
Multi-Party Private Set Operations from
Predicative Zero-Sharing

Minglang Dong1, Yu Chen1, Cong Zhang2, Yujie Bai1, and Yang Cao1

1 School of Cyber Science and Technology, Shandong University, Qingdao 266237,
China

2 Institute for Advanced Study, BNRist, Tsinghua University, Beijing, China
{minglang_dong,baiyujie}@mail.sdu.edu.cn, yuchen@sdu.edu.cn,

zhangcong@mail.tsinghua.edu.cn

Abstract. Typical protocols in the multi-party private set operations
(MPSO) setting enable m > 2 parties to perform certain secure compu-
tation on the intersection or union of their private sets, realizing a very
limited range of MPSO functionalities. Most works in this field focus on
just one or two specific functionalities, resulting in a large variety of iso-
lated schemes and a lack of a unified framework in MPSO research. In
this work, we present an MPSO framework, which allows m parties, each
holding a set, to securely compute any set formulas (arbitrary composi-
tions of a finite number of binary set operations, including intersection,
union and difference) on their private sets. Our framework is highly versa-
tile and can be instantiated to accommodate a broad spectrum of MPSO
functionalities. To the best of our knowledge, this is the first framework
to achieve such a level of flexibility and generality in MPSO, without
relying on generic secure multi-party computation (MPC) techniques.
Our framework exhibits favorable theoretical and practical performance.
With computation and communication complexity scaling linearly with
the set size n, it achieves optimal complexity that is on par with the naive
solution for widely used functionalities, such as multi-party private set
intersection (MPSI), MPSI with cardinality output (MPSI-card), and
MPSI with cardinality and sum (MPSI-card-sum), for the first time in
the standard semi-honest model. Furthermore, the instantiations of our
framework, which primarily rely on symmetric-key techniques, provide
efficient protocols for MPSI, MPSI-card, MPSI-card-sum, and multi-
party private set union (MPSU), with online performance that either
surpasses or matches the state of the art in standard semi-honest model.
At the technical core of our framework is a newly introduced primitive
called predicative zero-sharing. This primitive captures the universality
of a number of MPC protocols and is composable. We believe it may be
of independent interest.

1 Introduction

In the setting of multi-party private set operations (MPSO), a set of m (m > 2)
parties, each holding a private set of items, wish to perform secure computation

2 M. Dong et al.

on their private sets without revealing any additional information. In the end,
only one of the parties (denoted as the leader) learns the resulting set and other
parties (denoted as clients) learn nothing. MPSO is an expansive research field
with a variety of rich functionalities. The typical functionalities that have been
studied in the MPSO literature can be divided into two categories:

– Multi-party private set intersection (MPSI) [22, 36, 54, 39, 53, 10, 32, 38, 34,
27, 26, 41, 15, 30, 8, 57, 6, 60, 58], which is to compute intersection, and its
variants — MPSI with cardinality output (MPSI-card) [36, 10, 18, 25, 28],
which is to compute intersection cardinality, MPSI with cardinality and sum
(MPSI-card-sum) [18, 28], which is to compute intersection cardinality and
sum (of the associated payloads), and circuit-MPSI [36, 10, 15, 60, 56], which
allows parties to learn secret shares of the indicator vector for intersection
with respect to leader’s elements, that can be further fed into generic MPC
(with leader’s elements) to compute arbitrary function on intersection;

– Multi-party private set union (MPSU) [36, 23, 10, 55, 57, 40, 24, 19], which is
to compute union, and its variants — MPSU with cardinality output (MPSU-
card) [10], which is to compute union cardinality, and circuit-MPSU [10], which
allows parties to learn secret shares of elements in union, that can be further
fed into generic MPC to compute arbitrary function on union.

There are several major problems in the field of MPSO:

– Unrealistic security assumptions. Despite the vast body of existing works
in the MPSO literature, many rely on assumptions of unconditional trust,
which is fraught with security risks. For example, some works [40, 60, 25, 56]
assume non-collusion among particular parties, which is unlikely to hold in
practice. Therefore, an important theme in the MPSO research is to achieve
security against arbitrary collusion.

– Unmet application demands. Many real-world applications require more
than just the computation of intersection and union (or partial/aggregate in-
formation derived from them). However, existing protocols are limited in either
functionality or efficiency to meet these broader needs. For instance, A public
health agency wants to identify individuals who are eligible for a new health
program based on both their medical conditions and income levels. Hospitals
maintain private records of patients with certain conditions, while welfare de-
partments manage income-level data. The task requires computing the union
of patients with a specific condition across different hospitals, while ensur-
ing privacy, and then performing an intersection with the income eligibility
records [36]. This problem is apparently beyond the above two categories and
still lacks practical solutions to date.

– Fragmented landscape of protocols. Most existing works focus on only
one or two specific functionalities, leading to a proliferation of isolated schemes
and the absence of a unified framework for MPSO.

Given the numerous possible compositions of a finite number of binary set op-
erations (including intersection, union and difference) on m sets, ideally, MPSO

Multi-Party Private Set Operations from Predicative Zero-Sharing 3

should enable m parties to securely compute arbitrary set formulas on their pri-
vate sets. All the aforementioned functionalities are special cases of this generic
functionality (hereafter, we use MPSO to refer particularly to this generic func-
tionality). The seminal work of Kissner and Song [36] has explored the MPSO
functionality. Unfortunately, they failed to fully realize it. The set formulas be-
ing computed in their protocol only allow to include union and intersection set
operations, excluding the difference operation. Namely, their protocol only real-
izes a restricted MPSO functionality. For instance, computing X1 \ (X2 ∩X3) is
not feasible in their protocol. Furthermore, their protocol relies heavily on addi-
tively homomorphic encryption (AHE) and high-degree polynomial calculations,
leading to prohibitively large computational costs, hence is totally impractical.

A follow-up work by Blanton and Aguiar [10] redesigned the circuits for com-
puting intersection, union and difference as oblivious sorting and adjacent com-
parisons, with implementations using generic MPC protocols. The generic MPC
technique allows their protocols to be composable, enabling the computation of
arbitrary compositions of binary set operations and thereby fully realizing the
MPSO functionality. However, this generality comes at the cost of substantial
computational overhead. Even the simplest cases, such as MPSI, demonstrate
poor practical efficiency — for instance, the largest experiment reported in terms
of the number of parties and set size takes 24.8 seconds for MPSI with 3 parties,
each holding 211 items of 32 bits. Moreover, their protocols are only secure in
the honest majority setting.

Motivated by the above, we raise the following question:

Can we fully realize the MPSO functionality with security against arbitrary
collusion and good efficiency in the semi-honest model?

1.1 Our Contributions

In this work, we answer the above question affirmatively. Our technical route
proceeds as follows: First, we define a predicate formula representation for any
set formulas; Second, we introduce a composable primitive — predicative zero-
sharing — and its composition technique; Then, we instantiate predicative zero-
sharing as a primitive tailored for MPSO — membership zero-sharing — using
lightweight building blocks; Finally, with membership zero-sharing serving as the
main build blocking, we present a framework based on oblivious transfer (OT)
and symmetric-key operations in the standard semi-honest model, which fully
realizes not only the MPSO functionality, but also the extended MPSO-card and
circuit-MPSO functionalities. Our contributions can be detailed as follows:

Predicate Formula Representation. The first challenge in realizing MPSO
is to identify a suitable representation for any set formulas, which determines the
generality and practicality of the resulting framework. The prior work [36] rep-
resents set formulas using intersection, union, and element reduction operations,
whose arbitrary compositions can only express a limited subset of set formu-
las, thereby restricting its generality. The follow-up work [10] adopts the naive

4 M. Dong et al.

representation based on intersection, union, and difference operations to achieve
full generality. However, to support composability, it relies heavily on generic
MPC, which significantly hinders practicality. In this work, we introduce a new
representation called canonical predicate formula (CPF), which is designed with
a particular structure to enable an MPSO framework achieving the best of both
worlds: generality and practicality. Specifically, this representation is a subset of
first-order set predicate formulas (which are first-order predicate formulas where
each atomic proposition is a set membership predicate x ∈ Xi, connected by
AND, OR and NOT operators), defined as a disjunction of several subformulas
that are in a certain form, representing a partition of the desired set. We prove
that any set formulas can be transformed into CPF representations, and the
number of subformulas in CPF dominates the performance of protocols.
Predicative Zero-Sharing and Relaxation. The second challenge is to de-
vise a composable primitive based on our predicate formula representation. We
introduce a novel primitive called predicative zero-sharing, which is a family
of protocols, each associated with a first-order predicate formula and encoding
the truth-value of the formula on the parties’ inputs into a secret-sharing over
a finite field among the parties. Specifically, if the formula is true, the par-
ties hold a secret-sharing of 0, otherwise a secret sharing of a random value.
We put forward a simpler simulation-based security definition for predicative
zero-sharing protocols, which is composed of three requirements: correctness,
privacy and independence, and give a rigorous proof of its equivalence to the
standard security definition for a broader class of MPC protocols (predicative
zero-sharing is its subset). This simpler security definition simplifies the security
proof of our predicative zero-sharing protocols. Moreover, under this simpler se-
curity definition, we can relax predicative zero-sharing’s security by removing
the independence requirement. This relaxed version of predicative zero-sharing
admits the abstraction of much more MPC protocols, such as random oblivious
transfer (ROT), equality-conditional randomness generation (ECRG) [35], 3 and
so on. We present a composition technique to compose several relaxed predica-
tive zero-sharing protocols into a single relaxed predicative zero-sharing protocol
based on AND and OR operators. We also present a transformation technique to
transform any relaxed predicative zero-sharing protocol into a standard version.
Combining these two techniques, we can construct predicative zero-sharing with
standard security for any first-order predicate formulas, from relaxed predicative
zero-sharing associated with all literals (atomic propositions or their negations)
within the formula.
Membership Zero-Sharing. To enable the instantiation of predicative zero-
sharing, we introduce membership zero-sharing, a particular class of predicative
zero-sharing tailored for MPSO, by specifying the associated predicate formula
as a first-order set predicate formula Q. In this setting, one party (denoted as

3 We found that the ECRG functionality satisfies the definition of predicative zero-
sharing while the construction in [35] only achieves the security of relaxed predicative
zero-sharing. This is because ECRG is a probabilistic functionality whereas [35]
proved its security using the definition for deterministic functionalities.

Multi-Party Private Set Operations from Predicative Zero-Sharing 5

Ppivot) inputs an element and the other parties input sets. The output secret-
sharing among the parties encodes whether Ppivot’s input element, together with
all input sets, satisfy Q. For example, consider 3 parties where P1 inputs an
element x, P2 inputs a set X2, and P3 inputs a set X3. Suppose Q is in the form
of x ∈ X2 ∧ x /∈ X3. If x ∈ X2 \X3, P1, P2, P3 hold a secret-sharing of 0, other-
wise they hold a secret-sharing of a random value. Given that any first-order set
predicate formula Q is only composed of two types of literals — set membership
predicates x ∈ Y and the negations x /∈ Y , by instantiating relaxed member-
ship zero-sharing associated with x ∈ Y and x /∈ Y respectively, we can build
membership zero-sharing protocols for any first-order set predicate formulas, by
following the recipe for predicative zero-sharing. We construct these two relaxed
membership zero-sharing instantiations using lightweight components, including
oblivious programmable pseudorandom function (OPPRF) [38, 45, 16, 51, 48],
batch secret-shared private membership test (batch ssPMT) [19], and ROT.
Membership zero-sharing is the key to bridging the gap between generality and
practicality in MPSO, since its composability, inherited from predicative zero-
sharing, facilitates our framework to compute arbitrary set operations, while its
efficient instantiations contribute to our framework’s good efficiency.
MPSO, MPSO-card and Circuit-MPSO. In analogy with MPSI (resp.
MPSU) functionality to MPSI-card and circuit-MPSI (resp. MPSU-card and
circuit-MPSU), we extend MPSO functionality into two new functionalities —
MPSO-card and circuit-MPSO, where MPSO-card computes the resulting set’s
cardinality and circuit-MPSO reveals secret shares of the resulting set, which can
be further fed into generic MPC to compute arbitrary function on the resulting
set. Based on the CPF representation for any set formulas and membership zero-
sharing for any first-order set predicate formulas, we put forth a framework fully
realizing MPSO, MPSO-card and circuit-MPSO functionalities. At a high level,
our framework proceeds as follows. We begin with the simplest case, where the
desired set is a subset of the leader’s input set.4 In this case, the leader acts as
Ppivot, and for each element in its input set, the leader invokes the membership
zero-sharing associated with the CPF representation of the desired set, with the
other parties inputting their sets. As a result, for each elements in the leader’s
set that belongs to the desired set, the parties hold a secret-sharing of 0. Since all
these elements exactly compose the desired set, the parties reconstruct all secret-
sharings to the leader, who computes the resulting set by identifying all elements
whose corresponding secret-sharings reconstructed to 0. This construction can
be optimized using the hashing to bins technique (see Figure 1). Benefiting from
the structural properties of our CPF representation (which guarantee that the
set represented by each subformula Qi in the CPF is a subset of some party Pj ’s
input set, and all these sets form a partition of the desired set), this simplest
case of our framework can be extended to achieve full MPSO functionality. For
each subformula Qi, the parties invoke membership zero-sharing with Pj acting
as Ppivot, and the invocation is similar to the simplest case (see Figure 2). After

4 MPSI is a typical example of this case, as the intersection is a subset of any input
sets.

6 M. Dong et al.

the membership zero-sharing invocations for all subformulas, the union of all
output secret-sharings encode a partition of the desired set (with secret-sharings
corresponding to repeated elements and elements not in the desired set being
masked by random secret-sharings). However, a straightforward reconstruction
in this setting may reveal information through the order of secret-sharings, there-
fore, the parties have to invoke a multi-party secret-shared shuffle protocol to
randomly permute and re-share all secret-sharings. Finally, the shuffled secret-
sharings are reconstructed to the leader. Since the resulting set remains being
secret-shared before the last reconstruction step, this MPSO protocol is easy to
be extended to MPSO-card and circuit-MPSO protocols.

CPF: x ∈ X1 ∧ x ∈ X2 ∧ x /∈ X3

P1 (X1)

x11

x21

x31

Cuckoo hashing
P2 (X2)

X1
2

X2
2

X3
2

Simple hashing
P3 (X3)

X1
3

X2
3

X3
3

Simple hashing

For each bin i:
xi1 Xi

2 Xi
3

Membership Zero-Sharing for x ∈ X2 ∧ x /∈ X3

si1 si2 si3

Ppivot

Fig. 1. An example of the simplest case of our framework, where the set formulas being
computed is (X1 ∩X2) \X3. If the element xi1 in X1 satisfies xi1 ∈ Xi

2 ∧ xi1 ∈ Xi
3 (i.e.

xi1 ∈ (X1 ∩X2) \X3), si1 + si2 + si3 = 0.

In addition to the above contributions, perhaps surprisingly, we also make
independent contributions in the following sub-fields, by instantiating our frame-
work to yield the typical protocols:

MPSI. The MPSI protocol from our framework has the best computation
and communication complexity among all MPSI protocols based on OT and
symmetric-key operations in the standard semi-honest model. Particularly, this
is the first MPSI construction to achieve the optimal complexity that is on par
with the naive solution (the leader’s computation and communication complexity
are both O(mn) and each client’s computation and communication complexity
are both O(n), where n is the set size and m is the number of parties) with-
out extensive use of public-key operations, in the standard semi-honest model.

Multi-Party Private Set Operations from Predicative Zero-Sharing 7

The previous MPSI protocol [38] with this optimal complexity is only secure in
the weaker augmented semi-honest model. In this work, we close this gap. Our
MPSI protocol is also the most online-efficient MPSI protocol to date, which is
2.4− 5.2× (resp. 1.1− 2.6×) faster than the state-of-the-art MPSI protocol [58]
in LAN (resp. WAN) setting. Concretely, it requires only 8.9 seconds in online
phase for 10 parties with sets of 220 items each, regardless of bit length of items.

CPF: (x ∈ X1 ∧ x ∈ X2) ∨ (x ∈ X3 ∧ x /∈ X1 ∧ x /∈ X2))

P1 (X1)

x11

x21

x31

Cuckoo hashing
P2 (X2)

X1
2

X2
2

X3
2

Simple hashing
P1 (X1)

X1
1

X2
1

X3
1

Simple hashing
P2 (X2)

X1
2

X2
2

X3
2

Simple hashing
P3 (X3)

x13

x23

x33

Cuckoo

For each bin i: For each bin i:
xi1 Xi

2 Xi
1 Xi

2 xi3

Membership Zero-
Sharing for x ∈ X2

Membership Zero-Sharing for x /∈ X1 ∧ x /∈ X2

s1,i1 s1,i2

s1,i3 = 0

s2,i1 s2,i2 s2,i3

Ppivot Ppivot

Shares:
s1,i1 = s1,i1 + x1,i

1 ∥0l′ s1,i2 s2,i1 s2,i2 s2,i3 = s2,i3 + x2,i
3 ∥0l′

Subformula Q1 Subformula Q2

[s1,1], [s1,2], [s1,3], [s2,1], [s2,2], [s2,3] [s1,3], [s2,2], [s2,1], [s1,1], [s2,3], [s1,2]
Multi-Party Secret-

Shared Shuffle

Fig. 2. An example of the general case of our framework, where the set formulas being
computed is (X1∩X2)∪X3. The setX1∩X2 represented byQ1 and the setX3\(X1∩X2)
represented by Q2 form a partition of (X1 ∩X2)∪X3. If the element xi1 in X1 satisfies
xi1 ∈ Xi

2 (i.e. xi1 ∈ X1 ∩X2), s1,i1 + s1,i2 + s1,i3 = xi1∥0l
′ ; If the element xi3 in X3 satisfies

xi3 /∈ Xi
1 ∧ xi3 /∈ Xi

2 (i.e. xi3 ∈ X3 \ (X1 ∩X2)), s2,i1 + s2,i2 + s2,i3 = xi3∥0l
′ , where 0l

′ is
the appended all-zero string of length l′ for identification.

MPSI-card, MPSI-card-sum and Circuit-MPSI. The MPSI-card and MPSI-
card-sum protocols from our framework are the first MPSI-card and MPSI-card-
sum constructions with the optimal computation and communication complexity
in the standard semi-honest model. Our MPSI-card is the most online-efficient
MPSI-card protocol to date, with 14.0 − 20.3× lower communication than the
state of the art [18]. Our MPSI-card-sum provides the first MPSI-card-sum im-
plementation and only doubles the computation and communication costs of our
MPSI while realizing a richer functionality. Concretely, our MPSI-card requires
only 9.2 seconds while our MPSI-card-sum requires 16.7 seconds in online phase
for 10 parties with sets of 220 items each, regardless of the item length. Addi-

8 M. Dong et al.

tionally, the circuit-MPSI protocol from our framework is the first circuit-MPSI
construction in dishonest majority setting.
MPSU. The MPSU protocol from our framework has the best computation
and communication complexity among all MPSU protocols based on OT and
symmetric-key operations in the standard semi-honest model. It could be seen
as an instance of the secret-sharing based MPSU paradigm, which abstracts
all existing MPSU protocols relying only on symmetric-key primitives [40, 19].
Our protocol achieves the optimal complexity of this paradigm for the first time
(with O(m2n) computation and communication complexity of leader and O(mn)
computation and communication complexity of clients). Our MPSU protocol
has the lowest online communication costs to date, with an improvement up
to 1.8× compared with the state-of-the-art MPSU protocol [19]. In bandwidth-
constrained networks, its online performance becomes increasingly competitive
as the number of parties grows.
MPSU-card and circuit-MPSU. The MPSU-card and circuit-MPSU proto-
cols from our framework are the only efficient constructions for MPSU-card and
circuit-MPSU, with performance that is nearly the same as our MPSU protocol.

1.2 Related Work

Despite the immense amount of existing works on the typical functionalities
in this field, many are insecure against arbitrary collusion [39, 10, 55, 15, 40,
60, 25, 56], or have non-negligible false positives [6, 57]. We only focus on works
achieving semi-honest security against arbitrary collusion without non-negligible
false positives. Distribution of research attention among these works is extremely
imbalanced: MPSI has been extensively studied [22, 36, 54, 53, 32, 38, 34, 27, 26,
41, 30, 8, 58], while MPSU only receives relatively little attention [36, 23, 24, 19].
MPSI-card [36, 18, 28] and MPSI-card-sum [18, 28] are extremely understudied
sub-fields, with only a couple of secure MPSI-card protocol [36, 18, 28] and MPSI-
card-sum protocol [18, 28] against arbitrary collusion. Even worse, no prior work
has realized circuit-MPSI, MPSU-card, circuit-MPSU in the dishonest majority
setting. We provide more details on the classic and state-of-the-art protocols
below. A comprehensive theoretical comparison between related protocols and
ours is provided in Appendix A.

MPSI. Freedman et al. [22] introduced the first MPSI protocol based on oblivi-
ous polynomial evaluation (OPE), which is implemented using AHE. Kisser and
Song [36] proposed an MPSI protocol using the OPE technique along with the
polynomial representations. These two protocols both require quadratic com-
putation complexity with respect to the set size n for each party, resulting in
impracticality.

Kolesnikov et al. [38] proposed two MPSI protocols in the augmented semi-
honest model and standard semi-honest model, respectively. The former achieves
the optimal complexity of MPSI, while it is only secure in the augmented semi-
honest model. The latter fails to achieve optimal complexity as it requires the
clients’ complexity to depend on the corruption threshold t. Garimella et al. [26]

Multi-Party Private Set Operations from Predicative Zero-Sharing 9

improved these protocols using oblivious key-value store (OKVS) [43, 26, 48, 9]
and showed that the augmented semi-honest protocol actually enjoys malicious
security. Following these works, Nevo et al. [41] proposed an efficient MPSI
protocol in the malicious model, where the client’s communication complexity
depends only on n (while the computation complexity still depends on t).

Inbar et al. [34] proposed two MPSI protocols in the augmented semi-honest
and standard semi-honest model, based on OT and garbled Bloom filters. In
these two protocols, each party’s computation complexity is O(mn). The Ben-
Efraim et al. [8] extended the former to the malicious model.

Recently, Wu et al. [58] proposed two semi-honest MPSI protocols based
on OPRF and OKVS. While these protocols shows better performance than
previous works, the client’s complexity depends on t, which means they do not
achieve the optimal complexity.
MPSI-card and MPSI-card-sum. Chen et al. [18] proposed the first MPSI-
card and MPSI-card-sum protocols based on OT and symmetric-key operations,
which are also the only practical MPSI-card and MPSI-card-sum protocols in
the standard semi-honest model. In their protocols, the leader’s complexity is
O(mn+tn log n) and client’s complexity is O(tn), both of which are not optimal.
MPSU. Kisser and Song [36] introduced the first MPSU protocol, based on
polynomial representations and AHE. The substantial number of AHE opera-
tions and high-degree polynomial calculations incur unacceptable efficiency.

Gao et al. [24] proposed a standard semi-honest MPSU protocol based on
public-key operations, where each party has super-linear computation and com-
munication complexity in term of n.

Recently, Dong et al. [19] proposed two MPSU protocols in the standard semi-
honest model. The first protocol, based on OT and symmetric-key operations,
eliminates the non-collusion assumption in [40], at the cost of increasing client’s
complexity to quadratic in terms of m. The second protocol achieves linear
complexity. However, it relies on public-key operations with a lower efficiency.

2 Preliminaries

2.1 Notation

Let m denote the number of parties. We use Pi (1 ≤ i ≤ m) to denote the
parties, Xi to represent the sets they hold, where each set has n l-bit elements.
[x] = (x1, · · · , xm) denotes an additive secret-sharing among m parties, i.e., each
Pi holds a share xi such that x1 + · · ·xm = x. x∥y denotes the concatenation
of two strings. We use λ, σ as the computational and statistical security pa-
rameters respectively, and use s

≈ (resp. c≈) to denote that two distributions are
statistically (resp. computationally) indistinguishable. For a vector a, ai denotes
the i-th component, HW(a) denotes the hamming weight of a, zero(a) denotes
the number of 0 in a, and π(a) = (aπ(1), · · · , aπ(n)), where π is a permuta-
tion over n items. The notation a ⊕ b denotes a component-wise XOR, i.e.,
(a1 ⊕ b1, · · · , an ⊕ bn).

10 M. Dong et al.

2.2 Security Model

In this work, we consider semi-honest and static adversariesA with the capability
to corrupt an arbitrary subset of parties. To capture the security of a protocol
in the simulation-based model [29, 14], we use the following notations:

– Let f = (f1, · · · , fm) be a probabilistic polynomial-time m-ary functionality
and let Π be a m-party protocol for computing f .

– The view of Pi (1 ≤ i ≤ m) during an execution of Π on all parties’ inputs
x = (x1, · · · , xm) is denoted by ViewΠ

i (x), including the i-th party’s input
xi, its internal random tape and all messages that it received.

– The output of Pi during an execution of Π on x is denoted by OutputΠi (x).
The joint output of parties is OutputΠ(x) = (OutputΠ1 (x), · · · ,OutputΠm(x)).

Definition 1. We say that Π securely computes f in the presence of A if there
exists a PPT algorithm Sim s.t. for every PA = {Pi1 , · · · , Pit} ⊂ {P1, · · · , Pm},

{Sim(PA,xA, fA(x)), f(x)}x
c
≈ {ViewΠ

A (x),OutputΠ(x)}x,

where xA = (xi1 , · · · , xit), fA = (fi1 , · · · , fit),View
Π
A (x) = (ViewΠ

i1 (x), · · · ,View
Π
it (x)).

2.3 Multi-party Private Set Operations

MPSO is a special case of secure multi-party computation (MPC). Figure 3
formally defines the typical ideal functionalities computing the intersection, in-
tersection cardinality, intersection sum with cardinality, union, and union car-
dinality over the parties’ private sets.

Parameters: m parties P1, · · · , Pm, where P1 is the leader. Size n of input sets.
The bit length l of set elements. The mapping function payloadi() from Pi’s ele-
ments to the associated payloads.
Functionality: On input Xi = {x1i , · · · , xni } ⊆ {0, 1}l from Pi,

– MPSI. give the intersection
∩m

i=1Xi to P1.
– MPSI-card. give the intersection cardinality |

∩m
i=1Xi| to P1.

– MPSI-card-sum. give the intersection cardinality |
∩m

i=1Xi| to each Pi for
1 ≤ i ≤ m, and give

∑
x∈

∩m
i=1 Xi,1≤j≤m payloadj(x) to P1.

– MPSU. give the union
∪m

i=1Xi to P1.
– MPSU-card. give the union cardinality |

∪m
i=1Xi| to P1.

Fig. 3. Typical Functionalities in MPSO

Multi-Party Private Set Operations from Predicative Zero-Sharing 11

Parameters. Sender S, Receiver R. A field F.
Functionality. On input e ∈ {0, 1} from R, sample r0, r1 ← F. Give (r0, r1) to S
and give re to R.

Fig. 4. 1-out-of-2 Random OT Functionality FROT

2.4 Random Oblivious Transfer
Oblivious transfer (OT) [47] is a foundational primitive in MPC, the function-
ality of 1-out-of-2 random OT (ROT) is given in Figure 4.

2.5 Batch Oblivious Programmable Pseudorandom Function
Oblivious pseudorandom function (OPRF) [21, 17, 51] is a central primitive in
the area of PSO. Kolesnikov et al. [37] introduced batched OPRF, which provides
a batch of OPRF instances. In the i-th instance, the sender S learns a PRF key
ki, while the receiver R inputs xi and learns PRF(ki, xi).

Oblivious programmable pseudorandom function (OPPRF) [38, 45, 16, 51,
48] is an extension of OPRF, which lets S program a PRF F so that it has
specific uniform outputs for some specific inputs and pseudorandom outputs for
all other inputs. This kind of PRF that outputs programmed values on a certain
programmed set of inputs is called programmable PRF (PPRF) [45].R evaluates
OPPRF with no knowledge of whether it learns a programmed output of F or
just a pseudorandom value. The batch OPPRF functionality is given in Figure 5.

2.6 Batch Secret-Shared Private Membership Test
Batch secret-shared private membership test (batch ssPMT) [19] is a two-party
protocol that implements multiple instances of ssPMT[16, 40] between a sender
S and a receiver R. Given a batch size of B, S inputs B sets X1, · · · , XB , while
R inputs B elements x1, · · · , xB . As a result, S and R receive secret shares of
a bit vector of size B, where the i-th bit is 1 if xi ∈ Xi, 0 otherwise. The batch
ssPMT functionality is given in Figure 6. Dong et al. [19] proposed an efficient
construction with linear complexities, based on batch OPPRF and secret-shared
private equality test (ssPEQT) [45, 16].

2.7 Multi-Party Secret-Shared Shuffle
Multi-party secret-shared shuffle functionality works by randomly permuting
the share vectors of all parties and then refreshing all shares, ensuring that the
permutation remains unknown to any coalition of m−1 parties. The formal func-
tionality is given in Figure 7. Eskandarian et al. [20] proposed an online-efficient
protocol where the parties generate share correlations in the offline phase, so that
the leader’s online complexity scales linearly with n and m, while the clients’
online complexity scales linearly with n and is independent of m.

12 M. Dong et al.

Parameters. Sender S. Receiver R. Batch size B. The bit length l of keys. The
bit length γ of values.
Sender’s inputs. S inputs B sets of key-value pairs including:

– Disjoint key sets K1, · · · ,KB .
– The value sets V1, · · · , VB , where |Ki| = |Vi|, i ∈ [B].

Receiver’s inputs. R inputs B queries x ⊆ ({0, 1}l)B .
Functionality: On input (K1, · · · ,KB) and (V1, · · · , VB) from S and x ⊆
({0, 1}l)B from R,

– Generate a uniform PPRF key ki and an auxiliary information hinti for i ∈ [B];
– Give vector k = (k1, · · · , kB) and (hint1, · · · , hintB) to S.
– Sample a PPRF F : {0, 1}∗×{0, 1}l → {0, 1}γ such that F (ki,Ki(j)) = Vi(j)

for i ∈ [B], 1 ≤ j ≤ |Ki|;
– Define fi = F (ki, xi), for i ∈ [B];
– Give vector f = (f1, · · · , fB) to R.

Fig. 5. Batch OPPRF Functionality FbOPPRF

Parameters. Sender S. ReceiverR. Batch size B. The bit length l of set elements.
Inputs. S inputs B disjoint sets X1, · · · , XB and R inputs x ⊆ ({0, 1}l)B .
Functionality. On inputs X1, · · · , XB from S and input x from R, for 1 ≤ i ≤ B,
sample two random bits eiS , eiR under the constraint that if xi ∈ Xi, e

i
S ⊕ eiR = 1,

otherwise eiS ⊕ eiR = 0. Give eS = (e1S , · · · , eBS) to S and eR = (e1R, · · · , eBR) to R.

Fig. 6. Batch ssPMT Functionality FbssPMT

Parameters. m parties P1, · · ·Pm. The dimension of vector n. The item length l.
Functionality. On input xi = (x1i , · · · , xni) from each Pi, sample a random
permutation π : [n] → [n]. For 1 ≤ i ≤ m, sample x′

i ← ({0, 1}l)n satisfying⊕m
i=1 x′

i = π(
⊕m

i=1 xi). Give x′
i to Pi.

Fig. 7. Multi-Party Secret-Shared Shuffle Functionality Fshuffle

Multi-Party Private Set Operations from Predicative Zero-Sharing 13

2.8 Hashing to Bins

The hashing to bins technique was introduced by Pinkas et al. [46, 44] to con-
struct two-party PSI. At a high level, the receiverR uses hash functions h1, h2, h3
to assign its items to B bins via Cuckoo hashing [42], so that each bin has at most
one item.5 On the other hand, the sender S assigns each of its items x to all bins
h1(x), h2(x), h3(x) via simple hashing. This guarantees that for each item x ofR,
if x is mapped into the b-th bin of Cuckoo hash table (b ∈ {h1(x), h2(x), h3(x)}),
and x is in S’s set, then the b-th of simple hash table certainly contains x.

We denote simple hashing with the following notation:

T 1, · · · , T B ← SimpleBh1,h2,h3
(X)

This expression represents hashing the items of X into B bins using simple
hashing with hash functions h1, h2, h3 : {0, 1}∗ → [B]. The output is a hash
table denoted by T 1, · · · , T B , where for each x ∈ X, T hi(x) ⊇ {x∥i|i = 1, 2, 3}.6

We denote Cuckoo hashing with the following notation:

C1, · · · , CB ← CuckooBh1,h2,h3
(X)

This expression represents hashing the items ofX into B bins using Cuckoo hash-
ing with hash functions h1, h2, h3 : {0, 1}∗ → [B]. The output is a Cuckoo hash
table denoted by C1, · · · , CB , where for each x ∈ X there is some i ∈ {1, 2, 3} such
that Chi(x) = {x∥i}. Some Cuckoo hash positions are irrelevant, corresponding
to empty bins. We use these symbols throughout subsequent sections.

3 Predicate Formula Representation of Set Formulas

In this section, we formally introduce our predicate formula representation for
any set formulas. Its well-designed structure enable us to break the barrier be-
tween the full MPSO functionality and the state-of-the-art techniques used in
MPSI and MPSU. We define several notions to facilitate the subsequent discus-
sion of our work and present several theorems.

3.1 Constructible Set

We formalize the notion of the resulting sets that can be derived from any set
formulas being computed over the parties’ private sets in the context of MPSO.
We refer to these resulting sets as constructible sets.

Definition 2. Let X1, · · · , Xm be m sets. A set Y is called a constructible set
(over X1, · · · , Xm) if it can be derived from X1, . . . , Xm through a finite number
of set operations, including intersection, union, and difference.
5 The Cuckoo hashing process uses eviction and the choice of bins for each item de-

pends on the entire set.
6 Appending the index of the hash function is helpful for dealing with edge cases like
h1(x) = h2(x) = i, which happen with non-negligible probability.

14 M. Dong et al.

In particular, if a constructible set Y satisfies Y ⊆ Xi for some 1 ≤ i ≤ m,
we call it an Xi-constructible set (over X1, · · · , Xm).

Definition 3. Let φ(x,X1, · · · , Xm) be a first-order predicate formula. If φ is
composed of atomic propositions of the form M(x,Xi) : x ∈ Xi, we call it a
(first-order) set predicate formula.

Any constructible set can be represented by a set predicate formula. This
corresponding relationship is formalized in the following theorem.

Theorem 1. Let X1, · · · , Xm be m sets and Y is a constructible set. There
exists a set predicate formula φ(x,X1, · · · , Xm), s.t. for any urelement x,

x ∈ Y ⇐⇒ φ(x,X1, · · · , Xm) = 1.

We prove this theorem in Appendix B.

3.2 Canonical Predicate Formula Representation

Definition 4. A set predicate formula φ(x,X1, · · · , Xm) is called set-separable
with respect to Xi for some 1 ≤ i ≤ m if it can be written in the form:

φ(x,X1, · · · , Xm) = (x ∈ Xi) ∧ ψ(x,X1, · · · , Xi−1, Xi+1, · · · , Xm),

where ψ(x,X1, · · · , Xi−1, Xi+1, · · · , Xm) is a set predicate formula not involving
Xi, which we call the separation formula of φ(x,X1, · · · , Xm) with respect to Xi.

Corollary 1. If a constructible set Y corresponds to a set predicate formula
which is set-separable with respect to Xi, then Y is an Xi-constructible set.

Definition 5. Let a set predicate formula ψ(x,X1, · · · , Xm) be a disjunction of
one or more subformulas7, denoted as ψ = Q1 ∨ · · · ∨ Qs(s ≥ 1). Let Yi be the
corresponding set represented by Qi, then if each subformula Qi is set-separable
with respect to some Xj (1 ≤ j ≤ m), and the set of {Y1, · · · , Ys} forms a
partition of Y (the constructible set ψ represents), we call ψ(x,X1, · · · , Xm) a
canonical predicate formula (CPF) representation (over X1, · · · , Xm).

Theorem 2. Let X1, · · · , Xm be m sets and Y is a constructible set. There
exists a CPF representation ψ(x,X1, · · · , Xm) s.t. for any urelement x,

x ∈ Y ⇐⇒ ψ(x,X1, · · · , Xm) = 1

We prove this theorem by showing how to construct ψ in Appendix C.
In order to illustrate Theorem 2, consider three constructible sets in the three-

party setting: the intersection Y = X1 ∩X2 ∩X3, the union Y = X1 ∪X2 ∪X3

and a complex set formula Y = ((X1 ∩X2) ∪ (X1 ∩X3)) \ (X1 ∩X2 ∩X3). We
provide the respective CPF representation ψ(x,X1, X2, X3) for each case below.
7 A disjunction of one subformulas is itself.

Multi-Party Private Set Operations from Predicative Zero-Sharing 15

Intersection. ψ(x,X1, X2, X3) = (x ∈ X1) ∧ (x ∈ X2) ∧ (x ∈ X3). In this case,
ψ is a disjunction of one subformula Q1 = ψ, corresponding to the set Y1 = Y .
Q1 is set-separable with respect to X1, X2 and X3. Y1 itself is a partition of Y .
Union. ψ(x,X1, X2, X3) = (x ∈ X1)∨ ((x /∈ X1)∧ (x ∈ X2))∨ ((x /∈ X1)∧ (x /∈
X2)∧ (x ∈ X3)). ψ is a disjunction of three subformulas Q1, Q2, Q3, where each
Qi = (x /∈ X1)∧· · ·∧(x /∈ Xi−1)∧(x ∈ Xi) represents Yi = Xi\(X1∪· · ·∪Xi−1).
Qi is set-separable with respect to Xi. {Y1, Y2, Y3} is a partition of Y .
Complex set formula. There are two CPF representations for this case:

– ψ(x,X1, X2, X3) = ((x ∈ X1) ∧ (x ∈ X2) ∧ (x /∈ X3)) ∨ ((x ∈ X1) ∧ (x ∈
X3) ∧ (x /∈ X2)). ψ is a disjunction of two subformulas Q1, Q2 with the
corresponding sets Y1 = X1 ∩ X2 \ X3 and Y2 = X1 ∩ X3 \ X2. Q1 is set-
separable with respect to X1 and X2, while Q2 is set-separable with respect
to X1 and X3. {Y1, Y2} is a partition of Y .

– ψ(x,X1, X2, X3) = (x ∈ X1)∧[((x ∈ X2)∧(x /∈ X3))∨((x ∈ X3)∧(x /∈ X2))].
ψ is set-separable with respect to X1, so it is a disjunction of one subformula
Q1 = ψ, which obviously satisfies the definition of CPF representation.

The third example demonstrates that the CPF representation for a given con-
structible set is not unique. Different CPF representations can impact our pro-
tocols’ efficiency. A key principle is to minimize the number of subformulas in
the CPF representation to optimize performance.

4 Predicative Zero-Sharing

In this section, we introduce a new notion called predicative zero-sharing. By
zero-sharing, we refer to a “redundant” secret-sharing that distributes one bit
into secret shares over a finite field, where this bit is 0 only if some condition
holds (e.g. the truth-value of a first-order predicate formula is true). Predicative
zero-sharing is a family of protocols, each associated with a first-order predicate
formula, encoding the truth-value of the formula on the parties’ inputs into a
zero-sharing among the parties. This class of protocols can be composed based
on AND and OR operators.

4.1 Definitions

A predicative zero-sharing protocol allows a set of m (m ≥ 2) parties with pri-
vate inputs to receive secret shares of 0, on condition that the truth-value of the
associated first-order predicate formula Q in terms of their inputs is true, oth-
erwise receive secret shares of a uniformly random value. The formal definition
of predicative zero-sharing functionality is given in Figure 8.

4.2 Security

Given the probabilistic functionality, a protocol must meet Definition 1 to se-
curely compute predicative zero-sharing. However, we observe that for predica-
tive zero-sharing, a simpler security definition with three requirements, including

16 M. Dong et al.

Parameters: m parties P1, · · ·Pm with inputs x = (x1, · · · , xm). A field F. A
first-order predicate formula Q.
Functionality: On input xi from each Pi, sample si ← F s.t. if Q(x) = 1,
s1 + · · ·+ sm = 0. Give si to Pi for 1 ≤ i ≤ m.

Fig. 8. Ideal functionality for predicative zero-sharing FQ
PZS

correctness, privacy and independence, is equivalent. We demonstrate this equiv-
alence through the following theorem. Note that we will use this simpler security
definition to prove security of all predicative zero-sharing protocols in this work.

Consider a probabilistic m-ary functionality Ff , which takes the parties’
inputs x = (x1, · · · , xm) and outputs secret shares of f(x) to the parties. Let Π
be a m-party protocol for computing Ff , and si and sΠi denote the output of
Pi from Ff , and that during the execution of Π on x, respectively (1 ≤ i ≤ m).

Theorem 3. If f is a probabilistic functionality in terms of x, and Π satisfies:

– Correctness. The outputs of Π are secret shares of f(x), namely,

{s1, · · · , sm}x
s
≈ {sΠ1 , · · · , sΠm}x

– Privacy. There exists a PPT algorithm Sim s.t. for every PA = {Pi1 , · · · , Pit},

{Sim(PA,xA, sA)}x
c
≈ {ViewΠ

A (x)}x

– Independence. The randomness in f(x) is independent of ViewΠ
A (x) for

every PA = {Pi1 , · · · , Pit} during an execution of Π.

Then, there exists a PPT algorithm Sim s.t. for every PA = {Pi1 , · · · , Pit},

{Sim(PA,xA, sA), s1, · · · , sm}x
c
≈ {ViewΠ

A (x), sΠ1 , · · · , sΠm}x

We prove this theorem in Appendix D. Note that predicative zero-sharing
functionality FQ

PZS is a special case of Ff , where

f(x) =
{
0 if Q(x) = 1

s if Q(x) = 0

and s is a uniform value (the randomness in f , denoted as sΠ in the real execu-
tion). The independence requirement in this case is instantiated as: if Q(x) = 0,
the distribution of the secret sΠ = sΠ1 + · · · + sΠm during an execution of Π is
independent of ViewΠ

A (x), and the correctness and independence requirements
ensure that if Q(x) = 0, sΠ is uniform and independent of the joint view of any
t ≤ m− 1 parties in real execution.

Multi-Party Private Set Operations from Predicative Zero-Sharing 17

4.3 Relaxed Predicative Zero-Sharing

Predicative zero-sharing serves as an abstraction of many existing MPC proto-
cols. Some protocols, like multi-party secret-shared ROT (mss-ROT) [19], rigidly
conform to Theorem 3. In contrast, others realize functionality without meeting
the independence requirement. We refer to this relaxed predicative zero-sharing
functionality associated with Q as FQ

rPZS.
Relaxed predicative zero-sharing accommodates a broader range of exist-

ing protocols, such as ROT and equality-conditional randomness generation
(ECRG) [35]. We demonstrate that ROT implies a relaxed predicative zero-
sharing associated with a simple predicate to test whether the choice bit e = 1.
Let S set its share s1 = −r0, where r0 is the first message from ROT, and let R
set its share s2 = re, the received message. Given that ROT functionality can be
written as −r0+re = e · (−r0+r1), if e = 0, s1+s2 = 0; else, s1+s2 = −r0+r1,
which is uniform but dependent on the output messages from ROT in S’s view.

Using the standard simulation-based definition, it is hard to depict this secu-
rity relaxation by defining merely a single functionality that considers all possible
coalitions of t ≤ m−1 parties in the multi-party setting (m > 2). However, with
our new security definition tailored for predicative zero-sharing, the relaxation
is precisely formalized by removing the independence requirement.

4.4 From Relaxed to Standard Predicative Zero-Sharing

We give an efficient method for transforming relaxed predicative zero-sharing
into standard predicative zero-sharing below.

Assuming that all parties obtain a secret-sharing [r] = (r1, · · · , rm) from
a relaxed predicative zero-sharing protocol, with the goal to generate a new
secret-sharing [s] = (s1, · · · , sm) meeting the standard predicative zero-sharing
definition. All they need to do is to prepare a random secret-sharing [b] in the
offline phase (by each Pi sampling a uniform share bi), and perform a secure
multiplication [s] = [r] · [b] in the online phase. We optimize the online phase of
this secure multiplication through Beaver triples [7] in Appendix E.

Correctness and independence. We set the field size |F| ≥ 2σ.

– If Q(x) = 1, r = 0, then s = 0.
– If Q(x) = 0, r is uniform. Let E be the event that s is uniform and and

independent of the joint view of any t ≤ m− 1 parties. Let E0 be the event
r = 0 and E1 be the event r ̸= 0. Since b is uniform and independent, we
have Pr[E] = Pr[E|E0]·Pr[E0]+Pr[E|E1]·Pr[E1] = 0·Pr[E0]+1·Pr[E1] =
Pr[E1] = 1− Pr[E0] = 1− 1

|F| ≥ 1− 2−σ.

Privacy. The privacy follows immediately from the privacy of the relaxed pred-
icative zero-sharing protocol and the secure multiplication.

18 M. Dong et al.

4.5 From Simple to Compound Predicative Zero-Sharing

According to the type of the associated first-order predicate formula Q, we divide
predicative zero-sharing into two categories: If Q is a simple predicate, we call
it a simple predicative zero-sharing; If Q is a compound predicate, we call it
compound predicative zero-sharing. A compound predicate Q is formed from q
literals (q > 1) and logical connectives ∧ and ∨, where each literal Qi corresponds
to a simple predicate or its negation (1 ≤ i ≤ q). We show that as long as we
have a relaxed simple predicative zero-sharing protocol for each Qi, we can build
a compound predicative zero-sharing protocol for any compound predicate Q.

At a high level, a compound predicative zero-sharing protocol for Q pro-
ceeds in three phases: First, the parties execute the relaxed simple predicative
zero-sharing protocol for each literal. For literals involving only a subset of the
parties, the uninvolved parties set their missing secret share to 0; Second, they
collectively manipulate the output secret-sharings by emulating the evaluation
of Q, composing them into one output secret-sharing that meets the definition
of relaxed compound predicative zero-sharing for Q, step by step. At the end of
each step, they obtain a secret-sharing associated with the currently evaluated
formula; Finally, the parties transform the relaxed compound predicative zero-
sharing into the standard. The complete construction is described in Figure 9.

Theorem 4. Protocol ΠQ
PZS securely realizes FQ

PZS against any semi-honest ad-
versary corrupting t < m parties in the (FQ1

rPZS, · · · ,F
Qq

rPZS)-hybrid model.

Correctness and independence. In each step of the formula emulation stage,

– If Q′(x) = Q′
i(x)∧Q′

j(x), the parties compute [ri+rj] = [ri]+[rj]. If Q′(x) =
1, namely, Q′

i(x) = 1∧Q′
j(x) = 1, by the functionalities of FQ′

i

rPZS and FQ′
j

rPZS,
ri = 0∧rj = 0, hence we have ri+rj = 0; otherwise, Q′

i(x) = 0∨Q′
j(x) = 0,

which results that one of ri and rj is random, so ri + rj is random.
– If Q′(x) = Q′

i(x)∨Q′
j(x), the parties compute [ri ·rj] = [ri]·[rj]. If Q′(x) = 1,

namely, Q′
i(x) = 1 ∨ Q′

j(x) = 1, we have ri = 0 ∨ rj = 0, hence ri · rj = 0;
otherwise, Q′

i(x) = 0∧Q′
j(x) = 0, then both of ri and rj are random. Let Ei,j

be the event that ri · rj is random. Let Ei
0 be the event ri = 0 and Ei

1 be the
event ri ̸= 0. We have Pr[Ei,j] = Pr[Ei,j |Ei

0] ·Pr[Ei
0]+Pr[E|Ei

1] ·Pr[Ei
1] =

0 ·Pr[Ei
0]+1 ·Pr[Ei

1] = Pr[Ei
1] = 1−Pr[Ei

0]. To bound the correctness error
by 2−σ, we require that the probability of any Ei

0 occurring is negligible. By
union bound, Pr[

∨
iE

i
0] ≤

∑
i Pr[E

i
0] =

|OR|
|F| . Therefore, we set the field size

|F| ≥ |OR| · 2σ, where |OR| is the number of OR operators in Q.

The above correctness of implementing AND and OR operators in each step en-
sures the correctness of generating a relaxed predicative compound zero-sharing
for Q. Then following the proof of correctness and independence in Section 4.4,
the protocol satisfies the correctness and independence requirements of the stan-
dard predicative compound zero-sharing for Q.

Multi-Party Private Set Operations from Predicative Zero-Sharing 19

Privacy. The privacy of predicative zero-sharing is straightforward to verify:
All interactions happen within the invocations of blocking blocks — all relaxed
simple predicative zero-sharing protocols, the secure multiplication and trans-
formation. Therefore, given the outputs from the ideal functionality, the sim-
ulator only needs to invoke the sub-simulators for these blocking blocks in a
backward-chaining manner. As long as the privacy of all relaxed simple predica-
tive zero-sharing protocols, the secure multiplication and transformation holds,
the adversary’s view is indistinguishable in the ideal and real executions.

Parameters: m parties P1, · · ·Pm with inputs x = (x1, · · · , xm). A field F. A
simple/compound predicate Q composed of q literals Q1, · · · , Qq (q ≥ 1) and
logical connectives. A Beaver triple ([a], [b], [c]) generated in the offline phrase.
Protocol:
1. The simple predicative sharing stage. In this stage, the parties invoke
FQi

rPZS for each literal Qi, 1 ≤ i ≤ q. If Qi does not involve all the parties, then
the uninvolved parties set their secret shares to 0. As a result, each Qi has a
corresponding secret-sharing among the parties.

2. The formula emulation stage. If q > 1, the parties collectively emulate
the computation of Q in the order of operator precedence, step by step. In
each step, the parties generate a secret-sharing associated with a binary clause
connected by a given operator, based on the secret-sharings associated with
the two contained literals Q′

i and Q′
j , which they obtain from previous steps.

The actions of parties depend on the type of operator being computed:
– AND operator: Suppose the parties hold two secret-sharings [ri] and [rj]

associated with Q′
i and Q′

j respectively. They want to compute a relaxed
predicative zero-sharing for Q′, where Q′(x) = Q′

i(x) ∧ Q′
j(x). All they

need to do is to locally add two shares to obtain the secret-sharing [ri+rj].
– OR operator: Suppose the parties hold two secret-sharings [ri] and [rj]

associated with Q′
i and Q′

j respectively. They want to compute a relaxed
predicative zero-sharing for Q′, where Q′(x) = Q′

i(x)∨Q′
j(x). Then they

perform a secure multiplication [ri · rj] = [ri] · [rj].
After obtaining the secret-sharing associated with Q′, the parties regard Q′

as a new literal, and repeat the above process until there is only one literal
in Q. The secret-sharing [r] associated with the ultimate literal held by the
parties is the relaxed compound predicative zero-sharing for Q.

3. Transformation from relaxed to standard. All parties compute [s] by
performing a secure multiplication [s] = [r] · [b], which requires one recon-
struction in the online phase using Beaver triple technique (c.f. Appendix E).

Fig. 9. Predicative Zero-Sharing ΠQ
PZS

20 M. Dong et al.

5 Membership Zero-Sharing

Predicative zero-sharing is the abstraction of a class of MPC protocols. With the
associated first-order predicate formulas determined, predicative zero-sharing
can be instantiated. To instantiate predicative zero-sharing in the context of
MPSO, we introduce membership zero-sharing, each associated with a set pred-
icate formula, which serves as the technical core of our framework.

Our goal in this section is to build membership zero-sharing protocols for any
first-order set predicate formulas. At a very high level, our construction follows
the recipe for predicative zero-sharing in Figure 9, with the relaxed predicative
zero-sharing components awaiting instantiations. Given that any set predicate
formula is only composed of two types of literals — set membership predicates
x ∈ Y and the negations x /∈ Y , the task reduces to constructing two relaxed
membership zero-sharing protocols, associated with x ∈ Y and x /∈ Y respec-
tively, in the two-party setting. The technical route is outlined in Figure 10.

batch OPPRF batch ssPMT ROT

Relaxed Membership
Zero-Sharing for x ∈ Y

Relaxed Membership
Zero-Sharing for x /∈ Y

Relaxed Membership Zero-Sharing
for any set predicate formula Q

Membership Zero-Sharing for
any set predicate formula Q

composition technique
(Section 4.5)

transformation technique (Section 4.4)

Fig. 10. Technical route of building membership zero-sharing protocols for any first-
order set predicate formulas. The newly introduced primitives are marked with solid
boxes. The existing primitives are marked with dashed boxes.

5.1 Membership Zero-Sharing

A membership zero-sharing protocol allows m parties (m ≥ 2), where one party
(denoted as Ppivot) holds an element x while each of the others Pj holds a set
Xj (j ∈ {1, · · · ,m} \ {pivot}) as input. If the associated set predicate formula
Q(x,X1, · · · , Xpivot−1, Xpivot+1, · · · , Xm) = 1, they receive secret shares of 0,
otherwise they receive secret shares of a random value. The formal definition of
membership zero-sharing functionality is given in Figure 11.

A batched version of membership zero-sharing is defined in Figure 12, where
Ppivot holds a vector x = (x1, · · · , xn) and each Pj holds n sets as inputs. The

Multi-Party Private Set Operations from Predicative Zero-Sharing 21

Parameters: m parties P1, · · ·Pm, where Ppivot is the only one holding an element
instead of a set. A set predicate formula Q. A field F.
Functionality: On input x from Ppivot, Xj from each Pj (j ∈ {1, · · ·m}\{pivot}),
sample si ← F for 1 ≤ i ≤ m s.t. if Q(x,X1, · · · , Xpivot−1, Xpivot+1, · · · , Xm) = 1,∑

1≤i≤m si = 0. Give si to Pi.

Fig. 11. Membership Zero-Sharing Functionality FQ
MZS

parties obtain n secret-sharings, where the i-th secret-sharing indicates the truth-
value of the same formula Q evaluated on their i-th inputs. In particular, if Q is a
conjunction of m−1 set membership predicates (i.e.,

∧
j∈{1,··· ,m}\{pivot} x ∈ Xj),

we refer to it as batch pure membership zero-sharing; if Q is a conjunction of
m− 1 set non-membership predicates (i.e.,

∧
j∈{1,··· ,m}\{pivot} x /∈ Xj), we refer

to it as batch pure non-membership zero-sharing. We use FbpMZS and FbpNMZS

to denote these two functionalities, respectively. The details of batch pure mem-
bership zero-sharing and batch pure non-membership zero-sharing are provided
in Appendix F. We also introduce a variant of pure membership zero-sharing
called pure membership zero-sharing with payloads, where Ppivot holds an ele-
ment x while each of the others holds a set of elements and a set of associated
payloads. In the end, the parties hold two secret sharings. If the conjunction of
set membership predicates holds true (i.e., x belongs to all element sets), the
parties receive secret shares of 0 and secret shares of the sum of all payloads
associated with x; otherwise they receive secret shares of two random values.
The ideal functionality of batch pure membership zero-sharing with payloads
FbpMZSp is given in Figure 13, with further details also found in Appendix F.

Parameters: m parties P1, · · ·Pm, where Ppivot is the only one holding n elements
instead of n sets. A set membership predicate formula Q. Batch size n. A field F.
Functionality: On input x = (x1, · · · , xn) from Ppivot and Xj = (Xj,1, · · · , Xj,n)
from each Pj (j ∈ {1, · · · ,m} \ {pivot}), sample si = (si,1, · · · , si,n) ← Fn for
1 ≤ i ≤ m, s.t. for 1 ≤ d ≤ n, if Q(xd, X1,d, Xpivot−1,d, Xpivot+1,d, · · · , Xm,d) = 1,∑

1≤i≤m,1≤d≤n si,d = 0. Give si to Pi.

Fig. 12. Batch Membership Zero-Sharing Functionality FQ
bMZS

22 M. Dong et al.

Parameters: m parties P1, · · ·Pm, where Ppivot is the only one holding n elements
instead of 2n sets. Batch size n. A field F and payload field F′. The mapping
function payloadj() from element sets Xj to the associated payload sets Vj .
Functionality: On input x = (x1, · · · , xn) from Ppivot, Xj = (Xj,1, · · · , Xj,n)
and Vj = (Vj,1, · · · , Vj,n) from each Pj (j ∈ {1, · · ·m} \ {pivot}), sample si =
(si,1, · · · , si,n) ← Fn,wi = (sw,1, · · · , sw,n) ← F′n for 1 ≤ i ≤ m, s.t. for 1 ≤
d ≤ n, if

∧
j∈{1,··· ,m}\{pivot}(xd ∈ Xj,d) = 1,

∑
1≤i≤m si,d = 0 and

∑
1≤i≤m wi,d =∑

j∈{1,··· ,m}\{pivot} vj,d, where vj,d = payloadj(xd) ∈ Vj,d. Give (si,wi) to Pi.

Fig. 13. Batch Pure Membership Zero-Sharing with Payloads Functionality FbpMZSp

5.2 Relaxed Membership Zero-Sharing for Set Membership
Predicate

A class of relaxed membership zero-sharing for set membership predicate x ∈ Y
can be defined as a two-party functionality as follows: There are two parties, the
sender S with a set Y and the receiver R with an element x. The functionality
samples s, r ← F and if x ∈ Y , sets u = −r, otherwise u = s−r. It also generates
an auxiliary information hint based on s. Finally, the functionality outputs r, hint
to S and u to R. The hint is part of the syntax that allows for some leakage
of the secret s to S when x /∈ Y , capturing the security relaxation in relaxed
predicative zero-sharing.

We construct this protocol using OPPRF: S samples a uniform r, and sets
Y as the key set and n repeated values −r as the value set. Then S and R
invoke OPPRF, where R inputs x and receives u. In the end, S and R outputs
r and u respectively. By the OPPRF functionality, if x ∈ Y , u = −r, otherwise
u is pseudorandom. The hint outputted to S is the PRF key from OPPRF. This
protocol can be naturally extended to a batched version by using batch OPPRF.

5.3 Relaxed Membership Zero-Sharing for Set Non-Membership
Predicate

A class of relaxed membership zero-sharing protocol for set non-membership
predicate x /∈ Y can be defined as a two-party functionality as follows: The
sender S inputs a set Y while the receiver R inputs x. The functionality samples
s, r ← F and if x /∈ Y , sets u = −r, otherwise u = s − r. It also generates an
auxiliary information hint based on s and outputs r, hint to S and u to R.

Intuitively, this functionality shares similarities with the ssPMT — both
yield secret shares of 0 when x /∈ Y . The key difference lies in that it outputs
a zero-sharing over a field F, where the opposite of a secret-sharing of 0 is a
secret-sharing of a random value in F, while ssPMT outputs a bit secret-sharing
over F2, where the opposite of a secret-sharing of 0 is a secret-sharing of 1.
Given the efficient construction for batch ssPMT in [19], our goal is to efficiently

Multi-Party Private Set Operations from Predicative Zero-Sharing 23

transform bit secret-sharings into zero-sharings (The batched version proceeds
by first having the parties invoke batch ssPMT then execute n transformations).

Recall that in Section 4.1, ROT is considered as a relaxed simple predicative
zero-sharing associated with the predicate e = 0. A variant of ROT, involving
two choice bits e0, e1 held by S and R respectively [40, 35, 19], is a relaxed
simple predicative zero-sharing with the associated predicate e0 ⊕ e1 = 0. After
executing the protocol, S receives r0, r1 ∈ F while R receives re0⊕e1 ∈ F.8 This
two-choice-bit ROT can be used to transform bit secret-sharing into zero-sharing
as follows: Let S set r = −r0 and R set u = re0⊕e1 , then if e0⊕e1 = 0, r+u = 0;
otherwise r + u = r1 − r0 is uniform. The hint outputted to S is r1.

5.4 Membership Zero-Sharing for Any Set Predicate Formulas

Using the above instantiations for the two-party relaxed membership zero-sharing
protocols, we present the complete protocol of batch membership zero-sharing
for any set predicate formula Q in Figure 14.

Theorem 5. Protocol ΠQ
bMZS securely realizes FQ

bMZS against any semi-honest
adversary corrupting t < m parties in the (FbOPPRF,FbssPMT,FROT)-hybrid model.

The correctness and independence of membership zero-sharing are inherited
from predicative zero-sharing, with a parameter adjustment for correctness: |F| ≥
|OR| · n · 2σ, where |OR| is the number of OR operators in Q.

The privacy of membership zero-sharing is straightforward to verify: All in-
teractions happen within the invocations of two relaxed batch membership zero-
sharing protocols, which can be further decomposed into three blocking blocks
— batch OPPRF, batch ssPMT and ROT. Therefore, given the outputs from
the ideal functionality, the simulator only needs to invoke the sub-simulators
for these blocking blocks in a backward-chaining manner. As long as the batch
OPPRF, batch ssPMT and ROT protocols are secure, the adversary’s view is
indistinguishable in ideal and real executions, thus meeting privacy definition.

6 Our MPSO Framework

6.1 Overview

Our framework is based on the CPF representation ψ(x,X1, · · · , Xm) of any
constructible set Y . Recall that ψ = Q1∨· · ·∨Qs. We use Xi1 , · · · , Xiq (1 ≤ q ≤
m) to denote all sets relevant to the atomic propositions in Qi (1 ≤ i ≤ s), and
Xj (j ∈ {i1, · · · , iq}) to denote the set which Qi is set-separable with respect to.
Namely,

Qi(x,Xi1 , · · · , Xiq) = (x ∈ Xj) ∧Q′
i(x,Xi1 , · · · , Xj−1, Xj+1, · · · , Xiq).

8 This two-choice-bit ROT is identical to the standard 1-out-of-2 ROT, where e0 is
sampled by S, indicating whether to swap the order of r0 and r1, as in Figure 14.

24 M. Dong et al.

Parameters: m parties P1, · · ·Pm, where Ppivot holds n elements instead of n sets.
A set predicate formula Q composed of q ≥ 1 literals Q1, · · · , Qq where each Qi

(1 ≤ i ≤ q) is in the form x ∈ Xj or x /∈ Xj for some j ∈ {1, · · ·m} \ {pivot}.
n Beaver triples ([a], [b], [c]), where [a] = ([a1], · · · , [an]), [b] = ([b1], · · · , [bn]),
[c] = ([c1], · · · , [cn]) and ci = ai · bi for 1 ≤ i ≤ n. Batch size n. A field F.
Protocol:
1. The simple predicative sharing stage. In this stage, for each Qi, Ppivot and

Pj invoke the relaxed batch membership zero-sharing for x ∈ Xj or x /∈ Xj

(according to the form of Qi) of size n, and the remaining parties set their
secret shares to 0. As a result, the parties hold a vector of n secret-sharings
associated with Qi. To be specific, if Qi is in the form of

– x ∈ Xj : For the k-th instance (1 ≤ k ≤ n), Pj samples ri,k and sets Ki,k =
Xj,k and Vi,k = {−ri,k, · · · ,−ri,k}, where |Ki,k| = |Vi,k|. Then Ppivot and
Pj invoke FbOPPRF where Pj acts as S with inputs (Ki,1, · · · ,Ki,n) and
(Vi,1, · · · , Vi,n), and Ppivot acts as R with input x and receives ui. Ppivot

sets its shares ri,pivot = ui. Pj sets its shares ri,j = (ri,1, · · · , ri,n). For
each d ∈ {1, · · ·m} \ {pivot, j}, Pd sets its shares ri,d = 0.

– x /∈ Xj : Ppivot and Pj invoke FbssPMT, where in the k-th instance (1 ≤ k ≤
n), Pj inputs Xj,k and receives e0i,k, while Ppivot inputs xk and receives e1i,k.
Then they invoke n instances of ROT, where in the k-th instance (1 ≤ k ≤
n), Pj acts as S and receives r0i,k, r1i,k, while Ppivot acts as R with input e1i,k
and receives re

1
i,k

i,k . Ppivot sets its shares ri,pivot = (r
e1i,1
i,1 , · · · , r

e1i,n
i,n). Pj sets

its shares ri,j = (−re
0
i,1

i,1 , · · · ,−r
e0i,n
i,n). For each d ∈ {1, · · ·m} \ {pivot, j},

Pd sets its shares ri,d = 0.
The vector of n secret-sharings for Qi denotes as [ri] = (ri,1, · · · , ri,m).

2. The formula emulation stage. If q > 1, the parties collectively emulate the
computation of Q in the order of operator precedence, step by step. In each
step, the parties generate a vector of n secret-sharings associated with a binary
clause connected by a given operator, based on the two vectors associated with
the contained literals Q′

i and Q′
j , which they obtain from previous steps. The

actions of the parties depend on the type of operator being computed:
– AND operator: Suppose the parties hold two vectors of n secret-sharings

[ri] and [rj] associated with Q′
i andQ′

j respectively. They want to compute
n relaxed membership zero-sharings of Q′ = Q′

i ∧ Q′
j . Then they locally

add the corresponding components of two vectors to obtain [ri + rj].
– OR operator: Suppose the parties hold two vectors of n secret-sharings [ri]

and [rj] associated with Q′
i and Q′

j respectively. They want to compute
n relaxed membership zero-sharings of Q′ = Q′

i ∨ Q′
j . Then the parties

perform n secure multiplications between the corresponding components
of two vectors, i.e., [ri · rj] = [ri] · [rj].

After obtaining the vector of secret-sharings associated with Q′, the parties
regard Q′ as a new literal, and repeat the above steps until there is only one
literal in Q. The vector [r] associated with the ultimate literal held by the
parties is the vector of n relaxed membership zero-sharings for Q.

3. Transformation from relaxed to standard. All parties compute [s] by
performing [s] = [r] · [b], using n Beaver triples ([a], [b], [c]) (c.f. Appendix E).

Fig. 14. Batch Membership Zero-Sharing ΠQ
bMZS

Multi-Party Private Set Operations from Predicative Zero-Sharing 25

where Q′
i is the separation formula of Qi. We use Yi to denote the set represented

by Qi. Our high-level idea is that for each Qi, Pi1 , · · · , Piq invoke n instances of
membership zero-sharing for Q′

i. In each instance, Pj acts as Ppivot inputting one
element in Xj . For each x ∈ Xj , if Q′

i = 1, the parties receive secret shares of 0,
otherwise shares of a random value. Pj adds x to its associated shares, so that
for each x ∈ Xj , if Qi = 1, i.e., Q′

i = 1, the parties receive shares of x, otherwise
shares of a random value. The process can be optimized using hashing to bins
technique as follows.

For each Qi, Pj uses hash functions h1, h2, h3 to assign elements to B = O(n)
bins via Cuckoo hashing, so that each bin Cbj (1 ≤ b ≤ B) has at most one item.
Meanwhile, each Pj′ (j′ ∈ {i1, · · · , iq} \ {j}) assigns each element y ∈ Xj′ to
bins T h1(y)

j′ , T h2(y)
j′ , T h3(y)

j′ . Note that if Pj maps the item x ∈ Xj into Cbj , then
b ∈ {h1(x), h2(x), h3(x)}. If Pj′ also holds x, it must map x into T b

j′ . This enables
the remaining parties to align their input sets with respect to Xj , s.t. for each
x in Cbj , x ∈ X ′

j if and only if x is in T b
j′ . Thereby, we derive that

Q′
i(x,Xi1 , · · · , Xj−1, Xj+1, · · · , Xiq) = Q′

i(x, T b
i1 , · · · , T

b
j−1, T b

j+1, · · · , T b
iq).

Pi1 , · · · , Piq engage in the batch membership zero-sharing for Q′
i, where Pj acts

as Ppivot with inputs C1j , · · · , CBj and each Pj′ inputs T 1
j′ , · · · , T B

j′ . In the end,
they receive B secret-sharings, so that if the element x in each bin Cb

j satis-
fies Qi(x,Xi1 , · · · , Xiq) = 1, i.e. x ∈ Yi, the parties receive secret shares of 0,
otherwise secret shares of a random value. Pj adds x appended with an all-zero
string (for the distinction between elements and random values) to the b-th secret
share, so that if x ∈ Yi, the parties hold a secret-sharing of x.

Given that {Y1, · · · , Ys} form a partition of Y, if the parties execute the above
process with the last element addition step for all Q1, · · · , Qs, they will hold
secret-sharings of all elements in Y (the secret-sharing of each element appears
once, interspersed by random secret-sharings for elements not in Y and duplicate
elements), arranged in the primary order of Y1, · · · , Ys. In each Yi, secret-sharings
are arranged in the secondary order of Pj ’s Cuckoo hash positions, which depends
on the whole set Xj . On the contrary, if the parties execute the above process
without the last step, they will instead hold secret-sharings of 0 in the same
positions. Whether or not to execute the last step is determined by the target
functionality, which can be divided into three categories:

1. MPSO. In this functionality, the parties must reconstruct the elements in
Y to P1, thus they have to execute the last element addition step to secret-
share elements. However, a straightforward reconstruction of secret-sharings
leads to two types of information leakage: 1) The primary order of the recon-
structed elements reveals the subset Yi which each element belongs to. 2) The
secondary order of the reconstructed elements reveals the information of Xj .
The solution is to let all parties invoke the multi-party secret-shared shuffle
to randomly permute and re-share secret-sharings before reconstruction.

2. MPSO-card. In this functionality, the parties must reconstruct the secrets
without revealing the actual elements but only the cardinality. To achieve

26 M. Dong et al.

this, the parties skip the last element addition step, so that for each ele-
ment in Y , the parties hold secret-sharings of 0, and for elements not in Y
or repeated elements, the parties hold random secret-sharings. These secret-
sharings are arranged in a specific sequence, and straightforward reconstruc-
tion would cause similar leakage as previous, thus the parties need to invoke
the multi-party secret-shared shuffle as well. Afterwards, they reconstruct
secrets to the leader, who counts the number of 0s as the cardinality of Y .

3. Circuit-MPSO. There are two ways to realize this functionality.
– Approach 1: The parties skip the last element addition step for all

subformulas. They feed secret-sharings along with the elements in indi-
cated Cuckoo hashing bins into generic MPC in order, which implements
a circuit identifying 0s from random values, collecting elements in the
corresponding positions as Y , and computing arbitrary function on Y .

– Approach 2: The parties execute the last element addition step for all
subformulas. They feed secret-sharings into generic MPC, which imple-
ments a circuit first distinguishing elements from random values (by the
appended 0s) to identify Y , then computing arbitrary function on Y .

In the following sections, we progressively introduce our framework in de-
tail. Specifically, we start by constructing the simplest cases — MPSI/MPSI-
card/circuit-MPSI, which are on behalf of a special case where ψ(x,X1, · · · , Xm)
is a disjunction of one subformula that is set-separable with respect to X1, in
Section 6.2. The protocols in this setting can bypass the invocation of multi-
party secret-shared shuffle. In addition, we propose an MPSI-card-sum protocol
as a variant. Next, we discuss another special case where Y is represented as
the disjunction of several subformulas. We construct MPSU/MPSU-card/circuit-
MPSU protocols as illustrations in Section 6.3. Finally, in Section 6.4, we present
the complete MPSO/MPSO-card/circuit-MPSO protocols.

6.2 MPSI, MPSI-card and Circuit MPSI

Consider a constructible set Y , which can be represented as a set-separable
formula Q(x,X1, · · · , Xm) with respect to X1, such as X1 ∩ X2 ∩ X3 can be
represented as (x ∈ X1) ∧ (x ∈ X2) ∧ (x ∈ X3) and X1 \ (X2 ∩ X3) can be
represented as (x ∈ X1)∧¬((x ∈ X2)∧ (x ∈ X3)) = (x ∈ X1)∧ ((x /∈ X2)∨ (x ∈
X3)). Let Q′(x,X2, · · · , Xm) be the separation formula of Q with respect to X1.

In this case, all elements in Y belong to P1, and the order of secret-sharings is
totally determined by X1, so the two types of “information leakage” associated
with the specific sequence of secret-sharings no longer constitute actual informa-
tion leakage for P1. Therefore, after P1 invokes batch membership zero-sharing
with the other parties, acting as Ppivot, to realize MPSO, the parties straight-
forwardly reconstruct B secret-sharings to P1. For each 1 ≤ b ≤ B, P1 checks
whether the b-th secret is 0. If so, the element in the b-th bin is in Y . While in
MPSO-card, the parties still need to invoke a multi-party secret-shared shuffle
protocol before reconstruction to shuffle the correspondences between elements
and secret-sharings, preventing P1 from learning the exact elements in Y .

Multi-Party Private Set Operations from Predicative Zero-Sharing 27

Another and the most important benefit in this setting is that the costs of the
protocols do not scale with the input length of set elements, as long as the parties
pre-hash their elements into shorter strings. For correctness, we must ensure
that the hashing introduces no collisions among P1 and the other parties’ input
elements, so the hash function’s output length is at least σ+log2(m−1)+2 log2 n.

The most commonly used protocols in this case are MPSI, MPSI-card and
circuit MPSI. Let C1

s,B,l be a circuit that has sB(m log2|F| + l) input wires,
divided to s sections of B(m log2|F| + l) inputs wires each. In the i-th section
(1 ≤ i ≤ s), the k-th group of B inputs on F is associated with Pk for 1 ≤ k ≤ m,
and we denote the b-th input in this group (1 ≤ b ≤ B) as ui,k,b ∈ F; The last
B l-length inputs are associated with Pj for certain 1 ≤ j ≤ m, where we
denote the b-th input (1 ≤ b ≤ B) as zi,b ∈ {0, 1}l. The circuit first consists a
subcircuit producing a bit wi,b = 1 if ui,1,b + · · · + ui,m,b = 0 and 0 otherwise
for 1 ≤ i ≤ s, 1 ≤ b ≤ B. Then, the circuit computes and outputs f(Z) where
Z = {zi,b|wi,b = 1}1≤i≤s,1≤b≤B and f is the function to be computed on the
constructible set Y . The complete MPSI, MPSI-card and circuit MPSI protocols
are described in Figure 15. Additionally, The MPSI-card-sum protocol based on
pure membership zero-sharing with payloads is outlined in Figure 16.

Parameters. m parties P1, · · · , Pm. Set size n. The element length l. A field F.
Cuckoo hashing parameters: hash functions h1, h2, h3 and number of bins B.
Inputs. Each party Pi has input Xi = {x1i , · · · , xni } ⊆ {0, 1}l.
1. Hashing to bin. P1 does C11 , · · · , CB1 ← CuckooBh1,h2,h3

(X1). For 1 < j ≤ m,
Pj does T 1

j , · · · , T B
j ← SimpleBh1,h2,h3

(Xj).
2. Batch pure membership zero-sharing. All parties invoke FbpMZS of batch

size B, where P1 acts as Ppivot with inputs C11 , · · · , CB1 and each Pj inputs
T 1
j , · · · , T B

j for 1 < j ≤ m. For 1 ≤ i ≤ m, Pi receives si = (si,1, · · · , si,B).
The following actions of the parties depend on the functionality:
MPSI.
3. For 1 < j ≤ m, Pj sends sj to P1. P1 computes s =

∑
1<j≤m sj and sets

Y = ∅. For 1 ≤ b ≤ B, if sb = 0, P1 outputs the element in Cb1.
MPSI-card.
3. For 1 ≤ i ≤ m, Pi invoke Fshuffle with input si. Pi receives s′i.
4. For 1 < j ≤ m, Pj sends s′j to P1. P1 outputs zero(

∑
1<j≤m s′j).

Circuit-MPSI (Approach 1).
3. All parties invoke an m-party computation with circuit C1

1,B,l. For 1 ≤ b ≤
B, 1 ≤ i ≤ m, Pi takes si,b as its b-th input, and P1 inputs the element in Cb1.

Fig. 15. MPSI/MPSI-card/Circuit-MPSI

28 M. Dong et al.

Parameters. Same as in Figure 15.
Inputs. Each party Pi has input Xi = {x1i , · · · , xni } ⊆ {0, 1}l.
1. Hashing to bin. P1 does C11 , · · · , CB1 ← CuckooBh1,h2,h3

(X1). For 1 < j ≤ m,
Pj does T 1

j , · · · , T B
j ← SimpleBh1,h2,h3

(Xj). Pj defines V1
j , · · · ,VB

j where for
1 ≤ b ≤ B, Vb

j contains the associated payloads of the elements in T b
j .

2. Batch pure membership zero-sharing with payloads. All parties invoke
FbpMZSp of batch size B, where P1 acts as Ppivot with inputs C11 , · · · , CB1 and
each of the remaining parties Pj inputs (T 1

j , · · · , T B
j) and (V1

j , · · · ,VB
j). For

1 ≤ i ≤ m, Pi receives (si,wi).
3. For 1 ≤ i ≤ m, Pi invoke Fshuffle with input si. Pi receives s′i = (s′1 · · · , s′B).
4. For 1 ≤ b ≤ B, if Cb1 is not an empty bin, P1 sets w1,b = w1,b + v, where v is

the associated payload with the element in Cb1.
5. For 1 ≤ i ≤ m, Pi invoke Fshuffle with input wi. Pi receives w′

i = (w′
1 · · · , w′

B).
6. For 1 < j ≤ m, Pj sends s′j to P1. P1 computes s′ =

∑
1<j≤m s′j and defines

a bit vector e = (e1, · · · , eB) where for 1 ≤ b ≤ B, if s′b = 0, eb = 1, otherwise
eb = 0. P1 distributes e to Pj . For 1 ≤ i ≤ m, Pi outputs HW(e).

7. For 1 ≤ i ≤ m, Pi computes ui =
∑

1≤b≤Bs.t.eb=1 w
′
i,b. For 1 < j ≤ m, Pj

sends uj to P1. P1 outputs u =
∑

1≤i≤m ui.

Fig. 16. MPSI-card-sum

6.3 MPSU, MPSU-card and Circuit MPSU

Consider a constructible set Y , whose CPF representation ψ(x,X1, · · · , Xm) is a
disjunction of several subformulas, one is an atomic proposition x ∈ Xi for some
1 ≤ i ≤ m. For instance, X1 ∪ · · · ∪Xm can be represented as (x ∈ X1) ∨ ((x /∈
X1) ∧ (x ∈ X2)) ∨ · · · ∨ ((x /∈ X1) ∧ · · · ∧ (x /∈ Xm−1) ∧ (x ∈ Xm)). In this case,
the subformula x ∈ Xi only involves Pi, so Pi simply shares its elements among
the parties. Especially, if i = 1, then the subformula can be ignored, as long as
P1 finally appends its elements to the reconstructed elements to obtain Y1.

The most commonly used protocols in this case are MPSU, MPSU-card and
circuit MPSU. Let C2

N,l′ be a circuit with m groups of N inputs on F. The k-th
group is associated with Pk (1 ≤ k ≤ m), where the i-th inputs is denoted by zk,i
(1 ≤ i ≤ N). The circuit computes and outputs f(Z) where Z = {zi|z1,i + · · ·+
zm,i = zi∥0l

′}1≤i≤N and f is the function to be computed on Y . The complete
MPSU, MPSU-card and circuit MPSU protocols are described in Figure 17.

6.4 MPSO, MPSO-card and Circuit MPSO

Following the overview of our framework, we formally present the MPSO, MPSO-
card, and circuit-MPSO protocols for any constructible set in Figure 18.

Multi-Party Private Set Operations from Predicative Zero-Sharing 29

Parameters. m parties P1, · · · , Pm. Set size n . The element length l. The all-
zero string length l′. A field F. An encoding function code : F→ {0, 1}l+l′ . Cuckoo
hashing parameters: hash functions h1, h2, h3 and number of bins B.
Inputs. Each party Pi has input Xi = {x1i , · · · , xni } ⊆ {0, 1}l.
1. Hashing to bin. P1 does T 1

1 , · · · , T B
1 ← SimpleBh1,h2,h3

(X1). For 1 <

j ≤ m, Pj does C1j , · · · , CBj ← CuckooBh1,h2,h3
(Xj) and T 1

j , · · · , T B
j ←

SimpleBh1,h2,h3
(Xj).

2. Batch pure membership zero-sharing. For 1 < j ≤ m, P1, · · · , Pj invoke
FbpNMZS of batch size B, where Pj acts as Ppivot with inputs C1j , · · · , CBj and
each Pj′ inputs T 1

j′ , · · · , T B
j′ for j′ ∈ {i1, · · · , iq} \ {j}. For 1 ≤ i ≤ j, Pi

receives sj,i = (sj,i,1, · · · , sj,i,B).
The following actions of the parties depend on the functionality:
MPSU.
3. For 1 < j ≤ m, 1 ≤ b ≤ B, if Cbj is not an empty bin, Pj computes

sj,j,b = code(sj,j,b) ⊕ (x∥0l
′
), where x is the element in Cbj , otherwise Pj

samples sj,j,b ← {0, 1}l+l′ .
4. For 1 ≤ i ≤ m, Pi computes ui ∈ ({0, 1}l+l′)(m−1)B as follows: Formax(2, i) ≤

j ≤ m, 1 ≤ b ≤ B, ui,(j−2)B+b = sj,i,b. Set other positions to 0.
5. For 1 ≤ i ≤ m, Pi invoke Fshuffle with input ui. Pi receives u′

i.
6. For 1 < j ≤ m, Pj sends u′

j to P1. P1 computes u′ =
∑

1<j≤m u′
j and sets

Y = ∅. For 1 ≤ b ≤ B, if u′
b = y∥0l

′ for some y ∈ {0, 1}l, P1 outputs y.
MPSU-card.
3. For 1 < j ≤ m, 1 ≤ b ≤ B, Pj chooses sj,j,b at random if Cbj is an empty bin.
4. For 1 ≤ i ≤ m, Pi computes ui ∈ F(m−1)B as follows: For max(2, i) ≤ j ≤

m, 1 ≤ b ≤ B, ui,(j−2)B+b = sj,i,b. Set other positions to 0.
5. For 1 ≤ i ≤ m, Pi invoke Fshuffle with input ui. Pi receives u′

i.
6. For 1 < j ≤ m, Pj sends u′

j to P1. P1 outputs zero(
∑

1<j≤m u′
j).

Circuit-MPSU (Approach 2).
3. For 1 < j ≤ m, 1 ≤ b ≤ B, if Cbj is not an empty bin, Pj computes

sj,j,b = code(sj,j,b) ⊕ (x∥0l
′
), where x is the element in Cbj , otherwise Pj

samples sj,j,b ← {0, 1}l+l′ .
4. For 1 ≤ i ≤ m, Pi computes ui ∈ ({0, 1}l+l′)(m−1)B as follows: Formax(2, i) ≤

j ≤ m, 1 ≤ b ≤ B, ui,(j−2)B+b = sj,i,b. Set other positions to 0.
5. All parties invoke an m-party computation with the circuit C2

(m−1)B,l′ . For
1 ≤ i ≤ m, 1 ≤ k ≤ (m− 1)B, Pi inputs ui,c to the circuit.

Fig. 17. MPSU/MPSU-card/Circuit-MPSU

30 M. Dong et al.

Parameters. m parties P1, · · · , Pm. Set size n . The element length l. The all-
zero string length l′. A field F. An encoding function code : F→ {0, 1}l+l′ . A con-
structible set Y represented as a CPF representation ψ(x,X1, · · · , Xm). Cuckoo
hashing parameters: hash functions h1, h2, h3 and number of bins B.
Inputs. Each party Pi has input Xi = {x1i , · · · , xni } ⊆ {0, 1}l.
1. Hashing to bin. For 1 ≤ i ≤ m, Pi does C1i , · · · , CBi ← CuckooBh1,h2,h3

(Xi)
and T 1

i , · · · , T B
i ← SimpleBh1,h2,h3

(Xi).
2. Single subformula evaluation. Let ψ = Q1 ∨ · · · ∨Qs. For the i-th subfor-

mula Qi(x,Xi1 , · · · , Xiq) in ψ, where 1 ≤ i ≤ s, {i1, · · · , iq} ⊆ {1, · · · ,m},
(a) If q = 1, suppose i1 = · · · = iq = j, then Qi(x,Xj) = (x ∈ Xj). For

1 ≤ b ≤ B, if Cbj is not an empty bin, Pj sets si,j,b = 0, otherwise Pj

chooses si,j,b at random. For j′ ∈ {1, · · · ,m} \ {j}, Pj′ sets si,j′,b = 0.
(b) If q > 1, suppose Qi is set-separable with respect to Xj for

some j ∈ {i1, · · · , iq} and Qi(x,Xi1 , · · · , Xiq) = (x ∈ Xj) ∧
Q′

i(x,Xi1 , · · · , Xj−1, Xj+1, · · · , Xiq). The parties invoke FQ′
i

bMZS where Pj

acts as Ppivot with inputs C1j , · · · , CBj and each Pj′ inputs T 1
j′ , · · · , T B

j′

for j′ ∈ {i1, · · · , iq} \ {j}. For 1 ≤ b ≤ B, each Pi′ receives si,i′ =
(si,i′,1, · · · , si,i′,B) for i′ ∈ {i1, · · · , iq}, and each Pk sets si,k,b = 0 for
k ∈ {1, · · · ,m} \ {i1, · · · , iq}.

The following actions of the parties depend on the functionality:
MPSO.
3. For 1 < i ≤ s, 1 ≤ b ≤ B, if Cbj is not an empty bin, Pj (the same j as step 2)

computes s′i,j,b = code(si,j,b)⊕(x∥0l
′
), where x is the element in Cbj , otherwise

Pj samples s′i,j,b ← {0, 1}l+l′ .
4. For 1 ≤ k ≤ m, each Pk computes uk ∈ ({0, 1}l+l′)sB as follows: For 1 ≤ i ≤

s, 1 ≤ b ≤ B, uk,(i−1)B+b = s′i,k,b.
5. For 1 ≤ k ≤ m, Pk invoke Fshuffle with input uk. Pk receives u′

k.
6. For 1 < j ≤ m, Pj sends u′

j to P1. P1 computes u′ =
∑

1<j≤m u′
j and sets

Y = ∅. For 1 ≤ b ≤ B, if u′
b = y∥0l

′ for some y ∈ {0, 1}l, P1 outputs y.
MPSO-card.
3. For 1 ≤ k ≤ m, Pk computes uk ∈ FsB as follows: For 1 ≤ i ≤ s, 1 ≤ b ≤ B,

uk,(i−1)B+b = si,k,b.
4. For 1 ≤ k ≤ m, Pk invoke Fshuffle with input uk. Pk receives u′

k.
5. For 1 < j ≤ m, Pj sends u′

j to P1. P1 outputs zero(
∑

1<j≤m u′
j).

Circuit-MPSO (Approach 1).
3. All parties invoke an m-party computation with the circuit C1

s,B,l. For 1 ≤
i ≤ s, 1 ≤ k ≤ m, Pk inputs si,k,1, · · · , si,k,B to the i-th section, and Pj (the
same j as step 2) inputs the elements in C1j , · · · , CBj in addition.

Circuit-MPSO (Approach 2).
3. For 1 < i ≤ s, 1 ≤ b ≤ B, if Cbj is not an empty bin, Pj (the same j as step 2)

computes s′i,j,b = code(si,j,b)⊕(x∥0l
′
), where x is the element in Cbj , otherwise

Pj samples s′i,j,b ← {0, 1}l+l′ .
4. All parties invoke an m-party computation with the circuit C2

sB,l′ . For 1 ≤
i ≤ s, 1 ≤ b ≤ B, 1 ≤ k ≤ m, Pk takes s′i,k,b as its ((i− 1)B + b)-th input.

Fig. 18. MPSO/MPSO-card/Circuit-MPSO

Multi-Party Private Set Operations from Predicative Zero-Sharing 31

Theorem 6. The MPSO, MPSO-card and circuit-MPSO protocols in Figure 18
are secure against any semi-honest adversary corrupting t < m parties in the
(FQ

bMZS,Fshuffle)-hybrid model.

Correctness. The correctness of these protocols comes from the existence and
qualities of CPF representations in Theorem 2 and Definition 4, and the correct-
ness of batch membership zero-sharing. To ensure the correctness of all batch
membership zero-sharing protocols, the field size must satisfy |F| ≥ |OR| ·B · 2σ,
where |OR| is the total number of OR operators in all Qi for 1 ≤ i ≤ s.

Let Yi denote the set represented by Qi. In the MPSO and circuit-MPSO
(Approach 2) protocols, the parties hold |Yi| secret-sharings of the elements in
Yi, and B − |Yi| secret-sharings of random values after each batch membership
zero-sharing for Qi, for 1 ≤ i ≤ s. Given that {Y1, · · · , Ys} is a partition of Y , the
parties hold |Y | secret-sharings of the elements in Y , and sB−|Y | secret-sharings
of random values in total. Finally, P1 and the circuit identify all set elements by
checking whether the last l′ bits are all zero. An error occurs when a random value
collides with 0l

′ . Thereby, the overall false positive error probability is at most
sB ·2−l′ . To make this failure probability negligible, we set l′ ≥ σ+log s+logB;
In the MPSO-card and circuit-MPSO (Approach 1) protocols, the parties hold
|Y | secret-sharings of 0, and B−|Y | secret-sharings of random values. To bound
the overall false positive error probability by 2−σ, we set |F| ≥ sB · 2σ.
Security. This security proof is deferred to Appendix G.

Complexity Analysis. The computation and communication complexity are
both dominated by the form of the CPF representation ψ(x,X1, · · · , Xm) of the
constructible set Y being computed, where ψ = Q1 ∨ · · · ∨Qs.

In the subformula evaluation stage, the computation complexity of each party
Pj includes two parts: (1) O(

∑
1≤i≤s(iq · |ANDi + ORi| · n)), where Qi is set-

separable with respect to Xj (we use Q′
i to denote the separation formula of Qi

with respect toXj), while iq is the number of literals and |ANDi+ORi| is the total
number of AND and OR operators in Q′

i; (2) O(
∑

1≤i≤s(|ANDi+ORi|·n)), where
Qi is not set-separable with respect to Xj while includes Xj , and |ANDi +ORi|
is the total number of AND and OR operators in the separation formula of Qi

with respect to some other set. The communication complexity of Pj can also be
computed as two parts: (1) O(

∑
1≤i≤s(iq · |ORi| · n)), where Qi is set-separable

with respect to Xj (we use Q′
i to denote the separation formula of Qi with

respect to Xj), while iq is the number of literals and |ORi| is the number of OR
operators in Q′

i; (2) O(
∑

1≤i≤s(|ORi| · n)), where Qi is not set-separable with
respect to Xj while includes Xj , and |ORi| is the number of OR operators in the
separation formula of Qi with respect to some other set.

In the multi-party secret-shared shuffle and reconstruction steps, the leader’s
computation and communication complexity are both O(smn) while each client’s
computation and communication complexity are both O(sn), where s is the
number of subformulas in the CPF representation ψ.

A more detailed of complexity analysis for our MPSI (and its variants) and
our MPSU (and its variants) protocols is provided in Appendix A.

32 M. Dong et al.

7 Performance Evaluation

In MPC, generality is often achieved by sacrificing practicality. For example,
generic MPC protocols are typically orders of magnitude slower than special-
ized MPC protocols. Remarkably, our MPSO framework breaks this pattern.
Through the implementations for typical instantiations, including MPSI, MPSI-
card, MPSI-card-sum and MPSU protocols, we demonstrate that our framework
achieves online performance surpassing or matching the specialized state of the
art, while retaining full generality for arbitrary set operations.

Our implementation will be publicly available on GitHub. The implementa-
tion details and parameter settings can be found in Appendix H We assume a
commonly used setting where Beaver triples are pre-computed offline and stored
locally, following the convention of [59, 40]. Therefore, we focus on the online
performance of our framework. To ensure a fair comparison, we also focus on
the online performance of all the competitions. Specifically, we compare our
protocols with the respective state of the art in the standard semi-honest model:

– The state-of-the-art MPSI [58]: This work proposes two protocols, O-Ring and
K-Star, with publicly available implementations [1]. We select K-Star for com-
parison since it is faster than O-Ring with same total communication costs. We
report its online performance by running the full protocol and subtracting the
offline costs of random vector oblivious linear evaluation (VOLE) generation,
setting the corruption threshold t = m − 1. We report the leader’s running
time and the total communication costs of all parties for both their and our
MPSI protocols in Table 1.

– The state-of-the-art MPSI-card [18]: This work does not provide open-source
code, thus we take the experimental results of the online phase from their
paper, whose experiments was run on Intel i7-12700H 2.30GHz CPU and 28GB
RAM. We report the leader’s running time and communication costs for both
their and our MPSI-card protocols in Table 2.

– The state-of-the-art MPSU [19]: This work proposes two MPSU protocols
with publicly available implementation [2]. We compare with the symmetric-
key based one for its better online performance. In the benchmark of MPSU,
we set the item length as 64 bits and report the leader’s running time and the
total communication costs of all parties in the online phase in Table 4.

To our knowledge, there is no existing implementation or experimental data for
MPSI-card-sum. We provide the first implementation and report experimental
data in the same setting as MPSI-card.

We conduct our experiments on a cloud virtual machine with Intel(R) Xeon(R)
2.70GHz CPU (32 physical cores) and 128 GB RAM. In the LAN setting, the
bandwidth is set to be 10 Gbps with 0.1 ms RTT latency. In WAN settings,
we test on two network bandwidths 400 Mbps and 50Mbps, with 80 ms RTT
latency. We run all protocols by having each party hold an input set of equal
size and use m− 1 threads to interact simultaneously with other parties.

The experimental results in Table 1-4 demonstrate that:

Multi-Party Private Set Operations from Predicative Zero-Sharing 33

m protocol
Time (second) Comm. (MB)LAN 400Mbps 50Mbps

212 214 216 218 220 212 214 216 218 220 212 214 216 218 220 212 214 216 218 220

[58] 0.48 0.168 0.822 4.227 19.18 2.863 3.309 4.232 7.759 27.32 3.155 3.544 5.149 11.57 42.38 0.423 1.681 6.344 26.72 110.03 Ours 0.013 0.047 0.227 1.533 7.945 1.540 2.070 2.912 5.136 16.42 1.576 2.231 3.983 10.43 38.63 0.641 2.551 10.20 40.91 164.2
[58] 0.054 0.181 0.854 4.306 20.09 3.137 3.537 4.528 8.529 30.47 3.158 4.024 6.495 15.90 61.41 0.896 3.557 13.42 56.11 231.14 Ours 0.015 0.051 0.242 1.632 8.133 1.944 2.476 3.339 6.345 19.23 1.984 2.729 4.848 14.04 51.31 0.961 3.826 15.31 61.36 246.2
[58] 0.072 0.201 0.948 4.611 21.36 3.038 3.733 4.969 9.031 34.16 3.587 4.430 8.443 23.53 90.40 1.542 6.124 23.10 96.23 396.35 Ours 0.016 0.053 0.260 1.724 8.255 2.348 2.889 3.770 6.789 22.04 2.424 3.144 5.930 16.98 64.59 1.282 5.102 20.41 81.81 328.3
[58] 0.136 0.373 1.479 6.812 30.89 4.681 5.536 7.178 16.84 65.14 6.928 10.87 25.10 87.19 346.5 7.375 29.30 110.5 456.9 188310 Ours 0.026 0.075 0.354 1.910 8.898 4.363 4.915 5.769 9.423 33.38 4.496 5.766 11.01 34.13 133.3 2.884 11.48 45.92 184.1 738.7

Table 1. Running time and communication costs for MPSI protocols. m is the number
of parties. m input sets are of equal size. Best results are marked in bold.

m protocol
Time (second) Comm. (MB)LAN 400Mbps 50Mbps

212 214 216 218 220 212 214 216 218 220 212 214 216 218 220 212 214 216 218 220

3 Ours 0.015 0.052 0.237 1.581 8.050 1.784 2.800 3.681 6.498 19.50 1.836 3.028 5.202 13.40 46.89 0.761 3.035 12.15 48.76 195.8
4 Ours 0.016 0.054 0.252 1.684 8.300 2.267 3.780 5.005 8.565 24.88 2.331 4.109 6.905 18.56 64.89 1.122 4.472 17.91 71.83 288.4

5 [18] 0.670 1.789 6.289 31.24 − − − − − − − − − − − 20.70 94.49 425.6 1894 −
Ours 0.018 0.056 0.270 1.735 8.616 2.753 4.747 6.076 10.42 28.87 2.872 5.134 8.819 23.76 83.80 1.482 5.909 23.66 94.90 381.0

10 [18] 1.477 4.503 12.81 95.23 − − − − − − − − − − − 46.58 212.6 957.7 4262 −
Ours 0.026 0.071 0.375 2.001 9.226 5.174 9.578 11.93 18.43 50.33 5.346 10.56 18.07 49.45 174.6 3.285 13.09 52.42 210.2 844.0

Table 2. Running time and communication costs for MPSI-card protocols. The data
of [18] originates from their paper for lack of available implementation. Cells with −
denote missing data that is not reported. Best results are marked in bold.

m
Time (second) Comm.(MB)LAN 400Mbps 50Mbps

212 214 216 218 220 212 214 216 218 220 212 214 216 218 220 212 214 216 218 220

3 0.023 0.088 0.417 2.810 14.67 2.519 3.541 4.686 9.417 31.88 2.620 3.987 7.237 20.83 78.99 1.283 5.107 20.43 81.89 328.6
4 0.025 0.091 0.436 3.044 15.16 3.084 4.680 5.948 12.40 38.17 3.207 5.268 9.564 28.56 104.4 1.885 7.499 29.99 120.2 482.4
5 0.027 0.094 0.474 3.150 15.49 3.650 5.729 7.288 13.17 43.06 3.843 6.526 12.10 36.71 133.6 2.486 9.890 39.56 158.6 636.2
10 0.039 0.120 0.632 3.610 16.65 6.474 10.93 13.79 23.56 71.36 6.781 12.76 24.96 78.64 287.1 5.493 21.85 87.37 350.2 1405

Table 3. Running time and communication costs for our MPSI-card-sum protocol, as
the first MPSI-card-sum implementation.

m protocol
Time (second) Comm. (MB)LAN 400Mbps 50Mbps

212 214 216 218 220 212 214 216 218 220 212 214 216 218 220 212 214 216 218 220

[19] 0.017 0.050 0.215 1.005 4.352 3.157 3.734 4.444 9.705 33.10 3.340 4.495 9.779 32.11 118.7 2.416 9.702 39.87 161.2 652.13 Ours 0.022 0.068 0.298 1.892 9.607 3.327 3.774 4.878 11.04 37.77 3.535 4.606 10.25 32.50 120.97 2.414 9.695 39.84 161.1 651.6
[19] 0.023 0.071 0.286 1.393 5.645 3.976 4.618 6.507 17.10 59.21 4.270 6.924 19.00 69.23 267.2 5.653 23.06 93.06 376.0 15204 Ours 0.029 0.089 0.415 2.345 11.25 3.996 4.820 6.756 17.45 64.04 4.360 6.609 17.85 63.63 245.0 5.083 20.77 83.83 338.9 1370
[19] 0.030 0.087 0.368 1.714 7.003 4.800 5.521 8.938 25.95 95.40 5.419 10.70 32.81 126.5 500.1 10.69 43.52 175.6 709.1 28655 Ours 0.039 0.114 0.542 2.796 13.18 4.872 5.705 8.992 26.09 101.6 5.261 9.393 28.09 105.6 416.8 8.739 35.69 144.0 582.1 2358
[19] 0.088 0.286 1.183 − − 9.203 14.54 38.31 − − 18.01 56.11 213.2 − − 74.68 300.2 1210 − −10 Ours 0.110 0.337 1.483 7.167 − 8.187 12.06 30.56 105.7 − 12.14 34.22 125.1 485.7 − 42.40 170.2 686.8 2775 −

Table 4. Running time and communication costs for MPSU protocols. Cells with −
denote trials running out of memory. Best results are marked in bold.

34 M. Dong et al.

– Our MPSI and its variants show superior online performances to the state
of the art in all cases. Specifically, our MPSI protocol achieves a 2.4 − 5.2×
speedup (LAN), and a 1.1 − 2.0× / 1.1 − 2.6× speedup (400 / 50 Mbps)
compared to [58]; our MPSI-card protocol achieves an 18.0 − 63.4× speedup
(LAN) compared to the reported data in [18]. In terms of communication
costs, our MPSI becomes increasingly competitive as the number of parties
grows, with up to a 2.6× improvement; our MPSI-card achieves a 14.0−20.3×
improvement compared to [18]. The computation and communication costs of
our MPSI-card-sum is only double our MPSI approximately, while realizing a
richer functionality.

– Our MPSU shows comparable online performances to the state of the art [19],
and has the lowest communication costs in all cases. Notably, our protocol
becomes increasingly competitive as the number of parties grows in WAN
settings, and eventually outperforms [19] with a speedup up to 1.7×. Since
WAN settings are more representative of MPSU applications, our protocol
may be more competitive in real-world scenarios.

References

1. https://github.com/private-panda/oring
2. https://github.com/real-world-cryprography/MPSU
3. Coproto: C++ coroutine protocol library., https://github.com/Visa-Research/

coproto.git
4. cryptoTools., https://github.com/ladnir/cryptoTools.git
5. Vole-PSI, https://github.com/Visa-Research/volepsi.git
6. Bay, A., Erkin, Z., Hoepman, J., Samardjiska, S., Vos, J.: Practical multi-party

private set intersection protocols. IEEE Trans. Inf. Forensics Secur. 17, 1–15 (2022)
7. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Advances

in Cryptology - CRYPTO ’91, 11th Annual International Cryptology Conference.
Lecture Notes in Computer Science, vol. 576, pp. 420–432. Springer (1991)

8. Ben-Efraim, A., Nissenbaum, O., Omri, E., Paskin-Cherniavsky, A.: Psimple: Prac-
tical multiparty maliciously-secure private set intersection. In: ASIA CCS ’22. pp.
1098–1112. ACM (2022)

9. Bienstock, A., Patel, S., Seo, J.Y., Yeo, K.: Near-Optimal oblivious Key-Value
stores for efficient PSI, PSU and Volume-Hiding Multi-Maps. In: USENIX Security
2023. pp. 301–318 (2023)

10. Blanton, M., Aguiar, E.: Private and oblivious set and multiset operations. In:
7th ACM Symposium on Information, Compuer and Communications Security,
ASIACCS 2012. pp. 40–41. ACM (2012)

11. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Rindal, P., Scholl, P.: Ef-
ficient two-round OT extension and silent non-interactive secure computation. In:
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS 2019. pp. 291–308. ACM (2019)

12. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseu-
dorandom correlation generators: Silent OT extension and more. In: Advances in
Cryptology - CRYPTO 2019. Springer (2019)

https://github.com/private-panda/oring
https://github.com/real-world-cryprography/MPSU
https://github.com/Visa-Research/coproto.git
https://github.com/Visa-Research/coproto.git
https://github.com/ladnir/cryptoTools.git
https://github.com/Visa-Research/volepsi.git

Multi-Party Private Set Operations from Predicative Zero-Sharing 35

13. Bui, D., Couteau, G.: Improved private set intersection for sets with small entries.
In: Public-Key Cryptography - PKC 2023 - 26th IACR International Conference
on Practice and Theory of Public-Key Cryptography. Lecture Notes in Computer
Science, vol. 13941, pp. 190–220. Springer (2023)

14. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science,
FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA. pp. 136–145. IEEE
Computer Society (2001)

15. Chandran, N., Dasgupta, N., Gupta, D., Obbattu, S.L.B., Sekar, S., Shah, A.:
Efficient linear multiparty PSI and extensions to circuit/quorum PSI. In: CCS ’21.
pp. 1182–1204. ACM (2021)

16. Chandran, N., Gupta, D., Shah, A.: Circuit-psi with linear complexity via relaxed
batch OPPRF. Proc. Priv. Enhancing Technol. 2022(1), 353–372 (2022)

17. Chase, M., Miao, P.: Private set intersection in the internet setting from lightweight
oblivious PRF. In: Advances in Cryptology - CRYPTO 2020. Lecture Notes in
Computer Science, vol. 12172, pp. 34–63. Springer (2020)

18. Chen, Y., Ding, N., Gu, D., Bian, Y.: Practical multi-party private set intersection
cardinality and intersection-sum under arbitrary collusion. In: Information Security
and Cryptology - 18th International Conference, Inscrypt 2022. Lecture Notes in
Computer Science, vol. 13837, pp. 169–191. Springer (2022)

19. Dong, M., Zhang, C., Bai, Y., Chen, Y.: Efficient multi-party private set
union without non-collusion assumptions. In: 34rd USENIX Security Symposium,
USENIX Security 2025. USENIX Association (2025)

20. Eskandarian, S., Boneh, D.: Clarion: Anonymous communication from multiparty
shuffling protocols. In: 29th Annual Network and Distributed System Security Sym-
posium, NDSS 2022. The Internet Society (2022), https://www.ndss-symposium.
org/ndss-paper/auto-draft-243/

21. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious
pseudorandom functions. In: Theory of Cryptography, Second Theory of Cryptog-
raphy Conference, TCC 2005. Lecture Notes in Computer Science, vol. 3378, pp.
303–324. Springer (2005)

22. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set in-
tersection. In: Advances in Cryptology - EUROCRYPT 2004. Lecture Notes in
Computer Science, vol. 3027, pp. 1–19. Springer (2004)

23. Frikken, K.B.: Privacy-preserving set union. In: Applied Cryptography and Net-
work Security, 5th International Conference, ACNS 2007. Lecture Notes in Com-
puter Science, vol. 4521, pp. 237–252. Springer (2007)

24. Gao, J., Nguyen, S., Trieu, N.: Toward A practical multi-party private set union.
Proc. Priv. Enhancing Technol. 2024(4), 622–635 (2024)

25. Gao, J., Trieu, N., Yanai, A.: Multiparty private set intersection cardinality and
its applications. Proc. Priv. Enhancing Technol. 2024(2), 73–90 (2024)

26. Garimella, G., Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: Oblivious key-value
stores and amplification for private set intersection. In: Advances in Cryptology
- CRYPTO 2021. Lecture Notes in Computer Science, vol. 12826, pp. 395–425.
Springer (2021)

27. Ghosh, S., Nilges, T.: An algebraic approach to maliciously secure private set
intersection. In: Advances in Cryptology - EUROCRYPT 2019. Lecture Notes in
Computer Science, vol. 11478, pp. 154–185. Springer (2019)

28. Giorgi, P., Laguillaumie, F., Ottow, L., Vergnaud, D.: Fast secure computations on
shared polynomials and applications to private set operations. In: 5th Conference

https://www.ndss-symposium.org/ndss-paper/auto-draft-243/
https://www.ndss-symposium.org/ndss-paper/auto-draft-243/

36 M. Dong et al.

on Information-Theoretic Cryptography, ITC 2024. LIPIcs, vol. 304, pp. 11:1–
11:24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2024)

29. Goldreich, O.: The Foundations of Cryptography - Volume 2: Basic Applica-
tions. Cambridge University Press (2004), http://www.wisdom.weizmann.ac.il/
%7Eoded/foc-vol2.html

30. Gordon, S.D., Hazay, C., Le, P.H.: Fully secure PSI via mpc-in-the-head. Proc.
Priv. Enhancing Technol. 2022(3), 291–313 (2022)

31. Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols - Techniques and Con-
structions. Information Security and Cryptography, Springer (2010)

32. Hazay, C., Venkitasubramaniam, M.: Scalable multi-party private set-intersection.
In: Public-Key Cryptography - PKC 2017. Lecture Notes in Computer Science,
vol. 10174, pp. 175–203. Springer (2017)

33. Hazay, C., Venkitasubramaniam, M.: Scalable multi-party private set-intersection.
In: Public-Key Cryptography - PKC 2017. Lecture Notes in Computer Science,
vol. 10174, pp. 175–203. Springer (2017)

34. Inbar, R., Omri, E., Pinkas, B.: Efficient scalable multiparty private set-intersection
via garbled bloom filters. In: Security and Cryptography for Networks - 11th In-
ternational Conference, SCN 2018. Lecture Notes in Computer Science, vol. 11035,
pp. 235–252. Springer (2018)

35. Jia, Y., Sun, S., Zhou, H., Gu, D.: Scalable private set union, with stronger se-
curity. In: 33rd USENIX Security Symposium, USENIX Security 2024. USENIX
Association (2024)

36. Kissner, L., Song, D.X.: Privacy-preserving set operations. In: Advances in Cryptol-
ogy - CRYPTO 2005. Lecture Notes in Computer Science, vol. 3621, pp. 241–257.
Springer (2005)

37. Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious
PRF with applications to private set intersection. In: CCS 2016. pp. 818–829. ACM
(2016)

38. Kolesnikov, V., Matania, N., Pinkas, B., Rosulek, M., Trieu, N.: Practical multi-
party private set intersection from symmetric-key techniques. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2017. pp. 1257–1272. ACM (2017)

39. Li, R., Wu, C.: An unconditionally secure protocol for multi-party set intersection.
In: Applied Cryptography and Network Security, 5th International Conference,
ACNS 2007. Lecture Notes in Computer Science, vol. 4521, pp. 226–236. Springer
(2007)

40. Liu, X., Gao, Y.: Scalable multi-party private set union from multi-query secret-
shared private membership test. In: Advances in Cryptology - ASIACRYPT 2023.
Springer (2023)

41. Nevo, O., Trieu, N., Yanai, A.: Simple, fast malicious multiparty private set inter-
section. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2021. pp. 1151–1165. ACM (2021)

42. Pagh, R., Rodler, F.F.: Cuckoo hashing. Journal of Algorithms 51(2), 122–144
(2004)

43. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: PSI from paxos: Fast, malicious
private set intersection. In: Advances in Cryptology - EUROCRYPT 2020. Lecture
Notes in Computer Science, vol. 12106, pp. 739–767. Springer (2020)

44. Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: Private set intersection
using permutation-based hashing. In: 24th USENIX Security Symposium, USENIX
Security 15, Washington, D.C., USA, August 12-14, 2015. pp. 515–530. USENIX
Association (2015)

http://www.wisdom.weizmann.ac.il/%7Eoded/foc-vol2.html
http://www.wisdom.weizmann.ac.il/%7Eoded/foc-vol2.html

Multi-Party Private Set Operations from Predicative Zero-Sharing 37

45. Pinkas, B., Schneider, T., Tkachenko, O., Yanai, A.: Efficient circuit-based PSI
with linear communication. In: Advances in Cryptology - EUROCRYPT 2019.
Lecture Notes in Computer Science, vol. 11478, pp. 122–153. Springer (2019)

46. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT
extension. In: Proceedings of the 23rd USENIX Security Symposium, 2014. pp.
797–812. USENIX Association (2014)

47. Rabin, M.O.: How to exchange secrets with oblivious transfer. IACR Cryptol.
ePrint Arch. p. 187 (2005), http://eprint.iacr.org/2005/187

48. Raghuraman, S., Rindal, P.: Blazing fast PSI from improved OKVS and subfield
VOLE. In: ACM CCS 2022 (2022), https://eprint.iacr.org/2022/320

49. Raghuraman, S., Rindal, P., Tanguy, T.: Expand-convolute codes for pseudoran-
dom correlation generators from LPN. In: Advances in Cryptology - CRYPTO
2023. Lecture Notes in Computer Science, vol. 14084, pp. 602–632. Springer (2023)

50. Rindal, P.: libOTe: an efficient, portable, and easy to use Oblivious Transfer Li-
brary., https://github.com/osu-crypto/libOTe.git

51. Rindal, P., Schoppmann, P.: VOLE-PSI: fast OPRF and circuit-psi from vector-
ole. In: Advances in Cryptology - EUROCRYPT 2021. Lecture Notes in Computer
Science, vol. 12697, pp. 901–930. Springer (2021)

52. Roy, L.: Softspokenot: Quieter OT extension from small-field silent VOLE in the
minicrypt model. In: Advances in Cryptology - CRYPTO 2022. Springer (2022)

53. Sang, Y., Shen, H.: Efficient and secure protocols for privacy-preserving set oper-
ations. ACM Trans. Inf. Syst. Secur. 13(1), 9:1–9:35 (2009)

54. Sang, Y., Shen, H., Tan, Y., Xiong, N.: Efficient protocols for privacy preserv-
ing matching against distributed datasets. In: Information and Communications
Security, 8th International Conference, ICICS 2006. Lecture Notes in Computer
Science, vol. 4307

55. Seo, J.H., Cheon, J.H., Katz, J.: Constant-round multi-party private set union
using reversed laurent series. In: Public Key Cryptography - PKC 2012 - 15th
International Conference on Practice and Theory in Public Key Cryptography. pp.
398–412. Springer (2012)

56. Su, J., Chen, Z.: Secure and scalable circuit-based protocol for multi-party private
set intersection. CoRR abs/2309.07406 (2023)

57. Vos, J., Conti, M., Erkin, Z.: Fast multi-party private set operations in the star
topology from secure ands and ors. IACR Cryptol. ePrint Arch. p. 721 (2022),
https://eprint.iacr.org/2022/721

58. Wu, M., Yuen, T.H., Chan, K.Y.: O-ring and k-star: Efficient multi-party private
set intersection. In: 33rd USENIX Security Symposium, USENIX Security 2024.
USENIX Association (2024)

59. Zhang, C., Chen, Y., Liu, W., Zhang, M., Lin, D.: Optimal private set union from
multi-query reverse private membership test. In: USENIX 2023 (2023), https:
//eprint.iacr.org/2022/358

60. Zhang, S.: Efficient VOLE based multi-party PSI with lower communication cost.
IACR Cryptol. ePrint Arch. p. 1690 (2023), https://eprint.iacr.org/2023/1690

A Theoretical Analysis and Comparison

A.1 Complexity of Our MPSI and Its Variants

In the following analyses of asymptotic complexity, we consider the only depen-
dency in n and m, omitting security parameters.

http://eprint.iacr.org/2005/187
https://eprint.iacr.org/2022/320
https://github.com/osu-crypto/libOTe.git
https://eprint.iacr.org/2022/721
https://eprint.iacr.org/2022/358
https://eprint.iacr.org/2022/358
https://eprint.iacr.org/2023/1690

38 M. Dong et al.

In Figure 15, the parties (P1 as Ppivot) invoke the batch pure membership
zero-sharing protocol of size B = O(n). In this stage, the computation and com-
munication complexity of P1 are O(mn), while the computation and commu-
nication complexity of each Pj (1 < j ≤ m) are O(n). In MPSI/circuit-MPSI,
each Pj directly sends its shares to P1, thereby, the overall computation and
communication complexity of P1 are O(mn), while the overall computation and
communication complexity of each Pj are O(n); In MPSI-card, the parties in-
voke the multi-party secret-shared shuffle protocol before the straightforward
reconstruction. We use the multi-party secret-shared shuffle protocol in [20] and
designate P1 as the leader. In this stage, the computation and communication
complexity of P1 are O(mn), while the computation and communication com-
plexity of Pj are O(n). In all, the computation and communication complexity
of MPSI-card are identical to MPSI/circuit-MPSI.

In Figure 16, the parties invoke the batch pure membership zero-sharing with
payloads protocol of size B = O(n). In this stage, the computation and commu-
nication complexity of P1 are O(mn), while the computation and communication
complexity of each Pj (1 < j ≤ m) are O(n). Then, the parties invoke the multi-
party secret-shared shuffle protocol twice, Pj reconstructs the cardinality to P1,
and P1 broadcasts the indicator vector for the shuffle payloads. In all, the com-
putation and communication complexity of MPSI-card-sum remain the same as
MPSI/MPSI-card/circuit-MPSI.

Notably, in the naive (insecure) solution, the clients directly sends their input
sets to the leader and the leader computes the result locally, where the leader’s
computation and communication complexity are O(mn) and each client’s com-
putation and communication complexity are O(n). Therefore, our MPSI/MPSI-
card/circuit-MPSI/MPSI-card-sum constructions achieve optimal complexity that
matches the naive solution while ensuring security.

A.2 Complexity of Our MPSU and Its Variants

In the following analyses of asymptotic complexity, we consider the only depen-
dency in n and m, omitting security parameters.

In Figure 17, 1 < j ≤ m, P1, · · · , Pj (Pj as Ppivot) invoke the batch pure
non-membership zero-sharing protocol of size B = O(n). Each Pj engages in
m − j + 1 invocations of batch pure non-membership zero-sharing protocols,
acting as Ppivot in the first time. P1 engages in m− 1 invocations of batch pure
non-membership zero-sharing protocols without acting as Ppivot. In this stage,
the computation and communication complexity of each party are O(mn). After
that, the parties hold (m − 1)B secret-sharings. Then, they invoke the multi-
party secret-shared shuffle protocol (with P1 as the leader) with their (m−1)B =
O(mn) shares, and finally each Pj sends its shuffled shares to P1. Thereby,
the computation and communication complexity of P1 are O(m2n), while the
computation and communication complexity of each Pj are O(mn). As a result,
the overall computation and communication complexity of P1 are O(m2n), while
the computation and communication complexity of each Pj are O(mn).

Multi-Party Private Set Operations from Predicative Zero-Sharing 39

Our MPSU protocol follows the secret-sharing based MPSU paradigm, where
the leader’s optimal computation and communication complexity are O(m2n),
while each client’s optimal computation and communication complexity are
O(mn). This optimal complexity is determined by the core design of secret-
sharing O(mn) elements among m parties, since the necessary reconstruction
step requires the optimal complexity. Therefore, our MPSU construction achieves
optimal computation and communication complexity of this MPSU paradigm.

A.3 Comparison with Prior Works

Table 5 shows a theoretical comparison of the computation and communication
required by various MPSI protocols. Table 6 shows a theoretical comparison be-
tween the related MPSI-card/MPSI-card-sum protocols and ours. Table 7 shows
a theoretical comparison between the related MPSU protocols and ours.

Protocol Computation Communication Security OperationLeader Client Leader Client
[22] O(m2n2) O(m2n2) O(m2n2λ) O(m2n2λ) standard PK
[36] O(mtn2) O(mtn2) O(mtn log|U |λ) O(mtn log|U |λ) standard semi-honest PK
[33] O(mn2) O(n) O(mnλ) O(nλ) standard semi-honest PK

[38] O(mn)
O(n)

O(mn(λ+ σ + log n))
O(n(λ+ σ + log n)) augmented semi-honest SK

O(tn) O(tn(λ+ σ + log n)) standard semi-honest SK

[34] O(mn) O(mn)
O(log(m)nσ2) augmented semi-honest SK
O(mnσ2) standard semi-honest SK

[27] O(mn log n) O(n log n) O((m2 +mn)λ) malicious SK
[8] O(mn) O(mnλ(log(nλ) + λ)) O(nλ(log(nλ) + λ)) augmented semi-honest/malicious SK
[41] O(mn) O(tn) O(mn(λ+ σ + log n) O(n(λ+ σ + log n) augmented semi-honest/malicious SK
[58] O(mn) O(tn) O(mn(λ+ σ + log n)) O(tn(λ+ σ + log n)) standard semi-honest SK

Ours O(mn) O(n) O(mn(σ + log n)) O(n(σ + log n)) standard semi-honest SK
Table 5. Asymptotic communication and computation costs of MPSI protocols in
the semi-honest setting, where n is the set size. m is the number of parties. t is the
number of colluding parties. U is the domain of elements. We use “PK” to denote the
protocols based on public-key operations, and “SK” to denote the protocols based on
OT and symmetric-key operations. We use λ, σ as the computational and statistical
security parameters respectively. We use “augmented semi-honest/malicious” to denote
the malicious protocols that implies augmented semi-honest security while is insecure
in standard semi-honest model (A detailed discussion of the relations between malicious
model and augmented / standard semi-honest model can be found in [31] Section 2.4.4).

Protocol Computation Communication Security OperationLeader Client Leader Client
[18] O((m− t)n+ tn log n) O(tn) O(((m− t)n+ tn log n)(σ + log n)) O(tn(σ + log n)) standard semi-honest SK

Ours O(mn) O(n) O(mn(σ + log n)) O(n(σ + log n)) standard semi-honest SK
Table 6. Asymptotic communication and computation costs of MPSI-card/MPSI-
card-sum protocols in the semi-honest setting, where n is the set size. m is the number
of parties. We set the number of colluding parties t as the maximum m − 1. We use
“SK” to denote the protocols based on OT and symmetric-key operations. We use λ, σ
as the computational and statistical security parameters respectively.

40 M. Dong et al.

Protocol Computation Communication Security OperationLeader Client Leader Client
[24] O(mn(log n/ log log n)) λmn(log n/ log log n) standard semi-honest PK
[19] O(m2n) O(m2n) O(m2n)(l + σ + logm+ log n) O(m2n(l + σ + logm+ log n)) standard semi-honest SK

Ours O(m2n) O(mn) O(m2n(l + σ + logm+ log n)) O(mn(l + σ + logm+ log n)) standard semi-honest SK
Table 7. Asymptotic communication and computation costs of MPSU protocols in the
semi-honest setting, where n is the set size. m is the number of parties. l is the length
of elements. We use “PK” to denote the protocols based on public-key operations, and
“SK” to denote the protocols based on OT and symmetric-key operations. We use λ, σ
as the computational and statistical security parameters.

B The Proof of Theorem 1

Proof. We prove this theorem by constructing the predicate formula φ using
mathematical induction.

– Base Case. If Y = Xi for some i ∈ {1, · · · ,m}, then φ(x,X1, · · · , Xm) =
M(x,Xi) : x ∈ Xi.

– Induction Hypothesis. Assume that for any sets A and B obtained from
X1, · · · , Xm through k set operations, there exist set predicate formulas φA

and φB such that

x ∈ A ⇐⇒ φA(x,X1, · · · , Xm) = 1, x ∈ B ⇐⇒ φB(x,X1, · · · , Xm) = 1.

– Induction Step. We proceed to construct φ for a set Y obtained from A
and B through one additional set operation (intersection, union, difference),
conducting k + 1 set operations in total.
1. Union. If Y = A ∪ B, then φ(x,X1, · · · , Xm) = φA(x,X1, · · · , Xm) ∨
φB(x,X1, · · · , Xm).

2. Intersection. If Y = A ∩B, φ(x,X1, · · · , Xm) = φA(x,X1, · · · , Xm) ∧
φB(x,X1, · · · , Xm).

3. Difference. If Y = A \ B, φ(x,X1, · · · , Xm) = φA(x,X1, · · · , Xm) ∧
¬φB(x,X1, · · · , Xm).

By repeating the above steps, we construct the set predicate formula φ for any
constructible set Y . Thus, the theorem is proven.

C The Proof of Theorem 2

Proof. Given that any set predicate formula can be transformed into disjunctive
normal form (DNF), Theorem 1 can be further extended to represent Y as a
DNF formula

φ(x,X1, · · · , Xm) = C1 ∨ · · · ∨ Cn

where each Ci (1 ≤ i ≤ n) is a conjunctive clause. We now show that φ can be
transform into another DNF formula ψ with s conjunctive clauses (s > n) such

Multi-Party Private Set Operations from Predicative Zero-Sharing 41

that each Ci (1 ≤ i ≤ s) contains at least one atomic proposition of the form
x ∈ Xj , i.e., Ci can be written in the form Ci = (x ∈ Xj) ∧Di for some Xj .

The proof is by contradiction. Suppose there is a clause Ci containing no
atomic propositions of the form x ∈ Xj , i.e. Ci is the conjunction of atomic
propositions of the form x /∈ Xj . Consider two cases:

– Case 1: Ci = (x /∈ Xi1)∧· · ·∧(x /∈ Xit) where t < m. As Ci is a conjunctive
clause of φ, the corresponding set Y ′

i is a subset of the constructible set Y ,
and Y ′

i is also a constructible set. Hence, we can augment Ci by

Ci = Ci∧((x ∈ X1)∨· · ·∨(x ∈ Xm)) = (Ci∧(x ∈ X1))∨· · ·∨(Ci∧(x ∈ Xm)).

For any clause that contains both x ∈ Xid and its negation x /∈ Xid (1 ≤
d ≤ t), it evaluates to 0 and can be discarded. The remaining formula is

Ci = (Ci ∧ (x ∈ Xj1)) ∨ · · · ∨ (Ci ∧ (x ∈ Xjm−t
)) = Ci,1 ∨ · · · ∨ Ci,m−t.

This splits each Ci into m− t conjunctive clauses where each clause contains
at least one literal of the form x ∈ Xj . We substitute each Ci with the above
equation and have the new DNF formula

ψ(x,X1, · · · , Xm) = C1 ∨ · · · ∨ Cs,

where each Ci (1 ≤ i ≤ s) represents an Xj-constructible set for some Xj

(1 ≤ j ≤ m). Note that Ci is not set-separable with respect to Xj yet, since
Di might involve atomic propositions relevant to Xj .

– Case 2: Ci = (x /∈ X1) ∧ · · · ∧ (x /∈ Xm). This contradicts that the set Yi
represented by Ci is constructible from X1, · · · , Xm, so this case is not valid.

Next we transform the new DNF formula ψ into a disjunction of subformulas
that represent disjoint sets {Y1, · · · , Ys}. Since the disjunction form of ψ implies
Y1 ∪ · · · ∪Ys = Y , this will demonstrate that {Y1, · · · , Ys} form a partition of Y .

Let ψ1(x,X1, · · · , Xm) = C2 ∨ · · · ∨ Cs, then we have

ψ(x,X1, · · · , Xm) = C1 ∨ ψ1(x,X1, · · · , Xm).

We augment C1 ∨ψ1(x,X1, · · · , Xm) as C1 ∨ ((C1 ∧¬C1)∨ψ1(x,X1, · · · , Xm)),
which can expand into C1∨(C1∧ψ1(x,X1, · · · , Xm))∨(¬C1∧ψ1(x,X1, · · · , Xm)).
Given that C1 ∧ ψ1(x,X1, · · · , Xm) = 1 necessitate C1 = 1, we have C1 ∨ (C1 ∧
ψ1(x,X1, · · · , Xm)) = C1, hence

ψ(x,X1, · · · , Xm) = C1 ∨ (¬C1 ∧ ψ1(x,X1, · · · , Xm)).

By repeating this process for all Ci (1 ≤ i ≤ s), we obtain

ψ(x,X1, · · · , Xm) = C1 ∨ (¬C1 ∧ C2) ∨ · · · ∨ (¬C1 ∧ ¬C2 ∧ · · · ∧ ¬Cs−1 ∧ Cs).

We denote as ψ(x,X1, · · · , Xm) = C ′
1 ∨C ′

2 · · · ∨C ′
s. For any two distinct C ′

i and
C ′

k, it is easy to see that C ′
i ∧ C ′

k = 0, so the sets Yi and Yk represented by C ′
i

and C ′
k satisfy that Yi ∩ Yk = ∅. Thus each C ′

i represents a disjoint set.

42 M. Dong et al.

Finally, we prove that each C ′
i can be reduced to be set-separable with respect

to Xj . By definition, C ′
i is the conjunction of negations of previous clauses Ck

(1 ≤ k < i) and Ci:

C ′
i =

i−1∧
k=1

¬Ck ∧ Ci.

Since Ci can be written as (x ∈ Xj)∧Di, where Di is the remaining part of the
conjunctive clause. Substituting this into C ′

i, we get

C ′
i =

i−1∧
j=1

¬Cj ∧ (x ∈ Xj) ∧Di = (x ∈ Xj) ∧D′
i.

At this point, D′
i may also contain atomic propositions relevant to Xj . We

now show how to eliminate these redundant atomic propositions: A key obser-
vation is that for C ′

i = 1 to hold, the condition x ∈ Xj must be true. Therefore,
we reduce C ′

i by assigning a truth value of 1 to all terms of the form x ∈ Xj

and a truth value of 0 to all terms of the form x /∈ Xj . After this reduction, we
obtain a reduced formula Qi = (x ∈ Xj) ∧Q′

i, which is equivalent to C ′
i but Q′

i

contains no atomic propositions relevant to Xj . Thus, Qi is set-separable with
respect to Xj . The proof is complete.

D The Proof of Theorem 3

Proof. We prove the theorem by induction on the number of parties corrupted
by the adversary A.

− Base Case: t = m− 1
Assume A corrupts t = m − 1 parties. Denote the set of corrupted parties

as PA = {Pi1 , · · · , Pim−1
}, leaving only one honest party Ph. According to the

privacy requirement, there exists a simulator Sim such that

{Sim(PA,xA, sA)}x
c
≈ {ViewΠ

A (x)}x

We use r (resp. rΠ) to denote the randomness in f(x) in the ideal (resp.
real) execution. It is easy to see that in the ideal execution, r is independent of
Sim(PA,xA, sA). Meanwhile, by the independence requirement, rΠ is indepen-
dent of ViewΠ

A (x) in the real execution, so we can obtain

{Sim(PA,xA, sA), r}x
c
≈ {ViewΠ

A (x), rΠ}x.

We further extend the indistinguishability into

{Sim(PA,xA, sA), sA, r}x
c
≈ {ViewΠ

A (x), sΠA , rΠ}x

where sΠA = (sΠi1 , · · · , s
Π
im−1

), since each corrupted party Pi’s output si (resp.
sΠi) can be computed from its own view in the ideal (resp. real) execution (i ∈
{i1, · · · , im−1}).

Multi-Party Private Set Operations from Predicative Zero-Sharing 43

By the functionality, the output of Ph satisfies sh = −(
∑

si∈sA si) + f(x).
By the correctness requirement, sΠh = −(

∑
sΠi ∈sΠA

sΠi) + f(x). Thus, we extend
the previous distributions by including sh and sΠh respectively and obtain

{Sim(PA,xA, sA), sA, sh, r}x
c
≈ {ViewΠ

A (x), sΠA , sΠh , rΠ}x.

The indistinguishability holds because sh (resp. sΠh) is determined by sA (resp.
sΠA), the randomness r (resp. rΠ), and the parties’ inputs x. This implies

{Sim(PA,xA, sA), sA, sh}x
c
≈ {ViewΠ

A (x), sΠA , sΠh }x.

Namely, Π securely computes f when A corrupting t = m−1 parties. Note that
the independence requirement in this case implies that rΠ is independent of the
joint view of any m − 1 parties in the real execution, which will be used in the
subsequent proof.
− Inductive Hypothesis: t = m− k

Assume that for any adversary A corrupting t = m − k parties (1 ≤ k <
m− 1), Π securely computes f . Namely, there exists a simulator Sim such that

{Sim({P1, · · · , Pm} \PH, {x1, · · · , xm} \ xH, {s1, · · · , sm} \ sH), {s1, · · · , sm} \ sH, sH}x
c
≈ {{ViewΠ

1 (x), · · · ,ViewΠ
m(x)} \ {ViewΠ

H(x)}, {sΠ1 , · · · , sΠm} \ sΠH, sΠH}x,

where PH is the set of honest parties, ViewΠ
H(x) denotes the joint view of PH,

while sH and sΠH are the respective outputs in the ideal and real executions.
It is easy to see that in the ideal execution, sH is independent of the joint dis-

tribution {Sim({P1, · · · , Pm}\PH, {x1, · · · , xm}\xH, {s1, · · · , sm}\sH), {s1, · · · , sm}\
sH}. Thus, we can conclude that for any subset of parties PH ⊂ {P1, · · · , Pm} of
size k, sΠH is independent of the joint distribution {{ViewΠ

1 (x), · · · ,ViewΠ
m(x)} \

ViewΠ
H(x), {sΠ1 , · · · , sΠm} \ sΠH} in the real execution.

− Inductive Step: t = m− k− 1
We proceed to prove the case where A corrupts t = m− k − 1 parties:
Let PH′ represent a subset of {P1, · · · , Pm} with size k+1. We decompose it

into PH′ = {PH, Ph}, where PH ⊂ {P1, · · · , Pm} contains exact k parties while
Ph is the remaining one party. By the privacy, we have

{Sim(PA,xA, sA), sA}x
c
≈ {ViewΠ

A (x), sΠA}x.

By the correctness, we also have

{sH}x
c
≈ {sΠH}x.

From the inductive hypothesis, sH is independent of the joint distribution
{ViewΠ

A (x), sΠA}, given that it is a subdistribution of {{ViewΠ
1 (x), · · · ,ViewΠ

m(x)}\
ViewΠ

H(x), {sΠ1 , · · · , sΠm} \ sΠH}. It is easy to see that sH is independent of the
joint distribution {Sim(PA,xA, sA), sA}x. Combining the above,

{Sim(PA,xA, sA), sA, sH}x
c
≈ {ViewΠ

A (x), sΠA , sΠH}x.

44 M. Dong et al.

Recall that in the base case we derived that rΠ is independent of the joint
view of any m − 1 parties in the real execution, thereby, rΠ is independent
of {ViewΠ

A (x),ViewΠ
H(x)}. As sΠA and sΠH can be determined by ViewΠ

A (x) and
ViewΠ

H(x) respectively, rΠ is independent of {ViewΠ
A (x), sΠA , sΠH}. Furthermore,

in the ideal execution, r is independent of {Sim(PA,xA, sA), sA, sH}, which can
extend the previous indistinguishability into

{Sim(PA,xA, sA), sA, sH, r}x
c
≈ {ViewΠ

A (x), sΠA , sΠH, rΠ}x.

By the functionality, the output of Ph satisfies sh = −(
∑

si∈sA si+
∑

si∈sH si)+

f(x). By the correctness, sΠh = −(
∑

sΠi ∈sΠA
sΠi +

∑
sΠi ∈sΠH

sΠi) + f(x). Thus, we
extend the previous distributions by including sh and sΠh respectively and obtain

{Sim(PA,xA, sA), sA, sH, sh, r}x
c
≈ {ViewΠ

A (x), sΠA , sΠH, sΠh , rΠ}x

The indistinguishability holds because sh (resp. sΠh) is uniquely determined by
sA and sH (resp. sΠA and sΠH), the randomness r (resp. rΠ), and the parties’
inputs x. This implies

{Sim(PA,xA, sA), sA, sh}x
c
≈ {ViewΠ

A (x), sΠA , sΠh }x.

Namely, Π securely computes f in the presence of A corrupting t = m − k − 1
parties. This completes the inductive step.

E The Optimization in Section 4.4

We first recall the technique of Beaver triples. A Beaver triple consists of three
secret-sharings ([a], [b], [c]), where [a], [b] are random secret-sharings and c = a·b.
Typically, a Beaver triple is used to reduce one multiplication to two reconstruc-
tions in the online phase, while here since the multiplier b is random, a Beaver
triple can be used to reduce one multiplication to one reconstruction in the online
phase. Concretely,

s = r · b = (r + a− a) · b = (r + a) · b+ a · b

hence we can compute

[s] = (r + a) · [b] + [a · b] = (r + a) · [b] + [c]

The above equation suggests that we can locally compute [s] once u = r + a is
publicly known. Therefore, the task of generating [s] boils down to reconstructing
[u] = [r] + [a]. Let each party Pi locally compute ui = ri + ai and send ui to the
leader P1, then P1 computes u = u1 + · · · + um and opens it to all parties. As
we can see, the transformation only consumes one Beaver triple generated in the
offline phrase and requires one opening with 2(m−1) log2 log2|F| communication
overhead for the leader and 2 log2 log2|F| communication overhead for each client
in the online phrase.

Multi-Party Private Set Operations from Predicative Zero-Sharing 45

F Membership Zero-Sharing Appendix

F.1 Pure Membership Zero-Sharing

The (batch) pure membership zero-sharing functionality is a special case of
(batch) membership zero-sharing when Q is a conjunction of m− 1 set member-
ship predicates (i.e.,

∧
j∈{1,··· ,m}\{pivot} x ∈ Xj). The ideal functionality FbpMZS

is formally described in Figure 19. The complete protocol is given in Figure 20.

Parameters: m parties P1, · · ·Pm, where Ppivot is the only party holding n single
elements as inputs instead of n sets. Batch size n. A field F.
Functionality: On input x = (x1, · · · , xn) from Ppivot and Xj = (Xj,1, · · · , Xj,n)
from each Pj (j ∈ {1, · · ·m} \ {pivot}), sample si = (si,1, · · · , si,n) ← Fn for 1 ≤
i ≤ m, s.t. for 1 ≤ d ≤ n, if

∧
j∈{1,··· ,m}\{pivot}(xd ∈ Xj,d) = 1,

∑
1≤i≤m si,d = 0.

Give si to Pi.

Fig. 19. Batch Pure Membership Zero-Sharing Functionality FbpMZS

Parameters: m parties P1, · · ·Pm. Batch size n. A field F. n Beaver triples
([a], [b], [c]) generated in the offline phrase, where [a] = ([a1], · · · , [an]), [b] =
([b1], · · · , [bn]), [c] = ([c1], · · · , [cn]) and ci = ai · bi for 1 ≤ i ≤ n.
Inputs: Ppivot inputs a vector x = (x1, · · · , xn). Pj inputs Xj = (Xj,1, · · · , Xj,n)
for j ∈ {1, · · ·m} \ {pivot}.
Protocol:
1. For the i-th instance (1 ≤ i ≤ n), Pj samples rj,i and sets Kj,i = Xj,i and

Vj,i = {−rj,i, · · · ,−rj,i}, where |Kj,i| = |Vj,i|.
2. Ppivot and Pj invoke FbOPPRF where Pj acts as S inputting (Kj,1, · · · ,Kj,n)

and (Vj,1, · · · , Vj,n), and Ppivot acts as R with input x and receives uj .
3. Ppivot sets its shares rpivot =

∑
j∈{1,···m}\{pivot} uj . Pj sets its shares

rj = (rj,1, · · · , rj,n). All parties hold a vector of n secret-sharings [r] =
([r1], · · · , [rn]).

4. All parties compute [s] by performing n secure multiplications [si] = [ri] · [bi]
(1 ≤ i ≤ n), using n Beaver triples ([a], [b], [c]).

Fig. 20. Batch Pure Membership Zero-Sharing ΠbpMZS

Complexity Analysis. In the batch pure membership zero-sharing protocol
(Figure 19), the costs of each stage are calculated as follows.

46 M. Dong et al.

– Ppivot executes batch OPPRF of size n with each Pj for j ∈ {1, · · ·m} \
{pivot}. Suppose that in the subsequent invocations of batch OPPRF, each
|Xj,i| = Nj,i = O(1) for 1 ≤ i ≤ n, j ∈ {1, · · ·m}\{pivot}, which is consistent
with the use of batch membership zero-sharing protocols in our MPSO pro-
tocols (combined with hashing to bins technique). We follow the paradigm
in [45] to construct batch OPPRF from batch OPRF and OKVS. By lever-
aging the technique to amortize communication, the total communication of
computing n instances of OPPRF is equal to the total number of items 3n.
Furthermore, we utilize vector oblivious linear evaluation (VOLE) [11, 12, 49]
to instantiate batch OPRF and the construction in [48] to instantiate OKVS.
This ensures the computation complexity of batch OPPRF of size n to scale
linearly with n. Therefore, in this stage, the computation and communication
complexity of Ppivot are O(mn), while the computation and communication
complexity of each Pj are O(n).

– The parties perform n secure multiplications using the optimization outlined
in the previous section and designate Ppivot as the leader. This requires n
opening with O(mn) computation/communication complexity for Ppivot and
O(n) computation/communication complexity for each Pj .

To sum up, in the online phase of the batch pure membership zero-sharing
protocol, the computation and communication complexity of Ppivot are O(mn),
while the computation and communication complexity of each Pj are O(n).

F.2 Pure Non-Membership Zero-Sharing

The (batch) pure non-membership zero-sharing functionality is a special case
of (batch) membership zero-sharing when Q is a conjunction of m − 1 set non-
membership predicates (i.e.,

∧
j∈{1,··· ,m}\{pivot} x /∈ Xj). The ideal functionality

FbpNMZS is formally described in Figure 21. The complete protocols is given in
Figure 22.

Parameters: m parties P1, · · ·Pm, where Ppivot is the only party holding n single
elements as inputs instead of n sets. Batch size n. A field F.
Functionality: On input x = (x1, · · · , xn) from Ppivot and Xj = (Xj,1, · · · , Xj,n)
from each Pj (j ∈ {1, · · ·m} \ {pivot}), sample si = (si,1, · · · , si,n) ← Fn for
1 ≤ i ≤ m, s.t. for 1 ≤ d ≤ n, if

∧
j∈{1,··· ,m}\{pivot} xd /∈ Xj,d = 1,

∑
1≤i≤m si,d = 0.

Give si to Pi.

Fig. 21. Batch Pure Non-Membership Zero-Sharing Functionality FbpNMZS

Complexity Analysis. In the batch pure non-membership zero-sharing proto-
col (Figure 21), the costs of each stage are calculated as follows.

Multi-Party Private Set Operations from Predicative Zero-Sharing 47

Parameters: m parties P1, · · ·Pm. Batch size n. A field F. n Beaver triples
([a], [b], [c]) generated in the offline phrase, where [a] = ([a1], · · · , [an]), [b] =
([b1], · · · , [bn]), [c] = ([c1], · · · , [cn]) and ci = ai · bi for 1 ≤ i ≤ n.
Inputs: Ppivot inputs a vector x = (x1, · · · , xn). Pj inputs Xj = (Xj,1, · · · , Xj,n)
for j ∈ {1, · · ·m} \ {pivot}.
Protocol:
1. Ppivot and Pj invoke FbssPMT where in the i-th instance (1 ≤ i ≤ n), Pj inputs

Xj,i and receives e0j,i, while Ppivot inputs xi and receives e1j,i.
2. Ppivot and Pj invoke n instances of ROT where in the i-th instance (1 ≤ i ≤ n),

Pj acts as S and receives r0j,i, r1j,i, while Ppivot acts as R inputting e1j,i and
receives re

1
j,i

j,i . Ppivot sets r′
j = (r

e1j,1
j,1 , · · · , r

e1j,n
j,n).

3. Ppivot sets its shares rpivot =
∑

j∈{1,···m}\{pivot} r′
j . Pj sets its shares rj =

(−re
0
j,1

j,1 , · · · ,−r
e0j,n
j,n). All parties hold a vector of n secret-sharings [r] =

([r1], · · · , [rn]).
4. All parties compute [s] by performing n secure multiplications [si] = [ri] · [bi]

(1 ≤ i ≤ n), using n Beaver triples ([a], [b], [c]).

Fig. 22. Batch Pure Non-Membership Zero-Sharing ΠbpNMZS

– Ppivot executes batch ssPMT of size n with each Pj for j ∈ {1, · · ·m}\{pivot}.
We utilize the construction in [19] based on batch OPPRF and secret-shared
private equality test (ssPEQT) [45, 16], which achieves linear computation
and communication complexity. Therefore, in this stage, the computation
and communication complexity of Ppivot are O(mn), while the computation
and communication complexity of each Pj are O(n).

– Ppivot acts as R and executes n instances of ROT with each Pj for j ∈
{1, · · ·m} \ {pivot}. In the offline phases, Ppivot and each Pj generate n in-
stances of random-choice-bit ROT, then in the online phase, Ppivot only needs
to send n choice bits masked by the random choice bits to each Pj . There-
fore, the computation and communication complexity of Ppivot are O(mn),
while the computation and communication complexity of each Pj are O(n).

– The parties perform n secure multiplications using the optimization outlined
in the previous section and designate Ppivot as the leader. This requires n
opening with O(mn) computation/communication complexity for Ppivot and
O(n) computation/communication complexity for each Pj .

To sum up, in the online phase of the batch pure non-membership zero-
sharing protocol, the computation and communication complexity of Ppivot are
O(mn), while the computation and communication complexity of each Pj are
O(n).

48 M. Dong et al.

F.3 Pure Membership Zero-Sharing with Payloads

Pure membership zero-sharing with payloads is an extension of the pure member-
ship zero-sharing functionality, combined with a variant of relaxed pure member-
ship payload-sharing, which we call relaxed pure membership payload-sharing.
In this variant, Ppivot holds an element x while each of the others holds a set of
elements and a set of associated payloads. If the conjunction of set membership
predicates holds true (i.e., x belongs to all element sets), the parties receive se-
cret shares of the sum of all payloads associated with x; otherwise they receive
secret shares of a random value. The formal definition of batch pure membership
zero-sharing with payloads functionality is in Figure 13. Note that the payload-
sharing only needs to satisfy the relaxed security definition in Section 4.3.

The construction of batch pure membership zero-sharing with payloads pro-
tocol resembles the batch pure membership zero-sharing protocol in Figure 20.
The core idea is to somehow encode the payload set into the senders’ inputs of
OPPRF, in each two-party protocol of the relaxed pure membership payload-
sharing. Specifically, we start by implementing the relaxed pure membership
zero-sharing with payloads in the two-party setting. Next, we show how to ex-
tend this primitive into multi-party setting.

In the two-party relaxed membership zero-sharing with payloads protocol,
there are two parties, the sender S with an element set Y and a payload set V
and the receiverR with an element x. S samples two secret shares r, w, and sets Y
as the key set and a set containing the pair (−r, vi−w) for 1 ≤ i ≤ n as the value
set, where vi ∈ V is the associated payload with yi ∈ Y . S outputs (r, w) as its
two secret shares. S andR invoke OPPRF, whereR inputs x and receives (r′, w′)
as its secret share. By the definition of OPPRF, if x ∈ Y , (r′, w′) = (−r, v−w),
where v is the associated payload with x in Y . Namely, if x ∈ Y , the parties hold
one secret sharing of 0 and one secret sharing of the associated payload with x,
otherwise they hold two secret sharings of pseudorandom values.

In the multi-party membership zero-sharing with payloads protocol, there
are m (m > 2) parties, where Ppivot holds an element x and each Pj (j ∈
{1, · · ·m}\{pivot}) holds an element set Xj and a payload set Vj . Ppivot engages
in the two-party version with each Pj , where Ppivot receives r′j and w′

j while
Pj receives rj and wj . By definition, we have that if x ∈ Xj , rj + r′j = 0 and
wj +w′

j = vj , where vj is the associated payload with x in Vj ; otherwise rj + r′j
and wj + w′

j are both random values. Ppivot sets rpivot =
∑

j∈{1,···m}\{pivot} tj as
its first secret share and sets wpivot =

∑
j∈{1,···m}\{pivot} uj as its second secret

share. Meanwhile, Pj sets rj as its first secret share and wj as its second secret
share. Note that if and only if x ∈ Xj for all j,

∑
1≤i≤m ri = 0 and

∑
1≤i≤m wi =∑

j∈{1,···m}\{pivot} vj , otherwise
∑

1≤i≤m ri and
∑

1≤i≤m wi are random values.
At this point, the first secret-sharing is a relaxed pure membership zero-sharing
while the second secret-sharing is relaxed pure membership payload-sharing. In
order to realize the membership zero-sharing with payloads functionality, the
last step is to transform the first relaxed pure membership zero-sharing into the
standard. The complete batch version is provided in Figure 23.

Multi-Party Private Set Operations from Predicative Zero-Sharing 49

Complexity Analysis. In the batch pure membership zero-sharing with pay-
loads protocol (Figure 23), the costs of each stage are calculated as follows.

– Ppivot executes batch OPPRF of size n with each Pj for j ∈ {1, · · ·m} \
{pivot}. In this stage, the computation and communication complexity of
Ppivot are O(mn), while the computation and communication complexity of
each Pj are O(n).

– The parties perform n secure multiplications using the optimization outlined
in the previous section and designate Ppivot as the leader. This requires n
opening with O(mn) computation/communication complexity for Ppivot and
O(n) computation/ communication complexity for each Pj .

To sum up, in the online phase of the batch pure membership zero-sharing
with payloads protocol, the computation and communication complexity of Ppivot

are O(mn), while the computation and communication complexity of each Pj

are O(n).

Parameters: m parties P1, · · ·Pm. Batch size n. A field F and payload field F′.
The mapping function payloadj() from element sets Xj to the associated payload
sets Vj . n Beaver triples ([a], [b], [c]) generated in offline phrase, where [a] =
([a1], · · · , [an]), [b] = ([b1], · · · , [bn]), [c] = ([c1], · · · , [cn]) and ci = ai · bi for
1 ≤ i ≤ n.
Inputs: Ppivot inputs a vector x = (x1, · · · , xn). Pj inputs Xj = (Xj,1, · · · , Xj,n)
and Vj = (Vj,1, · · · , Vj,n) for j ∈ {1, · · ·m} \ {pivot}.
Protocol:
1. For the i-th instance (1 ≤ i ≤ n), Pj samples (rj,i, wj,i). Suppose
|Xj,i| = Nj,i, Pj sets Kj,i = Xj,i = (xj,i,1, · · · , xj,i,Nj,i) and V ′

j,i =
{(−rj,i, vj,i,1 − wj,i), · · · , (−rj,i, vj,i,Nj,i − wj,i)}, where |V ′

j,i| = Nj,i and
vj,i,k = payloadj(xj,i,k) for 1 ≤ k ≤ Nj,i.

2. Ppivot and Pj invoke FbOPPRF where Pj acts as S inputting (Kj,1, · · · ,Kj,n)
and (V ′

j,1, · · · , V ′
j,n), and Ppivot acts as R with input x and receives (r′

j ,w′
j).

3. Ppivot sets its first shares rpivot =
∑

j∈{1,···m}\{pivot} r′
j , and its second shares

wpivot =
∑

j∈{1,···m}\{pivot} w′
j . Pj sets its first shares rj = (rj,1, · · · , rj,n), and

its second shares wj = (wj,1, · · · , wj,n). All parties hold two vectors of n
secret-sharings [r] = ([r1], · · · , [rn]) and [w] = ([w1], · · · , [wn]).

4. All parties compute [s] by performing n secure multiplications [si] = [ri] · [bi]
(1 ≤ i ≤ n), using n Beaver triples ([a], [b], [c]).

Fig. 23. Batch Pure Membership Zero-Sharing with Payloads ΠbpMZSp

50 M. Dong et al.

G Security Proof of Theorem 6

Let PA denote the set of corrupted parties controlled by A. In the MPSO pro-
tocol, the simulator receives each corrupted party’s input Xc from Pc ∈ PA and
if P1 ∈ PA, it receives the resulting set Y . For each Pc, its view consists of its
input Xc, B secret shares si,c from each FQ′

i

bMZS for 1 ≤ i ≤ s (if Pc belongs to
the set of Qi’s involving parties {Pi1 , · · · , Piq}), shuffled secret shares u′

c from
Fshuffle, and if P1 ∈ PA, reconstruction messages u′

j from Pj for 1 < j ≤ m.
Suppose there are s′ subformulas QA = {Qj1 , · · · , Qjs′ } ⊆ {Q1, · · · , Qs}

without involving honest parties, and QH = {Q1, · · · , Qs} \QA, containing the
subformulas that involve at least one honest party. The simulator emulates each
Pc’s view by running the protocol honestly with these changes:

– It simulates uniform secret shares from each FQ′
h

bMZS for each Qh ∈ QH.
– Case P1 /∈ PA. It samples uniform secret shares u′

c from Fshuffle.
– Case P1 ∈ PA. After the corrupted parties honestly invoke batch mem-

bership zero-sharing protocols for all subformulas in QA, the parties hold
s′B secret-sharings, where we denote all secrets of elements (appended with
all-zero strings) as a set YA ∈ Y and s′B− |YA| random secrets as a set RA.
Let YH = Y \ YA. The simulator samples (s− s′)B − |YH| random values as
a set RH, shuffles the union Y ∪RH∪RA with a random permutation π and
secret-shares the shuffled union as u′

1, · · · ,u′
m, where u′

c is outputted to Pc

as secret shares from Fshuffle for each Pc ∈ {Pi1 , · · · , Piq}.
In the case P1 /∈ PA, it is easy to see that Pc’s secret shares from each FQ′

h

bMZS

and Fshuffle are uniformly distributed and independent of any other distributions
in the real execution (as there exists at least an honest party holding one share),
which is identical to the simulation.

In the case P1 ∈ PA, Pc’s secret shares from each FQ′
h

bMZS (Qh ∈ QH) are
also uniformly distributed and independent of any other distributions in the real
execution, so

{SimQh(Ph
A,Xh

A, {sh,c}Pc∈Ph
A
)Qh∈QH , {sh,c}Qh∈QH,Pc∈Ph

A
}X

c
≈ {ViewQh

A (Xh)Qh∈QH , {s
Π
h,c}Qh∈QH,Pc∈Ph

A
}X,

where X = {X1, · · · , Xm}. Ph
A denotes the corrupted parties involving in Qh,

while Xh
A denotes the set of their inputs sets. Xh denotes the set of all involved

parties’ inputs sets in Qh. SimQh is the view emulated by the simulator of FQ′
h

bMZS,
while ViewQh

A is the real view of adversary in the batch membership zero-sharing
protocol for Qh. The distinctions with a superscript Π are in the real execu-
tion, otherwise in simulation. As the corrupted parties honestly invoke batch
membership zero-sharing protocols for all subformulas in QA, we obtain

{SimQi(Pi
A,Xi

A, {si,c}Pc∈Pi
A
)1≤i≤s, {si,c}1≤i≤s,Pc∈PA}X

c
≈ {ViewQi

A (Xi1 , · · · , Xiq)1≤i≤s, {sΠi,c}1≤i≤s,Pc∈PA}X.

Multi-Party Private Set Operations from Predicative Zero-Sharing 51

By correctness, after invoking all FQ′
h

bMZS for each Qh ∈ QH, the parties hold
|YH| secret-sharings of the elements in YH, and (s− s′)B − |YH| secret-sharings
of random values (the set of these random secrets is denoted by RΠ

H). By the
independence requirement of FQ′

h

bMZS, all random values in RΠ
H are independent of

the joint view of any m−1 parties, i.e. the view of adversary, in the real execution
of batch membership zero-sharing protocols. In simulation, the random values
in RH are sampled using independent randomness so they are also independent
of the emulated view for FQ′

h

bMZS. After the execution of multi-party secret-shared
shuffle, the order of elements in Y ∪ RΠ

H ∪ RΠ
A is shuffled. By the functionality

of Fshuffle, the random permutation πΠ is sampled independently. Thereby,

{SimQi(Pi
A,Xi

A, {si,c}Pc∈Pi
A
)1≤i≤s, {si,c}1≤i≤s,Pc∈PA , π(Y ∪RH ∪RA)}X

c
≈ {ViewQi

A (Xi1 , · · · , Xiq)1≤i≤s, {sΠi,c}1≤i≤s,Pc∈PA , π
Π(Y ∪RΠ

H ∪RΠ
A)}X.

Given that u′
1, · · · ,u′

m and u′Π
1 , · · · ,u′Π

m are secret shares of π(Y ∪RH∪RΠ
A)

and πΠ(Y ∪RΠ
H ∪RΠ

A) respectively, we derive that

{SimQi(Pi
A,Xi

A, {si,c}Pc∈Pi
A
)1≤i≤s, {si,c}1≤i≤s,Pc∈PA ,u′

1, · · · ,u′
m}X

c
≈ {ViewQi

A (Xi1 , · · · , Xiq)1≤i≤s, {sΠi,c}1≤i≤s,Pc∈PA ,u′Π
1 , · · · ,u′Π

m }X.

By invoking the simulator for multi-party secret-shared shuffle Simsh,

{SimQi(Pi
A,Xi

A, {si,c}Pc∈Pi
A
)1≤i≤s, {si,c}1≤i≤s,Pc∈PA ,

Simsh(PA, {uc,u′
c}Pc∈PA),u′

1, · · · ,u′
m}X

c
≈

{ViewQi

A (Xi1 , · · · , Xiq)1≤i≤s, {sΠi,c}1≤i≤s,Pc∈PA ,

Viewsh
A (uΠ

1 , · · · ,uΠ
m),u′Π

1 , · · · ,u′Π
m }X,

where uk is computed by {si,k}1≤i≤s We conclude that the adversary’s view in
real execution is indistinguishable to its view in the simulation.

The security proof for the circuit-MPSO (Approach 2) protocol is the same.
The security proof for the MPSO-card and circuit-MPSO (Approach 1) protocols
are similar, except that the simulator replaces all elements in the simulation with
0s, since it only obtains the cardinality rather than the set itself if P1 ∈ PA.

H Implementation Details and Parameter Settings

H.1 Implementation Details

Our protocols are written in C++, where each party uses m − 1 threads to
interact simultaneously with all other parties. We instantiate batch OPPRF with
VOLE and OKVS [43, 26, 48, 9], following [13]; We instantiate batch ssPMT
with batch OPPRF and ssPEQT, following [19]. We use the following libraries
in our implementation.

52 M. Dong et al.

– VOLE: We use VOLE implemented in libOTe [50], instantiating the code
family with Expand-Convolute codes [49].

– OKVS and GMW: We use the optimized OKVS construction in [48]9 and
re-use the OKVS implementation in [5]. We also re-use the GMW imple-
mentation in [5] to construct ssPEQT.

– ROT: We use SoftSpokenOT [52] implemented in libOTe.
– Additionally, we use the cryptoTools [4] library to compute hash functions

and PRNG calls, and we adopt Coproto [3] to realize network communication.

H.2 Choosing Suitable Parameters

We set the computational security parameter λ = 128 and the statistical security
parameter σ = 40. The other parameters are:

Cuckoo hashing parameters. To achieve linear communication of batch ssPMT,
we use stash-less Cuckoo hashing [45]. To render the failure probability (failure
is defined as the event where an item cannot be stored in the table and must be
stored in the stash) less than 2−40, we set B = 1.27n for 3-hash Cuckoo hashing.
OKVS parameters. We employ w = 3 scheme with a cluster size of 214 in [48],
and the expansion rate (which is the size of OKVS divided by the number of
encoding items) in this setting is 1.28.
ROT parameters. We set field bits to 5 in SoftSpokenOT to balance compu-
tation and communication costs.
Length of OPPRF outputs. According to [19], to ensure the correctness of
batch ssPMT, the output length of OPPRF in batch ssPMT is at least σ +
log2 T + log2B, where T is the total number of the batch ssPMT invocations,
which is (m2−m)/2 in our MPSU protocol. Thereby, the lower bound of output
length of OPPRF in our MPSU protocol is σ+ log2((m

2−m)/2)+ log2(1.27n).
Field size and all-zero string length. The field size and all-zero string con-
trol the probability of a spurious collision in our protocols. According to the
correctness analysis in Section 6.4, for MPSI, MPSI-card and MPSI-card-sum
protocols, field size of B · 2σ = 1.27n · 2σ is sufficient to bound the probabil-
ity of any spurious collision to 2−σ. For MPSU protocol, the field size should
meet two requirements: |F| ≥ B · 2σ and the length of elements in F equals
l+ l′. Given that the all-zero string length l′ ≥ σ + log(m− 1) + logB, we have
|F| ≥ 2l +(m− 1)B · 2σ in our MPSU. Concretely, we use GF(64) for our MPSI,
MPSI-card and MPSI-card-sum protocols, and GF(128) for our MPSU protocol
(where l′ is set as 64 bits) in our experiments.

9 Since the existence of suitable parameters for the new OKVS construction of the
recent work [9] is unclear when the set size is less than 210, we choose to use the
OKVS construction of [48].

	Multi-Party Private Set Operations from Predicative Zero-Sharing

