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Abstract. In the McEliece public-key encryption scheme, a private key
is almost always not determined uniquely by its associated public key.
This paper gives a structural characterization of equivalent private keys,
generalizing a result known for the more approachable special case |L| = q.
These equivalences reduce the cost estimate for a simple private-key
search using the support-splitting algorithm (SSA) by a polynomial but
practically very substantial factor. We provide an optimized software
implementation of the SSA for this kind of key search and demonstrate
its capabilities in practice by solving a key-recovery challenge with a
naïve a-priori cost estimate of 283 bit operations in just ≈ 1400 core
days, testing ≈ 9400 private-key candidates per core and second in the
process. We stress that the speedup from those equivalences is merely
polynomial and does not indicate any weakness in realistic instantiations
of the McEliece cryptosystem, whose parameter choices are primarily
constrained by decoding attacks rather than ludicrously more expensive
key-recovery attacks.
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1 Introduction

Code-based cryptography, and McEliece’s public-key encryption scheme [McE78]
in particular, are one of the primary candidates for post-quantum cryptography.
The idea is simple: Decoding is computationally hard for random linear codes,
whereas there exist efficient decoders for some more structured families of codes.
Users can thus generate an efficiently decodable code in private and “scramble” it
into an equivalent code which “appears” random and can be published. (Concretely,
for the secret code, the standard choice is a Goppa code over the binary finite
field F2, which can be decoded efficiently using algorithms due to Patterson [Pat75]
or Bernstein [Ber24].) The secret transformation from the structured private
code to the public random-looking code thus forms a trapdoor that allows the
private-key holder to decode efficiently, while (presumably) nobody else will be
able to do so. As a consequence, as pointed out in McEliece’s original paper:
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It appears that an eavesdropper has two basic attacks to try; first, to try to
recover G from G′ and so to be able to use Patterson’s algorithm. Second, he
might attempt to to recover u from x without learning G. [McE78]

These two approaches are nowadays known as the “key-recovery attack” and the
“decoding attack” against McEliece, respectively. For decoding, the state of the art
is information-set decoding (ISD), of which there exist a large number of variants:
See [CME22r, § 1] for a long list of references. In comparison, the key-recovery
problem has been receiving relatively slim consideration in the literature. The
reason for this seems to be that parameter choices for McEliece have always been
constrained primarily by the decoding attack, which has a much lower complexity
than all known key-recovery attacks. Indeed, as pointed out by McEliece:

The first attack seems hopeless if n and t are large enough because there are so
many possibilities for G, not to mention the possibilities for S and P . [McE78]

However, for independent applications that might rely on the hardness of the
McEliece key-recovery problem only, and in the interest of gaining sufficient
clarity about the situation in general, there still seems to be value in determining
the exact difficulty of this problem.

In this paper, we theoretically investigate and practically optimize a well-
known approach for the key-recovery problem, which falls into the category of
“smart brute force”: Enumerate part of the private-key components (the Goppa
polynomial g and set of evaluation points {α1, ..., αn}) and check in an efficient
manner, using Sendrier’s support-splitting algorithm [Sen00], whether there exists
a valid assignment for the remaining component (permutation of evaluation
points) that leads the key-generation routine to produce the targeted public key.

The historical lack of concrete cost estimates for the McEliece key-recovery
problem prompted the Technology Innovation Institute (TII) in Abu Dhabi to
issue a set of challenge instances for this problem, covering estimated difficulties
between 22 and 255 bits. The largest challenge instance that was solved during
the admissible time span (May 2023 to May 2024) was a McEliece public key with
parameters (m, t, n) = (8, 5, 253) and an a-priori difficulty estimate of 83 bits.
This estimate matches the result of multiplying the number of private keys up to
permutation (≈ 2tm/t ·

(
2m

n

)
) by a rough cost estimate for Gauß elimination (n3),

corresponding to a straightforward black-box application of the support-splitting
algorithm to the key-recovery problem while setting constant factors in the cost of
linear algebra to one. We demonstrate that this naïve estimate for the complexity
of a brute-force key search overshoots the actual cost in two orthogonal ways:
First, the number of guesses required is smaller (by a logarithmic factor) than the
number of private keys, since a polynomially large set of private keys corresponds
to any given public key. Second, the cost of testing each candidate private key
can be amortized across multiple guesses, resulting in a lower cost per guess
compared to testing each guess completely separately and independently. We
further describe and demonstrate some useful implementation techniques which
drastically speed up the key search in practice.
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1.1 Notation

Fix a prime power q = pm and let t, n be positive integers such that tm ≤ n ≤ q.
For a monic squarefree polynomial g ∈ Fq[x] of degree t and a length-n sequence
L = (α1, ..., αn) of distinct elements αi ∈ Fq satisfying g(αi) ̸= 0, the Goppa code
defined by g and L is the Fp-vector space

Γ (g, L) =
{
c ∈ Fn

p :

n∑
i=1

ci
x− αi

≡ 0 (mod g)
}

.

Identifying elements of Fpm with vectors in Fm
p using an arbitrary isomorphism

of Fp-vector spaces, a parity-check matrix of Γ (g, L) is given by

α0
1/g(α1) · · · α0

n/g(αn)

α1
1/g(α1) · · · α1

n/g(αn)

...
. . .

...

αt−1
1 /g(α1) · · · αt−1

n /g(αn)


∈ Ftm×n

p .

Two codes (subspaces of Fn
p ) are permutation-equivalent if one can be obtained

from the other by permuting the coordinates of Fn
p . Notice that permuting L

evidently produces equivalent Goppa codes. Write set(L) for the set {α1, ..., αn}.
Throughout, let Irrt(q) denote the number of monic irreducible polynomials

over Fq of degree t. Note qt − log2(t) · qt/2 ≤ t · Irrt(q) ≤ qt, hence Irrt(q) ≈ qt/t.

1.2 Key search

The most obvious approach to recovering a McEliece private key is to simply
guess the pair (g, L), compute the associated public key, and check for equality.
Since there are q!/n! choices for L, it is easily seen that Irrt(q) · q!/n! attempts
suffice on average. (This is under the assumption that g is irreducible.)

One may gain a reduction factor of (q − n)! in the number of attempts
by guessing set(L) instead of L, and consequently checking for permutation
equivalence of the resulting codes rather than equality. This test can be performed
efficiently in practice using the support-splitting algorithm [Sen00]. Using this

1 https://crowdchallenge.tii.ae/mceliece-challenges/
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approach, the expected number of required guesses appears to be Irrt(q) ·
(
q
n

)
,

although testing each guess now requires slightly more computation than before.
However, as it turns out, the actual complexity of a brute-force key search is

even lower than this: The reason is that every public key has a relatively large
number of equivalent private keys associated to it, and recovering any equivalent
key suffices; indeed, finding the private key is impossible since it is information-
theoretically indistinguishable from its equivalent keys. We will analyze these
additional equivalences in the upcoming Section 2.

2 Equivalent keys

In this section, we study an important algebraic relationship on the data defining
a Goppa code which induces equivalences on the resulting codes. The protagonist
is the following group of transformations:

Definition 1. The affine semilinear group of a finite field Fq is the subgroup

AΓL(q) :=
{
(x 7→ Axφ+B) : A∈F×

q , B ∈Fq, φ∈Aut(Fq)
}

.

of Sym(Fq). Its elements are called affine semilinear transformations.

One subtle detail in Definition 1 is that elements of AΓL(q) might be viewed
either as a triple (A,B,φ) or as a permutation in Sym(Fq). It is easy to see that
these two viewpoints are indeed equivalent:

Lemma 2. Consider the triples (A,B, φ) and (A′, B′, φ′) with A,A′ ∈ F×
q ,

B,B′ ∈ Fq, and φ,φ′ ∈ Aut(Fq).
If Axφ +B = A′xφ′

+B′ holds for all x ∈ Fq, then (A,B, φ) = (A′, B′, φ′).

Proof. Since φ,φ′ are field automorphisms, they leave 0, 1 ∈ Fq invariant. Hence,
substituting x = 0 into Axφ +B = A′xφ′

+B′ yields B = B′, and substituting
x = 1 then shows A = A′. Finally, if xφ = xφ′

for all x ∈ Fq, then φ = φ′. ⊓⊔

Corollary 3. The cardinality of AΓL(q) equals q(q − 1)m where m = logp(q).

Remark 4. Explictly, in the “triples” viewpoint, formulas for computing in AΓL(q)
are given as follows:

(A,B, φ)−1 =
(
(1/A)φ

−1

, (−B/A)φ
−1

, φ−1
)
;

(A′, B′, φ′) ◦ (A,B, φ) = (A′Aφ′
, A′Bφ′

+B′, φ′ ◦ φ) .

The group AΓL(q) evidently acts on Fq. We extend this action to subsets of Fq

by element-wise application and to vectors in Fn
q by coordinate-wise application.

Furthermore, we define an action on polynomials in Fq[x] by acting on the roots:
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Definition 5. Consider a monic polynomial g ∈ Fq[x] of degree t and let γ1, ..., γt
denote its (not necessarily distinct) roots in Fq. For τ = (x 7→ Axφ+B) ∈ AΓL(q),
lift φ to an arbitrary automorphism Φ ∈ Aut(Fq) which restricts to φ in Aut(Fq),
and define τ ∗ g as the polynomial

∏t
i=1(x−AγΦ

i −B) ∈ Fq[x].

Lemma 6. The action ∗ of AΓL(q) on monic polynomials in Fq[x] is well-defined.

Proof. Let σ ∈ Gal(Fq/Fq). Since g is defined over Fq, there is a permutation π
of the set {1, ..., t} such that γσ

i = γπ(i). Utilizing the fact that Aut(Fq) is abelian
and hence Φσ = σΦ, we therefore get

(AγΦ
i +B)σ = AγΦσ

i +B = AγΦ
π(i) +B .

This shows that σ acts as a permutation on the elements AγΦ
i + B, which by

definition make up the roots of τ ∗ g, and therefore τ ∗ g must be defined over Fq.
It remains to show that the choice of lift Φ does not matter: This is because for

all Φ,Φ′ ∈ Aut(Fq) which restrict to φ in Aut(Fq), we have Φ−1Φ′ ∈ Gal(Fq/Fq).
Let π again denote a permutation such that γΦ−1Φ′

i = γπ(i). Then

γΦ′

i = γΦ′ΦΦ−1

i = γΦ
π(i) ,

thus replacing Φ by Φ′ merely induces a permutation on the elements AγΦ
i +B,

which leaves the polynomial τ ∗ g invariant. ⊓⊔

The following main theorem is a generalization of a result originally due to
Moreno [Mor79], which was restricted to the important special case of irreducible g
and set(L) = Fq, in characteristic 2 only. The cryptographic literature usually
attributes Moreno’s result to Gibson [Gib91], who appears to have rediscovered
it later and introduced it to the cryptanalytic context.

Theorem 7. Recall the setting of Section 1.1 and let τ ∈ AΓL(q). Then

Γ (τ ∗ g, τ ∗L) = Γ (g, L) .

Proof. Let c ∈ Γ (g, L). For any root γ ∈ Fq of g, we have
∑n

i=1 ci/(γ − αi) = 0
as evaluation at γ defines a ring homomorphism Fq[x]/g → Fq. Lift φ ∈ Aut(Fq)
to Φ ∈ Aut(Fq) arbitrarily as before and write T : x 7→ AxΦ +B for shorthand.
A simple calculation then reveals

n∑
i=1

ci/
(
T (γ)− τ(αi)

)
=

( n∑
i=1

ci/(γ − αi)
)Φ

/A = 0Φ/A = 0 .

Since this holds for all roots T (γ) of τ ∗ g, the Chinese remainder theorem implies
n∑

i=1

ci/
(
x− τ(αi)

)
≡ 0 (mod τ ∗ g) ,

which shows c ∈ Γ (τ ∗ g, τ ∗L). We have thus proved Γ (g, L) ⊆ Γ (τ ∗ g, τ ∗L),
and equality follows from applying the same argument to the code defined by
τ ∗ g and τ ∗L with transformation τ−1. ⊓⊔
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Regrettably, however, the group action by AΓL(q) on the set of McEliece
private keys does not immediately lead to either lower or upper bounds on the
number of equivalent private keys per public key. This is due to two separate,
counteracting effects:

– It can occasionally happen that some of the equivalences induced by AΓL(q) as
in the theorem are already explained by permutation equivalence: This is the
case whenever AΓL(q) stabilizes the polynomial g and acts as a permutation
on the list L, i.e., stabilizes set(L). As a consequence, simply multiplying
the number of equivalences coming from AΓL(q) by the cardinality n! of Sn
leads to overcounting the number of equivalent private keys in general.

– Not all equivalences on public keys are explained by the action of AΓL(q):
We refer to this phenomenon as “spurious equivalences”. They, too, are rare,
but they may in general lead to undercounting the number of equivalent
private keys when estimating it via AΓL(q).

It seems difficult to strictly prove anything about the prevalance and impact of
those effects for a given choice of parameters.

From a practical standpoint, however, since both of these exceptional cases
occur only exceedingly rarely when concerned with reasonably large parameter
sets, we may for our cryptanalytic purposes assume that we are in the average
situation, in which the equivalent keys are indeed in bijection with AΓL(q) and
the count resulting from Heuristic 8 is therefore essentially (or exactly) correct.

Heuristic 8. Generically, the number of Goppa codes with parameters (p,m, t, n)
modulo permutation equivalence is about Irrq(t) ·

(
q
n

)
/
(
q(q− 1)m

)
where q= pm.

Also note that public keys having more equivalent private keys are more likely
to be sampled during key generation, hence the distribution of public keys is
biased towards the “weaker” ones with respect to a brute-force key-search attack.

3 The support-splitting algorithm

In the year 2000, Sendrier introduced a practically efficient algorithm for testing
whether two linear codes are permutation-equivalent, and if so, to recover the
permutation [Sen00]. The approach crucially relies on permutation invariants of
linear codes: Required are efficiently computable values associated to a linear
code which are (1) invariant under permutations, and (2) discriminant, i.e., they
tend to take on different values for codes which aren’t permutation-equivalent.

We remark that not much has been proven about either the correctness or
the complexity of this algorithm. Empirically, however, it appears to work very
well for random codes as well as for the family of Goppa codes used in McEliece.

Splitting the support. Provided a sufficiently discriminant invariant V, given
two codes C,C ′ ⊆ Fn

q , it is conceptually easy to recover a permutation π ∈ Sn
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connecting the two codes, assuming one exists: The core subroutine takes as input
two partitions {1, ..., n} = S1 ∪̇ · · · ∪̇Sℓ = T1 ∪̇ · · · ∪̇Tℓ such that π(Si) = Ti for all
i ∈ {1, ..., ℓ}, and outputs another, finer pair of partitions with the same property.
Repeating this process will eventually yield a partition with all |Si| = |Ti| = 1,
which allows us to read off π. (If the codes are in fact not permutation-equivalent,
the subroutine should either detect this and fail, or output an arbitrary finer
partition: One may simply check at the end that π is a valid solution.)

Initial partition. The refining step below assumes that a relatively fine partition
of the set of positions of C and C ′ has already been computed. Obtaining such
an initial partition can be done easily by puncturing both codes C and C ′ at
each position i ∈ {1, ..., n} and computing the invariants V associated to each
punctured code Ci resp. C ′

i; the partition is then given by grouping all Ci with
the same V(Ci) together into one Sk, and similarly for V(C ′

i) into Tk. (Note that
V(Ci) and V(C ′

i) can be used directly as the indices k for the buckets Sk and Tk.)
If V(C) ̸= V(C ′), or if the partitions for C and C ′ resulting from the initial set

of singly-punctured codes are not “compatible” in the sense that the cardinalities
of the sets Sk resp. Tk of singly-punctured codes Ci and C ′

i with the same value
under V match up pairwise, the codes cannot be permutation-equivalent.

Refining step. The refining procedure works as follows: Iterate over nonempty
subsets I ⊆ {1, ..., ℓ}, for instance in order of increasing cardinality. For each I,
puncture the codes in each set Sk at the positions in

⋃
i∈I Si and compute

the associated invariant V. Now, hopefully, this procedure yields a nonconstant
function on Sk, so we may split Sk further into the preimage sets of its values.
Applying the same procedure to Tk leads to a partition Tk,1 ∪̇ · · · ∪̇ Tk,r = Tk for
which π(Sk,i) = Tk,i. In this case, we have thus successfully refined the partition.

This refining step can fail in two ways: First, it could happen that there are
no more subsets I ⊆ {1, ..., ℓ} for which V refines the partition after puncturing
at the positions indicated by I. In that case, one may resort to brute-forcing
parts of the permutation π in order to refine the partition anyway — in a possibly
incorrect way, but of course a valid guess must exist if the codes are actually
permutation-equivalent. Second, if the preimage sets associated to each value of
the punctured codes under V for Sk resp. Tk do not form compatible partitions,
i.e., if the cardinalities of the preimage sets for each value do not match up, then
the codes cannot be permutation-equivalent.

Remark 9. The original description of the support-splitting algorithm [Sen00]
also applies shortenings in addition to puncturings to the input codes. We found
that this adds only little discriminatory power while significantly complicating
the algorithms, hence we decided not to use shortenings in our implementation.

Hull enumerators. The key insight in [Sen00] was that the enumerator of the
hull of a code forms a permutation invariant which is almost always efficiently
computable and sufficiently discriminant, at least in practice, to enable the
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support-splitting algorithm to work well. The following definitions are all standard
in coding theory: The enumerator W(C) of a linear code C ⊆ Fn

q is the vector
(w0, w1, ..., wn) ∈ Zn+1

≥0 where wi =
∣∣{c ∈ C : wt(c) = i}

∣∣. The dual of a code C is
the code C⊥ =

{
w ∈ Fn

q : ∀v ∈ C. ⟨v, w⟩ = 0
}
. The hull of C is the code C ∩ C⊥.

On average, hulls are random-looking subspaces of relatively small dimension:
It was proven in [Sen97, Theorem 4] that the dimension of the hull for a random
code roughly obeys a discrete half-normal distribution;2 hence, the probability
of it exceeding a certain ℓ0 ∈ Z≥0 is bounded above by q−Ω(ℓ20), which shrinks
superexponentially as ℓ0 grows.

As a consequence, computing the hull enumerator of a sufficiently random
code can almost always be done very quickly: Since the dimension of the hull is
overwhelmingly likely to be tiny, one may simply iterate over all vectors contained
in the hull and tally their weights. Indeed, the core observation in [Sen00] was
that the hull enumerator is (empirically) an efficiently computable and sufficiently
discriminant invariant V to render the support-splitting approach highly effective
in practice.

Optimizations. Implementing the support-splitting algorithm in a straightfor-
ward manner, using standard linear-algebra routines and hash tables for keeping
track of the partitions Sk and Tk, leads to significant overheads from dynamic
memory allocations and unpredictable memory-access patterns: See Section 4.

We foreshadow that there are two very useful optimizations for the support-
splitting algorithm when applied to brute-force key search:

– First, noticing that almost all candidate codes are actually not equivalent
to the target code, instead of implementing and running the full support-
splitting algorithm inside the brute-force search, it is enough to build a simple
and fast filter which will reject most inequivalent codes swiftly, but need not
be perfectly correct, nor recover the permutation in full. See Section 4.5.

– Second, since one of the input codes remains fixed, one may precompute
good puncturing locations by essentially running only one side of the support-
splitting algorithm for the target code and noting which puncturings worked
well to refine the partition, then performing only those puncturings for the
candidate equivalent code at runtime while skipping the rest. See Section 4.6.

4 Efficient key search

In the context of a brute-force key search, in which checking for (permutation)
equivalence contributes a multiplicative factor to the overall complexity, it is
clearly desirable to minimize the cost per equivalence test.

2 Asymptotically, the proportion of n-dimensional codes over Fq with hull dimension ℓ
approaches Rℓ := C/

∏ℓ
i=1(q

i − 1) ≈ C/qℓ(ℓ+1)/2, where C is a constant (dependent
on q) which satisfies 0.419 < C < 1. Note that

∑∞
ℓ=ℓ0

Rℓ ∈ Θ(Rℓ0).
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To set a baseline, let us first discuss the main limitations of a straightforward
implementation: Processing a single guess at a time (per thread), representing
codes as generator matrices or parity-check matrices, and using generic linear-
algebra libraries for the hull and punctured-hull computations. This approach is
prone to suffering from several effects causing slowdown:

– Plenty of conditional branches, which may cause mispredictions and therefore
expensive rollbacks and cache invalidations. This includes many conditions
whose values are essentially (difficult-to-predict) coinflips, such as during the
computation of a reduced row echelon form using Gauß elimination.

– Relatively complex, a priori variably-sized data structures. Depending on
implementation specifics, these data structures may incur slowdowns in
thread-safe memory management on many-core machines. In addition, for
large data structures, another issue is that unpredictable memory-access
patterns may cause the processor to stall while waiting for data to be fetched
from main memory to a fast cache located closer to the processing core.

By contrast, in the following, we describe a collection of techniques designed to
work around these issues on typical contemporary many-core CPUs. The key
strategy employed in this work is to rephrase the entire equivalence test as a
binary circuit, which is much more amenable to fast parallel evaluation, on
simpler hardware, than the original high-level algorithm. As a byproduct, the
same circuit can easily be ported to other platforms, such as GPUs, FPGAs, or
even ASICs, to obtain efficient implementations of the key search.

Remark 10. It seems very much conceivable that generic circuit-optimization
techniques could help reduce the number of logical operations in the circuits
constructed via our approach, leading to a faster key-recovery attack on any of
the aforementioned hardware platforms. We have not explored this possibility.

Remark 11. The main case of interest going forward will be binary codes (q=2).
However, whenever the algorithms given in the following are easily expressed for
general q, we have refrained from needlessly specializing to q=2. Throughout,
we will identify the values 0, 1 ∈ F2 with the booleans false and true respectively.

Moreover, note that some of the algorithms are formulated using (fixed-length)
loops and branching for clarity: These abstractions are not admissible in a circuit
to evaluate the algorithm and will have to be unrolled into copies of the loop
body and conditional assignments using bitmasks, respectively. See the difference
between Algorithm 1 and Algorithm 2 for the latter conversion.

The algorithmic building blocks given in Sections 4.2 and 4.3 are essentially
from [Sen00, § 6.1]. We reiterate them here for clarity and completeness, and
because some of our optimizations (Section 5.1) interact with those details.

4.1 Preliminaries

Throughout the rest of the paper, we adhere to the following definitions and
notational conventions.
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– A q-ary code of dimension m and length n is an m-dimensional subspace
of Fn

q . Codes are represented using a basis matrix in Fm×n
q , whose rows form

an Fq-basis of the code. Occasionally, basis matrices may be padded (or
interleaved) with zero rows.

– The dual code C⊥ associated to a code C is its orthogonal complement with
respect to the standard inner product. It equals the right kernel of a basis
matrix. The hull of a code C is the intersection C ∩ C⊥.

– Puncturing a code C ⊆ Fn
q at position i ∈ {1, ..., n} means projecting it to

the subspace Fi−1
q × {0} × Fn−i

q . On a basis matrix, this can be realized by
filling the ith column with zeroes.

– The weight wt(c) ∈ {0, ..., n} of a code word c ∈ Fn
q is the number of nonzero

coordinates in c. The (weight) enumerator W(C) of a code C ⊆ Fn
q is the

integer vector (w0, ..., wn) ∈ Zn+1
≥0 , where wi =

∣∣{c ∈ C : wt(c) = i}
∣∣.

4.2 Keeping pivots on the diagonal

A useful trick to increase the amount of deterministic code paths in the linear-
algebra routines is to ensure all pivots are kept on the main diagonal inside the
row echelon form computation, by inserting zero rows between non-zero rows in
the matrix as appropriate. (This is a non-standard choice: Most descriptions of
Gauß elimination keep “empty” rows at the end.) See Figure 1 for an example.



1 0 0 1 0 0 1 1 0 0
0 1 0 0 0 0 0 1 0 0
0 0 1 1 0 0 1 0 0 0
0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0





1 0 0 1 0 0 1 1 0 0
0 1 0 0 0 0 0 1 0 0
0 0 1 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


Figure 1. Generating matrices of the same 7-dimensional subspace of F10

2 given in
standard reduced row echelon form (left) and in the “diagonal standard form” (right)
that is employed in [Sen00] and in this work.

Definition 12. A square matrix M is in diagonal standard form if its nonzero
rows are in reduced row echelon form and all pivots lie on the main diagonal.

This form of a matrix is very convenient for the linear-algebraic types of com-
putational tasks that appear in coding theory: In particular, having a generator
matrix of some code in this form allows us to directly read off a basis of the right
kernel of the matrix, i.e., a generator matrix of the dual code. The following
result was used without proof in [Sen00, § 6.1.1]:
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Lemma 13. A matrix M in diagonal standard form is idempotent, i.e., M2 =M .
In particular, the nonzero columns of 1−M form a basis of the right kernel of M .

Proof. Let Mij denote the coefficient of M in the ith row and jth column. The
entry in the ith row and jth column of M2 thus equals c =

∑n
k=1 MikMkj . Since all

entries of M below the diagonal are zero, this sum shortens to c =
∑j

k=i MikMkj .
For each k, if Mkk =1, then all Mik with i< k lie above a pivot and therefore
must be zero, and if Mkk =0, then the entire kth row, thus all Mkj , must be
zero. Since in both cases, it follows that MikMkj = 0 unless k= i, we are left
with c = MiiMij . Now, if Mii =1, then c = Mij as claimed. If on the other hand
Mii = 0, then the entire ith row is zero and it follows that c = Mij = 0.

From M2 =M we get M · (1−M) = 0, hence the columns of 1−M are
indeed contained in the right kernel of M . The matrix 1−M is upper triangular
with every nonzero column having a 1 on the diagonal, hence the nonzero columns
are linearly independent. Finally, from the rank–nullity theorem, the nonzero
columns of 1−M must form a basis of the right kernel since they correspond
precisely to the zero rows of M . ⊓⊔

Using the diagonal standard form was already suggested in the original
description of the support-splitting algorithm; however, the motivation there
seems to have been to enable Algorithm 4 for punctured hulls given in the
following Section 4.3, rather than to optimize the circuit associated to the linear-
algebra computation. Indeed, the diagonal standard form (and a transformation
matrix) can be computed using a variant of Gauß elimination that involves fewer
case distinctions based on the locations of the pivots; see Algorithms 1 and 2.

Lemma 14. Algorithm 2 is correct and requires 6n3 +O(n2) logical operations.
If the output L is not needed, omitting its computation reduces this to 2n3+O(n2).

Proof. Several routine verifications. (See also the comments in Algorithm 2.) ⊓⊔

From the given formulation of Algorithm 2, it is straightforward to construct
a binary circuit that is equivalent to evaluating the entire algorithm: See Figure 2
for a tiny example. Note that this is just for illustration: We do not actually ever
compute or export a graph representation of the circuit for the fast SSA filter at
any point; rather, we write software (very similar to Algorithm 2) to evaluate
the circuit straight away. See also Section 5.1.

Another important property of Algorithms 1 and 2 is that they are restartable:
When some of the columns of the input matrix are substituted, the execution of
the algorithm can continue from the new columns and thereby reuse all the work
done up until the first modified column, resulting in a much lower amortized
cost. This is very useful in the context of McEliece key search, which involves a
brute-force search over subsets of possible column vectors. See Section 5.2 and
also [BLP08, § 4], where a very similar approach was used for the decoding attack.

Remark 15. When applied in the context of Algorithm 3, the input matrix B to
Algorithm 2 is symmetric. This causes the transformation matrix T to become
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Algorithm 1: Transforming a matrix to diagonal standard form.
– Restartable: If the kth column is replaced, continue the main loop from that k.

Input: A,B ∈ Fn×n
q .

Output: L,R ∈ Fn×n
q such that R is in diagonal standard form, and such that

there exists T ∈ GLn(Fq) with L = TA and R = TB.
// Initialize output variables.
(L,R)← (A,B)

// Outer loop: Iterate over columns from left to right.
for k from 1 to n do

if Rkk = 0 then
// We don’t have a pivot. Try to find one.
for i from 1 to n do

if i = k then
continue

// Does column k not yet have a pivot in row k, but in row i?
if Rkk = 0 and (i ≥ k or Rii = 0) and Rik ̸= 0 then

Lk ← Lk + Li

Rk ← Rk +Ri

break

if Rkk = 0 then
continue

// Rescale row k row so that the pivot equals 1.
Lk ← R−1

kk · Lk

Rk ← R−1
kk ·Rk

// Inner loop: Zero out the rest of column k.
for i from 1 to n do

if i = k then
continue

if Rik = 0 then
continue

Li ← Li −Rik · Lk

Ri ← Ri −Rik ·Rk

return (L,R)
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Algorithm 2: Transforming a matrix over F2 to diagonal standard form.
– Constant-time: There are no input-dependent branches or memory accesses.
– Restartable: If the kth column is replaced, continue the main loop from that k.
– Note: The output usually differs from the one produced by Algorithm 1.

Input: A,B ∈ Fn×n
2 .

Output: L,R ∈ Fn×n
2 such that R is in diagonal standard form, and such that

there exists T ∈ GLn(F2) with L = TA and R = TB.
// Initialize output variables.
(L,R)← (A,B)

// Outer loop: Iterate over columns from left to right.
for k from 1 to n do

// Inner loop: Try to find a row with a pivot and add it to the correct row.
for i from 1 to n do

if i = k then
continue

// Does column k not yet have a pivot in row k, but in row i?
m← Rkk

if i < k then
m← m ∨Rii

m← ¬m
m← m ∧Rik

// If so, add row i to row k.
for j from 1 to n do

Lkj ← Lkj ⊕ (m ∧ Lij)

for j from k to n do
Rkj ← Rkj ⊕ (m ∧Rij)

// Inner loop: Try to zero out the rest of column k assuming we have a pivot.
for i from 1 to n do

if i = k then
continue

// Does column k contain a one in row i?
m← Rik

// If so, add row k to row i.
for j from 1 to n do

Lij ← Lij ⊕ (m ∧ Lkj)

for j from k to n do
Rij ← Rij ⊕ (m ∧Rkj)

return (L,R)
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Figure 2. Logic circuit constructed by Algorithm 2 for n=3.
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symmetric as well (it equals (B+D)−1 where D is the diagonal part of 1−R),
but unfortunately, we have not succeeded in exploiting this fact to eliminate
redundancy and accelerate the algorithm.

Remark 16. Some common optimizations for linear algebra over small finite fields,
such as the “Four Russians” method [ADKF70], unfortunately do not apply in
our setting: This is because it relies on fast random access to precomputed tables,
which becomes expensive in the circuit abstraction.

4.3 Computing everywhere punctured hulls, all at once

All of the following is essentially explained in [Sen00, § 6.1.2]. In this section, we
give a simplified and streamlined account for our particular application.

Lemma 17. Let C be a code given by a square matrix M ∈ Fn×n
q in diagonal

standard form. Then the hull C ∩ C⊥ equals the (right) kernel of 1+M −MT.

Proof. This follows from the general fact that (C1 ∩ C2)
⊥ = C⊥

1 + C⊥
2 holds for

any two codes C1, C2, combined with Lemma 13. ⊓⊔

What this entails is that computing the hull of a linear code can be done
entirely in place: The nonzero rows of 1−M correspond exactly to the zero rows
of M , hence computing the hull via Lemma 17 involves flipping all coefficients lying
above the diagonal across the diagonal, negating them, and filling the diagonal
with ones, then computing the diagonal standard form again and reading off the
kernel. See Algorithm 3.

In addition, Lemma 17 also allows for computing the hulls of punctured codes
very easily after the hull has been computed: This was detailed for the case q=2
in [Sen00, § 5.3.1]. See Algorithm 4.

Remark 18. The algorithms in this paper only require singly-punctured hull
enumerators. However, if further puncturings are required, this could easily be
achieved using the same methods by keeping track of the matrices L,R computed
by Algorithm 1 over the course of multiple sequential applications of Algorithm 4.

4.4 Computing weight enumerators

Computing the weight enumerator of a low-dimensional code over a small finite
base field is generally straightforward: Simply enumerate all linear combinations
of a basis of the code and record the weight of each code word encountered this
way. An optimized method of performing this enumeration (for q = 2) consists in
iterating over the vectors determining linear combinations of a basis according
to a Gray code, i.e., a way of arranging all bit vectors of a given length in such
a way that every pair of two adjacent vectors has Hamming distance one. The
details are elaborated in Algorithm 5.

15



Algorithm 3: Computing the hull of a code in diagonal standard form.
Input: M ∈ Fn×n

q in diagonal standard form, defining a code C ⊆ Fn
q .

Output: H ∈ Fℓ×n
q a basis matrix of the hull C ∩ C⊥.

A← 0 ∈ Fn×n
q

B ←M

// Iterate over all rows.
for k from 1 to n do

// If this row is zero, copy in the corresponding row of of (1−M)T.
if Mkk = 0 then

Akk, Bkk ← 1
for j from 1 to k do

Akj , Bkj ← −Mjk

// Compute the diagonal standard form of B.
Apply Algorithm 1 to the input (A,B), obtaining matrices L,R ∈ Fn×n

q .
// Read off a basis of the hull from the nonzero columns of (1−R)T.
Initialize ℓ← 0 and H ∈ F0×n

q .
for k from 1 to n do

if Rkk = 0 then
Append a zero row to H.
ℓ← ℓ+1
Hℓk ← 1
for i from 1 to k− 1 do

Hℓi ← −Rik

return H

Algorithm 4: Computing the hull of a singly-punctured code (over F2).

Input: H ∈ Fℓ×n
2 a basis matrix of the hull of a code C ⊆ Fn

2 ,
matrices L,R ∈ Fn×n

2 as computed by Algorithm 3 for C,
an index r ∈ {1, ..., n}.

Output: H ′ ∈ Fℓ′×n
2 a basis matrix of the hull of the code C punctured at r.

H ′ ← H

// If r is in the support, shorten the code at r.
for k from ℓ down to 1 do

if Hkr then
for i from 1 to k− 1 do

if Hir then
H ′

i ← Hi ⊕Hk

Delete the kth row from H ′.
return H ′

// Otherwise, the hull is either augmented by a suitable vector, or unchanged.
if Lr,r = 0 then

Append the row Lr of L to H ′.

return H ′
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Each individual count inside a weight-enumerator data structure is represented
in our binary circuit as a standard ripple-carry incrementer of some suitable
(a priori fixed) bit length w. Every such counter also features an overflow bit o to
prevent further processing of wrong results after an integer wraparound occured.
See Algorithm 6. We note that the counts could alternatively be stored as a unary
representation, but this scales much worse: Incrementing a w-bit binary number
takes 2w +O(1) bit operations, while incrementing a unary number capable of
storing w-bit integers takes 2w +O(1) bit operations.

Algorithm 5: Weight enumerator of a low-dimensional code (over F2).

Input: H ∈ Fℓ×n
2 a basis matrix of some code in Fn

2 .
Output: Weight enumerator (w0, ..., wn) ∈ Zn+1

≥0 of the code generated by H.
Initialize counters w0, ..., wn to zero.
Initialize c← 0 ∈ Fn

2 .
Increment w0.
for s from 1 to 2ℓ do

i← ν2(s) // The number of trailing zero bits.
c← c⊕Hi

// Compute the weight of c.
Initialize a counter k to zero.
for j from 1 to n do

if cj then
Increment k.

// Increment the associated counter.
for j from 1 to n do

if k = j then
Increment wj .

return (w0, ..., wn)

Algorithm 6: Incrementing a w-bit integer using bit operations.
Input: Bit array [b0, ..., bw−1; o] representing n = b0 + 2b1 + · · ·+ 2w−1bw−1

if o = false, else n=∞, and a bit c.
Output: Bit array [b′0, ..., b

′
w−1; o

′] representing n′ = n+ c if n+ c < 2w,
else n′ =∞.

for i from 0 to w− 1 do
b′i ← bi ⊕ c
c← bi ∧ c

o′ ← o ∨ c

return [b′0, ..., b
′
w−1; o

′]
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4.5 Fast filtering using hull enumerators

In the context of a key-recovery attack against McEliece, the main contributing
factor of the attack complexity is the cost of repeated permutation-equivalence
tests with one of the two inputs (the target public key) remaining fixed. As such,
our main goal is to optimize those equivalence tests as much as possible, yielding
a “fast filter”. Crucially, the construction of the fast filter itself may utilize liberal
amounts of precomputation involving the target public-key code.

The key observation is that (1) for codes to possibly be equivalent, the hull
enumerators and the multisets of singly-punctured hull enumerators of the two
codes must be identical, and (2) it is acceptable for this equivalence test to be
imperfect, opening up the potential to achieve much faster execution times by
admitting a small chance of false positives.

In the context of our attack, we successfully exploit these two observations to
obtain a fast (but imperfect) equivalence check as follows:

– Puncturings only. While the original description of the support-splitting
code applies both puncturings and shortenings to the input codes, we refrain
from using shortenings for simplicity. (See Remark 9.)

– Single puncturings only. The full support-splitting algorithm involves a
recursive procedure to further discriminate the positions of the two input
codes corresponding to each other until the exact permutation inducing the
equivalence has been determined. To trade speed for correctness, we instead
stop after the first refining step and post-process the resulting stream of
candidate equivalent codes using a slower but perfectly correct implementation
of the full support-splitting algorithm only afterwards. (See Section 4.7.)

– Sets instead of multisets. In theory, we would like to compare the multisets
of singly-punctured hull enumerators of an input code to the (precomputed)
multiset corresponding to the target public-key code. In reality, this multiset
comparison can be approximated by instead simply checking for the presence
or absence of certain elements of one multiset in the other multiset: As soon
as an expected hull enumerator cannot be found, or an unexpected hull
enumerator is encountered, the respective code can immediately be discarded.

The resulting fast filtering method is detailed in Algorithm 7. It relies on the
following data structure as input:

Definition 19. For a code C ⊆ Fn
q , a fast filter is the following data structure:

– The first component is the hull enumerator of C.

– The second component is a list of tuples (b, v) ∈ {true, false} × Zn+1
≥0 with the

property that b = true if and only if the vector v occurs as one (or multiple)
of the singly-punctured hull enumerators of C.

In a nutshell, this data structure contains information about singly-punctured
hull enumerators whose presence or absence quickly establishes (with certainty)
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the non-equivalence of “most” random codes to the target code: Check for the
presence of enumerators which appear for the target code C but are unlikely to
appear in a random code, and check for the absence of enumerators which are
likely to appear for a random code but do not appear for C.

Algorithm 7: Evaluating a fast filter for permutation equivalence.
Input: Fast filter F =

(
u,

[
(b1, v1), ..., (bℓ, vℓ)

])
, some code C′ ⊆ Fn

q .
Output: Boolean indicating whether C′ passed the filter F or not.
// First make sure the hull enumerators match.
Compute the hull enumerator u′ of C′. // Algorithms 3 and 5
if u′ ̸= u then

return false

// Verify that all forbidden singly-punctured hull enumerators are absent.
for k from 1 to n do

Compute the hull enumerator v′k of C′ punctured at k. // Algorithms 4 and 5
for i from 1 to ℓ do

if bi = false and v′k = vk then
return false

// Verify that all required singly-punctured hull enumerators are present.
for i from 1 to ℓ do

if bi = true then
r ← false
for k from 1 to n do

if v′k = vk then
r ← true
break

if r = false then
return false

// All checks passed!
return true

The way a “fast filter” is constructed for a given target code C is simple:
We sample many random Goppa codes, compute all their singly-punctured hull
enumerators, and use a greedy approach to select those enumerators into the filter
first whose presence or absence leads to the strongest filtering. See Algorithm 8.

Remark 20. The “fast filtering” approach inherently offers a tradeoff between the
complexity (hence the computational effort) of the employed strategy and the
quality of the filtering (hence the rate of false positives).

In particular, with the greedy approach used in Algorithm 8, a fast filter can
simply be truncated at the end in order to increase the filter’s throughput at the
expense of some of its distinguishing strength.

Remark 21. One side effect of the particular “fast filtering” technique employed
in this work is that the key search proceeds at a much higher rate for some target
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Algorithm 8: Constructing a fast filter for permutation equivalence.
Input: Goppa code C ⊆ Fn

p with q= pm and t=deg(g); sample count K ∈ Z≥1.
Output: Fast filter F which C passes, whereas a random Goppa code with the

same parameters is “unlikely” to pass (depending on K).
Compute the hull enumerator u ∈ Zn+1

≥0 of C.
Compute the set of all singly-punctured hull enumerators Vyes ⊆ Zn+1

≥0 of C.
for k from 1 to K do

Sample a random Goppa code C′
k of parameters (p,m, t, n).

Compute the set of all singly-punctured hull enumerators V ′
k ⊆ Zn+1

≥0 of C′
k.

V ← Vyes ∪
⋃K

k=1 V
′
k

C ← {C′
1, ..., C

′
K}

F ←
(
u, [ ]

)
while V ̸= ∅ do

Filter C through F and only keep the codes that pass.
// At this point one could optionally break early once the empirical rate |C|/K

of false positives has subceeded a given target false-positive rate.
if C = ∅ then

break

for each v ∈ V do
bv ← (v ∈ Vyes)
Compute the proportion εv of codes in C passing the filter

(
u,

[
(bv, v)

])
.

Find a v ∈ V with εv minimal among all v and remove v from V.
Append (bv, v) to the second component of F .

return F
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codes than others: For example, in the most extreme case, the hull enumerator
of the public-key code itself would be overwhelmingly unlikely to appear for
random Goppa codes, hence a fast filter could consist of simply checking the hull
enumerator (without applying any puncturings at all). This effect is visible in
Table 1, where smaller “#F” correlates with higher throughput overall.

The fact that one of the input codes remains fixed implies that bounds on
the integers that can appear in weight enumerators, as needed for the algorithms
in Section 4.4, are readily available: They can simply be chosen according to the
weight enumerators observed for the target public key. While the enumerators
computed for a candidate equivalent code may in fact have larger entries, this
cannot possibly occur for a valid solution, hence this scenario can be detected
(and the offending codes discarded) by simply inspecting the overflow bit.

4.6 Precomputation for the full SSA

For general inputs, the simple filter obtained in the previous Section 4.5, which
checks for the presence or absence of certain enumerators within the set of singly-
punctured hull enumerators, may not be selective enough. In that case, one could
proceed with precomputing the full SSA as described in Section 3: Instead of
relying only on singly-punctured hulls, continue down the recursion and puncture
out more positions of the code as identified by their punctured hull enumerators.

An important detail is that this can be done as a one-time precomputation
for one side of the equivalence test, leaving only the candidate equivalent key to
be processed at runtime (following a predictable pattern determined beforehand),
which is beneficial in the context of a key-recovery attack: It again enables the
whole equivalence test to be phrased as a binary circuit that does not involve
any unpredictable control flow or complicated data structures.

We also note that there is a tradeoff between the one-time precomputation
cost and the online phase of the attack: Trying (in the notation of Section 3)
a larger variety of puncturing sets I at each refining step yields possibly much
shorter and therefore more efficient strategies for the resulting equivalence test.

In our implementation of the key-recovery attack (see Section 5), we initially
tested a proof-of-concept implementation of this more general approach for the
first fast filtering stage, but it quickly became evident that singly-punctured
hulls almost always provide strong enough filtering in practice, hence the full
“precomputed SSA” approach was abandoned for that purpose and we settled
for the simpler strategy described in Section 4.5. We do however use the more
general method outlined here when post-processing the codes that passed the
fast filter, as described in the following Section 4.7.

4.7 Post-processing codes passing the filter

The fast filter from Section 4.5 is not perfect: It does allow for false positives, i.e.,
actually inequivalent codes which nevertheless exhibit the correct set of singly-
punctured hull enumerators, to be incorrectly identified as candidate equivalent
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codes — albeit at a very slow rate, assuming the conditions tested by the fast filter
are strong enough, meaning they are satisfied only for a miniscule proportion of
random Goppa codes.

Since those false positives are very rare in practice, a second, strictly correct
(but more expensive) filtering stage can eliminate them at almost no additional
cost per guess: We simply re-run the standard support-splitting algorithm (with a
precomputed strategy — see Section 4.6) in order to distinguish the true solution
from the false positives that are erroneously passing through the filter. As a
byproduct of establishing equivalence to the target code, the SSA at the same time
also recovers a permutation that realizes the equivalence between the public-key
code and the solution to the key-recovery problem.

5 Implementation

Our parallelized C++ implementation of the McEliece key-recovery attack using
the support-splitting algorithm is available for download at the following link:

https://yx7.cc/code/goppify/goppify-latest.tar.xz

In this section, we specialize to p = 2 and q = 2m; this is the only case that
is currently supported by the implementation. Let w denote the number of bits
in a register of the target architecture. (The implementation hardcodes w = 64.)

5.1 Bitslicing the fast SSA filter

The most effective optimization employed in our brute-force software to recover
McEliece keys is bitslicing. Generically, this technique refers to rewriting a given
computation as a binary circuit, then evaluating the circuit on w independent
inputs in parallel using the processor’s bitwise logic instructions on registers
holding w bits each. This is fundamentally the same concept as batching multiple
instances of the same computation using vector instructions, but here it is applied
at the level of single bits held in general-purpose CPU registers. See Figure 3.

In the context of linear algebra over F2, which the support-splitting algorithm
heavily relies on, this yields to several important optimizations over the straight-
forward approach working on one matrix in row-major form at a time:

– Predictable execution flow: Avoiding conditional branches and variable-
length loops assists the processor in effectively pipelining the execution of
the program and helps prevent expensive mispredictions (and the resulting
rollbacks) on architectures that rely on speculative execution.

– Predictable memory-access pattern: Avoiding random accesses to large
memory regions is a crucial consideration in optimizing computations for
modern CPUs since fetching data from main memory incurs a potentially
very large time penalty. Using data-independent memory-access patterns
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Figure 3. Illustration of the ways a list of matrices over F2 can be stored in, in (from
left to right) row-major, column-major, and bitsliced order. Each arrow indicates the set
of bits stored inside a single bit vector (i.e., CPU register) within the target machine.

enables the memory controller on superscalar architectures to prefetch the
required information into a lower (faster) level of the cache hierarchy while
previous steps of the program are in the process of being executed, resulting
in much smaller memory-access latencies and, therefore, higher throughput.

On the opposite side, the primary drawbacks of bitslicing computations are:

– Random accesses are expensive: While loading or storing data from
or to an array with variable index is expressible in the circuit abstraction
(for an example, see Remark 22 and the pivoting step in Algorithm 2), it
comes at a linear time cost in the size of the array that is being accessed.
In comparison, the RAM model of computation stipulates that a memory
access can be performed in constant time, independently of the size of the
memory, while more realistic models of computation assign a nonconstant
but still sublinear time cost.

– Integer arithmetic is expensive: Modern processors typically perform
a very large number of bit operations per assembly instruction or clock
cycle. Logical bit operations, as employed for bitslicing, offer among the
worst throughput in terms of bit operations per unit of time. By comparison,
performing integer arithmetic in non-bitsliced representation benefits from
specialized silicon inside the CPU, enabling it to perform integer operations
with throughput often significantly greater than one instruction per cycle,
despite the fact that those operations actually consist of a possibly very large
number of bit operations. Therefore, emulating nontrivial computations using
relatively primitive operations which could — in non-bitsliced representation —
be run through specialized hardware is inherently much slower than simply
using the built-in instructions. Nevertheless, when only a small number of
simple (say) integer operations is required as part of a larger circuit that can
more favorably be expressed in terms of bit operations, it may be beneficial
to perform them in the bitsliced representation anyway.
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Luckily, neither of those disadvantages has a big impact in our context: The vast
majority of the time is spent on linear algebra over F2, where packing multiple
instances into a set of registers in order to exploit the parallelism inherently
provided by register-sized bitwise operators offers a clear advantage over using
those same hardware units to execute only a single instance at a time.

Remark 22. Algorithms 1 to 7 and 9 are all given in non-bitsliced form for ease of
notation. In all cases, converting them into a bitslicable circuit is straightforward:
The most important translation step is to replace all conditional expressions by
equivalent sequences of bit operations, similar to constant-time cryptographic
code: In essence, the conditional assignment “if C then R← A else R← B”
turns into the computation of both branches Rtrue ← A and Rfalse ← B, followed
by the combination of the two possible results using a bitmask, i.e., computing
R ← (C ∧ Rtrue) ∨ (¬C ∧ Rfalse). Similarly, random accesses to memory can be
emulated by iterating over all memory cells that could possibly be accessed and
conditionally reading or writing the cell using a bitmask each time.

Shortcuts. Recall that our implementation processes multiple instances of the
hull and punctured-hull computations in parallel via bitslicing. For example,
when all bits in the register holding the value m in Algorithm 2 are unset, the
following loops have no effect and can thus be skipped altogether in bitsliced
or vectorized software, resulting in noticeable speedups when only few of the
instances processed in parallel would normally take that code path. We refer to
this as a shortcut. Note that this breaks the circuit abstraction.

5.2 Orchestrating the key recovery

On top of the “fast filter” core for rapid batch testing of code equivalences using
the bitsliced representation, our key-recovery attack tool consists of several more
higher-level procedures that will be detailed below.

Our implementation of the algorithms described in this paper is written
in C++23, making extensive use of its efficient and convenient multithreading
functionality. We employ the NTL library for computing in F2m and F2m [x]
outside of the bitsliced representation (i.e., for the computations involving F2m

in Algorithm 10). Note that we exclusively work with parity-check matrices for
manipulating Goppa codes, which are slightly easier (or at least more convenient)
to construct than generator matrices.

The main loop. Until a solution is found, each processing core repeatedly
samples w random (irreducible) polynomials g1, ..., gw ∈ F2m [x] of degree t. For
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each α ∈ F2m , it computes the associated columns

v(k)α :=



α0/gk(α)

α1/gk(α)

...

αt−1/gk(α)


∈ Ftm

2 (∗)

of a Goppa parity-check matrix (see Section 1.1). The collection of 2m ·w columns
{v(k)α : k ∈ {1, ..., w}, α ∈ F2m} is then bitsliced into 2m · tm width-w registers
{ri(α) : i ∈ {1, ..., tm}, α ∈ F2m}, with ri(α) containing the ith coefficient in each
of the columns v

(1)
α , ..., v

(w)
α ∈ Ftm

2 .
Finally, the algorithm picks a random ordering for the 2m elements of F2m

and thus for the bitsliced columns (r1(α), ..., rtm(α)) that will be combined into
candidate parity-check matrices. See Algorithm 10 for details.

Iterating over length-n subsets of Fq. For each choice of the columns ri(α),
the algorithm now enumerates a certain (configurable) number of length-n subsets
of those columns, which corresponds to guessing the set of Goppa evaluation
points set(L). These subsets are enumerated in a depth-first fashion, systematically
constructing all possible combinations of column sets in the candidate Goppa
parity-check matrix by filling in the columns from left to right, recursing further
to the right whenever possible, and only continuing with the next choice for the
“current” column after the algorithm has run out of options for all columns to
the right. This enumeration procedure can be implemented using a stack data
structure; see Algorithm 9 for details.

One major benefit of enumerating subsets of F2m in this particular order is
that almost all of the time, modifications occur exclusively near the end of the
candidate parity-check matrix, which means most of the work involved in the
linear-algebra routines can be reused and therefore amortized across multiple
guesses for set(L). This important optimization owes crucially to the fact that the
particular variant of Gauß elimination used in Algorithm 2 finalizes the columns
of the reduced matrix in diagonal standard form sequentially from left to right,
which renders it possible to restart the elimination process midway and continue
from whichever column has been swapped out. This is similar to the techniques
described in [BLP08, § 4].

Running the filter. Once the bitsliced candidate parity-check matrices have
been set up in the way outlined above, all that is left to do is to run the fast filter
developed in Section 4.5 on the bitsliced inputs in parallel. This yields a single
register containing one bit per candidate parity-check matrix, indicating whether
the respective instance has passed the filter. For each parity-check matrix that
passed the filter, we reconstruct the matrix in non-bitsliced representation and
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Algorithm 9: Searching for a valid subset of column vectors.
Input: Sequence v1, .., vℓ of column vectors in Fd

q , dimension n ∈ {1, ..., ℓ}, and
a function check : Fd×n

q → {0, 1}.
Output: Iterator over subsets {i1, ..., in} ⊆ {1, ..., ℓ} satisfying check(R)= 1,

where R is the diagonal standard form of the matrix
(
vi1 | · · · | vin

)
.

Initialize an empty stack S holding values in {1, ..., ℓ}∗ × Fd×d
q × Fd×n

q .
Push

(
( ), 1,0

)
onto S.

while S is not empty do
Pop the top value

(
(i1, ..., ik), L,R

)
from S.

if k = n then
/* At this point, rather than enumerating all

(
ℓ
n

)
subsets, one could

increment a counter and return early once some limit was reached. */
if check(R) = 1 then

yield {i1, ..., ik}

j ← ik +1 // convention: i0 =0

if j ≤ ℓ then
if 0 < k ≤ n then

// Note on the stack where to continue after the recursive step.
(L′, R′)← (L,R)

Replace the kth column of R′ by the vector L · vj .
Apply the kth iteration of Algorithm 1 or 2 to the pair (L′, R′).
Push

(
(i1, ..., ik−1, j), L

′, R′) onto S.

if 0 ≤ k < n then
// Set up the stack for entering a recursive depth-first step next.
Replace the (k+1)th column of R by the vector L · vj .
Apply the (k+1)th iteration of Algorithm 1 or 2 to the pair (L,R).
Push

(
(i1, ..., ik, j), L,R

)
onto S.
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run a slower non-bitsliced implementation of the full SSA (see Section 4.7) to
discover whether the code is truly permutation-equivalent to the target public-key
code or a false positive has passed the fast filter.

Algorithm 10: The main key-recovery algorithm.
Input: Fast filter F for a Goppa code C ⊆ Fn

2 with q=2m and t=deg(g).
Output: Goppa polynomial g and list L of evaluation points defining C.
while true do

Sample w irreducible polynomials g1, ..., gw ∈ F2m [x] of degree t.
Compute the associated columns v

(1)
α , ..., v

(w)
α according to Equation (∗).

For each α ∈ F2m , bitslice the list
[
v
(1)
α , ..., v

(w)
α

]
∈ (Ftm

2 )w of w independent
columns into a list of length-w registers r(α) =

[
r1(α), ..., rtm(α)

]
∈ (Fw

2 )
tm.

Sample a random bijection ι : {1, ..., 2m} → F2m and let
S ←

[
r(ι(1)), ..., r(ι(2m))

]
∈
(
(Fw

2 )
tm

)2m .
Execute the bitsliced version of Algorithm 9 with inputs S and n, using the
bitsliced version of Algorithm 7 with input F for the check function.

for each index set {i1, ..., in} ⊆ {1, ..., 2m} returned by Algorithm 9
for the kth bit of the bitsliced computation do

Rebuild the corresponding Goppa code C′ := Γ (gk, [ι(i1), ..., ι(in)]).
Run the standard SSA on input (C,C′), yielding a result π ∈ Sn ∪ {⊥}.
if π ̸= ⊥ then

L←
[
ι(iπ(1)), ..., ι(iπ(n))

]
return (g, L)

Remark 23. Algorithm 10 can easily be adjusted — following essentially the same
structure—to work with any other efficient implementation of the fast filter,
such as CPU implementations using dedicated vector registers and instructions,
GPU implementations, or hardware implementations on FPGAs or ASICs.

5.3 Estimates

An overview of the estimated cost of breaking various (smaller) challenge instances
of the McEliece key-recovery problem using our implementation of the attack is
displayed in Table 1.

Baseline: Linear algebra using M4RI. The M4RI library [M4RI] is a highly
optimized implementation of the “Four Russians” [ADKF70] approach to linear
algebra over F2. Comparing the performance of our bitsliced implementation
of Gauß elimination (Algorithm 2) to M4RI reveals that our implementation
achieves roughly twice the throughput of MARI when computing reduced echelon
forms of random square matrices over F2 of dimensions n = 253. This suggests
that the vectorized circuit-based approach employed in this paper is presumably
superior when many instances of the same linear-algebra task can be batched,
even when the relatively complicated hardware required to run M4RI is available.
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Table 1. Overview of the smaller parameter sets from the TII McEliece Challenges
together with attack complexity estimates using our optimized key-search software.
The empirical throughput (private-key guesses per core and second) was measured on
an AMD EPYC 9754 processor (Zen 4c microarchitecture) running at 2.25GHz with
hyperthreading disabled.
The required number of guesses was estimated based on Heuristic 8. The columns “#F” and
“≈Pr[F7→true]” refer to the length of the used fast filter F , not including the unpunctured hull
enumerator itself, and the empirical probability for a random code to pass the filter F , respectively.
All filters were constructed by running Algorithm 8 with K =100,000. Note that no attempt was
made to optimize the estimated total duration of the attack by adjusting the length of the filter.

instance m t n ≈# guesses #F ≈Pr[F7→true] guesses/(core · s) ≈ core time

39 5 2 28 211.81 5 2 −3.68 214.08 ≈ 0.2 s
41 5 2 27 214.30 5 2 −6.32 216.73 ≈ 0.2 s
43 5 2 26 216.47 6 2 −4.25 214.87 2 1.60 s ≈ 3.0 s
44 6 2 61 211.76 10 2−10.76 216.61 ≈ 0.0 s
45 6 3 62 212.83 9 2 −5.54 213.61 ≈ 0.6 s
46 6 4 63 213.44 4 2−13.45 217.31 ≈ 0.1 s
47 5 2 23 221.42 7 2 −6.48 217.35 2 4.07 s ≈ 16.8 s
48 6 2 60 215.69 4 2−15.69 218.67 ≈ 0.1 s
49 5 2 21 223.62 7 2−10.46 220.19 2 3.43 s ≈ 10.8 s
50 6 3 61 217.20 14 2 −5.41 213.67 2 3.53 s ≈ 11.6 s
51 6 4 62 218.41 2 2−18.43 218.64 ≈ 0.9 s
52 6 5 63 219.12 17 2 −7.26 215.16 2 3.96 s ≈ 15.5 s
53 6 3 60 221.13 2 2−16.74 218.38 2 2.75 s ≈ 6.7 s
55 6 4 61 222.78 10 2−14.13 218.37 2 4.41 s ≈ 21.3 s
57 6 3 59 224.71 7 2−16.77 218.23 2 6.48 s ≈ 1.5min
58 6 2 57 225.63 12 2−13.77 218.76 2 6.87 s ≈ 1.9min
59 6 4 60 226.71 9 2−14.28 218.26 2 8.45 s ≈ 5.8min
60 6 3 58 228.01 6 2−15.12 218.68 2 9.33 s ≈ 10.7min
63 6 2 55 231.10 3 2−17.97 219.11 211.99 s ≈ 1.1 h
65 6 2 54 233.56 9 2−14.64 218.54 215.02 s ≈ 9.2 h
66 6 3 56 233.90 14 2 −7.05 215.11 218.79 s ≈ 5.2 d
68 6 2 53 235.85 1 2−17.23 219.46 216.39 s ≈ 1.0 d
69 6 4 57 236.65 9 2−15.23 218.71 217.94 s ≈ 2.9 d
70 8 5 255 226.68 23 2 −9.25 211.79 214.89 s ≈ 8.4 h
71 6 6 60 238.13 8 2−16.20 218.64 219.49 s ≈ 8.5 d
72 7 5 125 234.26 1 2−17.19 216.23 218.04 s ≈ 3.1 d
73 7 6 126 235.61 1 2−23.79 216.07 219.54 s ≈ 8.8 d
74 7 8 128 236.20 20 2 −6.94 210.74 225.47 s ≈ 1.47 yr
76 6 7 60 243.91 3 2−18.99 218.97 224.93 s ≈ 1.02 yr
77 7 5 124 239.23 4 2−16.64 215.80 223.43 s ≈ 4.3mo
78 6 8 61 245.78 3 2−14.98 218.43 227.35 s ≈ 5.42 yr
79 7 6 125 241.00 4 2−16.74 215.67 225.33 s ≈ 1.34 yr
80 7 7 126 242.39 2 2−21.01 216.02 226.37 s ≈ 2.74 yr
81 7 8 127 243.20 4 2−16.08 215.35 227.86 s ≈ 7.71 yr
82 6 8 60 249.72 3 2−16.01 218.55 231.16 s ≈ 76.18 yr
83 8 5 253 240.08 1 2−19.95 213.21 226.87 s ≈ 3.90 yr
84 8 6 254 241.42 20 2−10.62 212.60 228.82 s ≈ 14.99 yr
85 8 8 256 242.01 20 2−10.26 2 9.90 232.10 s ≈ 146.1 yr
86 7 5 122 248.22 1 2−16.72 216.42 231.79 s ≈ 118.0 yr
87 7 8 126 249.19 4 2−15.69 215.74 233.45 s ≈ 371.9 yr
88 7 9 127 250.03 23 2 −6.78 212.17 237.86 s ≈ 7,900 yr
89 8 5 252 246.06 1 2−17.96 213.23 232.83 s ≈ 242.5 yr
90 7 5 121 252.34 4 2−17.11 216.01 236.33 s ≈ 2,739 yr
91 8 6 253 247.82 14 2−13.18 213.01 234.81 s ≈ 954.2 yr
92 8 7 254 249.19 3 2−16.64 213.08 236.11 s ≈ 2,347 yr
93 8 8 255 250.01 22 2 −9.06 211.72 238.29 s ≈ 10,655 yr
94 7 5 120 256.26 5 2−15.14 216.10 240.16 s ≈ 39,046 yr
95 7 7 123 257.38 2 2−20.74 216.40 240.98 s ≈ 68,612 yr
96 9 8 512 247.83 3 2−16.61 2 8.30 239.53 s ≈ 25,198 yr
97 7 8 124 259.55 8 2−14.74 216.17 243.38 s ≈ 363,887 yr
99 7 9 125 261.42 3 2−15.49 215.88 245.54 s ≈ 1,619,077 yr
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5.4 Breaking the “83-bit” instance

In this section we report on details of the successful private-key recovery for the
largest solved instance (estimated 83 bits of security) of TII’s McEliece Challenges.
The target public-key file pk_McEliece_83.txt, along with the public-key files for
all other difficulty levels, are available at https://github.com/ElenaKirshanova/
tii_decoding_challenge/blob/main/public_keyRec/.

Solving the challenge was done by simply invoking the script ./solve.sh 83
from the code package without any further modifications. This script first runs
the precomputation stage for the target code as described in Sections 4.5 and 4.6,
followed by the main key-recovery program (Algorithm 10).

In a stroke of luck, for the particular target public-key code from the challenge,
the hull enumerator alone is already quite rare: It only occurs for one in about
3350 random codes. Adding just one additional check for the presence of a certain
singly-punctured hull enumerator lowers this proportion below one in a million,
resulting in a high rate of filtering for this target key, as indicated in Table 1.

In another stroke of luck, the private key was encountered significantly faster
than expected: While Table 1 suggests an estimated 240.08 guesses, our software
recovered a valid private key for the challenge instance after only 239.04 guesses
using about 1735 CPU days over the course of about 3.4 wall-clock days.

The hardware platform used to solve the challenge was a server with two
AMD EPYC 9754 processors (containing a total of 256 cores implementing the
Zen 4c microarchitecture) with dynamic frequency scaling (base clock 2.25GHz,
boost clock up to 3.1GHz) and hyperthreading (for a total of 512 threads) enabled.
Note that these timings are not exactly comparable to the estimates given in
Table 1 since dynamic frequency scaling and hyperthreading were enabled at the
time of the record run while they are disabled in Table 1.
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