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Abstract—FALCON is a post-quantum signature selected by
the National Institute of Standards and Technology (NIST).
Although its side-channel resilience has been studied and a
masking countermeasure proposed, the division is a major
performance bottleneck. This work proposes a different approach
to the masked FALCON division. We use the Newton method
and a convergent sequence to approximate this operation. The
performance of the masked division is improved by a factor
6.7 for two shares and 6.98 for three shares. For the Gaussian
sampler, the improvements are of a factor 1.45 for two shares and
1.43 for three shares. Formal security proofs using the MIMO-
SNI criteria are also provided.

Index Terms—Post-Quantum Cryptography, FALCON, Side-
Channel Analysis, Masking, MIMO-SNI

I. INTRODUCTION

Future quantum technologies will solve the Discrete Log-
arithm Problem (DLP) thanks to the Shor algorithm [1] in
practicable times. The National Institute of Standards and
Technology (NIST) launched a competition [2] to select the
next post-quantum cryptography standards. Among them is
FALCON [3], a lattice-based signature.

Another threat is Side-Channel Analysis (SCA), first pub-
lished by Paul Kocher [4]. An opponent with physical access
to the device under attack can correlate the device’s environ-
mental parameters (power consumption, execution timing, etc.)
with its sensitive data. It is important to study the resilience
of FALCON against such attacks.

A. Related works

Several generic countermeasures were applied to defend
FALCON against a side-channel opponent. Chen and Chen
[5] proposed a masking methodology for the addition and
multiplication of floating numbers. Karabulut and Aysu [6]
did a similar work on a hardware platform, specifically on
multiplication. In a previous work [7], we completed their
design and provided a masking methodology for the floor
function and division, as well as the first performances of a
completely masked FALCON on a laptop computer.
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B. Contribution

This paper proposes a different method for computing a
masked division within FALCON. This design relies on the
Newton method to find a root for a smooth function. We
provide a performance comparison with an optimisation of
our previous design on a laptop computer along with formal
proofs.

Section II introduces the background and notations. Section
III presents a new masked design for the division in FALCON.
Section IV analyses its formal security. Section V provides a
comparison with the division in our previous work. Section
VI concludes the paper.

II. PRELIMINARIES

A. Notations

We denote by (αi) a secret sharing of a sensitive datum
α. αk, k ∈ N, refers to the k-ith share of the sharing. An
exception is made for the specific case of a0, an, an+1, and
b0, bn, bn+1, which are the 0-ith, n-ith and n+1-ith terms of
convergent sequences.

The constant values σmin = 1.277833697 and σmax =
1.8205 are parameters of the FALCON-512 signature. For
FALCON-1024, σmin = 1.298280334. Throughout the paper,
calculations involving σmin will take the FALCON-512 value.
The design stays the same for FALCON-1024, but calculations
are not remade for this higher-parameter set of FALCON in
this work.

Notations in Algorithm 1 are from the FALCON reference
paper [3].

B. Masking

1) Overall idea: Among the generic countermeasures most
studied against SCA is masking [8]. The sensitive datum
is separated into random shares to decorrelate it from its
leakage. The shares form a sharing of the secret. Each share
is processed independently from the others. Recombining the
shares after sensitive computations are performed ensures
correctness.

2) Formal proofs: To verify the effectiveness of a masked
gagdet, we rely on formal proofs. Ishai et al. [9] introduced
the concept of t-probing security, formalising the resilience of
a device against a side-channel opponent with measurement
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probes. However, the composability of t-probing gagdets is
not necessarily secure. To address this issue, Barthe et al. [10]
proposed the concept of t-(Strong-)Non-Interference (t-NI, t-
SNI):

Definition II.1 (t-Non Interference (t-NI) security [10]). A
gadget is said t-Non Interference (t-NI) secure if every set
of t intermediate values can be simulated by no more than t
shares of each of its inputs.

However, t-NI gadgets composition does not imply t-NI
security. Barthe et al. [10] propose a stronger definition for
this:

Definition II.2 (t-Strong Non Interference (t-SNI) security
[10]). A gadget is said t-Strong Non-Interference (t-SNI)
secure if for every set of tI of internal intermediate values
and tO of its output shares with tI + tO ≤t, they can be
simulated by no more than tI shares of each of its inputs.

Although the composition of t-SNI gadgets is t-SNI, it
only applies to single-output gadgets. To prove the security of
Multiple Inputs - Multiple Outputs (MIMO) gadgets, Cassiers
and Standaert [11] introduced the t-MIMO-SNI model:

Definition II.3. (t-MIMO-SNI security [11]). Let Oi be a set
of shares indices for i = 0, . . . , d − 1. A gadget is t-MIMO-
SNI if and only if for any set I of t1 internal probes and
any sets Oi such that there exists a t2 that satisfies t1 + t2 ≤
t and |Oi| ≤ t2 for i = 0, . . . , d − 1, the sets of probes
I ∪ yO0,0 ∪ · · · ∪ yOd−1,d−1 can be simulated with at most t1
input shares.

As we use composition proofs to formally verify the security
of our design, a list of the sub-gadgets used for the masked
division is the following:

• SECFPRMUL, which performs a masked multiplication
on the floating-point masking of Chen and Chen [5],

• SECFPRADD, which performs a masked addition on the
floating-point masking of [5].

Both gadgets have been proved t-SNI secure by Chen and
Chen [5].

C. FALCON and division

FALCON [3], or FN-DSA, is a lattice-based signature
selected by the NIST for standardisation. It relies on the NTRU
and SIS problems over the GPV framework [12].

Its peculiarity is to use a Gaussian sampler and floating-
point arithmetic. The sampler, named SamplerZ, is described
in Algorithm 1. The function BASESAMPLER outputs an
integer between 0 and 18. The function UNIFORMBITS(8) out-
puts 8 random bits uniformly. The function BEREXP(x, ccs)
outputs a single bit 1 with probability ccs · exp(−x).

The calculations addressed in this work are highlighted in
red. Although there are two divisions, as they use the same
datum, we can perform them once and simply refresh the result
for its second use.

Algorithm 1: SamplerZ(µ,σ′) [3]
Data: floating-point values µ,σ′ ∈ R such that

σ′ ∈ [σmin, σmax]
Result: z ∈ Z sampled from a distribution very close

to DZ,µ,σ′

1 r ← µ− ⌊µ⌋;
2 ccs← σmin/σ

′;
3 while 1 do
4 z0 ← BASESAMPLER();
5 b← UNIFORMBITS(8) AND 0X1;
6 z ← b+ (2 · b− 1)z0;
7 x← (z−r)2

2σ′2 − z2
0

2σmax
;

8 if BEREXP(x, ccs) = 1 then
9 return z + ⌊µ⌋;

III. FALCON MASKED DIVISION

Instead of computing a masked division, we calculate a
masked inversion and then perform a masked multiplication.
In our previous work, the masked inversion used the naive
Euclidean approach. This leads to a high complexity in terms
of masked additions and multiplications, to a point where the
inversion takes more than 50% of the overall cost of one call to
the Gaussian sampler in [7]. FALCON performs either 1024 or
2048 calls to this sampler in one rejection loop, hence reducing
the cost of the inversion improves the overall performance of
the masked signature significantly. We use a different approach
based on the Newton-Raphson method.

A. Newton-Raphson Method

To find a root β of a smooth function f : C → C such as
the derivative of f in β is not zero, we can use the iterative
scheme

an+1 = an −
f(an)

f ′(an)
. (1)

If the first term a0 is chosen close enough to β, this scheme
will converge quadratically to this root.

To compute the inverse, there are several possibilities in
the choice of f . Several works [13], [14] propose the same
sequence for the computation of the inverse. It is described in
Equation (2):

an+1 = an(2− anx). (2)

However, the sequence converges efficiently only if the
first term a0 is a good approximation of the final result. As
we perform this inversion in a masked manner, we have to
compute this first approximation using the knowledge we have
on the masked value σ′ without revealing its true value.



In the FALCON Gaussian sampler described in Algorithm
1, we have σ′ ∈ [σmin;σmax]. To approximate the first term of
the sequence, we use a first-order minimax polynomial [15]:

t(x) = p+ q(x− σmin) = −0.4298677x+ 1.3215798

p =
1

2σmin
− 1

2σmax
+

1
√
σminσmax

q = − 1

σminσmax

The evaluation of t in σ′ can be performed masked and
gives us a good first approximation of the inverse of σ′ without
revealing its value. The first term is thus a0 = t(σ′).

The number of iterations of the sequence to perform de-
pends on the precision required by FALCON. The signature
is tailored around the double precision for floating points, i.e.
the tolerated margin of error is smaller than 1.11 ∗ 10−16.
To evaluate the number of iterations, we define the sequence
bn = an − 1/x. We have the following result:

an+1 = an(2− anx)

= (bn + 1/x)(2− (bn + 1/x)x)

= (bn + 1/x)(1− bnx)

= 1/x− b2nx

bn+1 = −b2nx
bn = (−1)nb2

n

0 x2n−1

As b0 = a0− 1/x = t(x)− 1/x, we can rewrite the sequence
bn as follows:

bn = (−1)nx2n−1(t(x)− 1/x)2
n

(3)

Table I is obtained thanks to a computational model like
Wolfram Alpha. It highlights the maximum of |bn| for sev-
eral values of n. The optimum number of iterations for the
sequence from Equation (2) in the case of FALCON is 4.

TABLE I
MAXIMA OF THE VALUES OF |bn| FOR n ∈ J1; 5K AND b0 = t(x), WITH

x ∈ [σmin, σmax]

Number of terms n 1 2 3 4 5

Magnitude of |bn| 10−4 10−8 10−15 10−29 10−58

B. Masked Algorithm

Given the methods described in the previous section, a
masked inversion using the sequence based on Equation (2) is
described in Algorithm 2.

The inversion described in Algorithm 2 has a complexity of
9 masked multiplications and 5 masked additions, for a total
of 14 masked operations. This beats the 55 masked additions
required by SECFPRINV in our previous work.

Algorithm 2: Masked Inversion for FALCON
Data: 64-bit boolean sharing (xi) of the secret x and

an integer n number of iterations.
Result: 64-bit boolean sharing (outi) for value 1/x.

1 (cstmi)←− (0XBFDB82F3D046D4D1, . . . , 0)
2 (cstai)←− (0X3FF52530DC40DE17, . . . , 0)
3 (csti)←− (0X4000000000000000, · · · , 0)

// cstm=-0.4298677, csta=1.3215798,
cst = 2

4 (tmpi)←− SECFPRMUL((xi), (cstmi))
5 (tmpi)←− SECFPRADD((tmpi), (cstai))
6 for i from 1 to n do
7 (xai)←− SECFPRMUL((xi), (tmpi))
8 xa0 ←− xa0 XOR (1 << 263)
9 (xai)←− SECFPRADD((xai), (csti))

10 (tmpi)←− SECFPRMUL((tmpi), (xai))

11 return (outi) = (tmpi)

IV. SECURITY

To formally verify the security of our design, we use the
methodology described by Cassiers and Standaert [11]. They
model a gadget as a Directed Acyclic Graph (DAG), or com-
putation graph, where each vertex is a t-NI secure subgadget
and the edges are the wires connecting the subgadgets to
form the main gadget. Every subgadget has one output. A
duplication vertex, denoted Splitj is used if a datum is reused
by j subgadgets. If a subgadget is known to be t-SNI secure,
it is shown as a t-NI secure subgadget followed by a t-SNI
Refresh vertex.

This graph model highlights how the sensitive datum’s in-
formation propagates through the gadget, and thus which
information a specific probe placement can reveal. Cassiers
and Standaert [11] define the Simplified Computation Graph
as follows:

Definition IV.1 (Simplified Computation Graph (SCG), [11]).
The simplification of the computation graph G is the graph
obtained from G by removing all the t-SNI Refresh vertices
and their incident edges.

According to [11] (Proposition 7, page 2549), to prove the
t-NI security of a gadget, it is sufficient to verify that its SCG
is a Single Path - NI Built gadget (SP-NIB):

Definition IV.2 (Single Path - NI Built gadget (SP-NIB), [11]).
A composite gadget G is SP-NIB if it is implemented with only
NI gadgets and SNI refreshes, and if for any pair of vertices
u, v in the corresponding simplified computation graph there
exists at most one path from u to v.

The conditions required for an SCG to verify t-MIMO-SNI
security are as follows:

Proposition IV.1 ( [11]). A composite gadget G is t-MIMO-
SNI if it satisfies the three following conditions. (i) G is SP-
NIB. (ii) For any pair of output nodes u1, u2 there is no node



v such that there is a path from v to u1 and a path from v to
u2. (iii) For any pair of input nodes u1, u2 there is no node
v such that there is a path from u1 to v and a path from u2

to v. (iv) There is no path from any input node to an output
node.

To prove the t-SNI security of our inversion, we perform a
composition proof using the t-MIMO-SNI criteria and Proposi-
tion IV.1 for the sub-gadgets of Algorithm 2. We use the legend
described in Table II for the SCG used in the proofs. The t-
SNI Refresh vertices are depicted as grey edges for clarity.
They are not considered edges or vertices in the SCG when
performing the proofs.

TABLE II
SCG LEGEND

R
: t-SNI Refresh represented as an edge.

Splitj

: Splitj vertex (has j outgoing edges).

: t-NI vertex.

: t-MIMO-SNI vertex.

(ioi) : Input/output nodes.

Lemma IV.1. The For loop from Algorithm 2 is t-MIMO-SNI
secure when we take into account that the input of the first
iteration is fed by a t-SNI gadget.

Proof. The For loop is depicted in Figure 1. We choose to
depict the edge from the input (tempi) to its Split2 node as
a t-SNI Refresh. The justification is twofold:

• The first iteration of the For Loop takes as input (tempi)
which is outputted by a SecFprAdd gadget. This is a
t-SNI gadget, thus its representation in the SCG is a t-
NI node followed by a t-SNI Refresh. This Refresh is
thus represented in Figure 1 when we consider the first
iteration of the For loop.

• The output (tempi) of the For loop is preceded by a t-
SNI Refresh. As this output will serve as an input to the
next iteration of the For loop, we can once again depict
the edge from the input (tempi) to Split2 as a t-SNI
Refresh. This Refresh after the input thus represents the
Refresh before the output from the previous iteration of
the For loop.

This being clarified, we now verify that the conditions of
Proposition IV.1 are met by the SCG in Figure 1.

(i) For every couple of nodes u, v, there is at most one path
from u to v. The SCG is thus SP-NIB and we have t-NI
security.

(ii) As there is only one output, the second condition of
Proposition IV.1 is verified.

(iii) As explained previously, the input (tempi) is always
refreshed and thus not ”connected” to the remainder of
the graph. As the input (ini) is the only other input, the
third condition of Proposition IV.1 is verified.

(iv) As there is a t-SNI Refresh before the only output of the
For loop, there is no path from any input to the output.
The final condition of Proposition IV.1 is verified.

Hence, according to Proposition IV.1, each iteration of the For
loop from Algorithm 2 is t-MIMO-SNI secure, when taking
into account that the input of the first iteration is fed by a
t-SNI gadget. By composition of t-MIMO-SNI gadgets, the
entire For loop is t-MIMO-SNI secure.

(xi)

(tmpi)

SecFprMul

Split2

SecFprAdd

SecFprMul (tmpi)

R

R

R

R

Fig. 1. SCG of the For loop of Algorithm 2

Theorem IV.1. The inversion described in Algorithm 2 is t-
SNI secure.

Proof. The SCG of the algorithm is shown in Figure 2. For
clarity, the n edges from node Splitn+1 to each iteration of
the For loop are represented as one edge. As the For loop
is t-MIMO-SNI secure according to Lemma IV.1. The SCG
verifies the conditions of Proposition IV.1:

(i) The SCG depicted in Figure 2 is SP-NIB.
(ii) There is only one output.

(iii) There is only one input.
(iv) As the output is preceded by a t-SNI Refresh, there is

no path in the SCG between the input and the output.
A single-input single-output t-MIMO-SNI gadget is a t-SNI
gadget. The inversion described in Algorithm 2 is t-SNI secure.

(xi) Splitn+1 For loop

SecFprMul SecFprAdd

(outi)

R

R

R

Fig. 2. SCG of Algorithm 2

V. PERFORMANCES

The performances are performed on a laptop computer. It
is equipped with an Intel Core i7-11800H CPU. The compiler
is gcc version 9.4.0. A comparison between the two inversion



methods and their impact on the Gaussian sampler SamplerZ
is provided in Table III.

TABLE III
COMPARISON IN MICROSECONDS BETWEEN THE TWO INVERSIONS

METHODS AND THEIR IMPACT ON SAMPLERZ

Algorithm Paper 2 shares 3 shares
SecFprInv [7] 268 740

Algorithm 2 This work 40 106

SamplerZ [7] 704 1833

SamplerZ This work 486 1280

An estimate of the performance of a masked signature of
FALCON is given in Table IV.

TABLE IV
COMPARISON IN SECONDS BETWEEN THE TWO ESTIMATIONS OF THE

COST OF PERFORMING A MASKED FALCON SIGNATURE

Algorithm Paper 2 shares 3 shares
FALCON-512 [7] 3.198545 6.367758

FALCON-512 This work 1.281485 2.955044

FALCON-1024 [7] 6.908620 12.926950

FALCON-1024 This work 2.847457 5.431982

VI. CONCLUSION

In this paper, we present a different methodology to per-
form the masked division within the FALCON post-quantum
signature compared to our previous masked implementation
of FALCON [7]. We use the Newton-Raphson method and a
convergent sequence to approximate the value of the inverse
of a masked value. The performance of the masked division
is improved by a factor 6.7 for two shares and 6.98 for three
shares. The performance of the Gaussian sampler is improved
by a factor 1.45 for two shares and 1.43 for three shares.

The next evolution of this work is to port the implementation
on an embedded target, either microcontroller, FPGA or ASIC,
to perform some experimental validation of the security of the
design and prepare it for deployment.
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