
Impossible Differential Attack on SAND-64

Nobuyuki Sugio[0000−0001−7313−1755]

Hokkaido University of Science, Sapporo, Japan
sugio-n@hus.ac.jp

Abstract. SAND is an AND-RX-based lightweight block cipher pro-
posed by Chen et al. There are two variants of SAND, namely SAND-64
and SAND-128, due to structural differences. In this paper, we search for
impossible differential distinguishers of SAND-64 using the Constraint
Programming (CP) and reveal 56 types of impossible differential distin-
guishers up to 11 rounds. Furthermore, we demonstrate a key recovery
attack on 17-round SAND-64. The complexities for the attack require
256 data, 2127 encryptions, and 260 bytes of memory, respectively. Al-
though this result currently achieves the best attack on round-reduced
SAND-64, this attack does not threaten the security of SAND-64 against
impossible differential attack.

Keywords: Impossible differential attack, lightweight cipher, SAND,
Constraint Programming

1 Introduction

SAND is proposed by Chen et al. in Designs, Codes and Cryptography 2022
[1]. SAND is a family of lightweight Feistel block ciphers (with 64- or 128-bit
block size, both using a 128-bit key) designed using only AND, rotation, and
XOR (AND-RX) operations, while enabling classical S-box-based cryptanalytic
techniques.

For security evaluation, the designers analyzed differential attack [2], linear
attack [3], and other cryptanalytic methods using Mixed Integer Linear Pro-
gramming (MILP). In the previous research on SAND-64, the designers applied
the method proposed in [4] to search for impossible differential distinguishers.
They fixed the number of active S-boxes in the input and output differences as
one, then performed an exhaustive search at nibble level. However, this method
limits the search space, potentially overlooking other impossible differential dis-
tinguishers.

Hadipour et al. proposed a method to search for impossible differential distin-
guishers using deterministic differentials [5], [6]. These approaches do not require
predefined input and output differences, allowing for a more efficient search for
impossible differential distinguishers.

1.1 Contributions of This Paper

In this study, we search for impossible differential distinguishers of SAND-64
using Hadipour et al.’s deterministic differentials and reveal 56 types of impos-

2 N. Sugio

sible differential distinguishers up to 11 rounds. Furthermore, we demonstrate a
key recovery attack on 17-round SAND-64. The attack results are summarized
in Table 1.

Table 1. Attack Results

Number of rounds Type Data Time Memory Method
10 Distinguisher - - - Impossible Differential Attack [1]
11 Distinguisher - - - Impossible Differential Attack [11]
11 Distinguisher - - - Impossible Differential Attack (Ours)
12 Distinguisher 263 - - Integral Attack [1]
12 Distinguisher 263 - - Integral Attack [13]
15 Key Recovery 263 2105 252 Integral Attack [13]
16 Key Recovery 263 2109.91 285 Integral Attack [13]
17 Key Recovery 256 2127 260 Impossible Differential Attack (Ours)

1.2 Structure of This Paper

The structure of this paper is as follows. Section 2 provides related works on
SAND-64. Section 3 explains an overview of impossible differential attack. Sec-
tion 4 introduces constraint programming and the use of deterministic differen-
tials in searching for impossible differential distinguishers. Sections 5 describes
the structures of lightweight cipher SAND-64. In Section 6, we present a key re-
covery attack on SAND-64 using impossible differential distinguishers. Finally,
Section 7 concludes the paper and discusses future directions.

2 Related Works

The designers evaluated SAND’s security against various attacks such as differen-
tial attack [2], linear attack [3], integral attack [7], impossible differential attack
[8], and zero-correlation linear attack [9], [10]. They searched for impossible dif-
ferentials and zero-correlation linear approximations using a nibble-level search.
As a result, they identified 10-round distinguishers both impossible differential
and zero-correlation of SAND-64 [1].

Zhang et al. developed a systematic search framework for AND-RX ciphers to
find impossible differential distinguishers [11]. Applying their method to SAND,
they found 11-round impossible differential distinguishers of SAND-64.

Mirzaie et al. applied the conventional bit-based division property technique
[12] to find integral distinguishers of SAND-64 [13]. As a result, they discovered
a 12-round integral distinguisher with 23 balanced bits. The data complexity for
the distinguisher is 263. Building on this distinguisher, Mirzaie et al. mounted
key recovery attacks on 15- and 16-round SAND-64. The time complexities are
2105 encryptions for the 15-round attack and 2109.9 encryptions for the 16-round
attack, respectively.

Impossible Differential Attack on SAND-64 3

3 Impossible Differential Attack

Impossible differential attack was proposed by Biham et al. [8]. Impossible dif-
ferential was defined as the differential with probability zero. This attack elim-
inates the key candidates which generate differential with probability zero. In
this technique, an attacker searches for an impossible output differential Δ𝑌 cor-
responding to a given input differential Δ𝑋 over 𝑟-round of the cipher. If such
a pair of input-output differentials (Δ𝑋, Δ𝑌) exists, it is termed as an 𝑟-round
impossible differential distinguisher. This distinguisher can be used to conduct
a distinguishing attack or a key recovery attack against the target cipher.

Boura et al. have formalized the necessary number of data, time, and mem-
ory complexities for the impossible differential attack [14], [15]. The following
outlines them. For more details, please refer to the references [14], [15].

Figure 1 illustrates the notations for an impossible differential attack. Let
Δ𝑋 and Δ𝑌 be input (resp. output) differences of the impossible differential. Let
𝑟Δ be the number of rounds of the impossible differential. Let Δ𝑖𝑛 and Δ𝑜𝑢𝑡 be
set of all possible input (resp. output) differences of the cipher. Let 𝑟𝑖𝑛 and 𝑟𝑜𝑢𝑡
be the number of rounds of the differential paths (Δ𝑋, Δ𝑖𝑛) or (Δ𝑌 , Δ𝑜𝑢𝑡).

!"

#

$

%&'

!"

(

%&'

(!" !")

(%&' %&')

Fig. 1. Notations for an impossible differential attack [14]

The differential (Δ𝑋 → Δ𝑖𝑛) (resp. (Δ𝑌 → Δ𝑜𝑢𝑡)) occurs with probability 1
while the differential (Δ𝑖𝑛 → Δ𝑋) (resp. (Δ𝑜𝑢𝑡 → Δ𝑌)) is verified with probability

4 N. Sugio

1
2𝑐𝑖𝑛 (resp. 1

2𝑐𝑜𝑢𝑡), where 𝑐𝑖𝑛 (resp. 𝑐𝑜𝑢𝑡) is the number of bit-conditions that have
to be verified to obtain Δ𝑋 from Δ𝑖𝑛 (resp. Δ𝑌 from Δ𝑜𝑢𝑡).

The probability that for a given key, a pair of inputs already satisfying the
differences Δ𝑖𝑛 and Δ𝑜𝑢𝑡 verifies all the (𝑐𝑖𝑛 + 𝑐𝑜𝑢𝑡) bit-conditions is 2−(𝑐𝑖𝑛+𝑐𝑜𝑢𝑡) .
Therefore, the probability that a key trial is kept in the candidate keys set is
𝑝𝑘 = (1 − 2−(𝑐𝑖𝑛+𝑐𝑜𝑢𝑡))𝑁 with 𝑁 different input (or output) pairs.

Boura et al. have formalized the smallest value of 𝑁, denoted by 𝑁𝑚𝑖𝑛, veri-
fying

𝑝𝑘 = (1 − 2−(𝑐𝑖𝑛+𝑐𝑜𝑢𝑡))𝑁𝑚𝑖𝑛 <
1

2

is approximately 𝑁𝑚𝑖𝑛 = 2𝑐𝑖𝑛+𝑐𝑜𝑢𝑡 . The cost of obtaining 𝑁 pairs of (Δ𝑖𝑛,Δ𝑜𝑢𝑡) is
evaluated as

𝐶𝑁 = max

{
min

Δ∈{Δ𝑖𝑛 ,Δ𝑜𝑢𝑡 }

{√
𝑁2𝑛+1−|Δ |

}
, 𝑁2𝑛+1−|Δ𝑖𝑛 |− |Δ𝑜𝑢𝑡 |

}
. (1)

The cost 𝐶𝑁 also represents the amount of needed data. The time complexity is

𝑇 =

(
𝐶𝑁 +

(
𝑁 + 2 |𝑘𝑖𝑛∪𝑘𝑜𝑢𝑡 | 𝑁

2𝑐𝑖𝑛+𝑐𝑜𝑢𝑡

)
𝐶′𝐸 + 2 |𝐾 | 𝑝𝑘

)
𝐶𝐸 , (2)

with 𝑁 such that 𝑝𝑘 = (1 − 2−(𝑐𝑖𝑛+𝑐𝑜𝑢𝑡))𝑁 < 1
2 , and where 𝐶′𝐸 is the ratio of

the cost of partial encryption to the full encryption, and where the last term
represents the brute-force search complexity.

The only elements that need to be stored are the 𝑁 pairs. Therefore, the
memory complexity for the attack is determined by 𝑁.

4 Constraint Programming and Its Application to
Cryptanalysis

4.1 Constraint Programming

Constraint Programming (CP) is a programming paradigm that aims to solve
problems by employing mathematical and computational techniques to meet
specific conditions, known as constraints. Constraints C are conditions that the
values of variables must satisfy. They are expressed in mathematical or logical
form. Variables X are elements that can take on specific values. Each variable
has a domain D, which is the range of possible values it can assume. A constraint
problem consists of a set of variables and the constraints imposed on them. The
goal is to find a combination of variable values that satisfies all the constraints.

4.2 Application to Cryptanalysis

Hadipour et al. proposed cell-wise model [5] and bit-wise model [6] to search
for impossible differential distinguishers and zero-correlation linear trails using
CP. In the bit-wise model, specific constraints were set to track the encryp-
tion and decryption processes for each round at the bit level and an attacker

Impossible Differential Attack on SAND-64 5

could find bit-wise impossible differential distinguishers and zero-correlation lin-
ear trails of a target cipher. Specifically, Hadipour et al. applied it to ASCON
and this method discovered 5-round impossible differential distinguishers and
zero-correlation linear trails [6].

The following outlines the CP models for deterministic differential transi-
tions. For more details, please refer to the references [5], [6]. In the bit-wise
models, let integer variables 𝑋 and 𝑌 with the domain of {−1, 0, 1} to indicate
whether the differential is unknown, zero, or one, respectively.

CP model 1 (Branching) [6]

For 𝑓 : F2 → F𝑛2, 𝑓 (𝑥) = (𝑦0, 𝑦1, · · · , 𝑦𝑛−1), where 𝑦0 = 𝑦1 = · · · = 𝑦𝑛−1 = 𝑥, the
valid transitions for deterministic differential trails satisfy the following:

Branch(𝑋,𝑌 [0], · · · , 𝑌 [𝑛 − 1]) :=
𝑛−1∧
𝑖=0

(𝑌 [𝑖] = 𝑋),

where 𝑋 and 𝑌 [𝑖] are integer variables with the domain of {−1, 0, 1} for all 0 ≤
𝑖 ≤ 𝑛 − 1.

CP model 2 (XOR) [6]

For 𝑓 : F𝑛2 → F2, 𝑓 (𝑥0, 𝑥1, · · · , 𝑥𝑛−1) = 𝑦, where 𝑦 = 𝑥0 ⊕ 𝑥1 ⊕ · · · ⊕ 𝑥𝑛−1, the
valid transitions for deterministic differential trails satisfy the following:

XOR(𝑋 [0], · · · , 𝑋 [𝑛 − 1], 𝑌) :=
{
if
∨𝑛−1
𝑖=0 (𝑋 [𝑖] = −1) then 𝑌 = −1

else 𝑌 =
∑𝑛−1
𝑖=0 𝑋 [𝑖] mod 2 endif

where 𝑋 [𝑖] and 𝑌 are integer variables with the domain of {−1, 0, 1} for all
0 ≤ 𝑖 ≤ 𝑛 − 1.

CP model 3 (S-box) [6]

CP model for S-box can be derived from differential distribution table (DDT).

The way how to encode deterministic behaviours of S-box using sbox analyzer
is explained in Appendix N of [6].

CP models to search deterministic differential distinguishers are constructed
as follows. We define integer variables 𝑋𝑈𝑟 and 𝑋𝐿𝑟 , 0 ≤ 𝑟 ≤ 𝑅 to represent the
active pattern of the internal state after 𝑟 rounds of a block cipher in the for-
ward and backward directions. CP models for deterministic differential trails in
forward and backward directions over 𝑅 rounds are independently constructed.
The constraints

∑𝑛−1
𝑖=0 𝑋𝑈0 [𝑖] ≠ 0 and

∑𝑛−1
𝑖=0 𝑋𝐿𝑅 [𝑖] ≠ 0 are added to exclude

all trivial solutions. The following constraints are added to ensure the inconsis-
tency between the two deterministic differential propagations at least one point
throughout the distinguisher:

𝐶𝑆𝑃 :=
𝑅−1∨
𝑟=0

(𝑛−1∨
𝑖=0

(𝑋𝑈𝑟 [𝑖] + 𝑋𝐿𝑟 [𝑖] = 1)
)

6 N. Sugio

If CP models are feasible using a CP-solver, it means that there exist 𝑟-round
impossible differentials. Otherwise, one can not find any impossible differential
at 𝑟-round using deterministic differential trails.

5 Lightweight Block Cipher SAND-64

SAND is a lightweight block cipher proposed by Chen et al. [1]. It employs an
AND-RX structure and has two variants, SAND-64 and SAND-128, depending
on the block size. In this paper, we focus on SAND-64, which has a block size
of 64 bits and a secret key length of 128 bits. The recommended number of
SAND-64 is 48. In the following description, we set 𝑛 = 32.

5.1 Preliminaries

The notations used in the description of SAND-64 are defined as follows:

– 𝑥 = (𝑥𝑛−1, 𝑥𝑛−2, . . . , 𝑥0): An 𝑛-bit variable, where 𝑥𝑛−1 represents the most
significant bit (MSB) and 𝑥0 represents the least significant bit (LSB). The
variable 𝑥 is represented using a 4 × 𝑛

4 array:

𝑥 =

𝑥𝑛−1 . . . 𝑥7 𝑥3
𝑥𝑛−2 . . . 𝑥6 𝑥2
𝑥𝑛−3 . . . 𝑥5 𝑥1
𝑥𝑛−4 . . . 𝑥4 𝑥0

– 𝑥 | |𝑦: Concatenation of variables 𝑥 and 𝑦
– 𝑥 ≪ 𝑠: Left shift of variable 𝑥 by 𝑠 bits
– 𝑥 ≪ 𝑡: Left cyclic shift of variable 𝑥 by 𝑡 bits
– 𝑥 ≪ 𝑛

4
𝑡: Variable 𝑥 is divided into four 𝑛

4 -bit words 𝑥 = (𝑥𝑛−1, 𝑥𝑛−2, . . . , 𝑥0) =
𝑥{3}| |𝑥{2}| |𝑥{1}| |𝑥{0}, and each word 𝑥{𝑖} undergoes a left cyclic shift by 𝑡
bits:

𝑥 ≪ 𝑛
4
𝑡 = (𝑥{3}≪ 𝑛

4
𝑡) | | (𝑥{2}≪ 𝑛

4
𝑡) | | (𝑥{1}≪ 𝑛

4
𝑡) | | (𝑥{0}≪ 𝑛

4
𝑡).

– 𝑥 ⊙ 𝑦: Bitwise AND operation
– 𝑥 ⊕ 𝑦: Bitwise XOR operation
– 𝑥 [𝑖]: The 𝑖-th nibble (4-bit) of variable 𝑥. Given 𝑥 = (𝑥𝑛−1, 𝑥𝑛−2, . . . , 𝑥0):

𝑥 [𝑛4 − 1] = (𝑥𝑛−1, 𝑥𝑛−2, 𝑥𝑛−3, 𝑥𝑛−4),
...

𝑥 [1] = (𝑥7, 𝑥6, 𝑥5, 𝑥4),
𝑥 [0] = (𝑥3, 𝑥2, 𝑥1, 𝑥0).

Impossible Differential Attack on SAND-64 7

5.2 State Loading

Let 𝑃 = (𝑃𝑙, 𝑃𝑟) be the plaintext, where 𝑃𝑙 = (𝑃𝑙𝑛−1, . . . , 𝑃𝑙1, 𝑃𝑙0) represents the
left 𝑛-bit part and 𝑃𝑟 = (𝑃𝑟𝑛−1, . . . , 𝑃𝑟1, 𝑃𝑟0) represents the right 𝑛-bit part. The
variables 𝑃𝑙 and 𝑃𝑟 are represented as 4 × 𝑛

4 arrays:

𝑃𝑙 =

𝑃𝑙𝑛−1 . . . 𝑃𝑙7 𝑃𝑙3
𝑃𝑙𝑛−2 . . . 𝑃𝑙6 𝑃𝑙2
𝑃𝑙𝑛−3 . . . 𝑃𝑙5 𝑃𝑙1
𝑃𝑙𝑛−4 . . . 𝑃𝑙4 𝑃𝑙0

 =

𝑥0{3}
𝑥0{2}
𝑥0{1}
𝑥0{0}

 , 𝑃𝑟 =

𝑃𝑟𝑛−1 . . . 𝑃𝑟7 𝑃𝑟3
𝑃𝑟𝑛−2 . . . 𝑃𝑟6 𝑃𝑟2
𝑃𝑟𝑛−3 . . . 𝑃𝑟5 𝑃𝑟1
𝑃𝑟𝑛−4 . . . 𝑃𝑟4 𝑃𝑟0

 =

𝑦0{3}
𝑦0{2}
𝑦0{1}
𝑦0{0}

The input (𝑥0, 𝑦0) for the first round is assigned row by row from plaintext

𝑃:

𝑥0 = 𝑃𝑙𝑛−1 . . . 𝑃𝑙7 𝑃𝑙3 | | . . . | |𝑃𝑙𝑛−4 . . . 𝑃𝑙4 𝑃𝑙0 = 𝑥0{3}| |𝑥0{2}| |𝑥0{1}| |𝑥0{0}
𝑦0 = 𝑃𝑟𝑛−1 . . . 𝑃𝑟7 𝑃𝑟3 | | . . . | |𝑃𝑟𝑛−4 . . . 𝑃𝑟4 𝑃𝑟0 = 𝑦0{3}| |𝑦0{2}| |𝑦0{1}| |𝑦0{0}

Let 𝐶 = (𝐶𝑙, 𝐶𝑟) be the ciphertext, where 𝐶𝑙 = (𝐶𝑙𝑛−1, . . . , 𝐶𝑙1, 𝐶𝑙0) repre-
sents the left 𝑛-bit part and 𝐶𝑟 = (𝐶𝑟𝑛−1, . . . , 𝐶𝑟1, 𝐶𝑟0) represents the right 𝑛-bit
part. The ciphertext 𝐶 is assigned row by row from the round 𝑅 output (𝑥𝑅, 𝑦𝑅):

𝐶𝑙 =

𝐶𝑙𝑛−1 . . . 𝐶𝑙7 𝐶𝑙3
𝐶𝑙𝑛−2 . . . 𝐶𝑙6 𝐶𝑙2
𝐶𝑙𝑛−3 . . . 𝐶𝑙5 𝐶𝑙1
𝐶𝑙𝑛−4 . . . 𝐶𝑙4 𝐶𝑙0

 =

𝑥𝑅{3}
𝑥𝑅{2}
𝑥𝑅{1}
𝑥𝑅{0}

 , 𝐶𝑟 =

𝐶𝑟𝑛−1 . . . 𝐶𝑟7 𝐶𝑟3
𝐶𝑟𝑛−2 . . . 𝐶𝑟6 𝐶𝑟2
𝐶𝑟𝑛−3 . . . 𝐶𝑟5 𝐶𝑟1
𝐶𝑟𝑛−4 . . . 𝐶𝑟4 𝐶𝑟0

 =

𝑦𝑅{3}
𝑦𝑅{2}
𝑦𝑅{1}
𝑦𝑅{0}

5.3 Round Function

The round function of SAND-64 is illustrated in Figure 2. Let (𝑥𝑟 , 𝑦𝑟) denote the
input of round 𝑟, 𝑠𝑘𝑟 denote the round key, and (𝑥𝑟+1, 𝑦𝑟+1) denote the output.
The round function consists of two types of nonlinear functions, 𝐺0 and 𝐺1, as
well as a linear function 𝑃𝑛. In addition, the parameters 𝛼 and 𝛽 are fixed as
𝛼 = 0 and 𝛽 = 1.

Let the input to 𝐺0 and 𝐺1 be an 𝑛-bit variable 𝑥 = 𝑥{3}| |𝑥{2}| |𝑥{1}| |𝑥{0} and
the output be 𝑦 = 𝑦{3}| |𝑦{2}| |𝑦{1}| |𝑦{0}. The function 𝐺0 is defined as follows:

𝑦{3} = 𝑦{0} ⊙ 𝑥{1} ⊕ 𝑥{3},
𝑦{2} = 𝑥{2},
𝑦{1} = 𝑥{1},
𝑦{0} = 𝑥{3} ⊙ 𝑥{2} ⊕ 𝑥{0}.

Similarly, the function 𝐺1 is defined as follows:

𝑦{3} = 𝑥{3},
𝑦{2} = 𝑥{3} ⊙ 𝑥{1} ⊕ 𝑥{2},
𝑦{1} = 𝑦{2} ⊙ 𝑥{0} ⊕ 𝑥{1},
𝑦{0} = 𝑥{0}.

8 N. Sugio

!" #"

!" $%/& '

(%

!")* #")*

!" $%/& +
,-"

.0

.*

Fig. 2. Round function of SAND-64

The linear function 𝑃𝑛 transforms the input word 𝑥{𝑖} = (𝑥 𝑛
4
·𝑖+ 𝑛

4
−1, . . . , 𝑥 𝑛

4
·𝑖+1, 𝑥 𝑛

4
·𝑖)

into the output word 𝑦{𝑖} according to the following equation:

𝑦 𝑛
4
·𝑖+𝑝8 (𝑗) = 𝑥 𝑛

4
·𝑖+ 𝑗 , for 0 ≤ 𝑗 < 𝑛

4
, 0 ≤ 𝑖 < 4.

The linear function 𝑃𝑛 can be regarded as applying the permutation 𝑝8 to each
of the four 𝑛

4 -bit words in parallel. The permutation 𝑝8 is defined in Table 2.

Table 2. Permutation 𝑝8 in SAND-64

𝑗 0 1 2 3 4 5 6 7
𝑝8 (𝑗) 7 4 1 6 3 0 5 2

5.4 Key Schedule

SAND-64 generates round keys from a 128-bit secret key 𝐾. The secret key is
treated as a concatenation of four 32-bit words: 𝐾 = 𝐾3 | |𝐾2 | |𝐾1 | |𝐾0. Figures 3
and 4 illustrate the key schedule of SAND-64.

Impossible Differential Attack on SAND-64 9

(!")
#

$%&# $%&' $%&* $%

+ , 1

Fig. 3. Key schedule of SAND-64

-[7] -[6] -[5] -[4] -[3] -[2] -[1] -[0]

-.[7] -.[6] -.[5] -.[4] -.[3] -.[2] -.[1] -.[0]

/ 1

8 3

Fig. 4. Operation 𝐴8

The constant 𝑖 + 1, 0 ≤ 𝑖 < 𝑅 − 4 is a round-dependent constant. The update
of the linear feedback shift register (LFSR) is defined as:

𝐾 𝑖+4 ← (𝐴8)3 (𝐾 𝑖+3) ⊕ 𝐾 𝑖 ⊕ (𝑖 + 1).

The operation 𝐴8 processes data in 4-bit units and is applied to 𝐾 𝑖+3 three times
in succession. The round key 𝑠𝑘𝑟 (0 ≤ 𝑟 < 𝑅) is derived from 𝐾𝑟 as follows:

𝐾𝑟 =

𝐾𝑟31 . . . 𝐾

𝑟
7 𝐾

𝑟
3

𝐾𝑟30 . . . 𝐾
𝑟
6 𝐾

𝑟
2

𝐾𝑟29 . . . 𝐾
𝑟
5 𝐾

𝑟
1

𝐾𝑟28 . . . 𝐾
𝑟
4 𝐾

𝑟
0

 ,
𝑠𝑘𝑟 = 𝐾𝑟31 . . . 𝐾

𝑟
3 | |𝐾𝑟30 . . . 𝐾𝑟2 | |𝐾𝑟29 . . . 𝐾𝑟1 | |𝐾𝑟28 . . . 𝐾𝑟0 .

6 Impossible Differential Attack on SAND-64

6.1 Construction of the CP Model

We construct a constraint programming (CP) model to search for impossible
differential distinguishers of SAND-64 using deterministic differentials. The do-
main of the following integer variables is defined as {−1, 0, 1}, where each value
represents an unknown, 0, and 1 differences, respectively.

Based on the round function illustrated in Figure 2, we define 32-bit integer
variables 𝑋𝑈𝑟 and 𝑌𝑈𝑟 (0 ≤ 𝑟 ≤ 𝑅), which represent the internal state differences
in the forward (encryption) direction. Similarly, we define 32-bit integer variables
𝑋𝐿𝑟 and 𝑌𝐿𝑟 (0 ≤ 𝑟 ≤ 𝑅), which represent the internal state differences in the
backward (decryption) direction. The variables 𝑋𝑈0 and 𝑌𝑈0 (as well as 𝑋𝐿0

and 𝑌𝐿0) represent the input differences, while 𝑋𝑈𝑅 and 𝑌𝑈𝑅 (as well as 𝑋𝐿𝑅
and 𝑌𝐿𝑅) represent the output differences after 𝑅 rounds.

The construction of the CP model in the forward (encryption) direction using
𝑋𝑈𝑟 and 𝑌𝑈𝑟 is described below. We define 32-bit integer variables Δ𝑃𝑙 and Δ𝑃𝑟 ,

10 N. Sugio

which represent the plaintext differences, and impose the following constraints:

𝑋𝑈0 = StateLoading(Δ𝑃𝑙),
𝑌𝑈0 = StateLoading(Δ𝑃𝑟).

We define 32-bit integer variables 𝐺0𝑈𝑟 and 𝐺1𝑈𝑟 (1 ≤ 𝑟 ≤ 𝑅) to represent
the output differences of the nonlinear functions 𝐺0 and 𝐺1, and impose the
following constraints:

𝐺0𝑈𝑟 = 𝐺0 (𝑋𝑈𝑟),
𝐺1𝑈𝑟 = 𝐺1 (𝑋𝑈𝑟 ≪ 𝑛

4
1).

The constraints for 𝐺0 and 𝐺1 can be derived from the differential distribution
table (DDT). In this paper, we refer to Appendix N of [6] and use the S-box
analyzer1 to derive the constraints for 𝐺0 and 𝐺1.

We define 32-bit integer variables 𝑃𝑈𝑟 (1 ≤ 𝑟 ≤ 𝑅) to represent the output
differences of the linear function 𝑃𝑛, and impose the following constraint:

𝑃𝑈𝑟 = 𝑃𝑛 (XOR(𝐺0𝑈𝑟 , 𝐺1𝑈𝑟)).

For the round function output, the following constraints are imposed:

𝑋𝑈𝑟+1 = XOR(𝑌𝑈𝑟 , 𝑃𝑈𝑟),
𝑌𝑈𝑟+1 = 𝑋𝑈𝑟 .

By constructing these constraints for each round 𝑟 (0 ≤ 𝑟 ≤ 𝑅), the CP model
for the forward (encryption) direction is completed. Similarly, the CP model for
the backward (decryption) direction can be constructed using integer variables
𝑋𝐿𝑟 and 𝑌𝐿𝑟 .

Additionally, we introduce the following constraints to eliminate trivial solu-
tions: ∑𝑛−1

𝑖=0 𝑋𝑈0 [𝑖] +
∑𝑛−1
𝑖=0 𝑌𝑈0 [𝑖] ≠ 0,∑𝑛−1

𝑖=0 𝑋𝐿𝑅 [𝑖] +
∑𝑛−1
𝑖=0 𝑌𝐿𝑅 [𝑖] ≠ 0.

Finally, to ensure that there is at least one contradiction between the deter-
ministic difference propagation paths in the forward (encryption) and backward
(decryption) directions, we introduce the following constraints:{ 𝑅−1∨

𝑟=0

(𝑛−1∨
𝑖=0

(𝑋𝑈𝑟 [𝑖] + 𝑋𝐿𝑟 [𝑖] = 1)
)}
∨
{ 𝑅−1∨
𝑟=0

(𝑛−1∨
𝑖=0

(𝑌𝑈𝑟 [𝑖] + 𝑌𝐿𝑟 [𝑖] = 1)
)}
.

If the constructed CP model is satisfiable in the CP solver, it indicates the
existence of an 𝑟-round impossible differential characteristic.

6.2 Impossible Differential distinguishers of SAND-64

We implemented the CP model constructed in the previous section using MiniZ-
inc2, and employed OR-Tools3 as the CP solver. The computing environment
used in this study is summarized in Table 3.
1 https://github.com/hadipourh/sboxanalyzer
2 https://www.minizinc.org/
3 https://developers.google.com/optimization

Impossible Differential Attack on SAND-64 11

Table 3. Computing Environment

Environment Details
OS Windows 11

Platform MiniZinc 2.9.2
Solver OR-Tools CP-SAT 9.12.4544
CPU AMD Ryzen 9 5950X

Memory 128 GB

We obtained a solution in approximately 1 minute and 30 seconds, reveal-
ing 56 types of 11-round impossible differential distinguishers. The results are
presented in Table 4.

Table 4. 11-round impossible differential distinguishers of SAND-64

Δ𝑃𝑙 0000 0000 0000 0000 0000 0000 0000 0000 Δ𝑃𝑟 0000 0000 0000 0000 ???0 0000 0000 0000
𝑋𝑈0 0000 0000 0000 0000 0000 0000 0000 0000 𝑌𝑈0 0000 ?000 0000 ?000 0000 ?000 0000 0000
𝑋𝑈1 0000 ?000 0000 ?000 0000 ?000 0000 0000 𝑌𝑈1 0000 0000 0000 0000 0000 0000 0000 0000
𝑋𝑈2 0?00 ?000 0?00 ?000 0?00 ?000 0?00 0000 𝑌𝑈2 0000 ?000 0000 ?000 0000 ?000 0000 0000
𝑋𝑈3 0??0 ??00 0??0 ??00 0??0 ??00 0??0 0?00 𝑌𝑈3 0?00 ?000 0?00 ?000 0?00 ?000 0?00 0000
𝑋𝑈4 0??0 ???? 0??0 ???? 0??0 ???? 0??0 0??? 𝑌𝑈4 0??0 ??00 0??0 ??00 0??0 ??00 0??0 0?00
𝑋𝑈5 ???? ???? ???? ???? ???? ???? ???? 0 ??? 𝑌𝑈5 0??0 ???? 0??0 ???? 0??0 ???? 0??0 0???
𝑋𝐿5 ???? ???? ???? ???? ???? ???? ???? 1 ??? 𝑌𝐿5 ???? ???? ???? ???? ???? ???? ???? ????
𝑋𝐿6 0??0 ???? 0??0 ???? 0??0 ???? 0??0 1??? 𝑌𝐿6 ???? ???? ???? ???? ???? ???? ???? 1???
𝑋𝐿7 0??0 ??00 0??0 ??00 0??0 ??00 0??0 0?00 𝑌𝐿7 0??0 ???? 0??0 ???? 0??0 ???? 0??0 1???
𝑋𝐿8 0?00 ?000 0?00 ?000 0?00 ?000 0?00 1000 𝑌𝐿8 0??0 ??00 0??0 ??00 0??0 ??00 0??0 0?00
𝑋𝐿9 0000 ?000 0000 ?000 0000 ?000 0000 1000 𝑌𝐿9 0?00 ?000 0?00 ?000 0?00 ?000 0?00 1000
𝑋𝐿10 0000 0000 0000 0000 0000 0000 0000 0000 𝑌𝐿10 0000 ?000 0000 ?000 0000 ?000 0000 1000
𝑋𝐿11 0000 ?000 0000 ?000 0000 ?000 0000 1000 𝑌𝐿11 0000 0000 0000 0000 0000 0000 0000 0000
Δ𝐶𝑙 0000 0000 0000 0000 ???1 0000 0000 0000 Δ𝐶𝑟 0000 0000 0000 0000 0000 0000 0000 0000

12 N. Sugio

6.3 Key Recovery Attack on 17-Round SAND-64

Using the 11-round impossible differential distinguishers shown in Table 4, we
perform a key recovery attack on 17-round SAND-64, as illustrated in Figure 5.
For simplicity, the StateLoading process is omitted. Additionally, the round
function is abbreviated as 𝐹. In Figure 5, the locations where differences exist
are highlighted in red. The data, time, and memory complexities for the key
recovery attack are estimated using the method of Boura et al. [14], [15].

At 𝑟𝑖𝑛 = 3, the bit conditions required to obtain the output difference at the
3rd round (Δ𝑥3,Δ𝑦3) from the plaintext difference (Δ𝑥0,Δ𝑦0) are 𝑐𝑖𝑛 = 16+11+8 =
35. Additionally, the number of key bits involved is 𝑘𝑖𝑛 = 12 bits (𝑠𝑘0 = 8 bits，
𝑠𝑘1 = 4 bits).

Similarly, at 𝑟𝑜𝑢𝑡 = 3, the bit conditions required to obtain the output differ-
ence at the 14th round (Δ𝑥14,Δ𝑦14) from the ciphertext difference (Δ𝑥17,Δ𝑦17)
are 𝑐𝑜𝑢𝑡 = 16 + 12 + 8 = 36. Additionally, the number of key bits involved is
𝑘𝑜𝑢𝑡 = 12 bits (𝑠𝑘15 = 4 bits，𝑠𝑘16 = 8 bits).

To reduce the number of key candidates by at least half, the necessary number
of differential pairs (Δ𝑖𝑛,Δ𝑜𝑢𝑡) is 𝑁𝑚𝑖𝑛 = 271. The computational complexity to
obtain these pairs is estimated using Equation (1) as follows:

𝐶𝑁 = max
{√

271264+1−40, 271264+1−40−40
}
= 256

This computational complexity 𝐶𝑁 also represents the necessary number of
plaintexts. The total time complexity required for the key recovery attack is
estimated using Equation (2) as follows:

𝑇 =

(
256 +

(
271 + 212+12

)
× 6

17
+ 2128 × 1

2

)
= 2127

which corresponds to the number of 17-round SAND-64 encryptions.
Additionally, the memory required to store 𝑁𝑚𝑖𝑛 differential pairs is estimated

as:
𝑀 = 271 × 64 × 4 × 1

8
= 276

bytes. Although this memory complexity is larger than that of full-codebook,
we prepair the memory for the plaintexts and ciphertexts corresponding to the
plaintexts for 𝐶𝑁 instead of 𝑁𝑚𝑖𝑛. In this case, 𝑀 = 256×64×2× 1

8 = 260 bytes. The
time complexity 𝑇 for the key recovery is not changed by generating a differential
pair (Δ𝑖𝑛,Δ𝑜𝑢𝑡) from 𝐶𝑁 and then by sieving a key candidate sequentially. The
attack result is summarized in Table 1.

Impossible Differential Attack on SAND-64 13

11-round impossible differential

�

�

�

�

�

�

��
�

��
�

��
�

��
��

��
��

��
�	

Fig. 5. Key Recovery Attack on 17-Round SAND-64

14 N. Sugio

7 Conclusion and Future Work

In this paper, we conducted an impossible differential attack on the lightweight
block cipher SAND-64. We demonstrated that a key recovery attack on 17-round
SAND-64 can be applicable using impossible differential distinguishers. Although
this result currently achieves the best attack on round-reduced SAND-64, this
attack does not threaten the security of SAND-64 against impossible differential
attack.

Future research directions are as follows. The first direction is the improve-
ment of the key recovery attack on SAND-64. In the presented key recovery
attack on 17-round SAND-64, the first round is unaffected by the round key.
Therefore, by selecting a difference Δ𝑃𝑟 that cancels out the plaintext differ-
ence Δ𝑃𝑙, the attacker can control the output difference (Δ𝑥1,Δ𝑦1) of the first
round. Using this technique, it may be possible to relax the bit conditions on
the plaintext side, denoted as 𝑐𝑖𝑛.

The second direction is to apply the search for impossible differential distin-
guishers using deterministic differentials to SAND-128 and evaluate its security
against impossible differential attack.

References

1. Chen, S., Fan, Y., Sun, L., Fu, Y., Zhou, H., Li, Y., Wang, M., Wang W., and
Guo, C.: SAND: an AND-RX Feistel lightweight block cipher supporting S-box-
based security evaluations, Designs, Codes and Cryptography, Vol. 90, pp. 155–198
(2022).

2. Biham, E., and Shamir, A.: Differential Cryptanalysis of the Data Encryption
Standard”, Springer-Verlag, New York, pp. 79-88 (1993).

3. Matsui, M.: Linear Cryptanalysis Method for DES Cipher, Proc. Workshop on the
Theory and Application of Cryptographic Techniques, EUROCRYPT ’93, Vol.765
of LNCS, pp.386–397, Springer-Verlag (1993).

4. Cui T., Jia K., Fu K., Chen S., Wang M.: New automatic search tool for impossible
differentials and zero-correlation linear approximations, IACR Cryptology ePrint
Archive, Report 2016/689 (2016).

5. Hadipour, H., Sadeghi, S. and Eichlseder, M.: Finding the impossible: Automated
search for full impossible differential, zero-correlation, and integral attacks, Proc.
EUROCRYPT 2023, Vol. 14007 of LNCS, pp. 128–157, Springer-Verlag (2023).

6. Hadipour, H., Gerhalter, S., Sadeghi, S. and Eichlseder, M.: Improved Search for
Integral, Impossible Differential and Zero-Correlation Attacks, Application to As-
con, ForkSKINNY, SKINNY, MANTIS, PRESENT and QARMAv2, IACR Trans-
actions on Symmetric Cryptology, Vol. 2024, No. 1, pp. 234–325 (2024).

7. Knudsen, L. R., and Wagner, D.: Integral cryptanalysis, Proc. of Fast Software
Encryption, FSE2002, Vol.2365 of LNCS, pp.112-127. Springer-Verlag, (2002).

8. Biham, E., Biryukov, A., and Shamir, A.: Cryptanalysis of Skipjack reduced to 31
rounds using impossible differentials”, Advances in Cryptology-EUROCRYPT’99,
vol. 1592 of LNCS, pp. 12–23 (1999).

9. Bogdanov, A., Wang, M.: Zero Correlation Linear Cryptanalysis with Reduced
Data Complexity, Proc. of the 19th International Workshop on Fast Software En-
cryption, FSE 2012, Vol. 7549 of LNCS, pp. 29–48, (2012).

Impossible Differential Attack on SAND-64 15

10. Bogdanov, A., and Rijmen, V.: Linear hulls with correlation zero and linear crypt-
analysis of block ciphers, Designs, Codes and Cryptography, Vol. 70, pp. 369-383,
(2014).

11. Zhang, K., Wang, S., Lai, X., Wang, L., Guan, J., Hu, B.: Impossible Differential
Cryptanalysis and a Security Evaluation Framework for AND-RX Ciphers, IEEE
Transactions on Information Theory, vol. 70, no. 8, pp. 6025–6040, (2024).

12. Xiang, Z., Zhang, W., Bao, Z., and Lin, D.: Applying MILP Method to Search-
ing Integral Distinguishers Based on Division Property for 6 Lightweight Block
Ciphers, Proc. 22nd International Conference on the Theory and Application
of Cryptology and Information Security, ASIACRYPT2016, Vol.10031 of LNCS,
pp.648-678, Springer-Verlag (2016).

13. Mirzaie, A., Ahmadi, S., Aref, R. M.: Integral Cryptanalysis of Reduced-Round
SAND-64 Based on Bit-Based Division Property, ISC International Journal of In-
formation Security (ISeCure), vol. 15, no. 3, (2023).

14. Boura, C., Naya-Plasencia, M., and Suder, V.: Scrutinizing and Improving Impos-
sible Differential Attacks: Applications to CLEFIA, Camellia, LBlock and Simon,
Proc. 20th International Conference on the Theory and Application of Cryptol-
ogy and Information Security, ASIACRYPT 2014, Vol.8873 of LNCS, pp.179-199,
Springer-Verlag (2014).

15. Boura, C., Lallemand, V., Naya-Plasencia, M., and Suder, V.: Making the Impos-
sible Possible, Cryptology, Vol.31, pp.101–133, Springer-Verlag (2018).

