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Abstract. The online realm has witnessed a surge in the buying and selling of data, prompting
the emergence of dedicated data marketplaces. These platforms cater to servers (sellers), enabling
them to set prices for access to their data, and clients (buyers), who can subsequently purchase
these data, thereby streamlining and facilitating such transactions. However, the current data
market is primarily confronted with the following issues. Firstly, they fail to protect client
privacy, presupposing that clients submit their queries in plaintext. Secondly, these models are
susceptible to being impacted by malicious client behavior, for example, enabling clients to
potentially engage in arbitrage activities.

To address the aforementioned issues, we propose payable secure computation, a novel secure
computation paradigm specifically designed for data pricing scenarios. It grants the server the
ability to securely procure essential pricing information while protecting the privacy of client
queries. Additionally, it fortifies the server’s privacy against potential malicious client activ-
ities. As specific applications, we have devised customized payable protocols for two distinct
secure computation scenarios: Keyword Private Information Retrieval (KPIR) and Private Set
Intersection (PSI).

We implement our two payable protocols and compare them with the state-of-the-art related
protocols that do not support pricing as a baseline. Since our payable protocols are more pow-
erful in the data pricing setting, the experiment results show that they do not introduce much
overhead over the baseline protocols. Our payable KPIR achieves the same online cost as base-
line, while the setup is about 1.3− 1.6× slower than it. Our payable PSI needs about 2× more
communication cost than that of baseline protocol, while the runtime is 1.5− 3.2× slower than
it depending on the network setting.

1 Introduction

1.1 Background

The storage and analysis of data has seen dramatic growth in recent years. Organizations have never
valued data more highly. Many products and services are delivered purely in digital forms. Many big
data applications are built on the second use or reuse of data [vdSDLP19], that is, the same data
are customized and reused by many applications for different purposes. In economic activities where
data are shared, exchanged and reused, it is essential to measure the value of data properly, and this
has led to the appearance of data markets [CKK19, FSF20]. Subsequently, data pricing was widely
studied [KUB+12a, KUB+12b, KUB+13, CKK17, DK17, CKK19, CYW+22].
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However, current data pricing models8 assume that the client (data buyer) submits its query q to
the server (seller in the data market), who then prices the data based on the query q. This model
directly reveals the client’s private query q to the server. In practical scenarios, the clients may not
want to disclose the information they query about. For example, a retail company wants to ask for
the sales of a certain product on an E-commerce platform. But they want to keep the product they
are querying about private because this information may include their future sales strategy. A helpful
way is to use secure multi-party computation (MPC) protocols [Yao86, GMW87] to protect the query
privacy of clients, so that the server cannot learn any information about the client’s query after the
query is completed. Consider the following use cases.
Literature purchase. Consider such a scenario: The server has a literature database, where each
data item consists of a literature identifier (such as title or doi) and corresponding literature. The
client wants to purchase the literature it needs from the server. The client has the identifier of the
literature as the keyword and wants to use the keyword to retrieve the corresponding literature. The
server does not want to disclose any information other than the client’s required literature, while the
client does not want to reveal the queried literature’s identifier to the server. By using a (symmetric)
keyword private information retrieval (KPIR) protocol, the client can retrieve the value associated
with a query while the server knows nothing about the client’s query.
Accurate advertising placement. Considering that the server is an advertiser with a set of users
who have strong shopping premises and high purchasing power. The client is an enterprise that wants
to advertise to users and has a set of users who want to advertise to them. The client does not want to
advertise all users in its set, which leads to high costs. Therefore, the client wants to know the users
who have a high willingness to pay, and wants to advertise to these specific users. By using a private
set intersection (PSI) protocol, the client could obtain the intersection of its user set and the server’s
set, while the server knows nothing about the client’s set.

By using the MPC protocol mentioned above, the client can obtain the desired data while the
server learns nothing about the client’s input/output. However, this approach also raises difficulties
for charging. Since the server knows nothing about the client’s output, a malicious client may lie
to the server that it receives nothing to avoid payment. Fernandez [Fer22] showed that a strategic
client might try to improve their benefits through malicious behavior. This is a blow to the server’s
enthusiasm in the data market. Consequently, we ask the following questions:

Can we introduce the concept of charging into secure computation? If possible, can we design
concrete protocols that support charging/payment in secure computation?

1.2 Our Contribution

In this paper, we answer the above two questions affirmatively. Our contribution can be summarized
as follows:

1. We propose a new secure computation definition in the data pricing scenario called Payable Secure
Computation (PSC). It returns an additional judge information to the server after the server and
the client execute the protocol, and the server can charge the client based on this information.

2. We present payable protocols for two concrete scenarios of secure computation: Keyword Private
Information Retrieval (KPIR) and Private Set Intersection (PSI). For KPIR, our protocol allows
the server to additionally obtain a bit, indicating whether the client’s query is in the database.
If so, the client will be charged. For PSI, our protocol allows the server additionally obtain the
intersection size, and the server can charge the client based on this information. The larger the
intersection size, the more the client needs to pay.

3. We implement our Payable KPIR and Payable PSI protocols and compare them with the state-
of-the-art related protocols that do not support pricing as a baseline. Concretely, we compare
our payable KPIR protocol with the KPIR protocol [CMdG+21], and the experiments show that
our payable KPIR achieves the same online cost as [CMdG+21], while the setup is about 2×
slower than it. We compare our payable PSI protocol with the state-of-the-art PSI cardinality
(PSI-CA) protocol [GMR+21], the experiments show that our payable PSI needs about 2× more
communication cost than that of PSI-CA protocol [GMR+21], while the runtime is 1.5 − 6.2×
slower than that of PSI-CA depending on the network setting.

8 For example, the AWS Data Exchange platform [aws].
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1.3 Technique Overview

We now provide the main intuition of our payable secure computation definition and the high-level
technical overview for our payable KPIR and PSI constructions.

Payable Secure Computation. Let’s consider a general scenario where a server has a database,
and a client wants to obtain certain data from this database. They need to execute a protocol. After
the protocol, the client may obtain the desired data or nothing (if the server does not have the data
the client wants). Now, we need to define a new payable functionality to enable the server to charge
the client and design a protocol to implement this new functionality. For server privacy, the protocol
should satisfy security against the malicious client since the client may engage in malicious behavior
during protocol execution to gain profits. For example, the client may buy more data at a lower price9

or deceive the server that it does not obtain the data. For client privacy, we only need the protocol to
satisfy security against the semi-honest server. Because we generally believe that the server is a large
data provider, and the server cannot afford the embarrassment, loss of reputation, and negative press
associated with being caught cheating. To enable the server to charge, we also need to provide the
server with pricing information after the protocol, which we denote as judge. We note that judge can
be computed from the output of the client, but can only contain the minimum information required
for pricing and cannot disclose additional client output. For the correctness of the protocol, we need
to ensure that the server’s charges are reasonable, that is, the charges must meet a certain charging
strategy agreed upon by both parties. When a client engages in malicious behavior, we only require
that the client cannot benefit itself, but we do not fully require that the client fulfill the protocol. For
example, we allow the client to engage in malicious behavior, but the only result is that the client will
be overcharged.

Combining the above ideas together, we obtain the definition of payable secure computation. See
Section 3 for details.
Payable KPIR. In KPIR, a client wants to retrieve the value associated with a certain key in the
server’s databases, which consist of key-value pairs. To make the server charge the client, we consider
letting the server obtain information on whether the client retrieves a value, that is, judge = 1 if
and only if the client’s key is in the database. Note that the traditional KPIR that only protects the
client’s privacy cannot be used, as we require both the server and client privacy.

Our start point is the KPIR protocol of Freedman et al. [FIPR05] (under the name keyword
search). They proposed a method of using Oblivious Pseudo-Random Function (OPRF) to upgrade
any semi-private KPIR protocol into a fully-private one. The main idea is as follows, the server
picks a random PRF key s and updates its database from {(xi, vi)}i∈[n] to {(x′

i, ci)}i∈[n], where
Fs(xi) = x′

i||x′′
i , ci = vi ⊕ x′′

i . Then, the parties invoke OPRF functionality with server input s and
client input query q. As a result, the client obtains Fs(q) = q′||q′′. Finally, the parties execute the
semi-private KPIR protocol with server input {(x′

i, ci)}i∈[n] and client input query q′. The client learns
whether q′ ∈ {x′

i}i∈[n], and if so, also learns the corresponding c. If q′ ∈ {x′
i}i∈[n], the client outputs

v := c⊕ q′′, otherwise, it outputs ⊥.
To let the server obtain the judge, we first try to interpret the above protocol at an abstract level.

Our main observation is that the usage of OPRF is two-fold. Firstly, the first half x′ of OPRF is
used as the new keyword. Secondly, the second half x′′ of OPRF is used to derive n pseudorandom
one-time pads for encrypting values. The client can obtain the new keyword and corresponding value
decryption key in OPRF at the same time.

Based on the above new interpretation, our idea is to split the OPRF into two sub-OPRFs and
execute them separately. We let the server select two PRF keys sk and sv. The first key sk is used to
generate a new keyword x′ = Fsk(x) and the second key sv is used to derive one-time pad x′′ = Fsv (x).
The protocol is as follows, the parties invoke the first OPRF with server input sk and client input query
q. As a result, the client obtains Fsk(q) = q′. Then, the server updates the database to {(x′

i, ci)}i∈[n]

as before, and the parties invoke a semi-private KPIR protocol with server input {(x′
i, ci)}i∈[n] and

client input query q′. Now, if the client learns ⊥, that is, the query is not in the database, the client
just sends a 0 to the server, indicating that the query is not in the database. Otherwise, if the client
obtains an encrypted value c, the client uses the input q to invoke the second OPRF with the server,
and the server inputs the second PRF key sv. As a result, the client obtains q′′ = Fsv (q) and outputs

9 This behaviour is called arbitrage in data pricing models [FV12, LK14].
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v := q′′ ⊕ c. In this way, the server sets judge = 0 if it receives 0 after the KPIR and judge = 1 if it
executes a second OPRF. The high-level idea of our payable KPIR is shown in Figure 1.

Note that the above protocol may still be vulnerable to malicious client attacks. For example,
even if a malicious client receives ⊥ in the KPIR of the second step, it can still execute the second
OPRF with the server. However, this type of attack does not bring any benefits to the client. On
the contrary, it only makes the server believe that the client has obtained the data and charges the
client. In fact, the client has yet to get any valuable data. The only method for the client to obtain the
desired data is to execute the second OPRF with the server, which will inevitably cause the server to
set judge = 1. Consequently, the above protocol already meets the requirement of payable property.
We give our formal description of our payable KPIR and the detailed security analysis in Section 4.

Client (q)Server ({(xi, vi)}i∈[n])

sk, sv ← PRF.KeyGen(1κ)

i ∈ [n] :

x′
i := Fsk(xi)

x′′
i := Fsv (xi)

ci := x′′
i ⊕ vi

OPRF

sk q

q′ = Fsk (q)

KPIR

{(x′
i, ci)}i∈[n] q′

c

If c =⊥:
0

judge := 0

If c ̸=⊥:

OPRF

sv q

q′′ = Fsv (q)

judge := 1 v := q′′ ⊕ c

Fig. 1: Core idea of our payable KPIR protocol

Payable PSI. In PSI, a client with a set Y wants to obtains the intersection Y ∩ X with server’s
set X. For the server to charge the client, we let the server obtain the intersection size, that is,
judge = |X ∩ Y |. We note that it is reasonable to charge based on the size of the intersection: the
larger the intersection, the more data the client receives, hence the server charges a higher fee.

We investigated the state-of-the-art PSI protocols [KKRT16, CM20, RS21, RT21, RR22] and found
that they are all based on multi-query Private Membership Test (mq-PMT). In mq-PMT, a server
inputs a set X, a client inputs a set of element {yi}i∈[n] and learns whether yi ∈ X for i ∈ [n]. As
a result, the client learns intersection directly from the output of mq-PMT. We note that mq-PMT
can be easily obtained by OPRF: the server inputs a PRF key k while the client obtains {Fk(yi)}i∈[n]

on its input {yi}i∈[n], then the server computes and sends {Fk(x)}x∈X to the client. The client tests
whether Fk(yi) ∈ {Fk(x)}x∈X to determine whether yi ∈ X for i ∈ [n].

To construct payable PSI, the first question is how to make the server obtain the size of the
intersection, i.e., intersection cardinality. We investigated techniques used in other private set operation
protocols. We found that there are two main ideas to transform PSI/mq-PMT to the protocol only
outputs intersection cardinality to one party. The first is called permuted mq-PMT. It outputs the
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intersection cardinality to the client10. The main idea is to let the server additionally input a random
permutation π, and the client learns whether yπ(i) ∈ X for i ∈ [n]. Note that the client could only
obtain intersection cardinality because it knows nothing about the permutation π. The second is called
multi-query Reverse Private Membership Test (mq-RPMT). It outputs the intersection cardinality to
the server. The main idea is to let the server instead of the client learn whether yi ∈ X. In this way, the
server obtains intersection cardinality because it has no information about Y . Chen et al. [CZZ+24]
provided a detailed classification for the family of PMT protocols and studied their relationships in
the semi-honest setting.

Although permuted mq-PMT/mq-RPMT somehow satisfies our requirement, there are still two
challenges. Firstly, it has not fully completed the task, and we still need to consider how to enable
the client to obtain the intersection. Secondly, all known efficient permuted mq-PMT/mq-RPMT
constructions only satisfy semi-honest security, while we need our protocol to satisfy security against
malicious client.

Note that solving the first challenge is trivial in mq-RPMT: we can let the server send the in-
dication bits to the client after mq-RPMT. Since the server is honest, the client can directly obtain
the intersection from these bits. Unfortunately, we investigated the existing mq-RPMT protocols and
found that no protocol meets the security against malicious client, and it doesn’t seem to be fixable by
a small tweak of existing mq-RPMT. We have listed the existing mq-RPMT protocols and provided
a detailed explanation of why they do not meet the security against malicious clients in Appendix A.

As a result, we investigated the existing permuted mq-PMT protocols and found that there are
two candidate permuted mq-PMT protocols that could be transformed into payable PSI. The first
is the permuted mq-PMT protocol proposed by Jia et al. [JSZ+22]. We give a brief review of their
permuted mq-PMT as follows. Their protocol employs an Oblivious Switching Network (OSN) [MS13]
functionality and an OPRF functionality. In OSN, a sender inputs a set X = {xi}i∈[n], and a receiver
inputs a permutation π over [n]. As a result, the two parties obtain the secret sharing of π(X),
namely, the sender obtains {ai}i∈[n] and the receiver obtains {a′i}i∈[n], satisfying ai⊕a′i = xπ(i). Their
permuted mq-PMT protocol executes as follows with server S’s input X and client C’s input Y : S
and C execute the OSN protocol first, where the server S inputs X and receives {ai}i∈[n], the client C
inputs a random permutation π and obtains {a′i}i∈[n]. Next, S and C execute the OPRF protocol. The
client C picks a random PRF key k as input. The server S inputs {ai}i∈[n], and receives {Fk(ai)}i∈[n].
Now, C defines sets Pi := {Fk(a

′
i⊕ y)}y∈Y and sends {Pi}i∈[n] to the server. After receiving {Pi}i∈[n],

S defines U [i] = 1 if Fk(ai) ∈ Pi and U [i] = 0 otherwise. If xπ(i) ∈ Y , there exists yj ∈ Y such that
xπ(i) = yj , we have Fk(ai) = Fk(xπ(i)⊕ a′i) = Fk(yj ⊕ a′i) ∈ Pi. If xπ(i) /∈ Y , the pseudorandomness of
PRF guarantees that the probability of Fk(ai) ∈ Pi is negligible.

To let the client obtain the intersection, we observe that the parties already have the additive
sharing of {xπ(i)}. We simply let the server send the ai corresponding to U [i] = 1 to the client. The
client could recover the intersection from xπ(i) = ai⊕a′i. To meet the security against malicious client,
we should replace the underlying OPRF and OSN protocols with the malicious secure ones. However,
all the OSN protocols known to date only consider semi-honest security. Fortunately, we prove that
the semi-honest OSN protocol [MS13] is still secure against the malicious receiver. The high-level idea
of this payable PSI is shown in Figure 2.

Note that the above protocol requires O(n2) communication since each Pi contains n values. Jia et
al. [JSZ+22] showed how to improve the communication by cuckoo hashing technique [PR04]. However,
this optimization is problematic when recovering the intersection. The client may learn the cuckoo
hash positions of the server’s items, which may reveal information about the server’s entire input.
To address this problem, we consider having the parties apply an OPRF to their input items before
permuted mq-PMT. As a result, the position information now is only related to this pseudorandom
set, which can be simulated. The same technique was also used in the construction of unbalanced PSI
by Chen et al. [CHLR18].

The second candidate of permuted mq-PMT is proposed by Cristofaro et al. [CGT12]. The main
idea dates back to the DH-PSI [Mea86, HFH99]. To satisfy security against the malicious client, we
adapt the zero knowledge proof techniques of [MPR+20] to this protocol. We note that this protocol is
inefficient in practice due to the use of a large amount of algebraic zero knowledge proofs, and we only

10 In fact, the client in permuted mq-PMT plays the role of server in our payable PSI, since we require the
server to obtain the intersection cardinality.
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consider it as a theoretical construction. The advantage of this protocol is that the communication is
linear O(n). And it can be easily transformed into a protocol that is secure against malicious servers
by letting the server also send the zero knowledge proofs. We give our formal descriptions of our two
payable PSI and the detailed security analysis in Section 5.

Client (Y = {y1, . . . , yn})Server (X = {x1, . . . , xn})

π ← Perm([n])

OSN

X π

{ai}i∈[n] {a′
i}i∈[n]

ai ⊕ a′i = xπ(i)

k ← PRF.KeyGen(1κ)

OPRF

{ai}i∈[n] k

{Fk(ai)}i∈[n]

i ∈ [n]:

Pi := {Fk(a
′
i ⊕ y)}y∈Y :{Pi}i∈[n]

i ∈ [n]:

U [i] =

{
1 Fk(ai) ∈ Pi;
0 Fk(ai) /∈ Pi

zi =

{
ai U [i] = 1;
⊥ U [i] = 0

{zi}i∈[n]

judge := |U | X ∩ Y := {zi ⊕ a′i|zi ̸=⊥}

Fig. 2: Core idea of our payable PSI protocol

1.4 Related Work

Data Pricing. To understand what are sold in data markets and for what purposes, Muschalle et al.
[MAP12] consider the common queries and demands on data markets, as well as the pricing strategies
and models. Versioning is an important strategy in data pricing. The server can customize data into
different versions according to clients’ needs. One way to form multiple versions of data products is
query-based pricing [KUB+12a, KUB+12b, KUB+13, KUB+15]. Koutris et al. [KUB+12a, KUB+15]
propose a framework of query and view based data pricing. The major idea is that the server only needs
to specify the prices on a few views, and then the prices of other views can be decided algorithmically.
They also developed an integer linear programming formulation for the pricing problem with a large
number of queries. With the application of machine learning (ML) in the field of data analysis, Chen et
al. [CKK17, CKK19] proposed model-based pricing. Their key observation is that ML users typically
need only as much data as needed to meet their accuracy goals, which leads to new tradeoffs between
price, accuracy, and runtimes.
Keyword Private Information Retrieval. A trivial method to construct KPIR is to let the client
store a mapping of all key-value pairs. Based on this mapping, the client finds the index corresponding
to its query and then retrieves the desired value by calling a standard index PIR scheme. Unfortunately,
this requires the client to store mappings that are linear in the database size. Chor et al. [CGN98]
considered to let the user interactively query the server to obtain the physical address of the desired
value privately. With the physical address, the user then conducts index PIR to retrieve the desired
value. Ali et al. [ALP+21] considered using Cuckoo hashing [PR04] to map each data value to a
hashing table, the client then retrieves each location of hashing table corresponding to its query using
index PIR. Mahdavi and Kerschbaum [MK22] using constant-weight code to encode the key, and
let the server compute the equality operators over the ciphertext of the client’s encoding. Ahmad
et al. [AAAG22] followed the constant-weight code paradigm and further optimized the computation
overhead in equality operators. Patel et al. [PSY23] proposed a KPIR scheme that invokes underlining
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FHE-based index PIR scheme in a non-black-box way. Their scheme achieves almost the same overhead
as the state-of-the-art index PIR scheme.
Private Set Intersection. The original PSI protocol [Mea86, HFH99] is based on Diffie-Hellman
key exchange, which is denoted as DH-PSI. Subsequently, [CKT10, JL10, RT21] adapted DH-PSI
to malicious security. DH-PSI is considered one of the PSI protocols with the lowest communication
overhead. However, its computation efficiency is low in practice due to the need to perform public key
operations on each element.

Freedman et al. [FNP04] proposed an oblivious polynomial evaluation (OPE) based PSI pro-
tocol. The main idea is to use polynomials to represent sets, that is, a polynomial whose roots
are set elements. The intersection can be obtained from the oblivious evaluation of the server’s
polynomial under the client’s elements. This technique was later extended to the malicious setting
[DMRY09, FHNP16, CILO22]. Protocol constructions along this roadmap often use additive homo-
morphic encryption (AHE), which is inefficient in practical.

The current state-of-the-art PSI protocols [KKRT16, PRTY19, CM20, RS21, GPR+21, RR22] are
based on Oblivious Transfer (OT) extension [IKNP03], which generates a large number of OTs using
a small number of base OTs in combination with symmetric operations. The main idea behind this
paradigm is to adapt OT extension protocols to OPRF protocol, and transform OPRF to the mq-
PMT, as we mentioned before. However, the main drawback of these techniques is that they are less
modular and thus more difficult to modify to accommodate other PSI variants, e.g., PSI cardinality
(PSI-CA).

2 Preliminaries

2.1 Notation

We use κ and λ to denote the computational and statistical security parameters, respectively. We
use [n] to denote the set {1, 2, . . . , n}. For a bit string v we let vi denote the ith bit. We use the
abbreviation PPT to denote probabilistic polynomial-time. We say that a function f is negligible in κ

if it vanishes faster than the inverse of any polynomial in κ, and write it as f(κ) = negl(κ). By a
R←− A,

we denote that a is randomly selected from the set A, a ← A(x) denotes that a is the output of the
randomized algorithm A on input x, and a := b denotes that a is assigned by b.

2.2 Security Model

We use the standard security definition for two-party computation [Gol04, Lin17] in this work. Since
our protocol requires security against semi-honest server and malicious client, we give definitions of
semi-honest security and malicious security as follows.

Let F be a functionality between a server S with input IS and a client C with input IC . Let Π be
a two-party protocol for computing F .
Semi-honest Security. Let viewΠ

P (IS , IC) be the views of party P (P ∈ {S, C}) in the protocol, which
consists of P’s input, randomness tape, and received messages during the protocol. Let output(IS , IC)
be the output of both parties in the protocol.

Definition 1. A protocol Π is said to securely compute functionality F against semi-honest P if for
every PPT adversary A that corrupt P, there exists a PPT simulator SimP such that for all inputs
IS and IC,

{viewΠ
P (IS , IC), output(IS , IC)} ≈c {SimP(IP ,F(IS , IC)),F(IS , IC)}

Malicious Security. We use the real-ideal paradigm to define malicious security. In the ideal ex-
ecution, the parties privately send their inputs to the ideal functionality. The functionality simply
computes F(IS , IC) and returns the result to the parties. Let Sim be a PPT adversary corrupt party
P in the ideal world, we use IdealF,Sim,P(IS , IC) to denote the output pair of the honest party and the
adversary Sim from the above ideal execution. In the real execution, there is no trusted party. Instead,
the parties communicate with each other using a protocol Π. Let A be a PPT adversary corrupt party
P in the real world, we use RealΠ,A,P(IS , IC) to denote the output pair of the honest party and the
adversary A from the above real execution.

7



Definition 2. A protocol Π is said to securely compute functionality F against malicious P if for
every PPT adversary A that corrupt P in real world, there exists a PPT simulator SimP such that
for all inputs IS and IC,

{IdealF,Sim,P(IS , IC)} ≈c {RealΠ,A,P(IS , IC)}

2.3 Oblivious PRF

An oblivious PRF (OPRF) [FIPR05] is a 2-party protocol between a sender and a receiver, where the
sender inputs a PRF key k and receives nothing, while the receiver inputs a set of queries {xi}i∈[n]

and obtains PRF values {Fk(xi)}i∈[n].
The ideal functionality for OPRF is shown in Figure 3.

Parameters: Sender S, Receiver R, a PRF F .
Functionality:

– Wait for input {x1, . . . , xn} from the receiver R.
– Wait for input k from the sender S.
– Give {Fk(x1), . . . , Fk(xn)} to the receiver R.

Fig. 3: Oblivious PRF Functionality Foprf

2.4 Oblivious Switching Network

An oblivious switching network (OSN) [MS13] works as follows. The sender inputs a set of elements
X = {xi}i∈[n] and the receiver inputs a permutation π over [n]. As a result, the parties obtain the
additive shares of π(X) = {xπ(i)}i∈[n], that is, the sender receives {ai}i∈[n] and the receiver receives
{bi}i∈[n], where ai⊕bi = xπ(i) for i ∈ [n]. The formal definition of OSN functionality is given in Figure
4.

The original OSN protocol [MS13] works by considering a universal switching network (i.e., Waks-
man or Beneš network), which consists of O(n log n) 2-input, 2-output switches. They use oblivious
transfer (OT) to achieve secret sharing for each switching gate. We note that their protocol only
achieves semi-honest security, while we need the security against malicious receiver. Fortunately, we
find that the original OSN protocol is naturally secure against malicious receiver if we use the malicious
secure OT as its building block, which exactly meets our requirement. We give a detailed description
of the OSN protocol [MS13] and the security proof against malicious receiver in Appendix B.

Parameters: Sender S, Receiver R, set size n.
Functionality:

– Wait for input π from the receiver R.
– Wait for input X = {x1, . . . , xn} ⊂ {0, 1}l from the sender S.
– Pick random ai ← {0, 1}l and compute bi = ai ⊕ xπ(i) for i ∈ [n].
– Give {ai}i∈[n] to the sender S and give {bi}i∈[n] to the receiver R.

Fig. 4: Oblivious switching network Functionality Fosn

2.5 Private Set Intersection

Private Set Intersection (PSI) [FNP04] is a secure computation protocol that allows two parties, the
server and the client, to compute the intersection of their private sets X and Y , such that the client
only learns X ∩ Y from the interaction and the server learns nothing. The ideal functionality for PSI
is given in Figure 5.
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Parameters: Server S, Client C, set sizes n.
Functionality:

– Wait for input X = {x1, . . . , xn} from the server S.
– Wait for input Y = {y1, . . . , yn} from the client C.
– Give output X ∩ Y to the client C.

Fig. 5: Private Set Intersection Functionality Fpsi

2.6 Keyword Private Information Retrieval

Private Information Retrieval (PIR) [CKGS98] enables a client, holding an index i, to retrieve the
i-th entries from a database holding by a server, while hiding the index i from the server. In most
practical applications, databases more closely resemble key-value pairs where users want to retrieve
the value associated to a certain key. Therefore, the variant Keyword Private Information Retrieval
(KPIR) [CGN98] considers that the client query consists of a keyword instead of the index of the
entry in the database.

Though PIR is in fact a two-party protocol, almost all known PIR schemes [MBFK16, ACLS18,
ALP+21, MCR21, MK22, MW22, HHC+23, PSY23, DPC23] are defined as three algorithms, namely
(Query,Answer,Recover). The behavior of the protocol is fixed to the following two rounds of interac-
tion: the client first generates a query message through the Query algorithm and sends it to the server.
After receiving the query message, the server generates a response through the Answer algorithm and
sends the response to the client. Then the client uses the Recover algorithm to obtain the output. The
security of PIR only considers client privacy, which requires that the query messages generated by
distinct queries are indistinguishable. A variant of PIR called symmetric PIR [GIKM00] also considers
server privacy, that is, the client knows nothing about the database except that the data it retrieves.

However, the above definition is too restrictive for the design of PIR, and its security definition
only corresponds to the semi-honest security in the simulation-based security definition, that is, the
adversaries may try to learn as much information as possible from a given protocol execution but are
not able to deviate from the protocol steps. This is in contrast to malicious adversaries which are able
to deviate arbitrarily from the protocol. To broaden our design and achieve higher security, we define
the ideal functionality of KPIR and design a protocol to implement this functionality, instead of three
algorithms. We note that this functionality naturally captures the privacy of both the server and the
client.

The ideal functionality for KPIR is given in Figure 6.

Parameters: Server S, Client C, database sizes n.
Functionality:

– Wait for input (X,V ) = {(x1, v1), . . . , (xn, vn)} ⊂ {0, 1}∗ × {0, 1}l from the server S.
– Wait for input q ∈ {0, 1}∗ from the client C.
– Give output vi to the client C such that q = xi, or ⊥ if no such i exists.

Fig. 6: Keyword Private Information Retrieval Functionality Fkpir

3 Payable Secure Computation

To formally define payable secure computation, we first introduce the concept of one-sided output
functionality, which can be viewed as the basic functionality for which we want to charge.

Definition 3 (One-sided output functionality). Let f be a two-party functionality, if only one
party receives output, we call the functionality f the one-sided output functionality. The party that
receives output is called the client, and the other party is called the server.
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To enable the server to charge, we consider allowing the server to learn additional pricing infor-
mation judge, which can be computed from the client’s output. We define the payable functionality
f ′ of one-sided output functionality f as follows.

Definition 4 (Payable functionality). Let f be a one-sided output functionality. We call f ′ the
payable functionality of f if it additionally delivers a judge, which could be computed from the client’s
output, to the server. If the client is corrupt, the functionality outputs a judge′ to the server according
to the adversary’s behavior.

Now, we are ready to define payable secure computation. As discussed in Section 1.3, the protocol
should securely compute f ′ against malicious client and semi-honest server. For correctness, we define
a Check algorithm that can detect whether the pricing information judge is consistent with the output
of the client when both parties behave honestly. We also define a Pricing algorithm that determines
the final pricing. Note that we allow malicious clients to make an honest server learn an incorrect
judge′, but we require that the pricing obtained based on judge′ must not be less than the pricing
obtained based on judge, where judge is the output of the server when the client behaves honestly.
That is, the behavior of a malicious client will only cause it to pay more. We give the formal definition
of Payable Secure Computation (PSC) as follows.

Definition 5 (PSC). A protocol π along with a pair of algorithms (Check,Pricing) is said to be a
payable implement of a one-sided output functionality f if the following hold:

– The protocol π securely realizes the payable functionality f ′ of f against a malicious client.
– The protocol π securely realizes the payable functionality f ′ of f against a semi-honest server.
– If the honest server outputs judge and the honest client outputs mc in an execution of the protocol,

then we have Check(judge,mc) = 1, except with negligible probability.
– If the client is corrupt, let judge′ be the output of the server in this setting, then we have

Pricing(judge′) ≥ Pricing(judge), where judge is the server’s output obtained from the interaction
with an honest client.

4 Payable KPIR

In this section, we propose payable KPIR and give the formal definition of payable KPIR functionality
in Figure 7. As we discussed before, we want the server to charge the client when the client gets a value
from the database. Therefore, we define judge = 1 if and only if the client’s query is in the database.
Note that this functionality allows the client to learn if its query is in the database. For malicious
clients, we allow it to specify the judge. What we guarantee is that the client can only obtain the
final value if and only if the client’s query is in the database and it specifies the judge = 1. In other
words, as long as the client receives a valid value, it must pay for it.

Parameters: Server S, Client C, database sizes n.
Functionality:

– Wait for input (X,V ) = {(x1, v1), . . . , (xn, vn)} ⊂ {0, 1}∗ × {0, 1}l from the server S.
– Wait for input q ∈ {0, 1}∗ from the client C.
– Define a = 1 if and only if there exists xi such that q = xi and return a to the client.
– Then:
• If the client is honest, define v = vi if there exists xi such that q = xi and v =⊥ otherwise. Define

judge = 1 if v ̸=⊥ and judge = 0 otherwise.
• If the client is corrupt, receive a bit b from the adversary A and defines judge = b. If b = 1 and

a = 1, waits for another bit b′ from A. If b′ = 1 define v = vi. Otherwise, define v =⊥.
– Give output v to the client C and give output judge to the server S.

Fig. 7: Payable Keyword Private Information Retrieval Functionality Fp-kpir

Now, we give our construction of payable KPIR protocol in Figure 8. For the Check algorithm,
it output 1 if and only if v is consistent with judge, that is, it outputs 1 if and only if v =⊥ (resp.
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v ̸=⊥) and judge = 0 (resp. judge = 1). For the Pricing algorithm, we simply have the Pricing output
the judge. Note that in payable KPIR, the fee is one-time. The pricing rules are determined by both
parties in advance, and the server only needs to charge based on whether judge = 1.

Parameters:

– Two parties: server S and client C.
– Ideal Foprf and Fkpir primitives specified in Figure 3, and Figure 6, respectively.

Input of S: (X,V ) = {(x1, v1), . . . , (xn, vn)} ⊂ {0, 1}∗ × {0, 1}l
Input of C: q ∈ {0, 1}∗
Protocol:
Offline Stage:

1. The server S generates two PRF keys sk, sv ← KeyGen(1κ) and computes x′
i := Fsk (xi), x

′′
i := Fsv (xi)

for i ∈ [n]. Then, S computes ci := x′′
i ⊕ vi for i ∈ [n].

Online Stage:

2. S and C invoke the OPRF functionality Foprf . The server S acts as the sender in OPRF with input
sk. The client C acts as the receiver in OPRF with input q and receives q′ := Fsk (q).

3. S and C invoke the KPIR functionality Fkpir. The server S acts as the server in KPIR with input
{(x′

i, ci)}i∈[n] and receives nothing. The client C acts as the client in KPIR with input q′ and receives
c̄.

4. If c̄ =⊥, the client C sends 0 to the server and outputs ⊥. The server S outputs judge := 0.
5. If c̄ ̸=⊥, S and C invoke the OPRF functionality Foprf . The server S acts as the sender in OPRF with

input sv and receives nothing. The client C acts as the receiver in OPRF with input q and receives
q′′ := Fsv (q). The client computes and outputs v := q′′ ⊕ c̄. The server S outputs judge := 1.

Fig. 8: Payable Keyword Private Information Retrieval Protocol Πp-kpir

We give the correctness and the security analysis of our payable KPIR protocol as follows.
Correctness. If there exists xi such that q = xi, we have Fsk(q) = Fsk(xi) and Fsv (q) = Fsv (xi).
Following the correctness of the underlining KPIR, the client obtains the value ci = Fsv (xi) ⊕ vi in
step 3. Then, the client outputs vi := ci ⊕ Fsv (q). Since the parties execute the second OPRF, the
server sets judge := 1. If no such xi exists, the correctness will only be violated when ∃i ∈ [n], s.t.
Fsk(xi) = Fsk(q). By setting the output length of Fsk(·) to λ + log n, a union bound shows that the
probability of this event is negligible 2−λ. As the second OPRF is deemed unnecessary, the server set
judge := 0.

Theorem 1. The protocol in Figure 8 along with the above (Check,Pricing) algorithm is a payable
implement of Fkpir in the (Foprf ,Fkpir)-hybrid model.

Proof. For the corrupt semi-honest server, we exhibit the simulator SimS(X,V, judge) as follows.

1. In the offline stage, the simulator SimS generates sk, sv, {x′
i, x

′′
i , ci}i∈[n] honestly.

2. In step 2, the simulator invokes the simulator of OPRF with input sk and appends the output to
the view.

3. In step 3, the simulator invokes the simulator of KPIR with input {(x′
i, ci)}i∈[n] and appends the

output to the view.
4. If judge = 0, the simulator appends 0 to the view. If judge = 1, the simulator invokes the simulator

of OPRF with input sv and appends the output to the view.

Now we argue that the view output by SimS is indistinguishable from the real one. This is obtained
by the underlying simulators’ indistinguishability directly.

For the corrupt malicious client, we exhibit the simulator SimR as follows:

1. In step 2, the simulator receives a query q from the adversary and delivers q to the ideal function-
ality. As a result, the simulator receives a bit a to indicate whether q is in the database. Then,
the simulator selects a random q′ and gives q′ to the adversary.
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2. In step 3, the simulator receives a query q̄′. If q̄′ = q′ and a = 1, the simulator picks a random
string c̄ and sends it to the adversary. Otherwise, the simulator sends ⊥ to the adversary.

3. Then, if the simulator receives 0 from the adversary, then it set b = 0 and sends it to the function-
ality. As a result, the simulator obtains v =⊥. If the adversary invokes OPRF functionality with
input q̃, the simulator sets b = 1, and sends b to the functionality. Then, the simulator defines
b′ = 1 if q̃ = q and b′ = 0 otherwise. The simulator sends b′ to the functionality and obtains output
v. If b′ = 1 and a = 1, the simulator sends v ⊕ c̄ to the adversary. Otherwise, the simulator sends
a random q′′ to the adversary.

The correctness of this simulator directly follows the security of underlying protocols and the
pseudorandomness of the PRF.

5 Payable PSI

In this section, we propose payable PSI and give the formal definition of payable PSI functionality in
Figure 9. As we discussed before, we want the server to charge the client according to the cardinality
of the intersection. Therefore, we define judge = |X ∩ Y |.

Our payable PSI protocol is based on the permuted mq-PMT of Jia et al. [JSZ+22]. Since our
protocol requires security against the malicious client, we prove the OSN protocol [MS13] (which only
achieves semi-honest security) is also secure against malicious receiver11. To let the client obtain the
intersection, we let the server send the permuted additive shares corresponding to the intersection
elements to the client. We also use an OPRF to preprocess the sets of both parties to prevent the leak
of cuckoo hashing positions of the intersection elements.

We also propose another payable PSI protocol based on the mq-PMT of Cristofaro et al. [CGT12].
The main idea dates back to the DH-PSI [Mea86, HFH99]. This protocol is inefficient in practice due
to the use of a large amount of algebraic zero knowledge proofs, and we only consider it as a theoretical
construction. The advantage of this protocol is that the communication is linear O(n). And it can be
easily transformed into a protocol that is secure against malicious servers by letting the server also
send the zero knowledge proofs. We refer to Appendix C for more details.

Parameters: Server S, Client C, set sizes n.
Functionality:

– Wait for input X = {x1, . . . , xn} from the server S.
– Wait for input Y = {y1, . . . , yn} from the client C.
– Then:
• If the client is honest, define I = X ∩ Y and judge = |I|.
• If the client is corrupt, abort if receive abort from A. Otherwise, define I = X∩Y and judge = |I|.

– Give output I to the client C and give output judge to the server S.

Fig. 9: Payable Private Set Intersection Functionality Fp-psi

We give our construction of payable PSI protocol in Figure 10. For the Check algorithm, it output
1 if and only if judge = |X ∩ Y |. For the Pricing algorithm, we simply have the Pricing output the
judge. Note that in payable PSI, the fee is one-time. The pricing rules are determined by both parties
in advance, and the server only needs to charge based on the intersection size.

We give the correctness and the security analysis of our payable PSI protocol as follows.
Correctness. We first set the output length of PRF in step 1 to λ + 2 log n, a union bound shows
that the probability of collision is negligible 2−λ, which guarantees the intersection between X and Y
is consistent with the intersection between X ′ and Y ′. Then, for i ∈ [m], if X∗[i] ∈ Y ∗[i], say X∗[i] =
y′j ∈ Y ∗[i], let aq, a

′
q denote the shares of X∗[i], where q = π−1(i). We have y′j = X∗[i] = aq ⊕ a′q,

aq = y′j ⊕ a′q. Note that i = π(q), and the value Fk′(y′j ⊕ a′q) = Fk′(aq) is included in set Pq. As a

11 Note that the client in our payable PSI plays the role of the receiver in OSN.
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Parameters:

– Two parties: server S and client C.
– Ideal Foprf and Fosn primitives specified in Figure 3, and Figure 4, respectively.

Input of S: X = {x1, . . . , xn}
Input of C: Y = {y1, . . . , yn}
Protocol:

1. The server S and the client C invoke the OPRF functionality, the client inputs Y and obtains Y ′ :=
{Fk(y)}y∈Y , while the server inputs a random selected PRF key k and computes X ′ := {Fk(x)}x∈X .

2. The server S inserts set X ′ into the Cuckoo hash table, and fills empty bins with the dummy item
d. Let m = O(n) denote the length of the Cuckoo hash table. S denotes the filled Cuckoo hash table
as X∗ and the item in i-th bin as X∗[i] for i ∈ [m]. The client C inserts set Y ′ into the simple hash
table, and deletes the duplicates in each bin, then denotes the set of items in the i-th bin as Y ∗[i] for
i ∈ [m].

3. S and C invokes the oblivious switching network functionality Fosn, the server inputs X∗ and obtains
{ai}i∈[m]. The client picks a random permutation π over [m], inputs it to the functionality and obtains
{a′

i}i∈[m]. We have ai ⊕ a′
i = X∗[π(i)] for i ∈ [m].

4. C selects a random PRF key k′. Then, S with inputs {ai}i∈[m] and C with input k′ invokes another
OPRF functionality. As a result, the server obtains {fi}i∈[m], where fi = Fk′(ai), i ∈ [m].

5. For i ∈ [m], the client C computes the set Pi := {Fk′(a′
i ⊕ y′)}y′∈Y ∗[π(i)] and pad Pi up to bin size B

by different r ← {0, 1}l. Then C sends {Pi}i∈[m] to the server.
6. The server S initialize a bit string U ∈ {0, 1}m. Then S defines U [i] = 1 if and only if fi ∈ Pi and

U [i] = 0 otherwise. The server also defines judge as the Hamming weight of U .
7. For i ∈ [m], the server defines zi := ai if U [i] = 1 and zi :=⊥ otherwise. The server S sends {zi}i∈[m]

to the client.
8. The client C initializes I = ∅ and for i ∈ [m]:

(a) If zi ̸=⊥, C computes ti := zi ⊕ a′
i.

(b) C updates the intersection I := I ∪ {y|∃y′ ∈ Y ∗[π(i)], y′ = ti, Fk′(y) = y′}.
9. The client C outputs the intersection I.

Fig. 10: Payable Private Set Intersection Protocol Πp-psi

result, the server sets U [q] = 1 because Fk′(aq) ∈ Pq. Also, the server sets zq := aq and sends it to
the client. The client learns the PRF value of intersection element yj := zq ⊕ a′q = X∗[i] ∈ Y ∗[i], thus
obtains the intersection element yj corresponds to y′j . If X

∗[i] /∈ Y ∗[i], the correctness will only be
violated when ∃Fk′(aq) ∈ Pq. By setting the output length of Fk′(·) to λ+log n, a union bound shows
that the probability of this event is negligible 2−λ. As a result, the server sets U [i] = 0 and sends
zi :=⊥ to the client. From the above analysis, the hamming weight of U is exactly the intersection
cardinality, and the client will obtain all the intersection elements.

Theorem 2. The protocol in Figure 10 along with the above (Check,Pricing) algorithm is a payable
implement of Fpsi in the (Foprf ,Fosn)-hybrid model.

Proof. For the corrupt semi-honest server, we exhibit the simulator SimS(X, judge) as follows.

1. In step 1, the simulator SimS generates a PRF key k. Then SimS invokes the simulator of OPRF
with input k and appends the output to the view.

2. In step 2, the simulator computes X∗ honestly.
3. In step 3, the simulator selects random ai ← {0, 1}l, i ∈ [m]. Then SimS invokes the simulator of

OSN with input (X∗, {ai}i∈[m]) and appends the output to the view.

4. In step 4, the simulator selects random fi ← {0, 1}l, i ∈ [m]. Then SimS invokes the simulator of
OPRF with input ({ai}i∈[m], {fi}i∈[m]) and appends the output to the view.

5. In step 5, the simulator selects a random length m bit string U with Hamming weight judge.
Next, if U [i] = 0, the simulator adds B random values to set Pi, and if U [i] = 1, the simulator
adds B − 1 random values and fi to set Pi. Finally, the simulator appends {Pi}i∈[m] to the view.

The correctness of this simulator directly follows the security of underlying protocols and the
pseudorandomness of the PRF.
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For the corrupt malicious client, we exhibit the simulator SimR as follows:

1. In step 1, the simulator receives a set Ȳ from the adversary. The simulator picks random values
as Y ′ and sends it to the adversary. The simulator keeps a relationship table R = {(y, y′)}y∈Ȳ

where y′ ∈ Y ′ is the simulated PRF value of y.
2. In step 2, the simulator computes the cuckoo hash table Y ∗ corresponding to Y ′.
3. In step 3, the simulator receives a permutation π from the adversary. The simulator picks random

values a′i ← {0, 1}l, i ∈ [m] and sends it to the adversary.
4. In step 4, the simulator receives a PRF key k′ from the adversary. The simulator also observes all

the adversary’s inputs to PRF and collects a list of pairs L = {(pi, Fk′(pi))}12.
5. In step 5, the simulator receives sets {Pi}i∈[m] from the adversary and initialize a set Y = ∅. For

i ∈ [m], (p, Fk′(p)) ∈ L, if Fk′(p) ∈ Pi, the simulator computes y′ = p ⊕ a′i and checks whether
y′ ∈ Y ′[π(i)]. If y′ ∈ Y ′[π(i)], the simulator updates Y = Y ∪ {y : (y, y′) ∈ R}.

6. The simulator sends Y to the ideal functionality and receives the intersection I.
7. In step 7, for y ∈ Y , if y ∈ I, the simulator finds the corresponding y′ ∈ Y ′. Then, the simulator

finds the bin where item y′ is located, w.l.o.g, y′ ∈ Y ′[j] and defines zπ−1(j) = y′ ⊕ a′π−1(j). After

that, the simulator sets the undefined zi :=⊥ and sends {zi}i∈[m] to the adversary.

The correctness of this simulator directly follows the security of underlying protocols and the
pseudorandomness of the PRF.

6 Implementation and Performance

In this section, we experimentally evaluate our payable KPIR Πp-kpir and payable PSI Πp-psi protocols.
The evaluation metrics are communication costs and running times.

Since there are no known protocols that achieve the payable KPIR/PSI functionality defined in
Figure 7 and Figure 9, we consider using the following protocols as performance baselines and compare
our protocols with them.

– Payable KPIR: Note that our payable KPIR protocol achieves both server and client privacy for a
semi-honest server and a malicious client. The state-of-the-art KPIR protocols [ALP+21, MK22,
AAAG22, PSY23] only achieve client privacy for a semi-honest server, and they do not protect
the server privacy. To the best of our knowledge, the only similar protocol achieves malicious
security is the labeled PSI protocol of Cong et al. [CMdG+21], which is equivalent to batch KPIR.
Setting the size of the client’s set to 1, the functionality of protocol [CMdG+21] is exactly a KPIR
satisfying security against malicious client. As a result, we use the KPIR protocol [CMdG+21] as
the performance baseline and compare our payable KPIR protocol with it.

– Payable PSI: Since our payable PSI protocol reveals the intersection cardinality to the server, we
consider using the state-of-the-art PSI cardinality (PSI-CA) protocol as the performance bench-
mark. As pointed out by [GMR+21, CZZ+24], there is a huge performance gap between PSI
and other private set operation protocols, even in the simplest possible cases, i.e., PSI-CA. At
a high-level view, PSI-CA requires more precise control of the amount of information output in
the protocol, which typically requires a more complex design. That’s also why we don’t use PSI
protocol as a benchmark.
We find that almost all PSI-CA protocols [HEK12, PSTY19, GMR+21, CGS22] only achieve semi-
honest security. The most relevant one is the PSI-CA protocol proposed by Mingli Wu and Tsz
Hon Yuen [WY23], which achieves security against malicious client. However, their protocol only
considers unbalanced setting, that is, the client’s set is much smaller than that of the server. The
performance of their protocol will decrease significantly when both parties have the same number
of items. Therefore, we consider comparing our payable PSI protocol with the state-of-the-art
semi-honest PSI-CA protocol of Garimella et al. [GMR+21]. As shown in their paper, their PSI-
CA protocol performs better than the circuit-based protocol [PSTY19]. As a result, we use the
PSI-CA protocol [GMR+21] as the performance baseline and compare our payable PSI with it.

12 The simulator does have this ability in the malicious secure OPRF, e.g. [JL10, RS21].
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Database
size n

Protocol
Value Bit
Length

Setup Online
Comm. (MB) Time (s) Comm. (MB) Time (s)

216

KPIR [CMdG+21]
64 0.5 6.02 1.38 2.24
128 0.5 6.33 1.62 2.44
256 0.5 6.83 2.09 2.82

Payable KPIR
64 0.5 8.31 1.38 2.24
128 0.5 8.63 1.62 2.40
256 0.5 9.11 2.09 2.83

220

KPIR [CMdG+21]
64 0.5 59.19 2.09 3.12
128 0.5 68.51 2.68 3.76
256 0.5 85.89 3.27 4.50

Payable KPIR
64 0.5 99.12 2.09 3.13
128 0.5 108.86 2.68 3.77
256 0.5 126.65 3.86 5.05

224

KPIR [CMdG+21]
64 0.94 1198.12 3.72 14.10
128 0.94 1577.62 5.14 20.61
256 0.94 2295.56 7.98 33.92

Payable KPIR
64 0.94 1890.07 3.72 14.17
128 0.94 2256.33 5.14 20.61
256 0.94 3014.39 8.57 34.36

Table 1: Comparisons of communication (in MB) and runtime (in seconds) between Payable KPIR and KPIR
[CMdG+21] for database size (n ∈ {216, 220, 224}), value bit length l ∈ {64, 128, 256} and 10Gbps bandwidth,
0.05ms latency.

For a fair comparison, we re-implemented their protocols on the same framework. The codes are
mainly written in Java, and we use the Java Native Interface (JNI) technique to invoke SEAL library
v4.1 for the homomorphic operations in the protocols. Our implementation has been open-sourced in
mpc4j13.

6.1 Experimental setup

We run our experiments on a single Intel Core i9-9900K with 3.6GHz and 128GB RAM. We simulate
the network connection using Linux tc command. To better meet the potential deployment require-
ments, we use Netty14 to maintain the communication channel. And we use Protocol Buffers15 for data
(de-)serialization.

We consider the following experiment setting:

– For Payable PSI protocol, we ran our experiments in both LAN and WAN settings. In the LAN set-
ting, we set bandwidth as 10Gbps and latency as 0.05ms. For the WAN setting, we set bandwidth
as 100Mbps and 10Mbps, respectively, and the latency as 80ms.

– For Payable KPIR protocol, since the communication cost is relatively small, we only executed
our experiments in the LAN setting (10Gbps bandwidth and 0.05ms latency).

We divide all protocols into two phases: the one-time Setup phase and the Online phase. As the
name suggests, the one-time setup phase does necessary operations before actual protocol execution,
including key distribution, OPRF preprocessing, and base OT execution. The online phase does sub-
sequent protocol executions. We emphasize that the setup phase only needs to be performed once,
regardless of the number of subsequent protocol executions.

6.2 Implementation details

We set the computational security parameter κ = 128 and the statistical security parameter λ =
40. Moreover, the Stash-less Cuckoo hash is used in both our protocols and baseline protocols. All
experiments use three hash functions to store n elements into 1.27n bins.

13 https://https://github.com/alibaba-edu/mpc4j
14 https://netty.io/
15 https://developers.google.com/protocol-buffers
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Fig. 11: Comparisons of runtime (in seconds) between Payable KPIR and KPIR [CMdG+21]. Both x and
y-axis are in log scale. The first figure shows the setup runtime increases as the database size increases when
the value bit length is set to 128. The second figure shows the setup runtime increases as the value bit length
increases when the database size is set to 224.

Set size n Protocol
Comm. (MB)

Time (s)
10Gbps 100Mbps 10Mbps

T = 1 T = 8 T = 1 T = 8 T = 1 T = 8
Setup Online Setup Online Setup Online Setup Online Setup Online Setup Online Setup Online

28
PSI-CA [GMR+21] 0.03 0.15 0.06 0.03 0.03 0.06 0.95 0.69 0.72 0.82 1.01 0.68 0.75 0.86

Payable PSI 0 0.28 0.02 0.16 0.01 0.09 0.19 3.70 0.18 3.48 0.19 3.73 0.18 3.68

212
PSI-CA [GMR+21] 0.03 2.96 0.05 0.26 0.02 0.19 0.81 1.06 0.70 1.74 0.81 3.42 0.71 3.95

Payable PSI 0 5.19 0.03 1.61 0.01 0.49 0.19 6.79 0.18 6.19 0.21 10.66 0.18 9.79

216
PSI-CA [GMR+21] 0.03 56.61 0.05 4.36 0.02 2.23 0.80 11.33 0.70 9.10 0.83 55.55 0.72 53.73

Payable PSI 0 103.32 0.02 25.10 0.01 6.07 0.22 39.93 0.17 22.78 0.22 113.77 0.18 101.55

220
PSI-CA [GMR+21] 0.03 1056.30 0.05 94.67 0.02 45.77 0.80 195.25 0.70 152.55 0.82 1019.21 0.72 979.17

Payable PSI 0 1988.92 0.02 424.36 0.01 143.55 0.19 578.65 0.17 320.73 0.22 2021.27 0.18 1840.90

Table 2: Comparisons of communication (in MB) and runtime (in seconds) between Payable PSI
and PSI-CA [GMR+21] for set size (n ∈ {28, 212, 216, 220}), thread (T ∈ {1, 8}) and bandwidth
({10Gbps, 100Mbps, 10Mbps})

– Payable KPIR. In our payable KPIR protocol and the baseline protocol [CMdG+21], we mainly
need to implement the KPIR protocol. To fully re-implement the protocol in our framework, we
study the implementation details and follow the parameter selections of the open-source imple-
mentations of KPIR protocol.

– Payable PSI. To enable our payable PSI protocol and the baseline protocols, we implement the
following components.
• OPRF. We implement the OPRF protocol introduced in [RA18] as our sub-protocol. For
this OPRF protocol, the sender can randomly generate an OPRF key in advance, which is
independent of the receiver’s input. For the sender’s input, it can hash each item to a uniformly
random elliptic curve group element (we treat the hash as a random oracle) and multiply this
group element with the sampled key. Furthermore, we use the FourQ elliptic curve [CL15] to
speed up the scalar multiplication operations.

• OSN. We choose the state-of-the-art OSN protocol introduced in [MS13] as our sub-protocol.
Moreover, to satisfy the security proof of our Payable PSI protocol, the underlying COT
protocol should be actively secure, and we implement the COT protocol based on [KOS15].
However, the OSN protocol used in the baseline protocol [GMR+21] does not need to be
actively secure, a passive secure COT protocol is enough, and we implement the COT protocol
based on [ALSZ13].

6.3 Payable KPIR

As we mentioned before, we compare our payable KPIR protocol with the KPIR protocol in [CMdG+21]
as a performance baseline. We report detailed comparisons in Table 1 and Figure 11 for database sizes
n = {216, 220, 224} and bit-length of the data value l = {64, 128, 256}.
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Fig. 12: Comparisons of communication (in MB) and runtime (in seconds) between Payable PSI and PSI-CA
[GMR+21]. Both x and y-axis are in log scale. The first figure shows the runtime decreases as the bandwidth
increases. The second figure shows the communication cost increases as the set size increases. The last two
figures show the runtime increases as the set size increases in the 10Gbps and 10Mbps settings, respectively.

As shown in Table 1 and Figure 11, our payable KPIR protocols do not introduce too much overhead
over KPIR [CMdG+21]. Note that our payable KPIR needs to execute an OPRF to preprocess the
database before invoking the underlining KPIR [CMdG+21]. This is reflected in the table that the
setup runtime of our payable KPIR is about 1.3 − 1.6× slower than that of the KPIR protocol
[CMdG+21]. In the online stage, the second OPRF in our payable KPIR is extremely fast, resulting
in the online communication and runtime between payable KPIR and KPIR [CMdG+21] are almost
the same.

We also test the variation of runtime and communication with the bit length of the database
value. Note that the underlying KPIR [CMdG+21] uses fully homomorphic encryption (FHE) scheme
[BGV12, FV12] as the building block, and the plaintext space of FHE is relatively small. For long
database values, we need to divide the values into multiple small blocks. The longer the data value,
the more blocks it has, leading to decreased protocol performance.

6.4 Payable PSI

As we mentioned before, we compare our payable PSI protocol with the PSI-CA protocol in [GMR+21]
as a performance baseline. We report detailed comparisons in Table 2 and Figure 12 for set sizes n =
{28, 212, 216, 220}, the number of threads T = {1, 8} and bandwidth in {10Gbps, 100Mbps, 10Mbps}.

The communication of our payable PSI protocol is about twice larger than the PSI-CA protocol
[GMR+21], mainly due to the need for OPRF preprocessing in our protocol. In terms of runtime, in
LAN and single thread setting, our protocol is 4.5− 6.2× slower than PSI-CA. Since our protocol is
very amenable to parallelization, when increasing T from 1 to 8, the performance gap between our
protocol and PSI-CA has narrowed to 1.5− 3.2×. As the bandwidth decreases, the gap between our
protocol and PSI-CA protocol also narrows gradually. Specifically, when the bandwidth is 10Mbps, the
communication cost becomes a bottleneck. The performance ratio between our protocol and PSI-CA
is about 2×, which is consistent with the communication cost ratio.
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Note that our payable PSI protocol achieves security against malicious client, and it is more
powerful in the data pricing applications. While the PSI-CA protocol [GMR+21] only achieves semi-
honest security, and it does not support the client to obtain the intersection. The performance gap
between our payable PSI and PSI-CA [GMR+21] is quite mild.

7 Conclusions

In this work, we proposed the concept of Payable Secure Computation (PSC) and designed payable
protocols for two specific scenarios: Keyword Private Information Retrieval (KPIR) and Private Set
Intersection (PSI). The experiments show that our protocols do not increase the cost much compared
to protocols that do not support pricing.

Due to the rapid development of the data market, our current construction is still relatively simple.
Considering more complex scenarios, such as the support for batch queries in KPIR, the server may
want to charge based on the range of query data, or in PSI, the server may want to attach a weight
to each item, and the pricing is the sum of the weights in the intersection. The PSC framework could
be adapted to support richer query types (e.g., range queries, aggregations) by combining the existing
OPRF-based checks with verifiable computation techniques (e.g., zk-SNARKs or authenticated data
structures). Payment logic might be tied to incremental results (e.g., per-row decryption in private
database queries).

Extending the PSC to multi-party setting is also a valuable future work, corresponding to the
scenario where multiple servers jointly provide data in the data market, and multiple clients purchase
different data. In the multiparty setting, two properties must be considered. The first is fair payment
distribution: Splitting rewards among servers based on contribution (e.g., using threshold OPRFs).
The second is joint accountability: Clients could pay only if a threshold of servers provide valid outputs,
deterring collusion.
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A Existing Multi-Query Reverse Private Membership Test Protocols

We investigated the existing mq-RPMT constructions. To the best of our knowledge, all known mq-
RPMT constructions only satisfy semi-honest security. Here we list these constructions and briefly
discuss why they are not secure against malicious clients.

A.1 Mq-RPMT of Jia et al. [JSZ+22]

Jia et al. [JSZ+22] proposed two PSU protocols. One is based on permuted mq-PMT, and the other is
based on mq-RPMT. The main difference is the definition of indication set Pi. In permuted mq-PMT,
Pi is defined as the PRF values of a′i XOR some y’s, that is, a′i is fixed. Since a′i is the share of xπ(i),
the server obtains the result of whether xπ(i) ∈ Y . In mq-RPMT, the role of y and a′ is reversed, Pi

is defined as the PRF values of yi XOR some a’s, that is, yi is fixed. As a result, the server will learn
whether yi ∈ X from Pi. We give the mq-RPMT protocol of [JSZ+22] in Figure 13.

Parameters:

– Two parties: server S and client C.
– Ideal Foprf and Fosn primitives specified in Figure 3, and Figure 4, respectively.

Input of S: X = {x1, . . . , xn}
Input of C: Y = {y1, . . . , yn}
Protocol:

1. The server S inserts set X into the Cuckoo hash table with hash functions H = {h1, . . . , hγ}, and
fills empty bins with the dummy item d, then denotes the filled Cuckoo hash table as X∗ and the
item in i-th bin as X∗[i]. The client C inserts set Y into the simple hash table with the same hash
functions H, and deletes the duplicates in each bin, then denotes the set of items in the i-th bin as
Y ∗[i].

2. S and C invokes the oblivious switching network functionality, the server inputs X∗ and obtains
{ai}i∈[m]. The client picks a random permutation over [m], inputs it to the functionality and obtains
{a′

i}i∈[m]. We have ai ⊕ a′
i = xπ(i) for i ∈ [m].

3. S with inputs {ai}i∈[m] and C invokes another OPRF functionality. As a result, the server obtains
{fi}i∈[m], where fi = Fk(ai), and the client obtains a PRF key k.

4. For i ∈ [m], the client C defines Qi := {π−1(h1(yi)), . . . , π
−1(hγ(yi))}, computes the set Pi :=

{Fk(yi ⊕ a′
j)}j∈Qi and pad Pi up to bin size B by different r ← {0, 1}l. Then C sends {Pi}i∈[m] to

the server.
5. The server S initialize a bit string U ∈ {0, 1}m. Then S defines U [i] = 1 if and only if Fk(ai) ∈ Pi

and U [i] = 0 otherwise.

Fig. 13: mq-RPMT protocol of [JSZ+22]

Security against Malicious Client. As we discussed above, the difference between permuted mq-
PMT and mq-RPMT is the definition of Pi. This difference may cause a malicious client to perform a
selective failure attack in mq-RPMT. Since a′j travels over all positions corresponding to the cuckoo
hashing table of X, a malicious client can remove some Fk(yi ⊕ a′j) in Pi. Then, if the client learns
an intersection element x in i-th bin, it knows Cuckoo hashing positions of x, which may reveal
information about the server’s entire input set. There is no such issue in permuted mq-PMT because
in permuted mq-PMT, ai is fixed, and y is traversal. Removing some y will only result in the simulator
not being able to extract the input y, which means that the adversary has removed the element y
from its own set. This attack is trivial since the adversary could change its input arbitrarily.

A.2 Mq-RPMT of Zhang et al. [ZCL+23]

Zhang et al. [ZCL+23] proposed two mq-RPMT constructions, one is based on Symmetric Key En-
cryption (SKE) and general two Party Computation (2PC), and the other is based on Rerandomizable
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Public Key Encryption (Rerand-PKE). We note that their Rerand-PKE based construction may leak
some information about the elements that are not in the intersection16. Therefore, we focus on their
SKE-based construction.

The construction of [ZCL+23] uses a functionality called Vector Oblivious Decryption-then-Matching
(VODM). This functionality receives a vector of ciphertexts {ci}i∈[n] from the sender, a key k, and a
plaintext m from the receiver. The fuctionality sends a bit string b ∈ {0, 1}n to the receiver, the i-th
bit bi = 1 if and only if Deck(ci) = m. We give the formal definition of VODM in Figure 14. They also
use an Oblivious Key-Value Store (OKVS) scheme [GPR+21]. Simply speaking, OKVS is a data struc-
ture that maps a set of keys to corresponding values. It consists of two algorithm (Encode,Decode).
The Encode algorithm takes a set of key-value pairs {(xi, yi)}i∈[n] as input, and outputs an object D.
The Decode algorithm takes D and a key x as input and outputs a value y. The correctness requires
that if (x, y) is an input to generate D, then, Decode(D,x) = y. We give the mq-RPMT protocol of
[ZCL+23] in Figure 15.

Parameters: Sender S, Receiver R, set sizes n, an encryption scheme E = (Setup,KeyGen,Enc,Dec).
Functionality:

– Wait for input k and s from the receiver R.
– Wait for input {s∗1, . . . , s∗n} ⊂ {0, 1}∗ from the sender S.
– For i ∈ [n]:

Compute s′i = Dec(k, s∗i ). If s
′
i = s, let bi = 1, otherwise bi = 0.

– Give output b ∈ {0, 1}n to the receiver R.

Fig. 14: Vector Oblivious Decryption-then-Matching Functionality Fvodm

Parameters:

– Two parties: server S and client C.
– An SKE scheme E = (Setup,KeyGen,Enc,Dec).
– Ideal Fvodm primitives specified in Figure 14.
– An OKVS scheme (Encode,Decode).
– A collision-resistant hash function h(x) : {0, 1}∗ → {0, 1}σ.

Input of S: X = {x1, . . . , xn}
Input of C: Y = {y1, . . . , yn}
Protocol:

1. S selects a random indication string s ∈ F2σ . S also runs pp← Setup(1κ) and KeyGen(pp) to obtain
a key k. Then, S runs Enck(s) for n times to obtain (s1, . . . , sn).

2. S computes an OKVS D := Encode((h(x1), s1), . . . , (h(xn), sn)).
3. S sends D to C.
4. C computes s∗i := Decode(D,h(yi)) for i ∈ [n].
5. S and C invoke the VODM functionality Fvodm. C acts as sender with input S = {s∗1, . . . , s∗n} and S

acts as receiver with input k, s. As a result, C receives nothing and S receives b ∈ {0, 1}n.

Fig. 15: mq-RPMT protocol of [ZCL+23]

Security against Malicious Client. Since the only messages received from the client are the input
of VODM, a malicious client may use a set of random ciphertexts instead of the ciphertexts computed
from the OKVS. Note that the simulator cannot detect this attack, the ciphertexts in these two cases

16 This leakage will not cause any harm to the construction of PSU. However, we need the standard mq-RPMT
in our usecase.
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are indistinguishable because of the IND-CPA security of the encryption scheme. Another problem is
that the simulator cannot extract the adversary’s inputs from the ciphertexts, which results in the
simulator not being able to simulate correctly in the ideal world.

A.3 Mq-RPMT of Chen et al. [CZZ+24]

Chen et al. [CZZ+24] proposed a mq-RPMT based on a newly introduced cryptographic primitive
called commutative weak pseudorandom function (cwPRF). Simply speaking, cwPRF is a family of
PRF satisfying commutative property, that is, for any two keys k1, k2 and an input x, it satisfies
Fk1(Fk2(x)) = Fk2(Fk1(x)). They use the DDH-based PRF Fk(x) = H(x)k as their cwPRF instan-
tiation. The main idea is similar to the DDH-based PSI-cardinality protocol [CGT12]. We give the
mq-RPMT protocol of [CZZ+24] in Figure 16.

Parameters:

– Two parties: server S and client C.
– A cwPRF F : K ×D → D
– A hash function H : {0, 1}ℓ → D.

Input of S: X = {x1, . . . , xn}
Input of C: Y = {y1, . . . , yn}
Protocol:

1. S picks k1
R←− K, then sends {Fk1(H(xi))}i∈[n] to C.

2. C picks k2
R←− K, then computes and sends {Fk2(H(yi)))}i∈[n] to S. C also com-

putes {Fk2(Fk1(H(xi)))}i∈[n], picks a random permutation π
R←− [n], then sends Ω :=

{Fk2(Fk1(H(xπ(i))))}i∈[n] to S. An alternative choice instead of explicit shuffle is inserting
{Fk2(Fk1(H(xi)))}i∈[n] to a Bloom filter, then sends the resulting filter to S.

3. S computes {Fk1(Fk2(H(yi)))}i∈[n], then sets ei = 1 iff Fk1(Fk2(H(yi))) ∈ Ω.

Fig. 16: mq-RPMT protocol of [CZZ+24]

Security against Malicious Client. The messages received from the client are {Fk2(H(yi)))}i∈[n]

and Ω in Step 2. A malicious client may replace the elements in Ω with some random values. Since F
is a PRF, the simulator cannot distinguish these two cases. Another problem is extraction. Though
the simulator could observe the queries of the client to the random oracle H, it cannot determine
whether these queries are used to generate {Fk2(H(yi)))}i∈[n] because the pseudorandomness of F . As
a result, the simulator cannot simulate the adversary’s view correctly in the ideal world.

A.4 Mq-RPMT of Tu et al. [TCLZ23]

Tu et al. [TCLZ23] proposed a PSU protocol in the unbalanced setting. In fact, their construction is also
based on mq-RPMT. The core building blocks of their protocol are Fully Homomorphic Encryption
(FHE) and a newly introduced functionality named permuted matrix Private EQuality Test (pm-
PEQT). In pm-PEQT, a server holding a matrix R′

α×m and a matrix permutation π = (πc, πr)
interacts with a client holding a matrix Rα×m. As a result, the client learns (only) the bit matrix
Bα×m indicating that bij = 1 if rπ(ij) = r′π(ij) and bij = 0 otherwise, for i ∈ [α], j ∈ [m], while the
server learns nothing about R. The formal definition of pm-PEQT functionality is given in Figure
17. Their main idea is to let the client use FHE to encrypt its element y and send the ciphertext
c = Encpk(y) to the server. The server with input X homomorphically computing the cihpertext
c′ = Encpk(f(y)), where f(x) = Πxi∈X(x−xi)+ r and r is a random value. Then the server sends the
ciphertext c′ to the client. The client decrypts the ciphertext to obtain r′. Then the parties invoke a
PEQT functionality to test whether r = r′. It is simple to check that if y ∈ X, r′ = f(y) = r. To test
n elements, they also use the hashing technique to reduce the cost. Since the mq-RPMT construction
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Parameters: Sender S, Receiver R, matrix sizes α,m.
Functionality:

– Wait for an input R′ = [rij ], i ∈ [α], j ∈ [m] and a permutation π = (πc, πr) from the sender S.
– Wait for input R = [rij ], i ∈ [α], j ∈ [m] from the receiver R.
– Define a bit matrix Bα×m = [bij ], where bij = 1, if rπ(ij) = r′π(ij) and bij = 0 otherwise, for

i ∈ [α], j ∈ [m].
– Give output b ∈ {0, 1}n to the receiver R.

Fig. 17: Permuted Matrix Private Equality Test Functionality Fpm-PEQT

Parameters:

– Two parties: server S and client C.
– Ideal Fpm-PEQT primitives specified in Figure 17.
– An FHE scheme E = (Setup,KeyGen,Enc,Dec).

Input of S: X = {x1, . . . , xn}
Input of C: Y = {y1, . . . , yn}
Protocol:

1. C hashes Y into table Yc by Cuckoo hashing, where Yc consists of m bins and each bin has only one
item. S uses the same hash functions to hash X into table XB×m by simple hashing, where XB×m

consists of m bins and each bin has B items.
2. C generates the FHE key (pk, sk) and computes the FHE ciphertexts cj := Encpk(Y [j]), j ∈ [m].

Then, C sends these ciphertexts {cj}j∈[m] to the server.
3. S partitions XB×m by rows into α subtables X1, · · · ,Xα. Each subtable has B′ = B/α rows and m

columns. Then, S picks random values ri,j and defines the polynomial fi,j(x) := Πxk∈Xi[j](x−xk)+
ri,j , i ∈ [α], j ∈ [m], where Xi[j] denotes the j-th column of Xi.

4. S homomorphically computes ciphertexts ci,j = Encpk(fi,j(Y [j])) for i ∈ [α], j ∈ [m] and sends
{ci,j}i∈[α],j∈[m] to C.

5. C decrypts r′i,j := Decsk(ci,j) for i ∈ [α], j ∈ [m] and picks a random permutation π.
6. S and C invoke the pm-PEQT functionality Fpm-PEQT. S acts as receiver with input Ri∈[α],j∈[m] =
{ri,j} and C acts as sender with input R′

i∈[α],j∈[m] = {r′i,j} and π. As a result, C receives nothing and

S receives Bi∈[α],j∈[m] = {bi,j} ∈ {0, 1}α×m, where bi,j = 1 if and only if rπ(ij) = r′π(ij).
7. S defines a bit vector b = [bj ], j ∈ [m], where bj = 1 if for all i ∈ [α], bi,j = 0 and bj = 0 otherwise.

Fig. 18: mq-RPMT protocol of [TCLZ23]

of Tu et al. [TCLZ23] uses many FHE optimization techniques, we just provide a simplified version
to demonstrate their ideas more clearly. The formal description is in Figure 18.
Security against Malicious Client. To achieve security against malicious client, a base requirement
is to replace all the sub-protocols with the malicious secure one. However, it seems difficult to enhance
the security of pm-PEQT protocol in [TCLZ23]. Also, the simulator cannot extract the inputs of a
malicious client in step 2 because of the security of the FHE scheme. As a result, the simulator cannot
simulate the adversary’s view correctly in the ideal world.

B Oblivious Switching Network

We give the definition of switching network as follows.

Definition 6 (Switching Network). A switching network is a circuit (dag) with the following kinds
of gates. Each gate has primary inputs/outputs as well as a programming input.

– A multiplexer takes k primary inputs and selects one of them to transfer to its single primary
output. The choice of input is determined by the programming input (an element of [k]).

– A permute switch maps its two primary inputs to its primary outputs using a permutation
selected by the programming input (a single bit).
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If S is a switching network, then we write Sp(a1, . . . , anin) = (b1, . . . , bnout) to denote that on pro-
gramming inputs p, and primary inputs a1, . . . , anin , the network outputs b1, . . . , bnout . In this paper,
we only consider the permutation network, that is, nin = nout = n.

Parameters:

– Two parties: sender S and receiver R. A switching network S with n inputs/outputs.

Input of S: X = {x1, . . . , xn} ⊂ {0, 1}l
Input of R: A programming sequence π for S
Protocol:

1. For every wire i in S, the sender S chooses random value Mi ← {0, 1}l.
2. For every gate g in S, S and R invoke an oblivious transfer protocol, where the receiver’s input is the

programming input πg for that gate.
(a) If g is a k-multiplexer with input wires i1, . . . , ik and output wire j, then the OT is a 1-out-of-k

OT and the sender’s input is (Mi1 ⊕Mj , . . . ,Mik ⊕Mj).
(b) If g is a permute switch with input wires i1, i2 and output wires j1, j2, then the OT is a 1-out-of-2

OT and the sender’s input is ((Mi1 ⊕Mj1)||(Mi2 ⊕Mj2), (Mi2 ⊕Mj1)||(Mi1 ⊕Mj2)).
3. For every input wire i, the sender sends xi ⊕Mi to the receiver.
4. For every output wire w, the receiver identifies the path from the output wire to the corresponding

input wire π(w). Say that path contains wires i1, . . . , ik. Then from step 2 the receiver has Mij⊕Mij+1

for every j, and from step 3 the receiver has Mi1 ⊕ xπ(w). XORing all of these together, the receiver
obtains xπ(w) ⊕Mw where Mw is the mask on the output wire w.

5. The sender outputs the collection of output wire masks. The receiver outputs the collection of xπ(w)⊕
Mw values computed in the previous step.

Fig. 19: Oblivious Switching Network Protocol of [MS13]

Theorem 3. The protocol in Figure 19 realizes the OSN functionality Fosn against a malicious re-
ceiver in the Fot-hybrid model.

Proof. For the corrupt malicious receiver, we exhibit the simulator SimR as follows:

1. In step 2, for each gate g, the simulator receives the programming input πg from the adversary
and sends a random string Mg to the receiver.

2. The simulator defines a programming sequence π from πg received from the adversary, and input
π to the ideal functionality. As a result, the simulator receives xπ(w) ⊕Mw for each output wire
w.

3. For every output wire i, the simulator identifies the path from the input wire to the corresponding
output wire w. Say that path contains wires i1, . . . , ik and the corresponding values returned from
the simulator are Mi1 , . . . ,Mik . The simulator sends xπ(w) ⊕Mw

⊕
j∈[k] Mij to the adversary.

The correctness of this simulator directly follows the security of OT protocols.

C Payable PSI from Permuted mq-PMT of Cristofaro et al. [CGT12]

In this section, we give another payable PSI construction. The main idea comes from the permuted
mq-PMT of Cristofaro et al. [CGT12], which dates back to the DH-PSI. We first review the DH-
PSI as follows. Simply speaking, for a hash function H modeled as a random oracle and underlying
acyclic group G of order q, for which the DDH problem is hard, the server and the client sample
α and β, respectively, from Zq. The server computes X̄ = {H(xi)

α}i∈[n] and sends X̄ to the client.

The client computes Ȳ = {H(yi)
β}i∈[n] and sends Ȳ to the server. The server, then, computes Y ′ =

{(H(yi)
β)α}i∈[n] and sends it to the client. The client computes X ′ := {(H(xi)

α)β}i∈[n] and output

{yi : H(yi)
βα ∈ X ′}. Note that the above protocol could also allow the server to obtain an intersection,

having the client send X ′ back to the server.

27



To let the server only obtain cardinality, the main idea is simply to have the client permute X ′

under a random permutation π before sending it to the server. In this way, the server obtains the
result of permuted mq-PMT, that is, for the i-th item x′

i in X ′, we have x′
i ∈ Y ′ ⇐⇒ xπ(i) ∈ Y .

However, the above protocol does not secure against malicious client. A malicious client can make
the server output 0 with overwhelming probability by sending a random X ′. We should enable the
server to verify that the set X ′ sent by the client is correct. Our idea is to let the client send X ′

along with a zero knowledge proof that X ′ is honestly generated. However, as pointed by Miao et al.
[MPR+20], it is challenging to prove the knowledge of a pre-image for a hash value. To address this
problem, we adapt the malicious PSI-sum protocol of [MPR+20] to our setting. The main observation
is that the DH-PSI protocol can be viewed as a distributed OPRF under PRF instantiation Fk(x) =

H(x)k [BR93]. By replacing it with the Dodis-Yampolskiy PRF Fk(x) = g
1

x+k [DY05], we can use
sigma protocols and the shuffle-and-decrypt protocol of [BG12] to provide zero-knowledge proofs for
the correctness of the PRF and the permutation, respectively.

We give the new payable PSI protocol in Figure 20 and 21. For simplicity, we refer to [MPR+20]
for more details about Pedersen commitment [Ped91], Camenisch-Shoup encryption [CS03], ElGamal
encryption [Gam84], and zero knowledge proofs [BG12] used in this protocol.

The advantage of this protocol is that it can easily be transformed into a protocol that is secure
against malicious server, and the communication is linear O(n), where n is the size of the set. However,
the efficiency of this protocol is several magnitudes slower than the payable PSI protocol in Section 5.

Theorem 4. The protocol in Figure 20 and 21 along with the same algorithm (Check,Pricing) as in
Section 5 is a payable implement of Fpsi.

Proof. For the corrupt simi-honest server, we exhibit the simulator SimS(X, judge) as follows.

1. In the offline stage, the simulator SimS executes as an honest client C to generate the parameters
and appends (pkcs2 , pkeg2 ) and zero knowledge proofs to the view.

2. In step 4, the simulator commits to 0 instead of yi and replace corresponding ZK-AOK with a
simulated one.

3. In steps 5 and 6, the simulator behaves as an honest client to obtain g and appends (ctk2
,Ck2

)
and corresponding ZK-AOK to the view.

4. In steps 8 and 9, the simulator behaves as an honest client to obtain {σ1,i}i∈[n1] and appends
{(Cβ1,i , ctσ1,i , ctσ1,π(i)

)}i∈[n1] and corresponding ZK-AOK to the view.
5. In step 12, the simulator replaces all the commitments of a2,i, b2,i, α2,i with the commitments

of 0, that is, Ca2,i
← comgp

1 ,h
p
1
(0),Cb2,i ← comgp

1 ,h
p
1
(0),Cα2,i

← comgp
1 ,h

p
1
(0). Then, the simulator

selects σ2,i randomly conditioned on |{σ2,i}∩{σ1,i}| = judge. The simulator picks random γ2,i ←

[q2 · 2λ] and computes g2,i = σ
γ−1
2,i

2,i , ctβ2,i
= CS.Encpkcs1 (γ−1

2,i ). As a result, the simulator appends
{(Ca2,i

,Cb2,i ,Cα2,i
, ctβ2,i

, g2,i)}i∈[n2] and a simulated ZK-AOK to the view.

We show the correctness of this simulation via a sequence of hybrids:

– Hybrid0. The first hybrid is the real interaction described in Figure 20 and 21. Here, the honest
client uses input Y , and honestly interacts with the corrupt server. Let T0 denote the real view of
the server.

– Hybrid1. Let T1 be the same as T0, except that the commitments in step 12 are replaced with
the commitments of 0 and the zero knowledge proofs are also replaced with a simulated one. This
hybrid is computationally indistinguishable from T0 by the hiding property of the commitment
scheme and the zero knowledge property of ZK-AOK.

– Hybrid2. Let T2 be the same as T1, except that the order of computation is changed as follows:
the client computes σ2,i = Fk1+k2

(yi), selects random γ2,i ← [q2 · 2κ], and computes g2,i =

σ
γ−1
2,i

2,i , ctβ2,i = CS.Encpkcs1 (γ−1
2,i ). The client also updates the corresponding ZK-AOK.

Note that β2,i is randomly selected in the previous hybrid and γ2,i is decided by β2,i. The new
computation order keeps the distribution unchanged. By the zero knowledge property of ZK-AOK,
T2 and T1 are computationally indistinguishable.

– Hybrid3. Let T3 be the same as T2, except that ctk2
in step 6 is replaced with an encryption of 0

and the client updates the corresponding ZK-AOK.
By the semantic security of the CS encryption scheme and the zero knowledge property of ZK-AOK,
T3 and T2 are computationally indistinguishable.
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Parameters:

– Two parties: server S and client C.
– A group G of order q with a generator g̃ for which the max(n1, n2)-DHI assumption holds.

Input of S: X = {x1, . . . , xn1}
Input of C: Y = {y1, . . . , yn2}
Protocol:
Offline Stage:

1. The server S generates parameters for encryption and commitment schemes. That is, S generates:
(a) Key pairs of Camenisch-Shoup encryption scheme: (pkcs1 , skcs1 ) ← CS.KeyGen(1κ), where g1 =

r2N1
1 for a random r1 ∈ ZN2

1
, pkcs1 = (N1, g1, y1), N1 ≥ 23κq2, y1 = gx1

1 and skcs1 = x1

(b) Pedersen commitment parameters: (gp1 , h
p
1) ← Per.Gen(1κ) where gp1 , h

p
1 are from the large sub-

group of Z∗
N1

.

(c) Key pairs of ElGamal encryption scheme: (pkeg1 , skeg1 )← EG.KeyGen(1κ), where pkeg1 = g̃sk
eg
1 ∈ G

and skeg1 ∈ Z∗
q .

After generating these parameters, S sends (pkcs1 , gp1 , h
p
1, pk

eg
1 ) to the client C.

2. The client C generates parameters along with the zero knowledge proofs for encryption and commit-
ment schemes. That is, C generates:
(a) Key pairs of Camenisch-Shoup encryption scheme: (pkcs2 , skcs2 ) ← CS.KeyGen(1κ), where g2 =

r2N2
2 for a random r2 ∈ ZN2

2
, pkcs2 = (N2, g2, y2), N2 ≥ 23κq2, y2 = gx2

2 and skcs2 = x2. A zero
knowledge proof that N2 is a product of two large safe primes and that y2 is correctly formed:
ZK{x2 : y2 = (g2)

x2 mod N2
2 }.

(b) Key pairs of ElGamal encryption scheme: (pkeg2 , skeg2 )← EG.KeyGen(1κ), where pkeg2 = g̃sk
eg
2 ∈ G

and skeg2 ∈ Z∗
q . A zero knowledge proof that pkeg2 ∈ ⟨g̃⟩: ZK-AOK{skeg2 : pkeg2 = (g̃)sk

eg
2 }.

After generating these parameters, C sends (pkcs2 , pkeg2 ) and the corresponding zero knowledge proofs
to the server S.

3. S and C generate a PRF key k1, k2 ∈ Z∗
q , respectively.

Online Stage:

4. C computes the Pedersen commitments {Cyi}i∈[n2] along with a zero knowledge proof
ZK-AOK{{yi, si}i∈[n2] : Cyi = (gp1)

yi · (hp
1)

si} and sends them to S.
5. S and C jointly decide on a random generator g for the group G.
6. The client C computes ctk2 ← CS.Encpkcs2 (k2) and Ck2 ← comg

p
1 ,h

p
1
(k2). Let pk

cs
2 = (N2, g2, y2), ctk2 =

(u, e), C sends ctk2 and Ck2 to S along with a zero knowledge proof ZK-AOK{(k2, r, r′) : u = gr2 ∧ e =

(1 +N2)
k2 · yr

2 ∧ Ck2 = (gp1)
k2 · (hp

1)
r′ ∧ k2 ≤ q · 22κ+1}.

7. The server S verifies the ZK-AOK received from C, and abort if verification fails. Then, for i ∈ [n1],
S computes the following:
(a) Pick a random a1,i ← Z∗

q and b1,i ← [q · 2κ]. Compute g1,i = ga1,i .
(b) Compute α1,i = a1,i · (k1 + xi).
(c) Compute ctβ1,i = (ctk2)

a1,i ·CS.Encpkcs2 (α1,i) · (CS.Encpkcs2 (b1,i))
q. We note here β1,i = a1,i · (k1 +

k2 + xi) + b1,i · q.
The server S sends {(ctβ1,i , g1,i)}i∈[n1] to C.

Fig. 20: Payable Private Set Intersection Protocol Πp-psi
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8. For i ∈ [n1], the client C computes the following:
(a) Compute β1,i = CS.Decskcs2 (ctβ1,i) and Cβ1,i ← comg

p
1 ,h

p
1
(β1,i).

(b) Compute γ1,i = β−1
1,i mod q and σ1,i = g

γ1,i

1,i . Check all the σ1,i’s are distinct and abort otherwise.
(c) Compute ctσ1,i = EG.Encpkeg2 (σ1,i).

(d) Generate a zero knowledge proof that (Cβ1,i , ctσ1,i) are honestly computed:

ZK-AOK{(skcs2 , β1,i, r1, r2) :β1,i = CS.Decskcs2 (ctβ1,i)∧

Cβ1,i = (gp1)
β1,i · (hp

1)
r1 ∧ β1,i ≤ q2 · 23λ+1∧

ctσ1,i = EG.Encpkeg2 ((g1,i)
β−1
1,i ; r2)}

(e) Re-randomize ctσ1,i to ct′σ1,i
with randomness 0

C selects a random permutation π over [n1] and generates a zero knowledge proof that the ciphertexts
are permuted correctly: ZK-AOK{(π, {ri}i∈[n1]) : ct

′
σ1,π(i)

= ctσ1,i · EG.Encpkeg2 (1; ri), i ∈ [n1]}.
9. C sends {(Cβ1,i , ctσ1,i , ct

′
σ1,π(i)

)}i∈[n1] and all the ZK-AOK generated above to the server S.
10. The server S verifies the ZK-AOK received from C, and abort if verification fails. Note that the

ciphertexts {ct′σ1,π(i)
} have randomness 0, the server S obtains Fk(X) = {σ1,π(i)}i∈[n1].

11. The server S computes ctk1 ← CS.Encpkcs1 (k1) and sends it to C.
12. For i ∈ [n2], the client C computes the following:

(a) Pick a random a2,i ← Z∗
q and b2,i ← [q · 2κ]. Compute g2,i = ga2,i .

(b) Compute α2,i = a2,i · (k2 + yi) and commitments Ca2,i ← comg
p
1 ,h

p
1
(a2,i),Cb2,i ←

comg
p
1 ,h

p
1
(b2,i),Cα2,i ← comg

p
1 ,h

p
1
(α2,i).

(c) Compute ctβ2,i = (ctk1)
a2,i ·CS.Encpkcs1 (α2,i) · (CS.Encpkcs1 (b2,i))

q. We note here β2,i = a2,i · (k1 +
k2 + yi) + b2,i · q.

The client C sends {(Ca2,i ,Cb2,i ,Cα2,i , ctβ2,i , g2,i)}i∈[n2] to S along with the zero knowledge proof :

ZK-AOK{(a2,i, b2,i, α2,i, r1, r2, r3, r4, r5, r6) :

Ca2,i = (gp1)
a2,i · (hp

1)
r1 ∧ a2,i ≤ q · 22λ+1∧

Cb2,i = (gp1)
b2,i · (hp

1)
r2 ∧ b2,i ≤ q · 23λ+1∧

Cα2,i = (gp1)
α2,i · (hp

1)
r3 ∧ Cα2.i = (Ck2 · Cyi)

a2,i · (hp
1)

r4 ∧ α2,i ≤ q · 22λ+1∧
ctβ2,i = (ctk1)

a2,i · CS.Encpkcs1 (α2,i; r5) · (CS.Encpkcs1 (b2,i; r6))
q ∧ g2,i = ga2,i}

13. For i ∈ [n2], the server S computes the following:
(a) Compute β2,i = CS.Decskcs1 (ctβ2,i).

(b) Compute γ2,i = β−1
2,i mod q and σ2,i = g

γ2,i

2,i . Check all the σ2,i’s are distinct and abort otherwise.
(c) Compute ctσ2,i = EG.Encpkeg1 (σ2,i).

14. S sends Fk(Y ) = {σ2,i}i∈[n2] to the client C. Then, the server S defines and outputs judge :=
|X ∩ Y | = |{t : σ1,t ∈ Fk(Y )}|

15. The client C defines and outputs X ∩ Y := {yt : σ2,t ∈ Fk(X)}.

Fig. 21: Payable Private Set Intersection Protocol Πp-psi, continued
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– Hybrid4. Let T4 be the same as T3, except that σ2,i’s are selected randomly conditioned on |{σ2,i}∩
{σ1,i}| = judge. By the pseudorandomness PRF, T4 and T3 are computationally indistinguishable.

– Hybrid5. Let T5 be the same as T4, except that ctk2
in step 6 is changed again with the real

encryption of k2 and the client updates the corresponding ZK-AOK.
By the semantic security of the CS encryption scheme and the zero knowledge property of ZK-AOK,
T5 and T4 are computationally indistinguishable.

– Hybrid6. Let T6 be the same as T5, except that the commitments in step 4 are replaced with
the commitments of 0 and the zero knowledge proofs are also replaced with a simulated one. The
hiding property of the commitment scheme and the zero knowledge property of ZK-AOK guarantee
that T6 and T5 are computationally indistinguishable. This hybrid is exactly the view output by
the simulator.

For the corrupt malicious client, we exhibit the simulator SimR as follows:

1. In the offline stage, the simulator SimR executes as an honest server S to generate the parameters
and sends (pkcs1 , pkeg1 , gp1 , h

p
1) to the adversary. We note that in the following step, the simulator

sends abort to the functionality Fpsi if any zero knowledge proof received from the adversary does
not verify.

2. In step 4, the simulator extracts the adversary’s input Y = {yi}i∈[n2] from the ZK-AOK. Then,
the simulator sends Y to the functionality Fpsi and obtains the intersection I = X ∩ Y .

3. In step 5, the simulator behaves as an honest server to obtain g.

4. In step 7, the simulator picks random σ1,i ← G, γ1,i ← [q2 · 2λ], computes g1,i = σ
γ−1
1,i

1,i , ctβ1,i =

CS.Encpkcs2 (γ−1
1,i ) and sends {ctβ1,i

, g1,i}i∈[n1] to the adversary.
5. In steps 8-12, the simulator behaves as an honest server and sends abort to the functionality Fpsi

if any verification fails.
6. In step 14, the simulator defines σ2,i = σ1,i if yi ∈ I and picks random σ2,i if yi /∈ I for i ∈ [n2].

The simulator sends {σ2,i}i∈[n2] to the adversary.

We show the correctness of this simulation via a sequence of hybrids:

– Hybrid0. The first hybrid is the real interaction described in Figure 20 and 21. Here, the honest
server uses input X, and honestly interacts with the corrupt client. Let T0 denote the real view
of the client.

– Hybrid1. Let T1 be the same as T0, except that the order of computation is changed as follows:
in step 7, the server computes σ1,i = Fk1+k2

(xi), selects random γ1,i ← [q2 · 2λ−2], and computes

g1,i = σ
γ−1
1,i

1,i , ctβ1,i = CS.Encpkcs2 (γ−1
1,i ).

Note that β1,i is randomly selected in the previous hybrid and γ1,i is decided by β1,i. The new
computation order keeps the distribution unchanged. As a result, T1 and T0 are statistically
indistinguishable.

– Hybrid2. Let T2 be the same as T1, except that ctk1
in step 11 is replaced with an encryption of 0.

By the semantic security of the CS encryption scheme, T2 and T1 are computationally indistin-
guishable.

– Hybrid3. Let T3 be the same as T2, except that σ2,i’s are selected randomly conditioned on σ2,i =
σ1,i if yi ∈ I. By the pseudorandomness PRF, T3 and T2 are computationally indistinguishable.

– Hybrid4. Let T4 be the same as T3, except that ctk1
in step 11 is changed again with the real

encryption of k1.
By the semantic security of the CS encryption scheme, T4 and T3 are computationally indistin-
guishable. This hybrid is exactly the view output by the simulator.
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