Denial of Service (DoS) attack to prevent users to register collections or tokens, or
transfer tokens.

In our adversary model, we consider an active attacker, that is, an adversary not limited to
passively observing the involved blockchains (Bitcoin and LAOS), but who can actively interact and
interfere with the protocol execution. Specifically, the attacker is assumed to be able to observe any
information publicly available (e.g. the content of the blockchains), eavesdrop on open P2P network
traffic (such as the Bitcoin P2P network), interact with both networks (e.g. send transactions), and
modify or drop other parties’ interactions with the networks (e.g. change some bytes of a Bitcoin
transaction sent by another user to the P2P network).

We also consider a more powerful adversary, the active attacker with mining capabilities,
who, in addition to the previously described abilities, controls a significant portion® of Bitcoin’s hash
rate and can mine on the Bitcoin blockchain.

The security analysis presented in this section focuses exclusively on the bridgeless minting protocol
as defined in this paper. It evaluates potential attack vectors and adversarial strategies within the
protocol’s design and execution. However, broader security threats that fall outside the protocol’s scope
(such as social engineering attacks, side-channel exploits, or the compromise of users’ wallets) are not
considered. These external threats, while relevant to the overall security of a real-world deployment,
require separate mitigation strategies beyond the protocol’s design.

6.2 Adversarial strategies and prevention

In this section we explain possible strategies an attacker may follow to achieve the goals described in
the adversarial model and how the protocol prevents them.

An adversary may attempt to illegitimately claim ownership of tokens (Objective O1) by submit-
ting ownership registration or transfer transactions that assign non-owned tokens to a UTXO under

5 Details on the amount of hash power needed are discussed afterwards in Section 6.2.

16 J. Herrera-Joancomarti, C. Pérez-Sola, T. Mateos

their control on the Bitcoin blockchain. The active attacker may attempt this by either crafting and
sending the transaction herself to the Bitcoin P2P network (Strategy S1), or by performing a man-
in-the-middle attack to a transaction sent by the legit owner (Strategy S2). An active attacker with
mining capabilities also has the alternative to mine the transaction herself, instead of broadcasting it
to the P2P network (Strategy S3). Let’s analyze each possible strategy an adversary might take to
accomplish Objective O1 and examine how the protocol mitigates these threats:

S1 For an attacker to craft a token ownership registration or transfer transactions that assigns to-
kens to another UTXO under their control, they must first prove ownership of the corresponding
scriptPubKey. This proof is enforced by Bitcoin’s consensus rules and relies on the security of its
cryptographic primitives and script evaluation.

For legacy (spendable) standard script types, ownership proof requires providing an ECDSA sig-
nature generated with the private key corresponding to the public key specified in the output.
Consequently, to successfully execute the attack, the adversary would need to forge ECDSA sig-
natures (or, in the case of P2PKH and P2WPKH, find a hash collision that links a public key
under their control to the targeted hash). However, both ECDSA over secp256kl and SHA-256
(and RIPEMD-160) are currently considered cryptographically secure primitives. Similarly, P2TR
outputs mainly require a Schnorr signature, which is also considered cryptographically secure.
However, not all scriptPubKey require signatures for unlocking. Bitcoin’s scripting language al-
lows for arbitrary unlocking conditions, enabling a wide range of spending rules. In such cases,
security depends on the correctness of the locking script.

Another approach an attacker might attempt is to broadcast a transaction that spends the UTXO
but includes an invalid unlocking script, such as an incorrect signature. However, since Bitcoin
nodes strictly enforce transaction validation, any transaction with an invalid unlocking script (e.g.
invalid signature) is immediately rejected and fails to propagate through the network.

S2 If an attacker attempts a man-in-the-middle attack by modifying the output of a registration or

transfer transaction to redirect ownership to a UTXO they control, the transaction will become
invalid. This is because altering the transaction data changes its hash, rendering the original digital
signature invalid. Again, this transaction won’t propagate through the network.
However, this attack could succeed if the spent scriptPubKey does not require a signature for
unlocking. In such cases, an attacker could modify the transaction outputs while keeping it valid,
effectively achieving their goal. To prevent this, spending conditions must always enforce signature
verification.

S3 If the attacker possesses mining capabilities, they might attempt to include a fraudulent transaction
which does not include a valid ownership proof in a block they mine. However, this approach is also
ineffective because an invalid transaction would invalidate the entire block, causing the network
to reject it. Furthermore, mining an invalid block results in economic losses for the attacker, as
they would forfeit the associated reward. Given Bitcoin’s competitive mining landscape, there is
no rational incentive for an attacker to attempt this strategy.

An adversary may attempt to force the transfer of non-owned tokens to a third party or render
them unspendable (i.e. burn them) (Objective O2) following the same strategies as those employed to
achieve Objective O1. However, instead of including outputs under their own control in the fraudulent
transactions, the adversary now includes outputs belonging to other parties or inherently non-spendable
outputs. The prevention mechanisms in this case are exactly the same than for Objective O1.

An active adversary may try to perform a Denial of Service (DoS) attack (Objective O3) by
dropping all intercepted protocol messages from the victim to the Bitcoin P2P network (Strategy S4).
If the attacker has mining capabilities, she can also censor those transactions in the blocks she mines
(Strategy S5). However, due to Bitcoin’s decentralized architecture, sustaining such attacks over time
is both technically challenging and economically costly for the attacker.

S4 In this scenario, the adversary must monopolize all of the victim’s connections to the Bitcoin
P2P network. If even a single alternative connection remains open, the victim’s transactions can
still propagate through the network, making the attack unsuccessful. Achieving complete control
over a victim’s connections requires significant resources, making this strategy difficult to execute

consistently ([7], [20], [27]).

Scalable Non-Fungible Tokens on Bitcoin 17

S5 In the second case, the attacker attempts to censor transactions by excluding them from the blocks
they mine. To exert continuous control over transaction inclusion in the blockchain, the adversary
must control a substantial portion of the network’s total hash power. Previous studies suggest
that an attacker needs to control at least 33% of the total mining power to significantly and
consistently censor transactions [6]. However, given Bitcoin’s competitive mining environment and
the associated energy costs, sustaining such a level of control is economically prohibitive for most
adversaries.

Therefore, the security of the token ownership in the presented protocol is fundamentally anchored
to the robustness of the underlying Bitcoin network.

While unlikely, another potential adversarial scenario to consider is the complete disappearance of
the LAOS blockchain. This would require an extreme situation in which no nodes are generating new
blocks or, even more severely, all LAOS nodes go offline with no archival nodes remaining, rendering
the blockchain entirely inaccessible. Although such an event would be detrimental to users of the
bridgeless minting protocol, note that it does not affect the attacker’s objectives within our adversarial
model. Even if LAOS becomes unavailable, BRC721 token ownership on Bitcoin remains unaffected.
Token owners may no longer be able to retrieve the content of the tokens, but their ownership will
remain intact, and users will still be able to securely transfer ownership of existing tokens.

7 Conclusions

This paper presents a protocol that enables bridgeless minting of NF'Ts on the LAOS blockchain while
managing their ownership natively on the Bitcoin network. By leveraging Bitcoin’s OP_RETURN
opcode and introducing a minimal and efficient encoding for asset-related data, we achieve on-chain
data availability and ownership verification.

The proposed BRCT721 standard enables NFTs to be pre-minted on LAOS and registered, trans-
ferred, and traded through standard Bitcoin transactions. The ownership model, based on the Bitcoin
UTXO structure, ensures compatibility with existing Bitcoin wallets and preserves the trustless na-
ture of the network. A modular architecture with decoupled Bitcoin and LAOS modules, combined
with a stateless logic module, ensures the scalability, flexibility, and adaptability of the system. The
proposed protocol is designed to be indexer-friendly and maintainable while remaining minimalistic in
its blockchain footprint.

Finally, we also provided a detailed security analysis showing the robustness of our approach against
active attackers, including those with mining capabilities, demonstrating that ownership integrity relies
solely on the well-established security of Bitcoin’s cryptographic primitives and consensus mechanism.

Future work will focus on reference implementations, real-world deployment scenarios, and perfor-
mance optimization of indexers and wallet integrations.

References

1. Alessandro Siniscalchi, T.M., Evans, A.: Laos: Vision for a scalable, bridgelessly connected, truly non-
custodial, dynamic nft protocol (2023), https://github.com/freeverseio/laos-whitepaper/blob/main/
laos.pdf

2. Ali, M., Nelson, J., Shea, L., Freedman, M.J.: Stacks 2.0: A secure layer-1 blockchain with smart contracts
built on bitcoin. Stacks Whitepaper (2019), https://stacks.org/whitepaper.pdf

3. Assia, Y., Buterin, V., et al.: Colored coins whitepaper (2013), https://www.etoro.com/wp-content/
uploads/2022/03/Colored-Coins-white-paper-Digital-Assets.pdf

4. Blockstream: The liquid network: Bitcoin sidechain for traders and exchanges (2018), https://
blockstream.com/liquid/

5. Developers, C.: Counterparty protocol documentation (2014), https://counterparty.io

6. Eyal, 1., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. Communications of the ACM
61(7), 95-102 (2018)

7. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on Bitcoin’s peer-to-peer network. In:
24th USENIX security symposium (USENIX security 15). pp. 129-144 (2015)

https://github.com/freeverseio/laos-whitepaper/blob/main/laos.pdf
https://github.com/freeverseio/laos-whitepaper/blob/main/laos.pdf
https://stacks.org/whitepaper.pdf
https://www.etoro.com/wp-content/uploads/2022/03/Colored-Coins-white-paper-Digital-Assets.pdf
https://www.etoro.com/wp-content/uploads/2022/03/Colored-Coins-white-paper-Digital-Assets.pdf
https://blockstream.com/liquid/
https://blockstream.com/liquid/
https://counterparty.io

18

11.
12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

J. Herrera-Joancomarti, C. Pérez-Sola, T. Mateos

Jacob Evans William Entriken, D.S., Sachs, N.: Erc-721: Non-fungible token standard. ethereum improve-
ment proposals. https://eips.ethereum.org/EIPS/eip-721 (2018), accessed on 2018-01-01
Labs, A.: Ark labs: Enabling efficient bitcoin transactions (2024), https://arklabs.com/

. Labs, L.: Taro: Bitcoin asset protocol using taproot (2022), https://lightning.engineering/posts/

2022-04-05-taro

Labs, R.: Rsk: Smart contracts for bitcoin (2017), https://www.rsk.co/

Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.pdf (2008),
accessed on 2024-12-09

Names, S.: Sats domain protocol documentation (2025), https://docs.satsnames.org/, accessed: 2025-
03-24

Network, L.: Laos network developer documentation. https://docs.laosnetwork.io (2025), accessed on
2025-01-28

Poon, J., Dryja, T.: The bitcoin lightning network: Scalable off-chain instant payments (2016), https:
//lightning.network/lightning-network-paper.pdf

Prisco, G., Team, R.: Rgb: Scalable and privacy-preserving smart contracts on bitcoin (2020), https:
//rgb-org.github.io

Rodarmor, C.: Ordinals: Inscribing digital artifacts on bitcoin. https://ordinals.com (2023), accessed on
2023-12-09

Rodarmor, C.: Runes protocol: Fungible tokens on bitcoin. https://ordinals.com (2024), accessed on
2024-12-09

Team, O.A.: The open assets protocol (2014), https://openassets.org

Tran, M., Shenoi, A., Kang, M.S.: On the {Routing-Aware} peering against {Network-Eclipse} attacks in
bitcoin. In: 30th USENIX Security Symposium (USENIX Security 21). pp. 1253-1270 (2021)

Various: Bre-20: Fungible token standard on bitcoin (2023), accessed from various online resources dis-
cussing Ordinals and Taproot.

Willett, J.: Mastercoin: A second-generation protocol on the bitcoin blockchain (2012), https://www.
omnilayer.org

Wood, G.: Ethereum: A secure decentralised generalised transaction ledger. Yellow Paper (2014), available
at https://ethereum.github.io/yellowpaper/paper.pdf

Wood, G.: Polkadot: Vision for a heterogeneous multi-chain framework. Whitepaper (2016), https://
polkadot.network/PolkaDotPaper.pdf

Wood, G.: The Cross-consensus message format. https://polkadot.com/blog/
xcm-the-cross-consensus-message-format (2021), accessed on 2021-09-06

Wood, G., Developers, P.: Xcm v3. https://github.com/paritytech/polkadot/pull/4097 (2023), ac-
cessed on 2023-01-17

Yves-Christian, A.E., Hammi, B., Serhrouchni, A., Labiod, H.: Total eclipse: How to completely isolate
a bitcoin peer. In: 2018 Third International Conference on Security of Smart Cities, Industrial Control
System and Communications (SSIC). pp. 1-7. IEEE (2018)

https://eips.ethereum.org/EIPS/eip-721
https://arklabs.com/
https://lightning.engineering/posts/2022-04-05-taro
https://lightning.engineering/posts/2022-04-05-taro
https://www.rsk.co/
https://bitcoin.org/bitcoin.pdf
https://docs.satsnames.org/
https://docs.laosnetwork.io
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
https://rgb-org.github.io
https://rgb-org.github.io
https://ordinals.com
https://ordinals.com
https://openassets.org
https://www.omnilayer.org
https://www.omnilayer.org
https://ethereum.github.io/yellowpaper/paper.pdf
https://polkadot.network/PolkaDotPaper.pdf
https://polkadot.network/PolkaDotPaper.pdf
https://polkadot.com/blog/xcm-the-cross-consensus-message-format
https://polkadot.com/blog/xcm-the-cross-consensus-message-format
https://github.com/paritytech/polkadot/pull/4097

	Scalable Non-Fungible Tokens on Bitcoin

