
Cryptography based on 2D Ray Tracing
PREPRINT

Sneha Mohanty1 and Christian Schindelhauer2

1 University of Freiburg, Freiburg, Germany
2 University of Freiburg, Freiburg, Germany

Abstract. We introduce a novel symmetric key cryptographic scheme involving a
light ray’s interaction with a 2D cartesian coordinate setup, several smaller boxes
within this setup, of either reflection or refraction type and 1st, 2nd or 3rd degree
polynomial curves inside each of these smaller boxes. We also incorporate boolean
logic gates of types XOR, NOT-Shift and Permutation which get applied to the
light ray after each interaction with a reflecting or refracting polynomial curve. This
alternating interaction between Optical gates (polynomial curves) and Non-optical
gates creates a complex and secure cryptographic system. Furthermore, we design and
launch customized attacks on our cryptographic system and discuss the robustness of
it against these.
Keywords: Cryptography · Polynomial objects · Plaintext · Ciphertext · Key

1 Introduction
We introduce the first ever symmetric key cryptographic system involving a two-fold
interaction of a light ray with objects in a 2D (x,y)-cartesian coordinate setup and its
projection using boolean gates (XOR, NOT-Shift and Permutation). We also formulate
and launch customized attacks on our Cryptographic system. We draw inspiration for our
work mainly from the paper by Reif et al.[RTY94], wherein a light ray begins at a certain
position and depending on the configurations of various objects in the 3D setup (optical
system), it is determined whether or not the final light ray exits at a fixed point, p.

We found it interesting that a light ray could be used to encrypt and decrypt sensitive
information in a given 2D setup instead of using textual, sound or even image based
messages.

2 Related Work
As mentioned in the previous section, our work is inspired mainly from Reif et al.[RTY94].It
has been concluded that out of the six different combinations of optical systems that
have been illustrated in this paper, except for two of the simplest configurations, the
ray tracing problem in 3D is undecidable. Han et al.[HPRK99] worked on Optical image
Encryption based on XOR operations. Blansett et al.[BST+03] from the Sandia National
Laboratories in the US discuss the Photonic Encryption using All Optical Logic. In this
paper, cryptographic algorithms have been examined in detail and the constraints of optical
logic gate technology have been determined. In addition, novel encryption approaches
that utilize photonic properties (such as; dispersion, polarization, etc.) that could be

E-mail: mohanty@informatik.uni-freiburg.de (Sneha Mohanty), schindel@informatik.uni-freib
urg.de (Christian Schindelhauer)

This work is licensed under a “CC BY 4.0” license.
Date of this document: 2025-04-07.

https://orcid.org/0000-0001-7881-4563
https://cone.informatik.uni-freiburg.de/members/sneha-mohanty
https://orcid.org/0000-0002-8320-8581
mailto:mohanty@informatik.uni-freiburg.de
mailto:schindel@informatik.uni-freiburg.de
mailto:schindel@informatik.uni-freiburg.de
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Cryptography based on 2D Ray Tracing PREPRINT

Figure 1: Overview of the Cryptographic system

modulated by certain electrical devices have been explored. The illumination problem is
discussed in [Tok95] by Tokarsky, regarding Polygonal rooms where they use right, acute
and obtuse isosceles triangles mapped throughout the room to show that not every point
is illuminable from every other point within this closed space.

3 Overview
The symmetric key cryptographic system consists of a 2D Cartesian coordinate set-up, with
a Global bounding box and several smaller Local bounding boxes. The Local bounding
boxes are of two types, i.e; Reflection (black in color) as well as Refraction (red in color).
Each of the Local bounding boxes has atmost one polynomial curve inside it, of either 1st,
2nd or 3rd degree. These Local bounding boxes are rotated and translated with respect
to the origin (0, 0) and are therefore scattered across the Global bounding box. Besides
these, Non-optical boolean gates such as; XOR, NOT-shift as well as permutation are also
part of the scheme. The Plaintext of our scheme consists of the initial (xs, ys)-position of
the light ray at the Global bounding box as well as the direction (dxs, dys) at this entry
point. The Ciphertext consists of the final (xt, yt)-position of the light ray, the direction
(dxt, dyt) at the exit point of the Global bounding box as well as the stack of Non-optical
gate boxes. The Key of the scheme consists of the Global bounding box parameters,
the crypto-element as well as object box parameters of the individual curves inside the
reflection as well as refraction Local bounding boxes. An Overview of the Cryptographic
system has been shown in Figure 1. More details about the Components of the Optical
system, the Non-optical gate system as well as the Cryptographic scheme are elaborated
in Section 4, Section 5 as well as Section 6 respectively.

Sneha Mohanty, Christian Schindelhauer 3

Figure 2: Sample Key and Encryption on the Key

A Key as well as the sequence of a sample encryption have been illustrated in Figure 2.
We use high precision keys (upto 512 places, in decimal), in order to render a seamless
encryption-decryption process without any data losses.

Furthermore, we also formulate attacks on our cryptographic system. These have been
covered in more detail in the Section 7. We have shown that our cryptographic system
is very robust against attacks in general and requires special strategies even to partially
tackle it.

4 Components of the Optical System
4.1 Global Bounding Box
The Global bounding box is a 2D box in cartesian (x,y) coordinates. It contains all the
Local bounding boxes as well as the Non-Optical gates.

4.2 Local Bounding Box
The Local bounding boxes are the smaller boxes contained within the Global bounding
box, of either Reflection (black colored) or Refraction type (red colored). Each Local
bounding box contains at most one curve, either of 1st, 2nd or 3rd degree type.

4.3 Optical gates
The optical system consists of a light ray, 1st, 2nd and 3rd degree polynomials enclosed by
their individual Local bounding boxes. Objects contained within the Local bounding boxes
could be of three types, i.e; 1st, 2nd or 3rd degree. While the 1st degree objects are parts of
a polygon, 2nd degree curves could be conic sections such as; parabolae, hyperbolae, ellipses,
spheres or generic 2nd degree curves. These are summarized in Table 1. The equations of
the different curves used in our cryptographic scheme as well as the transformed (rotated
as well as translated) coordinates, (X, Y) of the curves within the Global bounding box,
are shown in Eq. (1).

4 Cryptography based on 2D Ray Tracing PREPRINT

Table 1: List of Conic Sections in 2D

Polynomial Curve Type Equation
Parabola ax2 + bx + c = y

a(x− h)2 + k − y = 0
Ellipse x2/a2 + y2/b2 = 1

b2x2 + a2y2 − a2b2 = 0
Hyperbola x2/a2 − y2/b2 = 1

b2x2 − a2y2 − a2b2 = 0

Dx + Ey + F = 0

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

Gx3 + Hy3 + Kx2y + Lxy2 + Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

R =
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]

T =
[
∆x
∆y

]
=

[
x− x0
y − y0

]
[
X
Y

]
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
x− x0
y − y0

]
(1)

4.3.1 Light Ray

This light ray is a vector, with the form described by Eq. (2), that interacts with the objects
in the 2D environment and thereafter in each case, behaves as a reflected or refracted ray
depending on which type of Local bounding box (described in Section 4.2) it has entered.
A light ray is an element that has a source point (xs, ys) and a direction (xd, yd). We use
the vector representation of a line to describe a light ray as follows :(

xs

ys

)
+ λ

(
xd

yd

)
(2)

The light ray could be described by a linear equation. We chose the vector representation
due to the limitation that the light ray only travels in one direction. The use of the vector
representation leads to a negative λ if the intersection of the light ray and an object is
behind the source of the light ray. The positive λ and negative λ are derived from solving
linear, quadratic and cubic equations in our case, as illustrated in the following sections.

4.3.2 Tangent and Normal

Tangent The slope of the tangent is calculated by taking the dy
dx . We take a point,(xt,yt)

of interest on the tangent. The intercept, ct of the tangent line can then be calculated by
solving the equation of the tangent with the aforementioned slope and point coordinates
in consideration.

Sneha Mohanty, Christian Schindelhauer 5

Normal The slope of the normal is the calculated as −dx
dy . Similar to the above, the

intercept, cn of the normal line can be calculated by solving the equation of the normal by
taking the aforementioned slope of the normal and point of interest, i.e; (xn,yn). The slope
of the normal is valid only as long as the slope of the tangent, dy

dx ̸= 0. The normal, n⃗, can
also be calculated by taking the gradient of the object, ∇F , at the point of intersection.
The resulting vector is not limited by the individual values of dx nor dy and may be
oriented in any direction. For consistency, the normal vector is set to point ’into’ the
object. More specifically, i⃗ · n⃗ ≥ 0. When this is not the case, n⃗ is set to −n⃗.

4.3.3 Intersection Point

This section illustrates the intersection of the light ray with various objects. The idea
would be to incorporate Eq.(2) into the equations of the objects in 2D, shown in Eq. (1)
based on which object the light ray is intersecting. This would then result in equations
with coefficients of λ, λ2 and/or λ3 depending on the degree of the object (polynomial).

1st degree The first order equations involve linear components and therefore an inter-
section of the light ray with them would entail solving the linear equation in λ as shown
in Eq. (3).

aλ + b = 0 (3)

2nd degree We can compute the point of intersection between the light ray and the
second degree object by substituting the x and y values of the object before they are
rotated, with the light ray values as illustrated in Eq. (4).

[
x′

y′

]
=

[
cosθ sinθ
−sinθ cosθ

] [
(xs + λxd)− h
(ys + λyd)− k

]
=

[
cosθ sinθ
−sinθ cosθ

] [
xs − h
ys − k

]
+λ

[
cosθ sinθ
−sinθ cosθ

] [
xd

yd

]
(4)

The source point (xs, ys) is both rotated and translated while the ray direction (xd, yd) is
only rotated. The value for λ is then found after substituting the new x′ and y′ into the
object’s equation. This results in a quadratic equation in λ.

aλ2 + bλ + c = 0 (5)

Solving the above equation gives us two possible quadratic roots.
In the case where b2 − 4ac < 0, there is no intersection between the light ray and the

object. This case is caught and returned as no intercept. The value of a is required to
always be non-zero while finding the intersection point(s) between the object and the light
ray. This has been summarized in the illustration below -

6 Cryptography based on 2D Ray Tracing PREPRINT

Figure 3: The Light ray vector intersection points with a 2nd degree object

3rd degree We can compute the point of intersection between the light ray and the third
degree object in a similar manner as the second degree object, rotating and translating xs

and ys values as well as rotating xd and yd before substituting the resulting x′ and y′ into
the third degree object equation in order to find λ.

aλ3 + bλ2 + cλ + d = 0 (6)

To solve the cubic equation, Eq. (6), we use Cardano’s formula. This has been
summarized in the illustration below -

Sneha Mohanty, Christian Schindelhauer 7

Figure 4: The Light ray vector intersection points with a 3rd degree object

4.3.4 Reflection and Refraction

Reflection When the incident light ray intersects with a polynomial curve, it gets
reflected with respect to the normal such that the angle of incidence equals the angle of
reflection at the hit point on the curve.
For calculating this, we currently use the Mirroring Technique, wherein the tangent at
the hit-point to the curve is treated as the mirror and the reflected light ray is found by
drawing the vector between a mirrored point of the incident light ray on the opposite side
of the tangent, through the hit point at the surface of the curve. This has been illustrated
in Appendix Section A..

Refraction For refraction, the light ray bends from the rarer medium to the denser
medium and vice-versa following the Snell’s Law.

Refraction of light through two mediums is calculated using Snell’s Law as shown below
in Eq. (7).

n1sinθ1 = n2sinθ2 (7)

We can also solve refraction using the Vector method shown in the Appendix Section D.

5 Components of the Non-optical gate system
Non-optical gates include XOR, Not-Shift as well as Permutation gates. Grugel [Gru23] in
his Master Thesis came up with the XOR as well as Not-Shift boolean logic gates that were
then incorporated into our Cryptographic system. Furthermore, we modified his original
idea of Matrix-Mix gate into the Permutation gate, where we operate on the bit positions
directly without storing them into matrices. We convert the original floating-point Local
bounding box exit point coordinates (xe, ye) of the light ray to its binary form and then
apply one of these boolean gates, prioritized pseudo-randomly to it. This generates a new
point in binary form which is then transformed into its floating point form to generate
the projected point (Non-optical gate box position). These Non-optical gate projections
take place alternatively after every interaction with an optical gate (polynomial curve) in
the cryptographic scheme to make it more complex and robust against attacks. We work
with boolean gates that are reversible so that symmetric nature of our crypto scheme is
maintained and the encryption-decryption processes occur seamlessly.

8 Cryptography based on 2D Ray Tracing PREPRINT

XOR-Gate The XOR-Gate is a bit-wise XOR (exclusive or).

c[i] = a[i]⊕ b[i] (8)

The resulting value c in Eq. (8) is a number in binary form where each position is computed
independently using the values a, b and the XOR-truth table.

XOR is associative, commutative and each element is it’s own inverse. Using these
properties we show that the operation is reversible by reapplying the XOR-operation using
the same value.

Permutation The permutation gate involves permuting (mixing up) the different bit
positions of the binary form of the exit point coordinates of the Local bounding box,
(xe, ye). This is done, both, to the part of the (x,y)-coordinates occurring before the
decimal point as well as the part after the decimal point. This allows for a new position of
the projected point to be created, first in its binary form, which is then converted into the
decimal (floating point) form.

NOT-Gate followed by Left-/Right-Rotational-Shift The NOT-Gate takes one
bit-number as input: Let a be an w-bit number, we compute NOTa in a bit-wise manner.
Let w stand for wordlength,

c[i] = ¬a[i] where 0 ≤ i ≤ w − 1 (9)

The resulting value c in Eq. (9) is an w-bit number, where each position is computed
independently using the values a and the NOT-truth table. For the Left-/Right-Rotational-
Shift operation after the NOT gate operation, we have a bit-number ¬a and an integer k
as input. Depending on the direction (left/right) we move all the bits of the bit-number
¬a by k positions into the direction. Let ¬a be a w-bit number, let k be a integer. We
take k mod w, let the direction be left:

c[i] = ¬a[(i + k) mod w] where 0 ≤ i ≤ w − 1 (10)

Also, in the reverse direction,

¬¬a[i] = ¬c[i] = a[i] where 0 ≤ i ≤ w − 1 (11)

The resulting value c is an w-bit number, where each position is computed independently
using the values a and the NOT-truth table.

For the Left-/Right-Rotational-Shift operation after the NOT gate operation, we have
a bit-number ¬a and an integer k as input. Depending on the direction (left/right) we
move all the bits of the bit-number ¬a by k positions into the direction. Let ¬a be a w-bit
number, let k be a integer. We take k mod w, let the direction be left:

c[i] = ¬a[(i + k) mod w] where 0 ≤ i ≤ w − 1 (12)

To reverse the shift operation we apply the same number of steps in the opposite
direction. So for the above example, the direction would be taken as right.

6 The Cryptographic scheme
6.1 Plaintext
The Plaintext of the scheme consists of the initial (xs, ys) coordinate as well as the initial
direction (dxi, dyi) of entry of the light ray vector at the Global bounding box.

Sneha Mohanty, Christian Schindelhauer 9

6.2 Ciphertext
The Ciphertext of the scheme consists of the final coordinate (xt, yt), final direction
(dxt, dyt) as well as the stack of Non-optical gate boxes. The stack of Non-optical gate
boxes has to be generated and stored in the Ciphertext since this is useful in re-creating the
path of the light ray during decryption, but only when combined with the corresponding
components of the key. Another reason for adding this stack of Non-optical gate boxes to
the ciphertext is because dynamic information such as the addition of each Non-optical
gate box cannot be dynamically added to a key, once the key is generated in the key
generation step and is fixed.
Each layer of this stack consists of various elements, including the (x,y)-coordinates of
a Non-optical gate box as well as a Unique Identifier associated with it. This Unique
Identifier is used to link each Non-Optical gate box to its respective Local bounding box
of origin, in the key.

The components of a sample Ciphertext has been shown in Appendix G.

6.3 Key
The Key in our cryptographic scheme consists overall of three parts and is created from
the terminal. The three parts of the key include, the parameters for the Global bounding
box, the parameters for the cryptographic element and the list of parameters for the Local
bounding boxes and the object they contain within them.

The parameters for the Global bounding box include its point of origin, which is the
(x, y) coordinate of the bottom-left point, as well as the width and height of the Global
bounding box.

The parameters for the cryptographic element include one integer as the seed for the
random number generator within the cryptographic element and one floating point num-
ber which is the width of the Global bounding box. The seed is specified by the user
during runtime and fixes the number, type and positions of the object boxes during that
particular execution so that we can perform encryption and decryption over the same setup.

This is followed by the list of parameters for the object boxes which include the type of
object (2nd degree, 3rd degree etc.), the type of Local bounding box (reflection/refraction),
(x, y) coordinates of the bottom-left of the object box, it’s width and height, the object
contained within, including the different coefficients of the terms associated with the first,
second or third degree polynomial (e.g: coefficients of x2, y2 etc.), the rotation angles as
well as the x and y offset values of the polynomials (only for the 2nd degree, 3rd degree
polynomials, because the 1st degree polynomials are created on the intended ’spot’ inside
the Global bounding box directly), the refractive indices of the respective media (if it is
a ’refraction’ Local bounding box), one 8 bit string used as the mask for the part of the
XOR number before the decimal place and another 512 bit string for the part of the XOR
number after the decimal place, followed by mappings for the permutation gate as well
as reverse of the permutation gate. We have the unique identifier which is used to link a
Non-Optical gate box to the correct Local bounding box. Finally, the key contains two
integers : the first is the amount of shift positions and the second is the shift direction for
the Shift-Gate. 1 signifies a right shift and 0 signifies a left shift in our scheme.
The x and y offset values (mentioned in the paragraph above) of the polynomials are
necessary to be added as key parameters because we use this information to create the
individual Local bounding boxes while generating the 2D setup (visual representation of
the key) from the terminal in the key generation step.
The components of a sample key (for the same instance as shown in Figure 2) has been

10 Cryptography based on 2D Ray Tracing PREPRINT

illustrated in the Appendix E.
The parameters related to the 2nd degree, 3rd degree polynomial curves in the Key have
been shown in the Appendix F.

6.4 Encryption
The encryption step begins when the light ray enters the Global bounding box at a certain
initial (xs, ys) coordinate as well as the initial direction (dxi, dyi) (Plaintext). The light
ray then interacts with the first Local bounding box in its path. If the light ray is in direct
line of contact with the curve object inside the Local bounding box, then it behaves in
either of the two ways, i.e; if the Local bounding Box happens to be Reflective, then the
light ray reflects from the surface of the polynomial curve, following the Law of Reflection
(the incident angle equals the reflection angle, at the point of contact, w.r.t the normal at
that point) and if the Local bounding box happens to be Refractive, then the light ray
interacts with the polynomial curve on the basis of Snell’s law of reflection. Once this step is
completed, the light ray then comes into contact with the Local bounding box boundary. At
this exit point of the Local bounding box boundary, (xe, ye), this floating point coordinate
is transformed into it’s binary form and one of the three Non-optical (boolean) gates
are pseudo-randomly selected (assigned the priority of 0,1 or 2) and then applied to this
binary form of the (x,y)-coordinate. This results in another (x,y)-coordinate in binary
form, which is then transformed back into floating point form in order to obtain the
projected point, or in other words, the creation of the Non-optical gate box position. The
light ray then continues from this newly created Non-optical gate box position, retaining
the same direction that it had while exiting the previous Local bounding box until it
touches another polynomial curve inside a different Local bounding box. This alternating
interaction between polynomial curves as well as projection to Non-optical Gate boxes
continues until the light ray path terminates at the boundary of the Global bounding
box and we obtain the final (xt, yt) coordinate as well as the final direction (dxt, dyt) of
the light ray, along with the stack of Non-Optical gate boxes (Ciphertext). An example
encryption on a sample key has been shown in Figure 2.

6.4.1 Non-Optical Gate Box

The Non-Optical gate box does not contain any object and is more important to be
considered during the decryption process (except, that in the encryption process no two
Non-optical gate boxes can overlap). After a successful manipulation of a point P = (xe, ye)
using one of the boolean logic gates discussed in Section 5, to a point P ′ = (x′, y′), we
create a Non-Optical gate box at the position P ′.

This Non-Optical gate box contains the point P ′, a boundary, an unique identifier to the
object box, the type of boolean logic-gate that has been applied, and the number of places
to the right of the decimal point of (x′, y′). This is important for the process of decryption,
since the P ′ = (x′, y′) should get mapped to it’s correct binary form.

During the encryption process, Non-Optical gate boxes are pushed to the stack within
the 2D environment. During the decryption process, Non-Optical gate boxes are popped
from the stack within the 2D environment, which helps retrace the path of the light ray
backwards to the initial position of it’s entry into the Global bounding box, at (xs, ys).

6.4.2 Validity of Non-Optical Gate Positions

We find the conditions for which the projection of a point P to P ′ from a Local bounding
box to a certain point in the 2D environment can be carried out.

Sneha Mohanty, Christian Schindelhauer 11

Figure 5: Decryption on sample key presented in Figure 2

We consider a point P ′ = (x′, y′) as invalid if it is outside of the Global bounding box,
within the same Local bounding box, within another Non-Optical gate Box or potentially
enclosed in a closed object such an ellipse or a polygon formed by intersection of linear
equations.

If any of the following conditions are fulfilled, then the point P ′ is outside of the Global
bounding box G = (xG, yG, widthG, heightG) and is therefore invalid : x′ < xG, x′ >
xG + widthG, y′ < yG, y′ > yG + heightG.

To verify if the point P ′ is within the same Local bounding box or within another
Non-optical gate Box, we use similar conditions like above but instead of testing for outside
of the box, we test for inside of the box. We achieve this by replacing every < with > and
vice-versa.

The next case we need to verify is whether P ′ is enclosed by an object. For objects
of the 1st degree, we test whether the point P ′ is contained within it’s four vertices. For
2nd degree objects we need to consider the case where the 2nd degree object is an ellipse.
For this, we compute the value of the formula of the ellipse with the point P ′ as input.
For the two aforementioned types of objects, if the point P ′ is within the object then we
consider the position as invalid.

If none of the conditions discussed above, which lead to an invalid point is fulfilled,
we consider the point P ′ as a valid position, and therefore the projection from P to P ′ is
applied.

6.5 Decryption
The decryption process involves the exact opposite process as the encryption, with the
process starting at the final (xt, yt) coordinate as well as the final direction (dxt, dyt) of
the Global bounding box and ending at the Plaintext, (xs, ys) coordinate as well as the
initial direction (dxs, dys). A sample decryption for the same key and encryption instance
as in Figure 2 has been shown in Figure 5.

12 Cryptography based on 2D Ray Tracing PREPRINT

7 Attacks
We also attack our cryptographic system in order to test its robustness. We find that some
parts of the cryptographic system could sometimes be broken for bad keys. We have widely
classified the attack system into two parts, i.e; attack on the entire 2D setup (X-ray attack
or Overall Attack), in order to attempt to locate all the Local bounding boxes, followed by
the Box-by-Box attacks in order to try and ’discover’ the objects (curves) inside each of
the Local bounding boxes as well as the bit-by-bit reconstruction method used to estimate
the Boolean gate applied per Local bounding box.

7.1 X-Ray Attack (Overall Attack)
The overall attack is launched on the Global bounding box to locate the smaller Local
bounding boxes using a grid-attack followed by clustering. In the grid-attack technique,
the Global bounding box is first hit with multiple vertical and horizontal rays and the
points from which the rays get deflected could be potential locations of the Local bounding
boxes.

7.1.1 Clustering

If the encrypted data contains the ground-truth point of the applied non-optical gate, then
they can be sorted by the box-id of their respective box of origin. However, if the attacker
does not have access to this data, which is true in our case, then the reconstruction of
the Local bounding boxes becomes even more difficult, especially when the there aren’t
enough light rays hitting certain Local bounding boxes and therefore not enough samples
for certain Local bounding boxes, when the light ray is initialized at the boundary of
the Global bounding box. However, if for each box, enough such samples are obtained,
the minimum and maximum of the x and y coordinates can be potentially computed.
These could give at least an approximation of the actual boundary. If the boxes’ size is
known prior to the attack, fewer samples are needed, as points on three different sides are
sufficient to reconstruct the box correctly. However, we also don’t give out this information
about our cryptographic system to the attacker, ensuring the difficulty in locating the
Local bounding boxes in a given 2D setup.

The clustering output for the key shown in Figure 2 has been illustrated here in Figure 6.
As can be noticed, the Local bounding boxes could not be ’discovered’ in this case, using
this method.

Sneha Mohanty, Christian Schindelhauer 13

Figure 6: Clustering output on sample Key

The pseudo-code for the clustering with known ground truth points is provided in the
Appendix Section I. In this, we assume that we also give away information about the size
of the boxes to the attacker.

7.2 Box-by-box attacks
In the Box-by-box attacks, we attack the polynomial curves (objects) as well as Non-optical
boolean gates associated with the individual Local bounding boxes, assuming that we
made the discovery of the position and sizes of the Local bounding boxes inside the
Global bounding box. For the box-by-box attacks, the data points on the individual
polynomial curves are first attempted to be found using Binary Search and then followed
by approximating the curves using various techniques using those data points.

7.2.1 Binary Search

The Binary Search approach iteratively shrinks the interval along a light-ray, comparing
the current exit point with the exit point of the original light-ray whilst having the same
starting direction. Robens [Rob24], during his Bachelor Thesis came up with this intuitive
but extensive technique to try and locate data-points on a polynomial curve (object).

In this technique, the interval converges at the position of the first interaction with an
optical gate along the trajectory of the light-ray. This can be seen in the Figure 7. The
dark green light-ray is the initial light-ray along which the subsequent light-rays (marked
by the red crosses) are set.

14 Cryptography based on 2D Ray Tracing PREPRINT

Figure 7: Binary Search

This method is sometimes able to discover simple curves, but it takes a long run-time,
since the system must simulate many light rays during the search process, and each light ray
yields only one data point on the surface of the polynomial curve. Part of the computation
can be reused, as it is likely that some samples for the reconstruction of the non-optical
gates can be gathered during the process. The problem with this is that only a limited
amount of different options are explored, since about half of the light-rays simulated for
each data point obtained share the same trajectory and therefore yield only duplicate
samples for the reconstruction.

The pseudo-code for the Binary Search is provided in the Appendix Section I.

7.2.2 Approximation Techniques

Linear Objects For approximating linear objects, we use the property that at least two
data points are needed in order to draw a line through it. However, since our linear objects
consist of multiple sides and we don’t know the corresponding side of each data point, we
use at least three data points per side to confirm that they belong to that particular side
of the polygon/open-sided linear object.

We start by gathering all data point pairs and their corresponding line equations. We
narrow this search down to the line equations that cover more than two data points. All
the remaining data point pairs then get assigned to their corresponding line equations.
To find the corners, we first find the most distant data point from each of the other line
equations to achieve better precision when finding the corners. We then calculate the
intersection of all valid lines. By solving these, we retrieve a set of possible corner point
coordinates which include the actual corners and false or redundant corners. Since we only
allow simple polygons (with the sides not crossing over each other), we can group these
lines as adjacent and opposite ones. The closer two opposing lines are to being parallel,
the further away their intersection, in this case the more likely it will be a redundant
corner. Therefore in some cases redundant corners can be discarded by introducing a
bound. However, this is not trivial since it is not clear how large the bound could be, as
parts of the polygon are allowed to be outside the Local bounding box. Also, sometimes
there is an open side to the polygon, we will not be able to find data points on the open
side, since there can not be data points on the missing edge. Therefore we order the
already found ’actual’ corners in a chain to determine where the open side is. Sometimes,
if one or more of the sides of the polygon does not get hit by sufficient number of light
rays, because of its close proximity to another Local bounding box in the 2D setup, then

Sneha Mohanty, Christian Schindelhauer 15

we miss out on computing these edges of the polygon altogether.
The algorithm to approximate linear objects is given in the Appendix Section I.

Non-Linear Objects The reconstruction of Non-Linear objects is first attempted to
be done via the Naive Approaches and then replaced by the Approximation techniques
involving PLU factorization of the Jacobian of Non-linear equations and thereafter using
the Modified-Newton (md-newton) step. We experimented with interpolation of the data
points using B-spline curve fitting. However, due to segmentation of the splines, this
method was a bad fit for sparse regions of the curve where the data point density was low.
This could also not be used to segment discontinuous curves.

We also could not perceive of a way to segment non-continuous curves, especially when
overlapping. We thereafter used some other non-linear Python modules such as Gekko and
Scipy.Optimize to approximate the curves but without sufficiently good enough results.
Then, we moved onto Global Simulated Annealing to find the curve coefficients, offset and
rotation and possibly decide what type of object it is. This partially worked in finding
local minima but failed for overall curve approximations.

For a system of Non-linear equations, we first compute the Jacobian matrix, J of the
system, use PLU decomposition of the Jacobian to solve the linearized system and finally
use the modified Newton method iteratively until convergence. As part of his Bachelor
Thesis, Leisegang [Lei24] experimented with this method. This worked in some cases,
where we were able to approximate certain parts of the individual polynomial curves
(objects), given sufficient amount of data points. But it also failed in some cases, especially
while estimating 3rd degree curves. This has been covered in the Appendix SectionI in
more detail.

7.2.3 Deciding the object type

Once the curve approximations are assumed to be done, the next step is to assign the
polynomials to 1st, 2nd or 3rd degree type. Deciding if a set of data points belongs to a
linear object is easier to do than deciding if they belong to higher degree curves (objects)
especially when these data points are spatially separated from each other within a small ϵ.

Difficulties of deciding whether the polynomial curve is of 2nd or of 3rd degree type on
the basis of the residuals are as follows:
When finding a unique solution for a baseline 3rd degree function, the objective function of
2nd degree, due to it’s lower cardinality of variables and therefore more sparse information
about the polynomial curve (object), may satisfy the linear equation system better than
the objective function of 3rd degree.
Similarly, a 2nd degree object may satisfy a 3rd degree objective function, because a generic
3rd degree polynomial includes all terms of a generic 2nd degree polynomial. However, this
leads to arbitrary curves.

To mitigate this issue, we tried choosing suitable data points on the polynomial curve
to construct a linear equation system, that captured less localized properties of the curve.
We selected data points with cardinality 6 / 10 with the maximum Manhattan distance
between points out of the set of all data points. This helped somewhat with the reduction
of both, very local as well as very sparse data points.

The Algorithm for deciding the object type is shown the Appendix Section I.

7.2.4 Bit-by-bit reconstruction

Once the polynomial curves (objects) have been discovered and assigned to their respective
types, the next step is to estimate the Non-optical boolean gates assigned to each of the
Local bounding boxes. We assume here that the ground-truth points at the exit of every
Local bounding box is known for every light ray interacting with such a Local bounding

16 Cryptography based on 2D Ray Tracing PREPRINT

box. These exit points are however, not shared in reality by us to the attacker who interacts
with our cryptographic system.

Since the encryption gate is chosen pseudo-randomly and an integer out of 0,1 or 2 is
returned to indicate which non-optical gate is used, for the particular Local bounding box,
one needs to check for all combinations, since for a box, 0 might refer to permutation, 1
might refer to Not-Shift but for the next Local bounding box, 0 might refer to XOR and
so on. To determine which gate was actually used according to encryption priority, the
reconstruction algorithm should therefore compute a measure of certainty or correctness of
output to choose the correct transformation for each of the priorities. For this task, in the
case of the XOR and the Not-Shift, the average precision of the computed transformation
is computed as Σ precisionperbit

numberofbits with precision per bit = numberofsamplessupportingbit
numberofsamples . For

all possible combinations of priorities to encryption methods, the sum of the average
precision of the reconstructions is maximized to decide which is the most likely choice.
The term, ’enough’ samples needs to be addressed because it is highly subjective and
depends firstly on the gate type to reconstruct and, secondly, on how the samples are
created. If the samples are random, due to the light ray hitting the Local bounding box
from random entry points, more number of samples are needed than in the case in which
specific coordinates are encrypted with the functions.

XOR As the inverse operation of XOR is itself XOR with the same parameter (a =
(a⊕ b)⊕ b), the secret constant c can be computed by c = t⊕ o = (o⊕ c)⊕ o where t is
the binary coordinate after the transformation and o is the original binary coordinate.
For each pair of coordinates, a constant is computed. Over all of these constants, a majority
gate is applied bitwise to generate a single constant. The percentage of correct bits in all
previously computed constants is taken as the certainty measure to decide if XOR was the
correct gate for these samples. The pseudo-code for the reconstruction of the XOR-gate is
provided in the Appendix Section I. An example of the reconstruction is provided in the
Appendix Section H.

Not-Shift To compute possible parameters for a Not-Shift operation, first o is computed
by negating o bitwise. Then the reconstruction iterates over all possible shifts and stores
the parameters of the shifts with the best match. This process is repeated for every pair
of coordinates. Since a cyclic shift is used, there exist multiple correct solutions for a shift,
as for example, a right-shift by 2 and a left-shift by -2 achieve the same transformation. If
the concrete implementation is known, this can be further optimized to only check the
shifting amounts in the range that can actually get generated. The measure of certainty in
the reconstruction is the determined as the percentage of bits correctly set in each sample
according to the shift that yields the most correct matching.

Without the need to decide if Not-Shift was the actually applied gate, it is possible
to reconstruct the correct parameters with less number of samples, if any shift can be
uniquely detected (not accounting for shifts further than the length of the coordinate).
A possible candidate for this would be a coordinate that contains only a single 1 in its
binary representation at a specific place in the decimal part and everywhere else 0. Using
random samples without duplicates, the number of required samples is much higher. The
pseudo-code for the reconstruction of the Not-Shift-gate is provided in the Appendix
Section I. An example of the reconstruction is provided in the Appendix Section H.

Permutation The reconstruction of the Permutation gate is the computationally most
expensive reconstruction operation out of the three cases. Since every bit-position has
to be reconstructed, a lot of samples are required, especially when random samples are
used instead of specifically chosen entry points of the light into the Local bounding box
(xe, ye), hence leading to specific exit points at the boundary of the Local bounding

Sneha Mohanty, Christian Schindelhauer 17

box. The number of samples required for reconstruction significantly increases with the
number of bits we use during encryption (currently, 512 in decimal). For each coordinate
pair, the reconstruction computes which bit-index in the transformed coordinate could
stem from which indices in the original coordinate. Obtaining the correct mapping can
be performed by set-intersection for sets of original indices for each bit-position in the
transformed coordinate. This procedure checks for the correct transformation, as the
correct transformation could be a possibility in every sample.

The certainty measure in this case is first computed bit-wise on the resulting sets. It
is calculated by the inverse of the number of elements per set, e.g. if there remain two
possibilities for a given index, the certainty is 1

2 . If there is the special case that there is
an empty set, it is impossible that the transformation could have been a Permutation,
as the correct permutation is always preserved during set-intersection. In this case, the
reconstruction of the gate can be stopped, and the certainty is 0. Otherwise, the certainty
is taken to be the average of the bit-wise certainties.

Assuming specific coordinates can be chosen to be encrypted, the amount of needed
samples varies strongly between possible approaches. The naive approach for chosen
coordinates is to take coordinates containing either exactly one 0 or exactly one 1 and
repeat this for every bit position. A more optimized version attempts to reconstruct the
Permutation gate to an extent with a logarithmic number of samples relative to the length
of the input. For random sampling, more coordinate pairs are required. For the more
refined algorithm, it is needed that the coordinates getting encrypted can be freely chosen.
As this requirement is not fulfilled, the less efficient algorithm is used. The pseudo-code
for the reconstruction of the Permutation gate is provided in the Appendix Section I. An
example of the reconstruction is provided in the Appendix Section H.

8 Results of Box-by-Box Attacks
In the Figure 8 is one among the several boxes of the actual (left) vs computed (right)
box-by-box outputs belonging to the sample Key shown in Figure 2. As can be seen, the
curve has been wrongly estimated. These errors could also occur while estimating the
Non-optical gate (boolean gate) associated with such boxes.

Figure 8: Mismatch in the actual vs the estimated curve from box-by-box attack

18 Cryptography based on 2D Ray Tracing PREPRINT

9 Conclusion and Future Work
We have been able to introduce a completely novel symmetric key cryptographic system
in 2D using a light ray’s alternating interaction between reflective as well as refractive
polynomial curves (objects) of 1st, 2nd and 3rd degree type along with boolean gates, such
as; XOR, NOT-Shift and Permutation. This two-fold interaction and projection of the light
ray involving the various objects in our 2D setup creates a robust and secure cryptographic
system which requires very specific types of attacks to even partially investigate it. The
key generation step ensures that our keys have the optimal Local bounding box to Global
bounding box size ratio as well as the number of Local bounding boxes are numerous
enough to generate safe keys. By incorporating higher number of precision bits (currently,
a maximum of 512 places in decimal) into our cryptographic system, during key generation,
we make sure that there is no loss in bits related data during the encryption-decryption
process. We plan to further delve into the Precision Analysis aspect of the cryptographic
system in a pure mathematical sense, as a Future Work. We would also like to create and
analyze the same cryptographic system, but in 3D.

Sneha Mohanty, Christian Schindelhauer 19

References
[BST+03] Ethan L Blansett, Richard Crabtree Schroeppel, Jason D Tang, Perry J

Robertson, Gregory Allen Vawter, Thomas David Tarman, and Lyndon George
Pierson. Photonic encryption using all optical logic. 12 2003. URL: https:
//www.osti.gov/biblio/918388, doi:10.2172/918388.

[Gru23] Tobias Grugel. Implementation, simulation and analysis of a gate-based cryp-
tographic scheme in a ray tracing environment. Unpublished Master Thesis,
June 2023.

[HPRK99] JongWook Han, Choon-Sik Park, Dae-Hyun Ryu, and Eun-Soo Kim. Optical
image encryption based on XOR operations. Optical Engineering, 38(1):47 –
54, 1999. doi:10.1117/1.602060.

[Lei24] Maximilian Leisegang. Visual cryptography: Attacks on visual cryptographic
system. Unpublished Bachelor Thesis, July 2024.

[Rob24] Benjamin Robens. Analysis and defense against attacks on visual cryptographic
schemes with optical and non-optical gates. Unpublished Bachelor Thesis, May
2024.

[RTY94] John H. Reif, J. Doug Tygar, and A. Yoshida. Computability and complexity
of ray tracing. Discrete & Computational Geometry, 11:265–288, 1994.

[Tok95] George W. Tokarsky. Polygonal rooms not illuminable from every point.
The American Mathematical Monthly, 102(10):867–879, 1995. URL: http:
//www.jstor.org/stable/2975263.

https://www.osti.gov/biblio/918388
https://www.osti.gov/biblio/918388
https://doi.org/10.2172/918388
https://doi.org/10.1117/1.602060
http://www.jstor.org/stable/2975263
http://www.jstor.org/stable/2975263

20 Cryptography based on 2D Ray Tracing PREPRINT

A Mirror Technique for finding the Reflected Ray
The mirroring technique uses the tangent as the mirror at the point of intersection of
the light ray with the object. The point mirrored by the tangent is determined using the
mid-point theorem of a line segment. On tracing a line through this mirrored point and
the point of intersection, we obtain the reflected light ray.

Figure 9: The Mirroring Technique

yT = xT .diff + c1 (13)

yT = (xT − a1).diff_norm + b1 (14)

By rearranging Eqs.(13) and (14), we obtain :

xT = c1 − b1 + a1.diff_norm
diff_norm− diff (15)

Using the mid-point theorem of a line segment,

xT = x2T + a1

2 (16)

yT = y2T + b1

2 (17)

Rearranging (16) and (17), we obtain :

x2T = 2xT − a1, y2T = 2yT − b1 (18)

Sneha Mohanty, Christian Schindelhauer 21

Using (15) and (13), we obtain (x2T , y2T).
We also know that,

y − y2T

x− x2T
= ys − y2T

xs − x2T
(19)

This gives us

y = (ys − y2T)(x− x2T)
xs − x2T

+ y2T (20)

Solving this results in the equation of the reflected light ray (as the equation of a line).

B Method using tanθ for finding the Reflected Ray
This method uses the fact that the angle between the incident ray and the normal to the
surface of the object is the same as the angle between the reflected ray and the normal.

Assume that the slope of the incident light ray is m1 and the slope of the normal is m.
Let the slope of the reflected light ray be m2. We know that as per the Law of Reflection,
the angle between the incident ray and the normal is the same as the angle between the
normal and the reflected light ray.

We hence come up with the following Formula :

m1 −m

1 + m1m
= m−m2

1 + m2m
(21)

Solving this would give us a quadratic equation which would in turn result in two possible
values for the slope of the reflected light ray, m2.

C Vector Technique for finding the Reflected Ray

Figure 10: Vector Technique for finding the Reflected Ray

To calculate the reflected ray using vectors, we note that the inputs are the input ray,
i⃗, and the normalized normal vector into the object at the point of intercept, n̂, which
by definition has a magnitude value of one. As seen in the diagram, the dot product of
these two vectors, i⃗ · n̂, is the projection of the input ray onto n̂. Since this is a scalar,
multiplying it by n̂ changes the magnitude of n̂ but not its direction. By then multiplying
this value by two and subtracting it from i⃗, we obtain an output vector o⃗. The vector o⃗
has the same direction as the output ray due to reflection. We can see this is true, due to
the fact that reflection arises from the angle between the incidence ray and the normal
being equal to the angle between the normal and the output ray. The vectors here create

22 Cryptography based on 2D Ray Tracing PREPRINT

two right triangles, one with sides ∥⃗i∥, i⃗ · n̂, and ∥⃗i− (⃗i · n̂)n̂∥; the other with sides ∥o⃗∥,
i⃗ · n̂, and ∥⃗i − (⃗i · n̂)n̂∥. These triangles are equivalent, due to two sides and the angle
between them being equivalent. Thus, the angle between o⃗ and n̂ is equal to the angle
between i⃗ and n̂. Therefore, o⃗ is the output ray from reflection.

D Vector Technique for finding the Refracted Ray

Figure 11: Vector i⃗ derived from addition of orthogonal vectors

Figure 12: Use of cross product of vectors in finding Refracted ray

Refraction using vectors follows from the same initial point as reflection using vectors.
We note from Figure 11 that (⃗i · n̂)n̂ and i⃗− (⃗i · n̂)n̂ are two orthogonal vectors that, when
added together, produce vector i⃗. There is a second method to calculate the same direction
as i⃗− (⃗i · n̂)n̂ using the cross product, (n̂× i⃗)× n̂ as seen in the Figure 12.

Also, in the Figure 12, note that all right angles are denoted. The value for n̂× i⃗ points
in a third direction, orthogonal to both n̂ and i⃗. Meanwhile, (n̂ × i⃗) × n̂ is in the same
plane as n̂ and i⃗. With this equivalence, we can say,

i⃗ = (⃗i · n̂)n̂ + i⃗− (⃗i · n̂)n̂ = (⃗i · n̂)n̂ + (n̂× i⃗)× n̂ (22)

For simplicity, we normalize i⃗ as î. Snell’s Law is the equation to calculate refraction from
one medium into another using

n1sinθ1 = n2sinθ2 (23)

Setting µ = n1/n2, this can be rewritten as

µsinθ1 = sinθ2 (24)

Sneha Mohanty, Christian Schindelhauer 23

The definition of cross product, for two vectors A and B with angle θ between them, states

sinθ = (A×B)/∥A∥∥B∥ (25)

We can now rewrite Snell’s Law for some output vector r⃗ using the cross products as

µ(n̂× î) = n̂× r⃗ (26)

The vector r⃗, like î, can be expressed as

r⃗ = (r⃗ · n̂)n̂ + r⃗ − (r⃗ · n̂)n̂ = (r⃗ · n̂)n̂ + (n̂× r⃗)× n̂ (27)

Using this, we can substitute the first cross product with Snell’s Law:

r⃗ = (r⃗ · n̂)n̂ + µ(n̂× î)× n̂ (28)

The cross products can be replaced once again, giving us

r⃗ = (r⃗ · n̂)n̂ + µ(̂i− (̂i · n̂)n̂) (29)

Now, r⃗ must be removed from the right side of the equation. This can be done by setting
r⃗ to a normalized vector, r̂.

r̂2 = ((r⃗ · n̂)n̂)2 + (µ(̂i− (̂i · n̂)n̂))2 + 2(((r⃗ · n̂)n̂) · (µ(̂i− (̂i · n̂)n̂))) (30)

As the two components are orthogonal, the dot product between them is zero.

r̂2 = (r⃗ · n̂)2n̂2 + µ2(̂i2 − 2(((̂i · n̂)n̂) · (̂i)) + (̂i · n̂)2n̂2) (31)

Since n̂ and î are normalized vectors, their squares are simply one.

r̂2 = (r⃗ · n̂)2 + µ2(1− 2(̂i · n̂)2+(̂i · n̂)2) = (r⃗ · n̂)2 + µ2(1− (̂i · n̂)2) (32)

Finally, since r̂2 = 1 as well,

(r⃗ · n̂) = ±
√

1− µ2(1− (̂i · n̂)2) (33)

. We know the square root is positive, as the angle between r̂ and n̂ is always less that
π/2. Thus we have the solution

r⃗ = µ(̂i− (n̂ · î)n̂) + n̂

√
1− µ2(1− (n̂ · î)2) (34)

E Parts of a Sample Key

24 Cryptography based on 2D Ray Tracing PREPRINT

Figure 13: Components of the key, for the instance shown in Figure 2

F Parameters of a Key

F.1 Parameters of a 2nd degree polynomial

Table 2: Parameters of 2nd degree polynomial curve

Parameter Usage
A Factor of x2

B Factor of x · y
C Factor of y2

D Factor of x
E Factor of y
F Constant

xoff Offset in x-direction
yoff Offset in y-direction
θ Angle of rotation
n1 Refractive index of less dense material 1
n2 Refractive index of more dense material 2

Sneha Mohanty, Christian Schindelhauer 25

F.2 Parameters of a 3rd degree polynomial

Table 3: Parameters of 3rd degree polynomial curve

Parameter Usage
G Factor of x3

H Factor of y3

K Factor of x2 · y
L Factor of x · y2

A Factor of x2

B Factor of x · y
C Factor of y2

D Factor of x
E Factor of y
F Constant

xoff Offset in x-direction
yoff Offset in y-direction
θ Angle of rotation
n1 Refractive index of less dense material 1
n2 Refractive index of more dense material 2

26 Cryptography based on 2D Ray Tracing PREPRINT

G Parts of a Sample Ciphertext

Figure 14: Components of a ciphertext

H Reconstruction Examples

XOR

Table 4: Sample XOR reconstruction

Samples (110101, 010000) (010011, 110110) (010111, 110010)
Intermediate 100101 100101 100101
Resulting constant 100101
Bitwise certainty 1, 1, 1, 1, 1, 1

Not-Shift

Table 5: Sample Not-Shift reconstruction

Samples (101010, 101010) (001110, 001110) (111101, 010000)
Possible right shifts 1, 3, 5 3 3
Resulting shift Rightshift by 3
Certainty 1

Sneha Mohanty, Christian Schindelhauer 27

Matrix-Mix

Table 6: Sample Matrix-Mix reconstruction

Samples (101100, 110010) (011010, 010101) (110001, 001110)

Possible mappings

0, 2, 3 0
0, 2, 3 1
1, 4, 5 2
1, 4, 5 3
0, 2, 3 4
1, 4, 5 5

0, 3, 5 0
1, 2, 4 1
0, 3, 5 2
1, 2, 4 3
0, 3, 5 4
1, 2, 4 5

2, 3, 4 0
2, 3, 4 1
0, 1, 5 2
0, 1, 5 3
0, 1, 5 4
2, 3, 4 5

Resulting permutation (0, 1, 2, 3, 4, 5) → (3, 2, 5, 1, 0, 4)
Bitwise certainty 1, 1, 1, 1, 1, 1

I Algorithms

Algorithm 1 binary_search
Input: scene: Scene, ray: Light-ray, precision: Decimal
Output: point | None

1: start ← ray.position
2: direction ← ray.direction
3: stop ← predicted exit point with no interaction
4: actual-out ← scene.Encrypt(ray).position
5: mid ← None
6: if stop == actual-out then
7: return None
8: end if
9:

10: while start.distance(stop) > precision do
11: mid ← start + ((stop - start)*0.5)
12: newray ← Ray(mid, direction)
13: newout ← scene.Encrypt(newray)
14: if newout.distance(actual-out) == 0 then
15: start ← mid
16: else
17: stop ← mid
18: end if
19: end while
20: return mid

28 Cryptography based on 2D Ray Tracing PREPRINT

Algorithm 2 Linear Object Reconstruction
Input: samples: list[tuple(str, str)]
Output: corners:list[tuple(str, str)]
All samples must share the same length

1: lineEquations ← []
2: for each pair of samples: do
3: lineEq ← getLineEquation(pair)
4: if coversMoreThanThreePoints(lineEq, samples) then
5: lineEquations.append(lineEq)
6: end if
7: end for
8: for lineEq in lineEquations: do
9: distantPoint ← findDistantPoint(lineEq, samplePoints)

10: distantPoints.append(distantPoint)
11: end for
12: intersections ← []
13: for each pair in lineEquations: do
14: if calculateIntersection(pair) then:
15: corners.append(calculateIntersection(pair))
16: end if
17: end for
18: corners ← removeRedundantCorners(corners)
19: if |corners| < 4 then
20: corners ← constructChain(corners, distantPoints)
21: end if
22: return corners, isopenObject

Algorithm 3 Objects of higher Dimensionality Reconstruction
Input: samples: list[tuple(str, str)], x0: tuple(str, ...)
Output: coefficients: list[str, ...], residual: list[str, ...]
All samples must share the same length

1: for sample in samples: do
2: A.append(SubstituteDPIntoPolynomial(sample))
3: end for
4: fx ← CalcResiduals(A, x0)
5: P, L, U ← PLU-Decomposition(A, fx)
6: y ← forwardSubstitution(b, P, L)
7: delta ← backwardSubstitution(y, L)
8: coefficients ← init - delta
9: error ← functionValue(coefficients)

10: return coefficients, error

Sneha Mohanty, Christian Schindelhauer 29

Algorithm 4 Decide Objects during Attack
Input: samples: list[tuple(str, str)], box: boxObject

Output: coefficients: list[tuple(str, ...)], objectType: int
1: samples, lightRays ← findSamplesWithBinarySearch(box)
2: if isLinearObject(samples) then:
3: coefficients ← linearObjectReconstruction(samples)
4: objectType ← 1
5: end if
6: samples ← applyOffsetToSamples(box, samples)
7: sampleSet ← findDistant(samples)
8: solutions2D ← []
9: solutions3D ← []

10: for sampleSubset in range (sampleSet) do
11: solutions2D.append(solve2D(sampleSubset))
12: solutions3D.append(solve3D(sampleSubset))
13: end for
14: minimalSolution2D ← minimalError(solutions2D)
15: minimalSolution3D ← minimalError(solutions3D)
16: if arbitraryEdgesCheck(minimalSolution3D, lightRays) then
17: coefficients ← minimalSolution2D
18: objectType ← 2
19: end if
20: if Not arbitraryEdgesCheck(minimalSolution3D, lightRays) then
21: coefficients ← minimalSolution3D
22: objectType ← 3
23: end if
24: return coefficients, objectType

Algorithm 5 xor_reconstruction
Input: samples: list[tuple(str, str)]
Output: str, float
All samples must share the same length

1: constants ← []
2: certainty ← 0
3: for pair in samples do
4: const ← bitwse XOR (pair[0], pair[1])
5: constants.append(const)
6: end for
7: result ← bitwise majority gate over all elements in constants
8: for const in constants do
9: for i dondex in range(len(result)):

10: if const[index] == result[index] then
11: certainty ← certainty + 1
12: end if
13: end for
14: end for
15: certainty ← certainty/(len(result) · len(constants))
16: return result, certainty

30 Cryptography based on 2D Ray Tracing PREPRINT

Algorithm 6 notshift_reconstruction
Input: samples: list[tuple(str, str)]
Output: str, float
All samples must share the same length

1: constants ← []
2: certainty ← 0
3: for pair in samples do
4: neg ← bitwise negated pair[0]
5: for amount in range(len(pair[0])) do
6: shifted ← neg cyclicly shifted by 1 to the right
7: if shifted == pair[1] then
8: constants.append(amount)
9: end if

10: end for
11: end for
12: result ← value occurring most often in constants
13: for pair in samples do
14: neg = bitwise negated pair[0]
15: shifted = neg shifted by result places to the right
16: if shifted == pair[1] then
17: certainty ← certainty + 1
18: end if
19: end for
20: certainty ← certainty/len(samples))
21: return result, certainty

Sneha Mohanty, Christian Schindelhauer 31

Algorithm 7 permutation_reconstruction
Input: samples: list[tuple(str, str)]
Output: list[int] | None, float
All samples must share the same length

1: index_lists = []
2: for orig_ind in range(len(samples[0][0])) do
3: cur_list ← []
4: for pair in samples do
5: ind_set ← set()
6: for end_ind in range(len(pair[1])) do
7: if pair[0][orig_ind] == pair[1][end_ind] then
8: ind_set.add(end_ind)
9: end if

10: end for
11: cur_list.append(ind_set)
12: end for
13: index_lists.append(cur_list)
14: end for
15:
16: result ← []
17: certainty ← 0
18: for ind in range(len(index_lists)) do
19: intersected ← intersection of all sets per index
20: if len(intersected) == 0 then
21: return None, 0
22: end if
23: certainty ← certainty + (1/len(intersected))
24: result.append(intersected.pop)
25: end for
26: certainty ← certainty/ len(index_lists) return result, certainty

32 Cryptography based on 2D Ray Tracing PREPRINT

Algorithm 8 clustering_given_points
Input: box_dict: dict(list(point)), width: float, height: float
Output: dict[box_id](Box)

1: out ← empty dict
2: for box_id in box_dict.keys() do
3: points ← box_dict[box_id]
4: x_min, x_min_c ← minimal x-coordinate, nr. of occurrences of that value
5: x_max, x_max_c ← maximal x-coordinate, nr. of occurrences of that value
6: y_min, y_min_c ← minimal y-coordinate, nr. of occurrences of that value
7: y_max, y_max_c ← maximal y-coordinate, nr. of occurrences of that value
8: pos_x, pos_y = 0, 0
9: x, y = False, False

10: if x_min_c > 1 then
11: pos_x ← x_min
12: x ← True
13: else if x_max_c > 1 then
14: pos_x ← x_max - width
15: x ← True
16: end if
17:
18: if x_min_c > 1 then
19: pos_y ← y_min
20: y ← True
21: else if x_max_c > 1 then
22: pos_y ← y_max - height
23: y ← True
24: end if
25:
26: if x == True and y == True then
27: out.add(Box((pos_x, pos_y), (width, height)))
28: else
29: gather more samples, retry reconstruction
30: end if
31: end for
32: return out

	Introduction
	Related Work
	Overview
	Components of the Optical System
	Global Bounding Box
	Local Bounding Box
	Optical gates

	Components of the Non-optical gate system
	The Cryptographic scheme
	Plaintext
	Ciphertext
	Key
	Encryption
	Decryption

	Attacks
	X-Ray Attack (Overall Attack)
	Box-by-box attacks

	Results of Box-by-Box Attacks
	Conclusion and Future Work
	References
	Mirror Technique for finding the Reflected Ray
	Method using tan for finding the Reflected Ray
	Vector Technique for finding the Reflected Ray
	Vector Technique for finding the Refracted Ray
	Parts of a Sample Key
	Parameters of a Key
	Parameters of a 2nd degree polynomial
	Parameters of a 3rd degree polynomial

	Parts of a Sample Ciphertext
	Reconstruction Examples
	Algorithms

