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Abstract

The YOSO (You Only Speak Once) model, introduced by Gentry et al. (CRYPTO 2021),
helps to achieve strong security guarantees in cryptographic protocols for distributed settings, like
blockchains, with large number of parties. YOSO protocols typically employ smaller anonymous
committees to execute individual rounds of the protocol instead of having all parties execute
the entire protocol. After completing their tasks, parties encrypt protocol messages for the
next anonymous committee and erase their internal state before publishing ciphertexts, thereby
enhancing security in dynamically changing environments.

In this work, we consider the problem of secure multi-party computation (MPC), a funda-
mental problem in cryptography and distributed computing. We assume honest majority among
the committee members, and work in the online-offline, i.e., preprocessing, setting. In this
context, we present the first YOSO MPC protocol where efficiency—measured as communication
complexity—improves as the number of parties increases. Specifically, for 0 < ε < 1/2 and
an adversary corrupting t < n( 12 − ε) out of n parties, our MPC protocol exhibits enhanced
scalability as n increases, where the online phase communication becomes independent of n.
Prior YOSO MPC protocols considered t as large as (n− 1)/2, but a significant hurdle persisted
in obtaining YOSO MPC with communication that does not scale linearly with the number of
committee members, a challenge that is exagerbated when the committee size was large per
YOSO’s requirements. We show that, by considering a small “gap” of ε > 0, the sizes of the
committees are only marginally increased, while online communication is significantly reduced.

Furthermore, we explicitly consider fail-stop adversaries, i.e., honest participants who may
inadvertently fail due to reasons such as denial of service or software/hardware errors. In prior
YOSO work, these adversaries were grouped with fully malicious parties. Adding explicit support
for them allows us to achieve even better scalability.

1 Introduction
Secure multiparty computation (MPC) enables a set of mutually distrusting parties to securely
compute a function of their inputs while only interacting among each other, revealing only the output
of the function. Security holds even if t out of the n parties are corrupted and collude. Unfortunately,
MPC often requires communication-intensive interactive protocols, and this is particularly critical in
large-scale distributed environments such as blockchains. This situation quickly led to adopting the
notion of committees, already common in distributed computing.1 Instead of a large pool of parties
performing MPC, a subset of the parties—a committee—is the one in charge of executing the MPC
protocol on behalf of the larger set. The intuition is that, by setting parameters properly, if the

1A good example is seminal Bracha’s committees idea, which is widely used in many protocols today. [9]
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large set of N parties has T corruptions, then with high probability the smaller set of n parties will
have t corruptions, where the ratio t/n is only slightly larger than the original T/N .

Unfortunately, committee-based MPC suffers from an inherent drawback: it is insecure when an
adversary can corrupt parties after the committee has been sampled, which is a property known as
adaptive security. For example, if N = 1000, we assume the adversary can corrupt T = 400 parties,
and we sample committees of size n = 400, an adaptive adversary can choose to corrupt all of the
parties of a selected committee once it learns their identities.

Player replaceability, which was introduced by Chen and Micali [16] in the context of obtaining
consensus in the Algorand blockchain, is a beautiful way to address this shortcoming. Player-
replaceable protocols also utilize committees, which can be tasked with, e.g., proposing and agreeing
on blockchain block. However, what differentiates player-replaceable protocols from prior work, is
that each committee member sends only a single message, and is completely anonymous until they
have done so. The YOSO (You Only Speak Once) model, introduced by Gentry et al. [29], provided
a clean formalization of such player-replaceable protocols.

In more detail, YOSO distinguishes between physical machines (which can potentially retain
state long-term) and stateless roles, which are deployed on demand to perform a certain task.
YOSO further separates the protocol design from the role-assignment functionality that selects
which physical machine is performing which role. Assuming that role-assignment is secure, i.e.,
the adversary is unable to predict which machine will be executing which role, YOSO schemes
can withstand even highly powerful adversaries, e.g. an adversary who is performing an adaptive
Denial of Service attack. Simultaneously, the committees which are performing the computation
are much smaller than the overall pool of physical machines. This enables MPC protocols with
communication complexity that scales sublinearly with the total number of parties, and protocols
remain secure even if the adversary can compromise large fractions of physical machines (up to a
third or even half, depending on the role-assignment).

The efficiency of YOSO MPC. Since its inception, many works have expanded the limits of
the YOSO model, cf. [7, 40, 15, 36]. Very interesting results exist, and we survey some of them in
detail in Section 1.2. However, we note a common trend shared by all YOSO MPC protocols to date:
their total communication complexity grows as the size of the committees increases. Currently, the
most asymptotically efficient YOSO MPC scheme in the computational setting is that by [29], and
it achieves O(n2) communication per gate (for wide circuits it can be further amortized to O(n)).
This is particularly harmful for YOSO, where the committee sizes are considered very large. To
illustrate this, consider the work of [29], which makes use of the role assignment from [6] to sample
committees. In [6] the authors show that if the global corruption ratio is f = 0.25, then committees
of size roughly 40k are needed to get honest majority! The associated YOSO MPC protocol given
in [29] has a communication complexity that scales linearly with the size of the committee, leading
to extremely poor performance for committees as large as 40K.

1.1 Our Contributions

We explore YOSO MPC when the committees not only have an honest majority, but there is a gap
proportional to the committee size between the number of honest and the number of corrupt parties.
In more detail, let n be the committee size, and t be the amount of corruptions per committee.
Instead of studying the case n = 2t+ 1, which is the traditional setting in YOSO MPC, we initiate
the study of YOSO MPC for t < n(12 − ε), for some constant ε > 0. Our motivation is two-fold:

1. As we show, when t < n(12 − ε) it is possible to design YOSO MPC protocols that scale much
better as n grows, in contrast to the case when ε = 0. In particular, it is possible to obtain an
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online phase whose total communication is independent of the committee size n, allowing for
better scalability.

2. For large number of parties—the context that YOSO is aimed at—it is not unreasonable to
assume that the adversary cannot corrupt not only 49.99% (1/2) of the parties, but a smaller
percentage such as, say 45% or 40% (1/2− ε). In fact, for committee-based protocols such as
YOSO, we show that requiring the committees to have a gap ε > 0 only increases committee
sizes by a marginal amount, while reducing online communication drastically.

3. Finally, even though traditional YOSO MPC uses n = 2t+ 1, due to the tail bound, for the
corruption threshold of the global set must anyway hold T < N(12 − ε′). Thus, in the grand
scheme of things, we are simply increasing an ε′ that is already there.

We elaborate on these points below.

1.1.1 Improved communication of YOSO MPC.

We present a YOSO MPC protocol that is divided in two phases. In an offline phase, a series
of preprocessing committees generate certain correlations that can be consumed by subsequent
committees. Here, our communication is asymptotically the same as prior works: O(n|C|). Our
main benefits appear in the online phase, which is set in motion once the inputs to the computation
are known. Here, our communication is O(|C|), independent of the committee size n. In more detail,
we make use of packed secret-sharing in order to improve prior protocols by a factor of k ≈ n · ε, at
the expense of a slightly larger committee size. Note that the bigger the ε, which corresponds to
less corruption tolerance, the more the efficiency gains.

1.1.2 Role assignment for committees with “gap”.

We observe that prior role-assignment works such as [6] focus on choosing the committee size n
so that the new corruption threshold t satisfies t < n/2, and YOSO MPC protocols such as [29]
are designed assuming committees of this size, with 1/2 as the corruption ratio. In order to obtain
committees whose corruption ratio is 1/2− ε, we generalize the probability analysis from [6] and
show that, by choosing committees of slightly larger size, we can achieve a smaller corruption ratios
of 1/2− ε, for some ε > 0. Our results are discussed in Section 6. Crucially, we show that the cost
of enabling the gap ε > 0 is really minimal, and its benefits are substantial. For example, for 5%
global corruptions we can already get 28× improvement by moving from committees of size 900 to
1000. For larger corruption ratios such as 20%, we can get 1000× online improvement with respect
to the approach from [6, 29] by moving from committees of size ≈ 18k to ≈ 20k.
Remark 1 (Fail-stop tolerance). We also highlight an important benefit of considering the ratio
1/2 − ε instead of 1/2. All current YOSO solutions are designed to tolerate certain amount of
active corruptions, i.e., corrupted parties can behave arbitrarily maliciously. However, in large-scale
settings, it’s essential to safeguard against not only active attacks but also fail-stop parties—honest
participants who may inadvertently fail due to various reasons, including external attacks like denial
of service, software/hardware errors, or natural events. In current YOSO MPC protocols fail-stop
parties are treated the same as active corruptions, which has been shown to be an overkill in the
non-YOSO literature [26, 35, 3, 21]. Considering a ratio of 1/2 − ε not only allows us to gain
efficiency, but it also allows us to tolerate unresponsive honest parties. We show in Section 5.4 that,
if we cut by a factor of two the gains in communication, we can tolerate nε honest parties who may
become unresponsive during the protocol execution. This can happen perhaps due to crashes or
other issues, which is essential for large scale settings such as YOSO MPC.
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1.2 Related work

The first YOSO MPC schemes have been proposed by Gentry et al. [29]. Their information-theoretic
scheme is based on the famous BGW protocol [5], which, as the authors note, is essentially already
a YOSO protocol in the semi-honest setting, where corrupt parties follow the protocol, but may try
to learn extra information by observing the protocol execution. Unfortunately, the communication
complexity of the extension of this protocol to the fully-malicious setting in the YOSO model is
prohibitively high. The computationally secure solution of Gentry et al. is based on the CDN
protocol [18] and uses a a linearly homomorphic threshold encryption scheme, where the public key
is known to everyone, and the secret key is shared among the committee members. The circuit is
evaluated gate-by-gate, with the addition gates being computed locally. To perform multiplications,
parties can decrypt partial results using their shares of the global threshold key. One remaining
open problem was the generation of the setup, i.e., the generation of the threshold public key and
sharing of the secret key shares to the first committee. This was addressed by Braun et al. [10], who
showed how to obtain distributed key generation for a linearly homomorphic threshold encryption
scheme in the YOSO setting. Using this primitive allows to easily obtain a CDN-style solution for
YOSO MPC. Concurrently to the work of Braun et al., Kolby et al. [36] introduced constant-round
YOSO MPC protocols without setup based on garbled circuits and threshold fully homomorphic
encryption. Kolby et al. further proposed (a non-constant) CDN-based protocol, which they use to
obtain the (constant-round) setup of one of their other constructions.

YOSO Role-Assignment. The task of assigning physical machines to roles, along with a
mechanism of sending private messages to these roles is a core building block in YOSO constructions.
The seminal work of Benhamouda et al. [6] introduced the first such mechanism – receiver-anonymous
communication channels (RACCs). Benhamouda et al.’s solution allows protocol participants to
generate short-term keys for the next committee members, with the public portion of the key known
to everyone, and the secret portion known only to the corresponding machine. This is done without
revealing which machines are selected to participate in the next committee. Later, Gentry et al.[30]
introduced another RACCs solution. Their protocol supported higher adversarial thresholds, but at
the cost of being much more computationally expensive than the solution of Benhamouda et al.
More recently, Campanelli et al. [11] proposed an Encryption to the Future primitive, a paradigm of
sending messages to the anonymous committees in the future. Their solution is based on a special
kind of witness encryption. Cascudo et al. [15] proposed a solution based on publicly verifiable secret
sharing (PVSS) towards anonymous committees. Finally, Canetti et al. [13] recently formalized a
functionality which captures a broad class of role-assignment protocols.

Almost stateless MPC The works on Scales MPC [1, 2] consider an interesting relaxation of
YOSO, where the clients are allowed to speak more than once.

In addition to YOSO, the Fluid model [17] has been recently introduced by Choudhuri et al.
Among the Fluid works, the protocol of Bienstock et al. [8] achieves linear communication complexity,
but provides only security with abort. Deligios et al. and David et al. proposed Fluid protocols with
guaranteed output delivery (GOD), albeit at the cost of high communication complexity [22, 24, 23].
Rachuri and Scholl explored Fluid in the dishonest majority setting [41]. Finally, David et al. [22]
introduced a clean abstraction of MPC on layered graphs, which captures a stringent setting at the
intersection of Fluid and YOSO MPC.

The work of Goyal et al. [32] designs MPC with GOD in which parties speak only once under
the assumption of conditional storage and retrieval systems (works of Benhamouda et al. [6] and
Goyal et al. [31] can serve as instantiations of such systems).
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Finally, recent work in the model of YOSO with worst-case corruptions [39, 38, 37] focuses
on a specialized MPC functionality: distributed randomness generation. In this YOSO variant,
committees are executed in sequence, and the adversary can corrupt a total of t committees.

2 Our Model and YOSO Background
We consider a synchronous model of execution, i.e., the protocol proceeds in rounds, and parties are
aware in which round they are currently in. We consider a rushing adversary, i.e., the adversary
can see the messages sent by the honest roles before producing messages of the corrupt roles. We
consider committees of n parties, and the adversary can corrupt at most t parties in each committee.

Additionally, we recap the background on YOSO. It is a variation of the UC framework [12]
which separates between physical machines and roles that these machines play in the protocol. Roles
do not keep private state between rounds and each role sends only a single message. It is the job of
the role assignment functionality to map roles to the machines. The YOSO MPC protocols are then
described entirely using roles, we refer to such protocols as “abstract YOSO” (vs. “natural YOSO”
which includes explicit role assignment) in the following. We now recap further details of the YOSO
model and its differences to the standard UC. We defer the formalization of YOSO broadcast to
Appendix C. For a detailed version, refer to the original YOSO work [30].

• To ensure that roles speak only once, the framework “yoso-ifies” them with a YOSO wrapper,
which ensures that roles are killed immediately after they have spoken. This is modelled by a
Spoke token which ideal functionalities send to roles (the time at which the functionality sends
the token is determined by the functionality itself). Upon obtaining Spoke, the role also passes
it onto its sub-routines and its environment. Once a role is killed, the machine executing it
also erases any associated state, which prevents the adversary from obtaining any information
from the roles that have already spoken by corrupting the corresponding machines.

• The roles have access to idealised communication functionalities, which in particular allows
point-to-point messages between roles.

• Gentry et al. [30] note that if the adversary does not know which roles are assigned to a machine
before it is corrupted, the “best” that an adversary can do is corrupt machines at random.
They further make the observation that for such random corruptions, the difference between
adaptive corruptions and static corruptions is minimal. This allows to design protocols secure
against a somewhat restricted adversary in the abstract YOSO model, which nevertheless
translate into adaptively secure protocols in the natural YOSO model.

• While the roles which perform the computation are typically corrupt at random, the input
and output nodes are assumed to be known machines and are subject to chosen corruptions.

We denote a yoso-ified role R by YoS(R), and we denote the protocol obtained by yoso-ifying all
roles in protocol π by YoS(π). We say that π YOSO-securely implements F and write π ≤Y OSO F ,
if YoS(π) UC-securely implements F against the given class of controlled environments. Recall that
π UC-securely implements F , if for all PPT adversaries A there exists a PPT simulator S such that
Realπ,A,E ≈ IdealF ,S,E for all PPT environments E . Here, Realπ,A,E denotes the random variable
representing E ’s output in the real world, where the adversary A is interacting with the honest
parties who execute π; and IdealF ,S,E denotes the random variable representing E ’s output in the
ideal world, where the simulator A is interacting with the ideal functionality F .
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Finally, we define YOSO MPC. We recall the ideal functionality FF
MPC as defined by Gentry et al.

The functionality distinguishes between two stages that the protocol goes through, GettingInputs and
Evaluated. While honest parties give input in the first round, the protocol can be in the GettingInputs
stage for a long time, as corrupted parties might only be committed to their inputs at a later point
in time. Once the adversary S decides that it is time to give outputs, it sets the stage to Evaluated.
We distinguish between input roles RoleIn, output roles RoleOut, and roles RoleCmp which perform
the computation. Malicious denotes the set of fully malicious roles, Leaky the set of honest but
curious roles, and Honest the set of honest roles.

Ideal Functionality FF
MPC for MPC

The functionality is wrapping a function F (x1, . . . , xn)→ (y1, . . . , ym). Roles in RoleIn hold
inputs and roles in RoleOut receive outputs.

• Initially set the stage to be GettingInputs. We set a default input for all roles, which
they may overwrite later: for all R ∈ RoleIn let xR = 0.

• On input (Input,R ∈ RoleIn, x ∈ Msg) proceed as follows:

1. Store xR = x.
2. If R ∈ Honest then output (Input,R, |x|) to S.
3. If R ∈ Leaky ∪Malicious output (Input,R, x) to S.

If R is honest then output Spoke to R. If R is honest then consider only the first input,
and only if it is given in round 1.

• On Evaluated from S in a round r > 1 and when the stage is GettingInputs, set the
stage to be Evaluated and compute {yR}R∈RoleOut = F ({xR})R∈RoleIn . Store yR for all
R ∈ Correct and output to S the value {yR}R∈RoleOut∩(Malicious∪Leaky).

• On input (Read,R ∈ RoleOut), if the stage is Evaluated output yR to R.

The YOSO MPC is then defined as follows:
Definition 1 (YOSO MPC). We say that π YOSO-securely realizes F against τ corruption if
π ≤Y OSO FF

MPC for the set of environments allowed to corrupt any number of roles in RoleIn∪RoleOut

and a uniformly random fraction τ of RoleCmp.

3 Technical Overview – Improving Computational YOSO MPC
We now give an overview of our YOSO MPC, for formal details see Section 5. The state-of-the-art
protocol boasts an amortized communication complexity of O(n) per circuit gate [29] assuming
the circuit’s width is O(n). Using the widely used offline/online paradigm, we attain O(1) online
communication complexity and O(n) offline communication complexity per gate, maintaining the
assumption that the circuit width is also O(n). We use bold font to represent a vector.
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3.1 Starting idea: Building upon an Efficient Non-YOSO Protocol in the Of-
fline/Online Paradigm

Our starting point is the Turbopack [25] protocol, which achieves MPC with abort with constant
online communication complexity in the traditional (non-YOSO) setting. We now review the main
techniques used in this work. At a high level, Turbopack follows the common MPC approach
of secret-sharing the clients’ secrets, and then evaluating the circuit gate-by-gate. To achieve its
constant amortized communication, Turbopack utilizes packed secret sharing, where k ∈ O(n) secrets
are stored using the same sharing. Intuitively, this ensures that the cost of evaluating a set of k
multiplication gates is the same as evaluating only a single multiplication gate.

Same as in the other works which utilize packing, the main challenge in Turbopack is to solve
what is known as the network routing issue. Specifically, at each circuit layer, the secrets within a
packed secret sharing may not be in correct order. For instance, the packed vectors may not be
correctly aligned, or sharings intended for a set of multiplication gates are scattered among many
different packed output sharings of the previous layer. Naively, re-organizing the secrets at each
level by first reconstructing, and then placing them in correct positions of the packed vectors would
result in communication complexity of O(n), thus defying the purpose of using packing.

Instead, Turbopack uses a circuit-dependent preprocessing phase to prepare correlated random-
ness. This later helps to solve the routing issue efficiently. During this phase, the circuit is known,
but the parties’ inputs are not. Turbopack assigns a value λα to each circuit wire α, such that:

• For any output wire of an input gate and any output wire of a multiplication gate, λα is
uniformly random.

• For any addition gate γ with input wires α and β, λγ = λα + λβ.

After the preprocessing, for each batch α = (α1, . . . , αk) of k input and multiplication gates,
each party has a packed share of λα = (λα1 , . . . , λαk).

In the online phase, Turbopack uses these sharings to step-by-step compute µα = vα − λα in
clear for each gate α, where vα is the actual value on this wire. The addition gates can be computed
locally, as µγ = µα + µβ = vα + vβ − λα − λβ, where µα and µβ are known, and each party has a
share of λα and λβ from the preprocessing. For the multiplication gates, Turbopack adapts the
technique of packed Beaver triples [33], a generalization of the famous Beaver triple technique [4].
Here, the computation again crucially relies on the parties knowing the preprocessed shares of λα.

To obtain a solution which is compatible with the YOSO model, we need to solve the following:

• In YOSO, parties who participate in the online phase of the protocol are not the same as the
ones preparing the preprocessed values, since parties change in every round. We must ensure
that the parties of the online committee obtain the preprocessed values, e.g., shares of λα, in
a way that does not break security, as the adversary can corrupt parties both in the online
phase and also during the preprocessing. More crucially, in YOSO we do not know during the
offline phase the identities of the parties who will execute the online phase, so we must find a
way to pass the secret values to these roles into the future without assuming knowledge of
their YOSO role keys, all while ensuring that the communication complexity remains efficient.

• Finally, Turbopack achieves security with abort, while our goal is to obtain a solution which
achieves GOD. One might think that moving to a computational setting and utilizing non-
interactive zero-knowledge proofs ought to be sufficient for GOD. However, in order to obtain
its low communication complexity, Turbopack uses a trick which seems inherently incompatible
with GOD. Intuitively, shares of µ are revealed only to a single party. Thus, a single corruption
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might prevent the protocol from finishing. To ensure that our solution achieves GOD, we
must find another way to compute µγ , while retaining efficient communication complexity.

3.2 YOSO-ifying Turbopack via CDN

To solve these issues, we carefully combine the techniques from Turbopack with the ideas of
the famous CDN protocol [18], and utilize additional tricks to ensure that the amortized online
communication complexity remains constant per gate.

CDN relies on a system-wide public key tpk of a linearly homomorphic threshold encryption
scheme, where the corresponding secret key tsk is shared among the committee members. In our
case, the committees will be changing, hence we will refresh the shares of the tsk after each usage.

Ours is not the first work to propose using CDN in the YOSO setting – both the original YOSO
work [29], as well as the work by Braun et al. [10] use a CDN-based approach. Indeed, CDN is very
appealing in the YOSO setting: with private communication between the committees being one
of the bottlenecks in YOSO MPC, CDN-based approaches require only a small secret state to be
maintained, i.e., the parties’ shares of the secret key tsk. However, the communication complexity
in both works remains high due to the following. To compute a multiplication gate with encrypted
inputs x and y, both works simply generate Beaver triples (a, b, c) encrypted under the tpk on the
fly, and let committee members use their shares of tsk to decrypt the ciphertexts x+ a and y + b.
During the decryption, committee members must not only compute and publish their share of
the decrypted value, but also pass the (refreshed) shares of tsk to the next committee. Naively,
this results in O(n2) communication per gate. If committees are responsible for O(n) gates, the
communication complexity can be brought down to amortized O(n) by letting committees process
O(n) gates in parallel. However, further amortization is not possible, as to decrypt each ciphertext
that is encrypted under tpk, we ultimately need O(n) committee members to supply their shares.

As we will see, in our protocol, by building upon Turbopack, during the online phase (1) we
will not have to compute Beaver triples, and, more importantly, (2) we will perform the expensive
threshold decryption procedure only once. Instead, we use the threshold encryption primarily for
computations during the offline phase, as well as for passing preprocessed secret values, e.g., shares
of λα, to online parties in an efficient way.

Keys For Future: YOSO-compatible Preprocessing Usage. Specifically, to pass prepro-
cessed secret values to the members of the online committees (without knowing their YOSO role
keys), we propose the following approach of making traditional preprocessing YOSO-friendly. First,
during the setup we generate keys for future (KFF) – these are the keys that act as substitutes for
the YOSO role keys of the future roles. We generate a KFF public and secret key pair for each
member of the later committee. We publish the public keys, and encrypt secret keys under the
threshold public key tpk of the linearly homomorphic threshold encryption scheme. Whenever a
party needs to encrypt certain information to a future committee role whose role key is not known
yet, the party encrypts it under the KFF public key of that specific role. Later, once the protocol
reaches the phase where the role keys of the corresponding committees are known, one committee
can use their shares of tsk to decrypt the ciphertexts containing the KFF secret keys, and re-encrypt
these secret keys under the YOSO role key of the corresponding role. Note that using KFF, as
opposed to simply encrypting every secret value that needs to be passed to a future role under the
tpk is crucial – each value that is reconstructed via the CDN’s decryption procedure requires at least
O(n) amortized communication complexity, as O(n) committee members must publish their shares
in order to reconstruct this value. Assuming that a role processes O(n) gates, using KFF results in
constant online complexity per gate, as opposed to the linear complexity of the naive approach.
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Figure 1: Key usage in different phases of our YOSO MPC.

We now describe the stages of our protocol – setup, offline, and online phase, in reverse order,
and give intuition for the challenges we encounter and our approaches to solving these.

Notation and Packed Shamir Secret Sharing Before diving in, we briefly specify the notation
we use in the following, as well as recall the packed Shamir secret sharing scheme [27], which is a
generalization of the standard Shamir secret sharing [42]. Intuitively, it allows to secret-share a
batch of secrets using a single Shamir sharing. For a vector x ∈ Fk, we use JxKd to denote a degree-d
packed Shamir sharing, where k − 1 ≤ d ≤ n− 1. It requires d+ 1 shares to reconstruct the whole
sharing, and any d− k + 1 shares are independent of the secrets.

Same as the standard Shamir secret sharing, the packed version is linearly homomorphic, i.e.,
for all d ≥ k − 1 and x,y ∈ Fk, Jx+ yKd = JxKd + JyKd. Further, we can perform multiplication
on the shares as follows: For all d1, d2 ≥ k − 1 subject to d1 + d2 < n, and for all x, y ∈ Fk,
Jx ∗ yKd1+d2

= JxKd1 ∗ JyKd2 . Finally, we note that packed Shamir sharing is multiplication-
friendly [33], in the sense that when d ≤ n − k, all parties can locally multiply a public vector
c ∈ Fk with a degree-d packed Shamir sharing JxKd as follows:

1. All parties first locally compute a degree-(k − 1) packed Shamir sharing of c, denoted by
JcKk−1. Note that for a degree-(k − 1) packed Shamir sharing, all shares are determined by
the secrets.

2. All parties then locally compute Jc ∗ xKn−1 = JcKk−1 ∗ JxKn−k.

In the following, we denote the above process by Jc ∗ xKn−1 = c ∗ JxKn−k.

3.3 Online Phase

During the online phase, we follow Turbopack’s approach of efficiently computing µα = vα − λα in
clear for each circuit wire α. Here, vα is the actual value on the wire, and λα is the value assigned
to this wire during the preprocessing. We now describe how to obtain µα for each gate type.
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In order to compute µα for the inpute wire α of a circuit, where this input is supplied by some
client C, we let C learn λα. Then, C can publish µα = vα − λα. To compute µγ for an output wire
γ of an addition gate with input wires α and β, anyone can simply add µα and µβ.

Computing multiplication gates is trickier. To obtain a communication-efficient solution, Tur-
bopack adapts the technique of packed Beaver triples [33], which are triples (JaKd , JbKd , JcKd), where
a and b are random vectors from Fk and c = a ∗ b. Intuitively, for a group of multiplication gates
with input wires α,β and output wires γ, it holds that

µγ = vα ∗ vβ − λγ = (µα + λα) ∗ (µβ + λβ)− λγ

= µα ∗ µβ + µα ∗ λβ + λα ∗ µβ + λα ∗ λβ − λγ (1)

Thus, to compute µγ , we must let parties of the current online committee obtain shares of
λα,λβ and shares of Γγ = λα ∗λβ −λγ . Looking ahead, these values will be generated during the
preprocessing. To efficiently pass them to the members of the online committee without assuming
that the YOSO role keys of the online committees are known during the preprocessing phase, we use
our keys for future (see 3.2 for details). Briefly, the secret shares of λα,λβ, and Γγ are encrypted
under the keys for future, and the secret key parts of the keys for future are in turn encrypted
under the tpk. To give parties their secret shares, during the online phase we let the first committee
use their shares of tsk to re-encrypt the secret shares of λα,λα, and Γγ under the (now known)
YOSO role keys of the online committee members. After this point we will not require access to tsk
anymore. Hence, there is no need to re-share shares of tsk, which allows us to save communication.

Efficiently Computing µγ with GOD. One issue remains. Note that in Turbopack µγ is
computed by having each party compute its share of the equation above locally, and send the result
to a single party P1. This ensures that the communication complexity remains low – each out
of n parties only sends one message to P1, and since µγ covers to O(n) gates, this ensures that
amortized communication complexity per gate is still constant. This unfortunately does not work
for us, as our goal is to obtain a solution which has the guaranteed output delivery property. To
alleviate this, we first observe that, in all currently known YOSO works, P2P messages are sent
by posting encryptions to future committees in, for example, a bulletin board. However, what is
more interesting is that broadcast messages are also disseminated in the same way. This means
that, in YOSO MPC, broadcast has effectively the same cost as P2P communication!
Interestingly, a (slightly weaker) statement is inherent to the model: As physical participants of the
next committees are not known beforehand, messages must be communicated to everyone. Hence,
one-to-one communication costs effectively the same as one-to-all. While in our online protocol
such one-to-all communication is sufficient, in the following for simplicity we will not distinguish
between one-to-all and broadcast (as all currently known YOSO schemes anyway use broadcast for
one-to-one communication). We are able to leverage this observation to improve the communication
of YOSO MPC by using less reserved use of the broadcast channel. Additionally, in order to ensure
that µγ is reconstructed correctly, roles who are contributing their local shares will prove that they
did the computation correctly. For this, as in previous works, we will have parties compute and
publish a NIZK proof of correctness.

3.4 Offline Phase

During the offline phase, for each batch of k multiplication gates our goal is to prepare shares of
correctly routed packed wire values λα, as well as Γγ . To achieve this, for each multiplication gate,
we first prepare a Beaver triple. Then, we let the current committee members jointly generate
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a random value λα for each output wire of an input/multiplication gate α, encrypted under the
global threshold public key tpk (in the following, denote such ciphertext for the wire α by cα). Note
that for all values that are published during the offline phase, we let parties attach NIZK proofs
explaining that they did everything correctly. We then use only those values for the computation,
for which the corresponding proofs verify.

Given ciphertexts cα, we process the circuit gate by gate (first without using packing). For the
addition gates, we simply compute the sum of two ciphertexts containing the random wire values
of the two input wires to this gate. For each multiplication gate with encrypted inputs cα and cβ,
and encrypted output wire value cγ , we need to compute the encryption of Γγ = λα ∗ λβ − λγ . For
this, we follow the approach of Gentry et al. [29]. Specifically, to compute a multiplication gate
with encrypted inputs cα and cβ , we consume one of the Beaver triples (a, b, c), and let committee
members use their shares of tsk to decrypt the ciphertexts cα + a and cβ + b.

Next, in order to ensure that our online phase is efficient, we pack the random wire values
(λα1 , . . . , λαk) for each group of k circuit input wires (α1, . . . , αk) which are supplied by a single
client. Similarly, we pack the random vector λα = (λα1 , . . . , λαk) of the output wires for each
batch of k multiplication gates. This is done as follows: Given ciphertexts cλ

α1 , . . . , cλ
αk , we first

generate t additional encryptions of random values cr1 , . . . , crt . Then, we use these ciphertexts to
homomorphically compute encryptions of the evaluation points of the polynomial f(x) of degree
t+ k − 1, which on each x-point −(i− 1) evaluates to λα

i , i ∈ [k], and on i evaluates to ri, i ∈ [t].
Then, we use all points (both the values λαi , i ∈ [k] and extra random values ri, i ∈ [1, . . . , t]), to
locally interpolate using the homomorphic properties of the threshold encryption scheme, and this
way obtain packed shares f(1), . . . , f(n) of λα which are encrypted under tpk.

Finally, currently the packed shares are encrypted under the tpk. This is problematic: If a share
is encrypted under tpk, then during the online phase one committee will spend O(n) communication
to decrypt a single packed share, with each committee member publishing its CDN-style share of the
packed share. This would defy the usage of packing and result in O(n2) communication per packed
sharing, hence linear amortized cost—no better than prior works. To solve this, we re-encrypt the
packed shares to the KFFs of the roles in the online committee who will use these shares. It allows
us to pay the linear cost during the offline phase, and keep the online phase very efficient.

3.5 Role Assignment with “Gap”

Finally, we recall that prior works like [29] focused on assigning roles in such a way that an adversary
corrupts at most 49.9 . . .% of the parties in each committee. They provide a method known as
cryptographic sortition, and determine the appropriate parameters to ensure this corruption bound
in the committees. In Section 6 we show how to use their approach to sample committees that
ensure a lower adversarial bound (say 45%, for example), which allows us to use our YOSO MPC
protocol. We carefully adapt their analysis and quantitatively show that lowering the amount of
corrupted parties corresponds to choosing slightly larger committees. We then show that, even
if committee size increase marginally, the benefits of the reduced communication of our protocol
quickly kick in.

4 Preliminaries
We now describe our building blocks. We take large parts the following verbatim from Gentry et
al. [29].
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4.1 Linearly Homomorphic Key Rerandomizable Threshold Encryption

A linearly homomorphic (over ring R) key rerandomizable threshold encryption scheme TE has the
following algorithms:

• TKGen(1κ)→ (tpk, tsk1, . . . , tskn): An algorithm that, given the security parameter κ, sets
up the public key tpk and the shares tsk1, . . . , tskn of the secret key.

• TEnc(tpk,m; r) → β: An algorithm that, given the public key, a message m ∈ R and
randomness r, outputs an encryption β of m.

• TPDec(tpk, tski, β)→ di: An algorithm that, given the public key, a share tski of the secret
key and a ciphertext β, outputs a partial decryption di.

• TDec(tpk, {di}i∈S,|S|>t)→ m: An algorithm that, given sufficiently many partial decryptions,
returns the decrypted message m.

• TEval(tpk, β1, . . . , βk, λ1, . . . , λk) → β: A deterministic algorithm that, given the public
key, ciphertexts β1, · · · , βk corresponding to messages m1, . . . ,mk ∈ Rk and coefficients
λ1, . . . , λk ∈ Rk, outputs a ciphertext β that encrypts

∑k
i=1 λimi ∈ R.

• TKRes(tpk, tski; ri)→ (mi,1, . . . ,mi,n): An algorithm that, given the public key and a share of
a secret key, produces n messages to help with the rerandomization of the secret key sharing.

• TKRec(tpk, {mj,i}j∈S,|S|>t)→ tski: An algorithm that, given sufficiently many messages for
the rerandomization of the secret key sharing, outputs a share of the secret key.

• SimTPDec(tpk, β,m, {tski}i∈[n]\S , {di}i∈S)→ {di}i∈[n]\S : A simulation algorithm that, given
a ciphertext, a target message, and partial decryptions belonging to corrupt parties, simulates
partial decryptions belonging to honest parties that cause TDec to output the desired message.

Such encryption scheme must satisfy the following correctness properties:

• Decryption on honestly produced ciphertext and keys returns the appropriate message.

• Decryption remains correct after homomorphic evaluation.

• Decryption remains correct after a rerandomization of the secret key sharing.

These properties are intuitive, and we do not formalize them here. The important security
property of a TE scheme is partial decryption simulatability, described in Appendix A.1.

We can instantiate such an encryption scheme by Shamir sharing a Paillier decryption key [19],
see Gentry et al. [29] for details.

4.2 Non-Interactive Zero-Knowledge Arguments of Knowledge

A non-interactive zero-knowledge argument of knowledge (NIZKAoK) scheme has the following
algorithms, as described by Groth and Maller [34].

Setup(1κ,R)→ (crs, td): An algorithm that, given the security parameter, sets up the global
common reference string crs and the trapdoor td for the NIZKAoK system.

P(crs, φ, w)→ π: An algorithm that, given the common reference string crs for a relation R,
a statement φ and a witness w, returns a proof π that (φ,w) ∈ R. V(crs, φ, π)→ accept/reject:
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An algorithm that, given the common reference string crs for a relation R, a statement φ and a
proof π, checks whether π proves the existence of a witness w such that (φ,w) ∈ R.

SimP(crs, td, φ)→ π: An algorithm that, given the common reference string crs for a relation
R, the trapdoor td and a statement φ, simulates a proof of the existence of a witness w such that
(φ,w) ∈ R.

Security properties A NIZKAoK scheme must be correct (that is, verification using an honestly
produced proof must return accept). We formally describe the NIZKAoK security properties (zero
knowledge, knowledge soundness, and simulation extractability) in Appendix A.2.

5 Improving Computational YOSO MPC
In this section we describe our YOSO MPC protocol in the computational setting. It consists of
three phases – setup, offline, and online phase. Importantly, we only assume the knowledge of the
YOSO role-assignment public keys for the committee of a given phase starting only with the first
committee of that phase. In particular, during the offline phase we do not assume knowledge of the
public keys of the roles of the future online phase.

In the following, let κ denote the security parameter. Let Ci denote the i’s online committee,
COff
i denote the i’s offline committee, and Ci,j denote the j’s role of the online committee Ci

(similarly for COff
i,j ). Let n denote the size of the committee. For a set S, let |S| denote the

size of this set. Let TE = (TKGen,TKEnc,TPDec,TDec,TEval,TKRes,TKRec) denote a linearly
homomorphic key rerandomizable threshold encryption scheme, let NIZKAoK = (Setup, P, V, SimP)
denote a simulation extractable non-interactive zero-knowledge argument of knowledge, and let
PKE = (PKE.Gen,PKE.Enc,PKE.Dec) denote an additively homomorphic public key encryption
scheme.

For the ease of presentation, we describe each phase of the protocol separately. In the following,
we use bold font to represent a vector.

5.1 Setup

During the setup, we generate the keys for future (KFF), which allow us to efficiently pass messages
to future roles whose role keys are not known during the earlier stages of the execution. We further
generate the setup for the NIZK proof system that we will later use to prove correctness of the
protocol execution. Finally, we set up the linearly homomorphic key rerandomizable threshold
encryption. Note that we assume that in our encryption scheme the public key corresponds to a
single decryption key. We describe our assumed setup in Figure 5.1 below.

ΠYOSO-Setup

1. Generate keys for futurea:

• For each role Cl,i of each committee Cl participating in the online phase:
– Generate (pkKFF

Cl,i
, skKFF

Cl,i
)← PKE.Gen(1κ).

– Let cKFF
Cl,i
← TEnc(tpk, skKFF

Cl,i
).

• For each input-contributing party Pi:
– Generate (pkKFF

Pi
, skKFF

Pi
)← PKE.Gen(1κ).

– Let cKFF
Pi
← TEnc(tpk, skKFF

Pi
).
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2. Generate the NIZK setup via crs← NIZKAoK.Setup(1κ).

3. Generate the threshold public key and secret keys as (tpk, tsk1, . . . , tskn)← TKGen(1κ).
Publish tpk and give tski to COff

1,i .
aThese are not the keys that will be later generated by the YOSO role-assignment for these roles.

5.2 Offline phase

During the offline phase, our goal is to prepare correlated randomness that will be later consumed
during the online phase. Specifically, we generate the following:

• For each input wire α that is supplied by client Pi, we generate a random value λα.

• For each output wire α of a multiplication gate, we generate a random value λα. Then, for each
group of k multiplication gates, we prepare a packed sharing of the vector λα = (λα1 , . . . , λαk).

• For each group of k multiplication gates with input wires α = (α1, . . . , αk) and β = (β1, . . . , βk),
and output wires γ = (γ1, . . . , γk), we compute a packed sharing of the vector Γγ = λα ∗λβ−
λγ = (λα1 · λβ1 − λγ1 , . . . , λαk · λβk − λγk).

We then prepare the following data for the online phase:

• For each input wire α that is supplied by client Pi, we prepare a ciphertext cα, which encrypts
λα under the KFF of Pi.

• For each group of k multiplication gates with output wires γ = (γ1, . . . , γk), we prepare an
encryption of the i-th packed share of λα under the public key of the i-th committee member
of the online phase who will need this value.

• Similarly, for each group of k multiplication gates with output wires γ = (γ1, . . . , γk), we
prepare an encryption of the i-th packed share of Γγ under the public key of the i-th committee
member of the online phase who will need this value.

The offline phase works as follows: First, for each multiplication gate, we prepare a Beaver
triple. Then, we let each committee member generate a random value λα

i for each output wire of an
input/multiplication gate, and encrypt it under the global threshold public key tpk, while attaching
a NIZK proof that the result is a valid ciphertext. For each wire α, we then use the homomorphic
properties of the encryption scheme TE to add contributions of all committee members. This ensures
that each wire value λα is truly random.2 Given encryptions of these values, we then process the
circuit gate by gate. In the following, let cα denote the ciphertext containing the value λα for each
wire α. Note that for all values that are published in the following description, we ask the parties to
always attach NIZK proofs stating that they did everything correctly. The parties then use for the
computation only the values for which the corresponding proofs verify.

For the addition gates, we obtain the encryption of the output wire value by simply adding
the ciphertexts containing the encryptions of the input values. For each multiplication gate with

2Although it is common in honest majority settings to apply randomness extraction to achieve better communica-
tion [20], in our case such techniques do not yield any benefits, as, in the YOSO setting, the cost of broadcast is the
same as peer-to-peer.
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encrypted input wire values cα, cβ, and encrypted output wire value cγ , we need to compute the
encryption of Γγ = λα · λβ − λγ . To do this, we use an encrypted Beaver triple (cx, cy, cz) to
compute cε = cα + cx and cδ = cβ + cy. Then, we let the current committee use its shares of tsk
to decrypt cε and cδ. Denote the result by ε and δ. Then, we use the homomorphic properties
of the encryption scheme to obtain cβ · ε − cx · δ + cz − cγ , which is precisely the encryption of
λβ · (λα + λx)− λx · (λβ + λy) + λz − λγ = λα · λβ − λγ .

Finally, in order to ensure that our online phase remains efficient, we pack the random wire
values (λα1 , . . . , λαk) for each group of k input wires (α1, . . . , αk) which belong to a single client.
Similarly, we pack the random vector λα = (λα1 , . . . , λαk) of the output wires for each group of k
multiplication gates. For this we use the fact that we have encryptions cλ

α1 , . . . , cλ
αk : by getting t

extra encryptions of random values cr1 , . . . , crt (which can be obtained by letting each committee
member prepare t random values ri,j , and encrypt each of these values under the global threshold
key tpk, and then adding up the contributions), we can use these ciphertexts to homomorphically
compute encryptions of the evaluation points of the polynomial f(x) of degree t+ k − 1, which on
each x-point −(i− 1) evaluates to λα

i , i ∈ [k], and on i evaluates to ri, i ∈ [t]. Then, we can use all
points (both the values λαi , i ∈ [k] and extra random values ri, i ∈ [1, . . . , t]), to locally interpolate
using the homomorphic properties of the threshold encryption scheme, and this way obtain packed
shares f(1), . . . , f(n) of λα which are encrypted under tpk.

As the last step, we re-encrypt previously computed packed shares (which are currently encrypted
under the tpk) to the KFFs of the roles in the online committee who will use these shares. This
step is crucial: If we leave the packed shares encrypted under tpk, then during the online phase
one committee will have to spend O(n) communication to decrypt a single packed share, with each
committee member publishing its CDN-style share of the packed share. This would defy the usage
of packing and result in O(n2) communication per packed sharing, hence linear amortized cost—no
better than prior works. Re-encrypting the share towards the KFF of the recipient allows us to pay
the linear cost during the offline phase, and keep the online phase very efficient.

For the ease of presentation, we first separately present a few helper functions, which we will
use throughout our protocol. We start with Re-encrypt. This function takes as input a ciphertext c
which was encrypted using the threshold key tpk, and enables the current committee Cl to re-encrypt
the underlying plaintext using the given key pk. For this, the members of the current committee
first recover their shares of tsk. See Figure 1 for details.

Note that the relation R that we prove is the following:

R =



φ = (pk, tpk, {pkj}j∈[n],
{cnewj }j∈[n], {coldj }j∈S , cnew, cold)
w = (sk, tsk, rc, r, {rj}j∈[n], d,
{snewj }j∈[n], {soldj }j∈S)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

sk corresponds to pk,
soldj ← PKE.Dec(sk, coldj ) for j ∈ S,

tsk ← TKRec(tpk, {soldj }j∈S),
{snewj }j∈[n] ← TRes(tpk, tsk; r),
d← TPDec(tpk, tsk),
cnew ← PKE.Enc(pk, d; rc),
{cnewj }j∈[n] ← PKE.Enc(pkj , snewj ; rj)

for j ∈ [n]


Protocol 1: ΠYOSO-Re-encrypt

Let Cm denote the committee that published encryptions of subshares of tsk that were intended for
Cl,j . Let πCm,j

denote the corresponding proof by party Cm,j that everything was done correctly
(details below). Finally, let cTK

Cl,i,j
denote the encryption of the i-th subshare of the share of tsk that

is intended for Cl,j .

15



Re-encryptCl
(pk, c) : Each role Cl,i of committee Cl does the following:

1. Reconstruct its key share:

• Let S denote a set of parties in Cm whose proof πCm,j verifies.
• Decrypt encryptions of the subshares of tsk intended for Cl,i:

soldj,i ← PKE.Dec(skCl,i
, cTK

Cl,j,i
) for each j ∈ S.

• Reconstruct its key share as tski ← TRec(tpk, {soldj,i }j∈S).

2. Compute the partial decryption as di ← TPDec(tpk, tski).

3. Sample randomness renc and encrypt the partial decryption under the given public key
ci ← PKE.Enc(pk, di; renc).

4. Re-share its key share to the committee Ck that will need it next:

• Sample randomness r and compute (snewi,1 , . . . , snewi,n )← TRes(tpk, tski; r).

• Sample randomness rj and compute cTK
Ck,i,j

← PKE.Enc(pkCk,j
, si,j ; rj) for each j ∈ [n].

• Compute a NIZK proof πCl,i that everything was done correctly:

πCl,i
← NIZKAoK.P


crs,
φ = (pkCl,i

, tpk, {pkCk,j
}j∈[n], {cTK

Ck,i,j
}j∈[n],

{cTK
Cl,j,i
}j∈S , ci, c),

w = (skCl,i
, tski, renc, r, {rj}j∈[n], d,

{snewi,j }j∈[n], {soldj,i }j∈S)


5. Broadcast (cTK

Ck,i,1
, . . . , cTK

i,n) along with πCl,i.

6. Broadcast ci.

We further use the function Decrypt, which is essentially the same as Re-encrypt, except that
instead of re-encrypting the obtained share under a new public key, we simply broadcast it in clear.
See Figure 3 for details, where the NIZK relation that we prove is the following:

R =



φ = (pk, tpk, {pkj}j∈[n],
{cnewj }j∈[n], {coldj }j∈S , cold)
w = (sk, tsk, rc, r, {rj}j∈[n], d,
{snewj }j∈[n], {soldj }j∈S)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

sk corresponds to pk,
soldj ← PKE.Dec(sk, coldj ) for j ∈ S,

tsk ← TKRec(tpk, {soldj }j∈S),
{snewj }j∈[n] ← TRes(tpk, tsk; r),
d← TPDec(tpk, tsk),
{cnewj }j∈[n] ← PKE.Enc(pkj , snewj ; rj)

for j ∈ [n]


Protocol 2: ΠYOSO-Decrypt

Let Cm denote the committee that published encryptions of subshares of tsk that were intended for
Cl,j . Let πCm,j

denote the corresponding proof by party Cm,j that everything was done correctly
(details below). Finally, let cTK

Cl,i,j
denote the encryption of the i-th subshare of the share of tsk that

is intended for Cl,j .
DecryptCl

(c) : Each role Cl,i of committee Cl does the following:

1. Reconstruct its key share:

• Let S denote a set of parties in Cm whose proof πCm,j verifies.
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• Decrypt encryptions of the subshares of tsk intended for Cl,i:
soldj,i ← PKE.Dec(skCl,i

, cTK
Cl,j,i

) for each j ∈ S.

• Reconstruct its key share as tski ← TRec(tpk, {soldj,i }j∈S).

2. Compute the partial decryption as di ← TPDec(tpk, tski).

3. Re-share its key share to the committee Ck that will need it next:

• Sample randomness r and compute (snewi,1 , . . . , snewi,n )← TRes(tpk, tski; r).

• Sample randomness rj and compute cTK
Ck,i,j

← PKE.Enc(pkCk,j
, si,j ; rj) for each j ∈ [n].

• Compute a NIZK proof πCl,i that everything was done correctly:

πCl,i
← NIZKAoK.P


crs,
φ = (pkCl,i

, tpk, {pkCk,j
}j∈[n], {cTK

Ck,i,j
}j∈[n],

{cTK
Cl,j,i
}j∈S , c),

w = (skCl,i
, tski, renc, r, {rj}j∈[n], d,

{snewi,j }j∈[n], {soldj,i }j∈S)


4. Broadcast (cTK

Ck,i,1
, . . . , cTK

i,n) along with πCl,i.

5. Broadcast di.

Finally, we use the following function to have two committees C1 and C2 prepare a Beaver
triples. The relation R that the members of the committee C2 have to prove is the following:

R =

{
φ = (tpk, ca, cbi , c

c
i )

w = (b, r)

∣∣∣∣ cbi ← TEnc(tpk, bi; ri),
cci ← TEval(tpk, ca, bi)

}
Protocol 3: ΠYOSO-Beaver-Triples

Let C1 and C2 denote two committees that are participating in the generation of the Beaver triple.
Beaver-TripleC1,C2

:

• Each role C1,i of committee C1 does the following:

– Generate a random value ai.
– Generate randomness ri, and encrypt ai via cai ← TEnc(tpk, ai,j ; ri).
– Broadcast cai along with a NIZK proof πC1,i that the ciphertext was computed correctly.

• Let S denote a set of roles in C1 whose proof πC1,i verifies. Let |S| denote the size of S.

• Everyone can now compute ca ← TEval(tpk, {cai }i∈S , (1)
|S|).

• Each role C2,i of committee C2 does the following:

– Generate a random value bi.
– Generate randomness ri, and encrypt bi via cbi ← TEnc(tpk, bi; ri).
– Compute cci ← TEval(tpk, ca, bi)
– Compute a NIZK proof πC2,i that everything was done correctly:

πCl,i
← NIZKAoK.P

 crs,
φ = (tpk, ca, cbi , c

c
i ),

w = (bi, ri)


– Broadcast bi, ci along with the proof πC2,i.
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• Let S′ denote a set of roles in C2 whose proof πC2,i verifies. Let |S′| denote the size of S′.

• Everyone can now compute ca ← TEval(tpk, {cbi}i∈S′ , (1)|S
′|) and

cc ← TEval(tpk, {cci}i∈S′ , (1)|S
′|)

• The resulting triple is (ca, cb, cc).

We now give the full description of the offline phase in Figure 4.

Protocol 4: ΠYOSO-Offline

Offline phase:
Let C denote the circuit.
Step 1: Prepare Beaver Triples Let the first two committees COff

1 and COff
2 prepare a Beaver triple for

each multiplication gate of the circuit via Beaver-TripleC1,C2
.

Step 2: Prepare random wire values
For each wire α of C that is an output wire of an input/multiplication gate:

1. Each COff
3,i does the following:

• Generate a random value λα
i .

• Encrypt λα
i via cαi ← TEnc(tpk, λα

i ).
• Broadcast cαi along with a NIZK proof πCOff

3,i
that the ciphertext was computed correctly.

2. Let S denote the set of roles COff
3,i whose proofs verified correctly.

3. Everyone computes cα ← TEval(tpk, {cαi }i∈S , (1)
|S|).

Step 3: Compute dependent wire values
For each addition gate with inputs wires α and β, and output wire γ, set (from lowest depth gates to
highest):

• cγ ← TEval(tpk, (cα, cβ), (1, 1)).

For each multiplication gate with inputs wires α and β, and output wire γ, compute the encryption
cΓ

γ of the value λα ∗ λβ − λγ on wire γ. For this, let (cx, cy, cz) denote an unused Beaver triple (from
the ones prepared in Step 1). Then, compute the following for groups of k multiplication gates in
parallel:

• Everyone computes cε ← TEval(tpk, (cα, cx), (1, 1)) and cδ ← TEval(tpk, (cβ , cy), (1, 1)).

• Current committee COff
l decrypts ε = DecryptCOff

l
(cε) and δ = DecryptCPrep

l
(cδ).

• Everyone computes cΓ
γ ← TEval(tpk, (cβ , cx, cz, cγ), (ε,−δ, 1,−1)).

Step 4: Pack values for multiplication gates
For each group of k multiplication gates, let (cα1 , . . . , cαk) denote the ciphertexts containing the
values on the corresponding output wires. Each role COff

l,i of the current committee COff
l does the

following:

• Generate t random values (rk+1
i , . . . , rt+k

i ).

• Let c
Help,αj

i ← TEnc(tpk, rji ) for j ∈ [k + 1, . . . , t+ k]

• Broadcast {cHelp,αj

i }j∈[k+1,...,t+k] along with a NIZK proof πCOff
l,i

that the ciphertext was
computed correctly.

Now, everyone does the following:
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• Let S denote the set of roles COff
l,i whose proofs verified correctly.

• Compute cHelp,αj ← TEval(tpk, {cHelp,αj

i }i∈S , (1)
|S|) for each j ∈ [k + 1, t+ k].

• For each i ∈ [n], compute the share of the i-th committee role as:

cαi ← TEval(tpk, (cα1 , . . . , cαk , cHelp,αk+1 , . . . , cHelp,αt+k), (l1(i), . . . , lt+k(i))),

where lj(·) denotes the j-th Lagrange basis polynomial.

Similarly, for each group of k multiplication gates, pack the ciphertexts containing cΓ
γ .

Step 5: Prepare ciphertexts to the future, input gates
For each input gate α that belongs to the i-th client, let cα denote the ciphertext containing the value
on the corresponding output wire. Current committee COff

l computes the following for all i ∈ [n] in
parallel:

• cαPi
← Re-encryptCOff

l
(pkKFF

Pi
, cα)

Step 6: Prepare ciphertexts to the future, multiplication gates
For each group of k multiplication gates, let cαi denote the encryption of the i-th (packed) share of
the left input wires, cβi the encryption of the i-th (packed) share of the right input wires, and cΓ

γ

i

denote the encryption of i-th (packed) share of the values λα ∗ λβ − λγ for the vector of
corresponding output wires γ. Let Cm denote the committee that will be evaluating gates γ in the
online phase. Current committee Coff

l computes the following for all i ∈ [n] in parallel:

• cαCm,i
← Re-encryptCoff

l
(pkKFF

Cm,i
, cαi )

• cβCm,i
← Re-encryptCoff

l
(pkKFF

Cm,i
, cβi )

• cΓ
γ

Cm,i
← Re-encryptCOff

l
(pkKFF

Cm,i
, cΓ

γ

i )

Communication analysis. In Step 1, we need O(n) communication to prepare a Beaver triple 3.
We require O(n) communication to prepare each random wire value in Step 2. Next, Step 3 requires
O(n2)

k = O(n) communication per gate. In Step 4, the communication cost is again O(n2)
k = O(n)

per gate. Re-encrypting values in Steps 5 and 6 each requires O(n) communication per re-encrypted
value, i.e., per wire, plus O(n2) one-time cost. In total, the communication complexity of our offline
phase is O(n|C|).

5.3 Online phase

During the online phase, our goal is to compute values µα = vα − λα for each wire of the circuit,
where vα is the actual wire value, and λα the random value prepared for this wire during the offline
phase. To do this, we must first let the roles of the online committees obtain the random values
prepared for these roles during the preprocessing. Note that during the offline phase, we were
encrypting the secret random values under the KFFs of the corresponding roles’ of the online phase.
Hence, it is sufficient to let the online roles learn the secret key portion of their corresponding KFF.
For this, we have parties of the first online committee use their shares of tsk to re-encrypt the secret
portions of the KFFs towards the role keys of the YOSO role-generation, which can now safely
assumed to be known.

3Note that our offline phase is bottlenecked by a step which requires linear communication, hence for simplicity we
skip potential optimizations that could amortize the cost of non-bottleneck steps to a constant one.
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For the input gates, given input vα for the input wire α, each client can simply use its secret
KFF to decrypt the value λα and broadcast vα − λα.

For the addition gates, given input wires α and β, by invariant we know both µα and µβ . Hence,
everyone can locally compute µα + µβ.

For the multiplication gates, given input wire vectors α and β, and output wire vector γ, the i-th
member of the current committee can use the packed shares of λΓγ

i which it has from the offline phase,
along with the publicly reconstructed µα and µβ, to obtain µγ

i = µα
i ∗µ

β
i +µα

i ∗λ
β
i +µβ

i ∗λα
i +λΓγ

i .
Finally, for each output wire α, we let the last committee use its shares of tsk to re-ecrypt the

preprocessed value λα towards the public key of the client Pi, who is supposed to get the output of
this wire. Then, Pi can use the publicly available µα to reconstruct vα as µα + λα.

Protocol 5: ΠYOSO−Online

Let pkPi
denote public key of the client Pi, and pkCl,i

denote YOSO role-assignment key of the
committee member Cl,i.
Online phase:
Future key distribution
The first online committee C1 computes the following for all clients and all future committee roles
Cl[i] in parallel:

• cKFF’
Pi
← Re-encryptC1

(pkPi , c
KFF
Pi

)

• cKFF’
Cl,i
← Re-encryptC1

(pkCl,i
, cKFF

Cl,i
)

Input
For each input gate that belong client Pi, let cαPi

denote the ciphertext containing the prepared
random value on the corresponding output wires. Each client Pi uses its secret role key skPi

from the
YOSO role-assignment to compute the following:

• Let skKFF
Pi
← Dec(skPi

, cKFF’
Pi

)

• Let λα ← Dec(skKFF
Pi

, cαPi
)

• Compute and publish µα = vα − λα

Addition
For two addition gates with input wires α and β, everyone can locally compute µα + µβ .
Multiplication
Let Cl denote the current committee. For each group of multiplication gates with input wires α,β
and output wires γ, let cαCl,i

, cβCl,i
, cΓ

γ

Cl,i
denote the ciphertexts containing the share prepared for the

i-th role of Cl. Let µα and µβ denote the publicly reconstructed values on wires α and β. Let µα
i

and µβ
i denote the i-th share of a degree-(k − 1) packed sharing of each of this vectors. Each member

of the current committee uses its secret role key skCl,i
from the YOSO role-assignment to compute

the following:

• Let skKFF
Cl,i
← Dec(skCl,i

, cKFF’
Cl,i

)

• Let λα
i ← Dec(skKFF

Cl,i
, cαCl,i

)

• Let λβ
i ← Dec(skKFF

Cl,i
, cβCl,i

)

• Let λΓγ

i ← Dec(skKFF
Cl,i

, cΓ
γ

Cl,i
)

• Compute and publish µγ
i = µα

i ∗ µ
β
i + µα

i ∗ λ
β
i + µβ

i ∗ λα
i + λΓγ

i along with the proof of
correctness.
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In order to reconstruct µγ , anyone can use t+ 2(k − 1) + 1 shares µγ
i that verified correctly.

Output
The last committee Cl uses its shares of tsk to re-encrypt (in parallel) each value cα towards the
client Pi who is obtaining the output of wire α.

• cαPi
← Re-encrypt*C1

(pkPi
, cα)

Above, Re-encrypt* is the same as Re-encrypt, except that we do not distribute shares of tsk anymore.
This reduces the overall communication per output wire to O(n).
To obtain the output for a wire α, client Pi uses skPi

to decrypt the ciphertext cαPi
containing the

corresponding random wire value. Then, the client computes the output using the public value µα:

• Let λα ← Dec(skKFF
Pi

, cαPi
).

• Compute vα = µα + λα.

Communication analysis. The future key distribution step results in O(n) communication per
role, as each committee member must publish its share of the value that is being re-encrypted,
plus a one-time cost of O(n2) for the re-distribution of the shares of tsk. Further, the input step
requires a one-time cost that is linear in the number of inputs. Addition gates do not require
any communication, and a batch of O(n) multiplication gates requires each committee member
to publish its share of µγ along with a proof of correctness, and thus incurs O(n) cost per batch.
Finally, the output layer requires O(n) communication per output wire. Assuming that each role
processes O(n) values, this gives us O(1) amortized communication per gate.

This construction allows us to obtain the following result:

Theorem 1. Assuming a secure broadcast and role-assignment, for any n-party function F , protocol
Π = (ΠYOSO-Setup,ΠYOSO-Offline,ΠYOSO−Online), YOSO-securely implements the ideal functionality
FF
MPC for a corruption threshold t < n

2 · (1 − ε). The offline communication complexity is O(n)
elements per gate, the online communication complexity is O(1) elements per gate.

We defer the formal proof to Section B in the Supplementary Material.

5.4 Bonus: Supporting Fail-Stop Parties

We observe that, in our protocol, the online phase requires at least t+2(k−1)+1 partial decriptions
to be posted. There are n− t honest parties, so we need to ensure that n− t ≥ t+ 2(k − 1) + 1 for
GOD, or n > 2t+ 2(k − 1). Assuming t < n(12 − ε), this is equivalent to n ≥ n(1− 2ε) + 2(k − 1),
or k − 1 ≤ nε This allows us to get a saving factor in the online phase of k ≈ nε.

However, note we can do the following. Write ε = 2ε′, and set k = nε′ + 1. We have that
t+2(k− 1)+ 1 < n(12 − ε) + 2(nε′) + 1 = n/2+ 1. On the other hand, the amount of honest parties
is n− t > n− n(12 − ε) = n(12 + ε), which is at least nε more than the required amount of parties
for reconstruction. We conclude the following: by reducing the packing parameter from ≈ nε to
≈ nε/2, the protocol is able to proceed, even if n · ε honest parties do not participate. We believe
this property is crucial for YOSO MPC protocols, which are intended to be deployed in settings
with large number of parties and hence are prone to non-malicious failures such as slowdowns,
hardware/software errors, and others.
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6 Role Assignment: Committee Size Analysis
In previous sections we have described a YOSO MPC protocol with high efficiency, assuming that
the committee sizes n are such that the amount of corrupted parties in each committee is upper
bounded by t < n(12−ε). Ensuring this corruption threshold is in charge of the role assignment layer,
which is generally a separate task to that of YOSO MPC. Different works have proposed different
role assignment layers for YOSO [6], but generally, these approaches focus on obtaining committees
with 1/2 corruption ratios. In this section we make use of the analysis from [6]—which is itself
similar to the one from [28]—in order to obtain the stronger honest majority bound t < n(12 − ε).
Briefly recall that Benhamouda et al.’s role assignment works as follows: to select members of the
MPC committee, a so-called nominating committee is first formed by self-selection via a process
known as cryptographic sortition. Each nominator then chooses a member of the MPC committee,
and generates short-term public/secret key pair (epk, esk). The nominator encrypts esk under the
chosen party’s long-term key to obtain a ciphertext c, and publishes the pair (epk, c). Finally, each
party can attempt to decrypt the ciphertexts c to check whether they were selected to participant
in the MPC committee or not. We refer the reader to [6] for details.

For this section, we stick to the notation from [6, Section 3.2], so that we can easily reuse their
analysis. Let N be the total number of parties, among which committees will be sampled, and
let us assume that the adversary corrupts f ·N out of these N parties. Cryptographic sortition
is a probabilistic process that samples committees by including each party in the committee with
some probability C/N .4 Let c be the random variable denoting the size of the committee, and let φ
be the random variable denoting the number of corrupted parties in the selected committee. Our
goal is to determine a threshold t so that, with high probability, φ < t and t ≤ c · (12 − ε). Note
that t in [6] has a different connotation than in our previous sections: here, t− 1 corresponds an
upper bound (with high probability) for the number of corruptions in a committee. This is roughly
equivalent to what we refer to as “t” in prior sections.

Let k1, k2 and k3 be three security parameters for the analysis, as follows.

1. The adversary can try to win the cryptographic sortition at most 2k1 times

2. We want to ensure that φ < t with probability ≥ 1− 2k2

3. We want to ensure that t ≤ c · (12 − ε) with probability ≥ 1− 2k3 .

In [6], the threshold t is written as t = B1 + B2 + 1, where B1 = fC(1 + ε1) and B2 =
f(1− f)C(1 + ε2), for some ε1, ε2 > 0. In [6] it is shown that, if

C > max

{
(k1 + k2 + 1)(2 + ε1) ln 2

fε21
,
(k2 + 1)(2 + ε2) ln 2

f(1− f)ε22

}
, (2)

then Item 2 from above holds, that is, the number of corruptions φ among the elected committee is
at most t, except with probability 2−k2 .

Regarding Item 3, we note that t < c · (12 − ε) is equivalent to the number of honest parties
c− t being greater than 1/2+ε

1/2−ε · t. In [6] this is shown to hold with probability ≥ 1− 2k3 if, for some
ε3 > 0:

C > max

{
2k3 ln 2

(ε3(1− f))2
,
(12 + ε) · (fC(1 + ε1) + f(1− f)C(1 + ε2))

(12 − ε)(1− f)2(1− ε3)

}
(3)

4Note that, even though the expected size of the committee is C, its concrete size is variable.
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Interestingly, this is a generalization of [6], with their set of constraints being achieved by setting
ε = 0. We see then that the only difference with respect to their work is the factor 1/2+ε

1/2−ε in Eq. (3).
That is, the cost to pay to enable the gap ε > 0 is reflected in this term.

In what follows, let us fix as in [6] k1 = 64, k2 = k3 = 128. Set ε1 and ε2 as small as possible so
that Eq. (2) holds. Using numerical methods we find this is

ε1 >
1

2

√
1544Cf ln(2) + 37249 ln2(2)

C2f2
+

193 ln(2)

2Cf
(4)

and

ε2 >
1

2

√
−1032Cf2 ln(2) + 1032Cf ln(2) + 16641 ln2(2)

C2(f2 − f)2
− 129 ln(2)

2C(f2 − f)
. (5)

Note these values—which determine t—only depend on C and f . Now, let ε3 to be the smallest
value that satisfies (3), we have:√

256 ln 2

C(1− f)2
< ε3 < 1−

(
1
2 + ε
1
2 − ε

)
· (fC(1 + ε1) + f(1− f)C(1 + ε2))

(1− f)2C
(6)

Let us denote δ =
1
2
+ε

1
2
−ε

, which satisfies 1 ≤ δ for 0 < ε < 1/2. Note that the most efficient choice
is to take ε1 and ε2 as small as possible, according to Eqs. (4) and (5). Then, set ε3 as small as
possible according to Eq. (6). At this point, δ > 1 must satisfy the right inequality of Eq. (6).
The work of [6] took δ = 1, for which ε = 0. Here, we note that we can take some δ > 1, which
corresponds to ε > 0, as long as the inequality still holds.

In Table 1 we present a selection of parameters obtained with the reasoning above. We choose
the sortition parameter C in {1000, 5000, 10000, 20000, 40000} (which is the expected size of the
committee), and the global corruption ratio f in {0.05, 0.10, 0.15, 0.20, 0.25}. Then, we compute
ε1, ε2, ε3 as described above. This determines t, where t− 1 is (w.h.p.) an upper bound the number
of corruptions in the committee, and along with it c = t/(1/2− ε) is determined, which is (w.h.p.)
a lower bound on the size of the committee. Note that the lower bound that is guaranteed (w.h.p.)
in [6] is c′ = 2t. However, our analysis shows that the committee size is actually larger than that,
and that gap can be used to gain a k = n · ε improvement factor. Overall, we see that by increasing
the committee size from c′ to c, which as f grows this becomes a less pronounced jump, we can
actually reduce communication by a factor of k, which can be as big as three orders of magnitude!
For instance, setting C = 20000, for 20% global corruptions, we can take a committee of size
≈ 20k instead of ≈ 18k from [6] and get an improvement factor in terms of online communication
complexity of > 1000×. For smaller f this factor improves even more, at the expense of having a
bigger difference in committee sizes. This disparity can be reduced by settling for a smaller packing
factor.

7 Conclusions and Future Work
We have shown that YOSO MPC can benefit greatly from transitioning from a setting where
t < n/2, to t < n(1/2− ε). In large-scale scenarios such as YOSO it is reasonable to assume the
adversary corrupts strictly less than a minority, and a “gap” can be exploited in order to get concrete
benefits in terms of online communication, as well as fail-stop tolerance. Our work shows how
packed secret-sharing can be used to materialize such communication savings. Furthermore, we
have shown that requiring such gap does not substantially affect the size of elected committees.
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C f t c c′ ε k

1000

0.05 446 949 893 0.03 28
0.1 ⊥ ⊥ ⊥ ⊥ ⊥
0.15 ⊥ ⊥ ⊥ ⊥ ⊥
0.2 ⊥ ⊥ ⊥ ⊥ ⊥
0.25 ⊥ ⊥ ⊥ ⊥ ⊥

5000

0.05 1078 4699 2157 0.27 1271
0.1 1721 4925 3444 0.15 741
0.15 2293 5106 4588 0.05 259
0.2 ⊥ ⊥ ⊥ ⊥ ⊥
0.25 ⊥ ⊥ ⊥ ⊥ ⊥

10000

0.05 1754 9518 3509 0.32 3004
0.1 2937 9841 5876 0.20 1982
0.15 4004 10098 8009 0.10 1045
0.2 4983 10319 9968 0.02 175
0.25 ⊥ ⊥ ⊥ ⊥ ⊥

20000

0.05 2998 19264 5998 0.34 6633
0.1 5216 19723 10433 0.24 4645
0.15 7237 20088 14476 0.14 2806
0.2 9107 20401 18215 0.05 1093
0.25 ⊥ ⊥ ⊥ ⊥ ⊥

40000

0.05 5331 38907 10664 0.36 14121
0.1 9552 39558 19106 0.26 10226
0.15 13437 40074 26875 0.16 6600
0.2 17047 40517 34096 0.08 3211
0.25 20408 40911 40818 0.01 47

Table 1: Sample parameters. C is the parameter for the cryptographic sortition, that is, each party
from the global pool is chosen with prob. C/N . f is the global corruption ratio, that is, there
are f · N corrupt parties among the global N parties. t is the threshold that upper-bounds the
number of corruptions (plus one) in the committee (w.h.p.). c = t/(12 − ε) is the lower bound on
the committee size (w.h.p.), and c′ = 2t is the lower bound on the committee size if one takes ε = 0
(w.h.p.). ε is the gap. k is the packing factor. ⊥ means that the given ratio f is impossible for the
given value of C.

Our work serves as a starting point to fully unleash the practicality of YOSO MPC. Relevant
follow-up works include the following:

• Instantiating our framework with class groups-based solutions such as [14, 10], which remove
the trusted setup. We did not follow this approach in our work since (1) it is simpler in
terms of exposition to consider the original presentation from [29], and (2) class group-based
solutions have a n! overhead in terms of communication due to the use of integer secret-sharing,
which may not be suitable for large-party settings.

• We adapted the role assignment from [6], showing that demanding for a gap does not affect
committee sizes drastically (specially given the benefits). It remains to be seen what is the
impact of this condition in more recent role assignment protocols such as [11].

• As a feasibility result, it is interesting to explore what the impact of the “gap” is in the context
of the information-theoretic security, where no computational assumptions are used at the
protocol level.

• Our preprocessing unfortunately does not benefit from the packing parameter k. This is an
inherent limitation of Turbopack[25], and we find it highly relevant to remove such limitation.
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Supplementary Material
A Security Definitions of our Cryptographic Building Blocks
We now formally introduce some security properties of our basic cryptographic building blocks.

A.1 Security of Linearly Homomorphic Key Rerandomizable Threshold Encryp-
tion

Below, we formally define the key security property of linearly homomorphic key rerandomizable
threshold encryption. Note that it trivially implies chosen plaintext security.
Definition 2 (Partial Decryption Simulatability). Informally, a TE scheme has partial decryption
simulatability if for any honestly produced ciphertext, desired message m and fewer than t partial
decryptions, the algorithm SimTPDec produces remaining partial decryptions which cause TDec to
return m. More formally, let κ ∈ N be the security parameter, and let TE = (TKGen,TEnc,TPDec,
TDec,TEval,TKRes,TKRec,SimTPDec) be a TE scheme. Consider the game between a probabilistic
polynomial-time adversary A and a challenger C described in Figure 2.

Figure 2: Security game for the partial decryption simulatability property of the TE

TE has partial decryption simulatability if for any sufficiently large security parameter κ, for any
probabilistic polynomial-time adversary A, there exists a negligible function negl in the security
parameter κ such that the probability that A wins the game is less than 1

2 + negl(κ).
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Figure 3: Security game for the zero knowledge property of the NIZKAoK

A.2 Security of Non-Interactive Zero-Knowledge Arguments of Knowledge

Definition 3 (Zero Knowledge for NIZKAoK). Informally, a NIZKAoK scheme has zero knowledge if
a proof does not leak any more information than the truth of the statement.

More formally, let κ ∈ N be the security parameter, and let NIZKAoK = (Setup, P,V, SimP) be
a NIZKAoK scheme. Consider the game between a probabilistic polynomial-time adversary A and a
challenger C described in Figure 3.

NIZKAoK has zero knowledge if for any sufficiently large security parameter κ, for any probabilistic
polynomial-time adversary A, there exists a negligible function negl in the security parameter κ
such that the probability that A wins the game is less than 1

2 + negl(κ).
Informally, knowledge soundness is the property that guarantees that it is always possible to

extract a valid witness from a proof that verifies. Simulation extractability is a stronger version
of knowledge soundness, where it is always possible to extract a valid witness from a proof that
verifies even if the adversary has access to a simulation oracle. This is a flavor of non-malleability;
an adversary should not even be able to modify a simulated proof in order to forge a proof.
Definition 4 (Simulation Extractability for NIZKAoK). Informally, a NIZKAoK scheme has simulation
extractability if it is always possible to extract a valid witness from a proof that verifies.

More formally, let κ ∈ N be the security parameter, and let NIZKAoK = (Setup,P,V, SimP) be
a NIZKAoK scheme. Consider the game between a probabilistic polynomial-time adversary A and a
challenger C described in Figure 4, where τA denotes the adversary’s inputs and outputs, including
its randomness:

NIZKAoK has simulation extractability if for any sufficiently large security parameter κ, for any
probabilistic polynomial-time adversary A, there exists an extraction algorithm ExtractA and a
negligible function negl in the security parameter κ such that the probability that A wins the game
is less than negl(κ).

B Security Analysis of Our YOSO MPC
Theorem 2 (Theorem 1, restated). Assuming a secure broadcast and role-assignment, for any n-party
function f , protocol Π = (YOSO-Setup,ΠYOSO-Offline, ΠYOSO−Online), YOSO-securely implements the
ideal functionality FF

MPC for a corruption threshold t < n
2 · (1 − ε). The offline communication

complexity is O(n) elements per gate, the online communication complexity is O(1) elements per
gate.
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Figure 4: Security game for the simulation extractability property of the NIZKAoK

Sketch. We follow a similar approach as the proof from Theorem 2 in the original YOSO paper [29].
As in [29], we provide a sketch of the proof, focusing on the most intricate details involving the
YOSO model. For example, intuitive properties such as privacy and correctness follow directly
from Turbopack [25]. The nuances in our case are mostly concentrated around the use of threshold
decryption, NIZKs, and most importantly the YOSO model, which forces us to be careful when
referring to parties, since they are actually computing roles.

In order to describe our simulator, we will describe a series of hybrids, each indistinguishable
from the previous one, that eventually lead to a simulator description for the protocol in the theorem.

Hybrid 0: The simulator honestly follows the protocol, except that during the Setup phase the
simulator additionally stores the NIZKAoK trapdoor td.

Hybrid 1: The simulator behaves as before, except that it uses the NIZKAoK simulator SimP
to simulate the proofs of the honest roles. Note that this hybrid is indistinguishable from the
previous one by the zero knowledge property of NIZKAoK system that we use.

Hybrid 2: The simulator behaves as before, except that it now extracts a witness from each
proof that was given by a corrupt party. The simulator aborts if it fails to extract a valid witness
for a proof that verifies correctly. Note that this hybrid is indistinguishable from the previous one
by the simulation extractability property of the NIZKAoK.

Due to this, the simulator in particular always knows the shares of tsk (even for corrupt parties),
along with the plaintexts inside the ciphertexts distributed during the offline phase.

Hybrid 3: Let M denote the set of currently corrupt roles. The simulator behaves as before,
except that during the Re-encrypt* step of computing the output, for each output wire α that
belongs to a malicious client, the simulator does the following:

• Let cα denote the ciphertext that contains the value λα encrypted under tpk.

• The simulator computes λα, as mentioned above.

• The simulator computes the decryption shares of the corrupt roles as di ← TPDec(tpk, tski, cα).

• Compute the decryption shares of the honest roles as
{di}i∈[n]\M ← SimTPDec(tpk, cα, λα, {tski}i∈[n]\M , {di}M )

Observe that the indistinguishability to the previous hybrid holds by the partial decryption
simulatability property of the threshold encryption scheme.

31



Hybrid 4: Let M denote the set of the currently corrupt roles. The simulator behaves as
before, except that for each output wire α that belongs to a malicious client, the simulator does the
following:

• Let cα denote the ciphertext that contains the value λα encrypted under tpk.

• The simulator computes the values vα of the corrupt parties using its knowledge of λα, sends
these values to the ideal functionality FMPCF , obtains vα from it, and computes λα = µα− vα.

• The simulator computes the decryption shares of the corrupt roles as di ← TPDec(tpk, tski, cα).

• Compute the decryption shares of the honest roles as
{di}i∈[n]\M ← SimTPDec(tpk, cα, λα, {tski}i∈[n]\M , {di}M )

Note that the indistinguishability to the previous hybrid holds by the partial decryption simulatability
property of the threshold encryption scheme.

Hybrid 5: Let M denote the set of the currently corrupt roles. The simulator behaves as before,
except that for each input wire α that belongs to an honest client, the simulator does the following:

• Let cα denote the ciphertext that contains the value λα encrypted under tpk.

• The simulator generates a fresh random value λ̂α.

• The simulator computes the decryption shares of the corrupt roles as di ← TPDec(tpk, tski, cα).

• Compute the decryption shares of the honest roles as
{di}i∈[n]\M ← SimTPDec(tpk, cα, λ̂α, {tski}i∈[n]\M , {di}M )

Note that the indistinguishability to the previous hybrid holds as λ̂α and λα are both uniformly
random, and the threshold encryption scheme has the partial decryption simulatability property.

Hybrid 6: The simulator behaves as before, except that when an honest client needs to
publish µα, the simulator simply samples a random value µα, and publishes it instead. Note that
µα = vα − λα, and from the previous hybrid we know that λα is uniformly random. Hence, µα is
uniformly random and thus the distribution of µα remains the same as before.

Note that in our last hybrid, the simulator no longer needs the honest inputs from the input
roles. This finishes our proof.

C YOSO Broadcast
For completeness, we give the ideal broadcast functionality FBC below, as defined by Gentry et
al. [30].

Ideal Functionality FBC for Broadcast

The ideal functionality has the following behavior.

• Initially create a map y : N× Role→ Msg⊥ with y(r,R) = ⊥ for all r,R. Below we use
y(r, ·) to denote the map y′ : Role→ Msg⊥ with y′(R) = y(r,R).

• On input (Send,R, xR ∈ Msg) in round r proceed as follows:

1. Update y(r,R) = xR. Store inputs of the round.
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2. Output (R, xR) to S. Leak messages to the simulator in a rushing fashion.
3. If R is honest then give output Spoke to R.

• On input (Read,R, r′) in round r where r′ < r output y(r, ·) to R.
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