
Hybrid-query bounds with partial input control � framework

and application to tight M-eTCR

Andreas Hülsing1,2, Mikhail Kudinov1, and Christian Majenz3

1 Eindhoven University of Technology, Eindhoven, Netherlands
2 SandboxAQ, Paolo Alto, USA

3 Technical University of Denmark, Kongens Lyngby, Denmark
andreas@huelsing.net, mishel.kudinov@gmail.com, chmaj@dtu.dk

Abstract. In this paper, we present an improved framework for proving query bounds in the
Quantum Random Oracle Model (QROM) for algorithms with both quantum and classical
query interfaces, where the classical input is partially controlled by the adversary. By extend-
ing existing techniques, we develop a method to bound the progress an adversary can make
with such partial-control classical queries. While this framework is applicable to di�erent hash
function properties, we decided to demonstrate the impact of the new techniques by giving an
analysis of the multi-target extended target collision resistance property (m-eTCR). This new
approach allows us to achieve an improved bound that signi�cantly reduces the required func-
tion key size. Our proof is tight in terms of query complexity and has signi�cant implications
for cryptographic applications, especially for signature schemes in the hash & sign paradigm,
enabling more e�cient instantiations with reduced salt sizes and smaller signature lengths. For
an example of multiple signatures aggregation, we achieve a signature size of 30 kB smaller.

Keywords: QROM · Hybrid QROM · TCR · Hash & Sign.

1 Introduction

Hash functions are one of the most widely used primitives in modern cryptography. One of the �rst
steps to analyze a given security property for a hash function is to analyze the property for a random
function. To do so, we model the hash function as a random oracle [2, 12] (Random Oracle Model,
ROM). The ROM is the standard tool for characterizing generic attacks against hash functions:
attacks that only depend on the input-output behavior of the hash function rather than the details
of the algorithm. In the ROM, the number of queries required to break a certain security property
is used as a proxy for the real (time-) complexity of an attack. On the other hand, such analysis
gives a bound on the maximum possible level of security for real-world hash functions for a given
property.

The desire for security of quantum computing attacks requires revisiting many cryptographic
techniques, including the ROM. A quantum adversary possesses a large-scale quantum computer and
may perform local quantum computations, while the honest users remain classical. Such quantum
adversary can implement any publicly available primitive as a quantum circuit and run it on a
superposition of inputs. As hash functions are public primitives, we need to model them as being
quantumly accessible. This also applies to the ROM, resulting in the quantum-accessible random
oracle model (QROM) [3].

As mentioned, for post-quantum security, we consider a quantum adversary, but the honest parties
remain classical. Hence, any interaction with an honest user must be classical. If an adversary has

A.H. and M.K. were supported by an NWO VIDI grant (Project No. VI.Vidi.193.066). Date: April 6, 2025

2 A. Hülsing, M. Kudinov, C. Majenz

access to a keyed functionality which, in turn, queries a random oracle, such access thus remains
classical. A typical example would be a pseudorandomness notion for a keyed hash function. An
honest user generates a secret key. The adversary may query the hash function instantiated with
the secret key and needs to determine whether the responses are generated by actual evaluation of
the hash function or if they are just random strings. In this case, the adversary needs to perform
classical queries to the honest user while still being able to do quantum queries (containing both the
key and the message) to the hash function.

Recently, a plethora of techniques has been developed to prove security in the QROM. Among
those, there are reprogramming techniques [14] that allow us to update the outputs of the random
oracle dependent on adversaries' queries. While this is a very powerful tool, sometimes we do not
actually need to change the outputs of the hash function. In certain scenarios this tool was used
to deal with classical challenge queries (as in the PRF example). The reprogramming techniques
allow sampling responses for the challenge queries at the very beginning.This way, all the classical
queries can be made before any quantum computations, allowing us to analyze the simple setting
of a quantum algorithm for a known task. Here, the important part was to learn the outputs in
advance, rather then changing the output of a hash function. For the analysis of the quantum part
one could use a recently developed framework [7] by Kai-Min Chung, Serge Fehr, Yu-Hsuan Huang
and Tai-Ning Liao. This framework helps to analyze quantum query progress using only classical
reasoning. In their work the authors view the QRO as a database, which is updated with each
query. Such an approach is possible because of the compressed random oracle (CRO) � a technique
introduced by Zhandry [27] that allows the investigation of queries made to the oracle. The CRO
resembles classical lazy sampling. Unfortunately, these techniques do not give us a way to distinguish
records in the database. We can not say which record is a result of a challenge query and which is
an attempt to �nd a solution.

Motivated by the limited resources of a near-term quantum computing scenario, Hamoudi, Liu,
and Sinha developed a technique to give a �ne-grained analysis of hybrid algorithms [17]. Such
algorithms use a mix of quantum and classical queries. The authors' aim was to show lower bounds
on the complexities of certain problems. For example, the authors showed that the optimal success
probability of an algorithm making q quantum and c classical queries for solving the Collision Finding
problem is Θ((c2+ cq2+ q3)/N). The crucial part of their framework is that it allows the distinction
between classical and quantum queries.

In [17] classical and quantum queries model di�erent implementations of a public primitive. It was
thus not necessary to restrict the adversary in their choice of input to the classical query interface.
For settings where the classical query interface results from modeling adversarial access to a keyed
cryptographic functionality, the adversary might only get partial control over the query input (as in
the PRF example). An important open question is thus:

Can we upgrade the hybrid compressed oracle technique to allow tight query bounds for
partial-input-control query access?

Our contribution. In this work, we develop a framework for proving QROM query bounds for
algorithms with standard quantum access and an additional classical query interface with partially-
random input.

In our work, we generalize the techniques used by the authors of [17]. Instead of using the
hybrid CRO for analyzing the overall complexity of an algorithm, we use it to model the classical
interactions of a quantum adversary. A key insight is that the separate databases for quantum- and
classical queries in the framework of [17] allow analyzing problems where input-output pairs obtained
from the classical query interface are treated di�erently than other pairs.

Concretely, we develop a framework for proving query bounds in settings where an adversary can
provide part of the input to the classical query interface of a QRO, and the remaining part is sampled

Hybrid-query bounds with partial input control 3

at random. Starting from the work of [17], our technique bounds the �progress�, as measured by
a database predicate projector, that the adversary can achieve with such partial-control classical
queries.

To illustrate the utility of our technique, we analyze the multi-target extended target collision
resistance property (m-eTCR) in the QROM. Loosely speaking, the adversary must �nd a collision
for a message of their choice, but the key for that message is chosen uniformly at random: A chooses
M , and then given a uniformly random K, must �nd (K ′,M ′ ̸=M), s.t. F (K ′,M ′) = F (K,M). A
typical use-case for this property can be keyed-hash message authentication codes [20] or signature
schemes in the hash & sign paradigm [1, 8, 23].The security of this property has been analyzed in
the QROM in [14]. We give it another look. Using the techniques from [17] and the ones we develop
in this paper, we were able to improve the state-of-the-art bound for QROM security of m-eTCR.
The proof requires an analysis of the progress a quantum and a classical query can make. This is
done with the use of our extension and careful inspection of possible amplitude growth.

The new bound allows us to remove more than half of the key size, reducing them from 192 to
72 bits. Moreover, our proof is tight in the number of queries. We provide an attack with a matching
number of queries for each term in the bound, essentially closing the question of the security analysis
of m-eTCR for random functions.

We also discuss the implications of our new proof. We take a closer look at one of the typical use
cases � randomized hashing in the hash & sign paradigm. It is often the case that we want to hash
the message before signing it. Adding randomness to the hash function input allows us to decrease
the security requirement from collision resistance to m-eTCR. This usually allows us to use a smaller
digest length but forces us to append the used randomness to the signature. Hence, using smaller salt
gives us smaller signature sizes. This becomes especially important in the case of multiple signature
aggregation. By applying our bound to a recent proposal [1], we achieve a signi�cant reduction in
the size of the aggregated signature. In case the aggregated signature is formed from 2000 signatures,
our analysis enables a size reduction from 165 kB to 136 kB.
Organization. We introduce necessary de�nitions and discuss CRO in Section 2. Section 3 is
devoted to the description of the hybrid CRO framework. In Section 4, we improve the framework
by presenting a bound on the progress for a new type of query. The security proof for m-eTCR that
uses the results obtained in the previous section is given in Section 5. Section 6 discuss the use of
m-eTCR in signature schemes.

2 Preliminaries: Compressed Random Oracle

In this section, we revisit the quantum-accessible random oracle model (QROM) and Zhandry's
Compressed Oracle (CRO) [27].

The random oracle methodology has been e�ective in designing e�cient cryptographic protocols
and proving their security in a rigorous, albeit idealized, way. This approach treats a cryptographic
hash function as an external oracle that an adversary must query to learn the output for a given
input. This work will mostly focus on keyed hash functions: F : [K] × [M] → [N]. While keyed
hash functions have two inputs, they can still be modeled as an idealized object with a single input
x ∈ [M ′] = [K] × [M]. The random oracle responds to these queries by simulating the behavior of
a uniformly random function. Although it is acknowledged that this methodology can potentially
fail [5, 19], experience suggests that this rarely occurs for naturally designed protocols.

When dealing with a quantum adversary who has access to a quantum computer, the random
oracle must be rede�ned to be able to handle queries in superposition and accurately re�ect the
attacker's capabilities in a real-world setting. This is known as the quantum-accessible random
oracle model (QROM). The key di�erence between the classical ROM and the QROM is that in
the ROM, security reductions can examine the adversary's queries to the random oracle. However, in

4 A. Hülsing, M. Kudinov, C. Majenz

the quantum setting, queries exist as superposition states, making it hard to inspect them without
signi�cantly disrupting their or the adversary's state.

To deal with this, Zhandry introduced the Compressed Oracle framework (CRO) [27]. The CRO
provides an approach that is useful for establishing lower bounds against quantum algorithms with
black-box access to a uniformly random function F , which maps [M] to [N] (in our case [K]× [M]
to [N]). The CRO enables the storage of a compressed representation of the random function,
conditional on the knowledge obtained from previous queries. Conceptually, the technique resembles
the classical "lazy sampling" method. Technically, it considers a quantum puri�cation of the random
function F and then analyzes the internal state of the random oracle in the Fourier domain.

We will now closely follow the description of QROM and CRO from [7]. In our model, it is
su�cient to work with three di�erent registers |x, y, z⟩, where x will contain a concatenation of
elements from [K] and [M], y is the output register, and z is the work register. We will omit the
work register in most cases. The standard approach for an ordinary QROM de�ned with unitary
StO works the following way:

StO
∑
x,y

αx,y |x, y⟩ →
∑
x,y

αx,y |x, y + F (x)⟩

To switch to the CRO, we �rst need to consider a superposition
∑

F |F ⟩ of all possible functions
F in the de�ned domain and range. So, the initial state will be |Π0⟩ =

∑
F |F ⟩

Now, we want to look at it in a Fourier basis, which we will denote with a hat symbol �ˆ�.

|Π0⟩ =
∑
F

|F ⟩ =
⊗
x

(
∑
y

|y⟩) =
⊗
x

|0̂⟩

The idea is that we can compress these |0̂⟩ states in a new special state |⊥⟩. This will imply
some error for decompressing, but we can make it small enough for our use cases. So, we will de�ne
compression in the following way:

Compx |Π0⟩ = |⊥⟩ ⟨0̂|+
∑
ŵ ̸=0

|ŵ⟩ ⟨ŵ| , i.e. |ŷ⟩ →

{
|⊥⟩ if ŷ = 0̂

|ŷ⟩ if ŷ ̸= 0̂

Now, we can apply this isometry to every register x ∈ X and obtain the compression operator
Comp = ⊗xCompx. If we apply Comp to the |Π0⟩, we will get all the |⊥⟩ states.

Comp |Π0⟩ = (
⊗
x

Compx)(
⊗
x

|0̂⟩) =
⊗
x

Compx |0̂⟩ =
⊗
x

|⊥⟩

This can be viewed as a trivial database that maps everything to |⊥⟩. This compression will work
mostly the same as just working with the Fourier basis, i.e. Comp |F̂ ⟩ = |D̂⟩, where D̂ is such that
D̂(x) = F̂ (x) whenever F̂ (x) ̸= 0 and D̂(x) = ⊥ whenever F̂ (x) = 0. As a result, after q queries,
we will have the internal state of the Compressed Oracle consisting of several state vectors, where
D(x) = ⊥ for all but (at most) q choices of x. The last step is to e�ciently store it in terms of the
number of qubits. We omit this technical detail. For more information, we refer to [27]. We now use
an updated de�nition of StO to accommodate the superposition of functions:

StO
∑
x,y,F

αx,y,F |x, y⟩ |F ⟩ →
∑
x,y,F

αx,y,F |x, y + F (x)⟩ |F ⟩

As a result, we have the following compressed random oracle:

cO := Comp ◦ StO ◦ Comp†

Hybrid-query bounds with partial input control 5

Here, we implicitly refer to F representation as database D. Intuitively, a database D represents
a classical lazy sampling technique. The original state is D0 where for any input the output is the ⊥
symbol. After a query, we check if the input is in the database or not. In the �rst case, we respond
with the value assigned to that input in D; otherwise, we sample a uniformly random value for the
output and update D, i.e., Di = Di−1[xi → yi]. So Di(xi) = yi. In the case of superposition queries,
we have a superposition of such databases.

According to [10], we bound the di�erence in working with QROM rather than CRO by the
following corollary.

Corollary 1 ([10, Corollary 2.8]). Let R ⊆ X ℓ × Yℓ × Z be a relation, where |Y| = N .
Let A be an oracle quantum algorithm that outputs x = (x1, . . . , xℓ) ∈ X ℓ and z ∈ Z. Let Ã be
the oracle quantum algorithm that runs A, makes ℓ classical queries on the outputs xi to obtain
y = (y1 = F (x1), . . . , yl = F (xl)) = F (x), and then outputs (x,y, z). Let

p◦(A) := Pr[(x, F (x), z) ∈ R]

be the considered probability when A has interacted with the RO. Furthermore, let p(Ã) be the prob-
ability that y = F (x) and (x,y, z) ∈ R when Ã has interacted with the standard random oracle,
initialized with a uniformly random function F , and p′(Ã) be the probability that y = D(x) and
(x,y, z) ∈ R when Ã has interacted with the compressed oracle instead and D is obtained by mea-
suring its internal state (in the computational basis). Then

p◦(A) = p(Ã) ≤ p′(Ã) + 2ℓ

N
.

In our work, we actually need extra features. We need to be able to distinguish classical queries from
quantum. This is implemented as a hybrid random oracle [17], which we present in Section 3.

3 Hybrid Compressed Oracle

In this section, we brie�y recall the construction of the Hybrid Compressed Random Oracle (HCRO)
and its properties from [17].

As presented in [17], a hybrid compressed random oracle is a framework that allows us to analyze
the success probability of hybrid algorithms that perform a mix of quantum and classical queries.
The HCRO framework is built upon the CROM. While in [17] this framework was used to develop
general lower-bound techniques that characterize the tradeo�s between the number of quantum
queries and classical queries, we use it to address speci�c properties of hash functions. We focus on
the properties that specify the challenges through the oracle interaction.

The hybrid oracle is built by substituting the original classical and quantum query operators with
two novel "recording query operators", which ensure a consistent record of classical-quantum queries
throughout the algorithm's execution. Notably, when all queries are either exclusively classical or
quantum, the framework reduces to the classical lazy sampling method and the quantum compressed
oracle technique, respectively, in these extreme cases.

The main addition of the Hybrid Compressed Oracle framework is a history register. The history
register H is dedicated to recording all the classical queries (x,D(x)). The contents of the recorded
query stay unchanged through the whole run of the algorithm. To incorporate it with the CROM,
new compression and uncompression operations are de�ned. The new ones are conditioned on the
content of the history register. If an input x is recorded in history, then it is never compressed or
uncompressed for the database again.

6 A. Hülsing, M. Kudinov, C. Majenz

3.1 Hybrid CRO overview

Below, we formally present the Hybrid CRO framework [17].

Memory. The memory of an algorithm accessing an oracle D : [M ′]→ [N] is made of three quantum
registers de�ned as follows:

� Index register X holding x ∈ [M ′]. We will sometimes partition register X into two: register K
and registerM representing the division of the space [M ′] into two subspaces. K holds k ∈ [K]
andM holds m ∈ [M].

� Phase register Y holding y ∈ [N].
� Workspace register Z holding z ∈ {0, 1}∗ (the register size may increase during the computation
as we allow appending new qubits to it).

We use A = XYZ as a shorthand for the registers on which the algorithm operates. The initial
state of the memory is the all-zero basis state |0, 0, 0⟩A. In this paper, we consider the phase oracle,
which returns the value D(x) in the phase, but it is equivalent to the standard oracle that maps
|x, y, z⟩A to |x, y ⊕D(x), z⟩A up to a unitary transformation.

Quantum Phase Oracle. We de�ne the quantum oracle OD
0 as the unitary operator acting on the

memory of the algorithm as follows.

OD
0 : |x, y, z⟩A 7→ ω

yD(x)
N |x, y, z⟩A where ωN = e

2iπ
N .

Classical Oracle. A classical oracle query can be viewed as a query to the standard oracle that maps

|x, y, z⟩A to ω
yD(x)
N |x, y, z⟩A followed by a measurement on the index register X and phase register

Y.
To represent the measurement, we add the history register H. In our work we consider that

the number of classical queries is limited (for example at most t), so the history register can be
represented as H = H1 · · ·Ht where the c-th subregister Hc is used to purify the c-th classical query
and stores a value in ([M ′] × [N]) ∪ {⋆}, where ⋆ is a new state that represents that the query has
not happened yet. The initial state of that register is |⋆, . . . , ⋆⟩H. The classical oracle OD

1 is de�ned
as the unitary operator acting as follows

OD
1 : |x, y, z⟩A |(x1, y1), . . . , (xc, yc), ⋆, . . . , ⋆⟩H

7→ ω
yD(x)
N |x, y, z⟩A |(x1, y1), . . . , (xc, yc), (x,D(x)), ⋆, . . . , ⋆⟩H .

We will denote the list of history records ((x1, y1), . . . , (xc, yc), ⋆, . . . , ⋆) by H and we say x ∈ H
if and only if there exists 1 ≤ i ≤ c such that xi = x.

De�nition 2 (Hx←y [17]). Given a history H = ((x1, y1), . . . , (xc, yc), ⋆, . . . , ⋆) with at least one
star entry, we de�ne the appendment of a new pair (x, y) to H as

Hx←y = ((x1, y1), . . . , (xc, yc), (x, y), ⋆, . . . , ⋆)

where the leftmost star has been replaced with (x, y).

Sometimes, we will identify the above list with a function H : [M ′] → [N] ∪ {⋆} if there are no
ambiguous pairs, i.e., no pairs of the form (x, y) and (x, y′) where y ̸= y′. We also let H denote the
set of all possible histories H.

Hybrid-query bounds with partial input control 7

Hybrid Oracle. We extend the above de�nitions by allowing for probabilistic choices between the
two oracles. This is represented by a channel that applies the quantum oracle OD

0 with probability
1− b, for some b ∈ [0, 1], and applies the classical oracle OD

1 otherwise. Additionally, we assume that
the algorithm is provided with a query type bit (or ��ag�) indicating which oracle has been applied.
We represent this operation by an isometryOD

b acting as

OD
b : |x, y, z⟩A |H⟩H 7→ ω

yD(x)
N |x, y⟩XY

(√
1− b · |z0⟩Z |H⟩H +

√
b · |z1⟩H |Hx←D(x)⟩H

)
where the bit appended to the workspace z indicates the nature of the oracle. We recover the quantum
and classical oracles when b = 0 and b = 1 respectively (ignoring the query type bit). We will not
use b /∈ {0, 1} in the analysis, but sometimes it is more convenient to use this representation.

Hybrid Algorithm. An algorithm with t queries is de�ned as a sequence U0, . . . , Ut of unitary trans-
formations acting on the memory register A and a list of real numbers b(1), . . . , b(t) ∈ {0, 1} that
speci�es which type of query is used. The state |ψD

t ⟩ of the algorithm after t queries is

|ψD
t ⟩ = UtOD

b(t) Ut−1 · · · U1OD
b(1) U0 |0⟩A |⋆, . . . , ⋆⟩H .

The function D is chosen uniformly at random from the set {D : [M ′]→ [N] }. We model that by
adding another puri�cation register (the database) D = D0 . . .DM−1 where each subregister Dx for
x ∈ [M ′] holds a value D(x) ∈ [N] and we de�ne the following joint state,

|ψt⟩ =
1

NM ′/2

∑
D∈[N][M′]

|ψD
t ⟩AH ⊗ |D⟩D = UtOb(t) Ut−1 · · · U1Ob(1) U0 |ψ0⟩ ,

where Ob :=
∑

DOD
b ⊗ |D⟩ ⟨D|D and |ψ0⟩ := |0⟩A ⊗ |⋆, · · · , ⋆⟩H ⊗

1
NM/2

∑
D |D⟩D.

Output. The output of a hybrid algorithm is obtained by performing a computational basis mea-
surement on the �nal state |ψt⟩ where we measure a designated part of the workspace register Z.

As we mentioned, we only consider the algorithms that make only two types of queries: quantum
and classical. One can further distinguish whether the algorithm is static or adaptive. We say that the
algorithm is static if the order of quantum and classical queries is �xed. An adaptive algorithm can
adaptively choose the query type of each individual query as long as the total number of quantum
(classical) queries is unchanged. Theorem 3 shows that without loss of generality, we can always
consider the algorithm to be static.

Theorem 3 ([9,17]). In the hybrid random oracle model, for any adaptive hybrid quantum algo-
rithm making at most q quantum queries and c classical, there exists a static hybrid algorithm making
at most 2q quantum queries and 2c classical queries such that their outputs are always identical.

3.2 Construction

Now, we present the actual construction from [17]. While we include it to give a self-contained
presentation, the reader might want to skip this subsection, proceed with the Section 3.3, and return
to this one later.

To begin, it is necessary to de�ne a compressed encoding for the database that is compatible with
the history register. This involves expanding the alphabet used for the database register, allowing Dx

to hold values from the set {⊥}∪ [N], where D(x) represents the value associated with x. We state

that ω
yD(x)
N = 1 when D(x) = ⊥. The initial state of the database is set as |⊥, . . . ,⊥⟩D, implying

all entries are initially unde�ned. The history register's alphabet is also expanded to accommodate

8 A. Hülsing, M. Kudinov, C. Majenz

tuples of the form (x,⊥), where x belongs to [M ′]. Denote x ∈ H if a tuple (x, y) exists in H, with
y ∈ ⊥∪ [N]. In cases where no ambiguous pairs are present in the list, H can be viewed as a function
that maps elements from [M ′] to the extended set ⊥, ⋆ ∪ [N].

We de�ne the uncompression operator S. Let |ŷ⟩Dx
= 1√

N

∑
p∈[N] ω

yp
N |p⟩Dx

for y = 0, . . . , N − 1,

denote the Fourier basis states and let Sx be the unitary operator acting on Dx such that

Sx :

|⊥⟩Dx

7−→ |0̂⟩Dx

|0̂⟩Dx
7−→ |⊥⟩Dx

|ŷ⟩Dx
7−→ |ŷ⟩Dx

for y = 1, . . . , N − 1.

Sx is unitary and Hermitian. A controlled unitary Sx,H acting on Dx is de�ned as:

Sx,H =

{
I if x ∈ H
Sx otherwise.

De�ne the Hermitian unitary operator S acting on AHD such that:

S =
∑

x∈[M ′],H∈H

|x⟩ ⟨x|X ⊗ IYZ ⊗ |H⟩ ⟨H|H ⊗ (ID0...Dx−1
⊗ Sx,H ⊗ IDx+1...DM−1

).

The hybrid compressed oracle Rb is de�ned as follows,

Rb = SObS where Ob =
∑

D∈({⊥}∪[N])M

OD
b ⊗ |x⟩ ⟨x|D , for b ∈ [0, 1].

We acquired an oracle that, for any basis state |x, y, z⟩A |H,D⟩HD satis�es the following:

� If the queried input x is contained in the history register: x ∈ H, it means that x has been
queried classically before; then we stop (un)compressing Dx, and it behaves like a regular phase
oracle on input x.

� If x ̸∈ H, then Dx is simulated as a compressed oracle.

The quantum query R0 only acts on the register H as control and does not change its records.
The joint state |ϕt⟩ of the algorithm and the oracle after t queries in the hybrid compressed oracle
model is de�ned as

|ϕt⟩ = UtRb(t) Ut−1 · · · U1Rb(1) U0 (|0⟩A |⋆, . . . , ⋆⟩H |⊥, . . . ,⊥⟩D).

The initial state is de�ned as |ϕ0⟩ = |0⟩A ⊗ |⋆, · · · , ⋆⟩H ⊗ |⊥, . . . ,⊥⟩D.

3.3 Basic results regarding HCRO

Below, we will present the main properties and results for HCRO obtained in [17]. We start with a
de�nition of the History-Database Consistent state. Each query can increase the size of the quantum
database by no more than one input. And a history database query also increases the number of
records maximally by one. The history database must be unambiguous: there should not be two
pairs (x, y), (x, y′), where y ̸= y′. We also want the quantum part to coincide with the classical part:
H(x) = D(x), where H(x) ̸= ⋆.

De�nition 4 (History-Database Consistent State [17]). Given an integer t, we say that
(H,D) is a history-database t-consistent pair if it has the following properties:

Hybrid-query bounds with partial input control 9

1. (Database SIZE) The database satis�es D(x) ̸= ⊥ for at most t di�erent values of x.

2. (History SIZE) The history is of the form H = ((x1, y1), . . . , (xc, yc), ⋆, . . . , ⋆) where x1, . . . , xc ∈
[X] and y1, . . . , yc ∈ {⊥} ∪ [N] for some c ≤ t.

3. (Uniqueness) We can identify the history with a function H : [X]→ {⋆,⊥}∪ [N] where H(xj) =
yj for all j ∈ {1, 2, · · · c} (meaning no two pairs in the history can di�er on the second coordinate
only) and H(x) = ⋆ for x /∈ {x1, . . . , xc}.

4. (Equality) The database coincides with the history on non-⋆ values, meaning that H(x) ̸= ⋆
implies D(x) = H(x).

We let Ht denote the vector space spanned by all basis states |x, y, z⟩A |H,D⟩HD where (H,D) is
history-database t-consistent. We say that a basis state is history-database consistent if it is in Ht

for some integer t.

Proposition 5 (Consistency [17]). Any state |ϕt⟩ obtained after t queries in the compressed
oracle model satis�es |ϕt⟩ ∈ Ht.

The following lemmas describe what happens after a quantum or a classical query. Note that a
quantum query never changes the history part. For a classical query with an input that is not in
the history database, but in the quantum database, there is a small chance of resampling, but most
probably the database will remain the same.

Lemma 6 (Quantum Query R0 [17]). Let |x, y, z⟩ |H,D⟩ be a history-database consistent basis
state. Then, R0 maps this state to |x, y, z0⟩ |H⟩ |φ⟩ where the state |φ⟩ of the database register is

• ωyD(x) |D⟩ (if H(x) ̸= ⋆ or y = 0)

•
∑
p∈[N]

ωyp

√
N
|Dx←p⟩ (if H(x) = ⋆, D(x) = ⊥, y ̸= 0)

• ωyD(x) |D⟩+ ωyD(x)

√
N
|Dx←⊥⟩+

∑
p∈[N]

1− ωyD(x) − ωyp

N
|Dx←p⟩ (if H(x) = ⋆, D(x) ̸= ⊥, y ̸= 0)

Lemma 7 (Classical Query R1 [17]). Let |x, y, z⟩ |H,D⟩ be a history-database consistent basis
state. Then, R1 maps this state to |x, y, z1⟩ |φ⟩ where the state |φ⟩ of the history-database registers
is

• ωyD(x) |Hx←D(x), D⟩ (if H(x) ̸= ⋆)

•
∑
p∈[N]

ωyp

√
N
|Hx←p, Dx←p⟩ (if H(x) = ⋆, D(x) = ⊥)

• ωyD(x) |Hx←D(x), D⟩+
1√
N
|Hx←⊥, Dx←⊥⟩ −

∑
p∈[N]

ωyp

N
|Hx←p, Dx←p⟩ (if H(x) = ⋆, D(x) ̸= ⊥)

3.4 Progress measure

In the following, we present the results from [17] that help us measure the amount of progress an
algorithm can make towards solving a given task. In Section 4, we add a new result to the already
existing framework. To de�ne the task, we use predicates. In this paper, all progress measures will
be de�ned in terms of the norm of the projection onto basis states satisfying certain predicates.

10 A. Hülsing, M. Kudinov, C. Majenz

De�nition 8 (Basis-State Predicate [17]). Let P : (x, y, z,H,D) 7→ {False, True} be a predicate
function over all basis states |x, y, z⟩A |H,D⟩HD. We de�ne the projection

ΠP =
∑

(x,y,z,H,D)∈P−1(True)

|x, y, z,H,D⟩ ⟨x, y, z,H,D|

over all basis states satisfying P. We let P denote the negation of P and, given two predicates P1

and P2, we let P1 · P2 denote their conjunction and P1 + P2 denote their disjunction.

For the basis-state predicates the following fact will be used in our proofs.

Fact 4.9 [17]. Let P1 and P2 be two basis-state predicates. Then, the projections ΠP1 and ΠP2

are commuting operators. We have ΠP1
= I − ΠP1 ,ΠP1·P2 = ΠP1ΠP2 and ΠP1+P2 = ΠP1 + ΠP2−

ΠP1
ΠP2

. Moreover, P1 ⇒ P2 if and only if ΠP1
⪯ ΠP2

, where ⪯ is the Loewner order.

We de�ne the following general notions of progress measure and overlap. Loosely speaking the
progress measure gives a bound on the improvement gained after a query, and the progress overlap
represents how the query interacts with the part of the state that did not satisfy some property. We
will utilize these notions to derive a bound on the increase in success probability of an adversary
after performing query.

De�nition 9 (Progress Measure and Progress Overlap [17]). Given a state |ϕ⟩, a real b ∈
[0, 1] and a projector Π over AHD, we de�ne progress measure (∆b) and progress overlap (Γb) as

∆b(Π, |ϕ⟩) = ∥ΠRb |ϕ⟩ ∥2 − ∥Π |ϕ⟩ ∥2 and Γb(Π, |ϕ⟩) =
∥ΠRb(I−Π) |ϕ⟩ ∥2

∥(I−Π) |ϕ⟩ ∥2
,

with the convention that Γb(Π, |ϕ⟩) = 0 if ∥(I−Π) |ϕ⟩ ∥ = 0.

In this paper we work only with History-Database predicates. This is an analogue of the notion
"database property" introduced in [6, 7]. We want the predicate to be satis�ed only on the pairs
(H,D) that can be obtained through oracle interaction. According to Proposition 5, every such pair
is history-database consistent. Next, we want that the order of the history database inputs does
not a�ect the predicate mapping. Lastly, we want that adding new values to the quantum database
(making queries on inputs that were not in the quantum database) should not turn a satis�ed
predicate into unsatis�ed.

De�nition 10 (History-Database Predicate [17]). Let P : (H,D) 7→ {False, True} be a pred-
icate function over all history-database pairs. We say that it is a history-database predicate if for
every true-pair (H,D) ∈ P−1(True),

� (Consistent) The pair (H,D) is history-database consistent (see De�nition 4).
� (History Invariant) For every list H ′ such that (H ′, D) is history-database consistent and H(x′) =
H ′(x′) for all x′ ∈ [X], we have (H ′, D) ∈ P−1(True).

� (Database Monotone) For every database D′ that is obtained by replacing a ⊥ in D with another
value (i.e. D = D′x′←⊥ for some x′ ∈ [X]), we have (H,D′) ∈ P−1(True).

By extension, we say that P : (x, y, z,H,D) 7→ {False, True} is a history-database predicate if it
does not depend on (x, y, w) and its restriction to (H,D) satis�es the above properties.

The next lemmas are used to bound the progress overlap that an algorithm can gain after a query.
To bound this, we want to use the probability that the database will turn into one that satis�es

Hybrid-query bounds with partial input control 11

the predicate. While the analysis of the quantum query case is similar to the analysis in [7, 27],
the classical query analysis was introduced in [17]. The restriction for the classical query bound is
that the database can not turn into a satisfying one by adding an existing input from the quantum
database into the history register. This restriction is reasonable when there is no logical distinction
between the two databases. For example, in [17], a collision �nding problem was analyzed. The
hybrid compressed random oracle model allowed a �ne-grained analysis of an algorithm that uses
both quantum and classical queries. In our work, the classical queries serve the purpose of challenge
de�nition. Hence, having an input in the quantum database is not the same as having an input in
the history register. In Section 4, we extend the framework by giving a bound on progress overlap
that is more suitable for such scenarios.

Lemma 11 (Progress Overlap, Quantum Query [17]). Let P be a history-database predicate,
t be an integer, and γ ∈ [0, 1] be a real parameter. Suppose that, for every false-state (H,D) ∈
P−1(False) ∩ Ht where D(x) =⊥, the probability to make the predicate true by replacing D(x) with
a random value p is at most

Pr
p←[N]

[
(H,Dx←p) ∈ P−1(True)

]
≤ γ.

Then, the quantum progress overlap is at most Γ0(ΠP , |ϕ⟩) ≤ 10γ for all |ϕ⟩ ∈ Ht.

Lemma 12 (Progress Overlap, Classical Query [17]). Let P be a history-database predicate,
t be an integer, and γ ∈ [0, 1] be a real parameter. Suppose that, for every false-state (H,D) ∈
P−1(False) ∩ Ht where D(x) =⊥, the probability to make the predicate true by replacing H(x) and
D(x) with the same random value p is at most

Pr
p←[N]

[
(Hx←p, Dx←p) ∈ P−1(True)

]
≤ γ.

Assume further that, for every false-state (H,D) ∈ P−1(False), the predicate does not become true
when (x,D(x)) is appended to the history, i.e.

(H,D) ∈ P−1(False) ⇒ (Hx←D(x), D) ∈ P−1(False)

Then, the classical progress overlap is at most Γ1(ΠP, |ϕ⟩) ≤ 2γ for all |ϕ⟩ ∈ Ht.

Note that γ will often depend on the number of queries that have been performed (equivalently,
the maximum number t of values contained in the database and in the history). If Lemma 11 and
Lemma 12 hold with parameters γ0 and γ1 respectively, then the combined progress can be written
as Γb(ΠP , |ϕ⟩) ≤ 10(1− b)γ0 + 2bγ1.

4 Progress overlap with partially random inputs

As we discussed before, we want to analyze properties that use classical queries as challenge setting.
An example can be target collision resistance: the adversary makes a classical query with a message
m and gets {k, F (k,m)} in response. Here the k is chosen uniformly at random for each query. Then,
the adversary is asked to �nd a collision for one of the messages used in the classical queries. This
example shows a typical structure: an adversary is given quantum access to the function, but to get
information about the challenges, the adversary must make classical queries to an oracle. Note that
these classical queries have a part of the input that is not controlled by the adversary and is usually
uniformly random. To address these types of properties, we extend the framework. We bound the
probability of success to pulling a value from the quantum database into the history register, which
allows us to analyze a wider range of queries.

12 A. Hülsing, M. Kudinov, C. Majenz

Lemma 13 (Progress Overlap, Classical Query with randomness). Let P be a history-
database predicate, t be an integer, and γ ∈ [0, 1] be a real parameter. Suppose that, for every
false-state (H,D) ∈ P−1(False) ∩ Ht where D(x) =⊥, the probability to make the predicate true by
replacing H(x) and D(x) with the same random value p is at most

Pr
p←[N]

[
(Hx←p, Dx←p ∈ P−1(True)

]
≤ γ.

Assume [M ′] = [K] × [M] and we can write x = (k,m) ∈ [K] × [M]. Suppose that, for every
false-state (H,D) ∈ P−1(False) ∩ Ht the probability to make the predicate true by adding a value
((k,m), D(k,m)) to the history database, where k is chosen uniformly at random, is at most

Pr
k←[K]

[
(H(k,m)←D(k,m), D) ∈ P−1(True)

]
≤ ε.

Then, the classical progress overlap with a partially random input is at most Γ1(ΠP, |ϕ⟩) ≤ 3γ+2ε
for all |ϕ⟩ ∈ Ht.

Proof. Let ΠP |ϕ⟩ =
∑

x,y,z,H,D αx,y,z,H,D |x, y, z⟩ |H,D⟩ ∈ Ht ∩ supp(ΠP) be any state supported
over consistent basis-states evaluating the predicate P to false. We show that, after making a classical
query, the probability of satisfying P is at most ∥ΠPR1ΠP |ϕ⟩ ∥2 ≤ (3γ + 2ε) · ∥ΠP |ϕ⟩ ∥2. We de�ne
three projections Π1,Π2,Π3 such that Π1 +Π2 +Π3 = ΠP.

� Π1 : all basis states |x, y, z,H,D⟩ ∈ Ht ∩ supp(ΠP) such that H(x) = ⋆ and D(x) =⊥.
� Π2 : all basis states |x, y, z,H,D⟩ ∈ Ht ∩ supp(ΠP) such that H(x) = ⋆ and D(x) ̸=⊥.
� Π3 : all basis states |x, y, z,H,D⟩ ∈ Ht ∩ supp(ΠP) such that H(x) ̸= ⋆.

Below, we prove the (in)equalities

� ∥ΠPR1Π1 |ϕ⟩ ∥2 ≤ γ∥Π1 |ϕ⟩ ∥2
� ∥ΠPR1Π2 |ϕ⟩ ∥2 ≤ 2(γ + ε)∥Π2 |ϕ⟩ ∥2
� ∥ΠPR1Π3 |ϕ⟩ ∥ = 0

Hence, by the triangle inequality and Cauchy-Schwarz inequality, we conclude that

∥ΠPR1ΠP |ϕ⟩ ∥
2 ≤ (∥ΠPR1Π1 |ϕ⟩ ∥+ ∥ΠPR1Π2 |ϕ⟩ ∥+ ∥ΠPR1Π3 |ϕ⟩ ∥)2

≤ (3γ + 2ε)∥ΠP |ϕ⟩ ∥
2.

Analysis of Π1. The analysis of this case matches the case for Lemma 12. We present it below.

∥ΠPR1Π1 |ϕ⟩ ∥2

= ∥ΠPR1

∑
x,y,z,H,D:

H(x)=⋆,D(x)=⊥

αx,y,z,H,D |x, y, z⟩ |H,D⟩ ∥2

= ∥ΠP

∑
x,y,z,H,D:

H(x)=⋆,D(x)=⊥

αx,y,z,H,D |x, y, z1⟩ (
∑
p∈[N]

ωyp

√
N
|Hx←p, Dx←p⟩)∥2

=
∑

x,y,z,H,D:
H(x)=⋆,D(x)=⊥

∥αx,y,z,H,D∥2 · Pr
p←[N]

[
(Hx←p, Dx←p) ∈ P−1(True)

]
≤ γ∥Π1 |ϕ⟩ ∥2

The �rst line is by de�nition of Π1. The second line is by Lemma 7. The third line uses the orthog-
onality of the basis states. Finally, the last line is the statement of Lemma 13.

Hybrid-query bounds with partial input control 13

Analysis of Π2. This is the main di�erence compared to Lemma 12. The projection Π2 corresponds
to all basis states |x, y, z,H,D⟩ ∈ Ht ∩ supp(ΠP) such that H(x) = ⋆ and D(x) ̸=⊥. According
to Lemma 7, we have the following result of the classical query:

R1 |x, y, z⟩ |H,D⟩ = |x, y, z1⟩ (ωyD(x) |Hx←D(x), D⟩+
1√
N
|Hx←⊥, Dx←⊥⟩−

∑
p∈[N]

ωyp

N
|Hx←p, Dx←p⟩)

So, we have three terms that correspond to three possible scenarios:

1. D(x) remains unchanged in the database: |Hx←D(x), D⟩.
2. D(x) gets removed: |Hx←⊥, Dx←⊥⟩.
3. D(x) is resampled to a new value p: |Hx←p, Dx←p⟩.

The third option can be analyzed the same way as in Lemma 12. Loosely speaking, this case is
the same as adding a new input. The second option can not make the predicate turn from False to
True according to the Monotone property from De�nition 10. The �rst option is now possible. This
corresponds to the case when we pull a value from a quantum database into the history register. We
aim to bound it with ε.

Now, remember, since we are doing a classical query, we know that there is a part of x = (k,m)
that is distributed uniformly at random. Hence, we can write the initial state as

|ϕ⟩ =
∑

k,m,y,z,H,D

1√
K
αm,y,z,H,D |k,m, y, z⟩ |H,D⟩ .

We proceed by applying Π2. We need to include only the inputs that exist in the quantum database.
Hence, we need (k, ·) ∈ D and D(k,m) ̸= ⊥. Notice that if D(k,m) ̸= ⊥, then k is guaranteed to be
in the database. So we can write

Π2 |ϕ⟩ =
∑

k,m,y,z,H,D:
H(k,m)=⋆,D(k,m) ̸=⊥

1√
K
αm,y,z,H,D |k,m, y, z⟩ |H,D⟩ .

Now, let us look at how the query behaves for Π2 |ϕ⟩.

∥ΠPR1Π2 |ϕ⟩ ∥2

= ∥ΠPR1

∑
k,m,y,z,H,D:

H(k,m)=⋆,D(k,m) ̸=⊥

1√
K
αm,y,z,H,D |k,m, y, z⟩ |H,D⟩ ∥2

= ∥ΠP

∑
k,m,y,z,H,D:

H(k,m)=⋆,D(k,m)̸=⊥

1√
K
αm,y,z,H,D |k,m, y, z1⟩ ·

(
ωyD(k,m) |H(k,m)←D(k,m), D⟩+

1√
N
|H(k,m)←⊥, D(k,m)←⊥⟩−∑

p∈[N]

ωyp

N
|H(k,m)←p, D(k,m)←p⟩

)
∥2

= ∥ΠP

∑
k,m,y,z,H,D:

H(k,m)=⋆,D(k,m)̸=⊥

1√
K
αm,y,z,H,D |k,m, y, z1⟩ ·

(
ωyD(k,m) |H(k,m)←D(k,m), D⟩ −

∑
p∈[N]

ωyp

N
|H(k,m)←p, D(k,m)←p⟩

)
∥2 ≤

14 A. Hülsing, M. Kudinov, C. Majenz

≤ 2∥ΠP

∑
k,m,y,z,H,D:

H(k,m)=⋆,D(k,m)̸=⊥

1√
K
αm,y,z,H,D

(
(ωyD(k,m) − ωyD(k,m)

N
) |x, y, z1⟩ |H(k,m)←D(k,m), D⟩

)
∥2

+ 2∥ΠP

∑
k,m,y,z,H,D:

H(k,m)=⋆,D(k,m)̸=⊥

1√
K
αm,y,z,H,D

 ∑
p∈[N]/D(k,m)

ωyp

N
|x, y, z1⟩ |H(k,m)←p, D(k,m)←p⟩

 ∥2

The �rst equality is by de�nition of Π2. The second equation is by Lemma 7. The third equation is
due to the fact that |Hx←⊥, Dx←⊥⟩ can not make the predicate turn from False to True. The last
inequality is based on the triangle inequality (a+ b)2 ≤ 2a2 + 2b2.

Let us analyze the last two terms separately. We start with the second one since it has already
been analyzed for Lemma 12. Following the reasoning from [17, Lemma 4.13] we get

∥ΠP

∑
k,m,y,z,H,D:

H(k,m)=⋆,D(k,m) ̸=⊥

1√
K
αm,y,z,H,D

 ∑
p∈[N]/D(k,m)

ωyp

N
|x, y, z1⟩ |H(k,m)←p, D(k,m)←p⟩

 ∥2
≤ γ∥Π2 |ϕ⟩ ∥2

Now, we need to prove that

∥ΠP

∑
k,m,y,z,H,D:

H(k,m)=⋆,D(k,m)̸=⊥

1√
K
αm,y,z,H,D((ωyD(k,m) − ωyD(k,m)

N
) |x, y, z1⟩ |H(k,m)←D(k,m), D⟩)∥2

≤ ε∥Π2 |ϕ⟩ ∥2

To do so, let us �rst remove the subtraction from the coe�cient.

∥ΠP

∑
k,m,y,z,H,D:

H(k,m)=⋆,D(k,m)̸=⊥

1√
K
αm,y,z,H,D((ωyD(k,m) − ωyD(k,m)

N
) |x, y, z1⟩ |H(k,m)←D(k,m), D⟩)∥2

≤ ∥ΠP

∑
k,m,y,z,H,D:
H(k,m)=⋆,
D(k,m) ̸=⊥

αm,y,z,H,D(
1√
K
ωyD(k,m)) |x, y, z1⟩ |H(k,m)←D(k,m), D⟩ ∥2

This holds as we can take a factor
(
1− 1

N

)
out of the norm expression. Since we started with

the state
∑

x,y,z,H,D:
H(x)=⋆,D(x)̸=⊥

αx,y,z,H,D |x, y, z⟩ |H,D⟩ where every term represents an orthogonal state,

Hybrid-query bounds with partial input control 15

adding a value to the history databases does not change orthogonality. This is because if we have a
history database of the same size, then we are adding di�erent values, and the order of the inputs
in the history database matters for orthogonality; hence, we get orthogonal vectors. If the history
database has di�erent sizes, we have di�erent vectors z. Hence, every term in the result represents
an orthogonal vector. Note that ΠP does not spoil the orthogonality since it is diagonal in the
computational basis. Hence, we get:

∥ΠP

∑
k,m,y,z,H,D:

H(k,m)=⋆,D(k,m)̸=⊥

αm,y,z,H,D(
1√
K
ωyD(k,m)) |x, y, z1⟩ |H(k,m)←D(k,m), D⟩ ∥2

≤
∑

k,m,y,z,H,D:
H(k,m)=⋆,D(k,m) ̸=⊥

∥αm,y,z,H,D∥2 · Pr
k←[K]

[
(H(k,m)←D(k,m), D) ∈ P−1(True)

]
≤ ε∥Π2 |ϕ⟩ ∥2

Analysis of Π3. By Lemma 7 the operator R1 maps any state |x, y, z⟩ |H,D⟩ ∈ supp(Π3) to
ωyD(x) |x, y, z1⟩ |Hx←D(x), D⟩ since H(x) ̸= ⋆. Moreover, H and Hx←D(x) have the same function
representation (since the initial state is history-database consistent). Thus, by the history invariant
property (see De�nition 10), we have P(Hx←D(x), D) = False and ∥ΠPR1Π3|H |ϕ⟩ ∥ = 0.

This concludes the proof. ⊓⊔

5 The security of m-eTCR

In this section, we show how to apply the improved framework. We choose the m-eTCR notion (see
De�nition 14) as a good example to illustrate the utility of our technique.

We start with a de�nition of the keyed hash function family. In the following let N ∈ N be the
security parameter, and FN = {Fk : [M]→ [N]}k∈[K] be a keyed family of hash functions. We will

also write F (k,m) to denote Fk(m). We de�ne the Multi-target extended target collision resistance
(m-eTCR) property for a keyed hash function family.

De�nition 14 (Multi-target extended target collision resistance [18]). Let N ∈ N, and
FN be a hash function family, with key space [K], message space [M], and output space [N]. Let A
be a (stateful) algorithm, and c ∈ poly(N). Consider the following experiment m-eTCRFN ,c(A):

1. Set a list of queries to the challenge oracle to empty Q = ∅ .
2. Run A(FN) with (classical) access to an oracle O(·) that takes a message m ∈ [M] and works

as follows:

� If |Q| ≥ c return ⊥.
� Sample k ←$ [K].
� Compute F (k,m) = y.
� Set Q = Q ∪ {k,m}.
� Output (k,m, y).

3. Obtain from A an output (kj ,mj), (k
∗,m∗) with j ∈ [|Q|], k∗ ∈ [K],m∗ ∈ [M], and where the

jth entry in Q is (kj ,mj).
4. Output 1 if F (k∗,m∗) = F (kj ,mj) and m

∗ ̸= mj. Otherwise, output 0.

For any such algorithm A, we de�ne the following success probability:

Succm-eTCRHn,c (A) = Pr
[
1←$ AO(·)(FN)

]

16 A. Hülsing, M. Kudinov, C. Majenz

For m-eTCR, the adversary is allowed to obtain up to c challenges for a given hash function
family. The challenges are generated for a random key. The best-known bound for the m-eTCR in
the QROM was obtained in [14]:

Succm-eTCRFN ,c (A) ≤ 8c(c+ q + 2)2

N
+

3c

2

√
q + c+ 1

K
,

where q is the number of (quantum) queries to F (·, ·).
The second term in this inequality comes from the reprogramming the random oracle. The main

idea is that previously, it was hard to deal with a mix of classical and quantum queries. One of the
possible approaches was to learn the outputs of all the challenge queries before any quantum query
happens. This was done by choosing all the responses uniformly at random and then reprogramming
them into the hash function as a challenge query happens. Intuitively, the reprogramming was not
needed to alter the response but rather to move the challenge queries to the very beginning. We
can overcome this di�culty and get a tight bound with the new technique. We get the following
theorem:

Theorem 15. The success probability of an algorithm A, that makes at most q quantum queries to
the function family FN and c classical challenge queries and outputs a solution of m-eTCR is at
most:

Succm-eTCRFN ,c (A) ≤ 44(
cq + c2

N
+ q

√
c

N
+ (

cq3/2 + c3/2

KN1/2
) +

c

K

q3

N
) +

4

N

= O(
c2

N
+
cq2

N
+

q3 · c
K ·N

),

Before we proceed to the proof, let us discuss this result. First, we highlight that the bound is tight
on the number of queries up to a constant factor as demonstrated by matching attacks, detailed
below.

The �rst term cq+c2

N comes from a probability that we get either a collision in the challenge
queries or we make a challenge query, and it collides with an input that is already in the quantum
database. Next, q

√
c
N is obtained by setting c classical targets and searching for a solution using

quantum queries (similar to Grover search [15]). The last terms come from the following attack
strategy: First, �nd a collision for some message m and di�erent keys. Then do challenge queries
with this message and hope that the sampled key will match one of your prepared collisions. The

terms
√

q3

N and q3

N give a bound on number of queries for �nding collisions, and there is a chance of
c
K that one of the challenge queries will hit the needed key.

We have the following implications from the new bound compared to the previous one:

1. The number of allowed challenge queries now in�uence N as c2 instead of c3 compared to the
previous bound. This is important because we may allow the number of challenges as big as
264 in some applications. For example, in the NIST post-quantum standardization process, the
security bound for signature schemes was required to assume that the attacker has access to
signatures for up to 264 chosen messages [24, Section 4].

2. Previously, K, the size of the randomness space, had to match the bound K ≥ c2 · (q+c). So, for
example, for q = c = 264 (which matches the requirements of category one in the NIST call [24,
Section 4]), K would have to be greater than 2192. Now we bound K as K ≥ 44(

√
cq + c + q)

(assuming N = q2 · c). This will us to use K ≥ 272 for the same security level. Hence, we can
use keys almost 2/3 smaller than with the previous bound.

Before proving Theorem 15, we need to de�ne di�erent predicates on basis states and di�erent types
of collisions.

Hybrid-query bounds with partial input control 17

De�nition 16 (Collision Type). Given a history-database consistent pair (H,D), we say that it
contains a collision if there exist two values x1 ̸= x2 such that D (x1) = D (x2) ̸=⊥. Additionally,
if x1, x2 /∈ H, the collision is said to be quantum, if x1, x2 ∈ H, it is said to be classical, and if
x1 /∈ H,x2 ∈ H (or x2 /∈ H,x1 ∈ H), it is said to be hybrid.

Given the three types of collisions, we de�ne the corresponding predicates. We also de�ne a k-
collision predicate for the quantum database. The kQ predicate represents our ability to track how
many times a query formed a new collision. Each new query that formed a collision can either collide
with an existing collision or create a new one. In the �rst case the number of inputs in the database
for which there exists a collision increases by one, and in the second case by two.

De�nition 17. The following predicates evaluate a basis state |x, y, w,H,D⟩ to True if and only if
it is history-database consistent (see De�nition 4) and satis�es the next conditions:

� Q,H,C: there is respectively at least one quantum, one hybrid, or one classical collision contained
in (H,D).

� kQ - There are k ≤ l ≤ 2k distinct inputs x1, . . . , xl, such that there exists a quantum collision
for each of them: xi ̸= xj , i ̸= j i, j ∈ [1, l]; ∀xi ∃xj : D (xi) = D (xj) ̸=⊥, xi, xj /∈ H,
i, j ∈ [1, l].

The proof of Theorem 15 relies on the results of Lemma 18 and Lemma 20. These lemmas limit the
progress that can be achieved with quantum and classical queries. Using these results we bound the
success probability of the whole algorithm.

Proof (of Theorem 15). Before analyzing m-eTCR, we need to re�ect that working with the CRO
introduces a slight disturbance. According to Corollary 1, working with the CRO introduces an error
that is dependent on the number of the output values of the algorithm. The output of the algorithm
for m-eTCR consists of 2 values. Hence, we can limit the error with an additive term of 4

N .
First, let us observe that a solution for m-eTCR results in a database that either contains a

classical collision or a hybrid one. Let |ϕt⟩ = |x, y, w,H,D⟩ denote a state that is obtained after
t queries, where q queries are quantum and c classical (t = q + c). Hence, we need to bound
∥ΠH+C |ϕt⟩ ∥2. It will also be convenient to keep track of the following progress measure.

Φt = ∥ΠC |ϕt⟩ ∥2 + ∥ΠHC |ϕt⟩ ∥
2

Observe that ∥ΠH+C |ϕt⟩ ∥2 = Φt. We claim the following recurrence holds for the potential Φt if the
t-th query is made to the oracle Rb, b ∈ {0, 1}.

Φt = Φt−1 + (1− b)(∆b(ΠC, |ϕt−1⟩) +∆b(ΠHC, |ϕt−1⟩)) + b(∆b(ΠH+C, |ϕt−1⟩))

From the initial condition Φ0 = 0 and Lemma 18, Lemma 20 we get:

Φt ≤
10cq

N
+ 3q

√
10c

N
+

2(q + c)c

N
+ 12

c

K

√
q3

N
+ 44

c

K

q3

N
+ 8(

c
√
q + c

K
√
N

+
c(q + c)

KN3/2
)

≤ 20cq + 10c2

N
++3q

√
10c

N
+ 12

c

K

√
q3

N
+ 44

c

K

q3

N
+ 8

c
√
q + c

K
√
N

≤ 20
cq + c2

N
++12q

√
c

N
+ 20

cq3/2 + c3/2

KN1/2
+ 44

cq3

KN

⊓⊔

18 A. Hülsing, M. Kudinov, C. Majenz

Lemma 18 (Progress Measure, Quantum Query). Given an integer t = q+ c, where q is the
number of quantum queries and c is the number of classical queries, and a state |ϕ⟩ ∈ Ht with the
norm at most 1, the progress made by one quantum query of ϕ satis�es:

∆0(ΠC, |ϕ⟩) = 0

∆0(ΠHC, |ϕ⟩) ≤
10c

N
+ 2

√
10c

N

Proof. ∆0(ΠC, |ϕ⟩) = 0 comes from a simple observation that quantum query does not a�ect the

History part of the database (see Lemma 6). Hence, we are left to prove ∆0(ΠHC, |ϕ⟩) ≤
10c
N +2

√
10c
N .

To do so �rst lets expand ∆0(ΠHC, |ϕ⟩):

∆0(ΠHC, |ϕ⟩) = ∥ΠHCR0 |ϕ⟩ ∥2 − ∥ΠHC |ϕ⟩ ∥
2

= ∥ΠHCR0(ΠHC +ΠH+C) |ϕ⟩ ∥
2 − ∥ΠHC |ϕ⟩ ∥

2

≤ (∥ΠHCR0ΠHC |ϕ⟩ ∥+ ∥ΠHCR0ΠH+C |ϕ⟩ ∥)
2 − ∥ΠHC |ϕ⟩ ∥

2

= ∥ΠHCR0ΠHC |ϕ⟩ ∥
2 + 2∥ΠHCR0ΠHC |ϕ⟩ ∥ · ∥ΠHCR0ΠH+C |ϕ⟩ ∥
+ ∥ΠHCR0ΠH+C |ϕ⟩ ∥

2 − ∥ΠHC |ϕ⟩ ∥
2

≤ 2 · ∥ΠHCR0ΠH+C |ϕ⟩ ∥+ ∥ΠHCR0ΠH+C |ϕ⟩ ∥
2

The �rst equation comes from the de�nition of ∆0. Next we use that I = (ΠHC+ΠH+C). In the third
inequality, we use triangle inequality.The equality in line 4 is obtained by opening the brackets. For
the last inequality we use ∥ΠHCR0ΠHC |ϕ⟩ ∥2 ≤ ∥ΠHC |ϕ⟩ ∥2.

The last step is to bound ∥ΠHCR0ΠH+C |ϕ⟩ ∥ we look at Γ0(ΠHC, |ϕ⟩). According to Lemma 11
we have:

Γ0(ΠHC, |ϕ⟩) =
∥ΠHCR0(I−ΠHC) |ϕ⟩ ∥2

∥(I−ΠHC) |ϕ⟩ ∥2
≤ 10γ

∥ΠHCR0(I−ΠHC) |ϕ⟩ ∥
2 = ∥ΠHCR0(ΠH+C) |ϕ⟩ ∥

2

= ∥ΠHCR0(ΠHC) |ϕ⟩ ∥
2 ≤ 10γ · ∥ΠH+C |ϕ⟩ ∥

2 ≤ 10γ =
10c

N
,

where
γ = Pr

y←[N]

[
(H,Dx←y) ∈ HC

]
≤ c

N
,

for a (D,H) ∈ HC.
Here the equality ∥ΠHCR0(ΠH+C) |ϕ⟩ ∥2 = ∥ΠHCR0(ΠHC) |ϕ⟩ ∥2 comes from the fact that a

quantum query can not turn the predicate C from True to False. Hence, we do not need to take
into consideration the databases that satisfy the C predicate; after a quantum query, they will still
satisfy it. ⊓⊔

Before analyzing the classical case, let us present an intermediate result.

Lemma 19 (ΠH+C classical progress overlap). Given an integer t = q + c, where q is the
number of quantum queries and c is the number of classical queries, and a state |ϕ⟩ ∈ Ht with the
norm at most 1, the progress overlap obtained through one classical query on ϕ satis�es:

Γ1(ΠH+C, |ϕ⟩) ≤ (3γ + 2ε),

where γ ≤ (q + c)/N and ε ≤ 6
K

√
q3

N + 22q3

K·N .

Hybrid-query bounds with partial input control 19

Proof. According to Lemma 13 we have:

Γ1(ΠH+C, |ϕ⟩) =
∥ΠH+CR1(I−ΠH+C) |ϕ⟩ ∥2

∥(I−ΠH+C) |ϕ⟩ ∥2
≤ 3γ + 2ε

∥ΠH+CR1(I−ΠH+C) |ϕ⟩ ∥2 = ∥ΠH+CR1ΠH·C |ϕ⟩ ∥
2

≤ (3γ + 2ε) · ∥ΠH·C |ϕ⟩ ∥
2 ≤ (3γ + 2ε),

where

γ = Pr
y←[N]

[(Hx←y, Dx←y) ∈ (H + C)] ≤ q + c

N

for false-state (H,D) ∈ H · C ∩Ht where D(x) =⊥; and

ε = Pr
k←[K]

[
(H(k,m)←D(k,m), D) ∈ (H + C)

]
,

for false-state (H,D) ∈ H · C ∩Ht.

Note that ε depends on the state of the quantum part of the database. We need to analyze when
adding a value from D turns H · C into (H + C). In this case, we get either a hybrid collision or a
classical one. Assume we move a value from D to H and get a classical collision. This means that
before, we had a collision between D and H, which is excluded (we start from H ·C). Hence, the only
possibility is to get a hybrid collision. If we move a value from D to H and get a hybrid collision,
this means there was a collision in D before the classical query.

Our classical query contains a chosen input m and a random key k: x = (k||m). Denote with j
maximum number of di�erent keys k1, . . . , kj for which there exists a colliding pair of the following
type: [D(k1,m) = D(k′1,m

′
1)], . . ., [D(kj ,m) = D(k′j ,m

′
j)], where (ki,m) ̸= (k′i,m

′
i). Note that we do

not have any extra requirement for the k′i,m
′
i. If we can bound the probability that after q queries,

we know j colliding inputs, then the maximum number of di�erent keys we can obtain from these
collisions is 2j.

In [21, Section 4.3], the authors give a bound on �nding j distinct collisions. However, their
argument actually works by bounding the probability that a new query collides with some input that
is already in the database. They do not distinguish whether it is a new collision or if we have formed

a 3-collision, for example. Hence, we can use their bound and claim that ∥ΠjQ |ϕt⟩ ∥2 ≤ (e·q
3/2

j·
√
N
)j .

Using this result, we deduce the bound on ε :

ε = Pr
k←[K]

[
(H(k,m)←D(k,m), D) ∈ (H + C)

]
≤

q−1∑
j=1

(
2j

K
· ∥ΠjQ |ϕt⟩ ∥2

)
≤

q−1∑
j=1

2j

K
·
(
e · q3/2

j ·
√
N

)j

≤ e · 2
K

(
q3

N

)1/2

+
2e · q3/2

K
√
N

q−1∑
j=2

(
e · q3/2

j ·
√
N

)j−1

.

20 A. Hülsing, M. Kudinov, C. Majenz

We analyze the last sum separately.

q−1∑
j=2

(
e · q3/2

j ·
√
N

)j−1

=

q−3∑
j=0

(
e · q3/2

(j + 2) ·
√
N

)j+1

≤ e · q3/2√
N

q−3∑
j=0

(
e · q3/2

(j + 2) ·
√
N

)j

≤e · q
3/2

√
N

q−3∑
j=0

(
e · q3/2

j ·
√
N

)j

≤ e · q3/2√
N

q−3∑
j=0

(
e · q3/2√

N

)j

(j!)−1

≤e · q
3/2

√
N

∞∑
j=0

(
e · q3/2√

N

)j

(j!)−1 =
e · q3/2√

N
exp

(
e · q3/2√

N

)
.

For the �rst inequality we have used j + 2 ≥ 1 for all j ≥ 0. In the second inequality we have used
j+2 ≥ j. In the third inequality we have used j! ≤ jj for all j ≥ 0 (note that by convention, 00 = 1).
In the 4. inequality we have extended the domain of the sum.

We are striving to bound the a progress overlap which is trivially upper-bonded by 1. If e2·q3/2√
N
≥ 1

then this quantity is also a trivial upper bound. Assume now e2·q3/2√
N

< 1. Then exp
(

e·q3/2√
N

)
≤

exp
(
1
e

)
. In summary we get

ε ≤ 2e

K

(
q3

N

)1/2

+ exp

(
1

e

)
2e2 · q3

K ·N
≤ 6

K

(
q3

N

)1/2

+
22 · q3

K ·N

⊓⊔

Lemma 20 (Progress Measure, Classical Query). Given an integer t = q + c, where q is the
number of quantum queries and c is the number of classical queries, and a state |ϕ⟩ ∈ Ht with the
norm at most 1, the progress made by one classical query of ϕ satis�es:

∆1(ΠH+C, |ϕ⟩) =
3(q + c)

N
+ 2ε+ 8

(√
q + c

K
√
N

+
q + c

KN3/2

)
,

where ε ≤ 6
K

√
q3

N + 22·q3
K·N

Proof. Lets expand ∆1(ΠH+C, |ϕ⟩):

∆1(ΠH+C, |ϕ⟩) = ∥ΠH+CR1 |ϕ⟩ ∥2 − ∥ΠH+C |ϕ⟩ ∥2

= ∥ΠH+CR1(ΠH+C +ΠH·C) |ϕ⟩ ∥
2 − ∥ΠH+C |ϕ⟩ ∥2

= ∥ΠH+CR1ΠH+C |ϕ⟩+ΠH+CR1ΠH·C |ϕ⟩ ∥
2 − ∥ΠH+C |ϕ⟩ ∥2

= ∥ |ϕ1⟩+ |ϕ2⟩ ∥2 − ∥ΠH+C |ϕ⟩ ∥2

= ⟨ϕ1|ϕ1⟩+ ⟨ϕ1|ϕ2⟩+ ⟨ϕ2|ϕ1⟩+ ⟨ϕ2|ϕ2⟩ − ∥ΠH+C |ϕ⟩ ∥2

= ∥ΠH+CR1ΠH+C |ϕ⟩ ∥2 + ∥ΠH+CR1ΠH·C |ϕ⟩ ∥
2

+ ⟨ϕ1|ϕ2⟩+ ⟨ϕ2|ϕ1⟩ − ∥ΠH+C |ϕ⟩ ∥2

≤ ∥ΠH+CR1ΠH·C |ϕ⟩ ∥
2 + ⟨ϕ1|ϕ2⟩+ ⟨ϕ2|ϕ1⟩ ,

where |ϕ1⟩ = ΠH+CR1ΠH+C |ϕ⟩ and |ϕ2⟩ = ΠH+CR1ΠH·C |ϕ⟩. The �rst equality comes from the
de�nition. In the next equality we use that I = (ΠH+C + ΠH·C). The �fth equality comes from the
fact that ∥ψ∥2 = ⟨ψ|ψ⟩ and distributivity and associativity of the inner product. The last inequality
comes from the fact ∥ΠH+CR1ΠH+C |ϕ⟩ ∥2 ≤ ∥ΠH+C |ϕ⟩ ∥2.

Hybrid-query bounds with partial input control 21

To bound ∥ΠH+CR1ΠH·C |ϕ⟩ ∥2 we look at Γ1(ΠH+C, |ϕ⟩). According to our result from Lemma 19

we can deduce that ∥ΠH+CR1ΠH·C |ϕ⟩ ∥2 ≤ (3γ + 2ε), where γ ≤ (q + c)/N and ε ≤ 6
K

√
q3

N + 22·q3
K·N .

The last step is to bound ⟨ϕ1|ϕ2⟩+⟨ϕ2|ϕ1⟩. First note that ⟨ϕ1|ϕ2⟩ = ⟨ϕ2|ϕ1⟩†. Hence, we can use
that ⟨ϕ1|ϕ2⟩+ ⟨ϕ2|ϕ1⟩ ≤ 2| ⟨ϕ1|ϕ2⟩ |. Lets call the nonorthogonal parts of |ϕ1⟩ and |ϕ2⟩ as |µ1⟩ and
|µ2⟩. Being more precise, let us de�ne the projector Πi with support spanned by the computational
basis states |w⟩ such that ⟨w|ϕi⟩ ≠ 0, i ∈ {1, 2}. Then |µ1⟩ = Π2 |ϕ1⟩ and |µ2⟩ = Π1 |ϕ2⟩. Hence,

| ⟨ϕ1|ϕ2⟩ | ≤ | ⟨µ1|µ2⟩ | ≤ |∥µ1∥∥µ2∥eiθ| = |
√
⟨µ1|µ1⟩

√
⟨µ2|µ2⟩eiθ|,

where θ is the angle between the two states, |eiθ| ≤ 1.
We de�ne |ψ1⟩ = ΠH+C |ϕ⟩ and |ψ2⟩ = ΠH·C |ϕ⟩ (the sates before the oracle queries). Below we

will analyze the terms of |ψ1⟩ and |ψ2⟩. We want to deduce which terms of |ψ1⟩ and |ψ2⟩ will form
the terms of nonorthogonal parts of |µ1⟩ and |µ2⟩. We will write |ψi[k,m, y, z,H,D]⟩to relate to the
term of |ψi⟩ that corresponds to these parameters. When the parameters are known from the context
we will write |ψi[α]⟩ to mark that we are a talking about a speci�c term in the state.

We can expand |ψ1⟩ as

|ψ1⟩ =
∑

k,m,y,z,H1,D1

1√
K
αm,y,z,H1,D1 |k,m, y, z⟩ |H1, D1⟩

and |ψ2⟩ as

|ψ2⟩ =
∑

k,m,y,z,H2,D2

1√
K
α′m,y,z,H2,D2

|k,m, y, z⟩ |H2, D2⟩

Now lets discuss on the requirements on the terms of ψ1 and corresponding terms of ψ2, so
that the oracle calls can produce parts of |µ1⟩ and |µ2⟩. In other words, given a term |ψ1[α]⟩ =
1√
K
αm,y,z,H1,D1

|k,m, y, z⟩ |H1, D1⟩ we want to identify if it can be used to produce the nonorthog-

onal part of ϕ1. Further we analyze, given such a term |ψ1[α]⟩, what are the requirements on the
terms of |ψ2⟩ (that we call |ψ2[α

′]⟩) so that ΠH+CR1 |ψ1[α]⟩ ̸⊥ ΠH+CR1 |ψ2[α
′]⟩. The list of used

requirements is the following:

1. Given history register H1 of |ψ1[α]⟩ the history register H2 of |ψ2[α
′]⟩ must be the same. This

is because the R1 query will not a�ect the existent content of history registers.
2. Due to the �rst requirement, H1 can not have classical collisions. Otherwise, H2 will also have

them, and this is excluded by ΠH·C. Hence, we can say that all the terms we are interested in
are contained in ΠH·C |ϕ⟩.

3. The history register H1 after the query: H1 ∈ R1 |ψ1[α]⟩ must match the history register H2 ∈
R1 |ψ1⟩ [α′]. Hence, the query inputs (k,m) must be the same.

4. There can be only a single hybrid collision in |ψ1[α]⟩. Otherwise any term in |ψ2⟩ will produce
terms orthogonal to R1 |ψ1[α]⟩. Note that a classical query can add only a single hybrid collision
to |ψ2⟩. This collision will be formed by the input used in the query. The inputs used in |ψ1[α]⟩
and |ψ2[α

′]⟩ must be the same. Hence, we will not be able to obtain the second hybrid collision.
5. Assume a hybrid collision in |ψ1[α]⟩ is formed by H1(k1,m1) = D1(k

∗
1 ,m

∗
1). Then D2(k

∗
1 ,m

∗
1) ̸=

D1(k
∗
1 ,m

∗
1). Otherwise |ψ2[α

′]⟩ ∈ ΠH·C |ϕ⟩, which is excluded.
6. Following the reasoning of the fourth and �fth requirements, we conclude that the input index

(k,m) in both terms |ψ1[α]⟩ and |ψ2[α
′]⟩ must be the input index in D1 that forms a hybrid

collision. In other words if the hybrid collision is formed by H1(k1,m1) = D1(k
∗
1 ,m

∗
1), then the

query index must be (k∗1 ,m
∗
1). Otherwise, the result can not form matching hybrid and quantum

registers.

22 A. Hülsing, M. Kudinov, C. Majenz

7. Consider a case, when D2(k
∗,m∗) ̸= ⊥ ∧ H2(k

∗,m∗) = ⋆. If after a query to R1 with |ψ2[α
′]⟩

the output for H2(k
∗
1 ,m

∗
1) is pulled from D2. Then the corresponding nonorthogonal outcome

of a query to R1 with |ψ1[α]⟩ can be obtained only by resampling the value of D1(k
∗
1 ,m

∗
1). This

is because originally D1(k
∗
1 ,m

∗
1) ̸= D2(k

∗
1 ,m

∗
1), but for the outcomes to be nonorthogonal these

values must match.

Analysis of ⟨µ1|µ1⟩. Lets denote all the terms of |ψ1⟩ that ful�ll our requirements by |ψ̂1⟩. We know,

|µ1⟩ is a part of ΠH+CR1 |ψ̂1⟩, more precisely that there exists a projector Π1 in computational basis

such that |µ1⟩ = Π1ΠH+CR1 |ψ̂1⟩. So let us look at the possible outcomes of a query R1 |ψ̂1⟩. We

remember that all the terms in |ψ̂1⟩ must contain a single hybrid collision without any classical
collision, and the queried index should match the input that forms this hybrid collision in the
quantum register. Then the possible outcomes are the following:

(a) The value is pulled from D1, as a result it forms a classical collision in H1.
(b) The value is set to ⊥ both in H1 and D1. Hence, we lose the only hybrid collision that existed

and do not satisfy H+C anymore.
(c) The value is resampled. Here, there is a chance that the output will form a hybrid collision with

one of the inputs in the quantum database or a classical collision with the inputs in the history
register.

According to Lemma 7, we can formalize the statements above as:

R1 |ψ̂1⟩ =R1

∑
k∗
1 ,m

∗
1 ,y,z,H1,D1

1√
K
αm∗

1 ,y,z,H1,D1
|k∗1 ,m∗1, y, z⟩ |H1, D1⟩ ,

where k∗1 , m
∗
1 and H1, D1 ful�ll our requirements

R1

∑
k∗
1 ,m

∗
1 ,y,z,H1,D1

1√
K
αm∗

1 ,y,z,H1,D1 |k∗1 ,m∗1, y, z⟩ |H1, D1⟩ =

∑
k∗
1 ,m

∗
1 ,y,z,

H1,D1

1√
K
αm∗

1 ,y,z,H1,D1
|k∗1 ,m∗1, y, z⟩ (ωyD1(k

∗
1 ,m

∗
1) |H1 (k∗

1 ,m
∗
1)←D1(k∗

1 ,m
∗
1)
, D1⟩

+
1√
N
|H1 (k∗

1 ,m
∗
1)←⊥, D1 (k∗

1 ,m
∗
1)←⊥⟩ −

∑
p∈[N]

ωyp

N
|H1 (k∗

1 ,m
∗
1)←p, D1 (k∗

1 ,m
∗
1)←p⟩)

As we discussed, after applying ΠH+C we get:

ΠH+CR1 |ψ̂1⟩

=
∑

k∗
1 ,m

∗
1 ,y,

z,H1,D1

1√
K
αm∗

1 ,y,z,H1,D1
|k∗1 ,m∗1, y, z⟩ (ωyD1(k

∗
1 ,m

∗
1) |H1 k∗

1 ,m
∗
1←D1(k∗

1 ,m
∗
1)
, D1⟩

−
∑

p∈D1∪H1

ωyp

N
|H1 (k∗

1 ,m
∗
1)←p, D1 (k∗

1 ,m
∗
1)←p⟩)

≤
∑

k∗
1 ,m

∗
1 ,y,

z,H1,D1

1√
K
αm∗

1 ,y,z,H1,D1
|k∗1 ,m∗1, y, z⟩ (ωyD1(k

∗
1 ,m

∗
1) |H1 k∗

1 ,m
∗
1←D1(k∗

1 ,m
∗
1)
, D1⟩

+
∑

p∈D1∪H1\D1(k∗
1 ,m

∗
1)

ωyp

N
|H1 (k∗

1 ,m
∗
1)←p, D1 (k∗

1 ,m
∗
1)←p⟩)

Hybrid-query bounds with partial input control 23

To obtain the bound on ⟨µ1|µ1⟩ we observe that there exists a projector Π1 in computational basis

such that |µ1⟩ = Π1ΠH+CR1 |ψ̂1⟩. Hence, ⟨µ1|µ1⟩ ≤ (ΠH+CR1 |ψ̂1⟩)†ΠH+CR1 |ψ̂1⟩.

⟨µ1|µ1⟩ ≤ (ΠH+CR1 |ψ̂1⟩)†ΠH+CR1 |ψ̂1⟩ ≤
∑
α

1

K
αα†(1 +

t

N2
) ≤ (

1

K
+

t

KN2
).

Here, we used the fact that the number of possible p ∈ D1 ∪H1 is upper bounded by t.

Analysis of ⟨µ2|µ2⟩. Lets denote all the terms of |ψ2⟩ that ful�ll our requirements by |ψ̂2⟩. We

know, that there exists a projector Π2 in computational basis such that |µ2⟩ = Π2ΠH+CR1 |ψ̂2⟩. So
let us look at the possible outcomes of a query R1 |ψ̂2⟩. We will split the terms of |ψ̂2⟩ into two

parts: where D2(k
∗
1 ,m

∗
1) = ⊥: |ψ̂2,⊥⟩, and where D2(k

∗
1 ,m

∗
1) ̸= ⊥: |ψ̂2,̸⊥⟩.

⟨µ2|µ2⟩ ≤ ∥ΠH+CR1 |ψ̂2⟩ ∥2 ≤ ∥ΠH+CR1(|ψ̂2,⊥⟩+ |ψ̂2, ̸⊥⟩)∥2

≤ 2∥ΠH+CR1 |ψ̂2,⊥⟩ ∥2 + 2∥ΠH+CR1 |ψ̂2,̸⊥⟩ ∥2

Lets �rst look at ∥ΠH+CR1 |ψ̂2,⊥⟩ ∥2. After the query, we will obtain the following state:

R1 |ψ̂2,⊥⟩ =∑
k∗
1 ,m

∗
1 ,y,z,

H2,D2

1√
K
αm∗

1 ,y,z,H1,D1
|k∗1 ,m∗1, y, z⟩ (

∑
p∈[N]

ωyp

√
N
|H2(k∗

1 ,m
∗
1)←p, D2(k∗

1 ,m
∗
1)←p⟩)

ΠH+CR1 |ψ̂2,⊥⟩ =∑
k∗
1 ,m

∗
1 ,y,

z,H2,D2

1√
K
αm∗

1 ,y,z,H1,D1 |k∗1 ,m∗1, y, z⟩ (
∑
p∈

D2∪H2

ωyp

√
N
|H2(k∗

1 ,m
∗
1)←p, D2(k∗

1 ,m
∗
1)←p⟩)

Then ∥ΠH+CR1 |ψ̂2,⊥⟩ ∥2 ≤ t
KN .

Now lets look at ∥ΠH+CR1 |ψ̂2,̸⊥⟩ ∥2. After the query, we will obtain the following state:

R1 |ψ̂2,̸⊥⟩ =∑
k∗
1 ,m

∗
1 ,y,z,

H2,D2

1√
K
αm∗

1 ,y,z,H2,D2
|k∗1 ,m∗1, y, z⟩ (ωyD2(k

∗
1 ,m

∗
1) |H2 k∗

1 ,m
∗
1←D2(k∗

1 ,m
∗
1)
, D2⟩

+
1√
N
|H2 (k∗

1 ,m
∗
1)←⊥, D2 (k∗

1 ,m
∗
1)←⊥⟩ −

∑
p∈[N]

ωyp

N
|H2 (k∗

1 ,m
∗
1)←p, D2 (k∗

1 ,m
∗
1)←p⟩)

As discussed before, setting the values to ⊥ won't help. A possible way to get a hybrid or a classical
collision is by resampling the output of D2(k

∗
1 ,m

∗
1) to one of the values contained in the quantum

or history registers. Also note that D2(k
∗
1 ,m

∗
1) does not match D1(k

∗
1 ,m

∗
1), hence pulling it into the

history register will not create a nonorthogonal state to |µ1⟩, unless the value in |ψ̂1⟩ is resampled.
This corresponds to database registers in |ψ1⟩ of the form

24 A. Hülsing, M. Kudinov, C. Majenz

ωyD2(k∗
1 ,m∗

1)

N |H1 (k∗
1 ,m

∗
1)←D2(k∗

1 ,m
∗
1)
, D1 (k∗

1 ,m
∗
1)←D2(k∗

1 ,m
∗
1)
⟩ (see requirement 7).

ΠH+CR1 |ψ̂2,̸⊥⟩ ≤∑
k∗
1 ,m

∗
1 ,y,z,

H2,D2

1√
K
αm∗

1 ,y,z,H2,D2 |k∗1 ,m∗1, y, z⟩ (ωyD2(k
∗
1 ,m

∗
1) |H2 (k∗

1 ,m
∗
1)←D2(k∗

1 ,m
∗
1)
, D2⟩

+
∑

p∈D2∪H2\D2(k∗
1 ,m

∗
1)

ωyp

N
|H2 (k∗

1 ,m
∗
1)←p, D2 (k∗

1 ,m
∗
1)←p⟩)

Recall that |µ2⟩ can be obtained as |µ2⟩ = Π2ΠH+CR1 |ψ̂2⟩, where |µ2⟩ is the nonorthogonal part
to ϕ1. We can actually split |µ2⟩ into two parts: |µ2⟩ = |µ′2⟩+ |µ′′2⟩, where

|µ′2⟩ =∑
k∗
1 ,m

∗
1 ,y,z,

H2,D2

1√
K
αm∗

1 ,y,z,H2,D2 |k∗1 ,m∗1, y, z⟩ωyD2(k
∗
1 ,m

∗
1) |H2 (k∗

1 ,m
∗
1)←D2(k∗

1 ,m
∗
1)
, D2⟩

and |µ′′2⟩ = |µ2⟩ − |µ′2⟩. Hence, we can write

⟨µ1|µ2⟩ ≤ 2 ⟨µ1|µ′2⟩+ 2 ⟨µ1|µ′′2⟩ ≤ 2 ⟨µ1|µ′2⟩+ 2
√
⟨µ1|µ1⟩ ⟨µ′′2 |µ′′2⟩.

Due to the part in |ψ1⟩:

1√
K
α′m∗

1 ,y,z,H1,D1

ωyD2(k
∗
1 ,m

∗
1)

N
|H1 (k∗

1 ,m
∗
1)←D2(k∗

1 ,m
∗
1)
, D1 (k∗

1 ,m
∗
1)←D2(k∗

1 ,m
∗
1)
⟩ ,

which will correspond to
1√
K
αm∗

1 ,y,z,H2,D2
|k∗1 ,m∗1, y, z⟩ωyD2(k

∗
1 ,m

∗
1) |H2 (k∗

1 ,m
∗
1)←D2(k∗

1 ,m
∗
1)
, D2⟩ we get:

⟨µ1|µ′2⟩ ≤
1

KN
, ⟨µ′′2 |ΠH+CR1 |ψ̂2,̸⊥⟩ ≤

t

KN2
.

As a result, we get

⟨µ′′2 |µ′′2⟩ ≤ 2 · t

KN
+ 2 · t

KN2
≤ 4

t

KN
.

⟨ϕ1|ϕ2⟩ ≤ 2
√
⟨µ1|µ1⟩

√
⟨µ′′2 |µ′′2⟩+ 2 ⟨µ1|µ2⟩ ≤ 2

√
(
1

K
+

t

KN2
)

√
4

t

KN
+

2

KN

≤
√
16

t

K2N
+ 16

t2

K2N3
+

1

KN
≤ 4(

√
t

K
√
N

+
t

KN3/2
)

The last inequality comes from the observation that
√
t ≥ 1 and

√
N ≤ N .

Combining all the results, we obtain the bound from the theorem. ⊓⊔

6 Applications

In this section, we discuss practical implications of our result on the m-eTCR security of a hash
function under generic attacks. The main application of m-eTCR is the analysis of the hash & sign
transform [8,23]. The hash & sign transform allows to turn a �xed message-length signature scheme

Hybrid-query bounds with partial input control 25

into a variable message-length signature by �rst computing a message digest and then signing the
digest: σ = Sign(H(m)). This plain version requires a collision-resistant hash function for security.
When SHA1 was broken, collision-resistance was considered an unfavorable requirement that was
to be avoided where possible. Such avoidance usually also comes with shorter digest sizes as other
properties are not vulnerable to birthday attacks, improving e�ciency too.

For hash & sign it was suggested to randomize the digest computation [16] to avoid the need
for collision resistance. In this case, the message is hashed with a random salt r, which is then
attached to the signature of the original scheme: σ = (r, Sign(H(r,m))). The authors introduced
the extended target collision resistance notion (eTCR) to analyze the security of this construction.
eTCR matches the m-eTCR notion if we make just one challenge query. By a plug & pray argument,
eTCR implies m-eTCR up to the number of challenge queries. While adding randomization to the
message hashing allows us to reduce the security requirements from collision resistance to m-eTCR,
potentially reducing the digest size, it also increases the signature size, since the salt must be added to
the signature. In total, this is usually still bene�cial. However, to optimize the scheme's performance,
we aim for a m-eTCR bound that allows to use minimal-length salts.

The hash & sign paradigm is often used to allow the signing of arbitrary long messages. An
example of such an application can be found in [4, Section 14.1.1]. The authors show how the
hashing of the message can improve the e�ciency of one-time hash-based digital signatures. They
also rely on randomized hashing and eTCR security. Note that for one-time hash-based signatures,
the signed digest's size directly a�ects the scheme's overall e�ciency and signature sizes. By requiring
only m-eTCR security, we can avoid using long digests, which we would have to use if we did rely
on collision resistance. Due to our analysis, we can also use short salts, shrinking the total size of
the signature.

The hash & sign paradigm is also widely used in lattice-based signature schemes. For exam-
ple, Falcon [22] - a lattice-based digital signature scheme, recently chosen for standardization by
NIST [26]. The authors suggest randomized hashing of the message (see [22, Section 2.2.2]). Since
the security of Falcon is based on the GPV framework [13], it is important that two di�erent signa-
tures are never generated for the same digest. To achieve this, the authors require the size of the salt
to be 320 bits. Note that the m-eTCR property covers the required properties for message hashing.
If we aim for the highest security level for the NIST parameters, we can estimate the number of
classical queries as 264 and the number of quantum queries 2128. The hashing in Falcon is done with
SHAKE256 [25]. Hence, we set N = 2256. Using these parameters, we get that the 200 bits is enough
for the salt space. This is signi�cantly smaller than the sizes used by the Falcon team.

The salt part may not play a big role in the signature sizes, especially for post-quantum schemes.
While this is true, salts can play a signi�cant role when we look at signature aggregation. In [1], the
authors analyze the aggregation of multiple Falcon signatures. This approach is very useful when
sending a large number of signatures over a low bandwidth network � a typical case for large-scale
blockchains. Due to a con�ict between the random oracle model and viewing a hash function as
a circuit (see [19]), the authors decided to include the salts from all the signatures in the �nal
aggregated signature (so the veri�er can compute H(r,m) locally). If we require salts of size 200,
instead of 320 bits, for the parameters that the authors suggest (see [1, Table 1]), for 2000 signatures,
we get a total size reduction from 165 kB to 136 kB, which is an almost 18% decrease in signature
size.

Sometimes, it is possible to include the salt in the aggregation. For example, a recent work [11]
did this for hash-based multi-signatures. In this case, the e�ect on the signature size will be minimal.
However, a general approach to aggregate signatures involves building a circuit that veri�es multiple
signatures and then producing a succinct argument for this circuit. Larger salt increases this circuit's
complexity, a�ecting the singing and veri�cation e�ciency.

26 A. Hülsing, M. Kudinov, C. Majenz

References

1. Aardal, M.A., Aranha, D.F., Boudgoust, K., Kolby, S., Takahashi, A.: Aggregating falcon signatures with
LaBRADOR. In: Reyzin, L., Stebila, D. (eds.) Advances in Cryptology � CRYPTO 2024, Part I. Lecture
Notes in Computer Science, vol. 14920, pp. 71�106. Springer, Cham, Switzerland, Santa Barbara, CA,
USA (Aug 18�22, 2024). https://doi.org/10.1007/978-3-031-68376-3_3

2. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing e�cient protocols.
In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby, V. (eds.) ACM CCS 93: 1st Conference
on Computer and Communications Security. pp. 62�73. ACM Press, Fairfax, Virginia, USA (Nov 3�5,
1993). https://doi.org/10.1145/168588.168596

3. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Scha�ner, C., Zhandry, M.: Random oracles in a
quantum world. In: Lee, D.H., Wang, X. (eds.) Advances in Cryptology � ASIACRYPT 2011. Lecture
Notes in Computer Science, vol. 7073, pp. 41�69. Springer Berlin Heidelberg, Germany, Seoul, South
Korea (Dec 4�8, 2011). https://doi.org/10.1007/978-3-642-25385-0_3

4. Boneh, D., Shoup, V.: A Graduate Course in Applied Cryptography (2023), https://toc.cryptobook.
us/

5. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited (preliminary version).
In: 30th Annual ACM Symposium on Theory of Computing. pp. 209�218. ACM Press, Dallas, TX, USA
(May 23�26, 1998). https://doi.org/10.1145/276698.276741

6. Chiesa, A., Manohar, P., Spooner, N.: Succinct arguments in the quantum random oracle model. In:
Hofheinz, D., Rosen, A. (eds.) TCC 2019: 17th Theory of Cryptography Conference, Part II. Lecture
Notes in Computer Science, vol. 11892, pp. 1�29. Springer, Cham, Switzerland, Nuremberg, Germany
(Dec 1�5, 2019). https://doi.org/10.1007/978-3-030-36033-7_1

7. Chung, K.M., Fehr, S., Huang, Y.H., Liao, T.N.: On the compressed-oracle technique, and post-
quantum security of proofs of sequential work. In: Canteaut, A., Standaert, F.X. (eds.) Advances in
Cryptology � EUROCRYPT 2021, Part II. Lecture Notes in Computer Science, vol. 12697, pp. 598�
629. Springer, Cham, Switzerland, Zagreb, Croatia (Oct 17�21, 2021). https://doi.org/10.1007/

978-3-030-77886-6_21
8. Di�e, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on Information Theory

22(6), 644�654 (1976). https://doi.org/10.1109/TIT.1976.1055638
9. Don, J., Fehr, S., Huang, Y.H.: Adaptive versus static multi-oracle algorithms, and quantum security of

a split-key PRF. In: Kiltz, E., Vaikuntanathan, V. (eds.) TCC 2022: 20th Theory of Cryptography Con-
ference, Part I. Lecture Notes in Computer Science, vol. 13747, pp. 33�51. Springer, Cham, Switzerland,
Chicago, IL, USA (Nov 7�10, 2022). https://doi.org/10.1007/978-3-031-22318-1_2

10. Don, J., Fehr, S., Majenz, C., Scha�ner, C.: E�cient NIZKs and signatures from commit-and-open
protocols in the QROM. In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptology � CRYPTO 2022,
Part II. Lecture Notes in Computer Science, vol. 13508, pp. 729�757. Springer, Cham, Switzerland,
Santa Barbara, CA, USA (Aug 15�18, 2022). https://doi.org/10.1007/978-3-031-15979-4_25

11. Drake, J., Khovratovich, D., Kudinov, M., Wagner, B.: Hash-based multi-signatures for post-quantum
ethereum. Cryptology ePrint Archive, Paper 2025/055 (2025), https://eprint.iacr.org/2025/055

12. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identi�cation and signature problems.
In: Odlyzko, A.M. (ed.) Advances in Cryptology � CRYPTO'86. Lecture Notes in Computer Science,
vol. 263, pp. 186�194. Springer Berlin Heidelberg, Germany, Santa Barbara, CA, USA (Aug 1987).
https://doi.org/10.1007/3-540-47721-7_12

13. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic construc-
tions. In: Ladner, R.E., Dwork, C. (eds.) 40th Annual ACM Symposium on Theory of Computing. pp.
197�206. ACM Press, Victoria, BC, Canada (May 17�20, 2008). https://doi.org/10.1145/1374376.
1374407

14. Grilo, A.B., Hövelmanns, K., Hülsing, A., Majenz, C.: Tight adaptive reprogramming in the QROM. In:
Tibouchi, M., Wang, H. (eds.) Advances in Cryptology � ASIACRYPT 2021, Part I. Lecture Notes in
Computer Science, vol. 13090, pp. 637�667. Springer, Cham, Switzerland, Singapore (Dec 6�10, 2021).
https://doi.org/10.1007/978-3-030-92062-3_22

15. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: 28th Annual ACM Sym-
posium on Theory of Computing. pp. 212�219. ACM Press, Philadephia, PA, USA (May 22�24, 1996).
https://doi.org/10.1145/237814.237866

https://doi.org/10.1007/978-3-031-68376-3_3
https://doi.org/10.1007/978-3-031-68376-3_3
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://toc.cryptobook.us/
https://toc.cryptobook.us/
https://doi.org/10.1145/276698.276741
https://doi.org/10.1145/276698.276741
https://doi.org/10.1007/978-3-030-36033-7_1
https://doi.org/10.1007/978-3-030-36033-7_1
https://doi.org/10.1007/978-3-030-77886-6_21
https://doi.org/10.1007/978-3-030-77886-6_21
https://doi.org/10.1007/978-3-030-77886-6_21
https://doi.org/10.1007/978-3-030-77886-6_21
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1007/978-3-031-22318-1_2
https://doi.org/10.1007/978-3-031-22318-1_2
https://doi.org/10.1007/978-3-031-15979-4_25
https://doi.org/10.1007/978-3-031-15979-4_25
https://eprint.iacr.org/2025/055
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1007/978-3-030-92062-3_22
https://doi.org/10.1007/978-3-030-92062-3_22
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866

Hybrid-query bounds with partial input control 27

16. Halevi, S., Krawczyk, H.: Strengthening digital signatures via randomized hashing. In: Dwork, C. (ed.)
Advances in Cryptology � CRYPTO 2006. Lecture Notes in Computer Science, vol. 4117, pp. 41�59.
Springer Berlin Heidelberg, Germany, Santa Barbara, CA, USA (Aug 20�24, 2006). https://doi.org/
10.1007/11818175_3

17. Hamoudi, Y., Liu, Q., Sinha, M.: The NISQ complexity of collision �nding. In: Joye, M., Leander, G.
(eds.) Advances in Cryptology � EUROCRYPT 2024, Part IV. Lecture Notes in Computer Science,
vol. 14654, pp. 3�32. Springer, Cham, Switzerland, Zurich, Switzerland (May 26�30, 2024). https:
//doi.org/10.1007/978-3-031-58737-5_1

18. Hülsing, A., Rijneveld, J., Song, F.: Mitigating multi-target attacks in hash-based signatures. In: Cheng,
C.M., Chung, K.M., Persiano, G., Yang, B.Y. (eds.) PKC 2016: 19th International Conference on Theory
and Practice of Public Key Cryptography, Part I. Lecture Notes in Computer Science, vol. 9614, pp.
387�416. Springer Berlin Heidelberg, Germany, Taipei, Taiwan (Mar 6�9, 2016). https://doi.org/10.
1007/978-3-662-49384-7_15

19. Khovratovich, D., Rothblum, R.D., Soukhanov, L.: How to prove false statements: Practical attacks on
�at-shamir. Cryptology ePrint Archive, Paper 2025/118 (2025), https://eprint.iacr.org/2025/118

20. Krawczyk, H., Bellare, M., Canetti, R.: HMAC: Keyed-hashing for message authentication. IETF Inter-
net Request for Comments 2104 (Feb 1997)

21. Liu, Q., Zhandry, M.: On �nding quantum multi-collisions. In: Ishai, Y., Rijmen, V. (eds.) Advances
in Cryptology � EUROCRYPT 2019, Part III. Lecture Notes in Computer Science, vol. 11478, pp.
189�218. Springer, Cham, Switzerland, Darmstadt, Germany (May 19�23, 2019). https://doi.org/10.
1007/978-3-030-17659-4_7

22. Prest, T., Fouque, P.A., Ho�stein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Ricosset,
T., Seiler, G., Whyte, W., Zhang, Z.: FALCON. Tech. rep., National Institute of Standards
and Technology (2022), available at https://csrc.nist.gov/Projects/post-quantum-cryptography/
selected-algorithms-2022

23. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-key
cryptosystems. Communications of the Association for Computing Machinery 21(2), 120�126 (Feb 1978).
https://doi.org/10.1145/359340.359342

24. of Standards, N.I., Technology: Call for Additional Digital Signature Schemes for the Post-Quantum
Cryptography Standardization Process. https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/
documents/call-for-proposals-dig-sig-sept-2022.pdf, accessed: 2025-01-31

25. of Standards, N.I., Technology: FIPS PUB 202: SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions. http://dx.doi.org/10.6028/NIST.FIPS.202, accessed: 2025-02-11

26. of Standards, N.I., Technology: Post-Quantum Cryptography. https://csrc.nist.gov/projects/

post-quantum-cryptography, accessed: 2023-09-12
27. Zhandry, M.: How to record quantum queries, and applications to quantum indi�erentiability. In:

Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptology � CRYPTO 2019, Part II. Lecture Notes
in Computer Science, vol. 11693, pp. 239�268. Springer, Cham, Switzerland, Santa Barbara, CA, USA
(Aug 18�22, 2019). https://doi.org/10.1007/978-3-030-26951-7_9

https://doi.org/10.1007/11818175_3
https://doi.org/10.1007/11818175_3
https://doi.org/10.1007/11818175_3
https://doi.org/10.1007/11818175_3
https://doi.org/10.1007/978-3-031-58737-5_1
https://doi.org/10.1007/978-3-031-58737-5_1
https://doi.org/10.1007/978-3-031-58737-5_1
https://doi.org/10.1007/978-3-031-58737-5_1
https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.1007/978-3-662-49384-7_15
https://eprint.iacr.org/2025/118
https://doi.org/10.1007/978-3-030-17659-4_7
https://doi.org/10.1007/978-3-030-17659-4_7
https://doi.org/10.1007/978-3-030-17659-4_7
https://doi.org/10.1007/978-3-030-17659-4_7
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
http://dx.doi.org/10.6028/NIST.FIPS.202
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://doi.org/10.1007/978-3-030-26951-7_9
https://doi.org/10.1007/978-3-030-26951-7_9

	Hybrid-query bounds with partial input control – framework and application to tight M-eTCR

